Of ELECTRICITY.

A sontinsa.
sion of the foregoing E.ffay. Ibid. p. 213. Read Miny 19. 1748.

Exp. VIII.
of the eledrified rod. If this experiment is made with a tube, inftead of a fphere, as ic cannot be fo uniformly excited as the fphere, the light will iffue from the rod in flames, as the tube is more or lefs excited.

Several very ingenious gentlemen, and in particular the Abbe Nollet; lave imagined, that the light feen at the point of the non-elcetric was produced by means of effluvia ifluing from it in diverging rays rowards the electrified rod, and which current of effuvia is therefore fuppofed to be the caule of the attractive, as a like current iffuing at the fame time from the clectrified rod is fuppofed to be the caufe of the repulfive property of Elcetricity.

This conjecture being directly contrary to the account I have given of this pbenomenon, I hiall offer fome confiderations in fupport of what I have advanced, and which I think will make it appear highly improbable, that any fuch current of effurvia iffues out of the non-eleetric.
32. In the preceding paper, l endeavoured, from the principles therein laid down, to account for fome of the moll remarkable pbaromena of Elecuricity; and in particular for that appearance of a light iffuing from the end of an iron rod, when pointed, and made electrical; why this light was vifible only at the point, and in no other part of the rod: why the light was vifible to a greater length when the point was approached by a non-electric : and why a light: will be feen as iffuing from the nonclectric when it is pointed, but not when it is flat.

I fhall now endeavour, from the fame principles, to account for thofe pbanomena, which will be produced on a nearer approach of the nonclectric to the electrified rod.

If the non-clectric body, whether flat or pointed, is brought nearer to the end of the rod, than in the latt experiment, there will be a fma!! fream of light produced, reaching quite from the electric to the nonelectric body; and if brought ftill nearer, there will iffue a fpark attended with a fmall fnapping noife, which will be fucceeded by others at equal intervals; and if the non-electric is held at fome diftance from the fide of the rod, the point of it will frequently appear luminous, but no part of the electrified rod will be fo. If it is brought nearer, there will likewife be fparks produced at nearly equal intervals from each other, which will Cometimes appear as iffuing trom the fide of the electrified red, at others, as coming from the non-electric.

If a finger is ufed as the non-electric, it will receive a fmart flroke; and if fpirit of wine, heated fo as to emit an inflammable vapour, is made ufe of, it will be kindled by the fpark.
Thefe pbargatna may, on the afore-mentioned principles, be thus accounted for.

It the non-electric rod is pointed, and brought fornear, as, by it's attraction, to prevent the rays iffuing from the point of the electrified rod from diverging, they will be drawn off parallel to each other, and confequently be equally luminous throughout the whole diftance between the swo rods.

Of ELECTRICITY.

If the non-clectric be brought fill nearer, the attrative force will be fo much increafed, as not only to affect the effluvia, when they are driven off from tibe point of the electriged rod, buit to be capable of drawing them ofi from a confiderable part of the rod beyond the point ; and that with a velocity, and in a quancity, fufficient to occafion both the fpark and blow, as well as the noife that is heard.

The fame is the cafe, when the non-eleetric rod, or a finger, is held againft the fide of that which is made electrical : at a greater diftarce a light will appear as iffuing from the non-eleetric, the partieles ateracted from a large furface of the rod (and therefore not vifible as coming from it) being made to converge to a point, are thereby rendered luminous, and, if brought nearer, there will iffuc liparks in the fame manner as when held to the end : and that this is owing to the increafe of the attractive force, feems plain ; for it was obferved in the laft experiment, the attraction was capable of changing the direction of the rays at the dittance of feveral inches; whereas a fnap or fpark is feidom produced, when the non-electric is held more than an inch and half diftant. If therefore the attraction decreafes, as the fquares of the diftances increafe, as it probably does, the attractive torce will be many times greater in one cafe than in the other, and if where the attractive power was weaker, as in the former experiment, there were fo many rays of the electric matter collected, as to be fufficient to produce a light, it cannot be thought extraordinary, when the attraction is fo greatly increafed on the nearer approach of the non-electric, that both the denfity and velocity of the particles fhould be thereby increafed, fo as to produce heat fufficient to fire the vapour arifing from fpirit of wine, or any other inflammable vapour.
And that the quantity of the eieetric particles is greatly increafed, as well as their velocity, is evident from that large furface of the rod, which, by the approach of a finger, is in one fpark divefted of them; and which requiring fome time before it can be again fufficiently recruited, I apprehcond is the reafon of that interval between the fparks. And here it muft be obferved, that the dititance the point of the non-eleetric is hedd at from the rod, in order to produce the greateft fpark, muft be varied, in proportion as the rod is elcctrified in a greater or lefs degree ; the more ftrongly the rod is impregnated the greater will betine diflance; and if then the non-electric is broughe nearer, the fparks will be frmaller, but fucceed each other quicker; to that when it is brought almoft to touch the rod, they will appear like a fmall flream. The reafon of which I take to be, that as the electric atmofphere furrounding the roci is denfer nearer it than farther off, when the non-electric is brought into fo very denfe a part of the atmolphere, it will from thence become neariy as electrical as the rod iffelf; and therefore lofe great part of it's attractive force, and confequently will only be able to draw off thofe particles from the rod which are neareft to it.

Of ELECTRICITY.

I would farther take notice, that the fparks are always produced in the fpace between the non-electric and the rod, and often appear as iffuing from the non-electric. This appearance is probably owing to thofe particles, which, by their elafticity, are reflected back again from the non-electric towards the rod, and which, by ftriking againft thofe coming from it, produce both the fparks and noife that is heard; and as I have already fhewn, that the particles often appear in luminous rays at the point of the non-electric, it thence happens, that the fpark is frequently kindled fo near to the non-electric, as to appear as iffuing from it.

1 obferved, in my former paper, that feveral ingenious gentlemen, from this appearance of a light at the point of the non-electric, have imagined there was a current of electrical effuvia continually iffuing out of it, and which, fetting in towards the electrified rod, was the caufe of the attraction of the Electricity : and this conjecture of theirs will feem to be greatly favoured by the following experiment.

If fome of the fibres of a down-feather be faftened to the end of a fmall fkewer or wire, and made electrical, they will ftrongly repel each other, and will expand themfelves on all fides to the greateft diffance poffible from each other; but if a non-electric perfon bring the point of a pair of compafes, or any other fmall-pointed body near them, they will be repelled from it, and driven up together as with a blaft of wind, and, in the dark, a light will be feen as ifluing from the point ; from whence it might be concluded, that the fibres are repelled by effuvia iffuing out of the point of the non-electric.

As the Abbé Nollet endeavours to account for the attraction of Electricity on this principle, I fhall offer fome confiderations, which, notwithftanding thefe appearances, have induced me to be of a different opinion; and they are founded on the following obfervations.
r. That however replete any bodies may be with the electric matter, none of thefe phanomena are ever produced, unlefs the efflucia are firft excited in fome particular body, and put in motion, either by rubbing, or fome fuch-like operation.
2. That the efluria are not to be equally excited in all bodies, but much fronger in fome than in others'; and that, in particular, they are not capable of being at all excited in metals by friction.
3. The attractive and repulfive property will be ftronger or weaker in any body, in proportion to the quantity of excited efluvia wherewith it is impregnated.
4. That thofe bodies which are moft eafily excited by friction, will receive the leaft quantity of the electrical effuria from any other excited body; and, on the contrary, metals, or thofe bodies in which they cannot be excited by friction, will reccive the moft.
From thefe obfervations I think it may be fhewn, that this appearance of light is to far from proving that the effluia come out of the nonelectric,

Of ELECTRICITY.

electric, at whofe point they are vilible; that from thence it cannot be concluded the body has any of the electrical matter refiding in it, but is rather a proof to the contrary. For I have already fhewn, that the fame appearance would be produced from the fetting in of the effuria into the non-electric; and this might be confirmed, if neceffary, by a variety of experiments. And as thofe bodies, at whofe point this light appears the ftrongeft, afford us no figns of their having any of the electrical effucvia refiding in them, cither by their attracting or repeling other bodies, or by their being capable of being excited in them by friction, as in glafs, EF\%. nor in fhort any fort of evidence whatfoever, but what arifes from this appearance ; may we not expect fome better proof of their being poffefled of thefe efflucia, before we admit of their iffuing out of them?

Again, it appears very extraordinary, that thofe bodies, in which the eifiuvia cannot be excited by any other method, fhould fend forth fuch ftreams of them, only on their being brought within a few inches of the electrified rod, and that thele Itreams fhould increafe as the rod is more ftrongly electrified; and yet that few or none of thefe ftreams fhould iflue from thofe bodies in which the effuvia can be excited: and if the firtt-mentioned bodies are themfelves ftrongly impregnated, the ftreams will difappear, and they will be fo far from parting with any of their effuvia, thar, on the contrary, they will be ftrongly repelled by the rod.

I farther apprehencl, on this fuppofition, it will be extremely difficuit, if not impoffible, to account for the ceafing of the fream from the point of the non-electric on ftopping the machine; as likewife that the rod fhould fo foon be divefted of it's effluria, on fuch a non-electric's being held near it, which it would otherwife retain for feveral hours, and which I think is a ftrong proof of the effuria's paffing from the rod into the non-electric. And that it cortainly does fo, may be confirmed by the perfon who holds the non-electric ftepping upon a cake of wax, when he will foon become clectrical, from the effuvia he will receive (thro' the point of the non-electric) from the rod; but fo long as he continues to be fo, there will not be feen any light to iffue from the point; which I apprehend cannot be acceunted for on any other principle, but that of the fetting in of the effluvia at the point of the nonelectric. And as I have already fhewn, that a!! the phenomene are naturally to be accounted for on this principle, without being liable to any of the above-mentioned objections, 1 muft remain of the opinion (till I can fee thefe objections anfwered) that this appearance of light is no proof that the effuria iffue out of the non-electric, but of the direct contrary.

The above-mentioned objections might be brought, with equal force, againfi the fibres of the feathtr being repelled by effluvia iffuing out of the point of the non-electric that is neld near it, and in particular, that this effect wouid ceafe to b: produced, either when the machine was ftopped, or the perfon who held the poiat became clectrical. And to thefe I would

Of EIECTRICITY.

would add, that if this was reatiy the cafe, the fibres would continue to be repeifed, notwithftanding any alceration in the flape of the nonelectric; whereas, on the contrary, it the jeine of as par of compafics was held towards them, inftead of the point, they woukd be ftrongly attracted to it: and the fame will always happen, whenever an obtufe body is brought near them irftead of a pointed one.

The true caufe of this remarkab.e plienomenon 1 apprehend to be the different denfity of the effiuvia at the extremities of the two bodies; for I have already thewn, the efilutia will be much denfer at the extremity of a pointed body than at an obtufe one: and as the force by which the particles endcavour to expand themfives, increafes in proportion to their denfity, it follows, that the particles will be reflected back with greater violence from the pointed body than the other; and this force exceeding the attractive power of that parricular part of the feather, to which it is directed, the fibres will be repelled by it; whereas the force, with which the particles endcavour to expand themfelves from the obtule body, being lefs than the attractive power, it follows, that the fibres of the feather will continuc to be attracted by it.
Exp. IX.
Take two plates of metal, very clcan and dry, whofe furfaces are nearly equal ; hang one of them horizontally to the electrified rod, and bring under it upon the other any thin light body, as leaf-filver, $\mathcal{E}_{6} c$. when the upper plate is made electrical, the filver will be attracted by it; and it the under plate is held at a proper diftance, will be perfectly fufpended at right angles to the plates, without touching either of them; but if they are either brought nearer together, or carricd farther afunder, the leaf-filver will ccafe to be fulpended, and will jump up and down between then. The fame effect will be produced, if you reverfe the experiment, by electrifying the bottom plate, and fufpending the other over it.

If the upper plate is electrified when the leaf-filver is brought near, it will be attracted upwards by it, and thereby become eleetrical; and fo long as it continues to be electrical, it will likewife be attracted downwards by the non-electrical plate. Whenever therefore this laft attraction added to the gravity of the filver, which aets in the fame direction, is equal to the contrary attraction upwards, the leaf-filver will, by means of thefe two oppofite forces, be kept lufpended between the plates, and will continue to be fo, as long as the equality of thefe forces is preferved.

I have already flewn, that the attraction between any two bodies will always be in proportion to the different quantity of electric effuria they are poffeffed of; the greater that difference is, the greater will be the attraction. In order therefore to obtain this equal attraction at firft, the leaffilver munt be imbued with a greater or leffer quantity, in proportion as the plate is more Atrongly or weakly electrified; but always with a much tets quantity than the plate ; and likewife the lower plate will require to be placed at different diftances, in proportion to the quantity of electric mater the upper plate is puffefied of. As therefore the fufpenfion of the

Of ELECTRICITY

the filver depends upon the exat proportion of attraction (arifing rum the different quantities of electric matter) in the t w plates and cuffilver, it follows, that whatever alters the quantity contained in any one of them would prevent the fufpenfion.

It is well known, that, by the attraction between any tivo bodies, the electric effiuvia are continually drawn off from that which has the greateff quantity of them, cill the other being fufficiently inpregnated, the attraction ceafes. In order therefore to preferve thefe proportions, it is neceflary, that, as faft as the non-electric plate draws off any of the offruyia from the leaf-fiver, it fhould part with it again; and fo, by continuing to be a non-electric, an equal degree of attraction be preferved ; and again, that the leaf-filver fhould receive a frefh fupply from the electrical plate, equal to what it conftantly parts with; and the electrical plate muft likewife receive an equal fupply from the globe; and that there is fuch a conftant current of tie electrical effucia, is evident, from thofe fmall ftreams of light, vifible at the two corners of the filver next the plates. If therefore the globe fiould be fopped, or the under plate by any means become electrical, thefe proportions would be thicreby deftroyed, and the leaf-filver would ceafe to be fufpended.

That the Icaf-filver is always nearer to the non-electrical than to the electrified plate, is owing to it's receiving it's fupply of effuria from the atmolphere furrounding the electrified plate: for as the plate is more ftrongly electrified than the filver, it's atmofphere of effuvia will be denfer to a greater diftance than that furrounding the leaf-filver, and therefore can fupply an equal quantity at a greater diftance than what the lower. plate can receive from the filver, whofe atmofphere is rarer; and therefore, as the filver will always be fufpended in that part where the two currents are equal, without which I have already fhewn the proportion would be deftroyed, it will confequently be always nearer to the non-electrical than to the electrified plate. If the experiment is reverfed, by electrifying the under plate, and making the upper one the non-electric, the only difference will be, that the gravity of the filver muft then be added to the attraction of the electrified plate, and will therefore caufe the filver cither to be nearer the non-electrical one, or the plates to be moved a little farther afunder, or perhaps both.
33. Electricity has a power of dividing fubtilly. It carrics off with A new dilico it the parts of thofe bodies which it diffolves, and transfers them to thofe zeers of the. places where the electrical fparks appear. If odorous fubftances are ever fo clofely confined in glafs veffels, it fo divides them, that their cxhalations penetrate the glals as eafily as magnetical powers, and fow like a river thro' the atmofphere of cylinders and chains, to which the Electricity is communicated. The electrical matter, which comes out of the other extremity of the cylinder, gives an aromatic odour to the hand that touches it. But the odour communicated docs not fop in that part of the botly on which the electrical river has flowed, but with a continued afpiration pervades the whole human body. Not only the fkin and garments are fcented, but even the air breathed by the lungs,
migulnefs of Electricity in Medicine, by. John Hen. Winkler, Prof. ar Lecip. fick, F R. S. No. 486. p. 262. Feb. a and Mar. 1748. Dated Mar. 12. 1748. the ${ }_{5 i+18}$.
the fpittle, and the fweat of the perion affected, fmell of the aromaticks; which are agitated by Electricity in the clofed vaffel.

This unexpected virtue is made probable by feveral obfervations and experiments which were made with care and attention, In 17.47 I filled a glads veffel with water, and diffolved nitre therein. This veffel flood unmoved for feveral weeks. The water therefore became very clear, afier the heavier parts of the nitre had libfided. At the latter end of the year I puta wire into this clear water, and joined it to a metalline tube furpended on filken threads. I put under this tube at different times fometimes metals, fometimes metalline veffels full of water, in which were glafs fpheres filled with metalline partigles. When thefe were prepared I excited the Electricity. The electrical fire touched the bodies placed underneath. I repeated she agitation of Electricity for feveral days. And now, beyond my expectation, I found a great quantity of nitrous parts of various textures in the metals and veffels, which had been touched by the electrical fire under the metalline tube. More veffels were placed in the room where I made the experiments, and were not touched by the electrical matter from the metalline zube. In thefe there was no trace of nitre. Hence it is eafy to conjecture, that the parts of nitre are taken out of water by Electricity, and carried into places which arc touched by the electrical fire.

About the beginning of the prefent year 1748 , I received a letter from Venice, which greatly confirms this conjecture. The author, Foannes Daniel Gaifel, related an affair, which furprized all the learned in Venice, Bologna, and other cities of Italy. It was accompanied with a printed epiftle in Italian ${ }^{*}$, written by an eminent perion at Venice, Sig. 7o. Iranc. Pivati. In this epiftle, the fubject of which is Medical Electricity, he relates a ftory of wonderful effects to Sig. Fr. Maria Zanotti, Secretary of the Academy of Bologna : and the art, by which thefe things were performed, was the invention of Pivati. A manifeft example of the virtue of Electricity was hewn in the balfam of Peru; which was fo conccaled in a glafs cylinder, that before the application of Electricity, there could not be the leait fmell of it by any means difcovered. A man, who having a pain in his fide, had applied hyllop to it by the advice of a Phyfician, approached to the cylinder. The man was clectrified by it, went home, fell aneep, fweated, and difperfed the power of the balfam. His cloaths, bed, chamber, all fmelt of it. When he had refiefhed himfelf by this neep, he combed his head; and found the balfam to have penctrated his hair, to that the very comb was perfumed. The next day S. Pirati electrified a man in health after the fame manner, who knew nothing of what had been done before. On his going into company about : an hour afterwards, he found a gradual warmeth diffufing itfelf thro' his whole body. He grew lively and more chearful

[^0]
Of ELECTRICITY.

than ufual. His companions were furprized at an odour, and could not imagine whence it procceded: but he himfelf perceived, that the perfume arofe from his own body, at which he was much furprized; not having the leaft fufpicion that it was owing to the operation, that had been performed upon him by S. Pivati.

Being fruck with a relation fo extraordinary, I was defirous to try the poswer of Electricity on certain fubftances, and found the event to confirm what had been related. I put fome beaten fulphur into a glafs folhere, fo well covered and ftopped, that on turning it over the fire, there was not the lealt fmell of fulphur perceived. When the fphere was cooled, I elecerified it. Immediately fulphureous vapours iffued from it, and on continuing the Electricity, filled the air, to as to be fmelt at the diftance of more than 10 fect. I called a friend well verled in Electricity, Prof. Haubold, and leyeral others, as witneffes and junges of this faet : but they were prefently driven away by the Rench of the fulphur. Iftaid a little longer my felt in this fulphureous atmofphere, and was fo impregnated thereby, that my body, cloaths, and breath, retained the odour even the next day. On repeating the experiment in the prefence of one who was converfant in the effects of fulpher, the ligns of an inflamed blood were vifible in the mouth on the third day. After this I tried the effect of a more agreeable fnell, and filled the fohere with cinnamon. When I had treatect it as before, the fmell of cinnamon was foon perceived by the company, and the whole room was in a thore time fo perfumed by it, that it immediately faluted the nofes of all that came in ; and the oclour remained on the next day. I tried the balfam of Peru with like fuccefs. My above-mentioned friend, whofe teftimony I did not care to be without, after he had received the power of the balfam, fmele fo ftrong of it, that going abroad to fupper, he was often afked by the company, what perfume he had about him. The next day, when I drank tea, I found an unufually fweet tafte, owing to the fumes of the balfam, that ftill remained in my mouth. In a few days, when the fphere had loft all the feent of the balfan, we let a chain out of the chamber window, and extended it thro' the open air into another room detached from the former. Here we fufpended the chain on filken lines, and gave it into the hand of a man who ftood on an extended filken line, and knew nothing of our purpofe. When the Electricity had been excited for fome time, the man was afked whether he fmelt any thing; and on fruffing up his nofe he faid he did. Being afked again what fmell it was, he faid he did not know. When the electrical comenotions had been continued a quarter of an hour, that romm fmelt fo ftrong of it, that the man, who knew nothing of our balfam, faid his nofe was filled with a fweet fmell, like that of fome fort of balfam. After feeping in a houfe at a confiderable diftance from the room where the experiment was tried, he rofe very chearful in the morning, and found a more pleafant tafte than ordinary in his tea.

VOL. X. Part ii.
Eff
When

of ELECTRICITY.

When I confider thefe things, I cannot think it improbable, that Elecericity may be of fervice in the cure of fome difeafes. There are 2 great benefits to be expected from medicine; for cither noxious particles being mixt with the bloot or other jucies, are to be feparated and expellect; or fuch as are beneficial to health are to be introduced. In both thefe cafes Electricity may be of fervice. For as foon as it touches a human body, is immediately pervades it in fuch a manner, that no place is deft free from it; nor is there any thing in the bociy that can be rendered volacile, that is not diffolved, diffipated, and carried off by it. We cannot doubt therefore, that blood, with which Electricity is communicated, is divided into more minute parts; that leveral of them are feparated from the mals of blood, and in a fhort time are difperfed in the air. The tenacity of the blood does not blunt the electrical power; nor does the firmnels of the veins hinder the avullion; nor the fat repreis it. The coherence of glafs, tha' it is much firmer than the contexture of the veins, lefh, and tkin, cannot however hinder fivitits and aromaticks from being diffolved into particles, that fly off thro' the pores of the glafs. We feem therefore to have reaton enough to think, that Electricity may caufe certain fubftances to fly off from the blood, and other parts of the body.

That the b.ood and humours of the body are greatly agitated, refolved, and attenuated by Electricity is manifeft: for I knew a woman, whole anenfes flow immediately on her being electrified. Dr Tbebsfius wrote to me a few days ago from Hivjchberg in Silefia, that his being eleetrified was conftantly attended by a bleeding at the nole.

But Electricity has not only a power of feparating and expelling, but is alio very efficacious in filling the blood with powers, which are contained in plants, and minerals; which is manifert from what I have already Shewn with regard to fulphur, cimamon, and balfam of Pers. The electrical power of nourifhing the blood differs from the ufual method of healing in this, that it Jupplies the blood with aliment without the help of the fomach, and that it enriches the vital juice with thole exhalations, which pals thro' the glats, and excel in fubtilty and purity. Medicines received by the mouth munt be carried into the Atomach, before they can be mixed with the blood, and wander thro' many and long paths, and therein be changed. But the fpirits raifed by benign Electricity, flow into the blood without thefe windings. Sometimes a part of the body is difordered by it, becaufe the paflages, thro' which the blood or other liquor ought to flow, are fo obetructed, that the remedies. applied have no power at all of opening them, or ac leaft require a long time for it. Buc the part that is touched by electrical effuvia is ftrongly opened and penetrated by them.

By the conjunction therefore of medicine and the clectrical arr, I am of opinion, that new and happy cures of difeafes may be performed, remarkable examples of which have been publifhed by the learned S. Pizati, who made ufe of the advice of a learned and experienced Phy-

Of ELECTRICIT Y .

fician. He reftored the obftructed courfe of the blood in a woman, by ereating the ufual medicines in fuch a manner, that their powers reached the Body of the patient by means of Electricity, from the glafs cylinders in which they were inclofed. S. Pirati's afiftance was implored by a young genteman, who was fo miferably affected by an abundance of collected and corrupted humour in his foot, that it eluded all the attempts of the Phyficians. S. Pizati filled a glals cylinder with proper materials, and having eleEtrified it, applied to the part affected, which he caufed to cmit electrical fparks, and continued the operation for fome minutes. When the patient went to bed, he had a grood night, and a mitigation of his pain. When he awaked in the morning, he found a fmall red tubercle on his foot, which only itched, as if a cold humour had flowed thro' the inner part of his foot. He fweated every night for 8 days together, and at the end of this time was perfectly well. After this S. Donadoni, Bifhop of Sebenico, came to S. Pirati, attended by his Phyfician and fome friends. His Lordfhip was at that time 75 years old, and had been afficted with pains in his hands and feet for feveral years. The gout had to affected his fingers, that he was not able to move them, and his legs, fo that he could not bend his knees. He was fo miferable, that when night came, his fervants were obliged to bring him in a chair to the bedfide, and lift him gently into it. The poor old Bihhop intreated S. Pivati to try the effects of Electricity on his body. He procceded after the following manner ; he filled a glafs cylinder with difcutient medicines, and managed it fo that the electricai virtue might enter into the patient. He prefently felt fome unufual commotions in his fingers. The action of Electricity was continued for 2 minutes. His Lordfhip in lef's time than could be imagined, opened and thut both his hands, gave a hearty fqueeze with his hand to one of his attendants, got up, walked, linote his hands together, helped himfelf to a chair and fate down, wondering ac his own ftrength, and hardly knowing whether it was not a dream. He walked out of the chamber down ftairs, without any affiftance, and with all the alacrity of a young man. Soon after, S. Pivati relieved a Lady of 60 years in like manner from the gout, with which he had been 6 months tormented. Her fingers were much fwollen, and continually trembling, and one of her arms was convulfee. But afrer receiving the powers of Elefricity for 2 minutes, the trembling of her fingers ceafed : and the next day the fwelling was fo far abated, that the could draw on her gloves, and make ufe of her fingers.

Thefe things are fo manifeft, that there feems to be no room to doubt of the affiftance that may be given to Medicine by Electricity. In which opinion I am greatly confirmed by the concurrence of the judicious and Ikilful Phyfician S. Morgagni, Profeffor of Anatomy at Padua, who highly approved of what S. Pivati: had done, and encouraged him to proceed in his attemps to improve Medicine, in a manner fo beneficial to human kind *.

Of ELECTRICITY.

34. Though perhaps as many curious and well-contrived experiments have been made in England as in all the other parts of Europe, to difco*ver the general laws and properties of Electricity; we have not hitilerto attended to the effects that may be thereby produced in the bodies of living animals, any further than to affure ourfelves they may be killed thereby; a fuppofition that difeafes may be cured by means of this power, baving met with fo little countenarce amonglt us, that very few trials have been made, to afcertain what, in diftempered cafes, it can or cannot perform. Fartigners, on the contrary, feem fond of believing that the fubtile electric fluid (be it fire, ather, or whatever elfe) which can pervade all bodies, and (being accumulated) even kill an animal, in certain circumftances, and by certain methods of application, may, poffibly, in other circumftances, and applied in different degrees, and by different methods, fo operate on the fluids or folids, and perhaps on buth, that very beneficial and falutary effects may refult therctrom.

With this view the Abbe Nollet made feveral experiments on living birds, kittens, and human bodies; and if we may give credit to the accounts thereof communicated to us, he found, in every trial, that perfpiration was fo confiderably promoted thereby, as to caufe a very fienible difference between the weight of fuch animals as had been clectrified, and others of the fame kind that were treated exactly alike in every refpect befides: whence he naturally concludes, that, in cafes where it is neceflary to quicken the circulation of the fluids, and throw off a greater quantity of the perfpirable matter, Electricity muft be greatly ufeful.

The Philofophers in Italy and Germany have applied their induftry to difcover by experiment, how far Electricity may, fimply and in itfelf, be of fervice in feveral difeafes, and likewife how far it may conduce towards conveying the more fubtile and active effluvia of uleful Mecicines, either into the whole body, or into fome diftempered part. Mr Walfon read, laft Tburfday, before the Royal Society, an abotract of the preceding paper.

My ingenious friend Dr Fofeph Brani, one of the principal Phyficians at Turin, and F. R. S. has likewife fent to me an account, lately received by him, of experiments made at Rome, and at Bolognn; which I now lay before you, in order to fhew what attempts to the fame purpofe have been made in different countries, and by different people. The Doctor informs me, that at Turin they have repeated, with great fuceefs, the electrical experiments made in England, whereof I had fent him printed accounts ; that people all over Italy are bufily at work making electrical experiments; and that, at Bologna, the electrical power has been applied to the cure of difeafes. He then gives me a tranfeript of an account fent him from thence in French, which, tranllated, is as follows.

A man, who had been for a whole twelvemonth deaf of one ear, with a continual noife in it like the running of water, attended with moft

Of ELECTRICITY.

violent pain whenever he lay with that ear uppermoft, coming to Dr Vernti for advice, the Doctor electrified him, bringing out abundance of fery fparks around the diftempered ear; which, in about five minutes that the electrification was continued, became as red as if a bliftering plaifter had been applied to it. But the recinefs difappeared in a few minutes after, the patient paffed the night with kefs pain and noife, and was perfectly cured of his difurder.

A footman belonging to the faid Doctor, being taken fuddenly ill of a volent pain in the head, which continued many hours, he was thereupon electrified, the Doctor caufing the fparks of fire to iffue from the emple wherein the pain was felt. The part appeared red, the pain abated; in 3 hours it was entirely gone, and has never returned fince.

A woman that nurfed one of the Doctor's children, having had a moft grievous diforder in her eyes for fome months, with a continual running of water from one of them, and a confant pain over the eyelid, came to the Doctor for advice; who inmediacely elcetrified her, bringing out the fiery fparks about the eye and cye-lid, whereby the eye appeared vesy much blood-fhot; but that went off in 7 or 8 minutes. The woman tele lefs pain the following night, and opened her eye in the morning more eafily, and without being obliged to wipe it, as the did before: the watry humour and pain were much diminifled; and the Doctor hoped, that, by repeating the operation swice more, he fhoukd be able to cure her quite.

Dr Bruni gives me next his information from Rome; which is, that a gentleman there covered the internal furface of a cylinder of glats (which jome ufe inftead of a globe; with a purgative Medicine; and that a man, electrified therewith, found on the fpot the fame cffects as if he had frallowed the Deciicine. He then recommends to us in England to try how far the electric power may be of fervice in diftempers.

Thefe cafes, Sir, and particularly the laft, as it may to fome appear extravagant and whimfical, I mould have been cautious of bringing before the Reyal Sociely, had you not judged it proper they fhould be ackied to thofe fimilar accounts from other places which were read to us laft mecting. I think neither myfelf nor Dr Bruni anfwerable for the truth of thefe facts, as we relate no more than what we have received. In truch, all the pbenomena in Electricity are fo wonderful, that it is farcely prudent to deny the poffibility of any accounts concerning it, till we liave made experiments carefully ourfelves. We are very fure it is polfible to render a living body replete with electrical effutia, or to tranfmit and fend fuch offuvia through a living body, in a Aream, as long as we think proper: we are not fure that it is imponible for thefe effuvia to convey with them into that living body the mof fubtile and accive effiuria of other fubfances; and if they can do lo, the effects fuggefted are not wholly improbabic; for feveral experiments have proven, that a very minute quaneity of Medicine, transfufed directly ineo the biood, and circulating fluids, will have the fame effect as a large dofe

Of ELECTRICITY.

thereof taken into the ftomach. Therefore even this laft cafe, romantic as it may feem, thould nut be abfolutely condemned without a fair trial; fince we all, I believe, remember the time, when thofe phenomena in Electricity, which are now the moft common and familiar to us, would have been thought deferving as litte credit, as the cafe under coinfocration may feem to do, had accounts of them been fent us from Rome, icuici, or Bologna, and had we never experienced them ourfelves.
35. I have a fon about 16 years old, that has been for 6 or 7 years pait troubied with fudden fits that intirely take away his fenfes. I got him all the heips I could, but to no purpofe; at laft I fent him to St Bartbolomesn's Hofpital, as an out-patient; and there he was turned out as meurable. So finding his cate defperate, I confudered the power of Electriciey, and made a large machine for electrifying; and afterwards Shocking him commonly twice a day, he has received fome benefit: and laft Sunday, being Moj 15 , he being on the pedettal, and very high electrified, and having on a coarfe fultian working frock, the concienfirs phial being on the conductor, and I, touching him to procure fnaps as ufual, touched his right fhoulder blade; and, to my great furprize, the furzy flax of the frock caught fire, with a great biaze, and burnt the whole breadth and length of the fooulder, the flame rifing 6 inches above the collar, and I belicve would have fet the frock on fire, had I not put it out with my hands. There was no fire in the room that day : this was about noon; neither was there any thing that could have any inBammable vapour there.

My furprize was the greater, becaufe all I read on that fubjeet fays nothing will burn but vihat fends forth fuch vapours.

At 9 the fame evening I made him put on the fame frock, and touched the lete aim, where the Hax had not been burne before; and it had the fame effect as above.

Extrall of a letter from the Rev. Dr Steph. Hales, F. R. S. so she Req. Mr Weilly Hall, comerniug fome Electrica! Experimerts. $\mathrm{N}^{0} .488 . \mathrm{p}$. 409. June 1748. Dated Teddington,
Feb. 23, 3746.7, Read June 30 . 1748.
36. I faw latt week in London fome electrical experiments; in which new field of refcarches there are daily new difcoveries made: the active electric fluid feems to be a great agent, in conjuction with the air, in the procuation of fire.

A warm thick piece of iron being fufpended by two filk lines, had a warm very thick piece of brafs laid on it, on which was placed a common hen's egg: when electrified, the llames from the iron were of a bright filver light colour; from the brafs (efpecially near it) the flafhes were green; and from the egg of a yellowifh flame colour; which feems to argue, that fome particles of thofe different bodies were carried off in the flafhes, whence thefe different colours were exhibited.

It is fufpected that great degrees of electrifying have occafioned fome women to mifcarrys and no wonder that fuch fudden fhocks hould do it. I wrote to Mr King the experimenter to electrify a frog, while the circulation of it's blood was viewed with a microfcope, to fee if it accelerated it's motion, which he has not yet done.

Of ELECTRICITY.

He obferves, that a piece of linnen that has never been waflier, will foon give a good degree of Electricity to a large warm glafs tube; viz. on account of the nealy pafte, which weavers drefs the linnen with; and therefore any piece of linnen thus drefled will do.
37. I laid before the Royal Society the beginning of lat winter an ac- In account of count of what had been done by fome gentemen, in order to afcertain the Experithe refpective velocities of Electricity and Sound; from which it appeared, that through a fpace meafuring 6732 feet, the Flectricity was percep- - mene of the R . tible in a quantity of time lefs than ${ }^{3,1 \%}$ of a fecond. But the gentle- soc. in order men concerned were defirous, if polfible, of afcertaining the abfolute to meajure the velocity of Electricity at a certain diftance; and a metiod had been abblate velothought of, by which this might be determined with great exactnefs.

Accordingly, flug. 5. 1748. there met at Shooter's-Hill for this pur- $\mathrm{Mricity}_{r}$; ${ }^{\text {Wy }}$ W pofe, the Pref. of the R. Soc. Rev. Mr Birch, Rev. Dr Bradley, Aftron. fon, F. . . S. Royal, Fames Burraw, Eifq; Mr Ellicot, Mr G Graban, R. Grabam, No. 4^{89} p. Efq; Kev. Mr. L.uwrie, Cba. Stanbope, Ifq; and myfelf, who were of t91. Oa. the R. Soc. Dr Bevis, and Mr Grifchow, jun. a Member of the R. Acad. of Sc. at Berlin.

It was agreed to make the clectrical circuit of 2 miles; in the middle of which an obferver was to take in each hand one of the extremities of a wire, which was a mile in length. Thefe wires were to be fo difpofed, that this obferver being placed upon the floor of the room near the clectrical maclaine, the other obfervers mighe be able in the fane view to fee the explolion of the charged phial, and the obferver holding the wires; and might take notice of the time lapfed between the difcharging the phial and the convulfive motions of the arms of the obferver in confequence thereof; inafmuch as this time would fhew the velocity of Electricity, through a fpace equal to the length of the wire between the coated phial and this oblertar.

The electrifying machine was placed in the fame houfe as it was laft year. We then found ourfelves greatly embarafied by the wire's being conducted by the fide of the road, which we were compelled to, on account of the fpace neceflary for the meafuring of Sound : but fo great a diftance from the machine was not now wanted, though the circuit through the wire was intended to be at leaft 2 miles. We hadd difovered, by our former experiments, that the only caution now neceffary was, that the wires conducted upon dry fticks fhould not touch the ground, each other, or any non-electric, in a confiderable degree, in any part of their length : if they did not touch each other, the returns of the wire, be they ever fo frequent, imported little, as the wire had been found to conduct Electricity fo much better than the fticks. It was. therefore thought proper to place thefe fticks in a field 50 yards diftant from the machine. The length of this field being eleven chains, or 726 feet, eight recurns of the wire from the top to the bottom of the filld, made fomewhat more than a mile, and 16 returns more than 2 to make the experiment.

We had found laft year, that, upon difcharging the electrified phials, if 2 obfervers made their bodies part of the circuit, one of which gralpod the leaden coating of the phial in one hand, and held in his other one extremity of the conducting wire; and if the other obferver held tise other extremity of the concuctieg wire in one hand, and rook in his osther the thort iron rod with which the explofion was made; upon this explofion, I liy, they were both floced in the fame inftans, which wisis that of the explotion of the phial. If therefore an obferver, mationg pis body part of tire circuit, was fhocked in the intart of the explotion of the charged phial in the midale of the wire, no doultr would remain at the velocity of Eletriciry being inftanancous through the Jength of inat whole wire. But if, on the contrary, the tame between making the explotion, and fering the convulfions in the arms of the obferver bolding the conducing wircs, was great erough to be meaturect, we then fhould be able to afectain it's velocity to the diftance equal to $\frac{1}{3}$ the gquantity of wire employed only, let the manner of the Electricity's eificiarging itelf be what it would.

It has been a queftion with fome, who have con:fidered this fubject, whether the Elec ricity, in compleating the circuit from the matter contained in the glafs, paned either by the wire in the mouth to the coating of the glals, the contrary way by the coating to the wire in the mouth, or otherwife directed itidf both ways at once? that the Electricity muft pals of one of thefe three ways, was certain, as the explofion would not be complete, unlefs in the inftant thereof fome matter very non-electric communicated between the wire in the mouth, and the coating of the glafs. Unlefs therefore the obferver was placed in the centre of the conducting wires, it might be objected, that the experiment was not made with the exactnefs neceflary; becaufe any perfon, who was of opinion that the Electricity directed itfelf from the mouth of the glafs to the coating, might object, if the wire from the fhort iron rod to the obferver was only © the length of that between the obferver and the coating of the glafs, that the Electricity, in the time found, paffed only through the fhort wire, and vice ver $\int a$. But if, as it was here thought proper, the obferver was placed in the centre of the conducting wire, let the direction of the Electricity be what it would, no difference coukl happen in the refult of the experiments, if made with the necef fary caution; becaufe, if the effects in the middle and both ends of the wires were inftantaneous, the conclufion therefrom would be very obvious. To make the experiment, the fame phial filled with filings of iron, and coated with heet-lead, which was ufed laft year, was placed in the window of the room near the machine, and was connected to the prime conductor by a piece of wire. To the coating of this phial a wire was faftened; which, being conducted upon dry fticks to the before-mentioned field, was carried in like manner to the bottom; and being conducted thus from the bottom of the field to the

Of ELECTRICITY.

top, and from the top to the bottom 7 other times, returned again into the room and was held in one hand of an obferver near the machine. From the other hand of this obferver, another wire, of the fame length with the former, was conducted in the fame manner, and returned into the room, and was faftened to the iron rod with which the explofion was made. The whole length of the wires, allowing 10 yards for their curns round the fticks, amounted to 2 miles $\frac{1}{7}$ and 6 chains, or 12276 feet.

As the night preceding thefe experiments had been very rainy, care was taken, by filk lines properly difpofed, that the wires in their paffage from the window of the houfe might not touch the wood thereof; left, from the moifture of this wood, the electrical circuit might be fhortened.

When all parts of the apparatus were properly difpofed, feveral explofions of the charged phial were made; and it was invariably feen, that the obferver holding in each hand one of the extremities of thefe wires was convulfed in both his arms in the inftant of making the explofions.

Inftead of une, 4 men were then placed holding each other by the hand near the machine, the firft of which held in his right hand one extremity of the wire, and the laft man the other in his lefr. They were all feen convulfed in the inftant of the explofion. Every one who felt it, complained of the feverity of the fhock.

It was then defired, by one of the gentlemen concerned, that an explofion fhould be made with the obferver holding only one of the wires. This was done accordingly; but the obferver felt nothing, the phial difcharging itfelf in a different manner to what it did before, on account of the circuit's not being compleated.

It was then tried, whether an obferver would be fhocked upon the difcharge of the phial, if the 2 wires at their extremities flightly touched cach other, whilit an obferver at the fame time held one of thefe about a foot from their ends in each of his hands. Upon trial he felt nothing, though the phial exploded very quick, becaufe the iron wire condueted the Electricity better than the body of the obferver.

It was then tried, whether or no, as the ground was wet, if the explofion was made with the obferver holding the extremity of each wire ftanding upon the ground near the window of the houfe, any difference would arife in the fuccels of the experiment. No difference was found, the obferver being frocked in the inftant of the explofion, as before, in both his arms, and acrofs his breaft.

Upon thefe confiderations we were fully fatisfied, that through the whole length of this wire, being, as I mentioned before, 1227^{6} feet, the velocity of Electricity was inftantaneous.

As it was found laft year, we obferved again, that although the electrical commotions were very fevere to thofe who held the wires, VOL. X. Part ii.

G g g

Of ELECTRICITY.

the report of the explofion at the prime conductor was little, in compatifon of that which is heard when the circuit is fhort. From whence it was conjectured, that the very loud report, in the experiment of Leyden is contined to a very thort circuit.
38. The inguiry into the nature and properties of Electricity has bech, within thefe few years, the purfuit of many excellent and in genious perions; and mott of it's extraordinary phenomena, which have been made to appear in one place, have, with proper attention to the requifite circumftances, appeared in others: but there have happened 2 very remarkable exceptioris to this rule. The firt is, that the odours of odoriferous fubftances do not only pervade, from friction, the glaffes which contain them, but that thele odours were carried along with the current of Electricity into fuch non-electric bodies as were deftined to receive them, and manitefted thembelves in thole bodies by communicating to them their limell, and other properties. Thefe, and other things yet more extraordinary, were faid to have been pertormed by Mr Pivati at Venice, and to have been repeared by Mr Winckler at Lcipfick; but though no care or expence has been fpared, either by Abbé Nollet at Paris, Mr Jallabert at Genera, Mr Bofe at Wittcmberg, Fere Garo at Iurin, and by myfelf at London, to bring about the fame effects, they have hitherto been unfucceffful. For which reafon the truth of thefe relations has been greatly queftioned by many; as Mr Buicamare, in a treatife fince publifhed, fays, that Mr Pivati confeffied to thofe, who addreffed themfelves to him to fee the experiments, that more efpecially made with balfam of Peru, that it never fucceeded but once, and that he could never repeat it. I likewife received yefterday a letter from Abbé Nollet, who is juft returned to Paris from Turin and Italy. He fays, that his firlt care was to inquire into the truth of thofe wonders in Electricity, of which we have heard fo much for almoft 3 years, and which hare not fucceeded either with himfelf or me : and he imagines the R. Soc. would be glad to know what they really were: for which reafon he has juit now fent a Memoir to the D. of Richmond, in which will be feen the moft circumftantial account he has been able to procure of them at Turin, at Venice, and at Bologna. For his own part, he thinks that there has been a great deal of prejudice, credulity, and exaggeration; to which may be added, very little care and caution in making thefe experiunents. He is now forry he has loft fo much time in attempting to make them ; and thinks Mr Winckler has been too hafty in afferting, that he had repeated thefe Italion experiments: but why fhould he call them Italian, when the nation he fays will not allow the appellation, and except 3 perfons, he finds there no defender of what has been faid to be done; and adds, that there is not a Philofopher of repure there, who believes them any more than himfelf?

This experiment then feems not to arrive at what we have been told; but, for further information, we mulf wait till the reception of Abbé Nollet's Memoir.

[^1]
Of ELECTRICITY.

The other is, an experiment called by Prof. Bofe at Witternberg, the Apotbeofis or Beatification. The making this experiment, in the manner mentioned by this gentleman in his writings, has been attained to by none. He fays, if in clectrifing you empluy large globes, and place a man upon a large cake of pitch, by little and little a lambent flame arifes from the pitch, and fpreads itfelf around his feet; from lence by degrees it is propagated to his knees, his body, and at laft to his head : that then by continuing the electrifation the man's head is furrounded by a glory, fuch a one in fome meafure, as is reprefented by lainters in their ornamenting the heads of Saints: that in this fate if the clectrifed man is touched by one that is not, the pain felt by both is very fevere, reaches from the finger to the fhoulder, and remains a long time. Prof. Bofe, in another part of his * writings, fays, that the beatification indeed does not always fucceed with him; that fometimes, when other circumitances have been very favourable, a man will be beatified by one fphere in 2 minutes; at other times, 2 or 3 globes will not do it under 6 or $8 \mathrm{mi}-$ nutes; and even at fome times atter 20 minutes, when 5 or 6 globes were made ufe of, no light has been vifible: that under the fame circumftances, when one perlon was capable of being beatified, another was not. This is a fhort account of Yrof. Bofe's beatification, given in his writings, in which, neverthelefs, nothing of what he fays effential to the operation is omitted.

This experiment, which was not only a defirable thing to be feen, but as it feemed to communicate to non-electric bodies a greater quantity of Electricity than any other did, that of Leejen excepted, I was very defirous of repeating : Bur though I omitted no trouble, and varied not the leaft circumitance, that could any ways conduce thereto, I was difappointed. I tried the combined force of many globes, of different machines, in the beft weather, and with different perfons, but no radiation in the manner before-mentioned. When I underwent this operation myfelf, fupported by folid electrics per fe of more than 3 feet high, and as much diftant from the fides of the room as poffible to prevent the efcaping of the electric matter, I found in myfelf, as feveral others did, a tingling upon the fkin in my head, and in many parts of my body fuch a denfation as would be felt from a vaft number of infects crawling upon our bodies at the fame time; but I conftantly obferved this fenfation to be greateft in thofe parts of my body which were neareft any non-electric; but ftill no light upon the head, though to make the eye more ready to obferve it, this experiment was made in the dark for fome continuance. The fenfation of the fraps in this ftate were very acute. If the hand of a by-ftander was brought near the back of the hand of the perfon electrifed, the hairs thercupon fent forth a great number of luminous points; and if a bunch of fime lace wire was placed upon his head, you faw a great deal more of the fame appearance; but this was

[^2]
Of ELECTRICITY.

slways moft brilliant in thofe parts neareft the non-electric, and ftill more, when the non-elcetric was brought to a proper diftance. But this was valtly fhort of that mentioned by Mr Bofe, not only in it's luftre, but as it never was general, hardly ever fhewing itfelf in 2 parts of the body at the fame time. This want of fuccefs atter many trials, as I by no means doubted Mr Bofe's veracity, inciuced me to conclude, that either forme very effential part of the apparatus had been fuppreffed by the author, or that the air of Germany, being upon the continent, was more dry, and more fit, than that of our illand. It was difficult indeed to allow this laft, as the experiment had tailed here, after the long continuance of a very dry feafon. This want of fuccets occafioned mans perfons here, well verfed in thefe matters, to conclude, that the experiments in Electricity had been carried further in Girmany than in England.

However, fome time after, I found that this experiment, in the manner before-mentioned, had been made no-where upon the Continent, WYittemberg excepted; and Mr Fallabert at Geneva, in his excellent * treatife upon Electricity, fays, that he had hikewife attempted it; but inficad of beatification, he faw from the hair of the head of the perfon ctectrifid, cipecially from the back part thereof, a great number of luminous points. Thefe, he fays, were likewife obfervable upon his eloaths, which were made of a mixture of thread and cotton, more efpecially upon their borders. When the perfon electrifid changed his fituation upon the pitch, upon which he flood, the place he lett appeared luminous. What this gentleman mentions befides is very near alike to what I myfelf experienced, and what I have juft now related. He fays likewife, that he believes Mr Bofe had been the only perfon, who had made the beatification fucceed.

A perfon here however, that we fhculd not even feem to be outdone by our neighbours, exhibited to the public the famous experiment of beatification, found out, as he fays, by a German Profeffor. Whether be knew how this experiment was faid to be done, or whether it was with him as with many of the difcoverers of the I.ongitude, and of the quadrature of the circle, I do not determine; but thus it is, that his experiment has been exhibited as Mr Bofe's for 2 or 3 years.

I am unwilling to be thought to detract from the merit of this expement, which I think a very beautiful one; but I take upon me to fay, that is differs as effentially from every part of that, faid to have been made by Prof. Bofe, as any two electrical experiments foever.

In a letter, I wrote the beginning of laft year, to my correfpondent Mr Bofe, among other things, I acquainted him of my not being able to make the beatifying experiment fucceed; and that, as far as I had yet heard, nobody any-where had been able to do it, fo that the power of feeing this extraordinary phenomenon was yet with himfelf alone. I

[^3]
Of ELECTRICITY.

defired of him further, that if any material part of the procefs had been omited in his writings, he would communicate it; for that lome people here were not quite fatisfied of it's having ever been made. To this he was fo obliging as to fend an aniwer nearly in the following words, "As to my beatification, 1 am highly obliged to youl for writing in me " io freely and candidly about it; and l' will difcover so you my whole "6 artifice without any retention, though I concealed the fame trom all "s my friends and correfpondents: but, Sir, it is true, that I have em" bellifhed a litele my bearification by my ftile and expreffions; but it " is alfo true, that the bafis of the pienomeinon is conftant. Ifound in " our arinoury at Leipzig, a who'e fuit of armour, which was decked " with many bullions of tterl; fome pointed like a nail; others in form " like a wedge; others pyramidal. In the dark you well know, that " not all, but very many, of the faid bullions will sparkle and glifter
" with tails like comets : and it is clear, that when the Electricity is "" very vigorous, the helmet upon the head of the perfon electrifed will " dart forthrays like thofe round the head of a canonifed Saint; and this " is my beatification. You are the firf, Sir, with whom I triff my my" ftery, which if you communicate to the Koyal Saciety, I hope you will " take care of it's being insersed in the Philofophical Franfoetions, that "s the beatification did not fucceed until I communicated my method. " Many people have imagined this experiment of mine to be extrava" gant and falfe. If the armour is not ornamented with iteel bullions, "I believe it will nor fucceed. If the armour is well eariched with bul" lions, and well polihised, the comets appear twice, once in the air, " and once by reffexion froms the armour. A itomacher, or a ciouble, " fet with nails or needies, will exhibit a imall degree of beatification."

Thus far Mr Bofe, to whom I amvery much obliged, for the difsovery of his procel's I camot but be forry for his having, as he fays, embbellifind his relation by his titie and expreffions. The language of Philofophers fhould not be tainted with she licence of the Poets; their aim in the communicating their difcoveries to the worki, fhould be fimple truth without defiring to exagererate; as we conitantly fee enough to raite our admiration every fiep we take in inveftigating the operations of nature.

The electrifing a man in potifhed armour, wich fcveral globes, mut exhibit a vcry beautiful phanomenon, by the Eleitricity running off from feveral of the points; but I camot but fay, it muft fall greatly fhort of the general radiation promifed and expected from the preceding accoants.
39. If your Grace fhall have done me she honour to have perufed the E wrat of a treatife I fent, intituled, Recberckes fur les Caufes particulieres des Phena-Lrter fromtho menes elegriques, you will have feen my doubts touching the reality of certain facts publifhed in Italy, and which have not fucceeded any where clfe. I will not difemble, that the defire of knowing haw, fari thote things were true, has been one of the principalimotives of my journey'; and if you have been defirous to have learned che fruits of my inequiries in this refpeet, you need only look aver the Memoge fent hereiviolh, in Electricity, how much that learned body interefts itfelf in relation to the fubject of puliffed in this Memoir; and, as one of it's Members, I think it my duty to com-

Inaly, by the fame, and tranf.atid ficum the Fiench, br Mr Wation, $F \cdot R$ S. Ibid f. 3 58. Dater f...ii March 5. 17\%0. Risa Warch $\Rightarrow 17$; 0 . municate the refule of my labours. As I correfpond with Mr Wat jor, who is weli verfed in thele maters, it may not be difagreeable to him to fut thefe papers in a condition to be laid before the R. Scc. I have makie the whole tuur of Italy, which has enabied tone to make many obfervations relating to Natural Philofophy, I have made fome experiments at the Grotro del Cani, near Naples, which take of a good deal, in my opinion, of the marvellous of that famous phrenomenon. I propofe to raylelf the thonour of tranfmitting them upon fome future occafion, as my letter is already too long. The cructations from Vijurius were very great when I was there, and were the prelude to 3 earthquakes, which happened juft after my departure, and which I was torturate enough not to be witnefs of. The Ingunes of Venice, and the waters of the Mediterraneen Sea, appear luminous every-where in fummer, in dark nights : I have difcovered, that this light proceeds from a very fmall infeet, which multiplies prodigiounty. I have heard all my life, that the water of the ocean appears fometimes luminous: It may polibly proceed from the tame cauti, and I fhould be very glad of a particular inquiry into this fact.

Electricity, after having excited every-where the emulation of the An Ex:zira. sson of eresoin
Hh:momer. in Eleetrisity, publijbed in Italy. ingenious, atter having filled us with wouder by an infinite number of Fhanomena more fingular and more admirable one than another, feems, within thefe few years, to have fhewn itfell equally furprifing, but more ufeful, in Italy, than it had done in England, France, Germany, \&ic. where, for thefe 20 or 25 years, fo great a progrefs had been mace. We have heard of nothing lefs than the cure, or the almoft fudden relief, of diftempers of every kind, and of purging all forts of perlons in a manner of all others the moft proper to avoid the repugnance and difgut we naturally have to medical potions. Even that difeare which we are moft defirous of concealing, was not by thefe means without it's remedy : the mercury being volatilized, and carried, by the electric matter, into the body of the patient, tinged his /kin of a leaden colour, and procured him a certain cure by a copious falivation.

The manner in which this was done was not lefs to be wondered at than the thing itfelf; perfons afflicted with inveterate gouts, rheumasifms, fluxions, tumours, $\vartheta^{\circ} c$. were relieved cherefrom by being electrized for a few hours, and often a lei's time was fufficient. Sometimes the rubbing a glafs tube only, or at other times a glafs tube lined with fome medicine appropriated to the difeafe of the patient, was employed. Thefe medicines, to exert their operation upon the patient, paffed thro' the glafs ; and this they wore very certain of, as they faw them fenfibly diminifh in their quantity, although the glafs containing them was ftopped as clofe as though fealed hermetically. To promote ftools, it is only sieseffary that a perfon fhould be electrized for 6 or 8 minutes, holding dider

Of ELECTRICITY.

in his hand a piece of fcammony or gamboge; the effects were as certain, as though thefe drugs were taken internally. Befides, if a perfon was defirous of being perfumed from head to foot, nothing more was neceflary than being clectrized with a glafs veffe! lined with balfam of Peru, Benjamin, or fome fuch drug; and from this electrization the oduurs were perceptible for 2 or 3 days, even fo much as to incommode thofe to whom thefe fimells were difagreeable.

Effects no lefs wonderful than thefe were pubiifhed every day by writings printed and printed again *, or by particular L.etters and Memoirs in manufcript addreffed to the ingenious all over Europe. They were alfo confirmed by refpectable witnelfes, and by fuch as were capable of impofing them upon perfons the moft guarded againt the exaggerations, which never fail accompanying the relations of interefting novclties.

The importance of the tacts themfelves, and the appearance of authenticity which attended then?, demanded that they fould be confidered; and indeed they roufed every-where the attention of thofe Philofophers, who had for any time turned their thoughts to thefe enquiries. Every one of them was defirous of repeating what Mr Pirati faid had been done at Venice, Mr Vernti at Bologna, and Mr Biancbi at Turin; and to begin them, as the experiment feemed more fimple, they attempted at firft the tranfmiffion of odoriferous fubftances through the pores of the glaf, the firf foundation of Intonacatores t, fo called by Mr Pivati; and which we fhall, in the progrefs of this paper, call medicated glaffes; and they endeavoured to purge perfons of all ages, and of both fexes, by making them hold in their hand, while they were elettrized, Scammony, Gamboge, Aloes, and fuch-like. But it was very extraordinary, that of all the perfons who were engaged in thefe experiments, no one could fucceed; and, from a fort of fhame, each of them expetted, that fome one would complain of his want of fuccefs : but this was retarded, as yet, by the hafte with which Mr Winckler

[^4]
Of ELECTRICITY.

fent to the R. Soc. and to fome ingenious men in France, the refult of his own experiments, which well agreed with thofe of Italy, and upon the credit of which he had made them.

For my own part, I will fpeak without any reftraint: when I found my attempts were fruitlefs, I without any difficulty communicated it to all the Philofophers with whom I correlponded: I defired them to let me know if they had been more fuccefsful than myfelf, and to acquaint me how they had proceedech, that I might conform myfelf thereby. I was much more willing to confets my inability, and to learn from others the method which muft of neceflity be obferved, than to be deprived longer from feeing thofe pbenomena which ought to relult therefrom. Initead of inftructions, which might conduct me to the luccefs I wanted, I received nothing but fuch confeffions as mine: from thefe I faw, that all methodis had been tried ; and that nothing remained to be done, but either to believe every thing upon the faith of others, or to doubt, without hopes of being better intormed. The firft of thefe two cafes was direetly oppofite to the law I had determined to abide by, when I firf engaged in the fudy of Experimental Philofophy; and the other was putting a great violence upon myfelf. But from this moment I formed my project of travelling; and, among the different motives which made me undertake the journcy to Inty, I muft confefs one of the moft prefing was, the defire of feeing fucceed, in the hands of thofe who had laid they had, thofe phanomena in Electricity, towards the verification of which I had made fo many fruitefs efforts. I formed to myfelf a great pleafure in feeing balfam of Peru, Benjamin, Camphire, Cimnamon, sic. pervade an electrized glafs, which I had taken care to ftop myfelf; to fee people purged by the palm of their hands; to fee an old gouty Man, as the Binhop of Sebenico *, clap his hands together, Itrike the ground with his feet, and waik freely, after an Electrization of 2 minutes : but what ftill more piqued my curiofity was, to learn, if poffible, why the Italian Flectricity fhould enjoy thefe prerogatives, to the exclufion of that of every other country. If this fingularity was as real as it appeared to be, it was a new wonder more difficult to be explained than any other; and of which I propofed to ftudy attentively the circumitances, to cndeavour to find out the caule.

If I have had the trouble of paffing the Alps, to fearch out the truth, it is neither to conceal it, nor yet lef's to disfigure it with fallhood; and I will relate, with a liberty truly philoophical, all that I have heard, and all that I have feen: but if, in doing this, I hall find my felf obliged to contradict fome of the facts publifhed by fome perfons known in the republic of letters, I proteft that it is without prejudice, on my part, to the advantageous idea I may have of their candour or abilities; and I fincerely wifh, that the reader may confider them in the fame manner. If he is judicious, he will willingly concur with me; becaufe, in an enquiry fo

[^5]
Of ELECTRICITY.

oblcure as this of which we are now treating, an ingenious man, with a very juft intention, may take what is falle for that which is true.
1 artived at Turin ahout the begiming of May 1749. and one of my firft carcs was, to vifit Mr Bianchi, a celebrated Anatomilt, and the firft author of purging by Electricity. I related to him all that he hat written to me upon this fubject; and I begyed of him, that all the experin ments, which had neicher fucceeded with me, nor a great many others, might be repeated between us, arid under his direction His complaifance eafly granted what I defired : we fet about it ; and Pere Garo, a Mininn, and Profeffor of Philofophy in the Univerfity, caufed to be car.? ried to the place where we determined to make our experiments his electrifying machine; which is exactly like that which I have deferibed in my Efay, Page 19. Fig. 2.

May, 21. about 4 in the afternoon, the weather cool, but uncertain, Tbe ExperiMr Bianchi having procured a lump of scammony, and anorher of gam- ments of the boge, each of which was about the fize of an hen's egg; I took the for-firf.day. mer in my right-hand, and having applied my left near the furface of: the glafs giobe, and ftanding upon a cake of refin, I was electrized is minutes without interrupcion. 'I his day the Electricity was indifferently: ftrong.

Atter me, a young man, aged 22 , and of a pale complexion, was electrized; whom, a few days before, I had taken into my fervice.

They then electrized a young woman of about 16 or 17, of a weakly conititution ; but who, at that time, was tolerably well.

After that M. Beccari, Prof. Philof. in the Univerfity, aged about 35, of a dry habit, was electrized.

They then electrized a fervant belonging to the houfe where they made the experiments, aged about 24 , who did not appear to be indifpofed.

They alfo made the fame experiment upon another fervant, a ftrong man of 40 , or thereabouts; and each of thefe perfons was electrized the fame time as I had been; that is, fifteen minutes fucceffively.

I did not perceive in myfelf any cffect, which I could attribute to the Electricity; no extraordinary motion or pain in my bowels; and it was the fame with M. Beccari, with the fervant aged 40 , and with the young woman.

But the young man of 22 , being interrogated after the others, faid, that he had had in the night 2 ftools, and fome complaints of the colic. The fervant of the houfe, who was afked the fame queftions, declared, that he had had a very large ftool, as though he had taken a purge.

Thefe two laft depofitions were, as the others, taken upon the fpot ; and I began to confider them as important, when I learned, from the confefion of the laft, that he had taken, for fome days, a decoction of wild fuccory, for an indifpofition which he had not fpoke of till then. The young man who faid he had had 2 fools, rendered his teftimony more

VOL. X. Part ii. Hhh than

Of ELECTRICITY.

than fufpicious, by certain fingularities * which he was defirous of adding fome hours after; and linee that time he has conducted himfelf in: fuch a manner, as to prevent my having any confidence upon what he faid.

What I have juft now mentioned to have found in thefe two fervants, one of which kept me ignorant lome time of his having taken broth with fuccory; and the other having teftified fuch a love for the marvellous, that one ought in prudence ro fufpect every thing he faid; this, I fay, made me very delicate in the choice of the perfons who I was defirous fhould be admitted to our experiments. I declared that I was not willing to receive thereto cither children, fervants, or people of the lower clafs; but only that reafonable people fhould be admitted, anci of an age fufficient to leave nothing to be feared of the truch of what they mighe depole.

Tlue fecond Exprriment.

Th: third Experiment.

The day after we had made our firt fet of experiments I was again electrized 15 minutes fucceffively, as I had been the day before, holding in my hand a large piece of fcammony; and after me there went fucceffively through the fame trial Dr Scherre a Phyfician, Mr Verne Demonftrator of Anatomy, the Marquis of Sirié, the Abbé Porta a Profeffor in the Univerfity, the Preceptor to the children of the Marquis D'Ormea, and the Preceptor to the young Meflieurs D'Ofa. This day the Electricity was indifferently frong.

Of all thefe perfons who were electrized, not one felt any pains in his belly, no one had any evacuation which could be attributted to the electrical power; but to fay ferupuloufly all that came to my knowledge, after feveral queftions, the Preceptor to young Meflieurs D'Ormea declared, that he had parted with more wind than he had ufually done, and he believed allo with more urine. Thus of 7 perfons there was but one who fulpected the operation of Electricity to have had any fenfible effect upon him, and this furpicion, as we fee, was a very fight one.
May, 23 the Electricity being more ftrong than the preceding days, we chore a piece of new + icammony, very ftrong in it's flavour, and which weighed fiv. the Marquis D'Ormen, Dr Allion, a Phyfician, the 2 above-mentioned Preceptors, Pere Garo, Count Ferrero, and myfelf, held, one after the ocher, this piece of fcammony, and each was clectrized 15 minutes, as had been done in the former experiments.
Two days paffert, and abfolutely none of thefe perions perceived any thing, that could be attributed to the Electriciry.

[^6]The fame day we endeavoured to repeat an experiment, which M. The fourtb Biancbi had writ me word of fome months before, and which had not Experiment. fueceeded with me at Paris. This experiment was the tranfmifion of vdours along a chain, or an iron bar electrized. Oneof us prepared and applied a little piece of linco, covered with balfam of Pert, upon the iron bar, which received the Electricity from the globe : we faftened to this rod the end of ans iron chain, which was electrized by communication; and we expected, that the odour of the baliam would be tranfmitted to the other end of the chain, to which was hung a ball of inecal. But this was expected in vain; nobody could perceive the fightefl fign of this trantinifiont
 M. Bianchi, feeing as I did, that the refuic of all:thefe experiments did not agree with thofe, which he had beheved to have taken place before, told me, that:chis difference might arife from our haiving employed an Flectricity too Itrong: becaufe that whici he had experienced svidh fuccefs had always appeared more weak. 1 fubnitited to this reaton, having to other to give him more plaufible; and to dring the whole opewation, as near as might be, to it's firit circumitances, we met cogecher, to the number of r_{4}, ar M. Bianchi's, where we wereexpected; and we were electrized; one after the other, by him, as long a time as he judged proper, fomectines with fcammony, and fometimes with gamboge, which the himfelf had chofen.

The machine ufed this day was the fame, withwhich M. Biancbi had salways made his own experiments. It confifted of an hollow glats cylinder, 3 inches in diameter, and fomething more than a foot in length *, mounted between two fupporters upon a board, which was faltened to a table with ferews. This cylindrical veffel was turned round, without any other intermediate apparatus, by an handle, which was ar leaft 4 inches in it's radius; fo that the hand, by which this machine was turned, revolved with greater velocity than the furface of the glass cylinder, which was thereby put in motion.
This machine had this convenience, that one perfon only might turns the handle with one hand, and rub the furface of the glais veliel with his other: but there is no difficulty in comprehending, that the Electricity could not but be always very weak with fuch a cylinder, and from fuch friction; fo that, in the experiments of this day, we were fcarce able to perceive any fnaps, in touching the iron chain, by which the Electricity was communicated, or from the perfom electrized; but this was precifely what was defired.

Thefe experiments were made on Thur $\int d a y$, May 29 , between 4 and 6 in the afternoon, in a very hot and ferene day: On Sunday evening, all the perfons who had been electrized, being interrogated, anfwered without hefitation, and in a manner abfolute in all refpects, that they had perceived nothing which could be attributed to thele experiments:

- The author bere means the Fren:b foot.

[^7]there perfons were the Marquis de Siria, Count Ferrero, the Marquis D'Ormea, M. de Tignola, an officer of artiliery, Pere Beccari, Pere Garo, Dr Allion, M. Verne, Dr Scherra, the Abbé Parta, the 2 P'receptors, the young woman, whom I mentioned before, and myfelf.

The night following, that is to lay, that between Sunday and Monday, I was troubled with an indigeftion, and fele pains of the colic ; but I attributed them much lefs to the being electrized the preceding Thurfday, than to fome roots thad eaten the clay before at cinner, and to a very large glafs of iced lemonade, which I had drank lome time alter, and contrary to my ufual cuitom. Neverthelefs, as fome perfons were defirous of faying, that the electrizing had purged me, and that I had not the candour to fpeak of it, I thought it my duty to add here for my justification, that during my whole lite I have had a weak ftomach; that I could never take ice, nor liquors very cold, without a good deal of circumfpection, and always at the hazard of being incommoded therefrom; and that thefe roots, which are called Ravinnelle in Piedmont, notwithitanding my attention to eat fparingly of them, had oftentimes difturbed my digettion, during my ftay there, and at cimes when I had no concern in electrical experiments. Befides the not being incommoded for 3 days, and more, was fufficient to prevent my attributing what happened to me to the electrical power.

The extreme circumfpection, with which I was clefirous of choofing the perfons for all our experiments ; the difficulty of procuring and moving luch fick people, who were in a condition and difpofition to leave nothing to be feared on their parts from their prejudice, and their heated imagination; that of reconciling my time with that, which a Phyficion of great practice could grant me; thefe obftacies, I fay, prevented my attempting with M. Bianchi fuch cures, as he believed to have been brought about by means of the electric virtue, either by it's own action, or by joining thereto Medicines approptiared to the condition of the fick, and contained in glafs veffels electrized by friction. But I teffífied a great defire of feeing thofe perfons who had been cured, or confiderably relieved, by this method before this time. I afked, for this purpofe, the gentlemen of the Profeflion, who had been witneffes of the experiments, and who were yet in a condition of feeing every day fome of the perfons, cited in a manuicript which I had of M. Bianchi's; and of whom the exact hiftory is mentioned in the gth Chapter of a Treatife of M . Pivati * : I went myfelf to the Shoemaker, in whofe fhop the young man of 21 years of age worked, mentioned in the 1 roth page of the above treatife, and in page $41 y$ of my Recberches t. The obligation of faying the truch, to which Philofophers ought to facrifice every human

[^8]
Of ELECTRICITY.

regard; will not permit me to diffemble that my inquiries made with all poffible diligence, and without any other intereft than that of knowing the truth, have made me fee fufficiently clear, that thefe facts have been greatly exaggerated. I am willing to believe, that it is the fault of the fick, who, being prejudiced perhaps by too great hope, and poffeffed by a kind of enthufafm, have faid themfelves, and made others believe, more than really was the cafe. One might have examples enough to cite of fuch illuiions; but be that as it will, I cannot help believing, that a great part of the electrical cures of Turin have been no other than temporary Shadows, which have been taken with a litele too much precipitation, or complaifance, for realitics.
Im I carried with me to Venice the fame curiofity, and the fame defite of being inftructed, upon the fubject of the tranfmiffion of odours from medicated tabes, and of the cures, or of being relieved from diforders almoft fuddenly, by the electrical power. One of my firft cares was, to find out fome friends or acquaintance of M. Pitati to acquaint him ol my arrival, and to obtain of him the favour of being admitted into his Jaboratory; and that he would have the complaifance to fatisty my great defire of feeing him caufe odours to pervade the fides of a well ftopped glafs, or by elcetrifying to diminifh fenfibly any fubtance thercin contained. M1. Angelo Quirini, a Vinetian gentleman, a great friend to the Sciences, and one always ready to affift thofe who apply themeives thereto, did me this fervice among many others, for which I am indebted to his friendfhip and politenefs. He accordingly acquainted M. Pivati; and on Auguft 1, 1749. we waited upon him, and found there a large company, aniong which were feveral perfons of diftinction: among others were M. Antony Moffrigigo, heretofore Embaffador in Firance, Abbé Florter, \&cc. At the fight of this great affembly I believed (and I had fome reafons for believing it) that my curiofity had been * fufpected of difbelief, and of an obftinacy to doubt; this company therefore was called together to be an evidence of my conviction. I would have been willing to have bought at this price the pleafure of feeing a pbazomenon. for the verifying of which I had taken fo much fruitlefs trouble. The manner of making it fucceed had been without doubt fome novelty to me, as curious ittelf as the effect which fhould have refulted therefrom. But how great were my furprize, and my regret, when M. Pivati declared frankly to me, in the prefence of this whole company, that he would not attempt to fhew me the tranfmiffion of odours; that that phernomencn bad not fucceeded but once or twice, as he had faid in his firft letter printed at Lucca, although fince that he had made many atcempts to repeat shat experiment, with the fame as well as with other

[^9]
OFELECTRICITY.

glafies ; that this cylinder had been fince broken; and that he had not fo moch as kept the fragments of it!

Bur at leat, I tolu hima, I might fee him ufe one of his medicated tubes, and weigh it before and atter electrifying, to fee, wish him, the included matter diminith fenfibly. This fact, he told me, had fuecseded with bim a great many times; but that now there was too much compray: cebat it was ton hot, and, in confequence, that the Electricity would be too weak for it. He might perhaps be in the night: but why did he call together fo numerous a company?

I tben afked him concerning the cures selated in his works, and efieciaily concerning that of the Bifhop of Sebenico*. Hie avowed to ine (and in part I knew it already), that the Prelate was not cured; and that, fince the electrification, he had been as he was before.

I took my leave ot M. Piciati, and acquainted him, that I propofed to continue about a week in Venice; and I very tarneftly begged of him to collect togecher his belt veffels, to renew the fubfances therein, and to Let one know, chat, if they fucceded, I might wait upon him, that I mighe be able to publifh them as an eye-witrels; and h lpoke to him with a good deal of fincerity. M. Picati promifed me he would; but, as I heard: nothing from him afterwards, I prefume that he had nothing to thew me.
Dr Sormms, of the faculty of Phyfic at Fiuxin, being at Venice a little while after me, had alio the curiofity of vifiting M. Pivati in Auguff laft, and to fie, under his management, the effects atributed to the medicated tubes. The following is the lettex the wrote me upon this fubject, Nou. i5. 1749.0
"Here is, kind Sir, in a few words, the account of what I obferved " in Venice, at Signor Pivati's, curing the month of Auguft laft. The " $25^{\text {th }}$ day, after dinner, he electritied me, making uie of a tube of "the length of about 5 inches, and a little more than 2 in diameter, " caufing me to hold in my hand an ounce of scammony. There were " prefent at this experiment his ExceHency the Abbate Barbarigo, the " Fathers Bertinelli and Magrini, Jefuits, Dr Grampini, and ieveral "other perions. I found not any change in myrelf either that evening " or the following day. The 2 gth of the fame month I returned again " to Signor Pivati, where I found a gentleman of the Houfe of Soranzo, "f 2.Spanifh officers, 2 other Venetian gentlemen, a Phyfician, and fome " others; and he caufed a tube to be lined [or plaftered within] for the "experinient, which was reprefented by him in a dangerous light; but " which was not fuch however as to hinder my telling him, that I defired " that the experiment might be made upon myfelf.. He began then to "clectrize me at 35 minutes after 5 in the afternoon, and made an end, " becaufe the line of the wheel tangled, at 57 minutes after 5. Having

- See fage 3ith Supra.
+ This icter is tranlated from the llafian.
6 then
"then new-fitted the line, he began again at $/ 5$ minutes affer 6 , and "continued till r 4 minutes after, making again this time the fparks to " iffue continually from my forchead. This tube was nearly of the fime c. length and fize as the former. The experiment being over, I then " praycd him to tell with what materials the tube had been lined; and " fo much the rather, as he had let fall in difcourfe with the Spanij/D " gentlemen, that they might have feen me fleep; and he anfwered mee, " that the tube was lined with sij. 3vi of flowers of Benjannin, and two " drams of Opium. Having heard him mention the Opium; I prayed
" him to take the trouble of making another experiment, his Exceltency
" S. Abbate Piectro Barbarigo, and myfelf alfo, having with us \bar{j} ifs of "Opiun"; and he complied with my defire. He therctore electrificed " his Excellency, making him hold the Opiton, that is to fay, the " quantity of zis of it, in his hand, and the fparks iffuing from his " hand for half an hour together, beginning at 18 minutes, and finihi" ing at 4δ minutes, after fix. In this fecond experiment he made ufe " of the fame tube which he had uled the Monday before, the 25 th of " the fame month: but neither his Excellency nor I nept more thati " ordinary. Thefe are the experiments which I made at Venice with "S Signor Pivazi. In my return home, pafing thro' Placenti, I here " Spake wish Dr Carnelius, who affured me, in prefence of Dr Riviera, "that he alfo had tried a great many times to purge others by electri" fying them; but that it had never fucceeded with him but once, which
" was upon a maid-fervant, to whom he had given fome rhubarb to hold "s in her hand. Notwiithftanding which, finding it never to have pro"d duced the fane effect in any other perfon, it rather feemed to him, "that fome other caule mixght have occafioned what happered to his " maid."
We fee then from this letter, and from the account I have before given of my vifit to M. Pirati, that I have not been able to verify at \bar{l} 'enice any of thofe facts, in which my curiofity was interefted. Imight add alio (and I ought, without doubt, fince I liave engaged to mention exactly cvery thing I have been able to find out from my enquiries upon this fubject), that of all the perrions of the councry, who have been with M. Piviatt, to be certified of the truth of his experiment from ocular demonitration, and whom I was able to interrogate, I found but one who attefted them, as having feen them : this was a Plyyfician, afriend of M. Pivati, whom I found at his houfe, and who had, as he faiel, almoft a) ways affifted him in his experiments.

From Verice I went to Bologna, where I beeame acquainted with Dr Verati, a Niember of the Academy De l'Pmfitut. From the frequent converfations I had with him, I was convinced that he was a learned, wife, and cendid man, as I had heard before. I laid before him, without icruple, the doubts I had, touching the tranfmififion of odours, the eficets of lined tubes, purging by electrizing, as well as the almoft fudden cures.

Dr Verati anfwered me; firft, "That he had made many experi" ments, from the refuit of which it feemed to him, that the odour of "balfam of Peru pervaded from within to the outfide of a ghafs cy-? "t linder which he fiewed me." This tube however, at this time, would not convince us of it's having been done, although we rubbed it witl? our hands sery ftrongly. Bur upon my reprefenting to him, that as the glais was cloled only with wooden itoppers, which could be taken of at pleature, to put in or cake out the odoriferous fublitances, it might happon, that the odours, agitated by the heat might have pafied through the pores of the woad; the anfwered me, "That this was pofible; and " alchough appearances had inclined him to believe the tranfmifion of " thefe ociours through the pores of the glats, he had neverthelefs furf"ponded his judgment upon this effect, as well as upan that from lined. "tubes, until new proofs, made with more precaution, hoould have en"tirely cliffipated his doubts. Secondity, with regard to the purging by "Electricity, he had in his houfe a man and maid-fervant, who had
" been purged in this manner: that at leaft there two perfons had felt " the lame effects as though. they had taken Phyfic; after having been "elceitrized in M. Biancbi's manner : that this effect having no other " apparent caufe than the preceding electrization, the great number of "facts of this kind, which had manifeffed, themelves at Turin, had de"termined him to believe, that what bappened to his two fervants was "the batural coniequence of this electrization: that, with regard to the " selk, he propofed to try the expcriment again upon a fufficient num. "ber of perions of another fort ; and if this method of purging was not " conftant, according to the idea he had had thereof he would correct, " with great frecion, what he had publithed thereupon in his works, "printed in i 748 ."
Thirdly, Dr Vcrati afiured me, "That the ten cures, related in his " work juit mentioned, werc exaetly mado in the manner they are de"fcribed :" and they are related with a good deal of prudence, and with a fimplicity which characterizes the truth. The fifth of them was told and certified to me by the perion himfelf, one day when I vifited Father Trombelli, Abbor of the houfe in which he lives. Thefe cures are not fuch as give me difficulty to believe them : we fee, at leaft, that they are made with fpeed : we fee that the diforder, if I may be allowed the expreffion, defends iffelf againtt the remedy, and does not give place but by little and little; and that nature makes no fudden tranfition from one ftate to the other abfolutely different, by the means of an Electricity farce fenfible. Thefe cures, I fay, give me no trouble to believe them; becaufe it appears to me natural enough, and I have faid it a great while ago *, that a huid, active as the electric matter, and which paffes into our bodies with fo much eafe, may produce therein, fis time, alterations cither falutary or pernicious.

[^10]
Of ELECTRICITY.

I learned nothing in the other cities of Italy, which did not ftrengthen my doubts in relation to thofe electrical phenomena, which I had a defire to verify in the courfe of my travels. P'ere La Torre, Profeffor of PhiIofophy at Naples; M. De la Garde, Director of the Coinage at Florence, one who has been much engaged in thefe inquiries; M. Gradagni, Profeffor of experimental Philolophy at PiJa; the Marquis Maffci, at Verona; Dr Cornelio, at Placentia; Pere Caro, at Turin; all thete, I fay, with very excellent and well-contrived machines, and with a great defire of fucceeding, have attempted many times to tranfmit the odours, as well as the powers of drugs clofed (carefully) in tubes or fpheres of glafs, by electrizing them : all thefe have attempted to purge a number of perfons; and, according to the accounts they gave me, have never gained their point ; or the little fuccefs they had, appeared tou equivocal to draw therefrom confequences confurmable to thole M. Pivati had believed to have feen in his experiments.

I am now then, as it were, certain of what I began to believe laft year, when I printed my treatife, intituled, Recherches fur les Caufes particubieres des Pbonomenes Eleciriques: I am, I fay, as it were certain, that M. Pivati has been deceived by fome circumitance to which he had not given fufficient attention; and what makes me believe it more than ever is, that he affured me himfelf, that this transfufion of odours, and of drugs, through electrized glafs veffels, had never manifefted itfelf to him but once or twice directly; I mean by a fenfible diminution of bulk, and by fuch emanations as the fmell was capable of perceiving.

Since I have underftood Italian, I have been furprifed not only to find this confeffion in a letter printed at Lucca ${ }^{*}$, but alfo to lee, that it had not had all the effect it ought to have had upon the minds of thofe, who have been in a fituation to be inftructed: for my own part, had I known it earlier, I might have faved myfelf a great part of the trouble I have taken in verifying the fact; and I am aftonifhed, that they fhould be defirous of building upon fuch very flender foundations.

It is however upon this pretended tranfinifion, and with a glafs tube, which was cracked from one end to the otber, as M. Pivati tells you himfelf t; it is, I fay, upon this fact, than which, in my opinion, nothing can be lefs certain, that they have eftablifhed the ufe and effects of lined tubes, of which they are willing to abate nothing. But how can we reconcile thefe two things, the almoft never failing operation of lined tubes, upon fo many diftempers which are faid to have been cured, or confiderably relieved, on one part, and on the other the tranfmiffion fo very feldom to be perceived of the odours of the drugs inclofed in thofe glaffes,

[^11]V OL. X. Part ii.

Of ELECTRICITY.

with which you electrize? If it is truly the Peruvian balfam, the benja\min, camphire, \mathcal{E}° c. which, being animated by the electric matter, have brought about fo many cures, as M Pivati has given us in his writings, why do not thefe ftrongly-feented fubftances lend forth their iffluvia copiouny, and always, in thofe places where the experiments are made? And why do they not communicate themfelves by their odour to all perions, who are penetrated thereby by means of electrification? Will they fay, that the Electricity, fpecifically operating upon their medical virtue, feparates it from their odoriferous quality? Miferable fubterfuge! Which does not merit to be oppofed ferioully; and the more 10, as it is by the transfufion of their odours, that they pretend to be affured of the efficacy of their lined trebes.

1 am difpofed to believe, that the Electricity may have cured or relieved dittempered perfons; bur I do not find the proufs of M. Pivati fufficiently ftrong, or fufficiently certain, to make me conceive, that the lined glaffes have contributed to thefe good effects. I think, and M. Verati himfelf appeared to me pretty much of the fame opinion, that if any one has been fo happy as to cure diftempers by electrifying with glaffes containing drugs, all that can be faid in favour of thefe fubitances is, that they have not hindered the operation of Electricity.
M. Pivati appears by his converfation an honeft and difinterefted perfon, and one capable of inducing me to be of his opinion: but among the facts which he collects in his writings to fortify his proofs, I find fome that do not do much honour to his delicacy in choofing; and which may make him fufpected of too great credulity. Would one believe with him, for example, that the electric virtue was capable of fetting a watch a going, which was ftopped; and, by it's means, of regulating it's motion, when fo difordered as to be impracticable to be done by the hands of the workmen *? Would one believe with him upon the faith of a letter void of authority, and without having tried it, "that an " ounce of mercury had been entirely evaporated through the pores of a " glafs veffel, with which a man was electrized, which had made his " ikin of a leaden colour, and which had been followed by a copious \dagger "Salivation?" This fact, which was faid to have been done at Naples, interefting as it is, had there made fo little noife, that I was not able to find any traces of it during my ftay in that city, after the printing and publifhing of the book, in which it is cited.

If any one fhould think fit to fay, that it is from humour, or from fome perfonal intereft, that I am fo obftinate in difoelieving the facts publifhed in Italy, which are the fubject of this Memoir, I flatter myfelf, that fo unjuft an imputation will imake no impreffion upon reafonable people, by whom I have the honnour of being known, either perfonally,

[^12]\dagger Ibid. p. 153.

Of ELECTRICITY.

or by my writings. Have not I received and publifhed in France all the wonders in Electricity, which have manifefted themfelves in England, in Gernany, and in Holland, as foon as I have been able to be affured thereof by repetition of them? Have not I fpoken and written concerning the cure of the paralytic of Geneva, as a man truly perfuaded of the truth of the fact, fince it had been fo juftly authenticated *? By what caprice then am I made more difficult of believing what paffed in Itnly than in other countries, if the pheiromena, which are prctended to have been feen there, could have been repeated; or if the teftimonies, which they offered me, were not confiderably weakened, or entirely abolifhed, when, being in the places themlelves, I was in a condition of knowing their juft value?

Had I only confuited my perfonal intereft, to whom would it have been more convenient than to me, to have adopted thefe novelties? If they were real, they would have been fo many evident proofs of a principle t, by which I have endeavoured to account for the electrical pbenomena: a principle, which as yer has fufficicently well kerved me, and which, having offered itfelf to Mr Watfon as well as to myfelf, has enabled him ilkewife to give fome inferences exceedingly probable concerning them : would not odours, would not medical lubftances, carried through the pores of glafs, prove, without doubt, that the cfiuent electric matter ferved them for a vel.icle? If purging fuboftances were forced to pafs into the hand, and into the body, of an electrized perfon, could one doubt of their being introduced there by the effuent matter, which came to the electrized body? If the Electricity reftores health to a fick perfon, in delivering him from fome vitious humour, might not I fay with great probability, that this effect is brought about by the effluence of the electric matter? ESpecially as I have demonftrated by experiments, made with great care, that this fame matter, in going from the body electrized, accelerates, and confiderably augments, the infenfible tranfpiration of animals, and, in general, all organized bodies, replete with fluids.

I have then fet apart my own intereft to follow the truth; and if prejudice has tended to lead me aftray, it would be in inclining me to receive rather than call in doubt the facts, which are the fubject of this paper. It is only becaufe I cannot confider them as true, that I refufe to believe them; and this even with regret, as they favour my fyftem: this indeed is of no great importance; but what makes me more defire their reality, is, the great good which would refult to fociety. Could any good fubject, poffeffed of the art of healing by Electricity, as M. Pirati pretends to be, fpend his whole time better than in devoting it to the relief of a great number of human creatures, afficted with great variety of maladies? I am induced to believe, that the greatnefs of this

[^13]iflea has impofed upon thofe, who have publifhed, without doubt, with a little too much precipitation, this new Medicine : the great defire of being ufeful has made them hope; and the goodnefs of their hearts making them difpenfe too eafily with the feverity of a neceffary examination, it may be imagined, that they have confidered as real fuccefs, what was in truth only a phantom.

It remains to fay, that in thefe refearches I have coveted truth, only for her own fake; and have no intereft in convincing thofe who may think proper ftill obftinately to believe, what has been publifhed concerning lined tubes, electrical purgations, inftantaneous cures, $\mathcal{E}^{\circ} \mathrm{c}$. I do not pretend to make any of my opinion, but thofe, who, having read without prejudice what I have here related, may find themfelves touched by my reafons: but if after this there can be any one, upon whom the love of the marvellous can make a victorious impreffion, I fhall not think ill of them, if they embrace opinions oppofite to mine; $\mathscr{Q}^{2 u i}$ vult decipi, decipiatur.
An Obferva. II. I. The common Barometer, which I ufe, is funk fo deep at the fion on tbe Barometer, by Sam. Chriftian Hollman Philof. Prof.
Pub. Ord. Gotting. No. 475. p. 239. Jan. E̛c. 1745. Dated OEt. 15. 1744. Read Jan. 10. 1744-5.

The Agreement of Baro. meters wuith the changes of the weather ; by the fame. N. 402 . p. 101. April, E'\%. 1749. Read April 23. 1749.
2. It has hitherto feemed to be a matter of great difficulty, to explain the true caufe of the alteration of the height of the quickfilver in the Barometer, and the manner of it's agreement with the fubfequent changes of the weather. That this is not unattended with fome difficulty is evident from the hypothefes hitherto framed by the greateft men. That invented and publifhed by Leibnitz, which has given rife to controverfies between Schellbamer and Ramazzini, has been preferred before all others. But it has been fufficiently proved, by Dr Defaguliers, that this hypothefis of Leibnitz is contrary to the laws of Hydroltaticks: whence it is furprifing, that fo many have fince endeavoured to defend it; efpepecially as it is evident that it by no means agrees with the phenomena of Nature. Now if the caufe of defcent and afcent of the quickfilver in Barometers was that which Leibnitz lias alledged, and if the quickfilver could not defeend much fooner than the drops of rain began to defcend thro' the incumbent atmofphere : and again if it could not afcend before they ceafed to defcend; both which are contrary to experience, as is well known by all who have attended the changes of the Barometer, even for a month or two. For the quickfilver will ofen fall for 3 or 4 days together before the left drop falls from the ambient air; and rife again, tho' it continues to rain for feveral days. Nay the quickfilver often falls, without the fucceffion of any rain. Nor do the drops of rain, that fall at the end of it's defcent, prefs the fuccumbent air in like manner as a weight, in the experiment of Leibnitz, defcending thro'

Obfervations on Barometers.

water preffes the bottom of the veffel in which it defcended; nor can they reftore to the air it's loft equilibrium, as the weight does to the fufpended veffel. Thus all things in the Leibnitian experiment are in nature difform and diffonant, fo that I am in doubt whether I fhould moft admire the genius of Leibnitz, a man in other relpcets of great merit, or rather the blind affent of his followers. To this we may add what is called a fallacy of Leibnitz, when he fuggefted that the caufe of the equilibrium being altered, was that folids defcending in a fluid do not gravitate during their defcent into the ambient huid. For the experiment fucceeds beft of all, when the diameter of the body defcending thro water, as of a leaden ball for inftance, is very little lefs than that of the tube, and therefore almoft fills the cavity of the tube, which is full of water. For becaufe the ball cannot defcend, without expelling a volume of water fimilar to itfelf, from it's place, it mult imprefs upon it a motion receding from the bottom of the vefiel, and therefore in the whole time of that defcent, the volume of water, which anfwers to the magnitude of the falling ball, mult thereby receive a nifus and impetus by the natural force of bodies contrary to the centripetal force; and the tube, being wholly fufpended on the leg of the bailance, mult lofe it's equilibrium, during the defcent of the ball, till the ball reaches the bottom of the veffel, and fo a part of the water muft ceafe to be driven upwards. Thus the famous experiment of Leibnitz mutt be faulty and erroneous, and is moft prepofteroully applied to the explanation of the mutations of the Barometer. I pafs over the vitious circle, which Leibnitz has been guilty of thro' his whole reafoning. For he is to affign the caufe, why the air is lighter before rain, and therefore makes a lefs preffure on the quickfilver ftanding in the veffel of the Barometer, and yet he fuppofes it to be rendred lighter: for as long as the gravity and elaftic force of the air, by which the exhalations might hitherto have been fuftained, are ftill the fame, they will never be reduced into drops, or defcend thro' it. But it would be tirefome to add more in a thing fo evident. I fhall however fay a few words with regard to the thing itfelf.

In the firft place; it feems a great difficulty to moft, what is the caufe, why when the air is turbid and made more heavy by various exhalations, the quickfilver falls in the Barometers, and rifes again when it is clear, and is therefore rendered lighter? When every thing ought rather to happen quite contrary. But when the queftion is thus formed, as we fee it is done by moft, is not fomething tacitly affumed and fuppofed, which has never yet been proved, nor can cafily be proved, namely, that the air is rendered heavier, when it is turbid and replete with various exhalations; and on the contraiy lighter when it is clear? Nay is it not at the fame time tacitly luppoled, that thofe vapours and exhalations come into our air, and diminith it's elaftc force, at the very time that we fee them: and on the contrary, that they are gone, and that the air is freed from them, and purified, as foon as they are withdrawn from our fight? Therefore if we deny both thefe fuppofitions, the greateft part of the difficultics
difficulties hitherto ftarted immediately vanifhes. But that they mayo and ought to be denied may be proved by very fubftantial reafons. For, who that is verled in thefe matters, will affirm, that the motes in our circumambient air are not prefent before they are difcovered to our fight by the fun beams fhining into a dark room, or that they retire as foon as an open and free light is admitted ? But not to mention a great many experiments that have been made with acid and alkaline fale, which are fufficiently known, let us make ufe of an example, which is more to our prefent purpofe. Who does not know, that in the glafs bell put over the wet orb of the pruematic engine, as foon as the pump begins to work, fome light clouds begin to arife, which, as foon as the air is admitted again into the fame bell, immeçiately difappear? Now it would not be ealy to find any one fo unkilful in thefe things, as to think, that the watery exhalations, from which thefe mifts arife, enter the glafs bell at the time of their becoming confpicuous to us, by the diminution of the elaftic power of the air; or that they no longer exift there, after they are withdrawn from our fight, and are again hidden in the pores of the air, which before fuftained them, after it is become again more heavy and elaftic. We know therefore, that thofe exhalations are prefent, before they approach nearer to each other, and become vifible to us; and we know that they are not annihilated, or no longer exifting in the air, when being more diflipated they efcape our fight, on account of their very great fubtilty. But they begin to approach nearer to each other, when the elaftic form of the air is fo far diminifhed, that they cannot eafily be fuftained thereby as they were before; and recede again, and ceafe to affect our fight, when the air has it's former gravity and elaftic force reftored. Theretore botb thefe things happen at the fame time, that che ciaftic force of the air is diminifhed, and at the fame time the exhalations, which hung together in it, are again gradually loofe by it, and begin to appear to our fight : and again, that the air recovers it's clafticity, and at the fame time, that the vapours hanging in it are diffipated and difappear; but the one cannot therefore be faid to be the caufe of the other: nor can the air therefore be faid to be at one time more, at another lef's heavy, on account of the fame exhalations.

Now if we fuppole the fame thing to happen in the air that furrounds our earth; the greateft part of the difficulties is removed. For let us fuppofe it's claftic force to be diminifhed, by any means whatfoever, of which we fhall fay more hereafeer; the exhalations hanging in it muft neceffarily fubfide and become vifible: and when it is by any means reftored, the vapours and clouds therein muft again be diffipated and vanifh. But at that very time when thole fubfiding vapours come into our view ; the mercury in the Barometer begins to fall, nay often fome time before for the fame reaton; but yet thofe vapours do not in like manner contribute any thing to it's defcent, when the vapours and clouds begin to difappear in our circumambient air, or even a little before the mercury begins to afcend; and yet that ferenity of the air is no more the caufe of
the afcent of the mercury in the Barometer, than the afcent of the mercury can be faid to be the caufe of that ferenity. It therefore again deferves to be called a fallacy of the caufe, when one of thofe phonomena, which happen about the fame time, is referred to the other, and fo one has hitherto been taken for the caufe of the other by moft perfons.

But to make all this apparent to the cye, take a glafs cylinder about 3 or 4 inches in diameter, open at both ends, and long enough to receive a portable Barometer. Let this cylinder be put for a little while before the experiment on the orb of an air pump, covered with water and wet Ieather, that fome watery vapours may in the mean time enter into the air therein contained. Afterwards let a Barometer be introduced, and let the cylinder be exactly clofed at the top, that the air may be exhaufted. Now if all things are rightly prepared, and the included air begins to be pumped out; both a tort of mift will begin to rife immediately in the cylinder, and the mercury of the Barometer at the fane time to fubfide: both indeed, as is apparent enough, from one and the fame caufe, but neither of them from the other. But if the fame air, which was juft now taken away, is immediately admitted again into the glafs cylinder ; the natural ferenity of the included air will return directly, and the Mercury of the Barometer will afcend at the fame time or a little fooner : and yet it is plain enough that one of them does not depend on the other. Nay at the fame time it is manifeft ennugh, that it is not rendered beavier in one cale, nor lighter in the other. Thus art in fome meafure imitates nature : tho' becaufe of the wonderful complications of natural caufes, it can never be fufficiently exact.

But tho' the chief difficulty is now removed, yet the whole affair is not brought to a conclufion. For it ftill remains to be enquired, by what caufes the elaftic power of the air can be fo diminifhed or increaled, as to produce thefe alterations. But yet the anfwer does not feem very difficult. For the caufes which fhew how eafily the air is expanded and sarified by any approaching heat, and particularly how great is the force of the fun-beams falling perpendicularly, will hew, or perhaps, this alone will feem fufficient, how the equil:brium of the air is taken away, if there were no others, which are however various. We will pafs over the diurnal revolution of the earth, and our air with it, about it's axis; and alfo the annual motion of them about the fun; we will not mention the many burning mountains on the furface of our earth, nor the many thunders and lightnings in the air; nor the many eartbquakes and fubterraneous fires, that fo terribly Shake the furface of the carth and fea, tho' each of them may have a wonderful effect in increafing or diminifhing the elaitic force of the air : and fhall at prefent only confider one thing, which feems more worthy to be mentioned than the reft.

It is allowed by all, that the elaftic force of the air which immediately touches the furface of our earth, depends chiefly on the weight of the incumbent air. It is alfo no lefs known, that the lower air is more or Lelis claftic according to the greater or lefs height of the incumbent column

Obfervations on Barometers.

of air, by the different height of the barometrical mercury, on mountains of greater or lefs height, and in lower places of the earth. Nor is it lefs generally allowed, that the moon is the primary caufe of the flux and reflux of the fea. But by what means foever this wonderful phonomenon is effected by the body of the mioon on our earth, of which we need not here particularly treat ; this cersinly is paft all doubr, that the moon cannot act on the feas of our glate, withour acting at the fame time on the air wibich lies between the mom and our earth. Now if the mobility of fluids is in proportion to their denfity, and their denfity in proportion to their fpecific gravities; the air neareft the earth, which is about 860 times lighter than frefh water, will be about 900 times more moveable than fea water: and therefore the very fame caufe, which gives fo conftant and regular a motion to our feas, acting by the fame force, may much more eafily increafe or diminifh the height of our air. By a fort of fux therefore arifing in a determinate region of the air, the columns of air cannot fail of becoming bigher in the fame place, and therefore, caeteris paribus, the elaftic force of the lower air mult be increafed: but upon a reffux, the height of the columns of air muft neceffarily be diminifhed, and fo again, caeteris paribus, the elafticity of the lower air mult decreafe. And perhaps this difference of heights is the greater, as the fpecific gravity of the air, which is moft rare in the utmoft limits of our atmofphere, is overcome by the fpecific gravity of our fea waters, and of the lower air. But that this flux and reflux of the air does not obferve it's alternate motions fo regularly and conftantly as the reciprocal tide of the feas ; befide it's very great fluidity, thro' which it may be agitated by very flight caufes, the caufes above enumerated without doubt effect, by which it is manifeft enough, that there are wonderful agitations and perturbations of the air, almoft continually, in different parts of our terraqueous globe. From all thefe caufes therefore taken together, the changes of the heights of columns of air in different times and places, and alio the changes in the lower air depending on thefe, are to be fought in the barometrical phonomena.

There remains one thing to be juft fpoken of. We find many are follicitous to foretel the wealber from the rifing or falling of the mercury in the Barometer, and endeavour to form certain rules for that purpofe: fo that this feems to be the only thing, which perfons otherwife not very fkilful in nature may expect from this wonderful machine. And I could wifh, that we knew any thing certain about this alone; becaufe it would be of great ufe in human affairs. But thefe things, which we would have fo conjoined, do not feem to be neceffarily connected. For our barofcopes cannot properly, and of themfelves, fhew any thing except the increafe or decreale of the elaftic force of the air ; but the weather depends on various exhalations, exifting at the fame time, or together in the air, or not exifting or at leaft not prefent in the fame quantity. It may therefore be, that to diminifh the elaftic force of the air, and fo to make the mercury fall in the Barometer, there muft
be a fufficient quantity of thicker exhalations in the air, and it muft thereby become turbid, and the vapours begin to fubfide, and fo coalefce into greater or fmaller drops of rain, and other phanomina follow. But it may as eafily be, that, tho' the elafticity of the air is diminifhed, yet becaufe of a defect of a fufficient quantity of exhalations therein, no fenfible change of the weather may happen. The fame may happen on the contrary, by too great a quantity of exhalations in the air; tho' the rifing of the mercury may moft evidently fhew, that the elaftic force of the air is increafed. Becaufe therefore thefe things coincide as it were by fome accident; no certain prediction can be made of a change of weather, either by the rifing or falling of the Barometer. But we may fafely enough make a negative conclufion from it. For a conftant confent of obfervations fhews, that, if foul weather has followed a defcent of the mercury, fair will not fucceed, till the mercury begins to rife again : or if the afcent of the mercury has been joined with fair weather, there will not be cloud's or raim, till the mercury has begun to fall. And this is often of as great ufe in common life, as if we could always pofitively predict, what weather fhould exactly follow the afcent or deicent of the mercury. The fall however of the mercury does more frequently predict foul than fair weather ; and the rife more often fair than foul, as is confirmed by manifold experience : and fo it may be of great ufe, to be able to judge fafely in fuch occurrences. I have alfo obferved, that in thefe regions, when the wind blows from any point between the N . and W. rain and foul weather begin, or are continued more often than fair, notwithftanding the rifing of the mercury in the Barometers.
III. 1. I fend you herewith an extract from my regifter of the wea- A letter from ther, fhewing the ftate of my Barometer and Thermometers, for fome days of laft week : in which you will obferve a fudden change of the temperature of the air, particularly on Thbur fday morning the 3d inftant, Baker, F. R. and by the fame, you may fee the little ufe a Thermometer is of, when S. concerning kept within-doors, to determine the ftate of the air abroad, as to heat or cold.

I have two Thermometers filled with mercury, and of the fame conftruction, made by the late Mr Siffon, in the Strand. The one is placed without my chamber-window, in a north-caft fituation, under covert, contrived to admit a free paffage of the air, but to keep off fun and rain ; the other hangs within the window, about three feet from the former, where the fun never falls on it : The room is conftantly occupied, as a bed-chamber, but has had no fire in it this feafon.

It appears by the adjoining table, that on Tuefday the ift inftant, at 8 in the morning, the Thermometer without ftood at at 17° above 0 . or be differnce of the degrees of Cold marked by a 'Thermometer kept witbin doors, or withous in tbe open air.
$\mathrm{N}^{\circ} .484$. p.
Gr3 oa sée.
1747. Read freezing point ; that within at 14 . At 9 at night, that without was at o. and that within at 12 above 0 . So that in the fpace of $13^{\text {h }}$ the former had fallen 17°, the latter but 2. For the other particulars, relating to the Barometer, wind, and weather, I refer to the table.

VOL. X. Part ii.
K k k

Concerning Thermometers.

As the Barometer had been for a good while paft fubject to fuidden confiderable variations, I lufpected the fevere cold on Wednefdny night and Tburdday morning would not continue long : accordingly, upon my oblerving the Thermometer without at 4 in the morning, I found it at $\% 9^{\circ}$ below the freezing point, that within at $\frac{3}{\circ} 5^{\circ}$ above the freczing point. But at 8 the fame morning, I found the Thermometer without at $\frac{3}{0} 3^{\circ} \frac{1}{2}$ above freczing, and that within at 4° above; fo that in 4 hours time, that without had rifen $13^{\circ} \frac{1}{2}$, and that within had fallen \mathbf{I}°. This naturally led me to examine what figns there might be of a thaw begun, but could find none, in the fnow (which was 5 inches deep) or in the poft, on the windows, but within an hour it was vifible enough, and before o the houfes dropt. I would oblerve to you, that the wind at 8 in the morning had varied very little, if any, from what it was the night before, viz. from the E. but foon after it bore to S. E. and S.

May not this fudden change of the temper of the air be attributed to a fubterranean heat? And may not the fhifting of the wind be caufed, in a great meafure, by the fame?

Days	Murn Barom.		Eveni	Ther.	December 1747.
1	2863	$\frac{17}{0}$ $\frac{14}{0}$	2930	$\begin{array}{r} 0 \\ 12 \\ \hline 0 \end{array}$	At 8 Mom. Wind high at S . W. much Rain preceding Night. Showery afterward in the Morning, and Wind exceeding high. Sleet at $1 \frac{1}{2} p, m$ calmer and clearer foon after, Wind N. W. and N began to ficeze in the Evening, clear at $9^{\frac{1}{2}} p . m$. when the Evening Account was fet down.
2	2955		2940	$\begin{aligned} & \frac{2}{2} \\ & \frac{z}{6} \end{aligned}$	At 8 Morn. cloudy thick Air, hard Froft; at 4 fame Morn. very clear, and Glafles were at 2950 and $\frac{\circ}{3}$ and 4 Wind Eaft, cloudy all Day, at $4^{\frac{1}{2} p m}$. Snow fell, and wes deep before 8. Evening Account taken at $9_{2}^{\frac{1}{2}} p$. m.
3	2956	$\begin{aligned} & \frac{3 \frac{1}{2}}{0} \\ & 5 \end{aligned}$	2949	$\begin{gathered} \frac{13 \frac{1}{2}}{0} \\ \hline 8 \end{gathered}$	At 8 Morn. cloudy, Wind at near E. ; blows brifk at 4 the fame Morn. Glaffes were 296 : $\frac{\circ}{3}$ and \& Rain before 11. Evening Account at $9_{1}^{\frac{1}{1}} p . m$.
					Explication. 1 Day Barom. Morn. 28 Inches ${ }^{6} \frac{6}{5}$ To $^{3} 0$. Ditto Therm. Morn. $\frac{17}{6}$ is 17 Degrees above freezing Point the upper Number is for the Therm, without Doors, the lower for that in my Room, and fo for the relt.

2. Chemiftry being the moft extenfive branch of Experimental Philo- \triangle dijcourfo fophy, hath furnithed mankind with the greateft number of curious and ufefuldifooveries; for not only the art of feparating metals from their ores, of which metals are formed fuch variety of uieful Inftruments, but likewife Cookery, which is fo much concerned about the food of mankind during health, and alfo Pharmacy, which fornifhes medicines for the reftoring health when loft, the art of dyeing, and many other ufeful manufactures, all owe their improvements to this ficience; many of which have been light on unexperedty by the operator, while he had fancthing elfe in view : but in many cafes the Chemifts complain, that having once accidentally light on a curious experiment, upon endeavouring to repeat it, they have never been able to make their procefs lucceed exactly, as it did the firf time, notwithitanding that they made ufe of the fane materials, in the fame quantity, and conducted the procels thro' exactly the fame operations. Where then muft the caule of the mifcarriage lie? Surely in the degree of heat made ufe of in the two experiments: for, in many common operations, how ufual is it for a preparation to be fpailed either by too little, or, moft commonly, by too much fire, too long or too fhort a time applied. In order therefore to prevent thefe many mifcarriages, I would advife the Chemift, in his operations, to obferve his clock with as much exacinefs as the Aftronomer doth in his obfervations; and in order to know to a certainty the very degrees of heat he ever made ufe of in any procefs, that to he may be able to repeat and continue the fame again in any repetitions of the fame experiment, let him have his laboratory furnifhed with various forts of Thermometers, proportioned to the degree of heat he intends to make ufe of. He will find thefe inftruments as ufeful to him in his procelfes, as they have proved to the curious Gardener in his ftoves, who by them is taught to keep his plants in the fane degrees of heat, as are natural to them in their refpective climates; which hath been fet forth in tables, after a very ingenious manner, by Mr Sbeldrake of Norwich. And befides the enabling him to perform his operations with more exactnels, the efe intruments would fave him adeal of fuel; for as liquors, while boiling, are not capable of receiving a greater degree of heat, all fuel which is uled more than to hiep them in that ftate is ufelefs; and the like happens in many other cafes.

Thefe inftruments would alfo be of great fervice to Maltifters, Brewers, Diftillers, and Vinegar-makers; for by Thermometers placed in different parts of the heap of wetted malt, the proper heat for it's fprouting might be determined, and then regulated: the fame for the heat of the kiln when the mait is 1pread on it. By Thermometers the Brewer may afcertain the heat of the water when he pours it upon the malt, the heat of the wort when he fets it to work, and the heat while working: and in the like manner the Diftiller and Vinegar-maker, in a word, every artificer, who employs heat in his bufinels, may by thefe inftruments be certain of every degree neceflary in each part of his work.

Concerning Thermometers.

Many experiments Mhew, that all known bodies, whether fluid or folid, increafe their bulk or rarefy by an addition of heat; and, on the contrary, contract or become more denfe by the diminution of heat, which is the prefence of cold : and thefe alterations are always more or lets fenfible in proportion to the natural rarity or denfity of the bodies.

The air we live in, as it is the moft rare and light fluid, fo are it's alterations the moft fenfible; and indecd I know of no experiments which determine how far it is capable of being expanded by heat, or condenfed by cold; only we find that it will make it's way thro' any fluid in which it lay dormant, when it's elaftic property is rouzed by the approach of fuch an heat as will make the fluid boil. On the other hand, when compreffed by a fluid fo contracted by cold, as to freeze, or become folid, it's elafticity will only bear a certain degree of compreffion, till the force wherewith it endeavours to reftore itielf, exceecis the force by which the parts of the folid, that confines it, adhere to each other, and fo burfts it's prifon; as we often fee during hard frofts in ice, glafs, and other hard bodies, whofe parts cannot ftretch.

Next to air is alcobol, or the higheft rectified fpirit of wine : this, water, and all other liquids, are capable of receiving no greater degree of heat than what makes them boil, as was firft demonftrated by M. Amontons, a Member of the K. Acad. des Sci. at Paris; but that ingenious inventor of the quickfilver Thermometer Mr Fabrenbeit hath difcovered, that when the Barometer marks a greater preflure of the atmofphere, the fame liquor will receive 8 or 9° more of heat than when the Barometer is at the loweft. From hence the great Boerbaave gives the hint, that, from nice experiments being made of the different degrees of heat marked by a Thermometer in boiling water compared with the different heights of the Barometer, and tables formed upon them, a Thermometer applied to boiling water might, at fea, where the motion of the thip hinders obfervations with the Barometer, ferve to determine the difference of the gravity of the atmofphere *.

- Thefe, and all other liquids, by a certain determinate degree of cold peculiar to each fort, lole their 月uidity, and freeze, or become folid, but not in the fame order as by heat they boil; for by cold, oil or water is fooner frozen than fpirit of wine, tho' fpirit of wi- will boil fooner than oil or water. All folid bodies likewife, as minerals, metals, and even ftones, will become fluid, or melt, at a certain degree of heat peculiar to each fpecies; and, when thoroughly melted, it is probable they are capable of receiving no higher degree of heat; and, on the abfence of that heat to a certain degree, they all return to their natural folid ftate. Hence we may reafonably conclude, that folidity is the natural ftate of all bodies; and that fome are only accidentally fluid, hecaule their conftitution is fuch as to melt by thofe degrees of heat which our atmotphere is moft commonly lubject to. All iolid bodies are ubferved to contract themfives into imaller dimenfions by cold, and gradually to expand themfelves at the approach of heat, till at laft, being by
heat forced to the greateft degree of expanfion, the particles of which they are compofed lofing their cohefion, they become fluid; but no experiments have yet been made, which determine whether folids, expoled to cold beyond certain degrees, will ceafe to contract any more.

Dr Mufchenbroek, Prof. Altron. at Utrecht, hath lately invented a very ingenious inftrument, which he calls a Pyrometer, and which Dr Defaguliers hath made fome improvements to *; a full defcription of which he hath given in his Courje of Experimental Pbilofopby. \dagger

By this inftrument the elongation of rods of feveral forts of metals by the approach of a certain number of flames of a fpirit lamp, and likewife their as fudden contraction, on the extinguifhing one or more of thofe flames, is rendered fenfible to the eye: which fufficiently evidences the matter of fact, and puts it beyond all doubt.

From the above-mentioned property of bodies contracting and expanding in cold and heat, have all Thermometers been conftructed, that have ever been made ufe of in order to obferve and compare the different degrees of heat, either in our atmofphere, or in ather bodies. The moft fimple and moft fenfible of any is that acteal Thermometer defcribed by Mr Boyle, in his New Experiments and Obfervations touching cold, Lond. 1683.4 to. p. 39. It confifts of a giafs bubble, with a very flender ftem not bigger than a raven's quill. The bubbie is left full of air, and a few drops of water being conveyed into the item in an erect pofition, will there remain fufpended to a certain height; but, by the leaft addition of heat, the air in the bubble expanding will pufh the water up higher; or, by the approach of cold, the air contracting, the water will fall lower in the ftem. This inftrument may be of ufe in fmall degrees of heat, and in cold, till the water begins to freeze, when it becomes ufelets.

The next in order of fenfibility is that firft invented by Cornelizs Drebbelius of Mcmar, and improved by Boerbaave \|. It confifts of an hollow glafs lens joined to a ftem of a larger fize than in the preceding, and a bafon into which the end of the ftem is inverted. The air in the lens muft be fo much rarefied, that the ftem beitig inverted into a tinged liquor in the bafon, the liquor will rife up fome way in the ftem; then, by the application of heat to the lens, the liquor in the ftem will be puifhed down, and by cold the liquor will rife up. This inftrument will give notice of the fmalleft changes in the air ; but it cannot be immerfed into any liquid for chemical experiments, unlefs the ftem were made much Ponger, and bent downward in form of a fyphon: but even then it would be very unhandy, and, like the preceding, it would never ferve for any degree below what would freeze the liquor made ufe ci, nor for any above what would force out the confined air through the liquor in the bafon. Befides, both thefe i:ifiruments, being fubjeet to the preffure of the atmo-

[^14]
Concerning Thermometers.

 fyhere, are not proper, without comparing the Barometer at the fame time, to determine the degrees of heat at a great diftance of time between each experiment.The moft ufual fort of Thermometers is that defcribed in the account of the experiments by the Academy of Cemento; which being the common ones, made of fpirit of wine tinged, it is needlefs to defribe. The bounds of the degrees of heat which thefe will meafure, and which is commonly called the range of the inftrument, are from the degree which freezes fipirit of wine, up to that which makes it boil. The fpirit Thermometers, commonly made here in London, are To graduated, that when the fuirit is rarefied to the degree that the moft fultry funfhine commonly known in our climate of $51^{\circ 1}$ N. Lat. can raife it, there is placed the mark 0 . or degree of no cold. Some few are marked 10 or 20 above this, if they are defigned to be ufed in hotter climates; but all are graduated downwards from this: fo that the 45° is the point of temperate, and 65°. is the point of freczing, and 100°, is placed juft above the ball. But the moft accurate fpirit Thermometers are thole lately made by M. Reaumur, he hath taken a great deal of pains, and ufed great exactnefs, in fixing the certain points of freezing of water, of temperate air, and boiling water. He determines the treezing point, by leaving his Thermometer a confiderable time in water, into which is put a good deal of ice, at a time when the water would not freeze of itfelf; and this he marks 0 . or the degree of no heat; and his fcale is marked with numbers running downwards from o. meafuring the degrees of cold, and upwards meafuring the degrees of heat: at iot upwards he marks the point of temperate, which he determines by placing his infrument in a fubterranean cavern, which is neither affected by froft nor funfhine, but is obferved to keep an equable temperature all the year round; fuch as deep cellars and wine vaults commonly do. In boiling water he finds that his Thermometer rifes to his 80 th divifion, * or 80°, which are formed by dividing the fpirit when condenfed to the freezing point, into 1000 equal parts; fo that, with the heat which makes water boil, the fpirit is expanded only $\frac{80}{100}$, more than with the cold which freezcs water.

Thefe firit Thermometers are of ufe in experiments where fome what greater cold than the freczing of water is required; but they can never be of ufe in any degrees of heat beyond the boiling of the fpirit itielf; becaufe it then becomes volatile, or rifes up in fteam, and not only expands no more, but likewife the quantity is diminifhed by the particles which fly up from the furface of the liquor, and are fufpended in the top of the tube.

[^15]Many have filled their Thermometers with various forts of oils * : thefe indeed will meafure many degrees above the boiling of water, till they boil themfeives, and then they have the fame defect as the pipirit ones juft mentiomed, which is the liquor lofing of it's bulk by evaporation; and they congeal much fooner than water, and fo are ufclefs in meafuring any degrees of cold.

The moit ufeful inftruments, as they comprehend the largett range, are the mercurial Thermometers, which were brought into ule by that ingenious artificer Fabrenbeit. But, to do juftice to a moft worthy Member of the R. Soc. Dr Halley, he firft gave the hint, and even propoled the making Thermometers of quickfilver long before Fabrenheit's time. However, Fabrenbeit deferves thanks from the world for having brought thefe inftruments into ufe, becaufe they will meafure the greateft degrecs of cold yet known; for no cold hitherto obferved hath been able to freeze or render mercury folid: and in meafuring heat, they go far beyond boiling water, even beyond the melting of tin or lead. Fabreybeit begins his fcale from 0 . the point to which the mercury hath been obferved to fall by the greateft cold in Y/land; and computes, that the mercury then + occupies 11124 parts. This is his point of no heat. Then reckoning upwards from this, he finds that when the mercury is rarefied only 3^{2} parts or degrees more, common water juft begins to frecze: in a temperate air it will rife to about 60 . The moft fultry funfhine feldom raifes it to 90 ; the heat of an animal body to 96 ; the boiling of alcobol to 174 ; the boiling of water to 212 ; and before the mercury itfelf. boils, it will rife to 600 .

I cannothere forbear giving an abftract of a very curious and furprifing experiment of Fabrenbeit's, concerning the artificial production of cold, as it is related by Boerbaave in his Cbemifry. Fabrenbeit had a mercurial Thermometer made with fo long a ftem, that he could carry down the fcale 76 parts or degrees below o. With this inftrument he found, that cold might be produced by gradually pouring fpirit of nitre upon powdered ice, till the mercury would fubfide to 40° below 0 . that is $72^{\circ} \|$ lower than the cold which freezes common water. Boerbave, in his Cbemiftry, ** mentions a very pretty way of determining the freezing point: he advifes to hang the Thermometer free in the open air, not againft any wall or building; and near it. you muft hang a piece of very fine linen or mulin juft dipped in clean water: when this begins to grow ftiff you will find the miercury fand at about the 33 d degree; and it will alfo ftand at the fame beight when an hoar froft appears upon the ground; which he looks upon as a certain fign of the beginning of freezing.

[^16]Having

Concerning Thermometers.

Having thus given an account of the feveral forts of Thermometers hitherto ufed, and what degrees of heat they are proper to meafure, we find none of then capable of meafuing the greater degrees of heat, which are the moft commonly made ufe of by the Chemits in many of their operations. Bclides, all the above inftruments, being made of glafs, are eafily broken by accidents, and as liable to crack of themfelves, by being taken out of a great heat, and too fuddenly expofed to cold. I therefore confudered whether the above-mentioned property of folids, and efpecially of metals contracting with cold, and exapnding with heat, might not be appliid to the conftruction of an inttrument capable of meafuring all degrees even of the greateft cold, as well as the greateft heat, to the metting copper or iron, which require more heat than any other metals to melt them. Altho' the alterations in metals are but fmall, in refpect of thofe in fpirits, or even mercury, yet it being found, that iron, e. g. becomes long i * when red-hot, than when ot its natural temperature; and Dr Derbam, in his laft paper read before the Royal Society concerning the vibration of pendulums, fays, that a rod 39. 1^{126} inches long, becomes inch longer than its natural dimenfions in temperate air, by being expofed to heat equal to that of an human body; $\frac{2}{}$ inch longer in hot funfhine; that it was $\frac{2}{\text { ro }}$ or \div inch longer than its natural ftate, by being heated in a flaming heat; that it became Thorter than its natural length by being quenched in cold water; and ftill -3 Shorter, by being put into a mixture of falt and frow. From which experiments one may conclude, that from Fabrenbeit's cold of 40 below 0 . to the greateft heat iron can bear without melting, a rod of 3 fett long will have about \pm inch increafe; which increale of length will be range enough to make all the intermediate degrees obfervable upon an inftrument.

Suppole in Fig. $18 A B$ a rod of iron at its natural length by the heat of the atmofphere, placed upright upon one end; upon the point of that refts a bar $C D$ moveable on an axis at a; and that, by making a fire about the end B of the rod, till it is jult ready to melt, the rod will increafe in length $A b$, and confequently pufh the bar into the fituation cd. Now it is obvious to any one who underftands ever fo little of Mechanics, that tho' the elongation of the rod $A b$ be even fcarce perceptible to the eye, yet if upon the bar $C D$ the diftance a A from the axis to the place where the $\operatorname{rod} B A$ pufhes againit it be very fmall, and the other part of the bar a D very long, the arch $D d$ may be increafed at pleafure, fo as to bear to be divided into any number of divifions that fhall be found neceffary: for the arch $D d$ will always be to the arch C_{c} in the fame proportion as the diftance $D a$ is to $a C$; and likewife the chords of thefe arches $D d$ and $A b$ will be in the fame proportion; γ, δ, is the fitutation of the lever on the level; and if it
be found inconvenient to make the arm $a D$ folong, as to make ver:y minute alterations in the length of the rod $A B$ eafily obfervable, this inconveniency may be readily removed by having a fecond bar $E F$, turning on the axis g, whofe arm $g E$ bearing up againft the extremity D of the firt bar or lever, will rife with it, or be preffed down by it; and the other arm $g F$ being lengthened at pleafure, the arch $F f$ will be as large as you find convenient; or even a third and fourth lever may be added.

When I firf defigned to have an inftrument conftrueted anfwering to the forcgoing principles of Fig. 18. I drew a figure of it, wherein I propofed the lever $A D$ to have terminated in two arches of circles made out of one piece of brafs; the fmaller arch formed on the radius a A to be loaded with a quantity of metal fufficient to overcome all the friction of the feveral parts, fo as to prefs down with a confiderable weight, and always to reft upon the point A of the upright $\operatorname{rod} A B$; at a the axis, on which they were to turn; and the larger arch formed on the radius $a D$, was propofed to be a fextant, the outward edge of which was to be toothed, which teeth were to play into the teeth of a fmall brafs wheel carrying a fteel index like the mi-nute-hand of a clock, which fmall wheel with the hand was to make one revolution nearly by the utmoft rife and fall of the fextant at D; or, inftead of teeth, I propofed a piece of a watch-chain to be faftened to the upper limb of the fextant, and fo to be brought downwards, and paffing nearly round the fmall wheel in one groove, to be faftened to it: in another groove in this fmall wheel was another piece of watch-chain to be faftened, which, being paffed contrarywife round the faid wheel, was to have a weight hung to it that would be a counterpoife to the fextant; but, upon confulting my two ingenious friends Mr G. Grabam and Mr Fobn Ellicot, they each of them perfuaded me to lay afide that more complexed conftruction, and to have the inftrument made in the plain and fimple manner in which Mr Fackfon executed it for me in the year 1736 , as is reprefented in Fig. 19 , and 20.
Fig. 19. $A B$ a round rod of fteel or brafs: of an inch thick, and 3 feet The defiripprion: 1 inch long: when the rod is of brals 3 feet long, the point A nuift of the irfilirs be of fteel I inch long, to prevent its wearing away, or lofing its ment. point ; which conical point is made to fcrew on and off.
I had the firft rods made I: inch thick at B, and of the fame thicknefs 6 inches up; but I found inconveniences from that form, and that a rod all of a fize was better.
$C D, c d$, are two iron fupporters, joined by a flat crofs bar at bottom $D d$ two inches long, in the middle of which is a point $\frac{1}{8}$ inch higla under B, which goes into an hole at the bottom of the rod B, and ferves to keep the rod in its place at hottom, as the crofs bar ** having an hole in it, thro' which the rod paffes, does in the middle or about $\frac{2}{5}$ up the fupporters, and the point A goes into a fimall hole in the under

VOL. X. Part ii.
L 11
fide
fide of the lever; all which keep the upright rod firm and feeady in its place. The iron fupporters are fint, or paralled to the front of the machine fron C to \hat{X} and c to x, where they are twifted half round, fo that the lower parts $X D, x d$ ftand at right angles with the upper parts. This contrivance gives the freer accets to the rod for the land or fluid into which the machine is fet to meafure the heat of it, the fupporters flanding 2 inches aliunder at $D d$; and that the degrees of heat may be compared uniformly in different experimente, the bottom of the rod muit always be immerfed to the fane height in the matter to be examined; and therefore I make a mark, a fmall furrow \dagger quite round the rod, 1, inch from the bottom B. For the decper the rod is immerfed into any matter, it will be lengthened the more by the fame degree of hear.
$E F$, the lever, which turns upon an axis G. At F is faftened a fring, which, pafing twice round the fmall pulley H, has a weight I, hanging to the other end of i , of about half a pound, being enough to keep the Atring always ftretched. At the other end E of the lever is hung another weight L, which muft be heavy enough not only to councer-balance the longer arm GF, but prefs down upon the point A with a weight fufficient to keep it fteady.
$M N O$, is the back part of the plate, like the dial-plate of a clock made of brafs. See the front of it at Fig. 20,
The pulley H turns upon an axis C in Fig. 3 . which goes thro' the plate, and on the orher fide or front of the dial-plate carries a hand or index $A B$ in Fig. 20.
N. B. G being the Fulcrum of the lever, the diftance $G A$ being very fmall, and the diftance $G F$ being very great, the fmalleft motion at A will produce a very great one at F, and therefore the index will turn very fenfibly upon the plate.
The proportions of the rod and lever are difcretionary; my rods both of fteci and brafs are 3 Feet long in one folid piece, but they have each a point or cone of fteel \AA inch high, that fcrews upon the top at A. The lever has 4 inches from E to $A, 1 ;$ inch from A to G, and 12 inches from G to F; the diftance of G above c is $1 \frac{1}{2}$ inch, the brafs pulley H is inch diameter ; all the other parts of the machine are of oak. The main fupport or pillar $P Q$ is 1 inch fquare, $2 \frac{1}{5}$ feet high, and at bottom is let thro' a groove at 2 made in a great heavy block or pedeftal of wood $R S$. In this groove the pillar may be raifed higher or lower, in order to adjuft the height of the pillar to the fituation, which the bottum of the rod $A B$ may require in different experiments; and it is to be fixed in that place by a screw at \mathcal{T}, which goes thro' the front of the block, and preffes againf the bottom of the pillar.
Fig. 20. reprefents the dial-plate, or front of the plate marked $M N O$:
in Fig. 19. it is a plate of brafs, with ftrong paper glued upon it and may te of what fize you pleafe; mine is is inches over.
$A B$ is the hand or index, which Mips on very fiff upon the axis C, that carries the pulley H in Fig. 19. The outer circle is to be 1 itt wide enough to contain the chemical characters or marks which are to be made upon it, the arch $D E$ contains the divifions of Fabrenbeit's mercurial Thermometer; the arch FG thofe of Reausinur, or the fpirit of wine Thermometer.
In order to adjuft this inftrument for ufe I place the bottom of the rod B in F!g. ig. immerfed up to the mark \dagger in cold river or rainwater, in a velfel proper to be fet over the fire; and when it has boiled for $\frac{1}{5}$ of an hour, I turn the index $A B$ in Fig. 20. tili it ftands in the horizontal pofition, as at B, being the point of boiling-hot water, and which anfwers to divifion 212 on Fabrenbeit's arch. I then take it out of the water, and dry it, by holding it a little over the fire : and now great care muft be taken, that nothing alters the fituation of the index upon the axis ; even a nut to ferew on upon the axis at C may be the beft to keep it fixed. If the inftrument be left to cool in the air, the index will fall below B, fhewing the degrees of cold, or lefs heat than boiling water; and if put into melting tin, lead, $\xi^{\circ} c$. it will fhew the degrees of heat above boiling water. A brafs rod will ferve for an intrument to meafure the greateft degrees of cold, and all the degrees of heat, to the melting of filver or gold; but if you have a mind to make one to meafure greater degrees of heat, the rod muft be of fteel, or the fineft iron. A rod of brafs, according to Dr Mufcbenbroeck's experiments, l. c. was found to lengthen 377 , when one of iron lengthened only 230 parts. An iron rod, being regulated by boiling water, as above directed, will meafure not only the heat of melted tin and lead, but of filver, gold, and copper, and will even fhew the degree when iron itfelf begins to melt, which will be the greatelt degree of elongation of the rod jult before the bottom of it runs; and I imagine, that an inftrument may be conftructed with fupporters, and a rod made of tobacco-pipe-clay, which, being regulated by boiling mercury (for it muft never touch water,) may be adapted to meafure ftill greater degrees of heat, till the materials themfelves melt into glafs.

I fhould advife, that not only the fcale of this fort of Thermometer, but likewife of all others, be determined by experiments, without regarding any equality as to meafure between the divifions, and that in every individual that fhall be made; for a difference in the length and thicknefs of the rods in this fort will make a difference in the fcale, as much or more than the inequality in the cavity of the ftem, or glafs tube of other Thermometers, which can never be juft, if applied to a fcale whofe divifions are made equal; unlefs the cavity of the ftem, be perfectly equal; which it is impoffible for any workman to undertake to do, and which is very feldom, if ever, hit on by chance. Therefore in thefe inftruments, let the point B in Fig. 20. or the horizontal pofition of the index, be the fituation of the index when the rod has ftood \ddagger of an hour in boiling water; there mark ∇ boiling on the outer circle; on

Concerning Thermometers.

Fabrenkeit's arch mark 212, then fet your machine up to the mark + into melting tin, which is the metal that melts eafieft. When the rod is arrived to its greateft clongation in that metal, infcribe the character 4 on the outer circle; do the like with lead, and fet the character h at it. At the boiling of mercury put the mark \%, and on Fabrenbeit's arch mark 600 . the utmoft extent his mercurial inftruments can meafure : Then proceed to the melting of filver, and fet the mark D; at the melting of gold place the mark \odot; at the melting of copper place the mark 8 ; at the melting of iron place the mark δ, the moft difficult to melt of all metals.

As the divifions pointed out by the index will be diffcrent with rods of different metals or fubftances, you may make different circles upon the plate for the range of the different rods, and mark them ; the iron rod, the brafs rod, the clay rod; and fee the feveral marks above fpecified upon each circle apart ; or you may, to avoid confufion, have a different inftrument for each kind of rod.

Being obliged to take down my athanor and wind-furnace, upon removing twice to different houfes, and not having rebuilt them where I now live, I have not had opportunities yet of fixing the fcale of my own inftrument, which was one reafon why I did not publifh an account of my invention fooner; for I hope hereafter to be able to compare the degrees of heat neceffary for the melting of each metal, and to determine the queftion whether metals in the higheft degree of fufion, are fufceptible of greater degrees of heat by increafing the fire, as water thoroughly boiling can never be made hotter; nor did I intend to have publifhed any defcription of this inftrument till I had compleated tables of the degrees of cold and heat, from Fabrenbeit's experiment of cold produced by art 40 degrees below o to the heat of melting iron.

According to Fabrenbeit's fcale, the heat of the ftrongeft funfline is at about 80 . Spirit of wine boils at 176. Water at 212. the lixivium of falt of tartar at 240 . Spirit of nitre at 242 . Oil of vitriol at 546 . Quickfilver at 600^{*}.

As all chemical digeftions, where an equable heat is to be continued for fome time together, will come in between hot funhine and the boiling of quickfilver, a Thermofcope of that range will be fufficient for common ufes; and therefore one fitted with a brafs rod will anfwer thefe purpofes.

In large furnaces for running down ores, or melting great quantities of metal together, it is not poffible to place fuch an inftrunzent; but then in lead and tin there may be fmall outlets contrived, into which fome of the melted metal may be permitted to flow, and remain in contact with the fame body of metal within, where the inftrument may be placed; and for placing a Thermofcope in iron, copper, or glafs fur-

[^17]naces,

naces, there may be a place contrived, which fhall not open into the furnace, but have the thicknefs of a ftone or brick left between, upon which the inftrument may be plaied; and tho' in fuch a fituation it will not meafure the actual heat within the furnace, it will always give the relative or comparative heat in the like circumftances at different times, and fo fhew us how to regulate the heat within.

Although a Chemift fhall have one of thefe inftruments to meafure the heat, he fhall have ufed in any experiment, and have noted down the feveral degrees made ufe of, and the time each lafted, he ftill labours under another difficulty, which is the not being able to command any required heat, and that it thall laft a certain required time, unlefs it be below that of boiling water, which may be procured and continued by various contrivances of lamps, either of fpirits, or of oil ; but how to continue a fire for 12 or 24 hours together, without attendance, which fhall continually keep quickfilver boiling, lead in fufion, or may be let down fo low as not to exceed the heat of funfline, and then be raifed again, and that without letting out the fire, or moving the veffels, may feem almoft impracticable; but by an improvement of the furnace the antient Chemifts called their athanor, I hope to fucceed in it, which may be the fubject of another paper.

The Rev. Stepben Hales, D. D. upon hearing the minutes of my paper delivered in to the R. Soc. on May 8. 1735. read upon the Tburfday following, defired me to lend him the original for fome days, telling me he had fome thoughts of making a Thermofcope with a rod of lead. After a few days he returned me my paper, with the following obliging letter, and kind remarks.
$S I R$,

1HAVE rcad over your Thermometrical TraEf with fatisfaction, and believe it will be of good ufe. The want of afcertaining the degrees of heat and cold is a great and important defideratum in Experimental Philofophy.

What I intended to do was only this, viz. to get a leaden wire, of fuch a fize and ftrength as to bear it's own weight, to have it as long as the longeft gun-barrel I could procure, and to have it fuftain a lever as you have done; then to pour boiling water into the barrel, for a long time, till the lever rifes no more; the water to have vent at the bottom, yet fo as to have the gun-barrel always full of water; the breechpin to be out, and the leaden rod to. reft on a piece of wood fet upright, according to the courfe of it's fibres, not fideways.

To give at the fame time to a mercurial Thermometer the heat of boiling watter. Then to take the freezing point of the leaden and mercurial Thermometers; and afterwards to graduate all the intermediate degrees, from the mercurial Thermometer upon the leaden Thermometer, as they occur. Thus a ftandard Thermometer may be made to graduate
graduate others by ; but I will not now fet about it, fince jou have undertaken the fubject.

His Remarks on the forcgoing Paper.

1. Thermometers mult be of excellent ufe in garden-ftoves; but foreign plants muft not be kept in an equal degree of heat in ftoves, to that of their native country; viz. becaufe they cannot bear as great a heat in a confined clofe air, as in an open free air. I have been told of coffee-trees being killed here in England by this miftake: fuch plants muft doubtlefs be kept warm *, but not to warm as in their native country.
2. [All folid bodies are obferved so contraEt with cold] I have found that wood does not contract or dilate lengthways with heat or cold. I am told that Mr G. Grabam [is about making] this experiment, as I am alro, in order to regulate pendulums.
3. I fear that Boerhaave's wet linen, which is fo thin, may begin to freeze before all the mercary or fpirit of wine in the ball of the Thermometer has the fame degree of cold: though hanging there long before and after freczing will bring it pretty near.
4. [A rod of iron 3 feet long will have about \div inch increafe] or rif part.
5. As I know it muft give you pleafure, and, being by you (as I

Al.esser from Maurice Johnion, E/g: Pref. of the Gentlemens Society at Spalding, 80 James Jurin, M. D. F. R. Coll. Pbyf.
London, and F. R.S. con. cerning a Metalline Thermometer, in the Mufeum of thut Society. No. 485 . p. 128. Jan. 1747-8, dated Spaiding, jan. I_{6}. 1747-8. Read Jan. 23. 1747. defire it may be at their next meeting) communicated to the R. Soc. may be of fome credit to the memory of the inventor, the Jate Mr Sam. Frotheringbam, a Grazier at Holbeacb in Elloe Holland, Lincolnfire, and of fome profit to the maker, give me leave to acquaint you, that he (Mr Fobn Ingram, of this place, Watch-maker and White-Smith, whofe father, originally a Black-Smith at Cowbitt, and inventor of the Machine for cutting watch-wheels, was alfo a moft accurate artificer) having made, and, at my inflance fome time fince, fixed up in our Mulaum, a metal Thermometer, which we, on experience and obfervation, found to anfwer and go truly, I propofed to the company, at our laft meeting in Dec. that our Society mould purchafe it of him, I fend you his defcription thereof, as entered from his mouth in our minutes, which I truft may be agreeable to you, and the worthy members of that illuftrious body, for which we here have the higheft honour: and though Mr Beridge tome time a Watch-maker at $B 0 f t o n$) under the fame inventor's direction, made and carried up to town a machine fomewhat of this fort, which feveral of your members may have feen, yet I truft this account may not be unacceptable.

- I foould think it beft to leffen the heat in ftoves towards the night, and fo to keep the plants expofed to lefs degrees of heat a-nights than a-days, nay to vary the heat daily, or to endeavour by art to procure different degrees of heat, agreeabie to the natural viciffitudes of the climate the plants come from, having regard both to the feafons of the year, and the flate of flowering or fructification of the plants; fo that the beft way of ranging plants in green houres or ftoves is according to the climates they come from; for which ilir Sheldrake's Tables above-mentioned mutt be of excellent ufe.

It is compofed of an upright ftaff or bar a of the buft iron, 4 feet A defription long, and I inch broad, having : polifhed brafs bar of the fame length of the Metal and width frew'd to it before it, with four fteel fcrews, and being alfo thermomeer capped b with fteel, and thereon a lever c moving upon a ftud of itee!, in the Murewhich communicates with another lefs lever d (alfo upo:a a fud) having Gentemens a chain e at the end of it, which laps round an axis f, whercto the in-society at dex is fixed, which flows the degrees marked on a femicircular arch g : Under the fteel ferew-heads there are fmall nits in the brafs bar (except spalding in Lincolnhire. the lowermof which is fixed) which admit of its expanding, whereby it protrudes and operates on the firt-mentioned lever, which being raifed moves the lefs lever, and thereby draws the chain which turns the axis affixed to the index, which fhews the degree of warmth of the weather marked on the femicircular arch. At b is a ferew thro' two ftuds, to draw the great lever backwards and forwards, as occafion may be; i is a counter balance to the imall lever to draw the hand back when the brafs bar fhrinks *.
4. It has been often complained of, that the theories we have of the A Letere from air and weather, are fo imperfect, and that an unfinithed one, of the the Rev.Henhon. Mr Boyle, publifined fince his death, fhould be the beft we yet ry Miles, D.D. have; perhaps there is equal reafon for complaint, that the Thermometer firft introduced into ufe in England by the fame excellent philofopher, fhould be fo little improved for more than half a century, and be made to ferve a not much better purpofe than that of amufement.

For fome years paft, feveral eminent philofophers at home and abroad, have applied themfelves to bring this inftrument to greater perfection, and to render it more ufeful; and among them the great Sir I. Neroton did not think it unworthy his attention. It feems now to be pretty generally agreed, that Thermometers made with quickfilver are preferable to all others; that extrevagant fiuid, as Mr Bcyle calls it, being molt eafily fufceptible both of heat and cold, and, when well purified, not liable to be obftructed in its motion.

I had, by fome years experience, found both the excellence of them, and the neceffity of keeping them in the open Thaded air, before I met with the learned and curious effays medical and philofophical of Dr George Martine, in which he fo much recommends their ufe; and it

[^18]was no finall fatisfaction to me, to find that Gentleman had proved, by experinents, that quickfilver both heats and cools tafter than any liquor we know; fafter, I am fure (fays he), than water, oil, or even fpirit of wine, and never freezes, by any degree of cold hitherto obferved.

Might I be indulged the liberty, I would embrace this opportunity of inviting fuch gentlemen, as attend to this branch of Natural Philofophy, to confider what Dr Martine has faid to recommend the ufe of Ihermometers made with quickfilver, and to place them in the open air, guarded from the fun's rays; which, lome obfervations I made *, may ferve to thew the neceffity of; efpecially a more remarkable one, latcly made, which I thall fubjoin hereto.

There is another particular of great importance, which I fear we may rather with than hope to fee made a general practice, recommended by the fame gentleman; that is, the conftructing all Thermometers with one fcale. But if this may not be expected, certainly no Thermometer fhould be made without adjufting two determinate and fufficiently diftant points of heat and cold ; fuch, for inftance, as thofe of boiling water, and of water juft beginning to freeze, and the intervening fpace divided into a convenient number of equal degrees. By this means we thould be able to know what is meant by any fpecified degrees of heat or cold, and a comparifon might be eafily made of the ftate of the air in diftant places, provided the inftruments were accurately made.

Dr Martine feems to think, that the degree of cold which caufeth water to begin to freeze, is nearly equal in all places, whatever little variation there may be found in that degree of heat which caufeth water to boil, at different times, from the different weight of the atmofphere: So that we may look upon thefe two points as fufficiently determinate.
:An account of On Monday the 2 ift in the evening the fky very clear, the wind N . anoblervation and a finart froft, the Barometer was 30 inches 7^{2} Tㅇ․ At near 9^{b} 1 made of the fuaden change of the temperature of the air on Tuef. day the $22 d$ of Nov. laf, seith the Rate of the Baro. meter, and other circumfiances. the Thermometer without my window at 7 qr . below o, or freezing point. The Thermometer within, of the fame conftruction with it, and not a yard from it, (the room having had no fire in it this feafon) at 5 gr . nearly above 0 .
On Tuedday morning, at $4^{\mathrm{h}} 20^{\prime}$, when I got up, I found the Barometer at $30 . \frac{2}{10} \frac{6}{30}$ inch ; the Thermometer without at $14 \mathrm{gr} . \frac{1}{2}$ below 0 ; that within at $2 . g r_{0}$ i above 0 . I was much furprized hereat, and before I had finifhed my entry, I returned to renew my obfervation, fearing I might have made a miftake, but found I had not: At $77^{\text {h }} 40^{\prime}$ the fame morning, upon opening my ftudy-window, I oblerved the fky to look red and lowering; this induced me to go up to examine my glaffes, fufpecting there might be a change, and found the Barometer fallen to 30 . re 2, the Thermometer without rifen to 5 gr . below freezing point, but that within fallen to 1 gr . above; the wind getting

- See Art. 3. of this Section.

so W: and S. W. and before so in the Morning we had fome rain, and this fevere froft went off. At this laft-mentioned hour the Thermometer without had rifen to 5 gr . above 0 ; that within continuing at 1 gr . as before. At 8^{h} that evening the Thermometer without was at no lefs than 12 gr . above 0 , that within at 3 gr . above 0 : fo that from that time I made my obfervation at $4^{\text {h }} 20^{\prime}$ in the morning to $8^{\mathrm{h}} \frac{1}{2}$ at night, there was a change in the temperature of the air abroad of 26 gr . \therefore while the change within doors did not amount to more than $\frac{1}{2}$ gr. warmer.

It feems probable from hence, that we may have frequently had greater extremes of heat and cold by far, than have fallen under oblervation.
IV. It is well known, that the greateft degree of heat in common The lieat of water is that which it acquires by boiling; that is to fay, if water is put boiling water upon the fire, it grows by degrees hotter and hotter, till it quite boils; but, after that, though there be never fo much fire added, and it ftand never fo long upon it, it will never grow hotter than it was on the firft inftant, when it began to boil. Hence the degree of heat of boiling water is looked upon as fixed and invariable.

Fabrenbeit, that ingenious mafter in Mechanics, fo well known by his mercurial Thermometers, is the firft who has remarked the contrary. He obferved, that the heat of boiling water was greater when the air was heavy (that is to fay, when the mercury ftood higher in the Barometer); and, on the contrary, the heat was lefs when the air was lighter.

Mr Le Monnier the younger, who has obliged us with a tranflation of Mr Cote's Lectures in Nat. Philof. with excellent notes upon the faid varies according to the weight of the air ; by M.Secondat de Montefquieu, of the Acad. of Sc. at work, has put Fabrenbeit's difcovery paft all doubt, and has very much Mar. 8. 1743. improved it.

OET. 6. 1739, being provided with a Barometer, and a mercurial Thermometer of M. De Lifle, he climbed up to the higheft top of the Canigou, a mountain in Rouffillon, which paffes for the higheft among the Pyrenees: There he found his Barometer to ftand at 20 inches $2 \frac{1}{5}$ lines; whilft at Perpignan it ftood at 28 inches 2 lines. The difference between the heat of the water which he boiled there, and that which he boiled at Perpignan, was 15 degrces of his Thermometer.

The fame Thermometer being furrounded with fnow, the mercury fell down to the fame degree as pounded ice had made it do at Paris. Hence he concludes, that the heavinefs of the air has a fenfible influence on boiling water; but that it in no way alters the term of congelation. All thefe particulars may be feen, p. 408. of Cote's Experimental Lectures; and in the Mem. of the Acad. of Sc. of Paris, 1740.

This is the fame experiment which I have repeated on the top of the Pic du Midy; thinking that fo fingular a fact ought to be obferved more than once.

[^19]M m m
I carricd

I carried two Barometers，the tubes of which the Rev．Father Francis had been fo good as to fill for me with great care．I had like－ wife with me 2 mercurial Thermometers，upon which I fet the degrees at Begneres：I took the fixed terms of the graduation；that is to fay， that of congelation，and that of boiling water，afterwards putting nought to the term of congelation．I marked 180° difference between this term and that of boiling water．

Being come to the higheit top of the Pic du Midy on the gth of laft Fuly，the mercury rofe in one of my Barometers to 20 Inches 2 lines；and in the other，to 20 inches it line．Ifurrounded my Thermometer with fow，and the mercury fell exactly to the fame degree as the fnow had made it fall to at Bagneres．Afterwards I plunged it into boiling water；whereupon the mercury rofe to 165° of my grraduation；to that the difference between the heat of boiling water on Pic du Midy， and that at Bagneres，confifted of 15° ．

At my return to Bordeaux，I obferved，that I had marked the tern of boiling water at Bagneres lefs high by $3 \stackrel{1}{2}$ than at the term of boiling water at Bordeaux，taken at the time when the Barometer was at 28 inches 2 or 3 lines：therefore having anew graduated my Thermo－ meter the $165^{3 \text { th }}$ ，the degree of the former graduation fell now upon the $162^{\text {d }}$ ；fo that the complete difference between the term of boiling water on the top of the Pic du Midy，and that of the fame at Bordeaux the Barometer being at 20 inches 3 lines，amounts to 18 degrees on the Thermometer of Fabrenbeit．

Now the conformity between the obfervation made by M．Le Momier， and this repetition of the fame obfervation，can hardly be greater；feeing the heights of the Barometers are almoft the fame；and the 15 degrees of difference，found by M．Le Monnier on De Life＇s Thercmometer， amount precifely to 18 degrees on the Thermometer of Fabrenbeit which I made ufe of．

Of fudden freezing； by Sam． Chrifian Hollman， Prof．Pub． Ord．Philor． Gorting． No．175．p． 239．J．an． isc．1ブラ． Read Jan． 10． 8745°

V．The phacnomenon of Mr Triewald related in the Philof．Tranf． feemed to me fo extraordinary at firft reading，that if I had not had fome farther proof，that all congelations are performed almof in a moment of time，it would have feemed to furpafs all belief．But I happened to meet with fomething not very unlike it about the end of 1742 ，which being at firft difcovered by chance，I endeavoured to reduce to a fure and certain experiment，both in that winter，and the following．About the end of 1742 Dec．24．N．S．On the com－ ing of a fudden very great cold，there appeared in 2 conical glaffes what they call Cartelian devils，of various form and colour，fome fpecifically lighter than the water，and others by a greater quantity of water admitted into their cavities，rendered heavier；fo that being put into the air－pump when the air was exhaufted，they could afcend in the furrounding water as it were of their own accord．I put both the glafes in a cold room unfopped，and covered only with a glafs
phial；
phial; from which feeing the fame on the morning of Dec. 24, I removed them immediatly into a ftove, and fer them on a walnut-tree cheft, being ftill full of a very fluid and tranfparent water. But as I had juft recollected that glaffes, and other fuch like cold bodies, on being removed into a warm place, ufed to have a remarkable quantity of dew running dow from the furface in ftreams; being defircus to to fave my chelt from being damaged, or at leaft ftained, I examined the paper which I ufe to lay under my glafes, and as I lifted up one of the glaffes, I found it already covered with a great quantity of dew; but when I took up the other, in which the devils being heavier than water, funk to the bottom, I found it dry but quite full of ice. This unufual and unexpected fight greatly furprized me, and being follicitous about my little glafs images, 1 took up a brazen tube which happened to be at hand, in order to fave them, if poffible, from the ice. But when I found the cakes of ice to be furprifingly interwoven with each other, and to be very thin and foft, and that the whole icy cone did not cohere with the glafs, but only in a fmall part, and that what was at the bottom of the glais, to the thicknefs of an inch, fwam in the water and began fenfibly to diffolve into water at the fides, I began to enjoy this pleafing feectacle with more fecurity and delight. All the thin plates of ice, which conitituted that whole truncated cone, were very thin, and as tranfparent as glafs, and by their various inclinations, when the whole ghafs was turned about, they fone furprifingly like tables of glafs; and this delightful fpectacle was not a little increafed by thofe which ftuck about the head of the black Cartefian devil.

I was willing to make ufe of this opportunity to try, whether on melting the ice again, and putting the glars again in it's former place, the fame phaenomenon could be again procured. But when I firft read the experiment of Mr Triewald, I was of opinion, that by the preffure of the bladder tied about his glafs, the degree of prefure arifing from cold was perhaps increafed, and that thereby that fudden effect of congelation was produced, and fo I hoped that by the fame way, it would alfo fucceed with me in water fufficiently cooled.

It would be tedious to relate all the experiments that I made on Dec. 24,26 , and 27 , and repeated often with nuuch trouble. I confefs the experiment did fometimes fucceed; but then I was more often fruftrated of my hope, tho' all the circumftances were the fame. The sobole glafs [a] was fometimes filled with ice, as I was looking upon it ; fometimes there was a fort of icy bladders [b], when I was preffing the bladder of the glafs, that rofe to the fides of the glafs, which prefently turned into an icy cruft, that incompaffed the whole inner furface of the glafs; whilft the remaining inner mafs of water clofely furrounded the axis of the glafs, and remained fluid; fometimes very tranfparent fingle thin plates [c], almoft refembling the form of fnow, appeared in the middle of the clear water, as I was holding the glars in my hand, in viewing it in the full light of day, and thefe were fo

$$
\mathrm{Mm} \mathrm{~m}_{2} \quad \text { very }
$$

very thin, that on any little fhaking of my hand they would fall into the water and tremble. But there would be no end, if I fhould relate all. I will therefore, as briefly as I can, relate only the principal experiments which were often and diligently repeated.

1. When the water had conceived a fufficient degree of cold, whether the glafs was removed into a warm place, or was only taken in a warm hand, almoft the whole water would in a moment be turned into ice. But this happened more often and more cafily in the former cafe than in the latter.
2. It did not fignify whether the glals was covered with a bladder or not; and in the former cafe, whether the bladder was preffed with the fingers or not. Nor,
3. Did I find it to fignify, whether any Cartefian devil, or any other like image was in the glafs or not; and if there was one, whether it kept at the bottom of the glafs, or fwam on the furface of the water.
4. When there was any little image in the water, as often as I was able to obferve the beginning of freezing, it always began from fome part of it, and thence diffufed itfelf on all ficles.
5. The experiment fucceeded according to my mind, only when the glafs being full of water was fo expofed to the cold air, that the whole mafs of water could be equably penetrated thereby. But if,
6. The glafs was placed before an open window, which admitted the cold air, or on a plaftered floor, which is ufual here, there was ice indeed generated, but fuch as I defcribed above at [b]. But if,
7. The glafs was placed before an open window, where the wind did not blow, on a boarded floor, or on a wooden plank laid over the plafter, the experiment generally fucceeded: unlefs perhaps I came a little too late, and the glafs was already wholly filled with ice. Bue,
8. That I might more eafily obferve the degree of cold, to which the water ought to come, if the momentaneous freezing of it was to happen in a warm place, I filled a broader earthen veffel with water, and fet it on the fame bafe with the glafs; and obierved carefully, when the water contained therein began to fkin over. And tho' thefe congelations did not happen exactly at the fame time, yet this obfervation often contributed to the better fuccefs of my experiment. For it is a very troublefome and tedious experiment, without it. But perhaps,
9. The conical figure of the glafs, on account of the narrow orifice and broad bafe, does not a little comrribute to the force of the cold and heat, which is to be equably diffufed thro' the whole mafs of water. At leaft 1 am perfuaded, that the experiment will fucceed with more difficulty in any cylindrical veffel, or account of its orifice being too broad; tho' I have not yet tried it.

The weather did not afterwards give me any opportunity of repeat-

Defrription of an Hygrofcope.

ing the fame experiments that winter. But I repeated them in fan. 1744, with the fame fuccefs, and with the fame pbaenomena as above.
I will not presume to affign the cause, why the water cooled almoft to the point of freezing, as it were in one moment, turns into innumerable icy plates, crofting each other in a wonderful manner, find forming one continued body, if the glass in which it is contained is furrounded by a fudden beat. The Arijotetlians perhaps would here plate themfelves and others with their word Antiperiftafis. But I am not defirous to increafe the number of empty words; and hall content myself with hawing related the phenomena, and fubmitting to the judgment of the Royal Society.
VI. Mr Boyle has taken much pains to bring the Hygrometer to Defription of perfection; and Mr Pickering has lately made an improvement to it : But, as the inftrument I use differs from them both, I hall beg leave to defcribe it to you.

Some years ago I applied my thoughts to confider the nature of Hy grofcopes, and compared many different forts together, in order to determine which I might employ with the greateft certainty; when none appeared to me to come nearer the truth than that recommended by Mr Boyle, of weighing a piece of sponge in a pair of gold fcales. But the difficulty and time, which I found, upon trial, were requifite to Read Feb. 27. adjust the weights, and difcover the true fate of the air, feet me upon 1745-6. contriving another method, whereby at all feafons I might perceive, by infection only, the mont minute alterations with refpect to moiffure or drynefs; and the following drawing will, I believe, fufficiently defcribe what I found moot effectual for that purpofe.
A reprefents a thin piece of foonge, fo cut as to contain as large a fuper- Fig. 23.
ficies as poffible. This hangs by a fine thread of fill, upon the beam
B, and is exactly balanced by another thread of fill at D, ftrung with the fmalleft lead-fhot, at equal diftances, and to adjufted as to cause the index E to point at G, in the middle of the graduated arch f, G, H, when the air is in a middle fate between the greatest moifuture and the greateft dryness. I Shews a little table or fhelf, for that part of the fill and foot which is not fufpended, to reft upon.
VII. The Weather-cord is an Hygrometer of a very ancient inven- Improvement. cion, and, if properly conftructed, may be made use of with very good of the Teafuccefs, to thew the various alterations of the atmosphere, in reflect to ther-cord. moifture and drynefs; but, as commonly made, it never rife or falls fufficiently to point out fuch minute changes as the curious would be dem Mr Ar defirous to know. A fenfe of this defect fer me upon endeavouring to to Mr Baker, find out rome method of removing it ; and how far I have fac- F.R.S. No, ceeded, will bet appear upon catting your eye upon the drawings, Fig. 479. p. 169. 24 . and 25 . an improved Hygrofcope. From Mr Will. Arderon, FR.S. to Mr H. Baker. FRS. $\mathrm{N}^{\circ}+79$, P. 95 . Mar. © Apr. 1746.

\qquad

\square -

 -

An Higrometer made of a Deal Rod.

In the firt of thefe I-Iygrometers which I made, as in Fig. 24. I only fixed the end of the index $A B$ foft to the filk $C E$ at A, leaving it lying loofe upon the point D; and in this manner the other end of the index would nearly defcribe the arch FGH: But then I foon perceived, that the centre of motion, wheroon the index turned, was changed whenever it moved ever fo little; and, confequently, that the arch ftruck by the end B muft be irregular.

On confidering this, I toothed two pieces of brafs, as 1,2 , and 3,4 , (See Fig. 25.) to fit each other fo exactly, that, upon the leaft motion of the one, the other would move; then, fixing the index upon the centre C, it's motions were rendered much more regular.

I placed likewife a little collar of brafs at B, upon the cord $S R$, and to that collar tied the filk, which gave motion to the index, that the cord SR might twift and untwift without any impediment.

If there is no weight placed at bottom, as in Figg. 24. X the piece of brafs 1,2 muf be to heavy as to keep the cord $S B R$ at a convenient tighterefs, and allo to counterbalance the end of the index $C E$, provided it be heavier than the other.

The length of the cord $S B R$, it's thicknefs, and the manner of preparing it, are already defcribed in fo many books which treat of Hygrofoopes, that to mention them would feem unneceffary.

An Hygrometer n:ade of a Deal Rod; by ibe fame. N^{o} 480. p. 184. May छ゙c. 1746. Read May 8.1746.
VIII. In O\&F. laft I contrived and made an Hygrometer; the firft hint whereof I received from obfervations on the fiwelling of deal doors againft rain. I perceived this wood expanded itfelf very confiderably, laterally, or acrofs its grain : and this I imagined, if properly made ufe of, might fhew, not badly, the different degrees of moifture or drynefs in the air. Thefe thoughts fet me upon fearching the Pbilof. Tranf. - to fee if any ingenious perfon had recorded his opinion upon this fubject : and I found * that an anonymous author had made feveral attempts to conftruct Hygrometers of deal boards \dagger; and again $\|$, that Mr 7 . Coniers had added fome improvements thereto; but, as the method taken by thefe two gentlemen leemed liable to fome objections, I determined to make a trial on a plan and form intirely different from theirs; and have been fo fortunate to find it fucceed greatly beyond my expectations.

My way was thus: I procured a piece of coarfe deal board; moft of it, if not all, fap. From this I fawed 7 pieces crofs the bate or grain, 10 inches long and an inch broad; and as the board was juft an inch in thicknefs, I thereby confequently obtained 7 parallelopipeds of an inch fquare each.

[^20]
An Hygrometer made of a Deal Rod.

Thefe 7 pieces of deal I joined together, lengthways, with ftrong glue; which made a fquare rod of 70 inches long. I found it neceffary to place thefe fimall pieces in fuch a manner, when I glued them together, in refpect to their grain, as is reprefented in the two figures annexed, to prevent their forming themfelves into a fort of curve; which they naturally do, if they are placed all the fame way; and I found myfelf obliged to fix the rod in fuch a number of brackets as appear in the drawings, in order to keep it Atrait.

I placed this rod, at firf, perpendicular to the horizon, betwixt two pieces of wood of the fame thicknefs, and nailed againft the cieling of my room ; but then I had one fide only expofed to the air: however Fig. 26, 27. it acted tolerably well, which encouraged me to try to make it more perfect; as you will find delineated, Fig. 26. and 27.

Both thefe deal rods were placed againft the cieling of my room with brackets, and were buttoned down into fquare mortiles in each bracket with fimall pieces of deal, that fitted their tops exactly. Hereby all their 4 fides became expofed to the air ; and the only difference between them is, the increafing the effect of their variation by two different inethods.

To the rod at Fig. 26. I added 2 levers: The firt of which $A B D$ had it's fhorter end $A B$ but 3 inches in length, and it's longer $B D 12$; confequently the end D moved through 4 times the fpace that the end A did.

The fecond lever EFG, I fixed to act with the other before mentioned. The fhorter end $E F$ of this lever was 3 inches, and the longer end $F G, 45$ inches; whereby the effect of the other lever was increafed 15 times, and that of the deal rod 60 times. So that if the rod leng: thens but one tenth of an inch, the point of the lever G moves 6 inches; and if the rod lengthens but one inch, the point G moves 60 .

The longer end of the fecond lever in Fig. 26. muft be made fo much heavier, that it may move down freely by its own gravity whenever the bar fhortens.

To this Hygrometer I fixed a fmall index, fuch as is common in Mr Hankbec's Barometers, to nip up and down on a wire, as is reprefented at K.

Fig. 27. reprefents another method I employed to increafe the power of the deal rod. This may be fixed in a much fmaller compafs, and yet is no lefs capable of fhewing the minute differences in the moifture or drynefs of the air than the other before defcribed.

The deal rod in this was managed and faftened in the fame manner as was thewn before. I likewife applied a lever $A B D$ to the top thercof, exactly of the fame dimenfions as in the other; but, inftead of a fecond lever, I placed a graduated circle, with an index thereto like that of the minute-hand of a clock. This I fixed to a fmall axis, which was moved one way by a filken thread wrapped twice or thrice round it, whereof one end was tied to the longer end of the lever at D, and

Scheme of a Diary of the Weather; rogether with droughes and dejeriptions of Machines
jubfervient
thereunto ;
Mr Roger Pickering, F. R. S. No. 4;3. p. 1. May Eic. 1744, Read May 3. 1744.

Scheme of a Diary of the Weather.

- themfelves with the annual trouble of fending a regular account of the weatber to this learned body, by it to be compared and digefted, to what degrees of accuracy may we not fuppofe a knowledge of the nature and affections of the atmo Jpbere may be brought; and how well may we not hope to be guarded againft the diforders, which, as ifanders, we are expofed to, by fuch a clofe inquiry into the nature of that neceffary fluid in which we breathe! Not to mention the advantages which feveral important branches of trade may receive from fuch meafures: and were the digefted obfervations of the R. Soc. compared with thofe of foreign focieties, formed upon the fame plan, how fhort a time would bring this part of Philofophy to the greatelt degree of demonttrable certainty!

The trouble of making and keeping fuch meteorological regifters, which, in all probability, prevents feveral gentlemen from performing this piece of fervice to the public, might be rendered very inconfiderable, by the propofal of an eafy, as well as comprehenlive, method for a diary, and a fet of fimple and convenient macbines for making the neceffary obfervations.

The plan of the Epbemerides Ultra-jectina, though comprehenfive, is, with fubmifion, very perplexed; and the leveral others, mentioned in the Pbilof. Tranf. perhaps, do not include all the particulars of which fuch a Diary fhould confift. The Sociecy of Edinburgb has prefaced to their Medical Effays a fcheme (which I had not the pleafure of feeing till a great while after I had fallen into the following method) the moft calculated for ufefulnefs; but their machines are neither fo fimple nor accurate, as fuch a work requires; not to mention their being entirely without one for obferving the force of the wind.

On a page of a folio paper-book, opening broad-ways, are drawn, at proper diltances, 9 borizontal, and 7 perpendicular lines; in the void fquare fpaces of which the particulars of the diary are written down. The firt of the horizontal lines is for the days of the month and week, on which the examination is made: The fecond for the bour of the day: The third for the weigbt of the air: The fourth for its beat : The fith for its moifure, or drynefs: The fixth for the quarter of the wind: The feventh for its force: The eighth for the weather; as whether it be rainy, or cloudy, or clear: The ninth for the quantity of rain; and the space between the laft line and the end of the paper, for the bill of mortality.

The 7 perpendicular lines are for the 7 days of the week; which, in our Diary, begins with Sunday. If you therefore carry your eye along the paper from left to right, you may, at one view, fee the seeight of the air, and the degrees of beat and moifure, E° c. for the whole week. If you carry your eye from top to bottom down the column, for any one day, you fee regularly the whole of the obfervations in one line for that day. Four pages, or weeks, we allow to each month, and then leave a void page for the obfervations made in that month; and the overplus calendary days are carried on to the page allotted for the next

[^21]Sect. 2. A viru' of the machines in zeneral.

Seĉ 3. Of ris Hygrome tor.

Scheme of a Diary of the Wiatber.

month; only taking care to defcribe in every fuch page, where the ending and beginning of two different months are to be found, the names of boch the months, directly over their final and initial day.

The abftract of the weekly bill of mortality is apparently a part of obfervation peculiar to this plan, under which article all acute cafes, depending on the jfate of the air, are fet down. Perhaps the ignorance of the fearchers, appointed to infpect dead bodies, as to the precife difeafes people die of, may lay this method upen to objection: To which it may be fufficient to anfwer, That this being obviounly a requifite article for a Diary, we muft be content to take our advices on this point from fuch hands, rather than none; efpecially, as all political aritbmetick has always been allowed upon no more certain a foundation.

The machines neceffary to the making obfervations for a diary of the queatioer, are thefe five:

1. The Barometer.

I have found thofe with open cifferns more fenfible than the portable ones. That with which I make my obfervations, is with an open ciffern, furnifhed with a Micrometer, that divides an incb into 400 parts; by which I am capable of perceiving the moft minute alteration of the gravity of the air: It was made by Mr Bird of the Strand; whofe accuracy in graduation deferves, I think, notice and encouragement.
2. The Thbermometer.

Mine is one made by Fabrenbeit's fcale on one fide, with it's correfpondence to the graduation of the alcobol Thermometer on the other.

Of the three next macbines, two are new, and the other confiderably altered, and, I hope, improved, from one offered to the Socicty a great while ago.

Note, All che macbines, except the Barometer, are expofed to the openair. The Tbermoneter and Hygrometer are placed in a little乃ed, made for their reception, againft my fiudy-window, where I can fee the graduation through the glafs; and, by lifting up the $f_{a} f_{2}$, can take them in, as occafion requires.
I had, for fome time, made ufe of Dr Hooke's Hygrometer, made of the beard of a wild oat, fet in a finall box, with a dial-plate and an index; but Ifoon found an inconvenience, without the remedying of which no dependence could be had on this macbine, viz. its making more than one revolution in a night. I endeavoured to remedy this by the follow: ing method, deferibed in Fig. 33.

At the vertical point, from which maifure and alymefs are graduated, I caufed a fmuli circle to be defcribed; the lower arch of which fhould juft interfect with that aich, round which the index of the oat deferibed its circuit. In the centre of this fmall circle I placed a pin, eafily turning in the central cavity, and furnifhed with a flat piece of thin ivory on its head. This piece of iciory, interfecting with the index of the oat, by it was curned either to the moift or dry fide of its graduation, as the index made a double revolution. I flattered myfelf with fuccefs; but
foon found, in the great fogs we hatd laft winter, that the wiild oat is rot a fate material to make an accurate Aygrometer of: For,

1. In the great fogs it grew limber; 10 as that the weight of the indew brought is down upon the plate, where its friction prevensed it's furcher motion.
2. It foon Iofes its fenfibility, grows harm, and is abfolutely unfit for ufe. So I immediately zurned my thoughts upon fome other for my Niary, and-referved this for my ftudy; where, or in any inclosed place, it does well enough, and may be very ufful in the following reSpects; as,
3. To examine, in cafes of ficknefs, the dampnefs of rooms.
4. To examine dan!ps in fubterraneous cavities, being let down with a weigbt, where a light wound fometimes fet the place on fire.
5. To ooferve the proper ftate of drynets in ware boufes, wine vaults, fludies, where damps would be detrimental and pernicious.
6. To examine the ftrength of fudden fogs, and the comparative dampnefs of particular fituations.

As a fuccedaneum to this, I thought upon a fatical one; it recurring to my mind, that the weight and moifture of the air being but two properties of one and the fame body, aftatical Hygromeler (calcris paribus) promifed the beft affiftance towards a more complete knowledge of the Barometer, which aets upon ftatical principles; and that thefe two machines muft have a reciprocal correfpondence with each other. I then remembered, that Mr Boyle had mentioned fomething of this nature; after confulting whom, I made the the following machine, acting upon his principles, but formed in a manner differing from his.

I caufed a balance to be made to turn with $\frac{1}{5}$ grain, ordering that the axis of the balance fhould, on one fide, be drawn out to the length of one inch, and its end to be furnifhed with a male forew, to which a light index with a femaie forew might be fixed. I had this balance faftened in a wainfoct box, 12 inches in length, 9 in diameter, and 4 in the depth at top, but gradually widening towards the bottom, with a back to flide up and down in a groove. The axis, already mentioned, of an inch length, came througla a bole in the front of the box, and then had the index faftened on, which defcribed the fegment of a circle upon a brafs plate, filvered and graduated into 180 gr . as if it had confifted of a perfect femicircle, or two quadrants. The reafon why the graduation did not hegin exactly with the diametrical line was, to prevent the friction of the bracbia of the balance, with the little drop placed at the bottom of the axis already mentioned.

My next concern was to charge this balance. The beam turned, as has been faid, with $\frac{1}{2}$ a grain; and every fuch turn, after repeated trials, moved the index fomewhat more than one degree of the 180 defcribed upon the plate; fo I immediately pitched upon a 4 penny-weigbt all but 6 grains, which contained as many $\frac{1}{2}$ grains as there were degrees. This weight I fixed with a thread to one bracbium of the balance, withNnn 2

Scheme of a Diary of the Weather.

out any fcale, the feveral threads or filk ftrings of which, as they would imbibe more moifture, would make the macbine lefs accurate; and the other bracbium I charged with a dponge, fufpended likewife by a thread, of fuch a weight, when reduced to abfolute drynefs, as made an equilibrium; and then ferewing on the index to the firft degree of the 180 , and expofing the macbine, thus ordered, to the open air, in one night's time the index had got to the 7oth degree; which, as the §ponge had been abfolutely dry, mult have been the true ftate of the air, as to moifture, at that time.

I find this macbine extremely fenfible and accurate; it will alter no degrees in a night, and as many in a day; and has, I think, the following advantages:

1. It is more portable than any, except that of the soild oat; and, upon any accident, more eafily and fpeedily rectified than it, or any other whatever.
2. Being graduated from abfolute drynefs, it is beft calculated for the difcovery of the true ftate of the air, as to moifture.
3. The near correfpondence between the degrees on the graduated plate, and the weight of the moifture neceffiary to be imbibed or exhaled, to make either bracbium of the balance preponderate every fuch degree, gives it the preference to any other.

For a more perfect idea of this machine, fee Fig. 28. where it is viewed on the infide, the back being flid up. At Fig. 29. is reprefented the Plate with its graduations and index, as it fhould appear on the front of the cafe.

Seet. + Of the Anemofoope.

The Anemofcope is a machine $4 \frac{1}{3}$ feet high, confifting of a broad and weighty pedeftal, a pillar faftened into it, and an iron axis, of about ${ }_{\frac{1}{3}}$ an inch diameter, faftened into the pillar. Upon this axis turns a wooden sube, at the top of which is placed a vane, of the fame materials, 21 inches long, confifting of a quadrant, graduated and fhod with an iron rim, notched to each degree; and a counterpoife, of wood as in the figure, on the other. Through the centre of the quadrant runs an iron pin, upon which are faftened two fmall round pieces of wood, which ferve as moveable radii to defcribe the degrees upon the quadrant, and as handles to a velums or fail, whofe plane is one foot fquare, made of canvas ftretched upon four battens, and painted. On the upper batten, next to the fhod rim of the quadrant, is a fmall /pring, which catches at every notch correfponding to each degree, as the wind fhall, by prefling againft the fail, raife it up; and prevents the falling back of the fail, upon the leffening of the force of the wind. At the bottom of the seooden tube is an iron index, which moves round a circular piece of wood faftened to the top of the pillar on the pedeftal, on which are defcribed the 32 points of the compa/s. The figure of this machine may be feen fig. 30. Its ufes are the following

1. Having a circular motion sound the iron axis, and being furnifhed with a vane at top, and index at the bottom, when once you have fixed

Scheme of a Diary of the Weatber.

the artificial cardinal points, defcribed on the round piece of wood on the pillar, to the fame quarters of the heavens, it gives a faithful accourt of that quarter from which the wind blows.
2. By having a velum or fail elevated by the wind along the arch of the quadrant, to an height proportionable to the power of the column of wind preffing againt it, the relative force of the wind, and its comparative power, at any two times of examination, may accurately be taken.
3. By having a fpring fitted to the notches of the iron with which the quadrant is fhod, the velum is prevented from returning back upon the fall of the wind; and the machine gives the force of the higheft blaft, fince the laft time of examination, without the trouble of watching it.

I have carefully examined the dependence that may be had upon this machine, during the late ftorms in February 1743, by comparing the height to which the wind then forced the velum, with the Deal letter. The 19th of Fib. Sabbath, 8 a. m . the Anemofcope was at 75: The Deal letter for that day called it a ftorm. The Saturday following, being the 25 th, at $8 p . m$. the machine was at 79 : The Deal letter called that a violent ftorm. The Wednefday following, the laft of Feb. it was at 84: The Deal letter called that a violent ftorm. So that it appears, that, in fuch as the failors allow to be violent forms, the machine has hitherto anfwered well, and has had fix degrees to fpare for a more violent guft, before it comes to an horizontal pofition.

It is certainly to be depended upon in ordinary weather, the velunz being hung fo tender, as to feel the gentleft breeze. But, after all, I mutt freely own, that I fear the expofing this machine to all winds, for a continuance, muft foon diforder it ; and that irregular blafts and fqualls cannot fail in a fhort time to impair it. It may not therefore be amifs, to prevent this, for gentlemen to take the machine in in violent weather; and, by taking the tube off the iron axis, to make their obfervations with the tube, vane, and velum, in their hands; which, as it is very light, and far from cumberfome, is eafy to do, as I have often experienced.

This machine confifts of a tin funnel, whofe furface is an inch equare, Sea. 5. Of a flat board, and a glafs tube let into the middle of it in a groove (the the Omblomefength and breadth of both board and tube being ad libitum), and anser. index. My board is about 3 feet long, to anfwer the height of the rails that go round the top of my houfe, to one of which it is hung, clear of any obftacle to prevent the free fall of the rain, with 4 little ftaples that flide over as many tenter-hooks. The bore of my tube is about $\frac{1}{2}$ an inch; which, at a medium, is the beft fize, a larger bore obliging you to make your graduation the more contracted, ankl, confequently, the lefs plain and accurate; and a leffer not permitting you to return the water out of the tube when full, without the adhefion of a great deal to its fides; which, when you have placed the tube in its perpendicular fituation, fubfides, and fometimes fills up $\mathrm{f}_{\frac{2}{2}}$ of an inch; which, with- of graduating the board is this:

I had a veffel of tin made, whofe contents were exactly a cubic inch. With this veffel, filled with water exactly to it's furlace, I frequently gauged the tube, till, by repeated trials, I had found the height to which a cubic incb of water would sife in it. The fpace anfwering to this on the board I had graduated into $\hat{3}^{2}$ equal parts, and took the fame method with the rett of the tube, till in the fame manher 1 had graduated 4 fuch inches. Now the furface of the funmel being, as has been faid, exaclly a fquare inch, no rain can by it get into the tube, but fuch as falls within the fquare of one inch; which, as the thower is more or lefs, has its exact quantiey fhewis upon the board, on which a moveable index is placed.

This machine has highly anfwered my expectation; its form being very fimple, and eafily repaired, if any accident happen. For, fhould the tube be broke, 'tis only rubbing out the graduation, which is marked with a black-lead pencil upon the board painted white, and gauging your new tube with the cubic mealure for a new graduation, and your machine is again complete. I had one tube broke, and about 3 hours pains let all to-rights. In winter it will be necelfary to let no depth of water remain in the tube ; for, fhould there be a froft, the expanfion of the ice will certainly break it. The machine will equally ferve for diffolved hail and fnow. See Figg. 32.

Sect. VI. Of ibe monthly obfirvasions.

An explanation of the characters in sbe Diary.

The vacant page at the end of every 4 wecks, referved for obfervations occurring in the preceding month, and giving a fummary accound of the greateft difference of the weather in it, is a method peculiar to this Diary; and one which, I flatter mylelt, will be allowed exceeding pertinent and ufeful. The great end of this, and all Diaries, is to furnifh materials for a fet of found oblervations upon which to build a thorough knowledge of the atmofpbere, and its effects upon mankind: and it is eafy to fee what great advantage to this part of natural knowe ledge mutt arife from a variety of obfervations, made by different men of application and judgment, upon one and the fame fubject. Befides, in this portion of our defign may be included, what could not well without perplexity be thrown into the columns of the Diary, all the metcorological appearances of the Aisrora Borealis, lightning, thunder, EGc. together with abftracts of the moft authentic accounts of fuch pbaenomena, as at any time in the preceding month have been feen in different parts of our own country, or abroad. But this article muft be left to every gentleman's judgment; it opening a fair field for the moft happy advancements of many parts of natural knowledge.

This - line implies the machine's being at the fame degree as it was in che preceding obfervation. This O character in the fpaces for the force of the wind implies a calm.

Note, ift, None, but the cardinal and fubcardinal points of the compafs are commonly marked, unlefs in cale of a form.

Scbeme of a Diary of the Weather.
${ }_{2} \mathrm{dly}$, In the abtract of the bill of mortality, which comes out on a Tuefday, the account in each week is to be compared from the Tuefday of the week before, to the Tuefday in that week where the abftract is placed.

OBSER-

Days of the Month	Days of the Week.	Houn of the Day.	14. ait vaheip ads of powted .o.
		M.	
19	Monday.	12	I AST Night, as $8 \frac{1}{2}$ Hour, earefully watched, 1 whether the lunar Eclipfe had any Effect upon the Hygrometer; but could not, after Several Exami-
		P. M.	nations, perceive that it had any.
20	Friday.	8	This is the firft Day of our being favoured with warm Spring Weather. The Thermometer at 8 this
24	Tuelday.	P. M. $10 \frac{1}{2}$	Morning was at 65 . It now lightens towards the S. E. This is the firf we have had this Year.

A Summary of the greateft Difference of the Weather in April 1744.

Defcription of she Figures.
Fig. 28.
aaaa. The Flygrometer feen in the infide. bb. The balance. c. A fmall piece of wood, by which the balance is faftened to the box. d. The fponge. e. The weight. ff. Two little rings, by which the Hygrometer is hung up.

Fig. 2g. The graduated plate on the front of the machine, with it's Index and Divifions.
a. The
a. The pedeftal. b. The pillar, in which the iron axis is fitted. Fig. 30 c. The circle of wood, on which are defcribed the 32 points of the The Anems. compafs. d. The index. e. The wooden rube upon its axis. f. The velum. g. The graduated quadrant. b. The counterpoife of the vane.
The plane of the yelum. b. The fpring. cc. The wooden radii. $d d$. The holes, thro' which the pin, in the centre of the quadrant, goes.

Fig 31. The Velum taken off.
$a a$. The board. bb. The tube. c. The graduation. d. The funnel Fig. 3^{2}. fixed in the tube. e. The funnel one Incb iquare.

The Om brometer.
a The box and plate. b. The wild oat, with the index upon it. c. The pin, with a fmall piece of ivory on its head.
X . The vicifitudes of the weather, with refpect to heat and cold, are perhaps no where greater than in Carolina; and our fummer's heat is prebably not inferior to that under moft places of the Equator; nor is our winter's cold much lefs at forme times than that in Britain.

From near 8 years obfervation, the greateft increafe of the heat of the air which I have difcovered in 24 or 30 hours, in fpring, fummer, autumn, and winter, was $19,24,13$, and 16° of Fabrenbeit's Thermometer; and the greateft decreales of heat, in the fame fpaces of time, in thofe feafons, were $35,32,27$, and 27° refpectively. It frequently happens, that one day is 10° or more warmer than the preceding day; but the decreafes of heat are always greater and more fudden than its increafes. Jan. 10. 1745. at $2 p$. ml . the mercury in the Thermometer was at 70 ; next morning it had funk to 26, and on the $12^{\text {th }}$ in the morning it was at 15 , which was the greateft and moft fudden change I have leen.

In fummer, the heat of the fhaded air, about 2 or 3 in the afternoon, is frequently between 90 and 95°; and on the $14^{\text {th }}, 15^{\text {th }}$, and $16^{\text {th }}$ of Tune 1738 , at $3 p . m$. it was 98 ; a heat equal to the greateft heat of the human body in health. In winter I never but once faw the Thermometer fo low as 15: therefore the difference between the moft intenfe heat and cold of the thaded air, in this province, is 83°; which is a much greater range than could well have been expected in this latitude; and taking the mean between thofe extremes, 56 fhould be the temperate degree of heat in this province: but the fum of the thermometrical altitudes, divided by the number of obfervations which I made for fome years together, gives 66, which may therefore more juftly be reckoned the remperate heat in Carolina, which exceeds 48 , the temperate heat in England, more than that exceeds the freezing point.

The mean heat of the fhaded air, in fpring, fummer, autumn, and winter, taken from the mean noeturnal heat, and from the mian heat at 2 or $3 \mathrm{p} . \mathrm{m}$. is $61,78,71$, and 5°.

VOL. X. Part ii.
O o o
The

Fig. 33 .
The wild-oat H_{g} grometer.
A Leter from Dr john Lining, so C. Mor. timer, M. D. sec. R.S. concerning tio weatber in South-Czrolina ; with abfratis of the tables of
bis Meteorolobis Meteoro
gical obervations in Charies.Town N: $487 . \mathrm{P}$ 336. Apr. 8cc. 1748. Read May 6.1748.

The mean heat of the fhaded air at 2 or $3 \mathrm{p} . \mathrm{m}$. in fpring, fummer, autumn, and winter, is $65,82,75,55^{\circ}$, and the mean nocturnal heat in thefe feafons is $57,74,68$, and 49°. Therefore our winter's nocturnal heat, at a medium, coincides nearly with the temperate heat in England.
The Thermometer, when fufpended 5 feet from the ground, and expofed to the direct rays of the fun, and to thofe reflected from our fandy Itreets, has frequently rifen in a few minutes, from is to 26°, above what was at that time the heat of the fhaded air (but I have never yet made that experiment when the heat of the fhaded air was above 88): when we are therefore expofed in the ffreets to the fun in fummer, we infpire air from 4 to 28 degrees warmer than the heat of the human body.

The Thermometer, when buried in the fands of the ftreets, when the heat of the fhaded air was 88 , rofe in 5^{\prime} to 108 , tho' there was at the fame time a moderate wind.
In fune 1738, when the heat of the fiaded air was 98 , the Thermometer funk one degree in my arm-pits; but continued at 98 in my hand and mouth : from which we fee what litele concern the air has in cooling the blood in the lungs. Two men who where then in the the ftreets (when the heat was probably 124 or 126 . degrees, as the fhaded air's heat was then 98) dropped fuddenly dead ; and feveral faves in the country, at work in the rice-fields, hared the fame fate. If faw one of the men immediately after he died; his face, neck, breaft, and hands, were livid,

From the barometrical table it appears, that the barometer's mean altitude, taken from it's greateft and leaft height, is 30.09 inches; and that its range is only 1.22 inch. Wherefore our atmolphere varies only is part in its weight. In the warm months, the mean barometrical ftation, taken from it's greateit and leaft alcitudes in thefe months, is 30.09 inches; and I have never yet feen it's range in thefe months excecd ${ }^{5}=$ parts of an inch : therefore the changes of our atmorphere's weight, in the warm months, will have but littie effect upon human conftitutions, as the diffirence between it's greateft and leaft prcflure is but \therefore Part of that in cold ciimates, where the range of the Barometer is 3 inches. May not the great height of the Barometer in the warm months in this climate, proceed from the valt quantity of water, whinh is at that time fupported in our atmofphere, as the exhalation is then very great; or may it not proceed from the rarefaction of the mercury? for the weight of the mercurial column, at equal altitudes, will be different under different degrees of heat ; and the mercury may therefore be lupported at equal heights by columns of air of unequal weights.
It appears, from the baromecrical table, that our eafterly or northerly winds elevate the mercury, and that our foutherly or wefferly winds deprefs it ; and I have as yet never obferved the contrary.

1T A B L e of the bigheft and lowefl Stations of Fahrenheit's Mercurial Msermometer in the 乃baded Air, with the mean meridian and nocturnal Heat, taken after Dr Jurin's Metbod.

Metcorological Obfervations.

A Table of the bigheft and loweft Barometrical Stations; with the Direetions which the Wind then had.
$\left.\begin{array}{l}\times \text { A Northerly or Eafterly Wind } \\ \delta \text { A Southerly or Wefterly Wind }\end{array}\right\}$ preceded or fucceeded

Jan.							N	29.38	S	
Feb.						30.38	NE	29.68	S	
arch						6	SE	58	S	
Apri	3042	E	29.48	W	. 94	30.38	$\overline{W x}$	29.78	WS	
M ay	30.23	NE	29.85	S		30.35	E	29.80	W	
ne	3020	NE	29.85	W		30.30	E	29.98	SW	
Ju	30.13	SSW	29.83	SW	. 30	30.38	E	30.00	SW	
Aug.	30.18	E	2988	SW		30.38	$\overline{\mathrm{NE}}$	2998	SW	
S	33		29.85	S		30.38	E	2988	$\overline{\mathrm{N} W}$	
O	33	E-				30.45	E	29.68	W	
Nov.		N		5		30.35	NE	29.	W	
$\overline{\mathrm{D}-\mathrm{c} .}$		N		W			N	29	NNW	

		N							
	55	N	5				29.72	SW	
March	30.50	SE	65			E	29.60		
	32	E	29.75 N8		30.48	E	295		
May	30.28	E			S	Sx	29.90		
June 3	30.18	S	29.86 S		30.28	ES	299		
ly	30.08	SSEx	29		W	W	29.9	SW.	
Aug. 3		E			30.25		29.9		
Se	28	NE			N		29.8		
Ott. 3	32	NN	29.72 SW		30.50		29.9		
		$\overline{\mathrm{N}}$	29.72 S	. 79			297		
3							29.65	WNW	

ATAble

Meteorological Obfervations.

A Table of the Depth of Rain, in Inches and millefinal Parts, which fell in Charles-Town.

	1738	1739	1740		1742
January	$1 \quad 097$	2310	4873	$4{ }^{4} 42$	$2 \quad 189$
February	4416	2875	$3 \quad 084$	+615	1650
March	$4 \quad 532$	5609	1141	5.713	$5 \quad 203$
April	1082	0195	$1 \quad 092$	1308	- 918
May	$3 \quad 127$	$5 \quad 120$	$15 \quad 612$	4841	$5 \quad 898$
June	I 567	15839	+ 648	5-538	$3 \quad 250$
July	10.660	$5 \quad 452$	$3 \quad 013$	$3 \quad 399$	1 252
Auguft	+104	12211	$7 \quad 301$	$7 \quad 144$	$7 \quad 647$
September	10792	$4 \quad 834$	$3 \quad 200$	6 734	2895
Oitober	1358	6 593	$1 \quad 258$	$3 \quad 399$	- 759
November	2 656	$1 \quad 235$	1848	$2 \quad 964$	$3 \quad 38$
December	3877	$3 \quad 689$	2736	1919	O
Toral Depth	49.26	65.96	39.8	52.0	36.0

	1743	1744	1745	The Means	1746
January	3 172	1994	- 863	2624	r
February	2 435 -4	$3{ }^{3} \quad 063$	7739	3-735	$2 \quad 701$
March	$0 \quad 621$	$0{ }^{-182}$	229	$3-329$	1 628
April	$\begin{array}{\|ll\|}5 & 292\end{array}$	$2 \quad 86$	$3{ }^{342}$	2074	128
May	25	2871	1832	$3 \quad 979$	$3{ }^{988}$
June	1903	5 814	$9 \quad 510$	$6 \quad 009$	4109
July	$7 \quad 738$	8 8 437	$6 \quad 771$	5840	9895
Augult	$3 \quad 767$	4 202	$9 \quad 339$	$6 \quad 9^{64}$	$6 \quad 114$
September	4686	5657	$0 \quad 754$	$4 \quad 944$	- 932
October	1672	1595	2962	$2 \quad 450$	
November	3 220	1562	- 682	$2 \quad 194$	
December	$2 \quad 706$	9680	2623	$3 \quad 523$	
Total Depth	39.747	$\underline{48.323}$	50.14	47.666	

XI. Funero.fufpecting a froft that night, I fat a Cbina faucer full of A Letter from water upon the grals-plot, in the garden; and the next morning, a lit- the Rev. Hen. the before fun-rifing, I found the water frozen over, of fuch a confift- Miles, D. D. ence, as that I forced a hole through the centre of it with my finger, Mr Hen. Bawithout breaking it elfewhere, and carried the cake of ice into the houfe, ker, F. .. S. where it remained a good while not diffolved. Wind N. W. On fome concerning a following days there were feveral confiderable frofts, the wind continuing the fame way ; the fatal effects of which are fufficiently known throughout the kingdom. very cold day, and another a very hot day, in Junc and
Tuly 2, at $12^{\text {h }} 20^{\prime}$ my Thermometer of Farenbeil's fcale, in the July 1749, fhaded air, ftood at 88 , and at $2^{5} \mathrm{p} . \mathrm{m}$. at 87 . At which laft number and of the two others of the fame for flood exactly, at that hour, in London. near agree-

Having agreed with Mr Fobn Canton of Spital-Square, to make obHaving agreed with Mr fobn Canton of Spitahsquare, to make ob- mometers in
fervations of the temperature of the air here, and in London at a fated London and hour: we procured Thermometers, made exactly alike, by that accurate a workman Mr Bird; and having found, by hanging them firft together a fufficient time, that they perfectly agreed, we began our obfervations in April, and have continued them ever fince.
ment of Therat Tooting. $\mathrm{N}^{\mathrm{o}} .493$.

The 'Thermometers are of the fmaller fize, the bulbs being but about 1749 . 4 7 of an inch diameter, and are immediately aftected with any mutations of the air; fo that I have frequently been entertained with oblerving, in fome circumftances of the weather, that the mercury has not been ftationary, but has fucceffively rifen and fallen for a good while; and Mr Canton has informed me, that he has feveral times obferved the fame.

I have annexed a paper, containing an extract from my journal of the weather, in which I have fet down the extremes of the Barometer and Thermometer, obferved at $2^{h} p$. m. for fix months; and Mr Canton has been fo kind as to communicate a like extract from his journal; which is likewife put into your hands.

It appears by a more general comparifon which we have made, as well as by this particular one, that the difference in the temperature of the air, as to heat and cold, is very little between this place and SpitalSquare. Sometimes my Thermometer has been higher than his; more times upon an equality, but moft times lower. And I have reafon to think the difference, many times, may have been owing to accidental caufes: for Mr Canton his intormed me, that he has found 2 Thermometers, when removed but a few yards from each other, have differed 2 or 3 deg. for which no apparent caufe could be afligned. So that upon the whole, it may reafonably enough be concluded, that the difference between tho temperature of the air in the two places, is imperceptible to fenfe.
P. S. Upon my having obferved that the days, in which my Thermometer and Mr Canton's ftood at the extremes, in fome months did not coincide, I was defirous of knowing, how much the Thermometers difficed, when the extremes did not happen on the fame day :

Meteorological Objervations.

but, upon a comparifon, the difference was never confiderable, except on Aug. 4. at 2 p . m . when my Thermometer was about 6° higher than Mr Canton's. This being fomewhat remarkable, he, upon hearing it, had recourfe to his regifter, and found, that at the time of obfervation a heavy fhower of rain fell; whereas we had none here : but about $6 p . m$. came on a thunder flower attended with rain; fo that it fhould feem the falling rain had fo great an effect upon the air as to render it cooler, by the degrees mentioned : and perhaps the difference between the two inftruments, at other times, may have been owing to the fame, or a fimilar caufe, rather than to a fated different temperature of the air, in the two places.

EXTRACT from a fournal of the Weather, made at Tooting, in Surry, in which the Extremes of the Barometer and Tbermometer are noted at 2^{13} P. m. equal Time, for May, Junc, July, Aug. Sept. and Oct. shis prefent Year 1749 .

AUGUST.			1749.
$\frac{\sqrt{D_{A Y}}}{15}$	Bar.	DAY	Ther.
	higheft 30,02	22	$\begin{gathered} \text { higher } \\ + \end{gathered}$
DAY	Bar.	DAy	Ther.
2	$\begin{aligned} & \text { lowert } \\ & 29,20 \end{aligned}$	31	$\begin{gathered} \text { lowerf } \\ 62 \frac{1}{1} \end{gathered}$
SEPTEMBER.			1749.
DAY	Bar.	Day	Ther
26	$\begin{aligned} & \text { higheft } \\ & 30,37 \end{aligned}$	5	highelt 71
Day	Bar.	DAY	Ther.
17	$\begin{aligned} & \text { lowert } \\ & 29.3 \end{aligned}$	12	$\begin{gathered} \text { lowe } \mathrm{R} \\ 53 \end{gathered}$
OCTOBER.			1749.
DAY	Bar.	Day	Ther.
10	higheft $30,44$	$\begin{aligned} & 4 \\ & 7 \end{aligned}$	higheft 612
DAY	Bar.	DAr	Ther.
28	lowert 29,51	27	tower

\dagger Being

2 Bripg abfent Aug. 22d, at 2 p.m. I could not cbrisve the tate of the 1 hernometer; but am well facisfied that day was the hocteft in the month, from the obfervation I made at other times of the day, and particularly from the account I had from Mr Ganton, of the itate of his, which tlood at 80^{\prime} at $2 p$. m.
It may be proper to obferve, that the Barometer made ufe of ftands r^{2}, or more, lower than others of the fame conftruction (which is the common upright make) during the warmer featon of the year, and ulizally as much higher than they do in the colder; but is made ufe of (as it has been for more than 10 years) becaufe I have always found it to rife and fall fooner than any other 1 have compared it with, and in particular than a very good one, made by the late Mr S: $f_{f o n}$, which has always hung by it, and is conftantly compared therewith.
EXTRACT from a Fournal of Obfervations on the Barometer and Thermoneter, made in Spital-Square, London, in which the Extremes of eacb are noted, at $2^{\text {h }}$ p. m. equal Time, for May, June, July, Aug. Sept. and Oćt. tbis prefent Year 1749.

Day	MAY.	1749.	
	Bar.	Day	Ther.
13	highelt $3 \hat{3}, 23$	13	highert $76 \frac{1}{3}$
DAY	Bar.	Das	Ther.
25	loweft 29.33	4	lowelt 59
	UNE.		749.
Day	Bar.	DAY	Ther.
27	highelt 30,32	28	$\begin{aligned} & \text { higheft } \\ & \text { Ro } \end{aligned}$
DAY	Bak.	DAY	Ther.
17	lowern 29,30	3	loweß $48+$
	ULY.		749.
$\mathrm{DAY}^{\text {a }}$	Bar.	Dax	Ther.
8	higheft $30,35$	2	$\begin{gathered} \text { higheft } \\ 87 \end{gathered}$
$D_{A Y}$	BAK.	DAY	Ther.
24	loweft 22.66	\| $\left\|\begin{array}{c}18.30 \\ 31\end{array}\right\|$	loweft $64 \frac{1}{2}$

Meteorological Obfervations.

474
Two Letters from the Rev. Hen. Miles,
D. D. F.R.S. to Mr Hen. Baker, F.R.S. ture of the air I ever knew.
concerning the At 4p. m. We had very diftant thunder; foon after it came a little
Heat of she nearer, and was one continued murmur, without any perceivable interWeather in
July and Sept. lupf. No. 496 p. 571 . Nov. \&c, $177^{\circ} 0$. Read Nov. 22. 1-50.

Fivg Lescer. nearer, and was one continued murmur, without any perceivable intermiffion for great part of an hour: the lightning accompanying it, not much. The wind was nearly S. W. and dark clouds paffed by on each fide of us till they united in the N . forming one of the blackeft clouds I ever faw, over the city, as near as I could guefs. We had not one drop of rain, nor did there fall either rain or hail for near 3 miles to the N. of us towards London: a few hail-ftones, I am informed, fell in fome parts of Clapbam; what the extent of the frorm might be on other fidcs of the city, I have not heard.

By the obfervation I made, there did not appear any confiderable change in the flate of the air, as to the weight or heat of it. The Barometer fell little, and the Thermometer no more than ufual at that time of the evening. Mr Canton writes me, that his Thermometer in SpitalSquare (of the fane conftruction with mine, and kept too in the open air) fell no lefs than 17 degrees.
Sccond Letter. At 4 a. 31 . the wind being eafterly, and blowing ftrong, accompanied with feveral fhort Thowers of rain, the Barometer being at 29,97, I obferved my Thermometer abroad to ftand at 61 : a degree of heat exceeding any I have taken notice of during the whole fummer at that time of the morning.

> Tooting, Seps. 2, 17;0.
H. Miles.

Extract of a Lester from Mr William Arcieron, F. RS . 10 MrH Baker, myfelf.
F.R. S. concerning the hot Weather in July laf.
Sbid. P. 573. Read Nov. 22. 1750.
XIII. The beginning of this heat was on the 8th of 7 uly ; on which (though the whole day was cloudy) the ground was fo uncommonly hot, that I could not bear to walk on it long together without much uneafinefs; and many were fenfible of the fame inconvenience as well as

On Wednefday the 1 Ith, which was the hotteft day of all, my Thermometer in the fun's rays flood 11° above the heat of human blood; and in the fhade, in my houfe, only 8° below it. The diftance between freezing and the heat of human blood being divided into 100 parts.

An inch of tallow, $\frac{6}{0}$ of an inch in diameter, liquefied in the fun in lefs than 30^{\prime}. A piece of refin, r 5 of an inch in diameter, became fo foft as to be liable to take any impreffion in the fame time.

But, that you may form a better judgment of the heat at Norwich, on the faid 1 th of $\neq 7$ ly, and for 3 days before and after, you will fee below how Haukfoce's Thermometer ftood at different times in each of shofe days.

I oberve 3 in the afternoon, when the fky is clear, is the hotteft part of the day ; but clouds moftly came on about that time on thefe days.

Many people here, who judged by their outward fenfes only, without paying any regard to Thermometers, have thought the 11th of fune 1748 was hotter : but I imagine the reafon to be, that the heat this year came on gradually from day to day; whereas in the year 1748 it was much more fudden; the Thermoneter then rifing 22° more in one day than the preceding; which, confequently, would make the difference between one day and another appear the more extraordinary. But, by my obfervations on the 1 ith of Fune 1748, Hauk/bee's Thermometer ftood at $14 \frac{1}{2}$; full 6° cooler than on the inth of this prefent ${ }^{\prime}$ uly.
P. S. Several horfes have dropped down dead under their matters, overcome by this violent heat.
XIV. The preceding day had been remarkably hot, and in the after- A Leter frome ternoon very cloudy, with the ufual indications of an approaching ftorm, the Rev. H. in the evening. At 9 at night, the wind foutherly, my Barometer Miles, D. D. flood thus: one, which is the mof fenfie at R. S. flood thus; one, which is the moft fenfible, at 29 inches $\frac{7}{10} \frac{30}{100}$; the to the Pref.

[^22] 1748. Read June 23. 174^{8}.

Meteo ological Obfervations.

other at $3^{2} 70$. The Thermometers (of Sifin's conatruction; one without-400rs, at 43°, another within, at 49°, above 0 . or the freezing point.

At I next morning, a perfon apprehenfive of the thunder, upon looking our at window, was furprizal to find an unufual clear iky, every-where equal to what is obferved in frofty weather, or after a higla wind, except that in a few places fome thunder-clouds thewed themfelves jutt above the horizon. At 2 we heard thunder at a diftance: at $3^{h} 30^{\prime}$, when I got up, I perceived the ftorm approaching apace from the S. where the wind then was, bur the darker clouds feemed to bear off chiefly to the E. and W. of us, fo that I did not think we flould hear of ally mifchief near us. At 4 we had a fmart thower of rain, and about 5 two loud claps of chunder over our heads, but pretty high; the lightning was very pale, and the flathes large, deficending in a fpiral form, almult perpendicular to the horizon to the eaftward of us, which is the fituation of Stretbrom, and at about 2 miles diftant from us. At a litcle before my Barometers ftond thus, 29. \% ${ }^{3}$, and $30 .{ }^{2} \mathrm{~T}^{2}$; and continued fuccefively rifing and falling during the florm, but very inconficterably.

Upon hearing 2 houfes were damaged, fituate at the foot of the hill on which the macral wells are, fronting the eaft, by the wood- fide, I went next day to view them. The houfe to the S. which is a publick houfe kept by Mr Howard, feemed to have received the greateft fhock. Some of the family being up, the front door ftood partly open, when the fturm began: the upper half was of glafs, framed like a fafh window, having two niding thutters, one on each fide, which had not been taken down. The glais between them was fhattered to pieces, but the Thutters no-ways touched, except that a nail in one of them was forced in a little way. To the door-poft, on the ieft hand, hung by an iron pin an iron bar, which ferved to faften the door at night: this pin was driven out of the poft, and the bar confiderably bent, and in divers pluces melted in fimall fpots, as were the hinges of the door, chiefly upon the edges in borh, and the door-poft fplit. A fheet of lead on the pediment, or thelter over the faid door, was raifed, and partly rolled up at one corner ; the cornice underneath being torn off without being fplit, a good part of the tiling near the eaves and over the pediment was loofened, and fome tiles beat off, and the lathing and fome of the moldings of the windows had taken fire

In a bed-chamber fronting the road, on the fecond floor where Mr Hoczard lay, 3 boards of the lining of the room, on the F.. fide, were driven inwards 5 or 6 inches at one end; but at the other the nails were a little loofened only. In a garret over this bed-chamber, the upper pars of a bed-poft was thivered; and searly over whese this bed ftoad, a Farge hole was broke in the roof, on the W. fide, juft by where one of the chimneys goes up; the chimneys having all additional funnels of brick-work on the top, of a roundifh form, and plattered: thefe were ftruck
ftruck, and inclined to the N. efpecially that which was on the fuuth end of the houfe, the plafter being beat off, and fome of the bricks broke down. There were about 13 perions in this houfe, none of which received any hurt; though a lad, who was in the kitchen, into which the door openeci, before-mentioned, and the window of which (near where he was ftanding) had feveral panes of glafs broke, muft certainly be mucla expofed. He informed me, anong other things, that the fire Alw about him in fparks, like thofe which fly out of burning charcoal, bur larger, and fnapping as they do. Some pieces of glafs were fhewed me, which 1 found to have been melted, one of which I take the liberty of laying before you.

The adjoining houfe, irdabited by Mr Figgins, had the plattering beat off in the frone in patches, and one of the chimneys cracked for a great length In the kitchen window frame, one of the crofs pieces, near the middle of the window, had a chipe fruck off from it about ξ inches in length, and at one end about; of an inch thick, but thin at the other, and near the width of the frame, but none of the glafs broke, nor the lead bent, though in a manner contiguous with the fplinter beat off. The fame thing happened to a parlour-window, on the other end of the houfe; both the fhivers were found directly oppolite to the windows, at ten or twelve yards diftant in the road.

In a fmall garret (which is next to Mr Howard's houfe) where two maid-fervants lay, the plafter was broken, to appearance, inwards, on oppofite fides of the room, and near the feet of the bed, which ftood on each fide abour of a yard from the wall. The breach on the E. fide, ncar a window (fome panes of the glafs of which were broken) was oppofite to the vailings of the bed, which were finged, and a hole burnt through them big enough to receive the end of one's fore finger. On the oppofite fide, juft by the chimney, another breach was made, of the fame height, in the wall, which was continued downwards for about a yard, but the curtains not at all finged. Directly againft this breach, one of the maids (who had got up) fat on the bed's fide, who was infrantly ftruck down, but received no hurt: Upon enquiring of her, whether the feemed to receive a blow on any particular part of her body? The replied, The was ftruck all over alike.

But the moft remarkable, though the leaft terrible effect, appeared on the frame of a pannel of wainfort, about 5 feet long, and about $\mathrm{I}_{\frac{1}{2}}$ wide, in the parlour fronting the E : on this pannel a landifcape is painted, and the moulding belonging to it had been gilt, but on the laft painting the room, the gilding was covered with the fame paint : that which covered the gilt moulding was ftripped off in irregular ragged ftreaks throughout, fo that the gilding appeared as frefh as it may be thought to have looked when it was painted at firt : and as the gilding does not feem to have been affected, fo neither does the paint appear to have been cracked: any-where, but where the gilding lay under.

Meteorological Obferciations.

If it be fuppofed, that the lead in the paint was melted by the lightning, it will be difficuit to account for it, that it fhould not at all affect the paint contiguous with that which was upon the gilding; though we fuppofe a refiftance to have been made by the leal-gold, and to have contributed to the producing the mentioned effects.
XV. As I think there was fome miftake in the account of the late burning of Danbuiy fteeple by lightning (read laft Thurfday before the Royal Society) which mittake feemed to give room to imagine it had fome connexion with the late carthquake, I take the liberty of fending you the particulars of the aforefaid accident, as they were tranfmitted to
Of the burning of the fiecple of Danbury in Encex, by i.ighning: by Snart Le. shieullicr, E/q; me by two gentlemen of diftinction in the parifh.
F. R.S. So sbe Monday, the 5 th of this inftant Fieb. about 3 in the afternoon, a very Prefident. N°. 497. p. 611. Read Mach 1.
$17+9.50$. great and black cloud paffed over the hill on which Danbury ftands, and broke into a violent form of thunder, lightning, and rain. No immediate danger was apprehended that night; but, between 4 and 5 next morning, fome perfons perceived the ball on the top of the fpire (which was of wood, and on which the weather-cock ftood) to be on fire, they immediately alarmed the neighbourhood, and, by the help. of a large fire-engine, fetched from Chelmsford, they got the maftery of the fire by about in at noon; tho' it broke out twice afterwards. It burnt downwards with great fury, and has entirely confumed in feet of the fpire, and damaged 8 feet more, as likewife the beams on which the fpire was fixed. - Some of the burnt timbers and melted lead have hurt the roof of the chancel, but not very confiderably.

The great height of the fituation of this church probably expofes it to accidents of this nature; for Walfingham relates, "that, on Corpus "Cbrifti day anno 1402, the devil entered this church in the likenefs " of a Friar-Minor, where he raged, to the great terror of the parifhi" oners, and at the fame time, by the violence of thunder and a tem"peft, the whole body of the church was broken."

This devil, or friar, was, I conclude, no more than a flaft of fome fiery meteor, which the fruitful fancy of thofe times could immediately cloath with the firft habit that occurred to them.

The aptrar. XVI. The head and body emitted an extremely lucid and white flame. ance of a fiery The tail appeared of a traniparent bluc, like the flame of fulphur.
Meteor, as This phanomenon was feen on Sunday, May 27.1744 . at $11^{h} 11^{\prime}$ p. m. (Crafock, com. It's direction from S. E. to N. W. or thereabouts; it's height feemingly munisated to not $\frac{1}{2}$ a mile.
tbe R S by
M_{r} H. Baker, It was feen, as here defcribed, from the terrace in Somerfel-Gardens,
F. R. S. N^{j}. 473. P. 78. May, \&.c. 1744 . Read June 7. 1744. by me,

Zacb. Cradock, Of Somerjet-Houje.
XVII. As I was coming from my Living, juft before I reached a place Part of a called Stanlake Broad, and a little before 8 in the evening, I was on a Letter from fudden furprized to fee a long ftream of fire, of a colour refembling Geo the Re. Mr molten glafs, Fig. 35. which hot down from A to B, in length, I guefs, to Mr john about 20°, and feemed immediately to run up again from B to A; Catin, con where it turned to a fort of fmoke, or rather to a fine lambent flame like that of an Aurora Borealis; which continued for fome time in a fort of oblong fhape, Fig. 36. but afterwards by degrees, changed into Fig. 37. and at laft into lig. 38. under which, parallel to the horizon, it grew fainter and fainter, till it intircly vanifhed about 9.

There was a fine gentle breeze all this time; but I could not obferve that it affected the pbocoomenon fo far as to make it change it's place, which was to the eaftward of the N. Perhaps this change of figure might, in fome meafure, be owing to it. Being on horfeback, I faw it from the beginning to the end; but having no watch with me, I only Fig. ${ }_{3} 6$. guefled, by my riding, that it continued about an hour. I heard after- Fig. 37. wards, from fome who had their watches, that it lafted an hour and one Fig 380 minute.

When I came home, I put down what I had obferved; it being, as I thought, a very fingular appearance *.
XVIII. Scpt. 15. 1749. a remarkable meteor was feen in Rutland, An extraorwhich I fufpect to have been of the fame kind as fpouts at fea.
dinary Meteor

It was a calm, warm, and cloudy day, with fome gleams and fhowers; the Barometer low and falling, and the wind S. and fmall. The fpout came between 5 and 6 in the evening; at 8 came a thunder-fhower, and form of wind, which did mifchict in fome places; and then it cleared up with a brifk N. W. wind.
feen in the County of Rutland, which reform-

The earlieft account I have was from Seaton A great fmoke rofemunicated to over or near Gretton, in Nortbamptorfhire, with the likenels of fire, either one fingle flafh, as the Miller faid, or feveral bright arrows darting

$$
\text { Sc: 1749. Rcad Dec. P. }{ }^{24} \cdot 1749.0 \text {. }
$$

c. M.

Weteorsiogical Oifferations.

ciem to the grouns, and repuated for fome time, as others fay. Yit fome who faw it, cid not thunk there was really any fire in is, but that tine bright breaks in a black cloud looked like it. However, the whirling, brake, rait, and fmokc, frightened both inan and beaft. Comiing cown the hill, it took up water trom the river Welland, and paffing over Scuton ficte, carried away feveral thocks of ftubble; and crofling GilaiIfon, and Mercot lordhips, at Pilton town's end, tore off two branches, and carried one of them a good way. In a hedge-row in the meaciow, at right angiks to the fpout's courle, flood an oak and an afh 15 yards afuncer; the oak a young found onc, 16 inches tinick, it fplit two yards down, and one half fell to the ground, but was not quite parted from the other; the afh, about 8 incress chick, was torn off in the middle, and carried 10 or i2 yaris. Betwecn and on each fide of theie trees were other finaller unes, which were not hurt: 1 livard of no harm it did after, but breaking and featering a few boughs. If faw it paifs from Pilton over Lyndon lordhhip, like a black fincky cloud, with bright breaks; an odd whirling motion, and a roaring noife, like a diftant wind, or a great flock of fiece galloping along on hard ground; it was divided into two parts all the way it went, and though there was no wind, moved apace from S. by W. to N. by E. As it went by a quarter of a mile E. from me, 1 law fome fraws fall from it, and a part, like an inverted cone of rain, reached down to the ground. Some who wcre milking, faid it caine all round them like a thick mift, whirling and parting, and, when that was patt, a fltrong wind for a very little while, though it was calm both before and atter. It then paffed off between Editbseeffon and Hambleton, but how much further I do not know.

An ascount of an exiraordt- b Mary Fire-ball burfing at Sca, communicasted by $M r$ Chalmers. N°. $494 . \mathrm{p}$. 366. Jn. $8 . \mathrm{c}$. ${ }_{1750}$ Read Milareit $2 z$. 2749.
XIX. Nov. 4. I 749 . in lat. $42^{\circ} 4^{8^{\prime}}$, long. $09^{\circ} 03^{\prime}$, the I.izard then bore, N. $41^{\circ} \mathrm{O} 5^{\prime}$, about the cilltance of 569 miles. I was taking an obfervation on the quarter-deck, about 10 ' before 12 : one of the quartermafters defired I would look to windward, which I did, and obferved a large ball of blue fire rolling on the furface of the water, at about 3 miles diffance from us: we immediately lowered our topfails, and had our fore and main clew garnets manned to haul up our courfes; but it came down upon us fo faft, that before we could raife the main tack, we obferved the ball to rife almoft perpendicular, and nut above 40 or 50 yards from the main chains: it went off with an explofion as if hundreds of cannon had been fired at one time; and left fo great a fmell of brimftone, that the Ship feemed to be nothing but fulphur. After the noife was over, which I believe did not latt longer than half a fecond; we looked over head, and found our maintopmaft hattered into above an hundred pieces, and the mainmaft rent quite down to the heel. There were fome of the fpikes, that nail the fifh of the mainmaft, drawn with fuch force out of the maft, that they fluck in the main deck fo faft, that the carpenter was obliged to take an iron crow to gee them

Pla VIII.VI. X. Part II.Pag. 4^{80}.

Fing.

Fig. 39.

Fing. 40
E
nowner

Uned
out: there were five men knocked down and one of them greath burne, by the explofion. We believe, that when the ball, which apt peared to us to be of the bignefs of a large millitone, tole, it took the middle of the main topmaft, as the head of the maft above the Jrounds was not folintered: we had a very hard gale of wind, from the N. by W. to the N. N. E. for two days before the accidents, with a great deal of rain and hail, and a large fea: from the northward we had no thunder nor lightning, before nor after the explofion. The ball came down from the N. E., and went to the S. W.

This account was given by Mr Cbalmers, who was, when the abovementioned accident happened, on hoard his Majefty's fhip the Montague, under the command of admiral Cbambers.
XX. On the Bth of $\operatorname{March} 1746-7$, near 8 in the morning, as I was $A n$ objerive. riding within 3 miles of Brentwood in Effex, there appeared a fingular tion of an phenomenon in the Heavens ; the fketch may give fome idea of it.

The morning was fine and clear, the fun fhone bright, no cloud to be feen, but the air a little hazy: where the phenomenor appeared, whict: was a bright cloudy fpot, feemed a very fmall portion of a rainbow, only the colours very faint. It was in a horizontal direction north of the fun, and from it projected a long luminous ray, which terminated in a point.-It continued very ftrong for more than half an hour after I faw it, and then vanifhed away by degrees.
XXI. Yuiy ix. 1749. The fun's rays thone through the clouds at the fame time, as they frequently do when the fun is near the horizon. The drawing, which reprefents the whole, makes any farther defcription of it needlefs.
uncomimon
Gleam of
Light proceed
ing from the
Sun, by Mr
Peter Collinfon, F.R.S. №. 483 . p . 456. Mar.
\&c. 8, 47. Read March 19. $17445-7$. Fig 41 A Halo or mock Sun, ofereved by markable, and vanifhed by degrees. chere were arches of the folowing colours.

1. Yellowih green, darker green, purple. 2. Green, purple. 3. Green purple.

VOL. X. Part ji.
$M_{r} W$. Arde ron, F. R. S. Fig. 42.
XXII. Monday ${ }^{\text {Fululy }}$ 18. 1748. about \div before 7 in the evening, the weather being temperate, and the wind about N. N. W. as I was walking in the fields, beyond Ifington, I faw a diftant rainbow which appeared to take in a large portion of the Heavens; but had nothing re-

Continuing my walk, about 20^{\prime} after the difappearing of the firt rainbow, a rainy cloud croffed me, moving gently with the wind, which exhibited to me a more perfect and diftinet rainbow, than I had ever before feen; wherein I could plainly diftinguifh all the fecondary orders of colours taken notice of by the late Dr Langreitb in his letters to Dr furin; that is, to fay, within the purple of the common rainbow,

A defriptrion of ar extraorainary Rainbow, obficruez Julv $15.17+8$. by Peter Daval, Ejg; Scc. R. S. Ibid. p. 193. Rear
Oat. 86.1779 . О走. 86.1779.
\qquad
\qquad

No. 493. P. 203. Oet. \&c. 1749. Read Nor. e. 1749.

Metcorological Obpervations.

This innermof arch Dr Langrwith calls faint vanifhing purple, and I likewife found, that it fometimes appeared and difappeared alternately; but during about 2^{\prime} it feemed to me to be as permanent as any of the other colours.

I ftood ftill, and looked attentively at this appearance, during the whole time of it's continuance, which was near 8^{\prime}, and could for the greatef part of that time difcern all the above-mentioned colours, except the innermoft purple in the upper parts of the bow; but could not diftinguifh any of them in thofe parts of it which were near the horizon, tho' they were extremely vivid, as was likewife the outer bow, in which the colours appeared as bright, though not fo well defined, as in mott inner rainbows I had feen.

As I had read Dr Langexith's letter a fhort time before I faw this beautiful appearance, and as I compared his account with what I had feen, the fame evening, and again the next morning, I can the better be affured of the exact agreement of our obfervations.

On my firf feeing this phenomenon, I was furprized, that the diameter of the bow appeared to me very fmall, compared with that I had feen a little before. The occafion of this I think mult have been, that the kegs of the firt-mentioned bow appeared to me to terminate at diftant places: whereas in the latter appearance I could plainly fee both ends of the inner and outer bows terminated in the neighbouring fields, at a very fmall diftance from each other: hence, and from my being involved in the fhower which occafioned this rainbow, I conclude it was very near me ; which might be one caufe of the great vividnefs of it's colours, and of my diftinguifhing the inner arches. But whether this was the only caute of thole appearances, or whether they might not be owing to fome particular difpofition of the atmofphere at that time, I much queftion: as well becaufe I have often feen rainbows which have been very near me, and oppofed to a bright fun, wherein I could not dilicern thefe inner orders of colours, as that I have heard from fome intelligent perfons, that fome very bright rainbows were feen foon after the folar eclipfe which happened on the $14^{\text {th }}$ of July 1748. particularly that an unufually vivid and diftinct rainbow was obferved at Twickenbrons 3 or 4 days after that eclipfe, which agrees with the day on which 1 faw the above-mentioned appearance.

1 luminous
arch, by sbe Rev, W.
Cowper D.D. Dean of Dur. ham. $\mathrm{N}^{\circ} .499^{-}$ ham N. $\mathrm{N}^{\circ} .49$ - the breadth of the rainbow; which it refembled in every thing, but it's p. 648. Read variety of colours. It continued thus for almoft 20 minartes, declining Peb. 16.1549 .
XXIII. A luminous arch appeaped Feb. 16. 1749. about gat night. It had ArEzurus in it's eaftern limit, which was then low in the horizon; and extended to the bright ftar in the right Thoulder of Oxions, then bearing S. W, It was exceedingly bright, regular, and well defined, and about gently fouthward, and then graiually feparated and difappeared.

SXIV. OSF. 20. at night, the fly was darkened by a fight fog, thro' An observe. which the moon appeared of a fiery red colour, till $8^{\text {h }} \cdot 40^{\prime}$. when the fog was thoroughly difperfed, and the Heavens were overcaft with a whitilh freaky cloud. At the fame time there appeared round the and circle, moon a halo (Jig. 43. ABCD) accompanied with four other fogments of circles, two of which $E \alpha F$ and $G H$ of 10°, were concerneric, to as so have their common center at the Zenith. The fegment or $\operatorname{arch} I P L$ on the N. fides, of 7°, was concentric with the great lunar Nash by Aug. circle, and confequently had the moon for it's centre; and in fine the chow, Meme. arch MCN, which faced the horizon, was of 12°.

Betides there 4 fegments, what was mont remarkable was a mockmoon or paraselene B, Taped like a mock-fun or parbelius. The ciameter of this mock-moon, tho' ill-determined, was of 35^{\prime} at least, with Uar. \& Nov. a tail $B P$ oppofite to the moon, as the tail of a comet is oppolite to 1748. the fun. This tail varied in it's degree of light from time to time, ex- Tranfated tending as far as the arch IPL, which, as well as the arch GH, was 4° diftant from the lunar circle $A B C D$. The paraselene B had the Trench by T. M. fame colours with a common parbelius, excepting that they were not fo Read Nov.io. lively, but they very much inclined to the tawny, efpecially on the fide, which faced the moon. This paraselene was in the fame altitude as the non. It's tail was much more faint and tranfparent; inafmuch as Capella appeared thro' this luminous tail. The lunar circle $A B C D$ was much weaker to the fouth, and there appeared no parafelene on that fides. This meteor did not lem to undergo any alteration till $9^{\prime \prime}$. 18^{\prime}. when the atmofphere was covered with thick clouds.

The clouds being diminifhed at $9^{h} \cdot 32^{\prime}$. the meteor appeared again, but very different from what it was before; for, intead of freeing a Lunar circle with 4 other arches of circles, I fay the lunar circle $D A B D$ and on the fourth fide a faint arch $2 R$ of 4°, having the moon for it's centre in common with the great lunar circle. There were likewife two paraselene's, one of which B was to the N. and the other D to the S. as they are expreffed in Fig. 44. There two paraselene's did not catt fo Fig. 44. ftrong a light as that which had appeared before, nor were they fo diftinctly formed. On the contrary, the lunar circle was very beautiful, and remarkably bright, until $9^{h} \cdot 50^{\prime}$. when the whole phenomenon diffappeared, and the fly grew clear by degrees. The moon's diameter was $30^{\prime} \cdot 30^{\prime \prime}$. On the fame night a very beautiful lunar circle was obferved at Berlin, but without paraselene's.
XXV. 1. On Friday the 16 th there was a bright Aurora Borealis, An Aurora the northern part of the ky being entirely filled with a pale light, in which frequent corufcations were vilible. Befides thefe lights, there was a perfect uniform arch, extending from E. to W. the colour of it was the fame with that of the Aurora; with which however it did not feem to have any communication, being placed feveral degrees to the forthward. The Moulders of Orion were vifible tho' this luminous arch,

Mitedrobogical Objumations.

$\mathrm{N}^{\circ} .49+\mathrm{p}$. in the weftern part of it, and Cor Leonis in the eaftern part. 1 did not $3+5$. Jan sc. happen to fee it till about a quarter before ten; and at ten it difappear-
1250. Read Feb 22.
—as Toce: ing. Jan. 23. 1750.1, by be Reo Hien. Miles, D. D. F. R S.ibid. p. 346 Rrad Feb. 22. 1749. ed. The weather was then, and has been ever fince, exceedingly warm for the feafon. The walls are covered with blofloms; and the hyacinths, daffodils, ξ° c. are blown before the ufual time.
2. On Tueflay Fan. 23. laft, I was called out, about fix in the evening, to fee a ftrange appearance in the fky, in the weft. Sufpecting it out, I faw a a ordina Aurora, I did not make great hafte- When I came er l than any had ever leen belore, whio, was mor wich rem the S. W. it was then advancing apace to the N.E. and quickly reached the zenith, when, it being intercepted by the houfe, I haftened to the other front, which regards the N.E. by which time there appeared a Juminous zone, about the breadth of the galaxy, it's edges regularly defined, compaffing the hemifphere, from the horizon in the N. E. to the zenith, in the fame direction, in which the above-mentioned cloud had paffed (as far as I faw ir's courfe) from the S. W. The colour was much fainter, and more Juminous, refembling the ufual colour of an Aurora, and the lamine or ftreamers foon appeared - upon this, not being well fenced againft the wind, which blew brifk, I went in, to purfue my intention of viewing the 2 beautiful planets, 7 upiter and V enus, with a reflecting telefcope, made by my ingenious friend Mr Short of Surry-ftrect (the greateft magnifying power of which is about 200 times); and after I had viewed them to my fatisfaction, and fhewed them to fome friends, when I was about to put up the inftrument, a cloud, of near the fize of the firtt, but not fo deep a colour, appeared, rifing up from the S. W. which proceeded in a line with the planets, and, in a little time, furrounded both : Venus appearing ftill, to the naked eye, in her full luftre, I immediately viewed her with the telefcope, without altering the focus, and faw her much more diftinctly than ever I had done, on that evening, or on any other, and of the fame opinion were all my friends as to the fight they had of her, on that occafion: we all faw her fpots plain, relembling thofe in the moon; which I was never fo happy as to have a fight of before: and this, while the clourd feemed to furround it, as much as ever: but whether the vapour might be really rarer near the planet, than it was at fome diftance, no. jucgment courd be made, becaufe of her too powerrial light.

Many have obferved the fixed ftars to appear thro' the vapour with an undiminifhed light oftentimes : and our great Dr Halley tells us, in his account of that remarkable Aurora, which was feen in March, 1715-10. that he obferved "one of the lamine pais fucceffively over "* all the ftars of the Little Bear, without effacing the fmaller ones, in "s the tail, of the fifth magnitude; fuch was the extreme rariiy and "perficuity of the matter whereof it confifted."
I this week received a letter from Dr Sbort of Sbeffield, in which he fays, "The 23^{d} pan, at fix at night, the fry being overclouded, all
at the clonds over the hemifplere, turned of a fudden to a dcep blooj"red colour, for 15 ' then fucceeded red freamcrs for half an hour."
3. Feb. 15. 1749-50. in the evening there was a very vivid northern -at Pylight, which darted forth feveral beautiful, crimfon, and fiery-coloured mouth, Feb. rays ; wind NW $b \mathrm{~N}_{1}$, Barometer 30.2 ; 50 minutes paft 8 a furpri- 15.1749 .50. fingly brighe and exceedingly white arch, about the breadth of a com- by John Haxmon rainbow, appeared in the Heavens, extending nearly from E. to F.R.S.No. W. it reached within 5 or 6^{2} of the weftern horizon, and ended about 495 . p. 47 2. 8 or 10 above the eaftern. It paffed exactly between Caftor and Pollux, Apr.\&e 1753. and directly over Aldécoran, which appeared plainly through it. Near the top of the arch feveral very lucid, white, fhort, vibrating columns were attached to it; none of them feemed above 6 or 7 degrees long, and did not appear to communicate in the leaft with the Auroraborealis. Fig. 45. fomewhat reprefents it. About $9^{\text {h }} 12^{\prime}$ the arch vanifhed; but Fig 45. feveral white, bright, corufating mubecule remained here and there in the zodiac for 12 or 15 minutes longer. The Aurara borealis continued more or lefs till midnight: the next morning the wind was E . s^{x}, Barom. 30.1 .
4. Feb. 16. about 7 p. n. we had another Aurcra borealis, though not -Feb. 16. quire fo fiery and luminous as that of the night before : it continued till near 11. At $8^{h} 56^{6}$ p. m. exactly, fuch another arch appeared, very nearly of the fame extent and direction, but not altogether fo broad or fucid. This at firftalfo paffed between the two bright ftars of Gemini, but declined more and more to the fouthward, till it was 2. or 3° to the S. of Pollux. It's weftern limb, about 9 , paffed thro' the \mathbf{N}. fhoulder of Orion: it quite difappeared about 10 or 12 minutes after. This had no columns attached to it, as the former ; tho' it was fomewhat jagged and unequal towards the N, near the vertex. The wind this evening was E.. 2 ; the Barometer 29.9. The next morning the wind was SW6W 1, the Barometer 299. Neither any part of the arch, or the attached rays were coloured, but perfectly white, and exceeding bright.
5. On Monday Fan. 23. latt, fome unufual appearances were oblerved -at Imin the fky, at London, and the towns about it, by thoufands of people during the whole evening, of which fome accounts were laid before the $\mathrm{Mr}_{r} \mathrm{He-50}$ Hen R. S. and as appearances of the like kind wure oblerved in the Heavens, Baker, the fame evening, at great diftances from London, I take the liberty to F.R S. ibid. prefent you a defcription of what was feen at the city of Norwich, by ${ }^{\text {p. }} 499$. Mr W. Arderon, F. R.S.; and alfo of what was obferved at Wells (a Read Juncas,i. little fea-port town in the fane county of Norfolk, about 30 miles nearly due N. from Norwich) by Mr Fofeph Sparfal, and fent by himion Mr Arderon, who communicated it to me.
6. The wonderful appearances of the Akoora borealis on Fan. 23, lait; -as Norhave been taken notice of in moft parts of England, though in different wich, Jan. 23. forms. At Norvicb. I believe it was as extraordinary as at any place ${ }^{1749-50}$ W. Ar whatever: but the weather being very cold, and myfelf fomewhat in-deron, F.R.S. uifpotéct, bid P. 500.

Metcorological Objervations.

difpoled, I did not make all the remarks I could have wifhed : the few 1 did make are as follow:

This wonderful Aurora began at 6 in the evening, with a blacking clousi in the N. E. out of which fprung up a ftriak of fcarlet-coloured rays, of a furprizing beauty and vividnefs. This prefently extended ro within a f.w degrees of the S. W. horizon, palting directly thro' the zenitb, and fo coninuing near a quarter of an hour, when sed and yellow columns began to rife upwards from every quarter.

At 7 a black cloud rofe tip in the S. E. and quickly put on a femicircular form, with light yellowith vapours afcending out of it's upper edge, and reprefenting a glory of an uncommon brightnefs.

At 8 the black cloud was difperfed, but the yellow glory remained; and round that frang up another circle of red, which made the whole appear very tremendous.

The reddifh freans, as well as this laft-mentioned circle, were fometimes fo denfe, that evell ftars of the firlt inagnitude could not be feen through them.

There was now-and-then fome of the flafhing Aurora in clifferent parts of the firmament, though not fo common as I have obferved at other times.

The night was full as light as it is when the moon is about δ days oid; but I could compare it neither to the light of the fun nor moon, fome of the original colours feeming to be wanting: and the beft defeription I can give of it is, to liken it to that light produced in a dark room, when one of the feven original colours is feparated from the reft, after they have paffed through a prifm, and been collected together again by a convex lens.

This evening the Barometer was 30.1 falling. Haukefoee's. Thermometer 63. Wind E. ro force. The morning mifty, and very cold, but all the day clear.
-as Wells 7. On Tuefday Fan. 23, the air at Wells was clear and ferene during in Norfolk, by Mr Jor. Sparthal, ibid P. 502. the greatelt part of the day, with a frefh breeze of wind at S.S.E. which terminated in an evening extremely remarkable for appearances in the Heavens of an uncommon Aurora borealis.

At 15^{\prime} paft 5 , I firf took notice of the foot of an arch, which formed an angle or about 10° with the N. E. part of the horizon. This arch hot out pointed ftreams like pyramids, of a fiery red colour, which generally afcended within a few degrees of the zenitb, then vanifhed, and were immediately fucceeded by others, from the N. E. where the principal magazine feemed to be. They continually fhifted towards the E. and S. W. with fudden flarhings and dartings; but towards the weft the appearances feldom altered.

At 30^{\prime} paft 5, a luminous ftream, of a bright flame-colour, fhot up on the N . fide of the fiery arch, which ftill kept fomewhat of that form, though frequently interrupted by thooting flafhes from the N. E.

At $4 b^{\prime}$ pait 5, there appeared fuddenly in the N. E. an elliptical corona, of an amazing brighinefs, elevated about 9° above the horizon, and having it's longelt diameter parallel thereto. There fhot up perpendicularly from this, ftreans refembling columns of flame intermixed with others of bright red.
At 50^{\prime} paft 5 , part of the hemifphere, included between the N. E. and S. E. was itrongly illuminated, with a vaft number of pointed rays of crimion and flame-colour, darting towards the zenith. Thefe vanifhing in about 4^{\prime}, were fucceeded by many whitifh itrcaks, fhitting from the N . to the S . E .
At 55^{\prime} paft 5 , there fprang up in the N. 3 bright pyramids of flamecolour, afcending to the height of about 70°, not perpendicular to the horizon, but inclining towards the E . and thefe were joined at the upper parts by an equal number of a blood-red colour from the S. E.

At 6 , a pyramid of a crimfon colour rofe from the N. E. to the height of about 60°. This fuon difappeared; but a diffufed rednefs remained; and from the N. E. to the S. W. appeared an arch, crowned at the vertex with fomething refembling a Glory, with a round body of light in it's centre.

At 20^{\prime} paft 6, the rednefs was contracted into a narrower compafs, but was much deeper in colour, forming an arch from S. E. to S. W. and appeared at the zemith like a fiery theet fpread towards the S; the N. being at the fame time illuminated with white ftreams, like the common Aurora borealis.

At 30^{\prime} paft 6, a whitifh femicircular arch was formed to the fouthward, encompaning the red lights in the zenith, and extending from the E . to the S . W. But this appearance continued only a few moments.

At 40^{\prime} paft 6 , the rednefs quite difappeared in the N. E. and that to the fouthward became muih paler. The common fiurora appeared very plain in the N. E. till 7 , and then totally difappeared.

At 8 the common Aurora appeared again very bright from N . to E .

At 30^{\prime} paft 8, appeared another large femicircular arch, extending from E. to W. pointed columins of a bright red fhooting up from each fide of it's bafe; with other fimalier ones on the upper part of it, fuch as the common Aurora. At the fame time arofe in the N. from within a very few degrees of the horizon, a bright pyramidal fiream of light, of a furprifing magnitude. This appearance contintued near II of an hour very regular, and excreding beauciful.

At the beginning of thefe lights the merciry ftood at 29.9 , but quickly fell to 29.8. The wind at S . E. . force.

During part of the time I obrerved an uncommon motion in the magnetic needle; but was too clofely enyagoct in obferving the Heavens to

Metcorological Objervations.

If fatw this civening thofe metcors called falling flars; particularily me, which, on caking fire, Beft a long train of fparks behind them.
My fituation being quite open to the fea on all fides, except the S. afiorded me as favourable an opportunity of viewing the above particuliars as 1 could wilh; and I gave up my whole attention to them.

Aarora Auitsalis, jicon Jan. 23. 3749-50. at chelley; by Io.in Martion F.R.S. Prof. Sot Cantab. $\mathrm{N}^{2} .494 . \mathrm{P}$ 319. Jan. \&e 1750. Read J3n. 25.
127250.
XXVI. Fan. $23.17 \%^{\circ}$ at about half an hour after 5 in the everiing, cafting my eye accidentally roward a window which looked to the S.S. W. I thought I faw a reddiff light about the planet Venus, which then fhone exceedingly bright. Being fufpicious of forne fire in the neigizourhood, I went inimediately to a window on the ftair-cafe, where I faw a reddifh light, which fhone with fuch exceeding brightnefs, that the luftre of the fine conftllation of Orion was almoft effaced. I then went to a window facing the N. N. F.. where I prefently faw a wery broad band of crimfon light, like that which I obferved froms the fame window, March 18. 1738-9; * but in the former the red band svas bounded on the N. by ftreams of a greenifh blue; whereas the band now obferved was entirely of a decp crimion colour, being of a much darker red than the former.
Thence I withdrew into my garden, where I plainly faw a band or arch, of a very deep crimfon colour, in appearance about 15° broad, the fouthern edge of which paffed juft above Canis minor, and the thoulders of Orion. It was terminated to the weftward, near Venus, then about 20° high: but it extended to the eaftward as far as I could fee, and the farther it went that way, the deeper was the colour, and the broader the band. About a quarter before eight, there was formed a crown about 30° to the fouthward of the zenith; for I could plainly perceive the Pleiades, which had then juft paffed the meridian, very near it, when the light was faint. From this crown a great many rays darted to the E. S. and W. bue not toward the N. where only fome whitifh ftreaks were to be feen, but very faint. Prefently after this, the part of the arch extending to the E . feemed to be fuddenly kindled, as if fome train had been fired; grew extremely bright and vivid; and as if all the red matter had been then confumed, put an end to the phænomenon before eight.

During the reft of the evening, a pale light covered the S. part of the Heavers, as if the moon had fhone.

A Letter from the Rev. Mr John Forfter, to Mr Henry Baker, F.R.S. concerning an Earthquake at Taunton, No. 488. p. 398. June 1748. Read Junc 5 5.1;48 \cdots
XXVII. In anfwer to your inquiries concerning the earthquake, which happened laft year on the firft day of $\mathcal{F u l y}$, when I was at Taunton in Somerfeabhire, after taking fome pains to inform myfelf more particularly what other people obferved in different places, you may depend on the truth of what follows.

Between ten and eleven o'clock at night, on the faid firft day of July 1747. being nyfelf in fome company at Taunton, we were fuddenly - See Vol. VIII. P.ii. chap. i. \$ liv. a.

Eurprized
furprized with a rumbling noile like diffant thunder, which was followed immediately by fo confiderable a motion of the earth, that the chair whereon 1 lat rucked under me. The noife and haking feemed to come from a diftance, and approached gradually, in fuch a mamer as if a loaded waggon had paffed along; and continued nearly the fame time as fuch a wascon would require to go about 100 yards. The motion went from S. E. to N. W. which being the direction of the freet, on one fide whercof the houfe ftook, fome of us imagined at firlt that a waggon had really gone along; but, upon inquiring, we found there had been no waggon: and indeed, as we were fatistied afterwards, no waggon could have been heard or felt in the back room where we fat, on account of its too great diftance from the itrect.

Notwithitanding this happened between 10 and 11 at night, when moft of the town were in bed, the flock was fo fenlible, that maliy poople got up very much terrified; and they waking others, the coniternation foon became general; infomuch that, although it was a raing night, numbers of people ran out into their gardens, and fpent the night there, being apprehenfive of other fhocks. The account then newiy brought us of a dreadful earthquake at Lima, being freth in cvery body's mind, contributed to increafe the furprize.

A worthy clergyman, who lives 5 miles from Tamnton, informed me, that the china and glaffes upon the cupboards in his houfe rattled and flook as if they would fall down, and the bells in his houfe rang. A perfon who was at that time coming on foot to Iauntun likewile told me, that the noife feemed to him like the difcharge of cannon at a diftance, and came rumbling onwards, till the earth moved under him in fuch a manner that he could hardly keep upon his legs: feveral others alfo that were abroad affured me they had much ado to fave themielves from falling.

The extent of this earthquake, as far as I can learn, was from fea to fea; that is, from the S. Cbanel to the Severn. It moved from S. E. to N. W. and was felt in every parifh through this whole courfe, which is in length abour 40 miles : nor was its breadth much lefs; for it was felt at the fame time both at Exeter and Crookborn, which lie from one another about the fame diftance of 40 miles, in a line directly acrofs its before-mentioned courfe.
P. S. I have heard it reported that there were flafhes of lightning at the time of the earthquake; but I neither faw any myfelf, nor have met with any body that could affirm he did.
XXVIII. I. As I was walking along Cbancery-lane to-day, towards Holbourn, about 40^{\prime} paft 12 , people came out of feveral houfes to their don London, Feb. 8. doors in great furprize, complaining of the fhaking of their houfes, $17+9-50$. by and imputing it to the fall of fome great timber, or other heavy body, Baker, F.R.S. which they fuppofed at fome little diftance from them, and which they $\mathrm{N}^{\mathrm{N} .}$. 49 . H . P. P . came out to inquire after.

Meteorological Oúfervations.

When I was got into Holbourn, I found the people unter the fame confternation, and expreffing themfelves nearly in the fame manner.

Going to Gray's-Inn, many people were got together in the great fquare, talking about the thock they had felt; and in particular a lamplighter was giving an account, that, being on his ladder, pouring oil into a lainp, he was in danger of falling off, by fomebody's fhaking the ladder, as he at firft imagined.

I then went to a gentleman's chambers under Gray's. Inn library, where I was told the making had been fo much, that they thought a clock would have been thrown down; and imagined at the time, fome large box or heap of books had been tumbied down over head.

The people in all the ftreets, as I returned home, were talking of this matter; and fome of the women complaining that the motion had made them fick.
My own family, in Catberine-ftreet in the Strand, had been no lefs furprized, and had fent to the neighbours to inquire if fome heavy thing had fallen down, to occafion the fhaking of the houfe, which Mrs Baker defcribed as very great: fhe fat in the dining-room, which is to the fircet, and her behef at the inftant was, that the fervant was fallen all along in the backward roon of the next fory higher, thereby fiaking the houfe, and making a confiderable noife.

My fon felt the fame fhock at the Tower; where alfo a gentleman, who was firting at a table to write, in his houfe in the Mint, was thrown out of his chair with a confiderable force towards the table; and where every body was much fhocked with the apprehenfion of fome explofion of gun-powder.

What therefore fo many people, in different ftreets, at great diftances from each ocher, have been furprized at, cannot be only fancy, but muft be owing to fome real caufe; and if no powder-mill, or magazine of powder, has beeen blown up, it muft have been an earthquake, or fome tremor of the earth itfelf.

I was pretty curious to inquire of people in different places, to judge the better from their feveral reports; and I found them agree, almoft in general, in the firft fuppofition of fome weighty body falling; moft faid with a noife, but fome feemed uncertain as to that. I endeavoured likewife to learn its courfe, by comparing the accounts of people in different fituations: it feems to have lain E. and W. and to have paffed from the W. eaftward. I feit nothing of it myfelf as I walked the ftreet, nor do I find that many who were walking did.
2. To-day, betwixt 12 and 1 , the houfe in which I live in Lincoln'sKnight, M.B. Inn-Fields was fhaken violently for a moment. The room where I was lbid. p 603. Read Feb. 8. 1749 . 50. fhook very much, but nothing was thrown down. In another room the grate was feen to move, and the fire-fhovel was thrown down. A maidfervant that was above-ftairs was much frightened with the fhock and noife: fhe faid, the heard a found like thunder, which feemed to come from below : that the window-curtains and bed fhook very fenfibly, and
the latter was moved from it's place nearer to the wall. Three other perfons in the houle both heard the noife and felt the flock; but I did not take notice of the noife myfelf, being intent upon tomeching elfe at that time.

Soon after this happened, a fervant came from his Grace the Duke of Nevaffle, to inquire if we had perceived what had happened; and faid, that his Grace's houfe had fhaken all over.

I fent to two or three houles in the neighbourhood, and was informed, that they were equally fenfible botis of the fhaking and the noife; and at one of the houfes it had thrown down a firkin oi butter from a theif. I was further informed, that feveral of the neighbouring inhabitants ran out of their houfes; and fome gentlemen that were playing at tennis ran out of the tennis-court.

A woman reports, that the felt a like fhock the night before laft about η o'clock, which made the candle jump off the table at which fie then fat.

Whilf I.was writing, a man came in from Greenwich, who faid, he was at Dockbead when the fhock was felt there, and the noife feemed to ${ }^{2}$ him like that of a cannon at a diftance: that all the way he came, as far as London-Bridge, the people were alarmed at it.
3. As I paffed thro' the Meres to-day, a little before I, I fctt a hock like an earthquake, and I thought I heard a hollow deep noife. Several women thereabouts came running out of their houfes much terrified.

At Leiceffr-Houfe they were apprehenfive the foundation was giving way, and were going to fend immediately for the furveyor.

All the way in my return home, I faw many groups of people together, and difcourfing upon this fhock that had juft happened; fome imagining it was occafioned by fome houfes being blown up in GoldLane, where there was a great fire, and others from fome powder-mills blowing up; the fame thing having been obferved about 9 years ago, from the like accident at the mills at Hounforv. If neither of theie caufes appear, it can be no other than an earthquake.
4. On Thurfday Feb. 8. 1749-50. at about half an hour after 12, as I was fitting reading with one elbow on the table,' on the ground-floor, in my houle at Eltham in Kent, I felt two fhocks from E. to W. which I immediately thought was an earthquake, as I had felt fomething like it once at Naples; and was confirmed in my opinion, by my wife's running down-ftairs frighted, and declaring it was an earthquake, the having felt one in the Weft Indies. She was in the room over me, in which room there was china ftanding on a cabinet, which, fhe fays, fhook in fuch a manner that the expected it to fall. My children, who were in the room over her, feem to have felt it ftronger; as they fay, they apprehended a cheft of drawers in their room was falling. The fervants that were in the kitchen, which has no room under it, feem to have felt but little of it. One that was writing fays he felt the dreffer move, and the wall, but thought it was only the fhutting of a door. Other
fervants

Meteorolagical Obfervations.

fervants in the fame room felt nothing at all of it. My gardener, who was at work in the garden, felt nothing of it.

The wind was at S. W. and had been high in the night and morning, but was very muchabated; and after this, for fome time, it was quite calm ; which I believe it is generally oblerved to be, in thole countrits where earthquakes are more trequent. A hight of pigeons I have, leemed to be much frightened.

Elibuin is about 8 miles S. S. E, from London-Bridge, and ftands on a hill.

This account was written before I had heard any thing from London.
5. I find, upon inquiry, that the earthquake on Thurfday laft was felt in a gentleman's houfe in this place, * pretty fenfibly, in two chambers, and in another over one of them, by a tremor of the wainfcot and utenfils, and a fmali fock fucceeding; but was not perceived at the other end of the houfe, in a room on the fame fory with the chambers. I hould have thought, when it was felt fo near us, as about 150 yards, our houfe, which I look upon as very fufceptible of impreffions, fo as to be thaken by the winds, would have been affected: but if it had, 'tis hardly poflible but fome of the family muft have perceived it, confidering the parts they were in, and their being chiefly in a fitting pofcure. I conclude therefore it could not be very confiderable here. I have endeavoured to learn whether it extended any further to the S. of us, but cannot yet find it did.

The wind has been chiefly S and S . W. for fome months paft, much longer than is ufual at any time of the year; and yet we have had but a fmall quantity of rain hereabout for the featon.-1 give you, on the othes fide, the ftate of the Barometer and Thermometer on the 8th, and two days before and after that, as obferved at London by Mr Canton, and by mylelf here, at $2^{h} p . m$. and at $8^{h} p$. m. each day. I thall only add, that yeiterday (the 13th) my Thermometer abroad at $\mathrm{I}^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. was at $59=$ to 27° above the treezing point : a degree of warmth exceeding what we had feveral days in laft June, at $2^{\mathrm{n}} \mathrm{p}$. m.

At London.

At $2 p . m$.
Barom. Thermom. Day.
6
7
8
9
10

At $8 p . m$.
Barom: Thermom:
29,27 43
$29,99 \quad 43$
29,95 52
$29,96 \quad 5^{2 \frac{1}{2}}$
$30,03 \quad 45^{\prime} 5$

At $2 p$. m.
Barom. Thernom.

At $B \mathrm{p} . \mathrm{m}$.
Burom. liberinom. Day.

6	20,18	49
7	29,94	49
8	29,88	20
9	$30,-$	56
10	29,88	55

6. It was felt here * at 40^{\prime} after noon. All the houfes were violently $\overline{\text { I Martyn, }}$ by, thaken, efpecially thofe which are neareft to the river. I was fitting in IF. M. S. Prof. my ftudy, which fronts the S. W. up one pair of ftairs. limagined that Bor Cantab. fomething heavy had fallen down in the roum below me. The fervants, Ibid. p. 600. who happened to be difperfed in feveral rooms, each of them thought dated Chelfey one of the others had thrown down fome heavy cheft or cabinet. A maid-fervant, who happened to be paffing from one of the under offices ${ }^{1740-50}$ to another, felt the ground fhake under her. As the place on which Read Feb. 15her feet were, was full 6 feet below the furface, I immediately concluded, that fuch a motion mult be occafioned only by an earthquake.

However, as moft of the neighbours were confident that the flock was occalioned by the blowing up of the powder-mills at Hounflaw, I difpatched a meffenger thither on horfeback, who brought me word, that the fhock was not felt either there or at Brentford; and that he could not learn that it had been felt farther weftward than Kenfington-turnpike.

I have alfo fince been inform'd, that it was felt at Fulbain; but a friend, who lives a little beyond Richmond, has fent me word, that they did not feel it there.

Of thofe who were in the ftreet, or upon the river, fome felt it, and others not.

I am credibly informed that letters from Calais and Boulogne mention it's having been felt on that coaft.

It feems therefore to have extended itfelf far to the E. ; but to have terminated in the W. about two miles beyond this place.
7. The earthquake was not felt at Ingaiffone, nor at Colrbefter, nor at this townt.

On Thurfday laf the lightning fell on 2 fteeples not far from Col

Trembley,
F. R.S. Ibid. p. 610 . Reaḱ

Fcb. 15.1749
8. With 5°

- Chelfey.
+ Harwich.
"Mr Trembley, who was going the next day for Hollard; was at the time of the earthquake with Mr Folkes in his fudy in 2ueen's-Sqsiare; where were allo the liarl of Masclesfeld and the Hon. Charles Bentinck; they all felt themfelves at the fame inftant Arongly lifted up, and prefently fet down again : they alfo heard a noife over their heads as of fome heavy piece of furniture being thrown down, whilt thofe who were in the room over them were-frighted, and apprehended the like accident had happened below-ftairsThe coachmen on the boxes of 2 coaches then ftanding at the door, were extremely fonfibie of the fhock, and apprechended the houfe was going to fall ugon them.

Meteoroiogical Obfervations.

-br SmartIechieullier, liq: F. R ~0 lbid. p. 613 Readivar. 1 1719-50.
8. With regard to the extent of the late earthquake this way (I mean due E. Irom London) I cannot learn that it panied the little river Rodden that runs by my gardens, and croffes the Harwich road at Great Ilford. My own houle ftands about a mile N. fro:n the 6 mile-flone. I was in my gardens with feveral workmen, and none of us were fenfible of any thing; but my wife, who was in her direfling-room, felt the houfe tremble to much, that, upon my coming in, the told me fhe verily believed there had been an earthquake; the motion of the houfe under her being exaktly like what fhe liad often heard defcribed when fhe was in I!aly.
XXIX. It is proper to obferve, that the following relations are not made by mean, ignorant, or fanciful people, but by perfons of good fenfe, whofe veracity is unqueftionable, and whole judgment in this cafe is, I think, rational and juft.
she Rev. Mr W. Ballow. Ibid. p. 692. Read May 24 1750.
The Earthquake at London was on Tburfday, February 8. about noon.
That, in the night, betwixt Tburfday the 8th of Feb. 1749. and the day following, towards one as he was reading in bed, he was fenfibly affected by a fudden hake : that, looking about, he obferved betwixt the foot-curtains, which were partly open, fome drawings which hung on the wall, allo the fide-curtains, in a trembling motion: that it immediately brought into his mind the earthquake in famaica in 1692 . which feveral years ago had been, at Jamaica, particularly defcribed to him, by a perion who was in the inland at the time of that earthquake.

That, the night above-mentioned, at what hour fhe cannot fay, the was greatly furprized by an unufual motion of her bed; which immediately brought to her thoughts the shock of an earthquake fhe felt feveral years before, to which in her mind the refembled the prefent fhake.

fame hoasfe.

That, in the night above-mentioned, towards one fhe perceived a fenfible motion of her bed, and (there being a light in the room) faw the curtains fhake. This fhe thought to be occafioned by the wind (which fhe then heard blow ftrong), fuppofing the fafh not to be clofe down: accordingly the rofe, and went to the windows, but found the fafhes intirely clofe.
N. B. Both the Commiffioner and the Iadies believe there was only a fingle fhake. Mifs Slade's houfe joins the Commiffioner's. On account of the dead time of the night in which it happened, not many people would be fenfible of the motion: of thofe who were, moft would naturally attribute it to the high wind, which then blew; and a month being paffed before any inquiry has ixen made, it is not to be wondered at that, but few recollect any thing concerning it. The Commiffioner, by reafon of frequent returns of the gout, does not neep up-ftairs, but in a very fmall room behind the houfe, joining to
the houfe, and communicating by a door with one of the back parlours. This building is fo low (being only a ground-floor, without any room over it), and is fo fkrecned by higher buildings, that hardly any wind can affect it ; efpecially the wind which blew that night; as the body of the Commifioner's houfe was betwixt that and the ftroke of the wind.
The dock is about 2 miles W. from Plynoutb, and about 220 almoft weft from London.
XXX. I. At very nearly half an hour after 5 this morning, being-March 8. then in bed, but perfectly awake, I felt a very ftrong flake, or rather 1749.50 a a 3 or 4 fucceffive fhakes of an earthquake, as I immediately took them London by to be. I judge the whole pbrenomenon to have lafted abour 3 or at moft the Prefident. $4^{\prime \prime}$; and the fhocks appeared to differ from what I had felt on the 8th Read Marcin of laft month, in this particular, that I did not now perceive that lifting $8.1 / 49.50$. upwards, and fudden fittling again, which I was then fenfible of; nor did I hear that diftinct noife, as of a great weight falling, which molt people were then furprized with: but what now moft affected me was the fenfation of very quick thakes, or of a Tremor, as it appeared in a horizontal direction; and I heard, during all the time, a lort of crackling of the wainfor, window-frames, and floor, with fuch a rattling in the chimney, as I have fometimes heard upon a fudden and ftrong guft of wind.

I inftantly jumped out of bed, to fee if there was any damage done; and going to my chamber-door, I met my daughter running in a fright from her room, who faid the was waked with fuch a fhock, that the thought her room had been falling; two men-fervants alfo, who lay in the garret, and whom I had called to, anfwered me whilft I was talking to my daughter, that they were both awakened by the fhock, and that they felt, as they both expreffed it, fuch a motion, as they had fometimes known given to a child in a cradle.

Prefently after I had got on my clothes, I fpoke to fome of my neighbours, who all gave me very nearly the fame account as this I have been juft giving of what I had obferved myfelf; only fome added, particularly a gentleman who lives in an older houfe than mine, that he apprehended, from a crackling noife over his heak, that a chimney had been thrown down, and was then breaking thro' the tiles and lathing of his houfe.

I fent a fervant about 7 , and he met a countryman, who was bringing a load of hay from beyond Higggate, and who was on the other fide of the town when the fhock happened; he did not, he faid, feel it, as he was driving his waggon; but that the people he faw in the town of Highgate were all greatly furprized, faying they had their houfes very much hocked, and that the chairs in fome were thrown about in their rooms.

Meteorological Objervations.

The chamber I lie in is up two pair of ftairs forwards, and my bed ftands N. W. and S. E. I took particular notice, that there was neither cart nor coach going by, but that every ening was entirely quict at the time.
—bs the Rov. Air
Tho. Birch.
F. R.S. Jbid
p. 615. Rcad March x. $8-4550$
2. This morning, T'barjday Marcb S. 1749-50 about $1 S^{\prime}$ before 6 , aceording to equal time, or haif an hour after 5 by the fun, Ifelt, in my hed-chamber, on the fecond fory of my houle in Norfolk-freel, adjoining to the river, a fhock of an earthquake, much Aronger, alid of longer duration, than that which I had telt on Thurfday Ficb. 8. I was full awake, and had jult begun to drefs myfelf, when 1 was alarmed with the trembling of the rooin, attended with a noife fomewhat differem from that of the former fhock this day month, which feemed to be cecationed by fome great weight falling upon the floor above me; whereas the noife of this latter appeared to mac caufed only by the tremuluts motion of the whole room and the adjoining ones, the walls, wainfict, furniture, \mathcal{B}_{i}.

When I came down to my ftudy on the firft floor, I found a book thrown down from an upper theif.

My family were awakened by the fhock. The air was at that time, and for fome hours after, extremely calm, and the wind wefterly.

This account was drawn up immediately before I had feen any other pection, except my own family.

I have been fince told by a gentleman, who refided many years in the Wioft Indies, that this laft fhock was more violent than any he had felt there, except one at Carthagena, in which a city, about 200 leagues diffant from thence, was fwallowed up at that inftant.

Another gentlenan defcribed to me the fenfation, upon being awakeened by the motion, to be like that of falling into a fit.

-ab Mr

 Henry Baker, F. R. S. Ibid. p. 61\%. Read varen 8.1749-50.
3. About 40^{\prime} after 5 this morning I was waked out of a found fleep by a great noite, hardly to be defcribed, but what feemed then to me as if the roof of the houfe was tumbling in, or like the rumbling I have fometimes heard thunder make before a very loud clap. It continued 2 or $3^{\prime \prime}$ as nearly as I could guefs, under the furprize of being awaked fo fuddenly ; during which time the windows rattled, the tables, chairs, and other furniture in the room, shook greatly ; and a brafs warmingpan, in particular, that ftood upon a marble flab before the chimney, made a very remarkable ringing and jarring noife.

Two maids, in a room over mine, were alfo waked by it, and got up immediately, being frighted by the fhaking of the bed on which they lay; but for my own part I felt little or no motion of my own bed. However, as moft people who were in bed agree in defcribing fuch a motion, it was probably that which waked me, tho' the violence of it might be over, before I was fufficiently awake to take due notice of it.

My fon was likewife waked by the great rattling of the windows in Lis chamber, which he at firft imagined to be Roaken by a high wind,放.

Meteoraragicial Obfervations.

thee being apt in arake fome noile in windy weather, though never tike what he then heard, which feemed like opening a cafement-window and flutring it again very fuddenly and violently. A cat that lay uibon his bed ftarted up in much furprize.

Several people in the neighbourhood went out into the ftreets, and others got upon the leads of their houfes, to fee if any damage was done. Some milk-women fele it very Atongly as they were milking their cows near Maribone. It was violent in Bond-ftreet, and all that quarter of the town; and I find, by people tiving in very different and diftant parts of London and Weftminffer, that it was felt univerially through the whole, and was not longer in continuance, but tiat it's motion was more violent and thocking than the earthquake, which happened on Fib. 8.

A waterman that was lying in his boat, then at anchor near Kingfonms told a friend of mine, that he was frighted with fomething like a violent blow Atriking againit the bottom of the boat ; that the water was mucls agitated, and that the barges and other velfels upon the river were toffed about as in a tempert.
4. As I was walking this morning in my garden at Kenjington Gravelpits, about 40 'after 5 by my watch, I felt an exceeding great fhock, a fuccuffion of the earth, attended with an explofion that, I fancy, refembled the blowing up of a mine, and with the fame kind of noife. It was followed by a trembling, very brifk at firt, which gradually abated; and in about $3^{\prime \prime}$, as near as I can judge, totally ceafed. The tremor was attended with the noife of a diftant thunder, which, with the motion, gradually died away.

I am not certain the building near me moved; but I fanfied it did. My feet I am fure felt great emotion; and a large watering-pot, of 9 inches bafe, that food near me, was thrown all along, the moment the trembling ceafed.
P. S. I have fince difcovered that my watering-pot was overfer by 2 brick that was thrown off the houfe by the fhock.
5. At 40^{\prime} paft 5 this morning, as I lay awake in a two pair of ftairs room, I heard a noife, firt as if the top of the houfe was cracking, and then as if it fell in. Inftantaneounly the houfe fhook with great violence, rocking to and fro from N. E. to S. W. fo as to make all the furniture rattle, the windows and bells ring. It alio waked all the family, but the fervants in the garrets felt the greater fhock.
\qquad tin Clarc. $\mathrm{E} / \mathrm{\beta}$ F. R. S. Ibid. p. 620. Real March 8. 1749-5c.

It is reported, that two fmall hocks preceded this, one at 12 laft night, the other at 2 this morning; but I cannot fay I felt either.

The milk-people in the fields were very fenfible of this earthquake, and fay, that it began by a report like that of a cannon fired near at hand. Thofe who were milking in a barn thought it was coming down; but were not fo fenfible of the earth's motion as thofe milking in the fields, who could fcarcely ftand. The cows were alfo frightened, and ran away from the people.

VOL. X. Part ii

This earthquake was univerfally felt at Hampfead, and much Atronger than that ori Fek. 8.
-by the Rov Mir Roger Pickering F. R. S. Fbid p. 622. Rad Marci 8. 1749-50.
6. The earthquake this morning, which happened at fo early an hour as to furprize moft people in their fleep, I had all the opportunities imarginable of obferving to as much exactneis as phenomena of this nature can be; and therefore prefent you with this early intelligence.
Abour: after 5 I was lying in bed awike, and under the compofure which one generally feels upon recovering from a regular and refrefling Reep. To this the ferenity of the morning grearly contributed, as weti as the gradual increafe of light, which, the fhutters being open, could eafly be perccived through the linnen furniture of the bed and wincowcurcains. I mention this particular, becaufe, every objeEt in the chanber being thus rendered fufficiently diftinct, I had the opportunity of examining the event by the evidence of my eyes, as well as that of my ears: : On a fudden theard a found like that of a blaft of wind; fuch a blaft I mcan, as thofe we perceive in the dry windy days, fo frequent with us about the equinoxes; one that, at different intervals, rilics grata dually to its full ftrength, and gradually dies off. The attention this occafioned led me very fenfibly to perceive niyfelf raifed in my bed (which food N. and S.) and to obferve, that the motion, as I lay upon my back, began on my right fide, and from head to foot inclined me towards the left.

- This was nearly inftantaneous with the commencement of the blaft, and I immediarely concluded it to be an attack of the fame kind with that on this day was a month. The fenfation I felt at this time was rather folemn than ferrifying; fo that I patiently lay to obferve the following circumftances.
The firt Shock being given, the motion that followed was that of a very quick vibration; and looking at the curtains of the bed, I perceived their motion was fimilar. The hinges of the drawers of a dref-fing-table on my right hand clapped, not only diftinctly, but confiderably loud; and a found, fuitable to its materials, came from every moveable body in the room. The whole fhock, to my judgment, iafted about 10 or $12^{\prime \prime}$; when, the rufhing noife above mentioned having gradually died away, every thing was refored to that calmnefs which bad preceded the event.

I then rofe, and found by my watch that it was half an hour paft 5.
I am not able to judge of the comparative force of this fhock with that on this day month; for I was then at my houfe on Enfeld-cbace, where it was not in the leaft perceived, nor nearer to there (as 1 can learn) than Edmonton, which lies, in a S. E. direction, about 3 miles nearer to town. But one of my chimnies in town has fuffered by this fhock; and I am informed that two orhers have been thrown down in Monkwsell-Atreet and Gowin-frest, which lie in a N. W. direction, from Aldermanbury, at about $\frac{1}{\gamma}$ a mule diftance.

Mresecroignical Objervations.

I think I have fomewhere found it obferved by the ancient indeufalifts, that earthquakes ufually, tho' not conftant y, happen in the furing and autumn; and the principle thoy go upon gives fome credir to sheir obfervation. However, this induced me to look over my minutes of fuch earthquakes with us as have come to my knowledge fnece the midde of the lalt century. Thefel found as foitiow ; siz.

19 Yar. 1665-6. ar Oxford about 6 even.
17 Sept. 1683 . at dilto ——about 7 morn.
9 OEF. ditto thro' the midhand counties about 11 might.
8 Sept. 1692. $\left\{\begin{array}{c}\text { In London, and parts adjacent, } \\ \text { and in she Englifb camp in } \\ \text { Flanders }\end{array}\right\}$ about 2 p. n.
28 Dec. 1\%03. In the N. of England —about 5 even .
8 February, $\left\{\begin{array}{l}\text { In London, and about } 7 \text { miles } \\ \text { round, and from }\end{array}\right.$
1749-50. $\left\{\begin{array}{l}\text { round, and from private }\} \text { about } 12: \hat{p} . \mathrm{m} . \\ \text { hands at } \text { Calais }\end{array}\right.$
8 March, dilito In Londun, where elic, at pre- $\}$ about 5 : morn.
Out of thefe 7 inftances, you will perceive, that 3 have happened in the autumn, 2 in fpring, and 2 in Dec. and Fan. to that the balance in favour of the ancient obfervations is as 5 to 2. I beg leave allo to obferve, that of thefe, the 2 in the fpring are thole we have fo lately felt, and thofe, after the openeft winter, and in the warmeft fpring, that our country, poffibly, ever knew. How far this obfervation may be applicable to adjuft the caufe of the two late earthqualees, it would be impertinent in me to offer.
7. He was jult come into the garden (at an hour after 5), and was fearce arrived at the great tree, near the little door under Harcourl's ; buildings (which is about 10 or 12 yards perhaps diftant from Harcourt's buildings), when he hearda great noise, louder by much than the noife of the explofions upon the proof of the great cannon at Waolvich, when full-charged (at which proofs he has been often prefent); nay louder, be tbougbt, than any noife be ever beard. This noife feemed to conse from behind the buildings; and his face was then oppofite to them.

At the fame inftant he faw the whole building move uproards, then incline forswards towards him (fo that he thought it would fall upon him) ; then recline backwards, and then fettle; at which time all the zoindows rattled and clattered, as upon an explofion of a cannon; the found in the interim rolling away (feemingly from the water-fide up towards $T_{\text {emple-Bar) }}$ juft like the rolling found or echo which accompanies or fucceeds the explofion of thunder, or of Thip-guns.

As to the continuance, he often expreffed himfelf that it was as a tbought; and, in point of time, he fuppored it could not be $3^{\prime \prime}$.

The found and the motion began both together; but the found was quite rolled off, rather fooner than the buildings were fettled.

Mettorological Objeruations.

I afked him how much he judged the declination of the building to have been froin the perpendicular? he anfwered, "that it was impoffi" ble to be exact in relating that particular, both by reaton of the fur"prize he was in, and alfo from the fuddennels of the whole compals " of the appearance, which was but as a thought." However, in order to form fome notion of it, I made a comparative inclination of the garden key, which 1 held perpendicular to my hand, and moved backwards and forwards, till he fhould judge it to approach neareft to what he could recollect of the heeling of the buildings (which indeed was but an inaccurate method of coming at the truth of a thing profeffedly uncertain even to the relator): It feemed to me, by his delcription in this rough comparifon (in which I might eafily miftake him) to Lee a declination of feveral degrees from the perpendicular; which is alfo agrecable to his apprehenfion, that the building would fall upon him. Poffibly, his furprize might magnify the appearance far beyond the reality.

I then inquired what perception he had of his own perfonal motion, and that of the particular ipot of ground whbereon be then flood? he faid, his furprize was fo great, on feeing fo new and uncommon an appearance (for he was not in or near London when the laft earthquake happened), that he either had no perception at all concerning himfelf and the ground under him; or at leaft was fo intirely engaged in obferving what he faw and heard, that he had no attention to what he felt.
N. B. 1 made this memorandum immediately after converfing with this Robert Sbase ; and therefore I fuppofe it contains a tolerably exact account of what he related to me.
-by the
Rew H Mile D.D.ER.S. Ibid. p. 628. Read March 15. 1749.
8. At $5^{\prime 3} 40^{\prime}$ nearly, equal time, I was ftanding in my ftudy, when I heard a noife, at the firft moment, very like the explofion I heard feveral years ago, when fome drying and ftorehoufes of gunpowder were blown up about 6 miles from us : this noife iffued in a murmur in the air, like diftant thunder, and ended like a ruhing wind : there was no perceivable intermiffion in the noife from firt to laft; it feemed to come from the W. and continued about $4^{\prime \prime}$ exclufive of the tremor, which lafted fome time after the noife feemed to have ceafed. I found no motion of the floor, which is over a cellar, upon a level with other adjoining ground-floors; but the doors of my book-preffes, at the weft end of the room, Shook to and again, and the rings on the doors rattled exceedingly; but I was not fenfible of any motion of the other doors on the fides of the room, near to fome of which I then ftood. Such of the family as were in bed felt their beds to be raifed up, and then fhaken from fide to fide.

A fenfible young gentleman, who called upon me that morning as he came from London, told me, that, confidering the fituation his bed was placed in, and the motion he felt from one fide to another, he concluded the fhock proceeded from the W. The fame obfervation, he faid, others had made, with whom he had talked.

It was univerfally felt here *, and very much at the following places around us: at Merton, about a mile S. W. from us, and at Mircham, about 2 miles S. at Croydon, 4 miles S fome tiles fell from houfes; it greatly alarmed the inhabitants of Strentbom, about a mile and :E. of us; at Clapbam, two miles and a half N. a chimney, and other parts of a building feil down; at Wandfworlh, two miles N. W. the fhock was very great; efpecially near the fide of the Tbames. It was felt likewife at Epform, about nine miles S. W. from us; but how much farther, my information does not fay.

Upon inquiry made of feveral perfons, who were abroad at the time, going to their work, I cannot hear of any one, who faw any lightning, perceived any noife, or felr any thing of an earthquake. +

The ftates of the Barometer and Thermometer were not remarkably different from what they had been for feveral preceding days; however 1 have added them underneath.

7 day at $4^{\text {h a m mar. }} 30,07$. Therm. 3^{2} almoft, Wind W. clear ${ }_{3}$ and white frolt.
D° at $9^{\prime 1}$ p.m. Bar. 29,99. Therm. 40, clear evening.
8 day at $4^{\text {h }}$ a. ni. Bar. 30,07 . Therm. 40 , cloudy morning. Wind W. D° at $2^{h} p . m$. Bar. 30,14 . Therm. 58 , cloudy evening. Wind W.
9. It was much ftronger than that which happened in Feb. two great -by Jobn fhocks being felt prefently after each other. Thofe who were out of Martyn, doors felt the ground thake under them very fenfibly; whereas, in the ${ }^{F}$ F.R.S. Prof. former, few were fenfible of the flock, except thofe who were in Bot. Cantab. houfes. I do not hear of any mifchief done by it in this neighbourhood; \|l Read p. 63 o. neither can I learn that it extended farther weftward than the former. 15.1749. I am very well aflured, that it was ftrongly felt at Fulbam, and at Turnbam-Green.

Several were fenfible of a fmaller fhock about 3 the fame morning ; and fome talk of unufual appearances in the air. But this laft circumflance feems not very well attefted. For my own part, I looked out of my chamber-window to the S.W. at \div after 5 , and only perceived it to be a grey morning, fuch as ufually predicts a fine day.

10 As there happened fome particular circumftances in the laft violent fhock of an earthquake, that were not taken notice of at our laft meeting, I prefume therefore to fend you the obfervations I made thereon, as they appeared to me at my houfe in Bloomfoury.
\qquad chael Rufiel Efq; F. R.S. lbid. p. $63 \mathrm{~F}=$ Read March morning, I was awakened by a violent percuffion of my bed; the fhocks, 1 apprehend, lafted about 10 or $12^{\prime \prime}$, becaufe my bed was rocked from one fide to the other feveral times. The motion appeared to me to be in a horizontal direction. I heard no noife before the fhake; but if any, it might perhaps occafion my being fo thoroughly awakened. My fervants told me they heard a report like a great blaft of wind with a

[^23]clattering and fnapping of the windows and doors of che houfe, as they expretied is.

In my dining-room there mas an India cabinet, on which was placed fome ornamental Cbina, part of which was thrown down on the floor, and fome broke.

But what was mof remarkable, I had two Cobina figures placed on the cabinet, with their faces fronting the W. which were, by the feveral fhocks, turned about facing the N. E. which I took to be nearly ; of the circumference of a circle. In this fituation I found them as forn as 1 arofe in the morning; and 1 am affured nobody had been in the room betore to difplace them.

Since, I was told by fome cempany, that were ay houre, that a porter was going down Cbantery-Lane to call a genteman to go to the Brentford election, and, in his way, as he calied it, was ftruck with a blaft, turned round on his heel, and fell down, and has not been well fince. Alfo another perion, that was fet our on tome bufinefs, was nearly turned round by the frock; which feems a little to confirm the moving the Cbina figures in the direction before mentioned.
by James 11. Between 5 and 6 in the morning I was awaked by a violent mo-
tion of the houfe, with a great noife refembling the fall of fome heavy body over-head: at waking I found my bed move very much; but in my furprize could not diftinguifh what kind of motion it might be, as to its direction; this being momentary, as well as my furprize, I faw and heard the Cbina rattle upon a cabinet in my chamber, and perceived a trembling motion in the room for feveral feconds. My wife was alfo difturbed; and afking what was the matter, I faid I felt a flock, which I believed to be like what had happened that day month: The anfwered, if this is one, I felt another about 2 this morning, while you flept. I immediately looked at my watch, and faw it was 36^{\prime} or 37^{\prime} after 5. I obferved a light Shine in at my windows more than was natural; and from the rednefs of the fky , and clearnefs of the morning, concluded the fun was rifing; but imagined it fomething ftrange it fhould rife fo many minutes fooner than was ulual upon the 8 ch of March: upon which I rofe, and went to my window, which looked eaftward, and then faw it was a red light only, extended from about N. N. E. to S. E. which I take to be that mentioned by the Rev. Dr Miles laft Thburfday.

Then I went into the fquare, where feveral fervants came out of their houres much frighted. They all felt it the fame way; and feveral labourers and market-people told me they were fhaken very much as they walked, and that all Nerogate-Market was in the greateft confufion imaginable, no one thinking himfelf fafe. The greateft part of thofe I fpoke to about it heard the fame fort of noife that occurred to me at the time.

Many complained all day of great ficknefs at the ftomach, and beadacbes; I had the latter 3 or 4^{h} after it; and others of my acquaintance felt pains in the back the greateft part of that day.

At Mery'-bon it was univerfally felt; and with the greateft violence imaginable. At one houfe where 1 was at 12 that day, a maid-fervant faid, the was thrown firt to one fide; and then back to the other; and many compared it to the rocking of a cradle. I inquired particularly of fuch as were thus rocked, about the fituation of their beds, and obferved, that, though all defribed the motion to be from fide to fide, their beds were in all directions.

As to the fhock which was faid to be felt at two the fame morning, there can be no doubt of it; for I went to feveral families in my neighbourhond, who pofitively afferted it to be true; but all faid it was not io treng as that which happened atterwards; nor could any one fay he was awaked by it : on the coiltrary, all thofe, who felt it, faid they were awake before it happened. As for myfelf, I did not perceive it, being afleep; and therefore I hould be inclined to think the motion to be infufficient to difturb a fleeping perfon; for I am eafily difturbed.

There is a ftrong report of a trembling motion being felt at two on Firidmy morning following, which lafted not long, and another at four the fame morning which lafted feveral minutes, without any noife. I met counfellor IVilliam Swinburn, of Devonhire-freet, who told me, that Mr Love, an eminent Apothecary at Woftminfter, declared to him, that he had occafion to be up that night, and wis very fenfible of thofe trembling motions both times ; and I have been fince informed, that one Mrs Mar/hal of Quecn's- Gquare fele the motion about two that morning, but was not fenfible of the other.

I alfo made fome inquirics concerning the extent of the fhock of Tburfday morning, and was informed by Fobn Wolff, Efq; a great ftudier of nature, that he wrote to his gardener at his houfe at Ha Jely-Court near Tedford in Oxfordbire about it, with orders to go to Henley upon Thames, and inquire whether it was felt there, and he wrote back word, that the market-people who came there from 20 miles round knew nothing of it. I was alfo informed by Mr Sberwood of this Society, that it was not felt at Hora-Church, a gentleman having fent his fervant on purpore to know; nor any further that way than Mford. It was alfo felt at Stamore, but not at Watford, five miles further.

I was yefterday in the city, and a gentleman faid, the fifh in his ponds were remarkably difturbed by the fhock, and that many of them beaped quite out of the water upon the bank; and while he was relating this, another came in, who faid, the fame happened in a pond of his, and in that of another gentleman in his neighbourhood at the fame time.
12. Mr Yofiab Borfield, of Gravel-Lane, near St George's Fizlds, Soutb- \qquad wark, told me, that at the time of the earthquake, he was not far from Burrow, $E / q=$ his canal, and that it was a clear ftill morning; the air (as he expreffed it) as clear as a bell, with not a breath of wind ftirring. As clear as a bell, except that fmall hazinefs which there almoft always is in the norning-air.
F.R S. of what Mr Boyñeld rold ${ }^{\text {a }}$方m concerning the fame Ibid.
p. 637. Read March 22.1749.

Metiorological Objfercations.

He heard, he faid, a great noife like thunder; which he at firlt too's to be the repor of fhip gins; and immediately after the ground hrook and arembled under hirn, and he lieard his men fay, Look at the fifh. The found came froms the S. E and moved to the W. or N. W. over Weffoinfter: It went off rattling like ten thouland cannon; and lie thought that W efminnfer- $A b b c y$, and all that fart of the town was comeing riown. The found preceded the notion, and was ended belore the motion ceafed.

He wert, he fays, nearer to the canal, and faw the water much difrurbed; but he did not himfelf actually fee the fifh leap out of the water: however, fome of his men, whole account he can depend upon, faw feyeral roach leap up, and faw the filh in general fhoor away in all forts of dircetions, and feem to nift for chemelves, as if they were frighteed and alarned at what had happened.
-byc. Mortiner, M D. Sicr. R. S. Ibid. p 6;:. Read March 22. 2750.
13. I awaked a little after 5; I opened my curtains, and obferved the fky hazy: I drank a diraughe of water, and, looking on my watch, found it to be but an hour paft 5 ; and therefore was going to lie down again in my bed; when, leaning upon my right elbow, I firlt felt a hook, as if the whole houfe was violently pufhed from the N. W. to the S. E. and then, with equal force, pufhed back again from S. E. to N. W. between which fhocks I heard a dull noife; as if fomething heavy, but foft, rolled to and fro' in the garret over my head. I faw the cornice and ceiling of the room fenfibly move, and then perceived a third and fourth fhock, fo flow as to give me time to reflect what might be the event; and then a fifth and fixth, which I own began to frighten me ; the ftrokes feeming to be exceeding ftrong; not at all like a quaking or tremulous motion, but like a forcible fhoving backwards and forwards; much refembling the rocking of a coach, when croffing the rutts, or giving way to another carriage. My fon, who lay in the next room called out in the midft of it to know what was the matter? faying, the wainfcot partition between the two rooms feemed as if rending afunder. The whole feemed to have lafted about $3^{\prime \prime}$. I find that a poit, which fupports the above-mentioned partition clofe to the door-cafe, has given way a little; the paint being frefh cracked; and a crack in a wall upon the ftairs is grown fomething wider. The door between the two rooms, which thuts with a fall-latch, that was unlatched by the firft earthquake, and flapped to and fro' 3 or four times, was not unlatched by this laft ; which 1 think is an argument, that by the firft the houfe was lifted up, and that it was not fo by the laft, but only rocked from fide to fide.

I am credibly informed of a pannel of wainfoot in the city being wrenched out of the groove, and not returning into it again.

-by the

 Rev.H.Miles, D.D. F.R.S.Ibid. p. 639 .
Read Marci
22. 1750.
14. It having been commonly reported, that there was much lightning on the morning, and about the time when the earthquake happened on the \|th of this inftant, I was induced to get what information I could of the truth of it, in this neighbourhood.

A per-

Meteorological Obfervations.

A perfon who went into an open cart at 4 that morning at Mitcham, for London, faw no appearance of lightning at all. Several other perfons, who were abroad, going to work, fome time before the earthquake happened, declare that they faw nune; nor were they fenfible of any noife, or motion in the earth.

I got inquiry to be made of the watchmen, who belong to the callicoprinters, and watch all night in the grounds, and received this anfwer from one, that he neither faw any lightning, nor heard any noife, and had no perception of an earthquake; and from another, who watched in other grounds, a mile or more diltant from the firt-mentioned, that he faw no lightning all that night; but fays, that he heard an unufual noife about the time in which the earthquake is faid to have happened; but this it feems was not fo remarkable as to have caufed him to take notice of it to any one, had he not afterwards been told there was an carthquake.

I have, befides this, made inquiry of various perfons, and cannot meet with one, who did fee any lightning, or who heard others fay that they had feen it.
P. S. I am credibly informed, that a gentleman's fervant at Wandfworth was watering his malter's horfe by the river-fide, at the time when the earthquake happened, who found the water fo much agitated on a fudden, that the horfe ftarted back, and would not drink.
15. Whilft I was in the country, I made as much inquiry into the - by the progrefs and extent of the earthquake northward as I was able; but could collect very little worth notice.

It was felt very fenfibly at Nortbare, and at Gubbins, the feat of Sir ham. Ibid. Feremy Sambrooke in that neighbourhood, whofe houfe was fhaken very p. 647. much. At a farm $\frac{3}{4}$ of a mile N. E. of Hatfield, it was felt by the Read March farmer and his family, but not perceived by the inhabitants of Hatfeld ${ }^{29.1749 .}$ itfelf.

In like manner at Herting fordbury, a village a fmall mile W. of Hertford, the fhock was felt diftinetly; but not obferved by any of the inhabitents of Hertford.

At my own houfe at Panfbanger, 2 miles W. of the above-mentioned town, the noife was heard twice, at the interval of about a minute, refembling the rumbling of a cart through the ftreets; but no fhock felt either within or without-doors.

This circumftance of the noife being heard without any fenfible tremor or heavings of the earth, makes me imagine, that the force of the vapour was fpent before it reached that place; and thereabouts may be reckoned the northern limit of the earthquake; at leaft, I have not heard of any places more to the N . that were affected by it. It is no wonder, in a fhock fo fudden and alarming, that very few fatisfactory obfervations are made, either as to the nature of the fhock, the direcYOL. X. Part ii.

Lion

Meteorological Objervations.

 tion of the trensor, the time it was felt, or it's duration; of none of which can I give you any particulars.-The Pre Gident's report of the account given bim by Tho. Burrar, of Kenfingron Thid. p. 681.
Read April
26. 1750.
16. Un Tusfday the 24 th of this prefent April 1750. Mr Thomas Burrat, of Kenfington, a hufbandman, and bailiff to the R. Hion. Henry Fox, Efq; of Holland-House, gave me the following account:

That, being early about his bufinefs in the grounds about of a mile from the faid houfe, on Tburfday the 8th day of March laft, as he was going to tell his fheep (which he does every morning, and which were then lying down on a dry noping piece of ground), he heard, as he thought, about \div after five a noife; much like thunder at a diftance ; which coming, to his apprehenfion, from the N. W. cointinued fome frnalt sime, growing louder as it came nearer him, and gave a crack (fo he expreffed himfelf) over his head; and then went off in the fame manner it came on towards the S. E.

He faid, that the fky was, to his thinking, quite clear, and without any cloud; and that he faw neither lightning, nor any appearance of fire; but that, imonediately after the crack, he found the ground to thake under him; and that he even faw it move where he was (though as dry and found a for as any he knows) like a quagmire or quickfand; infonuch that he could not help being apprehenfive, that it would have opened, and taken him in.

He lays, that the fheep he was beginning to tell all farted up at once, as frighted, and prefently began to run, as if purfued by fomewhat they wero apprehenfive of He faid further, that he took notice, that feveral crows, which were at rooft upon fome trees not far off, all at the fame inftant flew away, making the fame noife they conftantly make when they are affrighted at the difcovesy of a bird of prey, or any other enemy; and that the trees themfelves very fenfibly trembled and Thook.

The noife he heard began a fenfible time before the flake of the earth; and he judges that the whole matter lafted better than a minute.

He firft expreffed himfelf about the direction of the noife he heard in the manner juft above related; and, being afked again concerning that particular, he explained himfelf by faying, that, to his thinking, it came on from between Hillington and Harrose on the Hill, and went off over Deptford: which may be obferved to be very agreeable to his other defeription.

Mr Bird, the eminent mathematical inftrument-maker in the Strand, told me alfo the fame day, that he heard, at his houfe, a noife, like the difcharge of a cannon at fome diftance, juft before the earthquake; and that his bed, in which he then was, was very fenfibly rocked from righe to left twiee: and that he is well affured the fect of the bed were actually lifted up from the floor, during the motion; as he was very fenfible, by the noife they made when they came to the floor again, 4 times in all, twice to his right hand, and as often to his left hand.
17. At a pot-houfe belonging to Mr Oad in Gravel-Lane, a large part of the roof, containing near two fquare, was intirely thrown down by
the laft earthquake, March 8. 1750. and feveral fifhermen, then at work, of a R oof of a imagined a porpoife, or fome other large fifh, had rifen under their Por honfe at boat.
by the funte: commanicated by MTr Wm. Jackfon, Potter, to C. Mortimer, M. D. Sec. R. S. Jbid. p. 700. Read Junc 21. 1750.
XXXI. I. By a letter I had from Mr Oakes at Portmouth, dated the -as Porst $3^{\text {th }}$ inftant, he gives me an account of the inhabitants being alarmed mouth, March with a fevere fhock of an carthquake on Sunday the 18 th at 6 in the evening; and that it was felt ftronger at the Common, which is about ${ }_{7}$ of a mile diftant.
F. R. S Ibid 6.6. Read Mir J. Ellicos,
2. Yefterday, about \div before fix in the evening, a light fhock of an earthquake was felt here. I don't find it was general, as many people felt nothing of it. It was felt fenfibly at Mr Carter's and Mr Tajlor's; fo that it is fomething more than fancy.
P. S. Since writing the above, I am told the fhock was very violently felt in the the of Wight yefterday.

Read March
3. The firft part of the preceding week was fine weather. Wednefday night it became damp and cold, and continued fo all Tburfday, with mifts. Friday was a fine day; Saturday damp and cloudy; Sunday morning fine. Juft before 6 in the evening we had fome large drops lor, vicar of of rain, and a thunder-cloud paffed to the S. E. juft as the earthquake Portmouth, happened.

The firft thing perceived was a hock, like the fudden ftop of a body in motion; a kind of jarring. This was fucceeded immediately by a in motion; a kind of jarring. This was fucceeded immediately by a Read March
gentle motion, nearly in the direction between E. and W. which made 29.175\%. 3 or 4 flow and deliberate vibrations. Thofe who fat facing the E. or W. were moved backward and forward; and thofe who faced to the N . or S were moved fideways. The whole was attended with a noife like that of thunder at a very great diftance. It lafted, as 1 judge by different accounts, about 4 or $5^{\prime \prime}$.

I do not hear of any explofion. The fafhes and door in my chamber fhook, as in a blaft of wind a little ftronger than ordinary. Several, who were on the battlements of the church, felt it more violent, and heard the bell-frames and floor hhake and crack. Few on the ground, or in motion, were fenfible of it.

It was felt at Havant, 7 or 8 miles to the E. and at Fitchfield, 7 miles to the W.

It paffed to, or from, the Ife of Wight, where it affected the groundfloor, as much as the chambers here. It ran along the coaft between E. and W. but I have not heard that it was perceived at fea, or went far inland.

I am informed it has been felt at Guernfey and ferfey; fo that if ic moved horizontally, it muft be a confiderable depth under-ground; the
foundings from hence to thofe illands being, in fome places, 45 or 50 fathoms: fo that I Aatter myfelf, that the fmall refiftance which it can meet with at fea is to difproportionate to what it muft encounter under So many more fathoms of earth, that a more violent return will rather open and difcharge itfelf there, than do us any confiderable mifchief at land.
axin an exiral of a Letere from d.ir Berij. Conke. F R.S to Mr Pecers Collinfon, F.R.S. Ibid. p. 651. Read March 291.750.

——in an

 extrad of a lester froma zeniliman as Southampion to Jofsah Colebrooke, Aporbecary, F. R. S. Jhid n. 6;2 Read March 29.1750.4. Befides the fhock, which happened here * about 6 in the evening on the 18th inftant, as has been mentioned in the public prints from many neighbouring places, there was another, which was felt by fome betwixt 3 and 4 o'clock next morning: but whether this latter was as extenfive as the former, I cannot yet learn.

In the evening fhock, a gentleman of my acquaintance was fitting alone in his parlour by the fire with the doors fhut; the fpaniel-dog which lay as it were ancep before him, was fo terrified at the unufual motion, that he ran round the room in the greatelt fright and confufion, as endeavouring to find a way of efcape.
5. We have had nothing of an earthquake in thefe parts cill laft Sunday evening, when they had it all over the Ifle of Wight. My fon wrote me the lollowing account of it, which is dated at Newport, on Monday the 19th:
" Lait night, juft at 60^{\prime} clock, as my aunt and I were fitting tor "s gether, we felt an earthquake, and a terrible one I think. At firft "we heard a fmall noife, which we fuppofed was a chariot; and, as " the noife grew louder, the houfe began to fhake; till at laft the noife " grew fo loud, and the houle fhook to much, that we expected it "Would fall down. I believe it continued near a minute; and it was a u great mercy we were not all confumed. I confeis I was creadiully " frightened. We had nothing fell down from the fhelves in our c houfe; but both our neighbours had things thrown down from their " Ahelves. I heard a man fay there was another mock this morning be" "ween 3 and 4 , but we felt nothing of that. I believe it was felt a! "over the inand; for here is a man in town who felt it at St Helen's" Yefterday I heard they had a little of it at Portymostb and Lymington: and a fervant-maid in this town fays, fhe felt her chair fhake; and the windows hook, and the wainicot cracked, juft at the fame time: but I neither felt it, por can find any body befides that did.
6. I beg leave to give you fome account of what was felt in our houre at Hackney, on Sunday the 18 th, a little after 6 in the evening; as we have received accounts of the hock of an earchquake being telt of Batb, Pcrt/moutb, and fome other places on that day.

My coufin Peter Nerucome. was fitting in his chamber on the upper Door of the houfe, looking towards the fire, when he plainly perceived the hearth of his chimney to be moved; and immediately felt the chamber rock 3 or 4 times from W. to E. but heard no noife, as at the time of that fhock felt on the 8 th.

- Ine of Wight.

Read March
29. 1750.
-in a Lerter foom Mr Peter Newсоме, F. R.S. ro the Pref. concerving tha jame frock be. ing fole at Hackney, near London, 1bid. p. $6 ; 3$.

Being much furprized, he was running down-ftairs, and there met with one of the maid-fervants, who was running in a great fright out of another room on the fame floor; and, before they could fpeak, a young gentleman, of about 15 years old, came out of a clofet juft by, and they all at one moment afked each other if what chey had fele was not another earthquake.

In a chamber on the floor below, mafter Hadley, fon to the late Mr Hadley of this Society, was in his bed, being ill of a cold; he felt the bed move upwards fo fenfibly, that he imagined fomebody had got under it out of wantonnefs, and was lifting it up; and actually got out to look under the bed.

The fame was felt by a fervant, on the upper floor, at the other end of the houfe; and by another young gentleman underneath in that part alfo. The reft of the family, being all together below-ftairs, felt nothing of it.
7. On Sunday the 18 th inftant, at a very little after 6 in the afternoon, as mifs Letbieullier was fitting in her drefing-room up two pair of ftairs, fronting to the S. with a book before her, the felt fuch a fhook of an earthquake, as the apprehended, that the iminediately ran downftairs, frighted; and finding Mr Letbieullier her father, and another perfon, fiting together in the parlour, afked them, "if they had not "felt another fhock of an earthquake." But, finding that neither they, nor any one elfe, had perceived any thing like it, fhe neither faid or thought any more of it; fufpecting it might be only a fudden gutt of wind, or fome other accidental caufe.

On reading the accounts in the publick papers of a real hock of an earthquake being felt at Port fnsoutb, at the IJe of Wigbt, and at other places, exactly at the fame time, her father, and the gentlewoman who was in the parlour with him, began to doubt whether the young lady's apprehenfion was not founded upon fomewhat more than mere fancy or imagination; and Mr Newcome's account feems to render it probable that the felt a real motion.

Whether it was, or was not, I don't pretend to determine; ard fhould farce have mentioned it, if it had not fo exacty coincided with what Mr Newcome has communicated. I have no doubt of the fact above rehearled; having been affured of it by all the 3 perfons before fpoken of, who firt mentioned it in an accidental converfation upon the fubjcet, and afterwards (on being particularly interrogated) poficively and exprefsly attefted it.
XXXII. I have here inclofed a letter from my neighbour Mr Bow- -at Ear: man; at Molefey, near Hampton-Ccurt; whofe veracity and abilities to Molefey in: make the proper obfervations, 1 can depend on. I well remember the extraordinary redsefs, $\mathcal{S} t$. in the fky the evening bcforc, which he mentions. The fhock which he felt in a chair, was, as I guefs, in Italy; lit. Laying travelled much abroad.

Surry, Marcta 14. 1749.50. in a Litter from the Rx . Stephen W.ithout Hales, D. D\%.

Meteorological Obfersations.

510
EF F.R.S.: she Pref. ferzirg to inelofe a letter to him from Wal:er Rowman, E/q; Ibid. p. 684. Read May 3. 1750. chays after the fecond Thock, on the 14th of March, I believe, before 4 in the morning ; when fuil awake, I felt my houfe, for a fecond or two, fake, like a fpaniel juft come of water. IVIy bedl on the frair-cafe rung only one twitch. I rofe, looked out, and fave the moon thine bright, without one cloud, or one breath of wind; and finding rone of my iervants diffurbed, I returned to found and quict tleep.

It was exactly of the fame nature with the fecond fhock, a fhudder of the houfe from top to botrom; fo that I neither miftook the one nor the other for an explufion of Mr Norman's horfe-powder-mills, wherein, you know, he never works above 40 pounds at a time. Herel felt liothing like an explofion, but a concuffion, which any man may conceive, from his hand haking a bed upon cafters, if we may compare great things to imall. Nor can I deferibe the fecond fhock, felt alfo in bed, compared with this third, otherwife than by the fhudder of a horfe after fwisaming, more ftrong than that of a dog; while the fame bell founded all in confufion, as if it had been packed and toffed in a hamper.

March 13. in the evening, about fun-fet, the fky was dreadfully charged with a deep purple mixed with red, which, from the W. tinged the clouds by the S. quite to the E. and was fucceeded by a clear effulgent crimfon or pink-colour, luminous, as deep, as ever eyc pierced into the azure blue.

I neither have met with, nor heard of, any perfon, who felt this fecond fhake which I have defcribed. But, if any memorials are to be preferved of thefe feveral fhocks, all which I have felt moft diftinctly, I think this ought not to be forgot; becaufe I do not apprehend it to have been ftrong enough to have waked any perion, nor to alarm even any one awake in bed. And as for thofe who were up, and on foor, I do not think they could have perceived it, if I may judge by fuch a one, which I once felt by a fingle ftart of my chair, without knowing what it was, till I compared notes with my more experienced neighbours.
XXXIII. In the morning the fun fhone very bright ; which, between It and 12, was with dark clouds fo obfcured, as rendered it darker than common. Soon after, a violent clap of thunder, and a heavy fhower of hail, fucceeded : after which it grew again ferene; and in the evening about 6 , a fhock of an carthquake was felt in this town, and the neighbeuring villages, with (thro' mercy) no other damage than a
great furprize to all who felt it.
${ }_{M r}$ Green.

—as Bridport, March 18. 1749-50. in the poff. fcripe of a les rer from $M r$ Nath. Downe, ville. Ibid. p. 688. Read May 10. 1750.
XXXIV. I. On Monday night laft, about 10 , we felt in this city a 2750. in an fhock of an earthquake. It was fenfibly felt by all or moft of the inhabitants.

Ditants. A few bricks were fhaken off a chimney in Forefifiret: feve-exiraza of a ral houfe-bells were rung; the centincl at the caftle was hhaken off his tetter from feat in the centry-box; the houfes all over the town were fhaken, and munfer, coms my the people etribly frightened and alarmed, It bas been felt for fome Robert Paul, miles round the town, particularly at-Barn-Hill, where the houles were Eiqs E. R.S. greatly fhaken. . bnes of 10 of juods, Ibid. p. 683 .
2. We were greatly alarmed with a violent fhock of an earthquake ${ }^{1750}$ in Flintbetween 10 and II. I, who was in bed, was frequently moved up and hire, in an down; and the bed, having cafters, was removed fome fmall fpace from abprati of a its proper fituation.

During the fhock, a great noife was heard in the air; and, fome nights before, lights were feen in the Rky ; fuch as were previous to the earthquake in town.

Thanks to providence, no further mirchief has happened, than the terror this unufual phaniomenon occafioned in our fanily.

This place is about 2 miles froni the fea.
3. The inclofed extract is the only written account of the late carthquake which I can obtain from any of the Naturalifts in this country: and as I have converfed with feveral intelligent petfons who perceived it, the enclofed extract correfponds very exactly with their fentiments and obfervations uponit. I have now in my cuftody the original letter from Mr Seddon to Mr Pbilpot; and Thall not part from it without your direction.
-in Che.
fhire, in a letter from Mr Ph Warbarton to the Pref. frrving to inclofe an extrat of
a Lesser from the Rev. Mr Jotin Seddon, of War:ing:on in Lancaßhirs, to Mr in Chetter. Ibid p. 695. Retad June 14. 1750.
The late earthquake happened the $2 d$ of April, at 10 at night, as Extraf of a nearly as can be determined; if any thing, rather after than before. I leter from was at Liverpool at shat time, where the hook was not fo fenfible as the Rev. Mr at ome other places; and yet a perfon in company with us that had lived in Jamaica a great numberor years, and well acquainted with motions of this kind, having fele II in one night, declared it to be the fmarteft he ever foit. The duration of the motion was every-where ex, trenidy fhort, not exceeding, as nearly as I can guefs, 2 or $3^{\prime \prime}$.

As to ene nature of the motion, as far as I can judge of it myfelf, and from the oblervations of others, it feems to have been of the horizoneal kinct, proceeding in an undulating manner from N. W. to S. E.: I was in a firting poiture, and the motion I fele was like that of a veffel falling from the top of a wave, and rifing again upon the next. Mr Breckell of Laerpool, and others that I have converled with upon the fubject, reprefert it in the fame way.

It is, I think, univerfally agreed, that an uncommon noife attended the fhock, a noife that nuch refembied diftant thunder, or a hollow rumbling wind: furne perions alfo fay, that they perceived a fultry fulphureous fmell, much about the time of the flock; tho that day and
evening were remarkably cold; and whether ihis was real, or only imaginary, I cannot deternine.

The hook was felt as far N. as Lancafter, and as far to the S. as Wrexbam, and the adjacent parts; in all, about 70 miles N. and S. It was felt as far as Stoskport and Altringbam to the E . and quite into Flimffire on the W. that is, about 30 or $40^{\prime} \mathrm{E}$ and W.

The fluck was not fo great, or of fo long continuance, as to do any material damage. I think I heard of a large Cbina jar falling from a chimney-piece in a gentleman's houfe, of a piece of marble reared againft a wall talling and breaking, and two or thrce triting inftances of that kind. There is only one thing further that I would mention upon the uccafion : as foon as I felt the hock, I was immmediately apprehenfive what it was, and went out to fee whether there was any thing remarkable in the atmofphere. I then obferved a very uncommon appearance;玉iz. an infinite number of rays, procecding from all parts of the Heavens, converged to one point; no luminous body appeared at all. The rays were at firit of a bright yellow; afterwards they becanae bloodred. This plonomenon was not far from our zenitb. It continued about 20^{\prime}, and then difappeared.
The enfuing night was very ftormy; a large quantity of hail fell about two in the morning; and the barometer was extremely low.

- ap Win. bourn in Dor. Serfhire, May 41749 aird at Taunton in Somenfet. niire, July 1. 1747. by Mr Henry Baker, F.R.S. to the Pser. Ibid. p. 689 Read May 17. 1750.
XXXV. As the two remarkable fhocks of an earthquake, lately felt at London, may probably excite a curiofity of knowing what of the fame kind has happened in other parts of the kingdom within thefe few years, 1 wrote, about a week ago, to a fifter of my wife, who lives at Winbourne in Dorfetfire, defiring her to fend me the beft account the could collect, of an earthquake, which, in one of her letters fome months ago, fhe had mentioned to have felt herfelf at that place, in May lait year ; and the fubitance of her anfwer is as follows:

She fays, that, on the 4th of May 1749. about 10 in the morning, She was ftanding at one of the windows in her chamber, her fon (a boy about 9 years old) was fitting oh a bed in the middle of the room, and her fifter was in another chamber two rooms from her, all on the fame floor; when they heard a fudden blow (fo fhe expreffes it) that feemed to be very near, which fhook the houfe fo nhuch, that the windows rattled, and the floor fhook very much, and frighted her to fuch a degree, that fhe cried out, Lord, have mercy upon me, what is that? fuppofing it had been a burft of thunder. Then looking out, the fky was very clear, without any cloud near at hand ; but there feemed to be a heavy cloud hovering at a diftance, whence fhe and her fifter imagined the fhock came; for they had then no thought of an earthquake.

There was, fhe fays, but one blow, with a noife very loud, like the difcharge of a cannon; which made her fend to inquire if there were any powder-mills in that part of the country, but was affured there were none. Her hufband (Mr Bofton) was then at a place called

Cafhmoor, on the London road, 6 miles from Blandford, and about 8 from Winbourne, where he heard it in much the fame manner. Their next neighbour was at the fame time 12 miles diftant, and heard it there; and every body faid it was an earthquake.

It was heard at Sbapeck, about 4 miles from Winbousne; and at a place called Eaftbrook, about half a mile from Winbourne, the people fay it threw the pewter off the fhelves. She fays, I may depend upon it as a truth, that it was heard 20 miles round Winbourne; and adds, that prople were very much frighted, but no harm was donc.

1 had the honour, two years ago, to lay before you an account of an earthquake felt at Taunton in Somerfet/fire, and for 40 miles in length as well as breadth, on the ift of $\mathcal{F u l y}, 1747$. which was communicated to me by the Rev. Mr Gobn Fiorfer, who happened at that time to be there by accident. It was likewife by mere accident I came to the knowledge of what I have juft now been defcribing: which induces me to imagine, that hocks of this kind may poffibly happen more frequently than is commonly fuppofed, thongh we hear nothing of them : For, in country places, people are fo little attentive to fuch matters, thar, unlefs fome confiderable mifchief be done, they mind them very little at the time, and, as foon as over, think no more about them.
XXXVI. Mr Arderon writes me word from Norwich, that, on Tburfday laft, the 7 th inftant, as he and a friend were walking to take the air, a little to the W. of that city, they heard, about y in the evening, a kind of hollow noife, as loud as that of a large cannon. Which noife was once repeated nigh the fame place as an echo, and then continued dying as it were away for about : a minute.

They faw no lightning, nor any clouds, except a few thin whitin ones in the weftern horizon.

It was heard, he fays, by great numbers of people in the city of Norwich, notwithftanding the continual noife and hurry there: he likewife received accounts of it from Swantborpe, 6 miles S. W. and from Racka, 4 miles N. E. of that city, agreeing with the above defcription.
-at Norwich, June 7 . 1750 . by Mr H. Baker, F.R.S. to Prel. con. taining an extrag of a letter from Mr W. Arderon, F.R.S. Ibid. p. 6gs. Read June 15 . 1750.

He has not heard that any perion obferved any tremor of the earth; and confeffes his own furprize was to great, he does not know whether there was or not.

Mr Wilfon, a gentleman who was with him, thought the noife much refembled the fall of a great building; and a genteman at Norwich defcribed it like a large weight falling down upon a chamber-floor over his head.
XXXVII. 1. The air mild and calm, no wind ftirring, the fun fhin- - Aug 23. ing bright, at about 45^{\prime} paft 6 in the morning, a thock of an earch-1750 in an quake was fenfibly felt here, and hereabout, attended with a loud noife, extrai of a and crack (as fome call it): This was perccived both fouthward, and ${ }^{\text {letter from }}$

VUL. X. Part ii.
Uuu
north-
northwardly, for fome feconds. A gentleman from Nowark in Nottingham/hire, N. E. of us about 30 miies, fays it was alfo felt there.
Colk, F. R.S. dated Spadding ix Lincolnhire, Aug. 25.1550. Ibid. p. 725. Read Nov. 1. $1=50$.
2. The earthquake was fenfibly felt through the whole county of Lincolnfore, which is above 70 miles; but mott ftrongly on the coaft. The weather had been for tome days before mild and calm : an Aurora Borealis appeared vertically, fhooting rays of all colours around, which turned to a very deep red colour.
XXXVIII. 1. On sunday laft, rather before one, whilit we were at church, we had an earthquake here. The noife, to the beft of my judigment, continued near a minute; but was not fo loud as either of thole I heard at London. Several of the congregation perceived the ground to tremble; but I cannot fay I did. It is faid to have been more violent in feveral places in the neighbourhood than here; but this I much queftion. Alfo the day I went thro' Siamford to Grantbam, in my way to Korkfloire, an earthquake was felt in buth thofe places: fo that I have been within the knowledge of no lefs than 4 of thefe flocks of nature in eight months time; but, thank God, none of them attended with any ill confequences, any farther than furnifhing room for melancholy reflections upon fuch a difagreeable alteration in our climate, which had been generally thought before tolerably free from this calamity.
2. This morning I have been making a vifit at Lord Cornwallis's at Cuiford, about 4 miles from Bury in Suffolk. Lady Cornwallis (whofe judgment and accuracy are fuperior to all doubt or exception, and-her veracity ftill more fo) affured me, that on Sunday laft, about one, as fhe was fitting and reading in her dreffing-room at Culford, fhe fuddenly feit and faw her chair and perfon move backwards and forwards; fo that fie fearched and examined whether any dog had got under her feet and chair, or any one entered her chamber unperceived; but found herfelf ablolutely alone in the roum : whereupon the tried, whecher, by Jaying her hand or elbow upon the table, fle could repeat the fane motion, oi any thing like it; but could not. She added, that fhe feit herfelf a good deal furprized at this extraordinary fenfation, at the inftant of perceiving it : but neither then, nor afterwards, had the leaft imagination about an earthquake; till, upon coming down to dinner, She was afked by Mifs Cbarlotte Cornwallis, her fecond daughter, a young Jady grown up, "Whether the had not felt the earthquake?" Mils Cbarlotce agreed to the time; and was herfelf alfo fitting and reading in her own dreffing-room, which was one pair of ftairs higher than her ladythip's, yet on the fame fide of the houfe. However, it was alfo fete bv Mifs Cbariots Cornwallis's maid-fervant, whofe chamber was in a different part of the houfe, and diftant from either of the ladies apartments; and who was fo alarmed at it, as to leave her room, and come into her young lady's, to fee what was the matter. No one clfe in the houle
boufe perceived it. But Lady Corncoallis fays, that, as far as fhe can leart, they were all ypun their feet; none being fitting, except the three alseady mentioned.

The houfe ttands alone in the park: and Lady Cormwallis had declined making any inquiry amongtt the inhabitants of the adjacent village; partly for faar of alarming them with apprehenfions of cianger, of which they would be very fufceptible from the name of an earthquake; and partly from the little hopes the could have of procuring any tolerably accurate account of the fact from fuch reporters.
P.S. On our return hither to Mr Wollaflon's, we found a letter from a worthy friend of Mr Wollafion's and minc, Mr Metcalfe, a clergyman of reputation, fenfe, and fortune; who refides at Leicefter, and has two livings near that place; one at Narborough, the other at Tilton: out of which I will tranferibe a paragraph, which will ferve to confirm Lady Cornwallis's relation.
"Yefterday [It is dated Leicefter, Oet. I. 1750.] about noon, we were all " greatly alarmed with a very great fhock of an earthquake. I was " in the pulpit at Narborougb; where the whole church Ihook with " fuch violence, that the congregation expected that the roof was "falling in, and run out of the church immediately, leaving the "s poor parfon to fhift for himfelf. I ftood my ground; and, by "calling to them, and affuring them there was no harm, prevailed " on them to return, and make an end of the duty: but it was with "fear and trembling. It was felt pretty much at Leiceffer; but how " much further, 1 have not heard."
Since the receipt of the above letter, I have read, in the public newspapers, an account of it's having bcen alfo felt at Nortbampton about the fame time.
So that no doubt can remain of the fhock which Lady Cormwallis perceived at Culford, having been a real earthquake.
3. I beg leave to fend you fome memoirs relating to the earthquake, which happened in thefe parts on Sunday fe'nnight, viz. September 30. the one is a letter from Sir Thomas Cave, Baronet, of Stanford near Lutterwortb in Leicefterbire, a gentleman of good fenfe, and unqueftionable veracity. The other is a paragraph taken from the Nortbampion Mercury of this day. As for my own part, being engaged at church in a very folemn part of our worfhip, I only remember to have heard a loud explofion, like that of thunder; but my neighbours affured me, they perceived the windows to Make and jar. I believe it was more violent in other parts of our county, and the counties adjacent; but I am cautious of tranfmitting any accounts, but fuch as I think may be depended upon.
from the Minifer of Weflon with Sutton in Northamptonßhire. Ibid p. 705. Read Oa.
-in a letter from the Rev. Mr John Nixon, F. R. S. to Mr John Ward, F.R.S. and Rhet. Prof. Grefh. ferving to ascompany two letters; one from Sir Tho. Cave, Bart. and arosber

We were amazed at $\frac{1}{\div}$ an hour after 12 on Sunday by a violent fhock of an earthquake while we were at church ; it Jalted between 3 and 4^{\prime} and was attended with a prodigious rolling noife, louder than all the thunder I ever heard in my life, was it collected into one explofion. Thank God, no damage accrued to any of us, beyond the confufion it occafioned.

$$
\text { Norrbampoon, On } 8 .
$$

On Sunday the 30th of laft month, about $\frac{3}{4}$ after 12, a Thock of an earthquake was felt in this town, and in the country round us for many miles; but was not thought to be fo violent as thofe which happened at L.ondon at the beginning of the year. People who were litting in the churches, or in their houfes, were moft fenfible of it, but thofe who were walking were not fo much affected; and many confidered it at firt only as the noife of a fudden guft of wind, or the remote running of a coach or chair. We don't hear of any damage done thereby.

On Sunday Sept. 30. at Aloley, in this neighbourhood, about \div before one, whilft they were finging after fermon, the whole congregation was flung into the utmoft coniternation, by a very terrible fhock of an earthquake; the fingers could fcarce perfuade themfelves to finifh their anthem. The reading-defk ftands juft by the finging-pew ; and I really thought that part of the church betwixt the chancel and the pillar next to it would have funk into the earth, with a loud and dreadful noife from a fort of fubterraneous explofion, or whatever the learned and curious will term it. After that awful noife, and fomething far exceeding a common tremor, it kept rolling on feemingly from N. to S. with an hollow rumbling, like thunder at a diftance. This uncommon fhock, I find, upon inquiry, was felt in all the neighbouring towns in Leicc/Ecrfbire, as well as in this county; and very likely we fhall hear that many parts of the ifland were affeeted by it.
4. As to the extent of this pbenomenon, with refpect to the S. and S.W. (of which alone I am at prefent capable of giving you any information) it feems not to have reached much tarther than Towcefler: for it was not perceived at Stony-Stratford, 8 miles fouth of that place on the Londonroad ; nor at Newport-pagnel in Buckingbamfire, fomewhat more to the E. of that town.

I fpent the week before laft at Mr Blencow's, at Marfon St Laurence in the S. W. angle of our county; and found that it had not been perceived there, nor in the other towns on the borders of Oxfordflire.

We went from thence to Mr Holbeche's of Farnborougb, 8 miles weftward of Marfon, on the confines of Warwick/bire, where we could hear nothing of it; tho' it was felt at Stockton and Leamington, villages lying nore to the N. in the fame county, about 6 miles from Warruick.

It did not reach Warcuick, but paffed on to Rugby, and from thence entered Leiceferflire. I Jately fent Mr Ward a letter, which I received from Sir Tbomas Care, Baronet, at Stanford, on the borders of that

Meteorological Obfervations.

county; whereby it appears, that the fhock and explofion were felt in a very furprizing manner there.

Wm. Hanbury, Efq; of Kelmar/h, in the road from Nortbampton to Market-Liarborougb, told me laft week, that it was felt fo violently there, that the minifter and the congregation went out of the church; the roof of which feemed to be disjointed, and ready to fall: and his Lady, who was at home, leaning forwards to read, was fhaken out of her chair upon the floor. I hear that feveral repeated vibrations of the fhock were perceived at Peterborough; the particulars of which I expect foon from a gentleman who lives in that place.

In anfwer to your fecond query, I find different accounts given by different perfons. Sir Thomas Samwell, Baronet, at Braddon, 3 miles W. of Tosecefter, being in his garden with two of his fervants, heard nothing of the explofion. Some of my neighbours tell me they perceived it. Mr Brookes, our clerk of the peace, informs me, that he was walking abroad, at a confiderable diftance from any buildings, at a place called Oakly, 3 miles from Kettering, and there heard the noife as of a rifing ruftling wind, during the time that he walked 20 or 30 yards.

The difference of thefe accounts may, in my opinion, be reconciles, by fuppofing, that the explofion might have been heard abroad in fuch places where it was more violent ; and not in others where it was lefs fo.

As for any thing (I prefume you meant lambent flame, vapour, $\mathcal{E}^{\circ} c$.) being perceived on the furface of the ground, before or during the earthquake, nothing of this kind has as yet been mentioned to me from any quarter.

I find there has been a report of a meteor, like a ball of fire, appearing in the morning before the fhock was feit ; but it is, by the judicious part of the world, ranked among the other mirabilia ufually invented upon thefe occafions to amufe the vulgar.
5. The fhock of an earthquake lately felt here, which has been fo much talked of, and in fome public papers magnified far beyond the truth, happened on Sunday, Sept. 30. about 20' alter 12. Our Mercury ftrangely fixed it at \div before one; which is to palpable a miftake, and contrary to the certain knowledge of fo many hundreds of people, that I could not but be furprized to fee it.

The effects here were by no means fo confiderable as were reprefented, efpecially at London. I was at that time in company with a pretty large number of friends, jult returned from divine worflip, and hardly fet down in the parlour ; but no one of us felt any thing of it ; and if we heard any noife, did not diftinguifh it from a coach : but fome gentlemen, who were retired into their fudies up two pair of fairs, phainly felt it ; yct they were not the twelfth part of the perfons then in my houfe, who all, whether on the ground, or firt floor, were quite infenfible of it. However, it is certain that a great number of perfons in different

Meteorolosical Obfervations.

different parts of the town, perceived themfelves lifted up by it, as they were in their houfes, though hardly any in the frreets took notice of it. Thofe that accurately obierved it, deecribe it as fomething horizontal rather than perpandicular. A Lady of my acquaintance flanding with hr face to the S. W. plainly felt her heels iifed up, and was thrown fo much on her toes, that fle was in danger of falling, : and it was obferved, that fome cafements were moved outward, as if an attempt had been made to force them open, and the clattering of fafhes was as when a ftrong wind blows againt them.

In the long ftrect that runs from S. to N. it was obferved, that the fhock was felt more on the eaftern than the weftern fide of the way; and I thinis the whole eaftern part of the town was moft affected. Dr Slomehoufe, who lives in that part of ir, felt it with great violence, as if a loaded waggon had run ftrongly againft the gable end of his houfe: and tho' the walls are remarkably thick, he was greatly alarmed with an apprchenfion that they would have fallen.

What further confirms this remark of the horizontal, or at leaft oblique direction of the impulfe is, that a cradle was rocked by it. In the houfe of Mr Yeoman, where our litele philofophical fociety meets, it threw down a board from the tefter of a bed; yet Mr Yeoman himiclf did not feel it.

There was a report, that in Abington-ftreet fome chimnies were thrown down; and this brought numbers of people from different parts of the town, to furvey the fuppofed ruins; but it only ferved to illuftrate the uncertainty of rumour. However, it was true that a few bricks were thrown down from a chimney in Collige. Lane.

It is very certain, that all who felt the fhock heard a hollow rufhing noife ; which, fo far as I can learn, feemed to come in a direction from the S. W. to the N. E. In rooms where feveral perfons were together, fome were ftrongly fenfible of it, while others felt nothing at all: and (ceteris paribus) I think it was fele more fenfibly by thofe above than thofe below, and by fuch as were fitting, ftanding, or leaning, rather than walking.

A lumbering kind of noife was heard by fome in lower apartments, as if fome one over their heads had fallen down on a fudden, with a dead weight; and fome thought they heard fuch a noife in the floor beneath; fome thought the quivering of the ground continued longer than others apprehended; but I have met with none who in this refpect were fo accurate in their obfervations, as my ingenious friend Mr Skippley, who affures me that he felt four diftinct concuffions (the fecond and third of which were much more violent than the firft and laft) all within three or at moft $4^{\prime \prime}$.

As far as I can learn from the moft diligent inquiry I can make, the tremulation of the ground extended iffelf at leaft 60 miles in length from S. to N. and from W. to E. about 25 , or at moft 30.

It did not affect either Newport-pagnel, or Tcweefter, to the fouth; bus was fele very near the latter, and ac leaft 6 miles S. of this place, and all the way between that and Nottingham, and a little beyond it eaitward; ir fcarce reached Kigham-Ferrers, and was not felt at Coventry, and but very feeble within 5 or 6 miles to the E. of it: but its greateft violence feemed to have been fpent on the villages of Creetion, Cotteforock, Kilmaifh, Maidwell, Eteffon, and fome other fmall towns within 4 or 5 miles of Market-Harborough, moftly between us and that place.

At Creatcus, a friand of mine was fo moved, as he fat at dinner, thai his eltow ftruck againft the wall, tho' he fat at fome diftance from it; the roof of the houfe gave a great crack ; and in a neighbouring houfe a brafs kettle was thrown down, as in another a plate of pewter was!
At Cotteforook, Kilmerfh, and Wefton, the congregations, which were not yet come out of their refpective churches, were all exceedingly terrified; fome thrieked out, ochers quitted the place; and the worthy clergyman at W_{e} fton weitb Sutton near Harborough, fays, in a letter publifhed in our Rercury, dated the $2 d$ inftant, "chat, as they were fing" ing after fermon (he adds, a quarter before one) the whole congre" gation were thrown into the utmoft conflernation, fo that the fingers " could hardly prevail on themfelves to finifh the anthem." He adds, " that he thought that part of the church betwixt the chancel and the " pillar next to it, would have funk into the earth; and that it was "attended with a loud and dreadful noife, from a fort of fubterraneous "explofion."
${ }^{1}$ At Maidwell, Mr Scawen, leaning upon a large marble chimneypiece, was violently fhaken; and in the neighbouring parih of Kilmair $h_{\text {, }}$ Mrs Hanbury, who was then reading by her fire-fide, her chair being titted forward, was thrown down on her hands and knees; and the whole parifh at church were fo alarmed, that they broke up the affembly, and tan out into the church-yard; but the Minifter perfuaded fome of them to return, and difmiffed them (as I am told) with an extempore prayer, proper to the occafion.

Some ftrange fories have been told of much more violent effects produced elfewhere; particularly that a rhafm was opened at a garden at Daventry; but I can find no real foundation for them.

No building, that I can learn, has any-where been thrown down; but I am very credibly informed, that a beam in the new toll-houfe near Harborough was fplit by the fhock: and one tragical effect is certain; I mean, that Mrs Alicock, wife to the chief gentleman in Loddingtor, who had been delivered of her firtt child a few days before, and was in a very fine way, was fo alarmed with the accident, that fhe expirced within a few hours, to the great grief of all chat knew her.
I was furprized to fee how lietle the inhabitants of Nortbampson were impreffed with this awful (though by no means fupernatural) event: the. found of fuch a hock was, in a manner, grown familiar to their ears,

Meteorological Obfervations.

by what they had heard from London, and other places. Many did not themelves perceive it; others found it very gentle; and in a very few hours it feemed to have affected them no more than a flower of rain.

I obferve, that moft accounts from the northern parts date the fhock later than we felt it here; but that may perhaps be accounted for by the difference of clocks; but where they were moft exactly ardjufted, all agree pretty well as to the time. I find alfo, that the degree of the fhock was very different in nearly contiguous places. Thus at EafonMoudit it was hardly felt at all; but at Cafle-Aßby was very violent. It was fenfibly perceived at Lord Pomfrel's, and, not at all at Towcefler, tho' within ; a mile of it; and, generally fpeaking, the higher places wore moft affected, tho' in fome it was quite otherwile.

It had been calm cloudy weather for feveral days before; and what little wind there was to be perceived was generally N. W. The height of the Barometer was as follows, on and about this remarkable day; riz.

Tburday, Sept. 27.	$29-95$
Frida, Sept. 28.	$29-9$
Salurday, Sept. 29.	$29-88$
Sunday, Sept. 30.	$29-79$
Monday, OEt. 1.	$29-68$
Trefday, OEt. 2.	$29-80$
Wednedday, OEt. 3.	$29-83$

The morning on which this phanomenon happened was remarkably calm ; but quickly atter the fhock the wind rofe, and clouds which had covered the Heavens for feveral days, were pretty much difperfed. On Mondaj, and on Tuefday and Wednefday, the fun fhone clearly all day long. There was a report, that, on the morning of that Sunday, about 40° clock, 2 ball of fire was feen; but 1 could not trace it to any certainty. On Monday night the fky in the eaft was as red as blood; and, on Tuefday night, we had abfolutely the fineft Aurora Borealis that I remember to have feen; of which 1 fhall add a Short account, by way of poiffript, when I have added a mifcellaneous circumftance or two to thofe I have mentioned concerning the earthquake.

I an told, that, in fome places, two fhocks were felt, nearly at the fame time, and within a few feconds of each other. This is faid to have been the cafe at Nofely in Leicefferfbire, which ftands very high; and at Telvertoft in this county. But I have received the moft certain account of this from Iill-Morton. Mr Pool, who keeps the turnpike there, and is remarkably curious, for a man in his fuhere of life, informs me, that he felt himfelf moved, as he fat in his chair, in fuch a manner, that he thought fomebody had been at the door ; or (if I underftand him right) as if fomething had fallen againft it: and when he came to the door, about 2 or $3^{\prime \prime}$ after, he felt a motion that he certainly knew to be an earthquake.

I do not hear of any thing feen in or upon the ground; unlefs the cafe of a grod woman at Welden may be accounted an exception; who fays, that, while fhe was fhaken by it, fhe faw the ground move around her.

Mi: Scawen is very confident, that he heard that runing noife (io generally fpoken of by all who oblerved any thing extraordinary) not only hefore, but after the fhock; and that he could by both trace the direction mentioned above.

I fhall only add, that a very worthy lady of this town (niece, as I remember, to Sir Hans Stoane) obferved, that, juft before the fhock, her birds drooped remarkably, and hid their heads under their wings: a circumftance which is often obferved in Italy, and other places where thefe phonomena are frequent.

Thefe are the moft material circumftances I have yet had an opportunity of collecting; and if any thing elfe, which feems at all worthy of notice, fhould occur, I thall be very ready to impart it.
P.S. The principal circumftances attending the Aurora Borealis mentioned above, were as follows:
On Tuefday, the fecond of this month, as I was walking home from a neighbuuring village, between 6 and 7 in the evening, the 1 ky being remarkably clear, and the moon then fhining with cieligheful luttre, I happened to turn, and oblerve in the N. F.. a pretty large cloud, nearly in the form of a globe; which feemed firf of a whitifn, then of a very luminous appearance. It feemed connected with a cloud, which was dark, and fomewhat bluifh, and fpread iffelf (almoft like a valt beam of a building) from the N. E. to the N. W. At eaçh end it was a little bent towards the horizon; but by far the greater part was in a horizontal pofition, and feemed to occupy the northern part of the Heaven, from the altitude of 10 to about 15°. The cloud I firt mentioned foon appeared like a globe of lucid fire, much brighter than the moon ; and fhot corufcations, fometimes in a perpendicular direction, but much more towards the dark horizontal beam, if I may be allowed fo to defcribe it (thro' which, by the way, I could not then difcern any ftars). Thro' this the light darted from N. E. to N. W. fo that at length it feemed all in a blaze; and from it there fhot up feveral luminous pillars, perpendicular to the horizon, and directed towards the zenith. They were of very unequal lengths, and fome of them appeared in a conica! rather than a cylindrical ferm. As thofe to the W. brightened, thole firft raifed difappeared; till at length all the horizontal track of light vanified, and fome long truncated pillars, often varying their length, remained in the weft; often rifing almoft to the zenith, but generally fecming to hang between 30 and 70°, fo far as I could conjecture. When this beautitul appearance ceafed, the fky appeared reddifh in the eaft; what before conftituted the lucid globe, feemed refolved into light clouds, of various VOL, X. Part ii.

X x x forms

Meteorological Obfervations.

forms; and that part of the horizon looked much as it does in a fummer's morning, when the fun is within a few minutes of its rifing, and tinges the clouds of a light red. But all this feemed to difperfe in a few minutes, about 7 ; and I neither faw nor heard of any thing remarkable.
6. In the morning, before one, there was a gentle wefterly wind, fomething cool; but for fome time before the earthquake happened, it to tbeearlof was quite calm and clofe, and much warmer. The air was very dry,
and filled with clouds that had no motion, but prevented the fun's appearing (I think) all day. The noife that preceded the earthquake was, for a few feconds, like the rumbling of a coach upon a bridge, or thunder at a diftance, when there were two confiderable explofions very near one another, which gave the great Mock; and after that the noife continued as before for about half a minute, the earth trembling all the while ; but I don't find any body perceived any fulphureous finell.

The direction of the earthquake was from W. to E. as was very eafily difcerned by every body that was out of door, as I was, and rook notice of the noife.

It is probable it began in Derbybire, or fome of the counties to the W. of that (for I am informed it was felt as much at Derby as here, and at all places between); and paffed off the inland thro' Lincolnfire, and part of Cambridgefbire.

The breadth trom N. to S. I imagine to be 40 or 50 miles; of which much the greateft part lay N . of this place.

The force of the fhock was chiefly, if not intirely, lateral; and fo confiderable, as that feveral people, who were fitting in chairs, catched at the walls, tables, and fuch things as ftood next them, expecting they fhould be thrown down : buildings of all kinds were fhaken greatly; and the beds, chairs, and fuch things as ftood above-ftairs were difplaced, and rocked about very much : windows were fhaken as if they would have been broken; and in feveral piaces pewter upon fhelves in kitchens thrown upon the floor.

At feveral churches, where divine fervice was not finifhed, both in this county, Rutland, and Leicefterfhire, the people were fo alarmed, that they ran out, fearing the churches would fall on their heads; and fome were fo terrified, they fwooned away.

At Stonton, fome of the plaiftering of the church was fhaken down; which moft terribly frightened the people that were in it, and obliged them to run out. I have not heard of any damage being done by it more than fome chimnies thrown down, but nobody hurt by them.

[^24]7. The firft fhock appeared to us at about half an hour paft 12, at our houfe, as if a large ftack of chimnies had fallen chrough the roof upon the chamber-floor over our heads (which at firft we took to be the cafe, but in a very few feconds recollected what it was). This was fucceeded by a prodigious rolling noife, as if the whole houfe was falling upon us, which we expected it would do, before we could get out of it. When we were out, we could not help looking behind us, to fee if any thing was fallen; but found all fafe. We could perceive the flonr, EF\%. to make very fenfibly; and a walking-ftick, that ftond in one corner of the parlour, was thrown down: it alfo Shook down feveral large ftones from off an heap that lay in the yard.

A gentleman, who was walking from his own houfe to dine with us, happened to lay his hand upon a gate, to open it, juft after the firft noife, and found the gate-pofts, \&Ec. to fhake and totter about as if they were falling. In a great many places fervice was not ended at church; and in fome the whole congregation ran out, and happy they that could get out firt. A gentleman of fortune near Leicefier, narrowly efcaped being killed by one of his own chimnies; which fell fo near him, that fome of the bricks grazed upon his fhoulder.

By what I can hear, it reached 30 or 40 miles from us each way; and I fanfy we were not far from the center of it.

As near as I can judge, it lafted about $20^{\prime \prime}$ at leaft; but it's duration and appearance was different to people in different places.
8. The Rev. Mir Daniel Coodrich, at Oundle in Nortbamptonfire, has fent me an account of the carthquake felt in that and the neighbouring counties, Sept. 30. at $12:$ at noon.

He informs me, that he was then at Uppinghams in Rutland/bire, fitting in a room intent on writing and thinking, when he was furprized with a found very ftrong and awful; which, at the firft moment, made him think of the rattling of a coach upon the pavenuent: but this apprehenfion was immediately corrected by fomewhat very different in the found, and raifed in him an idea of the crafhing of a falling houfe. He felt himfelf in a very fhaking way: the table at which he fat fhivered, and the windows of the room jarred : but he did not think of an earthquake, till the people of the houfe came into the room, and told him what had happened. Some flates were haken off the houfes, and in one houfe the hammer of a clock ftruck the bell: fome chimnies were thrown down; many talked of a fenfible heaving of the ground: but, he fays, he is credibly informed, that, in one houle in that county, the mud floor was cracked not a lietle in 3 or 4 places. In one houfe, in the town of Uppingbam, where two men and a woman were fitting, upon the approach of the found (tho' they had no thought of an earthquake), the men could hardly draw their breath in the houte; but were immediately obliged to go out for frefh air; but the woman felt no diforder. My friend adds, that attentive obfervers apprehended the found to have moved from the N. to the S. or from N. W. to S. E. and
ter from Mr Hen. Green to Mr James Ayfou'b, Optician, in Ludgate-
Street. lbid. p. 723.

Dated Rollefon in Leiceflerfhire, OA. 22.1750. Read Oet 25 . 1750.
\qquad ter from the Rev. Hen. Miles, D. D.
F. R. S. 10 Mr H Bike?, F. R.S. Ibid. P. 7^{26}. Read Nov. I. 1750.

Meteorological Obfervations.

that himfelf had the fame apprehenfion; and that, according to his prefent intelligence, the whole flock was felt in the counties of Northampton, Leiceffer, Nottingbain, Rattland, and Lincoln, aftecting a track of the county of about 60 miles in length, and as much in breadth. I have given you the account in his own words, with very fmall variation.
9. This waits upon you with a letter I have juft received from P_{c} -
-a letter from the Rev. Mr John
Nixon, F.R.S. to the Pree. ferving to ac. company a letter from Mr William Smich to Mr Nixon, giving a sery particular account of the terborough. I hope the veracity of my correfpondent, who is Regifter of the place above-mentioned, and a gentleman of good credit, will atone for fome defects in the form of his account.

Since I had the honour to write to you laft, I have mee with two gentlemen in my neighbourhood, one of them a clergyman, who affiured me, that, about 6 or 7 on the morning before the late earchquake, they both faw a ball of fire in the air, refembling the meteor commonly called a falling ftar; only with this difference, that this phanomenon, after running fome space, burit into feveral ftreaming rays, confifting of fparks of fire, in the manner of a Rky -rocket.
Earthquake fois on Sept. 30. 1750. ILid. p. 727 . Dated Higham, November 8. Riad Nov. 15.1750.

Reverend Sir,

IReceived your favour of the 16 th current; and the following account of the late earthquake, as it was varioufly felt here, is an anfwer thereto; which (as I could gather it from others, and collect of myfelf) pleafe to take as follows:

Some little time after morning fervice at the cathedral church was over, as near as I can gucfs about 25 or 30 minutes paft noon, as I was in my garden with two friends, it being exceedingly calm, the fky fomewhat covered with light mottled clouds, I touk notice of a hollow odd noife, and at firft judged it to be a coach under the monaftery walls; but foon found it was otherwife; and all of us then judged it to be thunder at a diftance, but pretty loud, and of a hollow report. I was then 40 yards at leaft from my own houfe, and about half that diftance from Mr Archdeacon Browne's, and not any buildings to the S. of us. I heard the noife of the explofion at leaft 2^{\prime} atter I took notice of it. It's courfe, as I could plainly diftinguifh, was from N. E. to S. W. or thereabours. We felt no fort of Chake, nor did my wife or family in the houfe. My next neighbour to the S. of me, and his family, being at dinner, felt the fhock after the noife hati partly paffect, and were fenfible what it was; but not very much, and but for a fiort fpace of time.

A perfon of very good reputation, who lives in the Minfter-Clofe, was then in a chamber, heard the noife, fufpected the caufe (it being Sunday, and no carr about, immediately threw up the fafh, and obferved, as the noife of the explofion decreafed, the fhock came on: the tables, chairs, $E^{\circ} \mathrm{C}$. in the chamber fhook; the winclows clattered: he very fenfibly. feir the fhock, which he affirms lafted a minute at leaft; only,
only, when it firt fhook, it was with the greater violence, and dwindled away by little and little, till 'twas gone, in the fame manner as went the noife. The people below were all affected by it; but not fo much, or fo long. One other perfon in a narrow ftreet in the town, fitting in a low room, with a brick fioor, heard the noife, but judged it to be an odd lumber above ftairs, or fome carriages coming on (as moft people firt thought who were within doors); and prefently the floor under his chair heaved, and continued in a furprizing agitation for 1 '. He was very much alarmed, and ran into the ftreet, where a great number of people inftantly appeared; fome to fee if any coaches or carriages were coming, others to get away, expecting their houfes were tumbling; and others finding fomewhat extraordinary had happened, but at that inftant did not know what, and came to iee, \mathcal{B}^{3}. 'The perfon who felt the ground heave was fo frighted, that he became fick thercupon. At Longtborpe, a mile W. of us, the clergyman who did duty there was jutt then fat down to dinner with Sir Francis St Jobn, bart. and his daughter, when a rumbling noife was heard, particularly in the chimney. Sir Francis expected the fame was on fire, got up to fee; which fuddenly ceafed, and immediately was fucceeded by a concufion of the ground. I had this from the clergyman, who tells me further, that he felt it fo fenfibly, that he was obliged to relinquifh his chair, and, when upon his legs, to lay his hands on the table to fupport himfelf. Mifs St fobn was in like manner affected. Sir Francis only heard the noile, which he compared (and, for what I know, very properly) to the explofion of a cannon at a diftance, not being in the leaft fenfible of any motion under foot, altho' the diftance between the parties was very inconfiderable. The fideboard, with the clattering of glafies, $\mathcal{E}^{\mathcal{G}}$. they thought was tumbling: they were fo furprized, that he doth not remember how long the trembling continued. A perfon in the fame village affirms, that, being fitting, he was fuddenly lifted twice or thrice on the ground, as with a fpring, and dropped again. Many people felt it there in various fhapes. At Cafor, a mile and half ftill farther W. one Mr Serjeant fays, that, looking out of a window a confiderable height, he found the houle reel more than once, and then come into it's place again with a jolt. Many very odd inftances we have of it. Some heard the noile, and felt not the fhock; others felt it, and did not hear the noife. 1 am informed it was felt at Bofton, which lies about 30^{\prime} near N . of us ; and it was felt a few miles to the S . So that its extent here, from N. W. to S. E. or thereabouts, feems to be about 40 miles. -Upon the whole, I find, the higher one was, as farther from the centre, the more the fhock was felt ; that it was local; the found of the explofion was heard as well abroad as in the houfes, though people differently fituated judiged differently what the found was; that not any fmoke, vapour, or thame, appeared on the furface, as I have heard.

Meteorological Obfervations.

Part of a littor from M. de Reaumur, F.R.S. to the Pres. concerning an Earthquake folt in France, OAt1. 1749 Jbid. p 691 Datra Paris, April 23. 1750 . Read May 17. 1750.

Exira. 9 of a Sester from Dr Maciken. zie, to Dr
Mead, FR.S. concerning Earthquakes as Smyrna.
Ibid. p. 7 co Dated ConRantinopie, Mayz3.1750 Read July; 1750.
XXXIX. On Saturday, Oft I I. 1749. about 7 in the evening, there was an earthquake in France, which, according to my own inquiries, reached one way above 60 leagues in extent, from our coaft of Poictous beyond Lufon, as far as the neighbourhood of Blois. I was then at my own houfe at Reaumur, and ficting in a clofet on the ground-floor, where I had only notice of it by a noife like to the rattling of a coach over a rough uneven pavement, which feemed to grow ftronger, as at different fits, for about a minute and a half. I went out of my clofet to inquire what others might have felt, as I had not been at ail fhocked myfelf, in other parts of the houfe; and I met with fome ladies juft come in a fright from the apartments up one pair of ftairs; and a learned Father of the Oratoire that was with me, and was juft then run down, upon it's fhaking, from a turret, on the top of the houft, the motion of which had very much furprized him.

In the village feveral people alfo felt the fhake; but others, that happened to be employed, were not fenfible of it. I was informed, that, in fome other villages and country-towns, it was more confiderable than where I was; but I did not hear that it did any-where any michief worth fpeaking of.
XL. I obferve, in Mr Touchit's Journal, that a certain ingenious gentleman would not allow the laft fhock of an earthquake in London to be an earthquake, becaufe it was not central; but rather calls it an airquake, becaufe it was lateral. I have felt many fhocks, fince I have been in this country; particularly in Smyrna, 1739. when, after the great fhock on March 24. there were fome fhocks every day for a month; fo that few or none went into houfes before the latter end of April: when I had time enough to obferve their motion, which was regularly periodic, or about the famchour every day. But I muft differ from this unknown gentleman's opinion fo far as to fay, that every one of thofe fhocks was lateral, moving from the S. to the N. and, as near as I could judge, the motions formed acute angles, fomewhat refembling the motion of lightning.
XII. x. When fo great and unufual a pbencinenon as an cartkquake, and that repeated, happens among us, it will naturally excite a ferious reflection in every one that is capabie of thinking; and we cannot help confidering it in a philorophical as well as religious view. Any mind will take the alarm, when we perceive a motion that affects the earth, that bears the whole city of London, and fome miles round; and at the fame time, whilft it gives us fo fenfible a thake, fo gently fers is down again, without damage to any buildings, and withou: a life loft.

In the works of Nature and Providence there are no degrees of Great and Little: comparitons are incompatible; neverthelefs we ourfelves are more affected with what feems great, in our own apprehenfions, but an Omvipotent l'ower admits of no diftinctions; and whilft
prodigious effects are produced from caufes imperceptible, it rightlp claims our ferious attention, as well as wonder; nor need we lofe fight of the theological purpofe of thefe amazing alarms, whilft we endeavour to find out the philofophy of them.

Permit me, then, to throw in my thoughts on the caufe of earthquakes 1 did not enter into the common notion of fruggles between fubterrancous winds, or fires, vapours, or waters, that heaved up the ground, like animal convulfions; but I always thought it was an clecerical fhock, exactly of the fame nature as thofe, now become very familiar, in electrical experiments.

When we reflect on the unufual winter now paft, beyond what occurs to any one's memory, that it has boen dry and warm to an extraordinary degree, the wind generally S. and S. W. and tbat without rain, we may, with much reafon imagine, that the earth has been in a ftate of Electricity, ready for that particular vibration wherein Electriciry confifts.

And that it has been fo, we may further conclude from the extraordinary forwardnefs of vegetation, from the frequency of the northern lights, and efpecially of that called Aurora auffralis, which are with us infrequent, and twice repeated, juft before the earthquakes (being of fuch colours as we had never feen before), and removed fouthward, quite contrary to thofe common with us.

Add to this, that fome foreigners among us, from Italy, and thofe parts, where earthquakes are frequent, obferving thefe lights, and the particular temper of the air, did actually forefee the event of an earthquake. All thefe matters concur, in fhewing, that the earth was in a ftate of Electricity, beyond what has ever been in our memory.

Admitting this, there is nothing wanting, to produce the wonderfut effect of an earthquake, but the touch of any non-electric body; and that muft neceffarily be had $a b$ extra, from the region of the air, or atmofphere.

We had Jately a very pretty difcourfe read here, from Mr Franklyn of Pbiladelpbia *, concerning thundergufts, lights, and like meteors. He well folves them by the touch of clouds, raifed from the fea (which are non-electrics), and of clouds raifed from exhalations of the land (which are electrified) : that little fnap, which we hear, in our electrical experiments, when produced by a thoufand miles compaifs of clouds, and that re-echoed from cloud to cloud, the extent of the firmament, makes that thunder, which affrightens us.

From the fame principle I infer, that, if a non-electric cloud difcharges its contents, upon any part of the earth, when in a high-electrified ftate, an earthquake muft neceffarily enfue. As a fhock of the electric tube in the human body, fo the fhock of many miles compafs

[^25] contact, be the horrible uncouth noife thereof.

I have been informed, by thofe who were up, and abroad, the preceding night, and early in the morning, that corufcations in the air were extremely frequent (which confirms us in the notion of the earth's being then in an electrified ftate); and that, a little before the earthquake, a large and black cloud fuddenly covered the hemifphere; which probably occafioned the fhock, by difcharge of a hower.

It may be faid, that, if this were the cafe, earthquakes would happe:s much oftener than we find them. It may be anfiwered, that they probably do, much oftener than obferved: but fight ones; becaufe of the carth's being Jighely electrified. And fuch a winter as this has not been known before; to which we attribute the prefent earthquake.

The reaton is obvious, why carthquakes are not fo trequent with us, and the northern regions in general, as in Izaly, and more fouthern climes; and a due confideration of it confirms our reafoning. All Eleccricity requires great dryncjs and warmth; and I doubt not but earthquakes, of a fmall degree, have and do frequently happen. And many prople now recollect, that they have been flaken in their beds; though they took no notice of it then, having had no experience of an earthquake.

All that we have faid upon the fubject receives great frength from this particular, that water itrengthens and conveys the force of Electricity. From whence we may account for that obfervation, that the molt dreadful effects of earthquakes are always felt in maritime towns; as Port-Rojal in Famaica, Lima in Pcru, Meflima in Sicily, \mathcal{F}° c. And bere, we find plainly, thiat the fhock went along the river, both upwards and downwards, farther than by land ; like the bottle of water held in the hand, in electrical experiments.

We argue the fame from the ficknefies, pains in the joints and back, rheumatic, hyfteric, nervous cafes, head-ach, colics, and the like; which many people, efpeciaily of the weaker conftitutions, fcit, for more than one day after : juft as after electrification.

But from hence it is highly worthy of remark, that the finger of Providence is notorioully difcernible herein;

——of HIm ,
 Who guides the Thunder, and direets the Storm.

Tho' it operates by natural caufes, yet it is tbat which gives them their deftination. For, though the coafts of the fea are moft liable to, and fulceptible of, this niighty Thock, which we call an earthquake; yet the chaftening rod is directed to lowins and cities, where are inhabitants, the objects of it's monition; rot to lare cliffs, and an uninhabilu beatb. And there cannot be a more direet proof, that earthquakes are divine indgments, than tbis obfervation: for, in all antient hittory, carthquakes are ever found in great citics. A.D. 1\%, no lefs than 12 hourifhing

Meteorological Obferciations.

cities in Afio minnor were deftroyed in one night. In A. D. 1456. at Naples, 40,000 people perifhed by an carthquake. In 1531. in the city of Liflon, I 400 houfes were thrown down.

We fee and admire the effects of Electricity, and its Ptupendous propertics, every day; which feems as it were an animating foul to matter. The Antients had a rotion that the earth was a great animal; probably from fome obfervations of Electricity; but certainly, when in our days we feel thefe unufual and extraordinary convulfions of nature, it is a leffon to us, to do our duty toward that Great Being, who, by a drop of water can produce effects fo prodigious.
2. Among all the appearances of nature, which are the fubjects of -by the the inquiries of the Roya! Society, none would more fenfibly affect the fame. Ibid. minds of contemplative perfons chan that of an carthquake; efpecially

When I laid the preceding pap:r before the Society, I found that fome worthy menbers had not fully eatered into my way of reatoning; nor with that ferioufnefs fo awful a fubject required : therefore I judged it neceffary to treat upon it in a more diffufive manner; and with fome further confiderations relating to that argument.

Among the numerous accounts received here, and obfervations upon the manner of it, I judged it became the Society to inquire into the caufe of io extraordinary a motion, of which we could not have formed a proper idea, had we not repeatedly both feen and felt it.

The notions of the Antients are fuficiently known; nor have the moderns any-way improved upon them, any further than by fome chymical mixtures. The vulgar opinion goes no deeper than fome caverns, not far below the furface of the earth; wherein are ingendered vapours, explofions, fermentations, and fires from inflammable minerals, that caute thefe convalfions of the furface.

I hall not pretend to deny, that there may be fuch vapours, fermentations, rarefactions, and inflammable fubftances, and actua! fires, in the bowels of the earth, and that there may be fome caverns underground, as well as we find fome few above-ground, Pool's Hole, Okey Hole, and the like, in mountainous countrics. We know there are hot fprings running continually, and vulcano's frequently belching out flames and frove; and to thefe moft probably, fome fmaller earthquakes are owing.

But thefe matters are very rare, much rarer than earthquakes, both as to time and place. Vefuvius in Italy, and in that part of it abounding with mines of fulphur; 压ma in Sicily ; fome on the great Aides motntains in America, and the like. The fcarcity of them, in my opinion is fo far from being a proof of the general cavernous ftate of the earth, that it ftrongly proves the contrary.

How many thoufand acres of coal-mines, ftone-pits, and the like, do they daily work in England, and have done for ages? I have been myfelf 100 yards deep in a falt-rock. I have walked half a mile length-
VOL. X. Part ii. Yy y wife

Meteorological Obfervations.

wife, directly into the earth, and under the bed of the ocean: but we never hear, from the many hundreds of thoufands of workmen in this kind, of the cavernous ftate of the earth.

On the contrary, by their hard labour they confefs it far otherwife. Nor have we any reafon, in England, to believe there are great mines of fulphur, and inflammable minerals: nor, if there were, could they burn, and caufe convulfions of the earth, unlefs there were proper cavities, and conveyances of air ; as in coal-pits, when fet on fire.

But even from thefe coal pits, when fired, do we cver find any thing like an earthquake produced? Nor did we obferve, in thefe two lait earthquakes, any fire, vapour, fmoke, or finell ; or any kind of eruption in the leaft, in fogreat a fruggle of the fuperfice, as affected a circle of 30 miles in diameter.

Indeed this confideration alone, of the extent of this furface, is fuffcient to overchrow any fuppofition of earthquakes being cbiefly owing to fubterraneous vapours. For it cannot poffibly be imagined, that fuch can have fo immenfe a force, as to act upon that compafs inftantancoully, all at once, and never break ground, fo as to be difcoverable to fight or finell. Many accounts we have of a little fire-ball burfting in the air, at a great diftance, and inftantly propagating a fuiphureous fmell all around it for miles.

If the motion of a fuperficies of 30 miles diameter was owing to fumes and vapours, we ought reafonably to find fome great difcharge of them, like a coal-pit fired: the operation of it ought to be hours and days in continuance, not inftantancous : and the evaporation of fuch a quantity of inflammable matter requires a long time to evacuate itfelf.

There is another argument, which, in my opinion, utterly overthrows thefe fuppofitions; and that is, a due confideration of fprings. If we would form any tolerable idea of the nature of fprings and fountains perpetually flowing, and that (generally fpeaking) from the creation of the world, we muft needs conccive, that God Almighty has laid their pipes and canals in the earth, like as he has planted the veins, arteries, and glands, in an animal body; and that likewife they are more and more ramified, as they nearer approach the outward fhell of the carth.

The workmen in coal-mines, and the like, never fail to meet with the veins of fprings every-where : they that dig for wells feldom fail of finding water every-where. The colliers are obliged to drain, at very great and continual expence. A circumitance not very favourable to lubterraneous fires.

Now it is apparent enough, that the hypothefis of vapours, and fubterraneous fermentations, explufions, and cruptions, being the caufe of carthquakes, mult abfoiutcly ruin the whole fyftem of fprings and fountains, where-ever it has once been. But this is quite contrary to fact ;

Meteorological Obfervations.

even where an earthquake has been repeatedly; for inftance, from home.

On Wednefday, April 6. 1580 . about 6 in the evening, juft fuch another earthquake was felt in London, and around it, as thefe two we have feen. Another, exactly fimilar, in 1692 . In all thefe 4 no houfes thrown down, nor any fprings difturbed thereby: no fenfible cruptions or fmells.
Thefe confideration I appiy only to this little inconfiderable fpace of a circle of 30 miles diameter. But what is that to the appearance of fome earthquakes we read of in hiftory? In the year of our Lord 17. no lefs than 13 great and nobic cities of Afsa minor were deftroyed in one night. The fact is fo notorious, that fome perfons here prefent have feen a vaft block of white marble, now itanding near Naples, being the pedeftal of a colofs ftatue of Tiberius the emperor, having carved on it, in baffo relieve, the genius's of all thofe cities, with their names; which were rebuilt by that Emperor.

Without going fo far, we may fee another evidence of it, a coin of that Emperor ftruck upon it, with this infcription,

```
CIVITATIBUS ASIAE RESTITVTIS.
```

I have one of them in large brafs, which was found at Colcbefer.
The compafs of this earthquake may be reckoned to take up 300 miles in diameter. How can we poffibly conceive the action of any fubterraneous vapours to produce fuch an effect, as inftantaneouly to demolifh all thefe cities? And that fuch an accident fhould never happen after? How comes it to pafs, that the whole country of Afia minor was not at the fame time deftroyed, it's mountains renverfed, it's fountains and fprings broken up, and ruined for ever, and it's rivers difannulled? Inftead whereof, we find nothing fuffered, but thofe cities; no kind of alteration in the lurface of the country, which remains the fame to this day.

From thefe confiderations therefore, I cannot perfuade myfelf eafily to enter into the opinion of earthquakes generally arifing from pent-up vapours and eruptions. I know there are many ftrange relations of effects of fubterraneous fires, told by authors that deal pretty much in the marvellous, and whofe minds were prepoffeffed with thofe vulgar notions. My conceptions of the matter are derived from the more general appearances, and what we have feen and felt ourfelves.

After we have treated this argument in a fuperficial view, we muft go a little deeper. If we would confider things like Philofophers, let us propofe to ourfelves this problem;

Where is the power to be placed, that is required to move a fuiface of eartb 30 miles in diameter?
To anfwer this, confult the engineers, and thofe that make mines in the fieges of cowns. 'They will acquaint us, that the effect of mines is

Metcorological Obfirvations.

produced in form of an inverted cone: and that a diameter of 30 miles in bafe, will require an axis of 15 or 20 miles to operate upon that bafe, fo as to fhake it, at lealt. So that the vapours, and whatever power we propofe to operate upon that bafe, according to the foregoing hypothefis, in order to form the appearance of an earthquake, mut be 15 or 20 miles deep in the carth.

But what mind can conceive, that any natural power is able to move an inverted cone of folid earth, whote bale is 30 mikes in diameter, and axis 20 ? or, was it pofible, would not the whole texture or that body be quite difturbed and Mnetsered; efpecially in regard to it's fprings and fountains? but nothing like this is ever found to be the contequence of an earthquake, tho' fatal to cities.

Apply this reafoning to the earthquakic of Afag minor; and this vigorous principle muft lie at leat 200 miles deep in the ground. Enough to fhew the abfurdity of it. A cone of 300 miles diameter at bate, and 200 miles axis; I dare be bold to fay, that all the gunpowder made fince it's invention, put together, wouk nut be able to move it. How much lefs would pent-up vapours?

And, could it be admitted as a thing pomible, will any one be perfuaded, that fuch a fubterrancous tumult, of fo vaft an cxtent, will be no-ways injurious to the intcrnal fyftem of fprings and fountains? We may as well imagine, that we may ftab a man 100 times, and never touch a vein or artery.

In an age when Elcetricity has been fo much our entertamment, and our amazement; when we are become to well acquainted with it's ftupendous powers and properties, it's velocity, and inftantaneous operation, through any given diftances; when we fee, upon a touch, or an approach, between an Electric and a Non-electric, what a wonderful vibration is produced, what a finap it gives, how a lambent flame breaks forth, how violent a hock; is it to be wondered at, that hither we turn our thoughts, for a folution of the prodigious appearance of an earthquake?

It is every body's obfervation, that there never was a winter like the paft, for warmth and drinels, thunder and lightning very uncommon then; for corufcations in the air, juftly thought to be electrical; efpecially for that called Aurora auftralis; the wind continually S. and S. W. and that without rain, which is unufual. This ftate of the atmofphere had continued 5 or 6 months, before the firft earthquake: is it not hence reafonable to conclude, that the earth muft, efpecially in our region, be brought into an unufual fate of Electricity; and, confequently, wanted nought, but the approach of a non-electric body, to produce the fnap, and the fhock of Electricity?

That the earth was in that vibratory and electric ftate, we have further reafon to conclude, from the very extraordinary forwardnefs of all the vegetable world with us. Every one knows, that, at the end of February, all forts of garden-ituff, fruits, Howers, trees, were as forward
as, in other years, in the middle of April. Conformable to which, experiments abundantly fhew us, that eiectrifying of plants quickens their growth; for the fame reafon as in animals it quickens the pulfe.

Any folid matter is capable of being put into a flate of Electricity ; fuch as iron guns; and the more fo, by reaton of their folidity: and in proportion to it is the greatnefs of the fnap, and of the Shock; and a kind of lambent flame iffues out of the point of contact; and likewife fomewhat of the fulphureous fmell. So that if borh flame and fmell were difcernible in an earthquake, it is to be found, without going to the bowels of the earth.

As to the immediate caufe of this wonderful appearance of an earthquake, I hinted that it was owing to a non-eleetric body consing near or touching the earth, when in it's electrified ftate; which may be a fhower of rain: and the learned Dr Cbildrey obferves, that earchquakes always fucceed rain : a fudden tempert of rain, in the time of a great dro: ght.

At the fame time that the force of Electricity in folids is as the quantity of matter, we fee molt evidently, that water is equally forcible in Arengthening and conducting it, and shat in proportion to it's quantity : which very much juflifies my obfervation, that moft frequent earthquakes have fallen upon maritime places. And I find the lame obfervation is made before me by 1 coffa and Dolittle, who wrote on that in 1692. and others. In the dreadful cataftrophe of Port-rcalal, it is notorious, that it's violence was chiefly near the fea: and even in thofe fo lately felt by $u s$, they were fenfibly more violent toward the river, than further from it. And in that carthquake in Eingland, in 1692. (which was very much like that we are treating of) there were no houles thrown down, nor perfons killed ; but it reached more particularly Sandzeich, Deal, Dover, Sbeernefs, Portfinouth, and the maritime parts of Holland, Flanders, and Normandy.

In this that happened laft Sunday at 6 in the evening at Bath, it was felt particularly at Portfnouth, the whole Ihe of Wigbt, and Ferfey.

If we look into antient hiftory, we find, in the 197th year before Chrift, an earthquake thook terribly the ine of Rbodes, damaged many cities, and fome were fwallowed up.

17 years before Chrift, many cities in the inf of Cyprus were deffroyed.

6 years before Chrift, the inte of Coos was moft vehemently afflicted.
During the Peloponnefian war among the Greeks, the ine of Delos was afficted, and the moft beautiful temple of Apollo thrown down.

Soon after, the city of Lacedemon was totally deftroyed.
A. D. 79. three cities in Cyprus were overthrown.
A. D. 182. the city of Smyrna was ruined.

Conftantinople has often fuffered; particularly in 1509.13000 pco. ple overwhelmed.

Metcorological Obfervaiions.

A. D. 1456. in the city of Naples 40000 people were deftroyed.

In 1531. at Liflon, 1400 houfes were thrown down, and near as many thattered.

In the time of Valens the Emperor, a terrible earthquake happened in Crete, whereby 100 cities were deftroyed.

But inflances enough, to fhew what I aimed at, that maritime places are moft fubject : which is no contemptible argument in favour of Electricity; when both the folid of the earth, and the quantity of the water, concur to make the hock exactly, as in common clectrical experiments.

The gardener in the Temple garden obferved the found to roll from the water-ficle toward Teinple-Bar, before the ccaing of the nodding of the houfes; juft as the electrical finap precedes the fhock. Others, that write upon earthquakes, commonly oblerve, that the noife precedes the hock. But it is obvious it muft be quite the contrary, did the concuffion depend on a fubterrancous eruption.

We may well enough expect, that burfting vapours, and fubterraneous explofions, Should difperie eviry thing that happened in their way into the air: but, in ny apprenenfion, it is not poffible for us to imagine any thing to produce fuch a vibration as we felt, but Electricity.

Several people felt pains in their joints, rheumatifm, ficknefs, headach, pain in their back, colic, hyfteric and nervous diforders, for the whole day after, and longer (efpecially weak conftitutions), exactly as upon Electrification; and to fome it has proved fatal.

Upon this principle alone can we actount for the fifhes leaping out of the ponds; or a fort of thump felt at the bottom of a boat. Nay, we are told of earthquakes felt at fea, far diftant from land: which are cafily folved by an electrical fhock impreffed upon the water: but we cannot cafily fee vapours and fires refiding at the bottom of the ocean.

From electrical vibration alone can we account for that obfervation of fprings and fountains being no-ways damaged after an earthquake. I doubr not but they run more plentifully at that time; juft as the blood circulates quicker upon Electrification.

From Ellectrification only we can account for this particular. The walls of Wefminfter-Hall are of no mean thicknefs; yet thofe that fat with their backs to it, during the Shock, all relate that it feemed to puht toward them with great force. So in that of 1692. at Deal, the wall of the caftle, which is of an extraordinary thicknefs and Atrength, thook fo much, that the people living in it expected it would have fallen on their beads.

For thus the force of the electrical fhock is proportionate to the quantity of the folid. And were fumes and lambent flames feen to iffie out of the gaping ground on thefe difafters, as relations tell us, we juftly may pronounce them to be purely the effect of Electricity.

Metecrological Obfervations.

It muft be accounted no inconfiderable argument in favour of our hypothefis, that the northern regions of the world are little fubject to earthquakes, in comparifon of the fouthern; where the warmth and drinel's of the air, fo neceffary in Electricity, is common. Notwithftanding that we have a vulcano in Iceland, yet we hear not of earthquakes frequent in that laticude of the globe.
But whether our conjectures upon this important affair be well founded or no, it certainly becomes a Chriftian Philofopher, whilf he is inveftigating material caufes, to look up to the moral ufe of them ; for, in reality, every thing in the whole world was ultimately made for that purpofe. And of all the great and public calamities which affect us mortals, earthquakes claim the firft title to the name of warnings and judgments; none fo proper to threaten, or to execute vengeance: nor has any other thofe annexed terrors, fo much of the unufual, the unavoidable, and the horrible apprehenfion of being crufhed to death, or buried alive.

I cannot but infift upon iny former obfervation to be juft, that earthquakes proclaim themfelves to mankind in this light ; becaufe peculiarly directed to great cities and maritime; abounding with wealth and luxury. It would be childith to make a long recital of particulars from hiftory; for had we no other fort of notices of earthquakes? look upon thofe two hocks we have felt. We own, that Hampfead-Heath and Fincbley-Common, and Kennington-Common, may have been affected with it ; yet it is notorious, that London was the centre; the place to which the finger of GOD was pointed.
3. As the late earthquakes in London, and fome other parts of England, have roufed the attention of mankind, to confider the caufes of them, both in a religious and natural view : and as in a religious view Rev. Stephen Hales, $D_{1} D_{1}$ छ F. R. S. they have been confidered by the Bifhop of London, in his excellent Jbid. p. 669. letter to the clergy and people of London, which has been reccived Read April 5 with general approbation: fo I hall here give a fhort account of what ${ }^{1750}$. fcems to me to be a probable natural caufe of them.

But I muft firft obviate an objection of fome ferious well-meaning people, who are apt to be offended at any attempts to give a natural account of earthquakes; which, but rarely happening in thele more northern parts, are apt to be looked upon as the more nitraculous. But it ought to be confidered, that the ordinary courfe of nature is as much carried on by the divine agency, as the extraordinary and miraculous events. God fometimes changes the order of nature, with defign to chaftife man for his difobedience and follies ; natural evils being gracioully defigned by him as moral goods: all cvents are under: his direction, and fulfil his will.

On the other hand, there are fome who make light of earthquakes, becaufe they are capable of being acounted for by natural caufes. But the hand of God is not to be overlooked in thefe things, under whofe. government all natural agents act; efpecially fuch rare and unufual events.

Meteorological Obfercations.

events as earthquakes. God ufes all creatures to be the inftrumerits of his will: natural and moral agents are all under his direction. When he inflicts a famine on a nation, it is not the lefs the hand of God, becaufe we know the natural caufes of it, viz. great drought, and unkindly feafons: fire and bail, fnow and capour, and formy weind, fulfil his word, Pfal. exlviii. 8. Infectious air, peftilential difcafes, and carthquakes, however occafioned by natural caules, are under the divine infienence. He not only orders and directs the operations of nature, but alfo inHuences the actions of moral agents, turning, as he pleafes, the hearts of the governors of the nations, to as feqquently to chaftize mankind by that fevere foourge, and great difgrace of human nature, war. Earthquakes are not therefore lightly to be regardect, becaufe we think we can give a probable natural account of them; neither ought we, on that account, to encourage ourfelves to go carelely on in wicked courfes. If national judgments do not overtake us, yet it cannot be long before we fhall come into the punifhment of our future flate: And tho sentence againft an eril work is not speedity exciuted tho' a fimer do evil! an bundred simes, and bis days be prolonged; yet furely I know it Jaall not be well with the wicked. Fcclef. viii. I1, 12, 13.

It may not be improper, on this occafion, to mention another conflant and uninterrupred plague, in which of late years, we have been, and are like to continue fufferers, in common with many other nations. A plague, of all others the greateft that ever bejel unhappy man; it being by far the mott deftructive, not only of the lives, but alfo of the morals, of mankind; both a natural and a moral evil ; I mean fermented diftilled fpirituous liquors of all denominations. Did God Almighty deftroy as many by rarthquakes as are yearly deftroyed by diftilled fpirituous liquors, which is probab y about a milion of perions in a year all over the world; how great a terror and confternation would it caufe every where! But, alas! with what unconcernednels, with what calmnefs, and even complacency, is this enormous both natur:ll ard moral evil received, and even foltered, among us; infomuch that it is now become, by a jut judgment, the curfe and the punifhment of the world, even the greatelt that ever befel unhappy man! notwithftandiing which this inchancing Siren fo bewitches and infatuates the nations, that it fpreads it's baleful intluence far and wide, making yearly farther and farther devaftations, both of the lives and morals of mankind, and even debating the breed of man.

As to the affair of carthquakes, particularly that which happened at Loudon Merch 8 laft, about 20^{\prime} before 6 in the morning; I being rhen awake in bet, on a ground-floor, near the church of St Martin's is the Fiedds, vary lemfibly futt the bed heave, and confequently the earth must heave too. There was a hollow, obfcure, rufhing noile in the houf:, which ended in a loud explofion up in tice are, like that of a finall cannon: ti.e who'e duration, from the beginning to the end of ehe sa thguake, feemod to be about 4". The foidiers who were upon
duty in St Jaines's Park, and others who were then up, faw a blackifh cloud, with confiderable lightning, juft before the earthquake began; it was alfo very calm weather.

In the hiftory of carthquakes it is obferved, that they generally begin in ca!m weather, with a black cloud. And when the arr is clear, juit before an carthquake, yet there are then often figns of plenty of initammable fulphurcous matter in the air; fuch as Ignes Fatui or Fack-aLanterns, and the metcors calied falling ftars.

Now, I have fhewn many years fince, in the Appendix to my Statical Eifays, Exp. 3. Page 280. the effeet that the mixeure of a pure and fulphurcous air have on each other; viz. by turning the mouth downward's, into a pan of water, of a glafs veffel of a capacity fufficient to hold about two guarts, with a neck about twenty inches long, and two inches wide. Then, by putting under it, in a proper glafs veffel, with a long narrow neck, a mixture of aqua fortis, and powdered pyrites, ziz the ftone with which virriol is made, there will be a brifk ferment, which will fill the glafs with redifh fulphureous fumes; which, by generating more air than they deftroy, will caufe the water, with which the whole neck of the glafs veffel was filled, to fubfide confiderably. When the redifh fulphureous air in the upper part of the glafs is clear, by ftanding 2 or 3 hours, if then the mouth of the inverted glafs is lifted out of the water, fo as to let the water in the neek of the glafs fall out; which, fuppofing it to be a pint, then an equal quantity of frefh air will rufh in at the mouth of the neck of the veffel, which mutt immediately be immerfed in the water : and upon the mixture of the frefh air with the then clear fulphureous air, there will inftantly arife a violent agitation between the two airs, and they will become, from tranfparent and clear, a redifh turbid fume, of the colour of thofe vapours which were feen feveral evenings before the late earthquakes: during which effervefcence, a quantity of air, nearly equal to what fren air was let in, will be deftroyed; which is evident by the rifing up of the water in the neck of the glais, almoft as high as before. And if, after the effervefcence of the mixed airs is over, and become clear again, frefh air be admitted, as before, they will again grow redith and turbid, and deftroy the new admitted air as before; and this after feveral repeated admiffions of freh air: but after every readmiffion of frefh air the quantity deftroyed will be lefs and lefs, till no more will be deftroyed. And it is the fame after ftanding feveral weeks, provided, in the mean time, too much frefh air had not been admitted. Now, I found the fum total of the fref air thus deftroyed to be nearly equal to the firtt quantity of fulphureous air in the inverted glafs.

Since we have in this experiment a full proof of the brifk agitation and effervefcence which arifes from the mixture of frefh air with air that is impregnated with fulphureous vapours, which arife from feveral mineral fubftances, efpecially from the pyrites, which abounds in many parts of the earth; may we not with good reafon conclude, that the VOL. X. Partii.

Mitioraiogical Obfervations.

irkfome heat, which we feel in what is called a clofe fultry temperature of the air, is occalioned by the inteftine motion between the air and the fulphureous vapours, which are cxlaled from the carth? which effervefence ceafes, as foon as the vapours are equably and uniformly mixed in the air ; as happens alfo in the efferveicences and ferments of other liquors. The common obfervation therefore, that lightning cools the air, feems to be foundedon good reafon; that being the utmoft and laft effort of this effervelcence.
May we not hence alfo, with good probability, conclude, that the firf kindling of lightriing is effected by the fudden mixture of the plere ferene air above the ciouds, with the fulphurcous vapours, which are fometimes raifed in plenty, immediately below the clouds? The moft dreadful thunders being ufually when the air is very black with clowis; it rarcly thundering without clouds: clouds ferving, in this cafe, like the above-mentioned inverted glafles, as a partition between the pure and fulphureous airs : which muft therefore, upon their fuden admixture through the interftices of the clouds, make (like the two airs in the glafs) a more violent effervefcence, than if thofe airs had, without the intervention of the clouds, more gradually intermixed, by the conflant more gradtual afcent of the warmer fulphureous vapours from the carth, and delient of the cold ferene air from above. And tho' there was no luminous flafh of light in the glafs, yet, when fuch fudden effervefecnce arifes, among a valt quantity of fuch vapours in the open expanfe of air, it may, not improbably, acquire fo rapid a velocity, as to kincle the fulphurcous vapours, and thereby become huminous.

And fince, from the effects that lightning is obferved to have on the lungs of animals, which it often kills, by deftroying the air's clafticity in them, as alfo from it's burfting windows outwards, by deftroying the air's elafticity on the outfide of thofe windows: Since, I fay, it is hence probable, that the fulphureous fumes do deftroy a great quantity of elaftic air; it should therefore caufe great commotions and conculfions in the air, when the air rufhes into thofe evacuated places; which it muft neceffarily do with great velocity.

Dr Papin has calculated the velocity with which air rufhes into an exhaufted receiver, when driven by the whole preflure of the aimofphere, to be at the rate of 1305 feet in a fecond of time; which is at the rate of 889 miles in an hour: which is ncar 18 times a greater velocity than that of the flrongett ftorms; which is eftimated to be at the rate of 50 miles in an hour ${ }^{*}$.

Hence, we fee that an outrageous hurricane may be caufed, by defroying a fmall proportion of the clafticity of the air of any place, in refpect to the whiole. Na wonder then that fuch violent commotions of the air fhould produce hurricanes and thunder-fhowers; efpecially in the warmer climates; where both the fulphureous and watry vapours, being raifed much higher, and in greater plenty, caule more viotent effects.

[^26]
Metcorological Objervations.

M de B:effon, in his Natural Hiftory and Theory of the Farth, mentions biack dark clouds in the air near the tempeltuous Cape of Good Hope, and alfo in the ocean of Guiney, which are called by the failors the Ox's Eye; which are ofeen the forerunners of terrible ftorms and hurricanes. Whence it is to be fufpected, that they are large collections of fulphureous vapours; which, by deftroying fuddenly a great quantity of the ciaftic air, catufe the ambient air to rulh with great vios kence into thit vacuity, thercby producing tempetts and hurricancos. And of the coaft of Guiney they have fometimes 3 or 4 of thete hurricancs in a day; the forerunners of which are the fe black fulphureous clouds, with a ferene clear air, and catm fea; which on a fudden turns tempuftuous, on the explofion of thefe fulphurcous ciouds. And in Femaica they never have an earthquake when there is a wind to difperfe the fulphureous vapours.

In the like manner we find, in the late earthquakes at Loivdon, and in the accounts of many other earthquakes, that, before they happen, there is ufually a calm air, with a black fulphureous cloud: whicin cloud would probably be difperfed like a fog, were there a wind: which difperfion would prevent the earthquake; which is probably caufed by the explofive lightining of this fulphureous cloud; being both nearer the earth than common lightnings; and alfo at a time when fulphureous vapours are rifing from the earth in greater quantity than ufual; which is often occafioned by a long feries of hot and dry weather. In which combined circumftances, the afcending fulphureous vapours in the earth may probably take fire, and thereby caufe an carth-lightning; which is at firft kindled at the furface, and not at great depths, as has been thought: and the explofion of this lightening is the immediate caufe of an earthquake.

It is in the like manner that thofe meteors, which are called falling ftars, are fuppofed to be kindled into a flame at the upper part of a fulphureous train, which is kindled downwards into a Hame, in the fane manner as a frefh-blown out candle is inftantly lighted from another candle held over it at a diftance, in the fulphureous inflammable fmoke of it.

I am fenfible that it may feem improbable, that the afcending fulphureous vapours in the earth fhould thus be kindled; but, fince they arc continually afcending through the pores of the earth, more or lefs, for many good and ufetul purpofes, it is plain there is room for them to paifs. Befides, as M. de Buffon remarks, Naturalifts have obferved perpendicular and oblique clefts, in all kinds of layers of earth, not only among rocks, but alfo among all kinds of earth, that have not been removed, as is obfervable wherever the earth is open to any depth. Now thefe clefts are caufed by the drying of the feveral horizontal layers of the earth; and will alfo be confiderably the wider in long dry hot feafons, which are ufually the preparatory forerunners of earthquakes, more.

It is very obfervable, in the opinion of Borelli, and other Naturalifts, that volcono's begin firft to kindle near the furface or top of the mountains, and not in the caverns in the lower parts of the mountains. M. de Buffon fays, that earthquakes are moft frequent where there are colsano's; fulphureous matter abounding moft there : but that, tho' they continue burning long, yet they are not very extenfive. But that the other fort of carthquakes, which are not caufed by a volceno, extend ofen to a great diftance. Thefe are much longer E. and W. than broad N. and S; and thake a zone of earth with different degrees of force in different parts of their courfe; viz. in proportion to the different quantities of expiofive fulphureous matter in different places. Thefe kind of earthquakes are obferved to be progreliive, and to take time to extend to the great diffances fometimes of ome thoufands of miks. They are an inftantaneous explofion in every place, near the furface of the earth ; and therefore do not produce mountains and inands, as colcano's fometimes do.

The earthquake in London, March 8. was thought to move from E. to W. M. Buffon mentions an earthquake at Smyrna, in 168S. which moved from W. to E. viz. becaufe the firft kindling probably began on the wettern fide; and in the earthquake at London on the caftern fide. And accordingly it was obferved, that the redifh bows in the air, which appeared leveral days before that earthquake, arofe in the eaft, and procceded weftward. It was obferved, after the carthquake at Smyrna, that the caftie-walls, which run from E. to W. were thrown down; but thofe from N. to S. ftood; and that the houfes on rocks ftood better than thofe on the earth.
M. de Buffon relates, that the vibrations of the earth, in earthquakes, have commonly been from N. to S.; as appears by the motion of the lamps in churches: which makes it probable, that, tho' the progrefs of the earthquake at Smyrna was from W. to E. yet the vibrations of the earch might be from N . to S ; and thereby occafion the falling of the caftle-walls, which run from E. to W. but not thofe which run from N. to S. A probable argument, that, as the freeft paffage, io the greateft explofions were made in the clefts of the earth which run E . and W . which wouk make the vibrations N . and S .

It was obferved, that the waters turned foul the day before an earthquake at Bologna in Italy: and I was informed, that the water of fome wells in London turned foul at the time of the earthquakes. Which was probably occafioned by the afcent of great plenty of fulphureous vapours through the earth.

As to the hollow rumbling noife, which is ufually heard in carthquakes, it feems not improbable, that it may be occafioned by the great agitation that the electrical rethereal fluid is put into by fo great a fhock of a large mals of earth. For, if the like motion of a fmall revolving glafs
globe can excite it to the velocity of lightning, and that with a force lufficient to kill animals, how much greater agitation may it probably be excited to, by the explofive force of an earthquake !

The explofion of a cannon in St James's Park is obferved to electrify the glafs of the windows of the Treafury. And what makes it ftill more probable, is, the analogy that there is between them in other refpects. For, as the electrical falh ruhes, with the velocity of lightuing, along the moft folid bodies, as iron, \mathcal{E}° c. and as I have feen it run only on the irregular gilding of leather; fo fuch folid bodies are obferved to be the conductors of aëreal lightning, which rends oaks in pieces, and has been known to run along and melt an iron bell-wire on two fides of a room, $\mathcal{E}^{\circ} c$. And accordingly it was obferved, in the great earthquake in Famaica, that the moft tremendous roaring was in the rocky mountains. And in the late earthquake of March 8. in London, the loudeft explofions were thought to be heard near fuch large fone buildings as churches, with lofty ftepples and fpires.

I, who lay in Duke's Court, near St Martin's church, and was awake all the time of the earthquake, plainly heard a loud explofion up in the air, like that of a finall cannon: which made me conjecture, that the noife was owing to the rufhing off, and fudden expanfion, of the electrical fluid, at the top of St Martin's Spire; where all the electrical cijfuvia, which afcended up along the larger body of the tower, being by attration ftrongly condenfed, and accelerated at the point of the weather-cock, as they rufned off, made fo much the louder expanfive explofion.
XLII. Since I had the honour to lay before the fociety, in the fpring, The Philofomy thoughts upon earthquakes, we have had many opportunities of phy of Earthreflecting on that moft awful, and hitherto unufual, appearance. The quakes; by year 1750. may rather be called the year of earthquakes, than of Fubilee. For, fince they began with us at L.ondon, as far as I can learn, they have appeared in many parts of Europe, Afra, Africa, and America, and have likewife revifited many counties in our inand: at length, on 30 th of latt Sept. taken their leave (as we hope) with much the moft extenlive fhock we have feen in our days.

It may well be expected, that thefe frequent vifits, in themfelves fo very extraordinary, to us fo rare, and that in one ycar, hould keep up our attention; and, as to my own part, induce one to reflect on what I before offered concerning them, and be a fufficient apology for the prefent paper.

We have been acquainted, by thofe that remember it, that in the carthquake of November 1703. which happened in Lincolnfire, the weather was calm, clofe, gloomy, warm, and dry, in a degree highly unufual at that feafon: and thus it has been with us all the year: and from the numerous accounts we have received at the Royal Society, in the beginning and end of the year, where any mention is made of the weather,

Meteorological Obfervations.

weather, they agree in the like particular: which is confentaneous to what I remarked as the conftant forerenner of earthquakes, and what prepares the earth's furface to receive the electrical ftroke.
In my laft we had a paper read at the Rojal Society, concerning the firt earthquake felt by us at London, Feb. 8. A thepherd belonging to Mr Secerctary Fox at Kenfington, the fky being portectly ferene and c!ear, was mach furprized with a very extraord:nary note in the air, ruling over ins head, as of cannon clofe by: he likewife thouglit that it came from the $\mathcal{N} . \mathrm{K}_{\mathrm{F}}$. and went to the S. F. a mocion quite contrary to what muft have been the cafe, if it were really of cannon. This rocife palsed ruthirg by him; and inftant!y he faw the ground, a dry and folid frot, wave tinder him, like the face of the rivor. The tall trees of the avenue, where he was, nodded their tops very fenfibly, and guaveret. The fiock of fheep immediacely took fright, and ran away all together, as if the dogs had purfucd them. A great rockery in the phace were equally alarmed ; and, after an univerfal claigor, fiew away, as if chafed by hawks.

I was likewife intormed, that, in the fame earthquake, a great parcel of hens and chickens, kept at that time in Goray's-Inn Inne, upon the flock, ran to the rooft affighted: and the like was obferved of pigeons. And in our account of the laft carthquake from Northimpton, it is remarked, that the birds in cages put their heads under their wings, as to hite themfelves.

Foun 2 2 . at the R. Soc. Mr Fackjom, Potter at Lambeth, gave an account of fome boats and loiters, in the river at that time; the people in them leemed to feel as if a porpoife, or fome great fifh, had heaved and thumped at the bottom of the boiters. This is fometimes the cale of fhips at fea; which feems evidently owing to an electrical imprefion on the water.

In the Evening-Poft, Fune 23. we had a paragraph from Vienice, that a terrible carthquake had lately been felt in the iffe of Cerigo; a little rocky ine. It threw down a great number of houfes, and above 2000 inhabitants were buried in the ruins.

Another earthquake about that time happened in Switzorland, which fplit a vaft rocky mountain, and an old caftle-wall, of an immenfe thicknefs.

But, fince then, thefe wonderful movements have ftalked round the globe; and again been lately felt in our own ifland, to the terror only of many thoufand prople; befides thofe that appeared in the weftern parts, in the more carly time of the year.

I reccived a letter from Maurice Fobnfon, Eff; the founder and fecretary of the Literary Sociely of Spalding, which has now fubfifted there 40 years. He acquaints me, that, on Thbur dday, Aug. 23. laft, an earthquake was very fenfibly felt there, about 7 in the morning, throughout the whole town and neighbourhood, and many miles round; but chiefty fpread northward and fouthward. He fays, that, for a fort-

Meteorological Obfervations.

night before, the wcather had been ferene, mild, and calm; and one evening there was a deep. red Aurora aufralis, covering the cope of Heaven, very terrible to beloid. This fame flock was felt at Grantbain, Stanford, and Milton by Peterborougb; and generally at all the interniediate places.

Since then, I had a letter from Mr Alderman Taylor, of Stamford, giving an account of another earchquake, that happened there on Sussday, Sept. 30. at 36^{\prime} after noon. He defcribes it thus: "They were "fuddenly furprized with an uncommon noife in the air, like the roll-
"ing of large carriages in the flreet, for about 20 feconds. At the
" fame inttant they felt a great thake, or fnap (as he calls it); info-
" much that it fenfibly fhook a punch-bowl, which was in his parlour,
" and made it ring. He fays, it was perceived of moft of the pcople
" of Stamford, who generally ran out of their houfes. At Okcbain, the
" chicf town in Rutland, the congregation ran out of the church. All
" the towns round Stamford were fenfible of it, and at Pcterborough,
"down to WiJuich."
Thus far the Alderman. But we have had many advices from all hands, at the firtt and fecond meetings of the R.S. for the winter-feafon; with further particulars relating to this great concuffion: that it was felt at the lame time at Rugby in Warwichjoire, and reached to Werwick, at Lutterwerth in Leiceferfhire; at Leicofer, and round about. Tirey ducrioe if, that the houles tottered, and feemed to heave up and down, tho it lafted but a few feconds. It was attended with a ruthing noife, as if the homes were falling; and people were univerfally fo atfrighteti as a run out; imagining that their own, or neighbours houfes, were tembing on their heads. In the villages around, the people, being at civine fervice, were much alarmed, both with the noife, which exceccied all the thunder they had ever heard, beyond compare ; and with the great hook accompanying, which was like fomewhat that rufled againtt the church-walls and roof; fome thinking the pillars cracked; many, that the beams of the roof were disjointed; and all, that the whole was falling; and happy were they that could get out firt. A few nates, tiks, and parts of chimnies, fell from tome houfes; pewter, glafics, and brats, fell from melves; a clock-bell fometimes ftruck; windows univerfally ratted; and the like circumfances of tremor.

The fame extended itfulf to Coventry, Derby, Notsingbain, Nrwark; then came eaftward to Herborougb, Tcwesfier, Noribemplon, Rowell, Keltering, Wellingborough, Osndie in Nortbomptonjbire, Uppingbam, Oicham in Rulland, Stamford, Bouris, Grantbem, Spalding, Bofon, and! to Lincoln, in Lincolngire; Holbech, and all Hollond, in that county; Peterburough, Wi bich in the ifle of Ely, together with all the intermediate and adjacent places. Then it paffed over the whole breadch of ElO-Fien, and reached to Bury in Suffolk, and the country thereabouts; of which we had notice from Lady Corawallis: an extent from Warwick to Lury

Meteorological Offervations.

of about 100 miles in length; and, generally fpeaking, 40 miles in breadth. And this vaft fpace was pervaded by this amazing motion, as far as we can get any fatisfaction, in the fame inftant of time.

In regard to circumftances, they were pretty fimilar throughout. At Neribompion, a Gentlev:oman, fitting in her chair, relates, that the and her chair wese twice fenfibly lifed up, and fet down again. A ftack of chimnics were thrown down in Collcge-Lane; a place retaining the memory of a fort of univerfity once begirning at Nortbamplois. The windows of houies rattled throughout the whole town; but no mifchief cione: in gencral, frightful, and innocuous.

They fanfied there the motion of it, as they exprefs it, to be eaftward. In the ftrects that run N. and S. the houfes on the E. fide of the way were moft affected : and Dr Stonehoufe's dwelling, the ftrongeft in the town, was moft fenfibly flaken. So it was likewife obferved, that churches were moft fubject to it's violence. They thought too that the motion feemed rather horizontal, or lateral, than upward. Some counted the pulfes diftimetly, to the number of four: that the lecond and third pulfe were flronger than the firft and fourth.

From all thefe various accounts, there was no fulphurcous fmell, or eruption; no fiffures in the ground perceived: yet feveral people were fick upon it ; infinite numbers terribiy afirighted; and as foon forgot the impreffion of it, or talked of it in a merry ftrain, as commonly with us at London. So little are the vulgar affected, without fomething very fenfible, and fo foon is the fenfe of it worn out!

It was more cvidently perceived by people ftarding; moft, by thofe that were fitting; leaft, by fuch as were walking; and in upper ftories of houfes more than in lower, or in cellars. Some, coming down ftairs, were in danger of being thrown forwards: feveral fitting in chairs, and hearing the hollow thundering noife, and thinking it was a coach paffing by, when they attempted to get up, to fee what it was, they were thrown back again into their chair. Some heard the wainfort crackle. A lady, fitting by the fire, with her chair leaning forwards, was thrown down on her hands and knces.

It was particularly remarked (as before obferved), that birds in cages were fenfibly affrighted, thrufting their heads under their wings. Mrs Allicock, of Loddington, a Lady in childbed, was fo affected, that it caufed her death. Some people felt fuch a fudden fhortnefs of breath, that they were forced to go out into the open air, it fo affected the pulmonary nerves. Many were taken with head-achs.

Thefe are, in general, the obfervations made at the time of thefe earthquakes; when we recollected ourfelves, after the fuddennefs and affright. Give me leave to make the following remarks.

1. As far as we can poffibly learn, where no one can be prepared at different places, by time-keepers, this mighty concufion was felt precifely at the fame inftant of time, being about half an hour after 12 at noon. This, I prefume, cannot be accounted for by any natural power,
but that of an clectrical vibration; which, we know, acts inftantancoufly.
2. Let us reflect on the vaft extent of this trembling, 100 miles in length, 40 in breadth, which amounts to 4000 fquare miles in furface. That this fhould be put into fuch an agitation in one moment, is fuch a prodigy, as we fhould never believe, or conceive, did we not know it to be fact, from our own fentes. But, if we feek for a folution of it, we cannot think any natural power is cqual to it, but that of Electricity; which acknowledges no fenfible tranfition of time, no bounds.
3. We obferve, the vulgar folution of fubterraneous eruptions receives no countenance from all that was feen or felt during theie earthquakes: it would be very hard to imagine how any fuch thing could fo fuddenly and inftantaneounly operate thro' this vaft fpace, and that in fo fimilar and tender a manner, over the whole, thro' fo great a varicty as well as extent of country, as to do no mifchief.

A philofophical inquirer in Nortbampton/hire, and who had his eye particularly on this point, takes notice there were not any fiffures in the ground, any fulphureous fmeils, or cruptions, any-where perceived, fo as to favour internal convuifions of the earth; yet we learn, from a letter, at Uppingham in Rulland, that a platter floor became cracked thereby. Thefe kind of floors are frequent in this country; what we call Stucco in London; and it gives us a good notion of the undulatory vibration produced by an earthquake; which fome have compared to that of a mulical ftring; others, to that of a dog, or a horfe, fhaking themfelves when they come out of the water.
4. The former earthquake, that happened at Grantbam, spalding, Stamford (which towns lie in a triangle) took up a pace which may in grols be accounted a circle of 20 miles in diameter; the centre of which is that great morafs called Deeping-Fen. This comprehends 14 miles of that 20 in diameter; and where, probably, the electrical impreffion was firt made. Much the major part of Deeping-Fen is under water in the winter; underneath is a perfect bog: now it is very obvious how lietle favourable fuch ground is for fubterraneous fires.

In the fecond earthquake, not only this country was affected again, but likewife a much larger fpace of the fame fort of tenny ground, rather worfe than the former: all Donington-Fen, Deeping-Fen, CroylandFin, Tborney-Fien, Whillefea Fen, Bedford-Level, and the whole extent of Ely-Fen, under various denominations. This country, under the turf, abounds with fubererancous timber of all kinds; fir, oak, and brufh-wood; ftags horns: now-and-then they find a quantity of hazelnuts, crouded togecher on a heap: I have fome of them. This is a ratter common to all boggy ground over the whole globe. They are the ruins of the antediluvian workd, wathed down from the high countiy, where they grew, here lodged, and by time overgrown with the prefent turf. They that feek for any other folution of this affair, than the univerfal Noacbian deluge, want to account for a general effeet by

VOL. X. Part ii.

+ A
a par-

Meteorological Obfervations.

 a partial caufe ; and mut their eyes, both to the plain hiftory of this matter, and to the infinite notorious demonfrations of it from foffil appearances.5. All this country, tho' underneath it is a watry bog, yet, through this whole fummer, and autumnal feafon (as they can have no natural fprings in fuch a level) the drought has been to great on the fuperficies, that the inhabitants were obliged every day to drive their cattle feveral miles, for watering. This thews how fit the dry furface was for an electrical vibration; and we learn from hence this important particular, that it reaches but very little below the earth's furface.

Mr Fobufon, in another letter which he wrote to me concerning the fecond carthquake, obferved at spalding, lays, upon this occalion, he was obliged to fcour his canal, and cieepen it; that they came to a white quickfand, which afforded to all the neighbourhood excellent water in plenty.

In the gravelly foil of London, and where the two hocks were felt by us, in the beginning of the year, we know there is not an houfe in the whole extent of this vaft city, and all around it, but a fpring of water is ready, upon digging a well : whence we have much reaton to believe, that the internal parts of thearth are like a fyonge foaked in water; fo that the only dry part of it is the fuperficies; which is the object, and the fubject, of that electric vibration, wherein (according to my fentiments) an earthquake confifts.

This thews the miftake of the Antients ; who, fancying that earthquakes proceeded from fubterrancous eruptions, built their prodigious temple of Diana of Ephefus upon a boggy ground, to prevent fuch a difafter.
6. Earthquakes are truly moft violent in a rocky country ; becaure the fhock is proportionate to the folidity of the matter electrified: fo that rocks, old caftle-walls, and frong buildings, are moft obnoxious to the concuffion. The ine of Cerigo was more liable, and more rudely handled ty the late earthquake; both becaufe it was an ine, and becaufe it was rocky. So we muft lay of the late earthquake in Switzerland, that fplit the mountain and the old caftle-wall. Whence Mr Fobnfon, in his fecond leteer, fays, it cracked a very ftrong trick houfe in Goferton by Spalding. Dr Doddridge obferves, from Northampton, that Dr Stoneboufe's dwelling, being a very ftrong one, was moft fenfibly fhaken. And, throughout the whole extent of this great earthquake, we find both the noife, the fhock, and the terror, was greatef at the churches, whofe walls and bulk made more refiftance than houfes: and, generally fpeaking, the churches throughour this whole extent have very fair and large towers, and very many remarkable fipires of good ftone.

This fame vibration, impreffed on the water, mecting with the folid of the bottom of nips and loiters, gives that thump felt thereon. Yet, of the millions of ordinary houfes, cver which it paffed, not one fell:

Metcorological Obfervations.

a confideration which fufficiently points out to us what fort of a motion this was not; what fort of a motion it was; and whence derived: not a convulfion of the bowels of the earth, but an uniform vibration of ir's furface, aptly thought like that of mufical ftring; or what we put a drinking-glals into, by rubbing one's finger over the edge; which yet, brought to a certain piech, bresks the glafs; undoubtedly an electric sepullion of parts.
7. We find, from all accounts antient and modern, that the weather preceding thefe fhocks was mild, warm, dry, ferene, clear, frofty : what notorioully favours all our electrical experiments. We very well know, that, generally, all laft winter, fpring, fummer, and autumn, have been remarkably of this kind of weather; more fo than has been obferved in our memory; and have had all thofe requifites, appearances, and preparations, that notoriouny caufe Electricity, that promote it, or that are the effects of it.
8. We find the blood-red auftralis aurora preceding at spalding, as with us at London. This year has been more remarkable than any for firc-balls, thunder, lightning, and corufcations, almoft throughout all England. Fire-balis more than one were feen in Rutland and LincolnBire, and particularly obferved. All thefe kinds of meteors are rightly judged to proceed from a ftate of Electricity in the earth and atmofphere.
9. Mr Fobnfon, in both his letters to me on the firft and fecond earthquakes at Spalding, remarks particularly of their effects being moftly fpread to the N . and S . and efpecially felt on the fea-coft. We may obferve that fuch is the direction of Spalding river, which both conducts and ftrengthens the electric vibration ; conveying it along the fea-fhore, thence up Bofton chanel, and fo up Bofon River to Lincoin; as we difcern, by cafting our cye upon a map.

We obferve further, that the main of this fecond eartiquake difplayed it's effects along and between the two rivers Wellard and Avon; and that from their very origins down to their fall into the fea. It likewife reached the river Witbam, which directed the electric Itream that way too to Lincoln: for which reafon, as there meeting the fame coming from Bofton, the fhock was moft fenfibly felt. It reached likewife to the Trent at Nottinghoin, which conveyed it to Neceark.

The firft electrical ftroke fcems to have been made on the high ground above Daventry in Nortbamptonfbire, where the Roiarn camps are, made by P. Offorius the Propretor. From thence it defeended chiefly eaftward, and along the river Wellend, from Harborough to Stamford, Spalaing, and the fea; and along the river Avon, or Nen, to Nortbampton, Piterborough, and Wifoich to the fea. It fpread itfell all over the valt ievel of the ifle of Ely, furthered by very many canals and rivers, natural and artificial, made for drainage. It was ftill conducted caftward, up Mildenball river in Suffolk, to Bury, and the parts adja-

Mettorological Obfervations.

cent. All this affair, duly confidered, is a confirmation of the doctrine I advanced on this fubject.
10. I ajprehend it was not the noife in the air, as of many cannon let off at once, preceding the earthquake, that fo much affrighted people, or affected the fheep, the rookery at Kenfington. the hen and chickens in Grays Inn-L.ane and the pigeons: it could not be barely the fuperficial movement of the carth that diffurbed them all at once: 1 judge it to) be the effect of Eilectricity, fomewhat like what cautes fea-ficknefs; fuch a furt of motion as we are not accunfomed to. So the earthquake affects all thofe of weak nerves, or that have nervous complaints, obnoxious to hyiterics, colics, rheumatic pains in their joints. Several women were fized with violent head-achs, before both the focks we felt in London. It was this that afficted the people, with a fhortne'fs of breath. This made the dog run whining about the room, feeking to get out : this made the fifhes leap up in the pond at Soutbwark; like as the experiment of electrifying the fiihes ; it makes them fick: and this caures the birds in cages to hide their healls under their wings, becaure they cannot fly away: which is commonly obferved of them in Italy, and countrics where earthquakes are more frequent.
11. I obferve, the fhepherd of Kenfington thought the motion of the earthquake, and the found, were from N. W. to S. E. On the contrary, Mr Byfeld, the fcarlet-dyer in Soutbwark, thought the noife came from the river below-bridge, and went toward W eftminffer ; where it rattled fo, that he did not doubt but that the abbey-church was beaten down.
Dr Parfons took pains to find out the way of the motion of the carthquake, from the different pofition of the beds; but, from the contradietory anfiwers given, he could obtain no fatisfaction, as to that point. All this, and what was obferved from Nortbampton, of the motion being thought by fome to be upward and downward, by others, rather horizontal or lateral, the counting the pulfes, and the like, only points our to us the prodigious celerity, and the vibratory fipecies of the motion of an earthquake ; but far, very far, is this from being owing to the tumultuous ebullition, the irregular hurry of fubterraneous explofions.
12. How the Atmofyhere and earth are put into that electric and vibratory ftate, which prepares them to give or receive the frap, and the fhock, which we call an carthquake, what it is that immediately produces it, we carnot fay ; any more than we can define what is the caufe of magnetiim, or of gravitation, or how mufcular motion is performech, or a thoufand utisr fecrets in nature.
We feem to know, that the Author of Nature has diffeminated ethereal fire thino' aill matter; by which thefe great operations are brought abour. This is the fubtil thid of Sir I. Newton, pervading all things; the occule fire diffured thro' the univerfe, according to Marfilius Ficinus the Platonic Philufupher, in the Timaus of his malter. And the Pla-
tonifts infift on an occult fire paffing thro' and agitating all fubftance by it's vigorous and expanfive motion.

Betore them, Hippocrates writes in the fame fenfe, I. de vietus ratione, that this fire moves all in all. This ethereal fire is one of the 4 elements of the Ancients: it lies latent, and difperfed thro' all the other 3, and quiefcent; till collected in a quantity, that overbalances the circumjacent ; like the air crouded into a tempeft; or till it is excited by any proper motion.

This fire gives Elafticity, and Elafticity, or vibration, is the mother of Electricity. This fire is in water, and betrays itfelf to our fenfes in falt water. Many a time, when I have paffed the Lincolnfire wafhes, in the night-time, the horfe has feem'd to tread in liquid flames. The fame appearence oft at the keel of a thip.

The operation of the ethereal fire is various, nay infinite, according to it's quantity, and degree of incitement, progrefs, hindrance, or furtherance. One degree keeps water Huid, fays the learned Bifhop of Cloyne: another turns it into elaftic air : and air itfelf feems nothing elfe but vapours and exhalations rendered elaftic, by this fire.

This fame fire permeates and dwells in all bodies, even diamond, flint, and fteel. It's particles attract with the greateft force, when approximated. Again, when united, they fly afunder with the greateft celerity. All this according to the laws prefcribed by the fovereign Architect. This is the lite and foul of action, and reaction, in the Univerfe. Thus has the great Author provided againft the native fluggifnnefs of matter! light, or fire, in animals, is what we call the animal pirits; and is the author of life and motion. But we know not the immediate mode of mufcuiar motion, any more than how, in inanimate matter, it caufes the vibrations of an earthquake.

Of this fire Manilius thus writes, who lived in the time of Augufus, Affronom. I.

Sunt autent cunctis permifti partibus ignes,
Qui gravidas babitant fabricantes fulnina nubes,
Et penetrant terras, Etnanque imitantur Olympo,
Ett calidas rediunt ip/is in fontibus undas,
Ac flice in duro, viridique in cortice, feders
Inveniunt ; cum filva fibi collifa crematur.
Ignibus ufque adeo natura eft omnis abundans!
Which may thus be englifised:
Fire, univerfal nature traverfes;
It makes the thunderbolt in tumid clouds,
In dire Volcano's penetrates the earth;
And fonds the beiting water from it's fprings:
In hardert flint, and fofteft wood, it dwells;

Which, by collifon, fhews itelf in Alame.
With fire to pregnant is all nature found!
13. The great queftion then wich us, is, how the furface of the earth is pur into that vibratory and electric fate by heat and drinels? we mult neecis acquit the internal of the carth from the charge of thefe füperficial concuffions. How is the ethereal fire crouded together, or excited, fo as to caufe them; leeing, in our ordinary electrical experiments, we make ufe of friction?

But that friction alone does not excite Electricity, we know, from the obvious experiment of flint and ftee!; where the fuddennefs of the ftroke, and hardnefs of the matter does it. Another method of exciting it, is the letting off a number of great guns; which fo crouds the ethereal fire together, as to electrify ylafs wincows : obierved by Dr Hales. The Aurora borealis, nuftralis, all kind of cormication, metcors lightning, thunder, fireballs, are the effects, and may reciprocally be the caule, of Electricity; but how, in particular, we know rot.

Come we to the animal world, we muft needs affert, that ali motion, voluntary and involuntary, generation, even life itfelt, all the operations of the vegetable kingdom, atiod an infinity miore of nature's works, are owing to the activity of this elcetric fire; the very foul of the material world. And, in my opinion, it is this alone that folves the famous question, fo much agitated with the writers in medicine, about the heat of the blood. How thefe, how earthquakes, are begun and propagated, we are yet to ieek.

We may readily enough prefume, that the contact between the electric and the non-electric, which gives the fnap, and the fhock, muft come from without, from the atmofphere; perhaps by fone meteor, that crouds the ethereal fire together, caufes an accenfion in the air, in the point of contact, on the earth's furface; perhaps another time by a hower of rain. We may as readily conclude, that, tho' the original ftroke comes from the atmofphere, yet the atmofphere has no further concern in it: no aëreal power, or change therein, can propagate itfelf fo inftantaneounly over fo vaft a furface as 4000 miles fquare: therefore the impetuous rufhing noife in the air, accompanying the fhock, is the effict, not the caufe.

But furely there is not a heatt of flefh that is not affected with fo ftupendous a concuffion. Let a man eftimate his own power with that which caufes an earthquake, and he will be perfuaded that fomewhat more than ordinary is intended by fo a rare and wonderful a motion.
frippocrates makes the whole of the animal oeconomy to be adminiftred by what we call nature; and nature alone, fays he, fuffices for all things to animals: She kncwis herfelf, and what is necefliary for them.

Can we deny then that he here means a confcious and intelligent nature that prefides over, and directs all things; moves the ethercal fpirit, or fire, that moves all things; a divine necefity, but a voluntrary agent, who gives the commanding nod to what we commonly call nature; the

A rotatory motion of gla/s tubes.

the chief inftrument in the moft important operations of the vaft machine, as well as in the ordinary ones? And this leads us,
14. Laftly, in regard to the fpritual ufe we ought to make of thefe extraordinary phenomena, or of our inquiries about them; I fhall firft obferve, that we find abroad, feveral of thefe earthquakes this year have been very fatal. In the laft we read of at Pbilippoli in Thrace, the whole city was deftroyed, and above 4000 inhabitants killed. At home, where above half a fcore feparate concuffions have been felt, there has siot been one houfe thrown down, one life loft. This ought to infpire us with a very ferious reflection about them. 2. We may obferve, that if we disd but read the works of Hipprocrates, Plato, and his followers, of Tully, Galen, and the like ethic writers of antiquity, whilf we ftudy and try the affections of matter, we fhould improve in Philofophy, properly fpeaking; we fhould lift up our minds sron thefe carchly wonders, and difcern the celeftial munitions they prefent to us.

The original meaning of the word Philufophy was rightly applied to moral witiom: we, who have improved both, fhould join them both together. By this means we gather the truth of the higheft and mott excellent Phitolophy, to be found in thofe volumes of firft antiquity, which we call facred; and we fhould adore that divine light which they hold forth to us; efpecially in a country where the principles of true religion are open and undifguifed; where the eftablihed profeflion of it is rational, noble, and lovely; worthy of the Moral Governor of the world.
XLIII. About 4 years ago, Mr Cbarles Orme, of Aßby de la Zouch in Leicefferpire, acquainted me that, in drying his glafs tubes for his diagonal Barometers (which for fome years he has continued to make in much greater perfection than any other perfon that I know of in England*), he had obferved a rotatory motion about their axis, and at the fame time a progreflive one towards the fire. He was fo obliging then as to prornife at any time to fhew me the experiment; but other bufinefs intervening, I ftill deferred accepting his offer; having the lefs curiofity to fee it, as I imagined the inotions were occafioned by the draught of air up the chinney, affifted by the weight of the inclined tubr. But a little above a year ago, making fome itay at 1 Bb by, upon reprating his offer, I went to fee the experiment, which anfiwered fully to his defeription: the tubes which were about 4 feet long, and $\frac{1}{3}$ an inch over, moving at 6 or 8 inches diftance from the fre, not only progrefively, and about their axes along the fide-wall they leaned againt, but along the front-wall of the chimney, which made an obtufe angle with the other; to that they feemed to move up hill, anid againft their weight.

Truo leters from the Ree. Mr Granville Whele- r.R. S. to the Pref. concerning a rotatory motion of glars tubes abous b.in ixes, when placed in a certain manner before. the fire. N°. 476. P 341. April sc. 174i: Read March 28. and April 4. 1745°
Surprifed at this, I thought the cafe deferved a little farther examination; and propofed placing two tubes horizontally, parallel to each

[^27] other, and at right angles to the face of the fire, to be fupporters to a third which was to be placed upon them parallel to the fire. We did fo, and with pleafure obferved the fupported tube turn about it's axis, and move on towards the fire in fuch a manner, as made me fill Jefs inclined to think either of the motions owing to the draught of the fire, and certainly not to the whole weight of the moving tube; a fine fpirit-level informing us, that the fupporting tuibes leaned from the fire; fo that the motio was a littic up-hill.

This fuccefs determined me, with Mr Orme's leave, to go on farther; and, furnithing myfelf, from him, with tubes of feveral lengths and thickneffes, I made feveral trials; and found, that with a moderate fire the experiment fucceeded beft, when the fupported tube was about 20 or 22 inches long, the diameter about to an inch, and had in each end a pretty ftrong pin, fixed in cork, for an axe to roll with upon the fupporting tubes; which, to leffen the contact, had nearly the fame diameter with the moving one. Under thefe circumftances the tube would begin to move at 18 inches diftance from the fire ; and continue to do fo, with litele intervals, till it touched the bars, and moved much in the fame manner, when a little ball of curk, an inch or more in diameter, was fixed in the middle of it. Bur what furprized me \&ill more, and feemed to take off the objection of the draught of the chimney, was, letting it once ftay a little while againft the bars, I Sound it ftill continue it's motion about its axis in the fame direction.

This put me upon making little rings of wire, to fix upon and move along the fupporting tubes, fo as to ftop the moving tube at any diltance from the fire I plealed. Stopped with thefe, the motion of the tube about its axis ftill continued.

Defirous to try what would be the effect in or near an upright pofture, I made the pin at one end of my tube reft upon a Cbina plate, shat at the other turn in a filver locket (that carried my pencil) fixed in an horizontal arm of wood, but fo as I could nlip it up and down, to adapt it to the length of the tube. Here I found, that if the tube leaned to my right hand, (which was the cafe of MrOrme's tubes before lis fire) the motion was from E. to W.; but if they leaned to my left, the motion was from W. to E. ; and the nearer I could get to the perfeetly upright pofture, the leis the motion feemed to be either way.

I now procceded to place my tube horizontally upon a glafs plane (a large fragment of a coach-fide window glafs). The tube, inftead of moving towards the fire, moved from it, and about it's axis, in a conirary direction to what it had done before. Obferving that this glafs plane was broader at one end than the other, and that the rotation backwards was more fenfible when the narrower end was towards the fire, I placed a triangular piece of the fame glafs with it's vertex towards the fire nearly horizontal, but rather rifing from the fire; fo that it's bafe was a little higher than it's vertex; and upon it a tube of glafs, about 22 inches long, and $\frac{1}{5}$ of an inch diameter, near the vertex and the fire.

This tube receded from the fire, moving about it's axis till it came to the diftance of eight inches; which is four inches more than it receded the day before upon the fame piece of coach glafs, before it was broken into this triangular form.

I was naturally led now to make ufe of two fupporting tubes, inftead of the triangular glafs plane. Thefe were abour 18 inches long each, and 10 of an inch in diameter, and placed parallel to one another at the diftance of about two inches, fo as to fupport the moving tube near the middle of it. When very nearly horizontal by the level, the fupported tube moved from the fire about it's axis to the diftance of 13 inches: when the fupporters were a little raifed at cheir remote ends, to as manifeftly by the level to defcend towards the fire, it receded to the diftance of 10 inches, moving as before about it's axis; but in this latter cafe the fire had declined a good deal, otherwife, probabily, the tube would have receded farther, tho' up-hill.

The next day, the fame tube, when the fame fupporting tubes were $8 \div$ inches diftant from each other, receded nearly as before: when $12:$ inches from each other, it flood fill ; and when removed to the diftance of 16: inches, the fupported cube very manifeftly changed it's motion, and went towards the firc ; as it did afterwards, when the inclination of the fupporting tubes was altered, fo as to afcend towards the fire.

I made feveral other experiments, with regard to the fituation of the tubes to the fire, with regard to the quantity of fire fuffered to come at the tubes, and with regard to attraction and repulfion, which I will not troubie you with at prefent: only obferve, that, when the cube had 4 others under it, all fupporting, one near each extremity, and one on each fide of it's centre, no motion at all was perceived; and when two of them on the fame fide of the centre were taken away, the fupported tube moved into an oblique fituation with regard to the fire, the unfupported half receding from the fire.

Upon the whole, it appears fufficiently plain, that the ftream of air up the chimney is not the caufe of the rotation : another may be affigned, fimple and eafy; but as I have already taid too much, it will be better to make it the fubject of another paper.

I fufpended two fragments of fmall tubes, 8 inches long, and about The feconi T^{\prime} of an inch in diameter, near the fire, from two pins, by blue filk Letter. lines, which had each a loop at one end, were tied at the other to the top of the cubes, and hindered from flipping off by a little fealing-wax. The tubes came together at the upper end, and receded manifeftly from each other at the lower, appearing to be in a ftate of attraction above, and a ftate of repulfion below: but, fufpecting this to be owing to the fealing-wax, which foon began to melt, I feraped it off both, leaving only as little as was poffible, to hinder the fiks from nipping. The confequence then was, they came together at the lower ends, and very near fo at the upper; and, when fufpended from one pin, fo that the

$$
\text { VOL. X. Part ii. } \quad 4 \mathrm{~B}
$$

loops of the filks touched each other, the tubes feemed equally clofe all the way down, without any appearance either of attraction or repulfion. But, imagining ftill that a repulfive power in the heated fupporting tubes, when placed near together, might poffibly be the occation of the receding of the upper tube at contact with them. To put the mater out of all doubt, I wet the 3 cubes all over; yet the regreflive and rotatory motion was still manitett, with very litcle, if any difference; not more than might be well accounted for, from the increafe of refiftance by wetting.

Thefe two experiments fully convinced me, that neither attraction nor repulfion would be of any affiftance in folving our rotation Upon confidering therefore the matter farthcr, I found nothing was wanting, but that the moving tube fhould fweli towards the fire; and indeed I thought I could perceive fuch a fwelling in Mr Orme's long cube of four feet and an halt, which 1 faw firft placed near a good fire in the manner defcribed in my laft. For, allowing fuch a fwelling, gravity muft pull the tube down, wlten fupported near it's extremities horizontally; and a frem part being expofed to the fire, and fwelling out again, muit fall down again, and fo on fuccefively; which is, in other words, a rotatory motion towards the fire.

When the fupporting tubes are brought near to each other, as well as near to the centre of the fupported tuide, then the parts hanging over on each fide, being larger than the part which lies between the fupporters, will, by their weight, pull downwards, and confequently force the middle part, refting upon it's two fulcra, upwards; and being lefs advanced towards the fire, as being lels heated, will, by their oblique fituation, pull the middle part backward alfo from the fire: which effects, being fucceffive, will exhibit a rotatory regreflive motion, quite contrary to what the tube had when fupported near it's extremities : and when a fingle tube lies inclining oppofite to the fire, either to the right hand or the left, out of a plane perpendicular to the furface of the fire, gravity will not permit the curved part to reft, but pull it down till it coincides with a plane perpendicular to the horizon; and, confequentiy, as new curves are generated, new motions will be fo too; that is, the tube will be made to move about it's axis; but with this difference, when the tube inclines to the right hand, the motion about the axis will be from E. to W. when to the left hand, from W. to E. The juftnefs of this reafoning is made manifeft with a very little trouble; only bending a wire, and fupporting it firft near it's extremities, then near it's centre on each fide, afterwards inclining it to the right, and then to the left; the bending in every cafe reprefenting the curved part of the tube next the fire. And that this folution is the true one, feems farther probable from hence, that when 4 fupporters were made ufe of, one at each extremity, and 2 near the middle, there was no motion at all either backward or forward: nor is it of any fervice to object here, that the increafe of contact hinders the motion; becaufe,
upon the plane of glafs, mentioned in my former paper, fo large as to have a much greater contact with the cubs", both a rotatory and regreffive motion was manifef.
XLIV. The ingenious author does not treat exprefly of thofe produc- An a:cornt of tions of the chemical art, which we ufualiy call pbofphori, but princi a book intitypally of fuch fubftances, whether natural or artificial, which imbibe the ${ }^{\text {led, }}$ De quamrays of light in fuch quantitics, and in fuch a manner, as to appear phoris mane luminous tor a time, even in abfolute darknels.

Before I enter upon the fubject matter of this treatife, I muft take tectis Com. notice of the apparalus made ule of in thefe inquiries. He caufed a wooden box to be made, large enough cither to fit in, or ftand in upright : yet not fo large but he might with eafe be carried to any place Buethol. the moft convenient for his obfervations. In this box was a litele win-Printed in dow, in which a cylindrical tube was fitted fo exactly, that no light too at Bocoukd be admitted but through the tube, in which there was an apparatus fo adapted, that the perlon within could place any object proper for Extragtd and obfervation in fuch a manner, as to receive as much light as it could con- from the Latin tain, and then to turn it inftantly towards his eye, without admitting the b_{r} W. Warion leaft ray of light, befides that brought in by the object. The infide of this box muft be abfolutely dark, without which caution many of the attempts would be unfuccefsful; becaufe the light in many of the fub- $1 / 4.6$. jects was neither very lively nor very lafting. Therefore it was neceffary Read Feb. 2\%. alfo, that the cyes of the obferver ihould be as free as pofible from the 1745^{-6}. imprefions of former vifion: fo that it were proper to make thefe obfervations immediately after neep, or to keep the eye you intend to make ufe of fhut at lealt : an hour before you cnter the box. A proof to know whether your eye is propery difpofed, will be expofing a piece of white paper to the light in the tube, and then being able to perceive it's form and colour when turned towards you in the box.

He divides the pbo/pbori into feveral kinds; fome of which Thine of themfelves naturally, as the glow-worm and dates; or adventitiouny, as the flefh of animals, which mott probably arifes from a degree of putrefaction, fometimes too nlight to be obvious to our fenfes. Other bodies become luminous by attrition, heat, the free accefs of air, and, laftly, by imbibing and retaining the rays of light. Thofe hodies that are luminous by attrition, are amongt others, fome diamonds, and the hairs of animals; by heat, feveral fort of gems, and mountain cryftals; from the free accefs of air, the phofphori of Kraft and Honberg; from the afpect of light, the Bolognian luminous fone, the preparation by Cbriftian Adolphus Baldwin of chalk diffolved in fpirit of nitre, as well as feveral others difcovered by the late M. Du Fay, who found, that whatever fubftances would, by calcination, be converted into a calx, or whofe concrete, from a folution in the acid of nitre, would bear fire enough to become red-hot, thefe bodies were adapted to imbibe and retain light.

The greateft number of pbofphori are of the laft-mentioned kind, and thele are principally the fubjects of this treatife. Some of thefe are natural, others artificial; but of thefe laft the preparation is fo night, as not to change the nature of their conftituent parts. The natural plooppori are either foffit, vegetable, or arimal. 'The foffil are, though very different in degree, fome forts of earths, whice fand, lime-ftones, falactites, and feveral other figured fonces, inand cryftals, llints, fome fpecies of agates, white arfenic ; but no fort of metals, metallic or fulphureous bodies, as jet, amber, except the before-mentioned arfenic. On the other hand, falts imbibe light, provided they are divefted of every metallic principle; otherwife not, though pellucid as poffible. For this reafon, none of the vitriols will imbibe light; but other faltes will, though with a confiderable difference as to quantity; for fal. gem. and rock-lalt imbibe very litele; fea-falt, if dry, and in cryftals, nuch more; and, in like manner, fal ammoniac. ; more yct, fal. catbarticuns and nitre; weak in the nairon of the Ancients, and alum ; but brighteft of all in borax.

In the vegetable kingdon we find very few phofphori; that of dry rotten wood is weak, and not lafting; it appears chictly upon the edges and inequalities of the furface. But this is moft remarkable in the rorten wood of the fir-tree, and fome others, where in the dark you fee fhining fpots as big as tares; whereas, in full light, the whole furface appears alike. Some few barks are luminous, but not confiderably fo ; but no fruits, feeds, or their meals. Cotton appears very bright, and the cryftals of tartar; but fine loaf fugar appears the moft luminous of all, both without and within. Gums and refins retain no light.

There is a vaft variety of phofpbori in the animal kingdom, fuch as the bones and teeth; to thefe may be added the fhells of fifh, egg-fiells, the human calculus, bezoar, and in whatever parts of animals the terreftrial principle is very predominant. But where there is a confiderable quantity of oily matter, as in the hoofs, horns, and feathers, no light is manifett.

Having grone through the natural pinojphori, he propofes fome queries concerning them; of which the firft is, In what and how great a light the nbject ought to be placed? He tried different pbofphori in different degrees of light, and found them imbibe moft light from the fun itfelf; next in quantity, when the fky was clear; and the leaft in foggy weather. Thefe experiments fhould be made in the open air, and not in a houfe with the glafs windows hut; becaufe many bodies appear luminous, when the light has come directly to them, which will not have that appearance when the light lias paffed through the glafs. He laftly tried what light they would imbibe from very bright flame, and found, that alabafter ieffelf, which is faturated more than any fubfance by the fun's rays, imbibed exceedingly little. 'The'next query is, How long thefe bodies fhould remain in the light to be fufficiently faturated? 4 or $5^{\prime \prime}$ were found the urinoft length of time required for that purpofe.

The other query is, How long the received light will continue in thefe phofphori ? It does not taft the fame time in all; but conti.ues more or lefs, from 2 to $8^{\prime \prime}$, in proportion to the ftrength of the plofphorus, and the quantity of light received.

We pals now to thofe phojpheri, which are produced by art; and, firft, to them witich are made by the maceration of plants alone, and without any fire; fuch as thread, linen cloth, but, above all, paperThe luminous appearance of this laft is greatly increafed by heat. This is confirmed by two experiments: the firft is, by expofing the paper, fpread upon an iron grate, to the naked fire, yet not near enough to fcurch it, and then laying a warm brick thereon to retain the heat; by which means it was obferved, that where the paper was not fkreened by the iron grate, it was moft luminous; fo that, by the lights and faades, you might diftinguifh in the dark the image of the iron grate a confiderable time: The other experiment is the application of the paper to a plate of warm brals; from which, when in the dark, you might very eafily, by it's being teis luminous, diftinguith the margin of the paper, that had not been warned by the brafs.

He proceeds to take notice of thofe phofpbori which become fo by the affiftance of fire. But the fire here fpoken of is not great enough to diffolve their conftituent parts, but only fuch as may affeet the external parts of their texture, and that but gently; fo that the procels here mentioned is only drying or roalting. For it is not the watery or the faline part in bodies which is torrefied; but the oleaginous, wherewith many vegetables, and moft animals, abound.

The white flefh of animals, fuch as that of chickens, becomes a pborphorus by roafting, as well as the tendons, and whatever parts of animals become glutinous by boiling, fuch as carpenter's glue, ifingglafs, to thele may be added cheefe. Bones, though they imbibe light without any preparation, have that property in a much greater degree when burnt, and their luminous appearance is much more lively. But roafting has not this effect upon feathers, hoots, horns, or whites of eggs. The fame operation, which produces leveral phofphori from the animal kingdom, gives alfo feveral from the vegetable. Thus, by gentiy toafting, gums, as myrrh, gum tragacanth, and others, appear luminous, tho' different in degrees; and this light is clear, in proportion to the genele evaporation of their aqueous parts. By this treatment, nuts of every kind, pulfe, corn, coffee-berries, meal, bread, and wafers, alfo become pbofpbori. Turpentine, amber, and fome refins, require more fire before they imbibe light; fo that you muft diveft them of their acid, and their light ethereal oil, to make them appear luminous. But here great care muft be taken that they boil no longer than from being white they turn yellow; for if you proceed longer, your labour is luft.

It is neceffary that you fhould be acquainted, that thofe pbofpbori, which are produced by torrefaction, foon loie their power, which, perhaps.

Of Phorphorus.

haps, neither time, nor a thorough diffolution of their parts, can deprive the natural ones of. In general, as long as the phofphori, gained by torrefaction, preferve their power, their light is more fharp and ftriking, but the natural, more weak. But thofe that are gained by calcination, and Baldwin's pbofphorus, feem to poffefs both the ftriking light of thole gained by torrefaction, and the weaker light of the natural phofphori: the lant they preferve a long time, but the former is lott by degrees much fooner. The well calcined athes of plants, or rather their terreftrial parts remaining after the folution of their fixed falts by wahing, and neutral falts, continue phofpbori after many years. So that, as far as we can judge, the luminating power which is gainied by calcination, tho' not fo intenfe, continues perpetual; whereas that gained by torrefaction always decreafes, and in a very litcle white is no longer vifible. Some even, by this method, continue to imbibe light mich longer than others. Gum Arabic, which continuss longett, lafts 6 days; bread, not one; and coffee, only a few minutes. However, at any time, by a frefh torrefaction, you may recover thefe languid pbofphori; in which property they have great likenefs to the Bolognian Itone, and ocher phofphori prepared by art. The phofphori gained by torrefaction, as well as that of Bolognia, will not imbibe light, while they are warm ; and this laft does not appear to luminous when firtt prepared, as when it has been fo fome time.

The natural phofphori do not differ only in the before-mentioned particulars, but alfo in the colour of the light ittielf. The light of the natural generally appears either perfectly bright, or fomewhat inclining to yellow : the artificial produces a red, and fometimes a brown light; but there are fome exceptions to both thefer rules. From thefe different appearances, the author conjectures, that there are two forts of fire arifing from different principles; riz. that in torrefied fubftances, from a fulphureous, ard that of the natural, from a terreftrial principle.

In obferving a piece of lapis tutie, which was rough and unequal on it's convex fide, finooth and fomewhat poliflied on the concave; he found, to his furprize, that the rough fide was luminous, and the fmooth one not. He was very deffrous of inveftigating the caufe of this appearance. He remembered that fome polifhed marbles did not imbibe light, or very little, and that at their edges; but, having loft their polifh, they did admit and retain it. He therefore corjectures, that bodies, according to the difpofition of their furfaces for the reflection of the light, cither fiffer or prevent it's entrance into them. If this pofition holds good in the reflection, why fhould it not with regard to the refraction? He produces 2 experiments, which he apprehends not forcign to the prefont purpofe; but is yet making others, for his further fatisfaction. He expofed a glatis bottle full of well-water to the light, and, as foon as poffible, obferved it in the dark. is he expected, it imbibed no light. Upon pouring into it fome ofl of tartar, it became turbid and whituh, from the worls water being ufually impregnated with calcarious

Of Phorphorus.

calcarious matter. Upon obferving it then in the dark, after having been expofed as before, it retained enough of a pale light to diftinguifh the fhape of the bottle. In a bottle of rain-water he diffolved fome talc; which ftone, by rubbing, will diffolve in water as falts do, without rendering it opaque; to this folution he added oil of tartar, and this mixture was fuminous as the preceding. He therefore conciudes, that fo long as earthy corpufcles are very fmall, feparate, and agrecing in their furfaces with the water in which they float, they readily trantmit the light they receive; for which reafon it is impoffible they fhould retain liglit enough to appear lumincus in the dark. But, by the affufion of the faline principle, the earthy corpufcles unite with the water and falt ; and from the union of thefe principles the mixture grows thick, whereby the ready tranfmiffion of light is prevented; fo that, if this mixture is without colour, or any thing metallic, the light will be ftopped long enough to be vifible in the dark. But if, intead of oil of tartar, you add fugar of lead, the mixture will be turbid, but retain no light. In chefetwo experiments the water becomes a phofphorus.

Gems, cryitals, and glafs, whether whole, or powdered ever fo fine, retain no light; fo that neither their tranfparency nor whitenels contribute to their becoming luminous in the dark. Of feveral diamonds, in all appearance perfectly the fame, fome were very luminous, others not at all. Of many opaque fubftances, whether rough, polifhed, or finely powdered, fome were luminous, others not. So that it appears, that not only the external, but the internal texture of bodies alfo, may conduce fomerimes to their being luminous.

From the preceding experiments, the author is led to make fome inquiries into the caufe of this luminous appearance; and takes notice, that alnoft all bodies, by a proper treatment, have that power of fhineing in the dark, which, at firit, was fuppofed to be the property of one, and afterwards only of a few. How this is brought about, is not very eafy to fo!ve. If we fuppofe with fome (from which our author, in feveral paffages of this work, feems not averfe), that the light from a luminous body enters and abides in the pbofpbori, we fhall find fomewhat new to admire in light itfelf. It is no new opinion, that this fluid confifts of very fine particles, which are continually darted forth from a luminous body, in all directions, with a very great velocity: but it has by nobody been laid down hitherto, that thele particles are not diffolved by the violence of their agitation, not difperfed, nor immediately ceafe to exift ; but fubfitt ftill, and adhere to what bodies come in thcir way, as heat does, and are the caufes of odours. If therefore the particles of light are not diffolved as foon as they are emitted from a radiant body, but continue fome time, what elle is required, but that we allow it's atmofphere to every lucid appearance? If the phofphori Mine with a borrowed light, but not with their own, and that only when put in motion, and fired by the rays of a fhining body, which fome experiments feem to confirm, then other new doktrines will arife.

The Lacrymx Batavica.

There muft be then a hidden, a fecret principle in bodies, to be lighted up by this moft fubtle fire. There will be in the univerfe a certain perpetual fire from thefe pbofplocri ; the matter of which, tho' conitandly diffipated by burning, does not wafte enough to be obvious to our fenfes.

I cannot conclude my extract of this author, without mentioning, that his work is the refult of a great variety of very ingenious obfervations, and of experiments made with the utmoft accuracy; to which I may add, that where-ever he makes any conjecture concerning their cautes, he does it with all poffible decency, and fubmiffion to the judg. ment of the learned.

The Larrymax Batavicx, or glafs-drops, the tempering of fteel, and effervecicence. accoimuted for by the fame primaiple. By Claud. Nic !e Cat, M.D.
F. R. S. \&c.

Tranflated from the French, by T. S. M. D. $\mathrm{N}^{\circ} .492$. p. 175 Apr. \&cc. $17!9$ Real June 15.1749

Experiment I.

Exper. 2.

Exper. 3 .

Exper. 4 .
Exper. - -

Exper. 6.

Exper:-
XLV. The glafs-tear, or drop, commonly called Lacryma Batarica, or Lacryma Borufica, becaufe it was firft made in thefe countries, is much celebrated among Natural Philofophers, upon account of the fingular phrenomena which it exhibits, and which have for a long time exercifed their fagacity.

The make of this drop is as fimple as its explanation is difficult. It is the work of the meaneft workman in a glafs-houfe. On the top of an iron-rod they take up a fmall quantity of the matter of glafs in fufion: they let it drop into a pail of water : the drop makes that part of the water which it touches, to boil with a hifling noife, as a red-hot iron would do, which it refembles in that inftant; and when it does not break in this operation, as it moft frequently does, it forms the little pyramidal mafs, which is knowa by the name of a glafs-drop; the effects whereof I will firft relate, and then endeavour to account for them.

This drop is of fuch hardnefs and refiffance, that it bears fmart blows of a hammer, without breaking.

Neverthelefs, if you grind the furface of this drop which refifted the hammer, or if you only break the tip of the fmall end or tail, the whole fhatters into powder.

This Mattering of the drops is attended with a loud report; and the duft or powder to which it is reduced, foots out, and featters all around.

If the drop be ground with powder of emery, imbibed with oil, it often efcapes breaking.
If this experiment be made in the air-pump, the drop burfts with greater impetuofity, fo as fometimes to break the receiver; and it's duft is finer than when done in the open air; and if it be made in the dark, the drop in turffing produces a litele light.
If this drop be annealed in the fire, it lofes all thefe fingularities; and being reduced to the ftate of common glafs, it eafily breaks under the hammer; and does not burt upon breaking the fmall end.
The drops that are made by letting them cool in the air, produce no other effects than thofe which have been anneaked.

The firft Natural Phoofuphers who endeavoured to inveftigate the caufe of thefe phenomena, imagined that they found it in the air. Some of them fuppofed, that this air was fhut up in the drop by the cruft which the cold water forms on it's furface while it is yet red-hor; and attributed it's rupture to the violence with which this air iffued through the too narrow paflage made for it, in breaking the fmall end of the drop. Others maintained on the contrary, that the drop, in this ftate, contained no air at all, nor any thing but particles of fire, or fubtile matter; or, in one word, a vacuum of air ; and that the fudden burfting of the drop was occafioned by the impetuous entry of the air into this fort of vacuum. In fine, the Cartefians have fubftituted their fubtile matter in the room of this exterior air, and fay, that the drop is burfted by the lefs fubtile particles of this matter; which entering with force into the drop by the opening made therein, and finding large pores on the infide, and fmall ones on the outfide, burft the fides of the drop, by ruhing from the centre to the circumference, wherewith it's paffage is obftructed.

Meff. Mariotte and Homberg came afterwards; being provided with an air-pump, they caufed one of thele drops to be broken in cacuo; and Homberg having obferved, that it broke therein better and with a louder report than in the open air; they both inferred, that neither the impetuous entry of the outward air, nor that of a fluid fomewhat lefs grofs, could be the caufe of this hock; becaufe the receiver of the air-pump is void of thefe fluids; and even if a little fhould remain therein, it is too much rarefied, and too thin to be capable of fuch an effect.

Mr Mariotte, thro' fome remains of attachment to an opinion, which he had held to that time, did not intirely exclude the exterior air from the caufe of the phrenomenon of the drop; but thought proper to add another to it ; which he makes ufe of as a fubftitute in cafes like thofe of the preceding experiment, where the infufficiency of the air, or of a fluid nearly fimilar to it, plainly appears.

Mr Homberg thews no indulgence to the exterior fluid; and afcribes the whole to the new caufe, which is, the quality of tempered glafs, which the drop acquires, like fteel, by being thrown red-hot into cold water. This tempering, according to thefe great Academicians, confers at the fame time more fpringinefs to the parts, and lefs connection with each other. When a feecl fiword-blade is bent forcibly, it breaks more eafily than one of iron; and the jarring which is occafioned by it's fpring, is capable of breaking the other parts of the blade: and thus we fee, that it generally breaks into feveral pieces. This blade is the image of the Lacryma Batavica, or glafs-drop.

This is the point to which I found things brought, when I began to ftudy the phrnomena of the glafs-drop.

The air was partly banifhed from the infide of this mafs of glafs: there is none in the liquid red-hot matter of a glais furnace. It was purely out of complaifance for a generally received opinion, that Mr

VOL. X. Part ii, $4 \mathrm{C} \quad$ Mariotte

The Lacrymæ Batavica.

Mariotte allowed the exterior fluid any thare in the phaenomenon; and Mr Homberg put the finifhing hand to it's exclufion. Bue the fort of temper given to the drop by plunging it red-hut into cold water, and it's comparifon with tempered iteel, is not fo much a caufe as a comparion: and morcover, is this comparilon very juft? Can there be any between a long, thin iword-blade, which breaks into two or tiree pieces, and a thick inficxible mafs of glafs, which tlies into powder. The tail alone of the drop might feem to favour this parallel: but an experiment, which I made, entirely deftroys this opimion, and proves, that it is not the fpring, or the vibrations of the parts of the drop, that occalion it's burftng.

I put about half the tail of a glars drop into a vice between two bits of deal-board of about a finger's breacith. I ferewed the vice, till I faw this fmall cylinder or thread of glafs make imprefions in the wood on each fide for its lodgment, in order to be fure that it could not be fufeeprible of vibrations. In this concition I broke the end of the tail, fupporting it on my nail, to prevent forcing any part but the end which I intended to break; and in order to be the more certain of giving no mock to the part that was fqueezed in the vice. Niy drop few into powder as uftual; and the portion focured between the two bits of wood, perfectly retained it's figure in the impreflions wherein it was lodiged. But when I touched this litele cylinder, it was reduced to powder, much in the fame manner as is faid to have happened to fome men who had been truck with lighening. Now, it was not poffible for this glafs to receive, or convey to the body of the drop any vibrations; or if any, they muft be infinitely fmall; and yet the cffect was precifely the fame as ufual. Thercfore the fyftem of vibrations is not happier than thole invented before it.

It is among the glafs-workers, and in their art, that the fecret of the Lamyma Batavica, or glafs-drop, is to be fought; and there it is that I think I have difcovered it.

All thofe who have feen glafs-houfes know, that when a piece fails in the hants of a workman, he throws it afide; and this piece is not long expofed to the air, before it breaks in pieces: and when the fame workman has fucceeded in making a piece, and is willing to preferve it, he takes great care not to let it cool in she air ; but carries it hot into another oven of a moderate heat, where he leaves it for a certain fpace of time. And this laft operation is called annealing the glafs.

A Natural Philofopher, who is witnefs to this management, ought to inquire into the reafons and neceffity of it.

How comes it that the glafs, which cools in the air, breaks; and when it has been nealed, it does not break? This is the reafon, if I am not miftaken.

A bit of melted glafs, red-hot and liquid at the fame time, is in that fate, purely becaufe it's particles are divided by fo great a quantity of particles of fire, or fubtile matter fo violently agitated, that thefe com-
ponent

The Lacrymæ Batavicæ.

ponent parts of the glafs do hardly touch one another: they fwim, if I may be allowed the expreffion, in a flood of this matter of fire; and for this reafon it is, that melted glafs affects the colours of Alame.

When this fubitance is expofed to the air, the coolnefs of this fluid, which touches the furface of the glais, cools that furface firft ; that is, brings the particles nearer together, braces their pores, and thus imprifons the particles of fire, which ftill fill the infide of this fubftance. While thefe fiery particles find pores enough on the furface, to move freely, the glafs continues whole; but when the glafs grows colder, that is, when the pores of it's furface begin to confine thefe fiery particles; then their whole action is exerted againft the parts of the glafs, which they break into a thoufand pieces. In order to avoid this jracas, nothing more is requifite than to keep the pores on the furface of the glafs wide enough, that the fiery particles contained therein may pafs through, and Hy off infenfibly. Now, this is what is done, by putting the hot piece of glafs into an oven, the moderate heat of which keeps thefe pores open to a certain pitch, and yet allows the glafs to acquire it's due confiftence in this ftate of middling porofity: whercin confifts the annealing of glafs and other fured fubitances.

Hence it appears, that all unnealed glafs carries within itfelf it's principle of deftruction, which is the matter of fire imprifoned. But the Lacbryma Batarica, or glafs-drop, is in this relpect, in a worfe cafe ftill than unnealed glafs: for befides that it has not been expofed to this fecondary heat, which keeps it's pores open, till the glafs has acquired it's due confiftence, for fear that the coolnefs of the air alone fhould not clofe it's pores foon enough, and imprifon a fufficient quantity of the igneous matter, it is fuddenly thrown into cold water, which by it's coldnefs and weight is fitter than the air to produce fuch an effect fpeedily and effectually. Wherefore the only furprizing circumftance in thefe glafs-drops is, that any of them remain without breaking, by the great quantity of igneous matter fuddenly fhut up in them by the cold water. And indeed this accident befals more than one half of them ; and thofe that efcape, doubtlefs owe their prefervation to the fpherical or cylindrical figure of the compact fhell, which the coldnefs of the water forms on their furface : for it is well known that this figure produces an equality of refiftance on all fides, which confiderably increafes the refifting force : and this is the firft reafon why, as foon as this æquilibrium is broken, either by rubbing away one fide of this furface, or by making a hole in it, or, in fine, by breaking the fmall end of the drop; the refiftance is inftantly overcome, and the igneous matter, imprifoned within the glars, and conftantly upon the ftrain againft it, burfts it into powder.

This deftroyed requilibrium is but one difpofition that favours the effect of the imprifoned igneous matter : but the communication which is opened for it with the fubtile exterior fluids, roufes this matter which is in a ftate of inactivity, develops it's fpring, kindles it fomewhat in ${ }_{4} \mathrm{C} 2$
the manner of the phorphorus, which produces no effect while clofe mut up, but takes fire, as foon as a free communication with the outward air is given it.
On the union of thefe caufes depend the phrenomena of the glafs-drop. It is of a hardnefs that refifts the ftrokes of a hammer, becaule the violent condenfation, given to it's furface by the cold water, into which it was thrown when in a foft ftate, rendered it's texture very clofe, compact, and confequently hard. It burts with great noife; and in fo doing it retains the character of all the effects produced by the explofion of the igneous mattcr. It's duft flies two or three feet all around, becaufe it is pulhed forward by the action of a fluid contained in it's centre; which would not happen, if it had been the effect of an exterior fluid. This fame duft of the glafs drop darts forward with greater force in the air-pump than in the alr, becaufe the air is an obftacle, of which it is freed in the receiver of the air-pump: wherefore it fometimes breaks the receiver; and for the fame reafon it's duft is finer, that is, more minutely broken, as being done by a ftronger power, and lefs counter-balanced. This violent explofion produces light, becaufe the property of Shining lightning is always the effect of fuch an explofion of the matter of fire: wherefore this faet affords another proof, that this matecr is the principle of the phraomenon of the drop.

If the furface of the drop be ground with fine powder of emery, inbibed with oil, it frequently happens, that it does not burf; ; becaufe the fort of oily mafic that refults from this mixture, ftops the pores of the drop, and prevents the fuddien communication of the exterior fluids with the imprifoned igneous matter; and as glafs cannot be ground with very fine cmery and oil, but by long rubbing; fuch rubbing heats the drop, and gradually opens the pores fo as to grant an infenfible paffage to the igneous matter, whereby the drop becomes at latt in the fame cafe with nealed glafs; and in the cafe in which itfelf is, when it is put into the oven to be nealed.

When a glafs-drop is made, by fufpending it in the air only, it does not break fooner than nealed glafs: becaufe as this fmall mafs of glafs retains it's heat a long while in the air, the heat ferves as a nealingoven, and keeps it's pores dilated long enough for the igneous particles to find a free paffage.

The principles, by which I have accounted for the effects of the glafsdrop, are not confined to this phænomenon alone: they are more general than is commonly imagined. Some corollaries, which I fhall deduce from them, will prove what I advance.

Steel, like the glafs-drop, acquires it's hardnefs by being plunged into water : and if Meff. Mariotte and Homberg had compared them together in this circumftince alone, they lad been in the right.

The moft celebrated Natural Philofophers, in order to account for the tempering of fteel, have had recourfe to different arrangements of
it's parts produced by the fire, and fixed, by the cold of the water, in the new ftate, in which the violent heat had put them.

The inechanifm of the tempering of glafs-drops, applied to that of ftecl, is the moft fimple of all the hyporhefes, and anfwers all it's properties, which are thefe: 1. Tempered fteel has a cuarfer grain. 2. It is increafed in butk. 3. It is more hard and brittle. 4. By annealing it becomes lef's brittle.

Steel made red-hot is filled and fwollen, and it's pores dilated, by Explaratise. the igneous matter. In this ftate, the cold water, into which it is thrown. compreffes and clofes the parts of the furface, while the imprifoned ignieous matter dilates the pores within: thus the texture of fteel becomes more compact by thefe two caufes, while it's pores are dilated.

Thefe large pores conftitute the coarfe grain of tempered fteel. It's dilatation by the igneous matter, which could not be thoroughly condenfed by the cold of the water, caufes it's augmented bulk: the clofe texture of the fubtance that furrounds the pores, and the imprifoned igncous matter, occafion it's hatdnefs and brittlenefs. It's recoction or annealing deprives it of this brittlenefs, and of a part of it's hardnefs: becaufe it opens this textare, which it relaxes at the expence of the neighbouring pores, and drives the igncous matter out of it.

The fermentation of acids and alkali's feem, to me to be another Fermentation. corollary of the fame principle.

1. It is pretty univerfally allowed, that the acid particles have the figure of fmall needles; and that alkali's are fpheroidal or polyhedrous bodies with a valt number of pores proper to admit the acid needles.
2. Experience Shews, that falts are alkalifed by fire, and that our juices are alkalifed by heat, ξ° c. What can the repeated action of the fire produce on falts, in order to alkalife them? It calcines them, blunts their points, and hollows them with a vaft number of pores; and we fee with the naked eye, that calcination has this effect on all bodies. In a word, it converts an angular very folid body into a very porous and light fpheroid; and this body is an alkali by the firft fuppofition.
3. Calcination introduces, and generally leaves in the pores of the calcined body, after the operition, a great quantity of igncous matter. This matter is perceptible to the fetees in the Lapis Bononienfis, which becomes a phofphorus by calcination; in lime-ftone, which by calcination is furnilhed with fo grcat a guantity of igneous matter, that in the effervefence, which is raifed in it by throwing a litele water on this ftone, you may kindle fulphur or a match by it. The alkaline, or atcalized falts alfo, that is, thofe which are caleined, have their pores full of the igneous matter.
4. Such is the nature of the igneous matter, that it tears afunder whatever oppofes it's paffage, and makes it lly off with a report. This principle is univerfally allowed: the effects of gun-powder, of volcano's and earthquakes, prove it : and to come nearer our fubject, unnealed
unnealed glafs breaks in the air, and the Lacrima Batavica docs as much upon breaking it's finall end.

Whereas an alkali is a pongious body filled with the igncous matter, and an acid are points proportioned to these pores; thefe ought to be regarded as fo many pegs or pins, which enter into the holes on the furface of the alkali, and fill them up exactly: whereby the igneous matter is imprifoned; and by the preceding principle it burfts the alcaline globule with noife, and fcatters around the acid pegs, in the fame manner as it burfts the glafs-drop.

A mixture of an alkaline and acid liquor being compofed of an infinite number of fuch particles that burft and broke to pieces, the liquor muft take up more room, or fiwell. The particles of air therein contained, being toffed about by all thofe littic explofions, together with the neutral liquors', which are a velacle to the fales, form the foum or froth ; and the igneous matter, which gets out of the alkali's, and is agitated by the fhocks of all thefe explofions, produces heat, drays with it the aqueous and other volatile particles, which form the fteam.

Yet there are cold fermentations, becaufe then, either the motion of the particles of fire, and their fracas, is inconfiderable; or becaufe thefe parteles Hy off eafily by a direct motion. Moreover, at this day that we have it in our power to be convinced, that the brufb or fream of electric matter is very cold, nobody will be furprized, that a ftream of the matter of fire may produce cold.

If all the alcalious corpufcles burfted at once, the fermentation would laft but an inftant : but as the acid liquor requires a certain fpace of time, to penctrate the whole alcaline liquor, and fill the pores of the alcalious corpufcles, the fermentation is performed fucceffively in a certain number of corpufcles at a time, until they are all broken: and this fucceffion conflitutes the duration of the fermentation; which ceafes when there are none of the alkali's left entire.

Thefe principles not only ferve to explain the fermentation which refulis from the mixture of acids and alkali's, but alfo almont all the motions of this kind, which are occafioned by the mixture or penetration of two or more fubitances.

For example; lime, which we have mentioned above as a body filled with the matter of fire, and which produces an effervefcence capable of lighting fulphur, if water be thrown on it; lime, I fay, produces this effect, only becaufe the particles of water, which enter into it's pores, have a tendency to thut up the igneous particles more clofely. It is by a mechanifm entircy fimilar, that Homberg's pho phorus kindles into flame, upon being expofed to the air: 'tis upon this principle likewife, that a mixture of fuirit of wine and water acquires a new degree of heat; and fo of other phanomena of this nature.

```
                        [567]
                        C H A P. II.
HXDOLOGY.
```


${ }^{1} \cdot \mathrm{~T}$ HO UGH the fpring called La Fontaine du Salut is at a good of tbe Fon-

 diftance from the town of Bagneres, it is, neverthelefs, as much frequented as any in that country; and, befides it's admirable effects in curing a great number of diftempers, it likewife offers, to the eyes of the lovers of Natural Hiftory, a very remarkable lingularity.In the firft bath, through which the largeft of the two branclies of the fpring fows, there are found, from time to time, finall ftones, of the colour of iron-ruft, and of a regular figure; being either parallelopipedes with oblique angles, of which the fides are unequal; or fmall iolid bodies with 6 fides, only differing from cubes or dive in this, that the furfuces are not perfectly perpendicular one to another, but a little inclined; as allo commonly longer than they are broxd, and broader than they are high.

The largeft which I have feen were but ir lines in length, $9 \frac{1}{3}$ in breadth, and 6 in height : they are moftly a great deal fmaller. I have one which is very odd, being a parcel of 100 in one lump. There are fome on which one may obferve Thining ftrice, that feem to be of a meraine du S3lat. near Bagneres in Gafcony : rwith orber obfervafions; comminricated by M. Secondat de Monefrquies, of tbe Alad. Sc. of Bourdeaux ; in a ceter to M. Fontics, E/g; Pr.R S. N°. 472 p. 25. tallic fubftance.

I have heard, that a great many fones like thefe are alfo found on the fides of a brook in Spain; from whence, without doubt, they got the name they are commonly called by, of Ferreles d'Efpagne.

A bout two months ago, happening to take a wali: in the road newly made between Bagneres and the Fontrine de Salitt, I perceived, that, in digging the drech on the fide of the road, the workmen had laid open a rock of a fort of imperfect fate, but foffer, and of a lighter colour, than llate commonly is. The rock itfelf is compofed of layers or beds lying alinoft parallel one over the other : the fubltance of the flate feems to be a compofition of fibres or ftrings, placed on the fides of each other, and cqually inclined to their beds or layers; whence it comes, that, upon breaking them with a hammer, the pieces, fometimes, are pretty like the figure of a regular parallelopepid with oblique angles.

Upon a narrow er examination of this fort of nate, I found a great nu:mber of parall:lopiped ftones, like thofe before fooken of, only fmaller: I have feen them of all fizes, from thofe in which the largelt fide is but of 2 or 3 lines. I obferved alfo, after having broken to pieces feveral litele bits of fate, certain black fpots; which, by the help of a microfcope, I lound to be real figured ftones.

Befides this, I took notice, that every one of thefe ftones, as long as it remains in the rock, is always found between two bundles or cluiters

Of the Fontaine du Salut.

of tran\{parent fibres, of which, generally, one is placed on the one, and the osher on the oppofite ficie. Thefe bundles are jarger in great fones: thole which feem, to the naked eye, to be but fmali black fjots, are, neverthelefs, accompanied by their bundles.

I hive fome of thefe funes, where the tranfparent fibres, of which every burdte is compofed, had left a vacancy in the middle of their axes: this fort of condurt being coloured with a matter of a rufty coJour, one finds likewife, fometimes, betwee the fiberes a little of this ruity-coloured matter; and now-and-then met..nic and thining veins. One might fay, that the ufe of thefe trantparent fiures is the fame as of itrainers; which (let the matter be of a metailic nature or not) lufier nothing to pafs thro' them to the little fones, but fuch particles as are proper to advance their growth, and fo to ferve them as it were for roots. In bits of imperfett nate, though harder, and of a bluer colour, than the fort I before mentioned, are found fmall ftones, of a like figure, but different in this, that they are of a fine and hining brais colour. They are, as well as the others, accompanied by cranfparent lumps.

One meets likewife with large flones of the colour of iron-ruft in feveral rocks thereabrout. It is probable, that the Fontaine de Salut paffies thro' one like that I have defcribed; and, if it meets with any of thefe figured foncs in the fides of the conduits thro' which it paffes, it eafily joofens them, and carries them along with it. The bundles of traniparent fibres ftick pretty faft to the @ate or rock, but are 冋ightly faftened to the little ftone, from which they are very eafily feparated. Hence it comes, that all thofe which fall into the bath, or Fontaine de Salût, are got thither without their bundles.

The formation of thefe ftones deferves to be examined: if it was carefully ftudied, it might, perhaps, give light to the formation of other figured ftones. It even feems, that, by beginning with this $\mathrm{fi}_{\mathrm{i}}-$ gure, which is the moft fimple that one can imagine, one may the rather hope for fuccefs in the like inquiry.

This parallelopiped figure with oblique angles is common to many ftones in the country of Bagneres, and the neighbouring mountains. Several cryitallizations of the grotto of Campan break into fragments of this figure : thofe which hang down from the top of the vault of that grotto, are, originally, fmall hollow pipes, formed by the water which trickles down drop by drop; and whofe outer furface, fixing themfelves by their fmall bafes, forms, by degrees, a fort of blunted pyramids, which, like fo many rays from the axis, which is nothing but the hollow pipe, become folid at laft. This axis feems compofed of plates, almoft cylindrical, laid one over another; but, if broken, the whole divides into fragments of a parallelopiped figure. The blunted pyramids, that are about the axis, divide themfelves at firft into other blunted pyramids; but, afterwards, almoft all thefe fragments divide of themfelves into other fragments of a parallelopiped figure.

Of the Hot Springs at Carlfbad.

The ftone of the mountain of Barege, upon which the afleflos grows, breaks alfo conftantly into fragments of the lame figure.

I have likewife preferved a bit of rock half tranfparent, the fragments of which are like the others.

Having feen feveral productions of nature, in which one difcovers, that the figure I have been fpeaking of fo remarkably prevails, I was neverthelefs furprized, when I found the fame figure in the fediment of the water of the Fontaine de Salit.

I had let a confiderable quantity of the water of the mineral fprirg evaporate ; there remained a fhining duft, in which I couid diftinguith nothing. I then looked at it through a microfcope; and, among leveral cryttais of a lefs regular figure, I found many which were quite regular and well- fhaped, with fix faces, and oblique angles. Several fertons, who have, at different times, been eye-witneftes of this fight, have been well fatisfied with it.

The waters of this fpring contain no iron, as it is commonly believed. When you put the tincture of galls in it, it grows neither black nor red: this mixture only turns it a little, and makes it look whitifh, after having ftood fome hours.

When thefe waters are evaporated by a mild and equal heat, the fmall cryftals are found fwimming on the furface; where they join, and form a tilm upon the water; fome of which fticks alfo to the fides and the bottoms of the veffel. Thofe cryftals which are formed firft, are infipid; but thole which are produced towards the end of the evaporation, are, indeed, of the lame hape, but of a tart and faltifh tafte. There remains yet a little of this matter, which cannot be reduced to very regular cryftals : it is of a very Tharp and pungent favour, but has nothing of the prevailing character of acid or alkali; at leaft, it makes no fenlible impreffion upon blue paper.

The waters of the fpring $d u$ Pied have the fame quality as thofe of the Salit: they produce the fame effect when mixed with galls; yield cryftals exactly of the fame figure, but in yet greater quantity.

1 have not made the fame experiments with the other fprings at Bagneres; but, it is probable, they do not differ from the former, except as to more or lefs.
II. Carlbad is a finall town not far from the frontiers of Saxony, of the bos fituated in an hollow between two high mountains: a fmall river called /prings as Toeple runs through it from S. E. to N. W. The principal fountain rifes on the N. E. fide, about 20 paces from the river, and about 5 or by James 6 feet higher than the furface of the water. 'This fpring rifes through a M. D. Pbsf. fquare tube of wood, whofe diameter is about 7 inches, with a confider- to the Czariable degree of violence: whence it is called the Sproudle, or Furious na's army. Fountain. It comes from the mountain on the other fide, and paffes ${ }^{2} .40 .43$. p. underneath the river, where the petrifying quality of it's own water has formed for itfelf an aqueduct of Topbus, through which it is conducted 1749 . Read VOL. X. Part ii.

4 D
to 1749 .
to this place. Sumetimes this aqueduet is fo filled and choaked up with the tophus, that it burfts into the river, and puts the inhabitants to a confiderable expence for repairing it. But to prevent this, they bore and clean it every year near the fountain. It forms rocks of topbus along the river-fice, compofed of firata of feveral colours, accorting as the water has been impregnated with different matter, or perhaps from the difference of heat or cold, or the impreffions of the air at the times of forming the lamella. This topbus is hard, and receives a good polith, and of it they make fnuff-boxes, heads of canes, and other toys. Some years ago, in digging to lay the foundation of a church, 40 or 50 paces higher up the hill, they found vaft quantities of this lopbus, which was in many places fo decayed and rotten (refembling very foff clay), that they were obliged to dig leveral fathoms deep, before they could find a folid foundation. Here they threw out great quantities of the pifolitious, of the kinds I fend you, which are compoled of the fame matter as the topbus, though of a very different conftruction: the lopbus being made up of plains joined together, whereas the pifolithi are globular, and compofed of feveral fpherical fhells. Some globules are found above an inch in diameter, but more commonly about the bignefs of white peas, and decreafing graduaily in fize till they become as imall as fine fand, and at laft common topbus.

The feveral faelis which compofe thefe globules differ in colour as the lamelle of the other topbus do: but thefe fhells feparate more eafily than the lamelle, and Shew that the colour often confifts in one very thin fhell berween two thicker ones.

Such kind of coplous, with pifolitbi, is found at other places; but I have never yet met with any body who could give a fatisfactory account of it's formation. Some think the pijolithi are drops of water petrificd. as they are found commonly near falls of water which is impregnated with the like fony matter: and as the Imalleft fcattered drops of water Hy fartheft from the centre, they fo account for the gradual diminution in magnitude of the pifolithi. Others affirm they grow from the vapour of this petrific water, though they cannot tell how.

Amidft this uncertainty, I determined, whilft I was on the fpot, to fpare no pains to fearch after (and difcover, if poffible) the manner how thefe regular globous bodies are produced. I have already toid you, that the waters of thefe hot fprings at Caillad are fo replecte with tophaccous matter, that where-ever they run, maffes of topbus are formed; and when thefe waters are cold, a fcum (like the little fcales of the fame matter) rifes on the top, fome of which I fend you, and I believe you will think it, on cxamination, little or nothing different from the fubftance of the component matter of the pifolithi, or from that which forms the common topbus, which I fuppose to differ from the pifolitbi only in appearance.

Firn of all, I obferved in the chinks and hollows of the ordinary rock-ftone very fmall molecule loofely achering; I found alfo clufters
of pifolitbi in the like places, and on breaking up a piece of the rock by the lide of the river, where it had been burlt by the water, I difcovered maffes of pifolitbilying in the chinks, and many loofe ones twirling round and played about in the bubbling water. My fuppofition therefore is, that the ftream defcending from the body of the oppofite mountain, pafing beneath the river, and afterwards burfing out on the fide of the hill with a confiderable force, could not fail to torm caverns in the fide of the mountain, and to change it's current as the paffages became choaked u_{i}, with the tophaceous matter: and as I found vaft numbers of molecilla like grains of land in the chinks where water paffed, thefe being walhed off mighe ferve for nuclec to the pifolitki, and being kept in continual motion by the zortex or whirling of the water, would acquire a globular figure, and by receiving new faclly coats, from time to time, would increafe in bulk, fo long as they were fuftained, and whirled about in the water. And as in this cafe fome would be precipitated fooner, and others later, a difference in fize muft confequently happen, and their arrangement muft be according to their proportion of furface and gravity, till the place becoming full of fuch matter, the water was obliged to feek out a new paffage. At the formation of this kind of topbus in the caverns, fome intervening accidents from the motion of the medium, the influence of the air, and other concurring caufes, have fometimes fo far prevented a compatt and firm conjunction of the component particles, that in feveral places it feems in a decaying ftate; and is even foft as clay. In the air indeed it grows again fomewhat harder, but then it is porous and light: and they call it Sproudle Sand. The inhabitants of a houfe near the church have a hollow, out of which they take this, and fell it for the fcouring and polifling of filver, $E^{\circ} c$. In this hollow it is very warm and fuffocating, elpecially in rainy weather, and then there rifes from it a flrong vapour.

On the other fide of the river, at the foot of the mountain, are a good many houfes, and a broad ftreet; crofs under which the ftream runs, and in the winter no fnow lies on the place where it paffes. Some rooms in a houfe built here are always warm like a bagnio, and in one of the cellars may be heard the noife of the water running under ground. Along this fide of the river are feveral hot fprings, which differ in quality from one another, as well as from the water of the Sproudle. The principal of thefe is called the mill-fountain (from it's being near a mill) which is much ufed, and reckoned milder than the Sproudle. It is not near to faturated with the limy matter, and forms fcarce any tophus.

Thefe fprings either have different origins, or elfe the great ftream divides in the body of the mountain into feveral branches; which, according to the nature of the paffages they run through, or from the different thicknefs of their columns, and the velocity they move in, are impregnated with different matter, and when cold precipitate more or

Of the Hot Springs at Carlfbad.

lefs calx ; but their falis are the fame, nor is there much difference in the quantity they yield. The fproudle is fo full of the ftony matter, that any thing laid into it is covered over with a thick tophus in a few days. When the water is taken up, and let ftand a little in the air, it incrufts the veffels that contain it, and it's furface is covered with a fcale, like lime-water, which is made ufe of as a dentifrice.

I don't propofe to inform you of the medical virtues of thefe waters, nor to enter into phyfical accounts of their origin : I have only in view to fatisfy you about the formation of the fpecimens I fend you.

Moft of the rocks about Carlf/ad are an aggregate of Spatum , mica, quartzum, rubrica, cum matrice lapidis calcarii, and cleave into rhomboids. The foil on the fide of the mountain is made by the diffolution of fuch rocks intermixed with fome vegetable earth; and the whole furface is covered with the leaft diffolvable parts, often adthering together in maffes by the intervention of a limy matter like incrulted faatum. And I found higher up the mountain fome rocks moundering into fuch foil.

The Carlfuad waters give a good deal of neutral falt by boiling and cryftallizing. From 1080 th . of water xxii 3 of pure falt. Ifend you fome which I prepared myfelf, fufpeeting the Apothecary might ackulterate it to increafe the quantity.

My thermometer being broke, I procured one of a friend: but not knowing of what conftruction it was, I tried it in the following manner : in melting ice the mercury fell to $28 \frac{1}{5}$ of it's equal parts, and by the heat of my body it rofe to 66 of thofe parts. This thermometer held into the fproudle fountain rofe by it's head to 96 , and in the millfountain to 6%.

About twenty miles from Carlbad to the S. W. near the town of Eyra, is a cold fpring of minerai waters, much in ufe in thefe countries. This gives alfo a falt much of the fame kind. To the fouth from Carlfoad about twenty five Englifo miles are likewife feveral cold fprings: one of which is much richer in this fame kind of falt than the former. It belongs to the monaftery of Toeple. In the winter, when they boil this water, from x tit. of water they ger fometimes above zi of falt. They prepare here a neutral falt, by adding a mineral acid, or perhaps fome other neutral falt (but the preparation they keep a fecret) which makes it Thoot into beautiful cryftals. It is called Sal Medium Toeplicenfe, and is fold in many places of Germany. I fend you fpecimens of all thefe. On expofing theie falts fome time to the air, they fall into a magnefa, but diffolving and cryftallizing them again recovers them; though the oftener they are diffolved, the cryftals fhoot the fmaller.

About 7 miles S. W. from Carlbad, at Alteettle, are mines of black fcbifus, and formerly they made a great deal of alum and vitriol from it; but it is now neglected, as they find in the fame mines plenty of gleba pyriticofa, from which they diftil fulphur. Six hundred weight of this pyrites give one of fulphur: and the oven makes from one to
ewo hundred weight per week. The refiduum being thrown in great heaps in the open air, takes fire, and conftantly fmokes. This matter they throw into large refervoirs of water, which afterwards they let run off into the boiling-houfe, and fo make copperas.

About 9 Englifh miles to the fouth from Carlfoad, are the tin mines of $S c b l a c b t e n z a l d$. They reckon this mine has been wrought near 500 ycars. There are five entries, four whereof are provided with machines for hoifting the barrels with the tin ftone : the fifth is for drawing the water out of the mine. The number of miners who work below ground are 90 : each man delivers 25 barrels of this ftone per week, and receives fomething lefs than half a crown wages. They have different inventions in the mine for fplitting the rock, but the moft effectual one is burfting it with gunpowder. The whole people employed in thefe mines are about 300 . The main body of the mine is nearly 700 feet in diameter, and from this go feveral E. and W. for fo the mineral runs. The broadeft of thefe ways is about 2 feet, and the mineral in thefe veins is richer than what is found in the main body of the work, whofe greateft depth is 650 feet. The tin-ftone is firf burntinkilns, which they lay betters the tin confiderably, and makes it much more eafy to ftamp. After this preparation it is brought to the itamp-mills, where by ftamping it becomes like grey river fand, which they wafh and feparate the tin from in the following manner. They throw it by fhoveis-full into bafons where there paffes a current of water, and by keeping of it ftirring it runs over by a broad conduit defcending by fteps, which are covered with coarfe linen cloth; and by this operation the fand is walhed away, and the tin remains on the cloth in form of a biack fcaly powder, and dried is fit for melting. One hundred weight of the ftone gives only ziii of tin; and 150 th. of the clean-wafhed tin-mineral give 140 th. of tin. There are ten melting-ovens, each whereof can melt 9 or 10 hundred weight in 24 hours; the breadth of thefe ovens within-fide is 8 or mine inches, and from 10 to 12 feet long, blown by two pair of bellows. The proportion of charcoal to the metal is near an equal weight. They are thrown into the oven by degrees, alternately : the refiduum they melt three times over, which always yields new metal. They make here about 800 centers per annum, which is fold from 53 to 56 imperial gouldens per center. They find fometimes the black and fometimes the white cryftal mineral in nefts, or clufters: the fannum poledron nigrum is a very pure and rich tin ore: they fay the white is rich alfo, but 'tis fo hard and difficult to melt, that the tin is burnt to an alh before it can be brought to fufion.

Near Geffries, in Bareith, they boil vitriol. The mineral from which they make it, is a black fcbiftus, fome of it too is brown. It has feveral fmall veins of pyrites in it. When firft taken out of the pits it has no tifte, but after it has been expofed fome time to the weather, and begins to moulder, it acquires a very fharp tafte. It is laid in great heaps, under which there are cifterns for receiving the water that runs from

Of the Strengtb of Purging Waters.

from it after rain, or that they pump upon it when the weather is dry. This water is conveyed by conduits into the boiling-houfe, where there are two leaden kettles, in which it is boiled to a ftrong lee, and then let of into receivers where it fhoots. Thefe two kettles make from 8 to 9 hundred weight per week, which is all wrought by two fervants: it not having been found necefiary to add any new mineral to the heaps thefe 15 years paft, as they anfired me. But as the quantity of the mineral confumed in that time is not known, it is impofible to determine how' much of this falt has been fupplied by the air. 'They only add to the quantity half ain hundred weight of iron, which is confunced in the kettles every week, and makes it hroot into copperas; but in flace of this, if they add copper, it makes blue vitriol. F-ormerly they made alum here likewife from the fane lee, only infead of iron or copper they added pot-afh and urine: but the expence of the firf, and the difficulty of getting the other in fufficient quantity, has made them leave off making alum here for fome years paft.

At: exam: tion of the firength of fajeral of she principal purging waters, efpecially of sbat of Jefrop's Well ; by the Rev. Stephen Hales, D. D. E F R.S.

comiminicated

 in a letter to C. Mortimer, M. D. Secr. R. S. wist a lether from Swithin Adee, M. D. F.R.S to Dr Hales, on bbe virtues of the faid well. $\mathrm{N}^{\circ} .495^{-}$ \$. 446. Apr. \& c. 1750. Read May ${ }_{4}{ }^{4}$ 3750..
III. An account of the feceral quantities of fediment which were found int a pound acerdupois of tbe following purging waters, evaporated away to drynejs, in Filorence flafis, cut to a seide mouth; viz.

And it was found nearly the fame by Dr Shaw and Dr Short: a little more or lefs, according to the wetnefs or drynefs of the feafons of this in calcarious matter; the reft, montly what is called nitrous falts, on account of the oblong cryftals which it hoots into.
5. Dog and Duck, Lambeth - - 40 !
6. Kilburn, four miles from London, in the way to Edgware 43
7. AEton - - - 44
8. Cbeltenbam, Gloucefferfoire - 60

Dr Short found the following proportions in Cheltenbam water; viz.
Sept. 1738. calcarious fediment
Dec. 1738 .
fuly 1739.
He fays it is the beft and ftrongeft nitro-calcarious water in England, very bitter, having only a little fubtil impalpable earth mixed with it's falt.
9. Cobbam Well, a mile fouth of Cburcb Cobbam, Surrey, once 68 grains, another time 60 grains
10. Feflop's Well, on Stoke Common, in Mr Vincent's manor, about

Of the Strength of Purging Waters.

three miles S. of Claremont, Surrey, Sept. I1, 1749. after long dry weather, 82 grains in a pound of the furface-water Oifober 16 , after a conliderable quantity of rain, the furface-water yielded but 60 grains. Nov. 21, the furface-water yielcied 65 grains.

This great inequality of the frength of the furface-water pat nie upon trying whether the water at the bottom of the well, near the fprings, were ftronger than the furface-water. And in order to this, I procured, Dec. 11. a bottle of the water near the bottom, which was ten feet below the furface of the water; which was done by tying an empty bottle to the end of a long pole, with a line fixed to the cork, to pull it out when at the bottom, for the water to fill it: and I had at the fame time another bottle full of the furface-water. The lower water yielded 82 grains; the furface water but 48 grains; and it was the fame upon a fecond evaporation of thofe waters. Herice we fee how much flronger the water near the bottom is, than at the furface; even when the freceding rains have been but moderate; for they had not as yet been fufficient to raife the fprings in this country much. Hence we fee that the fronger lower water may eafly be come at by means of a pump; as aifo, that the upper land-fprings, foon after rains, make the water near the furface weaker: but, in long dry weather, when there are no land-fprings, the furface-water, and that at the bottom, are nearly of an equal ftrength: for it requires time for the faline mineral virtue to be equally diffufed through a mafs of that depth of water, whofe upper part is inceffantly weakened by a land-fpring of frefh water.

Hence we fee how advifeable it is, in order to keep out the landfprings, to dig a narrow trench fome feet depth, round the well, to be filled with ftiff clay well rammed.

The mineral virtue in this water feems to be much like that of Cbeltenbain, in it's fhooting into very bitter, regular, oblong cryftals, which are, on that account, called nitrous; though they are not a true nitre; for ti:ither thefe, nor thofe of Cbeltenbam, will deflagrate or Alafn in couch-paper, nor on burning charcoal, as true nitre will do; fome of which ftill retain their form and firmefs for 17 monchs fince they were cryftallized; whereas the cryftallized falts of feveral other purging waters have crumbled, and in a great meafure wafted, away in much lefs time : a greater proportion of the fales of Jefop's Well, thoot into. oblong cryftals than thole of Cheltenham; and it's water alfo gives a ftronger green tincture, with vio!et-llowers. The purging quality refides chielly in thele cryltaline falts, and a fmall proportion of common. falt; fome of which there is in all tliefe mineral waters.

The proportion alfo of it's earthy calcarious matter, is but ris part of it; which, like that of Cbeltenbam, is but little, in compariton of the much greater quantity of it in other purging waters: it is alfo fofe

Of the Strength of Purging Waters.

 and impalpable, like that of Cbeltenbam, and not harfh and coarfe, as it is in fome other purging waters.And as the quantity of purging falt in this water is confiderably greater than in any other, fo it is found by experience, that, proportionably, a lefs quantity of it fuffices, which makes it fit the better on the ftomach. It is alio obferved to exhilarate thofe who take it.

It was obfervable of the fediment of feveral of thefe waters, that, when dried, and while hot, there afcended plenty of invifible volatile falt fumes, fo pungent that the nofe could not bear them. Hence we may reafonably conclude, that the waters which abound moft with purging faits, fuch as thofe of Yeflop's Well, Thould be proportionably preterable to weaker waters, which are ftrengthened by boiling half away; whereby not only the more fubtil active parts are evaporated; and thofe that are left are decompounded, and formed into new groffer combinations; as are alfo the calcarious particles, which are fo fine as to pafs the filter before evaporation, but not after it. This was the realon which induced me to examine, by various repeated trials, and to give an account of the fuperior ftrength of Feflop's Well water, above all others that I have examined or heard of.

When Feflop's Well was cleaned, OEt. 16. 1749. after a confiderable quantity of rain, after about half a foot depth of black muddy filth was taken our, then the natural fat fandy-colour'd clay-bottom appear'd; thro' feveral parts of which the water ouzed up at the rate of 160 gallons in 24 hours.

The water which then came frefh from the fpring gave a weak blufh with gails; but when put into bottles it did not do fo next day; a fign that there is fome degree of fteel in it.

It was very obfervable, that the man who ftood about 3 hours barelegged in this well-water to clean it, was purged fo feverely for a week, that he faid he would not venture, on any account, thus to clean the well again. And it was the fame with another man, who cleaned the fame well about 12 years fince. And I am credibly informed by a merchant, that, being in a warehoufe in Egypl to fee fenna bailed up, it had the like purgative effect on him.

In order to get a fatisfactory account of the efficacy of thefe waters, I defired Dr Adee of Guilford, who has long prefcribed them to his patients, to give me his opinion of them ; which he has done in the following letter; viz.

$S I R$,

Guilford, March 14, 1749.

IHAVE found very advantageous and uncommon cffects from the ufe of the waters of Yeffop's Well. Some of my patients who have drank them fteadily and cautioully have been cured of obftinate fcurvies. As I had a long time ago reafon to think there was a fine volatile firit in them, I therefore obliged fome to drink them for a courfe of time at the well as an alterative, with very happy confequences. When I have ordered

State of the Tides in Orkney.

ordered them as a purge, they have worked very fmartly, but have not difpirited. I am glad to have it in my power to confirm your fentiments by my own oblervations; and am fatisfied thefe waters, if continued a proper time, and taken in a proper manner, may be rendered very beneficial to mankind, according to the beft opinion that I can form.
IV. No accounts of the flux and reflux of the fea were fatisfactory, Tbe fare of till Sir I. Newton's penetrating genius deduced their true caufe from the laws of gravitation. His principles carried fuch conviction along ${ }_{M r}$ Orkney ; by with them, and gave fuch an eafy folution of fome of the moft remark-Mrackenzie. able phenomena, that mankind feemed to imagine a thorough know- $\mathrm{N}^{\mathrm{o}} .492 \mathrm{p}$. ledge of the tides might be obtained from an attentive confideration of 149. Apr. \&ec. the principles he had eftablifhed, without the trouble of further obfer- -1749 . Read vations; bur, as he, and all Philofophers fince his time, have con- May 25.1749. fidered only, or principally, the influence of the moon in elevating or depreffing the tides; their feveral directions, velocities, and other affections, refulting from the influence of land, fhoals, and winds, remain Atill as inexplicable, and as little known as ever.

As a diftinct knowledge of thefe things is not only conducive to the advancement of fcience, but would greatly contribute to a convenient and fafe navigation, it may not be unacceptable to communicate fuch remarks on the tides about the Orkney inands, as came under my obfervation, while I was employed in furveying and navigating that and other adjacent places; hoping it may incite others to explore the various motions of that element, on which fuch a confiderable part of the world are daily employed, in a more extenfive and accurate manner than has yet been done.

From fome obfervations on the tides in Orkney, I ircline to thirk the water begins to rife and fall fooner near the fhore than at a diftance from it.

When fpring tide is at it's greateft altitude, or depreffion, the water continucs in a quiefcent ftate near half an hour: neap-tides continue fo about an hour and a half.

The motion of the water, both in afcent, defecnt, and progreffion, is accelerated from the firft to the fourth hour, commonly; from the fourth to the laft hour it's velocity diminifhes. 'This, however, admits of fome variation from the influence of winds.

The greateft fpring-thes, and leaft neap-tides, are commonly on the third or fourth day, after the lyzygies and quadratures; but in this alfo the winds have a contiderable influence; W. and S. W. winds making the greateft Hoods, and leaft ebbs; N. and N. E. winds, on the contrary, making the greiteft ebbos and leaft foocis in Orkney, and on the North Coaft of Scotland. When flood tide is raifed higher than ordinary by winds, the fubfequent ebb is not fo low as it would have otherwife been. When a high Hood is raifed by the moon, the fucceeding ebb is proportionally low.

$$
\text { VOL. X. Part ii. } 4 \mathrm{E} \quad \text { Ordinary }
$$

State of the Tides in Orkney.

Ordinary fpring-tides rife 8 feet perpendicular, ordinary neap-tides 3 ; extraordinary high fpring-tides rife 14 feet; extraordinary low, only 5 ; extraordinary high neap-tides rife above 6 feet; extraordinary fmall neap-tides not above 2. Low-water neap-tide, at a mean, I judge is about 3 feet above low-water fpring-tide, and high-water fpring-tide about 3 feet above high-water neap-tide: yet the rife and fall vary fo much, that it would require a longer courfe of obfervations than I have had opportunity of making, to determine what is moft frequent in this cafe.

When a ftream of tide is interrupted by land, or rocks, or is confined within a chanel, or long arm of the fea growing uniformly narsower, the water will rife higher there than in neighbouring places, where it is not fo affected. If the chanel, or arm of the fea, has fevera! windings, or reaches, as they are called in the Tbames, the fuperior elevation will not be fo confiderable.

The following obfervations of the rifing and falling of the water, were made in the day-time, in the bay of Kirkwall, anno 1748 .

Auguft 8. Wind. W. a breeze. Laft quarter 4th day. Moon's apogee diftant 24°. Moon's declination $27^{\circ} \mathrm{N}$. Moon bearing at firft W. by N.

Auguft 15. Wind E.N. E. fmall breezc.
New moon 3 d day.
Moon's apparent diftance 65°.
Moon's declination $7^{\circ} \mathrm{S}$.
Moon bearing S.S.E.
The water fell $\left\{\begin{array}{lllll}1 / t \text { hour } & \vdots & \vdots & \vdots & 0 \\ 2 d & 1 & & \text { Fees Inch } \\ 3 d & \vdots & \vdots & 0 & 0 \\ 4 t \\ 4 t b & \vdots & \vdots & 1 & 4 \\ 5 t b & \vdots & \vdots & 8 \\ 6 t h & \vdots & \vdots & 1 & 5 \\ 6 & & 10 \\ \hline\end{array}\right.$

State of the Tides in Orkney.

Auguft 23. Wind W. almort calm.
Firft quarter, 3 d day.
Moon's perigee diftant 13°.
Moon's declination $25^{\circ} \mathrm{S}$.
Moon bearing E. by N.

Aug. 29. wind S. 6 W. breeze at firf, afterwards calm. Full moon 3d day.
Moon's perigee dift. 68°.
Moon's declination $6^{\circ} \mathrm{N}$.
Moon bcaring N. N. W.

Aug. 2\%. Wind W. S. W. a fmall breeze, the day of full moon, moon's perigee diftance $3^{6 \circ}$, decl. 4° S. bearing N. N. W. the water fell in all 8 feet 4 inches perpendicular.

Aug. 30. calm, $4^{\text {th }}$ day atter full moon, perigee ditance 80°, deel. ${ }^{1} 3^{\circ} \mathrm{N}$. moon bearing N. b W. the water rofe 8 feet 3 inches.

Sept. 3. Wind S. W. a fmall breeze, firft day of the laft quarter, apogee dift. 50°. decl. 27°. N. moon bearing W. the water rofe 6 feet 1 inch.

Sept. 6. Wind E. a fmall breeze, 4th $^{\text {th }}$ day of the laft quarter, apogee dift. 15°. decl. $21^{\circ} \mathrm{N}$. moon bearing W. the water rofe 3 feet 9 inches.

Sept. 15. Wind S. a moderate breeze, $5^{\text {th }}$ day after new moon, perigee dift. 80°. decl. 24° S. moon bearing S. by E. the water tell 5 feet 9 inches.

State of the Tides in Orkncv.

To afcertain all the varieties in the rifing and falling of the water, the obfervations ought to have been continued much longer, the nighttides as well as day-tides obferved; alfo the exact times of the beginning and ending of each, the ftrength of the wind and weight of the atmorphere by a barometer.

The foregoing articles relate to the rifing and falling of the water; the following to the variots mutions of the ftream, and their confequences.

On the coaft of Orkney, and Fair infe of Sbetland, the body of the flood comes from the north-weft ; on the eaft and weft coafts of Lewis, one of the weftern ines of Scotland, it comes from the fouth.

A league or two off the coaft, the ftrength of the ftream is fcarce fenfible, except when it is confined by land, or near rocks or thoals.

When the tide begins to rife or fall on the fhore, about that fame time the fream near the more begins to turn or reverfe it's direction, a few irregularitits exćepted.

The ftream of tide changes it's direction fooner near land than at a diftance from it ; infomuch that, in a place two or three miles from land, the turning of the tide is two hours, or more, later than on the adjacent Shore : at intermediate diftances the ftream turns at intermediate times. Hence a veffel may find a favourable tide near land, while it would be againft her a mile or two from it; and the contrary.

During the continuance of flood, the ftream varies it's direction gradually from the E. toward the S. and the ftream of ebb from the W. towards the \mathbf{N} : that is, if the ftream, when it becomes firft fenfible, runs E. at the latter end of the tide it will run S. if the proximity of land or fhoals does not hinder this change of direction.

The greateft velocity of fpring-tide in Orkney, in the chanels where it runs quickeft, is about 9 miles an hour: the greateft velocity of neaptide is about one third or fourth of fpring-tide. The tides are moft rapid commonly between the third and fourth hour. Spring-tides acquire a confiderable degree of ftrength in lefs than one hour after their quiefcent fate begins; neap-tides are hardly fenfible in two hours after.

In fimilar ftreights or chanels, lying in the fame direetion, and fupplied from the fame part of the ocean, the velocity of the ftreams will be in the direct ratio of the breadth of the inlets, and the inverfe of the outlets.

If a found, or ftreight between two inlancis, or continents, lies in the direction of the main body of the tide, the velocity of the Arcam in that ftreight will be greater (all other things alike) than in any other adjacent one, not lying in that fame direction.

If an inland lies directly in the tide-way, the ftream will divide, or fplit, before it reaches the ifland, into two branches, one of which will run toward one fide or end of the inland, and the other toward the other end of it; and, in paffing by, will be reflected a little from the land.

State of the Tides in Orkney.

Hence a veffel, in a calm, carried along with a ftrong ftream of tide, is in no danger of touching an inand, or vifible rock, if the water is deep enough near them.

If the tide runs ftronger, or more obliquely, by one end of an inand than the other, from the ftrongeft frcam, and from the moft oblique, there will be a languid current toward the other ; that is, the tide, along that fide of the inand, will fet longer one way than the other.

If a ftrong ftream of tide runs acrois the mouth of a bay that does not reach far into the land; within that bay there will be a fow ftream fetting the contrary way. Or, if a ftrong ftream fets directly, or nearly fo, along the extremity of a point, or promontory, that ftretches ftrait out from the coaft, between this ftream (before it reaches the point) and the coaft, there will be a languid current with a contrary direction. By attending to this, one veffel may keep her courfe, or gain a port, while another is carried away with the tide.

If a fmall ifland lies thwart a tide-way, that part of the ftream which runs along one end of it, will join what runs along the other, at fome diftance beyond the inland, inclofing between them a curved fpace, within which there will either be no fenfible current, or a flow one, contrary to the other ftreams. The counter current, in the middle of this almolt ftagnant fpace, or eddy, when it gets near the inland, fplits in two; one branch of which runs towards one extremity of the illand, the other towards it's other extremity; where meeting the ftronger direct freams that form the eddy, are by them again carried towards it's vertex.

Thefe eddics may be of great fervice to תhips or boats, by fheltering them from a rapid ftream, or even carrying them againft it; or may enable them to crofs it with more advantage, according to the different places to which they are bound. The oppofition of the contrary tides bounding the eddy, makes that part of the fea rougher in blowing weather, and of a darker colour in calms, than the reft, by which the limits and direction of thefe eddies are always diftinguifed.

The collifion of the oppofite and oblique ftreams, near the ends of the ifland, will excite a circular motion in the water, and, if the celerity of the tide is confiderable, will occafion whirlpools, or cavities in the fea, in form of an inverted bell, wide at the mouth, or at the furface of the fea, and growing gradually narrower toward the bottom: their width and depth are in proportion to the rapidity of the ftreams that caufe them, and are fomctimes fo large as to be dangerous. Thofe in $P_{c t}$ land Firlb, near the illands Stroma and Swona, may, with fpring-ticic, turn any veffel quite round, but are never fo large as to endanger one otherways: there have been inftances, however, of fmall boats dropping into, and being fwallowed up by them. The biatus, or cavity, is largeft when it is firft formed, and is carried along with the ftream, diminifhing gradually in dimenfions as it goes, until it quite difappears. The fuction, or fpiral motion communicated to the water, does not feem to extend far beyond the biatus. I paffed, in a boat, within 20

State of the Tides in Oikney.

yards of one, without being fenfible of any attraction; but indeed it was toward the latter end of the tide, when it's atrength was much abated: the diameter of the cavity, at that time, I judged to be between 2 and 3 feet. When fifhermen are aware of their approach toward a whirlpool, or well, as it is called in Orkney, and have time to throw an oar, or any other bulky body into it before they are too near, the fpiral motion is interrupted, and the continuity of the water broke; which, rufhing in on all fides, immediately fills up the cavity, and enables them to go over it fafe. Hence in blowing weather, or when there is a breaking fea, tho' there may be a circular motion in the water, there can be no cavity.

When there is a fteep funk rock near the concourfe of fuch ftrong tides, and not very deep below the furface, a moft amazing phrenomenon will happen: for, the ftream being interrupted in it's courfe, and falling fudjenly over the rock, is reflected from the bottom upwards, fwelling and bubbling on the furface like boiling water, and carrying fand, fhells, filhes, or other loofe bodies along with it; which, with boats, or whatcver elfe is near, are driven with great force from the center all around soward the circumference, upon which, a gyration of the water enfuing, a whirlpool begins, which is carried along with the ftream, as was faid above, leffening gradually till it is quite extinguifhed : in a little time a new cruption and ebullition, like the former, begins, which proceeds in the fame manner, till the fwiftnefs of the ftream abates, or the tide rifes or falls too much above the rock.

1. Since the attraction of the moon raifes the water directly below her, by diminifhing it's gravity toward the earth's center, and, at that very fame time, depreffes it at a quadrant's diftance, by augmenting the gravity there, fo that the fuperior altitude of one part of the ocean is immediately balanced by the fuperior gravitation of another; do not, therefore, the tides in the ocean rifc and fall without any progreffive motion, or fenfible velocity? And do not all currents, or ftreams of tide (not caufed by winds) proceed from the interruption which land, or fhoals, give to the undulatory motion which muft accompany the perpendicular afcent or defcent of the fluids?
2. Is it agreeable to obfervation, that the power of the fun and moon together, raifes the tides within the tropics about $1+$ feet, as Newton, Halley, and Maclaurin fuppore? And how high are the tides found to rife in parts of the ocean of a greater latitude? If the water does not rife and fall fo much within the tropics, as in places more diftant from the equator, what hinders the greater power to have a greater effect? For the moon muft act with greateft force on thofe parts to which fhe is vertical.
3. If the tines of high and low water depend on the moon's appulfe ro the meridian, is it not high or low water in all parts of the occan, under the fame neridian, about the fame time? And is the difference
of the times, in places under different meridians, in any certain proportion to their difference of longitule?
4. Since the power of the moon to raife the tide in any place is greateft when fhe is ncareft the zenith, it is agrecable both to obfervation and theory, that the water rifes and falls more when fiee is above, than when below the horizons of places on the fame fide of the equator with her; and the contrary: are not the tides alio of longer duration in that cafe? Since a greater portion of the hemifipheroid, into which the fea is formed by the moon's attraction, is then above the horizons of thefo places, than is below them. If this is found to be fact, it will alfo be found, that the duration in different places (other things alike) will be in fome meafure proportional to their latitudes, and the declination of the moon.
5. In an oblique fphere, all azimuth circles cut the equator and it's parallels obliquely ; and therefore the moon muft come fooner to, or from, a given azimuth, with one declination than with another. In fome latitudes this difference will amount to feveral hours. Is it not then a falife rule to judge of the times of high or low water by the moon's azimuth, or to fignify one by the other, as is che cuftom of failors ?
V. There are in this river, at ebbing and flowing, certain irregular An irregular motions, not to be found in any other river in Scotland, perhaps in tide in ibe Great Britain, or even in all Europe, called by the common people betwixt the villages of Alloa and Cultrofs, Leakies, which name I flall likewife make ufe of, for want of a better. This leaky is this: when river of Forth ; by Mr Edward the river is flowing, before high water, it intermits and ebbs for a confiderable time, after which it refumes it's former courfe, and flows till high water; and, vice ver $\int a$, in the ebbing, before low water, the river flows again for fome time, and then ebbs till low water. The leaky begins at a place called Queen's Ferry, feven miles above Lcith, at neap tide, and low water, and goes to the houfe of Maner, which is about 25 miles above Queen's Feryy, which is to be underfood by water; for in this river, from a little above Alloa to Stirling, there are fuch a prodigious number of turnings and windings, that though it be but 4 miles betwixt thefe two places by land, yet it is 24 by water. This I take notice of rather, as I take thefe windings to be the catre of the leakies. At neap tide and high water, as alfo at fpring-tide and low water, the leaky reaches as far as the fea fills, which is to the groves of Craigforth, 19 miles above Maner houfe, and three above the town of Stirling. At $\mathcal{Q}_{\mathcal{M}}$ ueen's Ferry there are no leakies at neaps and fprings at high water, nor in the latter at low water; they begin betwixt Burroweftowness, a village about 7 miles above Queen's Ferry, and the mouth of a rivulet called Carron, five or fix miles further up the river than Burrowftownefs. What is very remarkable, in the very loweft neaps the leaky, after it has ebbed for fome time, before high water, makes up again, and will be two feet higher than the main tide. In the beginning

A furprizing Inundation in Cumberland.

ning of the fpring-tides, it does not rife fo high by a foot: at the dying of the ftream, it is often two feet higher than the main tide, which is to be underftood, before high water, when the leaky makes up again. At neap tide and low water it will ebb two hours, and fill as much, and at full water ebb an hour, and fill another.

It is likewife to be remarked, that at change of the moon, at low water, the leaky will continue two hours, the beginning of the tide for that time, which then ftands, and does not ebb till flood (the beginning of the flowing), and at full water, will ebb and flow an hour or more.

It is obfervable, that at full moon, there are no leakies, either at high or low water, in the fipring tides which are at that time, but in the neaps which follow them, thele motions are obfervable, as before defcribed; as allo in the fpring tides, which happen upon the change of the moon, called by the commonalty, the overloup, there are leakies both at high and low water. All this is to be underftood, when the weather is feafonable; for, otherwife, theie motions are not fo difcernible.

This account I have collected partly from my own oblervation, having paft a great part of my life at a country-feat near Alloa, where the leakies are to be jeen in great perfection, and partly from what I have learned from people living on different parts of the river, whofe obfervations, as well as my own, I find exactly agree with thofe of a learned * relation of mine, who, near 70 years ago, diligently obferved and inquired into the phrenomena of this irregular tide.

A /urprizing

 inurdation in the cralley of Sc John's mear Kefwick in Cumberiand, Aug. 22.174. in a
letter from a young ciergy. man to his
friend; com municated by John Lock, E/q; F.R.S. $\mathrm{N}^{\mathrm{N} .494} \mathrm{p}$. 362. Jni \& © . 175c. Read Marcí 15. 1749.
VI. In order to give you a diftinct anfwer to your queries in relation to the inundation at $S t$ Fobn's, I took a ride to the place to latisfy myfelf of the matter of fact, becaufe the accounts which were given me were very different.

This remarkab!e fall of water happened at 9 in the evening, in the midft of the moft terrible thunder, and inceffant lightning, ever known in that part in the menory of the oldeft man living, the preceding afternoon having been extreme hot and fultry. And what feems very uncommon, and difficult to account for, the inhabitants of the vale, of good credit, affirm to have heard a flrange buzzing noife like that of a malt-mill, or the found of wind in the tops of erecs, for 2 hours together, before the clouds broke.

I am not fo much a Philotopher as to find out what could occafion fuch a vaft collection of clouds or vapours, particularly at that time and place; but am fatisfied from the havock it has made in fo fhort a time (for it was all over in lefs than 2 hours), that it munt have far exceeded any thunder-fhower that we have ever feen. Moft probably it was a fpout or large body of water, which, by the rarefaction of the air, occafioned by that inceffant lightenirg, broke all at once upon the tops

[^28]
A furprizing Inundation in Cumberland.

of thefe mountains, and fo came down in a fheet of water upon the vailey below.
'This little Valley of St Jobn's lies E. and W. extending about 3 miles in length, and $\frac{1}{2}$ mile broad, clofed in on the S. and N. fides, with prodigious high, ftcep, rocky mountains : thofe on the north fide, called Legburthet Fells, had almoft the whole of this cataract; for 1 do not find that any remarkable quantity of water was obferved from thofe on the S. notwithftanding the diftance from the tops on each fide cannot be a mile. It appears likewife, that this vaft fpout did not extend above a mile in length; for it had effeet only upon 4 fmall brooks, which come trickling down from the fides of the rocky mountains. Bue no perfon, that does not fee it, can form any idea of the ruinous work occafioned by thele rivulets at that time, and (what feems almoft incredible) in the fpace of an hour and half. At the bottom of Catcbecty Gill, which is the name of the greateft, food a mill and a kiln, which were intirely fwept away, in 5^{\prime} time, and the place where they formerly ftood, now covered with huge rocks, and rubbifh, 3 or + yards deep. One of the mill-ftones cannot be found, being covered, as is fuppofed, in the bottom of this heap of rubbifh.

In the violence of the ftorm, the mountain has tumbled fo fart down as to choak up the old courfe of this brook; and, what is very furprizing, it has forced it's way through a fhivery rock, where it now runs in a great chafm, 4 yards wide, and betwixt 8 and 9 deep.

In the courfe of each of thefe brooks, fuch monitrous ftones, or rather rocks, and fuch vaft quantities of gravel and fand, are thrown upon their little meadow-fields, as render the fame abfolutely ufelefs, and never to be recovered.

It would furpafs all credit to give the dimenfions and weight of fome rocks, which are not only tumbled down the fteep parts of the mountains, but carried a confiderable way into the fields, feveral thrown upon the banks larger than a team of ten horfes could move. Near a place called Lobwatb, I had the curiofity to meafure one carried a great way, which was 676 inches, or near 19 yards about.

The damage done to the grounds, houfes, walls, fences, highways, with the lofs of the corn and hay then upon the ground, is computed varioufly, by fome at 1000%. by others at 1500%.

One of thefe brooks, which is called Moje or Mofedale Beck, which rifes near the fource of the others, but runs N. from the other fide of Legburtbet Fells, continues ttill to be foul and muddy, having, as is fuppofed, worn it's chanel fo deep in fome part of it's courfe as to work upon fome mineral fubitance, which gives it the colour of water hufhed from lead-mines, and is fo ftrong as to tinge the River Dirwent (into which it empries itfelf) even at the Sea, near 20 miles from their meeting.

VOL. X. Part ii.

4
Thele

Thefe are moft of the particulars I could collect concerning this wonderful inundation. I fhall only add Mr. N.'s Pbilofopbical Account ia bis Pbilofopbical Friend.
"Tuefday, Aug. 22. 1749: was the beft hay-day we had here that "foaton, but at 8 at night it began to thunder, firit W. from Cocker" mouth, then in a few minutes E. from Pemrith. Thefe thunder"clouds, with equal force, and contrary directinin, met togecher upon " the mountains above the valleys of St Yoha's and Threlkeld, as at or " about the Great Dod and Cocia Pike, and mufk of confequence hover " on or about them, and thercon vent suater-fpouts (but not fo on the "valleys, otherwife than by the violent courle of the brooks and rivu" lets, from the one down to the other); which would increafe and " perpetuate the lightning, to fwift in motion, and vilible to our eyes, "but retard and obftruct the undulations of the air, which are far more " Now in motion, and later in coming to our cars.-For any two fuch " bodies as thick clouds, driven by contrary winds, and meeting to" gether with equal force, and contrary directions, cannot impel each " other backwards or forwards, but mult remain at or about the place " where they met, and there exert their vigour: which, in this cafe, " muft be the reafon of fuch water-fpouts upon thefe mountains, and " not in the valleys ; and alfo why the fight of the the lightning was " more terrible to our eyes than the found of the thunder to our cars. "Like to this is the cafe of whirlpuffs."

1 burning

 well ; by the Rev. Mir Ma fon, Woodw. Prof. Cantab. E F.R.S. $N^{\circ} .482$. p. 372. Jan \&.c. 1746-7. Read Jan. 22. $17+6-7$.VII. At Brofeley in Sbrop/bire, in 1711, was a well found, which burned with great violence, whereof fome account is given in Pbilof. Tranf. No. 334; but it has been many years loit. The poor man, in whofe land it was, miffing the profic he ufed to have by fhewing it, applied his utmoft endeavours to recover it; but all in vain, till May laft; when, attending to a rumbling noife under the ground, like what the former well made, though in a lower fituation, and about 30 yards nearer to the river, he happened to hit upon it again.

The well for 4 or 5 feet deep is 6 or 7 feet wide; within that is another lefs hole, of like depth, dug in the clay; in the bottom whereof is placed a cylindric earthen veffel, of about 4 or 5 inches diameter at the mouth, having the bottom taken off, and the fides well fixed in the clay rammed clofe about it. Within the pot is a brown water, thick as puddle, continuaily forced up with a violent motion, beyond thar of boiling water, and a rumbling hollow noife, rifing and falling by fits 5 or 6 inches; but there was no appearance of any vapour rifing ; which perhaps might have been vifible, had not the fun fhone fo bright.

Upon putting down a candle at the end of a ftick, at about a quarter of a yard diftance, it took fire, darting and flafing in a violent manner, for about half a yard high, much in the manner of fpirits in a lamp, but with a greater agitation. The man faid, that a tea-kettle had

Sinking of Ground in Norfolk.

been made to boil in 9 ' time; and that he had left it burning 48 hours togecher, without any fenfible diminution.

It was extinguifhed by putting a wet mop upon it, which muft be kept there a fmall time; otherwife it would not go out. Upon the removal of the mop, there fucceeded a fulphureous imoke, larting about a minute ; and yet the water was very cold to the touch.

The well lies about 30 yards from the Severn; which, in that place, and for fome miles above and below, runs in a vale full 100 yards perpendicular below the level of the country on either fide, which inclines down to the country at an angle of 20 or 30° from the horizon; but fomewhat more or lefs in different places, according as the place is more or lefs rocky.

The country confifts of rock, ftone, earth, and clay, unequally mixed ; and as the river, which is very rapid, wathes away the foft and loofe parts, the next fucceffively hip into the chanel ; fo as, by degrees, and in time, to affect the whole flope of the land: and as the inferior firata yield coal and iron-ore, their fermentation may produce this vapour, and force it to afcend with violence through the chinks of the earth, and give the water the great motion it has. This might be obitructed in one place by the forementioned fubfiding of the foping bank, and might afterwards find a vent in another; in like manner as it happened at Scarborough Spaw, 2 few years fince.

$$
\begin{gathered}
\text { CHAP. II. } \\
M \perp N E R \wedge O G Y
\end{gathered}
$$

1. N the night-time, betwcen the 24 th and 25 of fune laft, a violent Some account ftorm of thunder and lightning happened at the city of Norwich, of tbe sinking and the places adjacent; though at the city of Norzvich it feemed extra- down of a ordinary only for the loudnefs of it's claps, and the length of feveral of piece of the flathes; fome whereof continued near half a minute, and were fo groand, at extremely bright, that they caufed fome thin deal hhutters to the win- Norfolk; dows of my bed-room (which then happened to be unpainted) to appear communicated almof quite tranfparent.

But at Horfeford, a fmall country village, about four miles N. W. of ron, of Northis city, a remarkable phonomenon appeared the next day, the like II. Baker whereof has not been obferved in this county, fince that communicated F. R.S. No. to the R.S. by Mr P. Le Neve.
477. p. 527.

A fudden Lapfas, or finking down of the earth, happened at this Aug. \&c. village, in the night above-mentioned, and left a hole in feet deep, and 1745. Read I2 $\frac{1}{2}$ in diameter, in form almoft exactly round. It's fides are nearly per- $17+3 \cdot$
pendicular :

A Coal-Mine taking Fire, \&rc.

 pendicular; and what feems moft ftrange, no rufiles, cracks, or chafms, are to be found nigh it, but the ground appears intirely firm and folid; and, for miles about is a fine champaign country, of a dry fandy foil, but not hilly; neither is there any watercourle above ground near it.The firt yard from the furface downwards is corn-mould carth; the other three are compofed of brown and yellow fand, difpofed in feveral different firata.

I mall not pretend to account for this accident; but might it not poffibly be occafioned by fome fubterraneous current wafhing away the landy matter by little and little, until it hati left only a cruft, which the tremor of this terrible thunder had thrown down from the very furface; though on this conjecture, one would expect fome overllow or appearance of water; whereas I could not perceive here the remains of a fingle drop.

A lesier froms Mr J Duran: a pitman, as he was working in a pit about 30 years aro. So fmall it to the Hon.
R. Boyle, $E_{/ q}$;
F.R.S. con-
cersing a coal-mine taking fire near Newcaftie upon Tyne ; of the blue well; and of a fubterraneous cavern in
Weredale ; communicated by Dr Miles. $\mathrm{N}^{\mathrm{D}} .48 \mathrm{o}$. p. 221. May \& June $: 1746$. dated Newcalle, Feb 9 1673.4. Read from it being always found either candying the fupercrefeent furze, or june 5. 1746 impacted in the furface of the earth, at it's cruptions.

If you fhall command it, I may be able to give you fome account alfo of a ftream near this town, which, on it's banks, in the fummertime, as alfo, being evaporated over the fire, leaves behind it a blue powder. It's head is thence called by neighbouring inhabitants, The Blue Well; as alfo, of fome fubterraneal grotoees or caverns in Weredaie, about 20 miles S. W. of this place; where, by a little hole creeping into the fide of a vaft mountain, is entered a fpacious cavity, chambered with walls and pillars of decident lapidefcent waters; the holiownefs in fome places being pervious further than any yet has adventured to dif-
cover; the darknefs of thefe caverns requiring the help of candies, which are often extinguifhed by the dropping water.

1II. 1. July 19. 1746. I had the pleafurc of feeing thofe fupendous Extrafo of a and amazing precipices which bound our N. E. fea-coalt ; and rode fome miles betwixt them and the feal. I can affure you, I was highly delighted with viewing them; and, as Sir Richard Steele fays, by the defcription of Dover Chiffs, Whoever looks upon thefe precipices, and is not moved with terror, mult either have a very good head, or a very bad one.

Thefe circadful heights are equally clangerous to come nigh, above or below; as they are fo frequeitly tumbling down, and as often wafhed away by the raging billows: and althoagin they are 20,30 , and in fome places 40 yards and upwards in perpendicular altitude, yer I am credibly informed the fea has got of the land at leaft 110 yards in lefs than 20 years time for fume miles on this coaft.

The various firetn, which make up this long chain of mountainous cliffs, mutt be greatly entertaining to every one, who takes a pleafure in looking into the many changes, which the earth undoubtedly has undergone fince it's firft creation.

Vegetable mould, oaz, fands of various kinds and colours, clays, loams, flints, marles, chalk, pebbles, Esic are here to be feen at one view beautifully interliperfed; and frequentiy che fame kind many times repeated; as if at one time dry land had been the furface; then the fea; after, morafly ground ; then the fea, and fo on, citl thefe cliffs were railed to the height we now find them.

What makes this come up almoft to demonftration, are the (a) roots and trunks of trees, which are to be leen at low water in fever 1 places on this coaft near Hapborough and Walket.

With refpect to the tooth I fent you fome time ago, I could trace nothing more out than what I have betore informed you; but, that bones of amimals are often found here is indiffutably true; and I have now by me another (b) tooth of an elephant found bewixt Munfley and Harborough, which (c) I hall forbear to defcribe to you, as I defign it to wait upon you with fome other foffils in a few days.

That the reft of the bones of thele animals are not preferved fo commonly as the teeth, I am informed is their prodigious bulk and weight; which are lo great, that the country people thercabouts have never
(c) Dr Hook, in his Pofthumous Works fays, the like are to be feen on the coafts of Cumberland and Pembrokybire.
(b) Ricbard Verfegan fays, nigh Bruxelfes in Flanders were found the bones of an elephant, the head of which he had feet. Vorf. p. 115.
(c) "Only, that as this rooth is much mure decayed than that I before fent you, and " hath \{everal pieces broken off is, yet it weighs $10 \div$ pounds; and would have weigned " as much or more than that which Mr Tenszelius deicribes in the Pbilof. Tranf. No 234. "found near Erfurt in Germany. This, I think he fays, was the biggett ever found in "Europe."
thought it worth their while to fave them from the fury of the tempeftuous waves.

In perufing Dr Hook's Pofthumous Works, p. $3^{1} 3$. in his Difcourfe on Earthquakes, I there find, that Dr Thomas Brown of this city prefented the R. S. with a petrified bone, found at Winterton, a little country town on this coaft, in the year 1666; but am far from being of (d) Dr Brown's opinion, to take them all for bones of fea animals, much tefs of the whale kind, which are found here.

Amongit the many frata, which I took notice of in thefe cliffs, there is one of a dark-grey colour, which fweats out a yellow fulphureous matter : I take it to be that fort of earth from which vitriol is made; but this is of fuch a cauftic nature, that, if but a fmall piece of it be held to the tongue, in a moment it caufeth as fharp and excruciating a pain, as if a red-hot iron had been holden to it.
hiells, and other foffils, found at Cantley White:Houre in Norfolk. Ibid. p. 2 ig.

Of the Strata of Sbells and otber Foffils in Norfolk.

2. After giving you a fhort account of what I thought worth my notice on our N. E. fea-coalt, I mall here lay before you what I have obferved in fome marl-pits at a place called Caniley White-Houle, about 3 miles from Norwich, almoft S.E. and adjacent to the country feat of the honourable Thomas Vere, Efq; (e).

Thefe marl or ratiser chalk-pits are made in the fide of a long chain of hills, which runs along the fide of the river $\mathcal{Y} a r$, and about a furlong or two now-and-then diftant from it.

Thefe hills I take to have been formerly the boundaries to an arm of the fea, which made Norwich a famous fea-port. This fome of our (f) antient hiftories make mention of as an undoubted truth, tho' now looked upon as a mere fable, as no footfteps of it remain above-ground at this day.

In the above-mentioned marl-pits I have lately difcovered a (g) firatum of fhells, of about 2 feet thick, running nearly parallel to the horizon, and I believe nigh level with many parts of the ground in Norwich. This feems to put the matter out of all difpute, and fairly confirm our antient hiftory (b).
(d) "Whoever will take the pleafure to read Mr Blair's defcription of the fkeleton of " the elephaut, now at Dundee in Scosland, inferted in Pbil. Tranf. N ${ }^{\circ}$. 326. will find " thefe teeth before-mentioned to be the real teeth of elephants, whatever Dr Brown's " may be: and though I have never feen that bone he prefented to the Sociefy, yet I " imagine it to be a bone from the fame kind of animal."
(e) Verfegan fays, that many places which were fea became dry land, at the breaking of the German ocean through the Iftbmas which once joined England to France. Verff. p. 117.
(f) The Rev. Mr Bloomfield, in his hiftory of Norwith, produceth feveral anticnt writings, which afiert the truth of this. Page 2.
(g) The Rev. Mr Thomas Lacurence, in his Mercurims Centralis, is of opinion, thefe inells, and all others under-ground, are lodged here by fubterraneous currents. Page 47 .
(b) Dr C. Leigh, in his Natural Hiftory of Lancaß̉ire, boldly affirms all foffils to be the difports or lufus natura. Book III. p. 41. and many other places.

I examined carefully this fratum, where I found a great many (i) kinds of fhells, but none which had withfood time's all-devouring teeth, fo as to bear the handling; excepting the common wilk, fome of which were very perfect (k).

Amongt the variety of things I took notice of in this fratum was a piece of coal; which I picked out from amongft the Shells. This muft have lain here as long as they, and been brought from fome other county, as nothing of it's kind is to be found here, but what is brought from diftant parts.

This feems to prove, that the ufe of coals has been known to the antient Britons; and that they brought them hither from the more northern parts, when the feacovered the greateft part of Norfolk: though, in all probability, this mutt have been fome thoufands of years ago.

Thefe fhells lie 14 yards above the furface of the river, and nearly 6 beneath the top of the hill; and I believe 34 yards above the furface of the fea at Yarmoutb.

I have one thing fill to relate to you, which is really wonderful, and very much beyond my utmoft endeavours to find out a fufficient reafon for: it is, that in thefe very marl-pits, and I dare be bold to fay, 6 or 7 yards lower than the above-mentioned firatum of fhells, are found an unaccountable quantity of fags horns lying in all directions: feveral I took out with my own hands; and the workmen, which are employed here. tell me, that they farce work a day, but they find lefs or more of them.

But with my utmoft diligence I have not yet been able to find one whole and entire; nor do the workmen fay they ever did; which I take to be very ftrange.
(i) Common Cockile. Black muftel. Oyfter. Peifunculus, Ecc.
(k) The ever memomble Dr Hook, in his Pofthumous, Works, fays, that earthquakes feem to be the chief efficients which have tranfported thefe petrified bodies, fhells, Moods. $\mathrm{Eg}^{\circ} \mathrm{c}$. and left them in fuch parts of the earth as are no otherwife likeiy to have been the places wherein fuch fubftinces should be produced.

- That feveral mountains and vallies have taken their rife from earthquakes muft in"t evitably be allowed; but then they are to be found in hotter countries than this If " the contrary is believed, why don't fuch thinge happen now? And why is all hifory
" filent upon this head? Befides, the regularity of the firata of mells, and their often * lying parallel to the horizon for many yards, I own, puzzle me very much, and prevent " me from acquiefcing with this ingenious man on this head."
"Dr Woodzuard"s hypothefis, or manner of bringirg thefe mells, and all other fofifls, " into the places where we now find them, by a total difflution of matter, is indeed very " pretty; but fo many difficulties arife (however plain it might appear to him) I believe - few now-a-days are of his opirion.
"Above all, I think iMr Petif's way of thinking is liable to the fewell objections; wiz. " by the variation of the parallelifm of the earrth's axis; which, being allowed, mutt " certainly alter the centre of gravity: if fo, tisen all the fluid parrs will conform there-
" 80 ; and then it will follow, that one part will be covered, and overflowed by the fea,
"that was dry before, and another be difcovered and laid dry, that was before " over-whelmed.".
orber fonilis, found nrar HartfordBridge in Norfoik. 1bid. p. 283.

Other Foffils near Hartord. Bridge in Noffolk.

Thefe horns (l) have been very large oirs ; fome of the fpines meafuring 13 inches and upwards in lengti. The horns themfelves, many of thim, are beter than 2 , inches in diameter, and ieveral of itera above in inches from fuine to fyine.

The entire fieleton of a man was found in the fame bed or fratum with the above-nentioned liorns, as onc of the workmen affured me: he faid, he took the pains to lay it a!! toguther upon the grals, as regularly as he was able; but his curiofity b:ing then fatisfied, he left it io be ground to pieces by the carts and waggons that came thither for the marl; fo carelefs were thee poor ignorant people of fo valuable a feecimen of the human race! What mitructive inferences might perhaps have been drawn from fuch a mieleton, with refpect to the magnitude of men in the early ages of the world! I own, I cannut but regret the lofs of it.
Helmet fones (m) and belemnites are here to be found in abundance, at all depths, and in every different fratum; which I think fhews, that the fifh, which produced thefe fofils have been very plentiful: and fo they muft have been all over the county, as the like are to be found in every place where-ever the earth is broken open, or a pit is digged. two furlongs from (n Hariford Bridge, is a pit, in which the country people dig a particular fort of clay to lay upon their fandy lands. Amongtt this clay, lie a great many knots, lumps, or nodules, of a bluer fort of earth, not widely differing from that which is found in Harwich cliff: thefe, when digged up, are foft; but when they have been for fome time expofed to the opun air, they become almoft as hard as flint.

In and upon thefe lumps are the impreffions of the cornu Ammonis, or frake-fones in a beautiful manner, from one inch to 5 or 6 in diameter; and feveral I faw with part of the fhells upon them of a yellowifh white (0).

Many other fhells are to be found in thefe lumps, as the peefunculus, he'met-fones, belemnites, common cockle, turbo's, $\mathcal{E}^{\circ} c$. but thefe are moft of them very fimall.

- But ftill more curious than all the reft are certain lun.ps of petrified cryitallized matter, of a very odd form, fuch as I have never feen or ever read of.

They appear to have been originally lumps of blue clay, cracked by fome fubterraneous heat, or other unknown caufe, into which the water
(1) "The nature of the fe horns feens to the eye ta be entircly changed into that of "chalk; nnly retaining their outward form, and the porofenefs of their inward parts."
(m) " Whatever firata thefe helmet fones ate found in, 1 obferse they are mollly filiced
" with matser of the fame nature and confitency, provided they have lain there un" difturbed."
(n) About 3 miles S. W. of Nicruich.
(0) "When this clay was foft, I found it impofible to get one of them whole."
has infinuated, and the falts contained therein have cryftallized in the cracks.

When thefe lumps are taken up, and become dry, the clay part falls from out the exterior cells; and then they may be thought gronly to reprefent an honey-comb. At firft I took them to be bones from with-in-ficle the fkull of fome great fifh, or other fea animal; but fome which I have feen lately, and of which I hall fend you a fpecimen, have convinced me I was mittaken. Indeed fince I wrote the abovi, I have compared this foffil with the defription Dr Woodeward gives of the Ludus Helinoniii, and I think it agrees fomewhat therewith.
IV. About a quarter of a mile from the city of Norwich, on the E.. An accom: of fide thereof, and near the entraince of Moulho!d-Heath, is a large fub- large fubrerterraneous cavern, which has been formed in a long feries of time, raneous caby the digging out of chalk for the making of lime. There's but one cerns in the entrance into it, whofe breadth is about two yards, and it's height near- near Norly the fame; however the height gradually rifes, till at laft it meafures wich ; by Mr in fome places from 12 to 14 yards. But notwithftanding the entrance W. Arderon, is fo fmall, the whole area within is of fuch a large extent, that 20,000 men might with great eafe be placed therein, as I believe will fcarcely be doubted, when I affure you, that, from the entrance to the furtheft part of thefe darkfome cells, meafures full 400 yards; and that thefe paffages are frequently 10 or 12 yards wide, with branchings out on the Iides, into various lanes and labyrinth-kind of windings, that every now F. R. S. in a ietrer froms and then open into one another; which renders it no eafy tafk to find Mr H. Baker. F.R. S tothe Perf $\mathrm{N}^{\circ} .486$. p. 244. Feb. \& March the way out, when a perion has been a little bewilder'd in thefe fubter- $3747-8$. raneous mazes.

Moft of thefe vaults are arched at top, whereby the immenfe weight, which every moment preffes on them, is well fupported; a weight no lefs than that of hiils, whofe perpendicular altitude above the tops of thefe arches is 20 or 30 yards, if not much more. I have frequently, fays my correfpondent, gone into thefe caverns out of curiofity; but could never perceive the leaft appearance of thofe damps * which are fo common in mines, and other fubterraneous places, where the air is ftagnant for want of a due current; which fhould feem to be the very cale here, as there is but one entrance into it. The paffage indeed is horizontal, and open to the W. wind; but the included air's being free from putrefaction, may poffibly be owing to the large quantity of falt which the chalk contains.

How deep or thick thefe rocks of chalk are, no one, fo far as I can find, can tell; for, in finking the loweft wells, they have never, that I know of, been dug through; and confequently muft be exceeding deep. The chalk at the further end ot this cavern is fo very foft, that it may

[^29]
The Giants Canfereny in Ireland.

Le mouhled with the hand like patte ; which I take to be it's original conliffence, and what it always retains, till it becomes expofed to the air. In the very loweft parts of there vaults I have picked up feveral kinds of fumits, figured by marine bodies; fuch as cebini, peefunculi, common or iluted cockle, beleminita, seci. and, by diligent kearch, other forts might perhaps be found. Sounds made beneath thefe arched roofs are ftrongly reliceted from fide to fide; fo that the leaft whifper may be heard at a confiderable diffance. The beat of a pocket-watch was heard diftinctly full 20 yards from where it was placed.

I vifited this place Now. 1. in order to try the temperature thercin, as to heat and cold; and carried with me a thermomeser regulated by one of Mr Houkloee's, which I fet down at the finther end of thefe caverns; and letting it remain there for fome time, I found the mercury refted at 52°. which comparing with the regifter I had kepe, was, I found, within half a degree of a medium betwixt the greatelt heat and the fharpeft cold we have known in this city for ten years paft ; and it is very probable, if the two extremes had been taken more exactly, the temperature in thefe caverns would be found to come yet nearer to the medium of heat and cold in this climate.
The greater degree of heat was July is. 1\%-46.
The greacelt degree of cold was Jun. 9. $1 \% 40$.
Which adided logether make

Ifind, by inipecting Mr George Martin's collection, and comparifon of cie feales and degrees of heat with various Thermometers, that the tomperature of heat in thefe caverns coincides with that in the cave at the obfervatory at l'aris, within one degree ; which I think comes very ncar, confidering the oblervations were made with different inftruments, and formed upon different principles.

At the foot of a high hill, adjacent to thefe vaults, iffucs out a curious fipring, whole water I found exactly of the fame temperature with that under-ground; though, when the Thermoneter was expofed to the open air, it food at 57°.

An arcsume of V. In my laft paffage over to this kindom, I faw that very remarkthe Giams able curiofity, commonly called the Giants Caufeway : t The fea-cliffs Caufevay in Ireland; in a letter to cie are very high thereabouts, and what is called the Caufeway is a loiv porne exteneing from the foot of the chifs into the feake a mole. This Pref. from toe head does not appear at firft fo grand as it is reprefented in the views Rev. Rich. Pococke, L. D D areb. throw iown rownofe chalk-vaults.
dicecon of
f This Canueway is beforc saken notice o! in Vol. II. Part iii chip. \mathfrak{z}. § lxxvi.
engraven
engraven of it; but when one comes to walk upon it, and confider it Dublio, ain more attentively, it appears to be a fupendous production of nature. The head ends in two points: I meafured the more weftern to the diftance of 360 feet from the ciiff, and it appeared to me to exeend about F. R. S. 60 feet further; but this part I could not meafure, by reaton that the fea was then high; and I was told, that at low tides it might be feen about 60 feet yet further upon a defeent lofing ite the in the $\mathrm{d}=3$. 1 allo mealured the more eattern point 540 feet from the cliff, and faw about as much more of it as of the other, when it winds about to the ealtward, and is aifo loft in the water. One may walk upon this head on the tops of the pillars to the edge of the water. Thefe pillars are all of angular flapes from 3 fides to 8 . The eaftern point, towards that end where it joins the rocks, terminates iffelf for fome way in a perpenuicular cliff, formed by the uprighe fodes of the pillars, fome of which imeafured, and found to be 33 feet and 4 inches in height. They fay there are in all 74 different ferts of figures among them. Each pillar confifis of feveral joints or fones lying one upon another, from 6 inches to about a frot in thicknel's: fume of thefe juints are in the midude io convex, as for thofe prominences to be nearly quarters of fpheres, round each of which is a ledge, upon which the fones above them have refted, every flone being concave on the under fode, and fitting in the exacteft manner upon that which lies next below it. The pillars are from 1 to 2 feet in diamerer, and confift moft commonly of about 40 joints, moft of which feparate very cafily, tho' fome others, which are more ftiongly indented into cach other, cohere ftrong!y enough to bear the being taken away in pairs.

But the cauleway is not I think the moft fingular part of this extraordinary curiofity; the appearance of the cliffs themfelves being yet to me more furprifing; thefe and their feveral frata I cxamined trom the rocks on the other fide of a little bay, about a mile to the E. of the cauleway. I thence obferved, that there runs all the way a fireturaz from the bottom of black ftone, to the height, as well as I could conjecture, of about 60 feet, divided perpendicularly at unequal diftances by itripes of a reddifl ftonc, looking like cement, and about 4 or 5 inches in thicknefs. Upon this there is another firatum of the fame black fone divided from it by a fratum 5 inches thick of the red. Over this another fralum of ftone so feet thick divided in the fame manner; then a fratum of the red fone twenty feet deep; and above that a fratum of upright pillars. Above thefe pillars lies another fratum of black fone 20 feet high; and above this is again another fratum of upright pillars rifing in fome places to the top of the cliffs, in ochers not fo high, and in others again above it, where they are called the Chimneys.

This face of the cliffs reaches for 2 computed miles E. from the caufeway, that is about 3 meafured Englifh miles, to the houre of Mr Jobn Stewart 2 miles W. of Balintey. The upper pillars feem to end over che caufeway, and, if I miftake not, become horter and Thorter as one
gocs from it, lying between two binds of fone like feams of coal, and like thofe little pillars found in Derby/bire.

Thefe binds probably meet together all round, and inclofe this extraordinary work of nature ; and it fo, the pillars mult be very fhort towards the extremities.

I was led to this conjecture by the following obfervations: the lower fraturn: of pillars is that which goes by a defcent into the fea, and which makes what is called the Giants Caufeway ; and where this defeent approaches the fea, it feems probable that the pillars become forter and fhorter, fo as to end not much further off. Now the upper bind of this Sirctuia may have been of fo foft a nature, as by degrees, in procefs of time, to have been wafhed away by the fea. And in the cliff over the caufeway I faw feveral pillars lying along in a rude manner almoft horiz.ontally, which feemed to me to be fome of the pillars of the upper frataial fallen down by the giving way of the bind that was under them, and over the lower ones that compofe the caufeway. And here moft probubly the upper pillars ended, as they are leen no farther in the cliff. I faw the tops of pillars even with the fhore, both on the caft and wett fides of the caufeway, and fome much lower than the cauleway itfelf; and it is probable that thefe are much fhorter than thofe of the cauliway, which 1 meafured above thirty feet higher than the tops of them.

When I was upon the caufeway, I faw in the cliff, to the fouth-caft, what they call the Organs, about a quarter of a mile off, and a third part of the way up the cliff. They appeared fmall, and fomewhat like a black fralarites: they were not commonly known to be fuch pillars as the others; but they are fo, and belong to the lower fratum. When with great difficulty I climbed up the fteep hill to them, I found they were hexagonal, and larger pillars than moit of the others, being about 2 feet in diameter; and I meafured 5 fides of one of them, which were of $13,15,12,21$, and 16 inches refpeetively. The joints I could come at were avout 9 inches thick, and each pillar, as well as I could count, confifted of between 40 or 50 of them: thefe joints are almoft flat and plain, the convexities on their upper faces being fo timall as to be fearce difcernible. I inquired whether any of thefe pillars were found in the quarries within land, and the people there tokt me they were not; but fince I left the place, I have been affured by cthers, that there are fome found 2 or 3 miles from the fhore.

A moving

 mofs in the ncighburijood of Cliurch. Town in Lancaphire; in the Rev. Mr Richmond ; com. miznicaled byVI. On Saturday Fan. 26. 1744-5. a part of Pilling Mofs, lying between $H e f$ comb houfes and an eftate of Mr Buttler's, called Wild Bear, was obferved to rife to a furprizing height: after a hort time it funk as much below the level, and moved flowly towards the fouth fide: in half an hour's time it covered 20 acres of land. The improved land adjoining that part of the Mo/s which moves is a concave circle containing near 100 acres, which is well nigh filled up with mofs and water. In fome parts it is thought to be five yards deep. A family is driven

A Fofil Skeliton of a Man.

out of their dwelling-houfe, which is quite fourrounded, and the fabricEdward Miltumbling down. Mr Buttler, Whitebead, and Stepben Wbite, are the ward, M.D. firft fufferers by this uncommon accident. An intenfe froft retards the regrefs of the Mofs to-day ; but I fear it will yet fpoil a great deal of gan. \&ec. 1745. land. The part of the $M o f_{s}$ which is funk like the bed of a river, runs Read Fcb. 28. N. and S. is above a mile in length, and near half a mile in breadth; ${ }^{1744.5}$. fo that I apprehend there will be a continual current to the S. A man was going over the Mofs when it began to move: as he was going eaftward, he perceived, to his great altonifiment, that the ground under his feet moved fouthward. He turned back fpeedily, and had the good fortune to efcape being fwallowed up.
VII. We have few or no foffils in this country; but a friend in Stafford/bire [Mr Platt $]$ informs me, that that country abounds much in foffils; fuch as fea-fhells, rock-plants, and other marine bodies left at the deluge. Near Bakewell in Derbyjpire was lately found the fkeleton of a man, with fome ftags horns, in digging a lead-mine.

A fofill Skzleton of a Man; by Roger Gale, $E / q ;$
F. R. S. to

Mr Petcr
Collinfon,
F.R.S. dated

Scruton in
[In the fecord letter, dated Scrution, May 19. 1744. Mr Gale gives the following account of this skeleton in Mr Plati's own words, from a letter written to himfelf by that genticman.]

The fkeleton I formerly mentioned to you was found at Latbill-dale, near Tolgrave and Bakewell in Derbybire, as the workmen were driving a fough, or drain to a lead-mine, about 9 yards deep from the furface of the earth, and about 40 fathom from the beginning of the fough. There were found with the fkeleton ftags horns; two pieces of which I have now in my cuftody; viz. the brow-antler, which is 9 inches long, and feems to have about 2 inches broke off the tip-end; the other is a piece of the large horn near the head, and is 3 inches diameter. Both the horns of the ftag, and the rib-bones of the Rkeleton, are much decayed; and as foon as the head of the latter was expofed to the air it crumbled all away, except a piece of the lower jaw ; now alfo fo imperfect as not eafily to be diftinguifhed what it has been. Several of the larger teeth were taken out, which were covered with their natural enamel, and perfectly found. The place where thefe things were found, is on every fide furrounded with a rocky petrified fubstance, or terra lapidea, by the miners called Tiuft, fo hard (as they fay) as to ftrike fire againft their tools. This lubttance lay above the bones and horns a yard and balf thick or more, and on either fide; and beneath them to a breadth and depth uncertain: fo that it appears, that the feeleton and horns lay in a cavity, which was not however contiguous to them, there being a fort of foft coarfe clay or marl interfperfed thick with little petrified balls, or pellets of the fame kind of fubftance as the tuft, for near a quarter of a yard round them; but none of the bones leemed in any degree to be petrified. The workmer.

Jan. 14.

 1;43-4. Ibid. p. 255. Read jan. 24. 1744.5.men conjoctured there was more of the fkeleton to be found; but they dug no lurther than was necenfiary to complete their fough.

The interment of this man and itag feem to me to have been accidental, by their falling into a chaim or wide clett of the rock in very early times; which has fince clofed up, and grown over them, by the acciection of the narly fibftance, which environs the dkeleton, $E_{5}^{5} c$. aind in time, prthaps, will grow is hard as the tuft, and reft of the rock.

An account of fome hithian banes incrint: cal switb fone, newu in the Villa Ludón. wina at Reme: commanicated to the R S. by the Pref. $\mathrm{N}^{2} .477 \cdot \mathrm{p}$ 55% Aug Re. ijt5. Read Dec 12.1743. Fig +6.
VIII. Somathing like the body of a petrified man being mentioned by feveral authors, as preferved in the Villo Ludovijfa at Kome, I th:ought, that a cirasing of that curiofity, which I procured at Romie fome years fince, might, pofibly deferve the notice of the gendemen leere profent: clpecially, as it will appear thereby, that the feveral accounts hitherto given of it are not very accuratc, or, at the beft, convey but a very imperfect idea of the truth.
The following paffage occurs in the journal-book of the Socies, for April I\%. 1689 : "s Mr Herfbaw related, that he had feen, in the Filla "Sudovifica at Rome, the body of a man incrufted with a fort of a white " marble or alabafter care, fuppoled to have been a man frozen in the "Alps, and after, in long procefs of time, this incruftation to have "grown upon him ; and that one of his arms was broken off, purpoif" Iy to flew, that it was no impofition."

Mr Richard Laffels, in his travels to Italy, printed at Paris 1670. p. 180. tells us, that in the leffer Cafina, belonging to the Luduruifian Villa, he law, " in a great fquare box lined with velvet, the body of a " petrified man, that is, a man turned into ftone; one piece of the leg " (broken off to aflure an ambaffador doubting of the verity of the "thing) Shewed plainly both the bone and the ftone crufted over it. "The head and the other parts lie jumbled up together in the box."
F. Aibanifius Kirchor fays, in his Mundus fubteryaneus, 1. viii. chap. 2. "Spectatur et bic Rome in borti Ludovifiani palatio, corpus bumanums
"totum in faxum converfum, offibus adbuc integris, at lapideo cortice ob"duEtis." And in the following page he gives an imperfect fketch of the fame thing, under the title of "Sceleton bumani corporis in faxums "comverfun, ex palatio Pinciano principis Ludovifiii." This iketch, howerer imperfect, gives a truer idea than either his or Mr Laffels's words feem to convey, as there is indeed nothing like the body of a man, but only a clunter of disjointed boncs cemented together by the fame matter that incrufts them over. Mr Miffon in his travels has more truly defcribed them, when he fays, that " in the fame room they fhew "a fmall heap of bones, faid to be the fceleton of a petrified man; " which is a miftake, for the bones themfelves are not petrified, but "there has gathered about them a fort of candied cruft, or fony in"cruftation, which has made them pafs for being of real ftone." Mr Wright alfo, in his late oblervations made in travelling through Italy,

1 Foffil Tooth of on Elepbant.

Exc. has taken notice, that in the Villa Ludorifia " they fhewed fome "bines of a human body all crufted over with a petrified fubflance."

Whicn I was at Rome in the year 1734, I mylelf faw this curionty, which is ftill preferved in the fame Cafina of the Indovifian gardens; and in the very fquare box lined with velvet, that is mentioned by Mr Lafols, and repetented by Father Kircher: and as I had before heard it much fpoken of, and had conceived an idea of it very different from the truth, I was willing both to preferve a true notion of it myfelf, and to be able to give fuch a one to others. I therefore cmployed an ingemious young painter to make as exact a drawing of it as he could ; and 1 afterwards very carefully compared his crawing with the original, which is the fame I have here to produce, hoping that the fight of it will not be unacceptable to the company. The fony fubftance that joins the bones together is of a whitihn colour, and the fame as that which incrufts the bones themfelves: fmall frectures in feveral places difcover the natural bones; and the fize of the whole mafs may be judged of, by confidering the feull, which is of the common dimienfions, as a fcale to the other parts.
IX. It was fent me lately, from Norwich, by Mr IFT. Arderon. fiems to be a grinder belonging to the left under-juw of a very large elephant, as it's own fize and weight may fhew: for the circumference, mealured by a ftring drawn round the edge, is 3 fect, wanting I inch; in length it meatures 15 inches; in breadth, where wideet, 7 inches, in thicknefs above 3 ; and it's weight is upwards of 11 pounds.

On one fide it is convex, and on the other concave, with 16 ridges and furrows running on each fide tranfverly, ard correfponding with the fame number of eminencies on the grinding edge, which appears furrowed like a mill-ftone. On the bottom of the part that lay within the gum are feverai cavities for the infertion of the nerves. The whole tooth is almoft intire, and feems very little, if at all, petrefied; but, fince it's being expofed to the air, feveral little cracks appear. Other monftrous bones were found with it, as I am i:formed; and particulariy thigh-bones, 6 feet long, and as thick as the thigh of a man; all which belonged probably to the fame animal, and may be confidered as farther prools of the creature's enormous fize.

The place where, and the manner how, thefe bones were difovered, are particulars fo well deferving confideration, that I fhall make no apology for relating them.

A little town, called Munfley, is fituated clofe to the fea-fhore, on the N. E. coaft of the county of Norfolk, where the fea is bounded by excceding lhigh rocky cliifs : fome whereof being gratually undermined by the continual dahing of the waves when the tide comesin, great picces frequently tumble down upon the More: and by the tumblirig down of one of thete the above mentioned bones and grinder were difcovered.

A Foffil Tooth of an Elepbant.

Here therefore can be little reafon for imagining (as I know fome have done, when fuch-like bones have been found in more inland counties), that the Romans brought elephants over hither; which, when dead, they buried deep in the earth, to prevent their becoming offenfive: for they could never think of burying fuch a carcafe in a rocky cliff, clofe to, or perhaps over-hanging, the fea. But, on the contrary, this difcovery feems a convincing demonftration, that the earth has undergone fome very extraordinary alterations: for the remains of animals, of quite cifferent climates and regions, and of kinds, which, in the pretent fituation of the world, could never poffibly come over hither, nouft either imply their having been placed here by Providence, originally, or, that this inland mutt, heretofore, have been contiguous to the Continent: but, fince we find thefe creatures in very hot countrics only, it is highly probable they were never placed here by Providence; unlefs we can fuppofe the temperature of our climate, as to heat and cold, to have been greatly altered: and, without fuch a fuppofition, it would be no lefs unreaforiable to imagine they would wander hither from warmer regions, though even all the quarters of the globe fhould have been contiguous.

What changes have happened to our earth, and how they have been produced, no human wifdom can poffibly find out with any certainty: but fuppofe only the polar points, or axis thercof, to have been Mifted at any time but a few degrees, and it's centre of gravity to have been altered (which fome great men have imagined not improbable), what convulfions in nature, what an univerfal change in the face of things, muft thereby have been occafioned! What inundations, or deluges of water, bearing every thing before them! What breaches in the earth, what hurricanes and tempefts, muft have attended fuch an event! For the waters muft have been rolled along, till, by them, an equipoife was produced. In fhort, all parts of the world would thereby acquire different degrees of heat and cold from what they had before. Seas would be formed where continents had been: continents would be torn in funder, or perhaps fplit into iflands. The artient bed of the fea would be changed into dry land, and appear covered at firt with fhells, and other marine bodies; of which the action and nitrous falts of the air would, in a few years, moulder away and turn to duft thofe upon the furface; but fuch as were buried deep would be preferved and remain for many ages.

Such would probably have been the fate of inanimate things: and as to living creatures, they muft have been almoft univerfally deftroyed and buried in the ruins of the world, as perhaps this elephant may have been. Some few, however, would in all likelihood effape, either by fwimming to, or being left on, rifing lands; where, if they met with proper lood, and an agreeable climate, they would continue and increafe, or otherwife would wander till they found fuch a country, unlefs prevented by interpofing feas, or impaffable rivers.

All this indeed is barely conjecture : but the bones and teeth of fikes, the multitudes of fea-fhells (fome whereof are petrefied, and others nut), and the many fea-productions found buried in the carth in almoft every country, at valt diftances from the fea, and even in the midland parts, are demonftrations of the furprizing alterations that muft have happened as to the difpofition of fea and land. The horns of the great moufedeer, dug frequently out of the bogs in Ireland, and fometimes in England, the bones and teeth of elephants found there, and this prelent difcovery, together with fome others of the like kind that have been made in England, feem to prove, that fuch animals formerly inhabited the fe countries, notwithftanding the moule-decr is known at prefent only in America, and elephants are not found except in Africa and $A / \sqrt{ }$ a.

Part of the horn and palm of a deer, found in a chalk pit, at a village called Baber, 4 miles E. of Norzvich, at the depth of 16 feer, and almort converted into a chalky fubitance, being of a kind of which, I am told, we have none in this illand, I alfo lay before you, as another proof to the fame purpofe.
X. The head and horns, reprefented in Fig. 48. were found in a fandbed, in the river Rye, which runs into the Derwent, in the eaft-riding, belonging to Ralph Cratborn, Efq; They were difoovered as he was fining for falmon; the net happening to hang on one or two of the antlers. He ordered to pull away; by which fome of the antlers were broke off, and difcovered it to be part of a deer's horn. At length, with fome difficulty, it was dug out pretty intire. Mr Cratborn luppofes, that thefe wild moors were once inhabited by this kind of deer, not any fuch now being known to be in this kingdom; and fuppofes it is, at leaft, 7 or 800 years fince it's death ; and that by age or poverty deftroyed, and by time buried in thofe funds. It is about 3 years fince it was found (as the abovefaid worthy gentleman told me) where he lives; which is at Nefs near Malton in York/bire.
a is 12 inches long. b the fame. c the fame. d is 4 inches from the main horn, and the 2 crofs branches are $8 . e$ is 6 inches. f is 7 inches. g is 6 inches; and 2 fect 10 inches from the root of the horn to the

An aecount of two cxtra3rdinary Deers Horns, found under-ground in differens parts of Yorkfhire ; in a letter from Mr Tho. Knowlton, 80 Mr Mark Catefby, F. R. S. No. tip.
All thofe places with marks were broke, and put together again.
St. lb.
This fkull and horns weigh -- $\quad 4 \quad 12$
It was found in a peat-mofs, at Cowotborp near North Dreigbton in Yorkbire, in the year 1744.

The length of the fkull, from the nofe-end marked A, to the $\}$, 10
back-part of the head B,
The breadth of the forehead, from C to C, $0 \quad 11$
Length of each horn, from the fkull D to the tip, 5 VOL. X. Part ii. 4 H

The extent of the horns, from E to E

Fect Inch.

The breadth of the web or palin, from $F G$ to F,
$F G$ and G, two places where the horns arc broke.
1 The noftrils.
2 The cye.
3 The teeth, which are very large and found.
N.B. It is evident the horns are not at their full growth, being yet covered with what is called the Velvet.
The figure above is the reprefentation and extraordinary dimenfions of the fkull and horns of a deer, dug from the depth of 6 feet out of a peat-mots, as above mentioned.

But what I think more extraordinary is, that the late Earl of Carlifle's fteward, Mr Yoice, in digging the fourdation of an houle and cellars, found, at the depth of 6 fect, a part of a jaw-bone with teeth, and a horn of a buck or fag, of moft exceeding large dimenfions, which lay buried under 2 feet common foil; then one foot of fcalping or fandbed; then 18 inches of fone; then another vein of fand, 6 inches; then at:other head of itone; under which lay thofe before-mentioncd jaw-bone, and piece of horn; which, in all appearance, to every one that viewed thefeftratums, had never been removed.

Dimenfons of the Deers Hows in the Mufeum of the Royal Socrety.
Length of the fkull
Breadth of the forchead
Length of cach horn
Diftance of the extreme tips of the horns
N. B. Thefe horns (Fig. 49.) are evidently of the fame fort as thofe often found in Ircland, of which defcriptions are given in TranfaEE. 3. 227.n. 394: and n. 444.p. 389. But I do not remember to have met with any before of this (pecies found in England, or any-where elfe befides Ircland.
C. M.
XI. The lapis ofteocolla is diftinguifhed by feveral names; it is how-

An inquiry into the Lapi Ofteocolla ; by Ambrofe Beurer of Nuremberg ; communicated by Mr Peter Collinfon, F.R.S. No. 4i6. p. 373. Apr. \&e. ever generally called Oftiocolla, or Ofteocolla, a name compounded of 2 Greek words, is iov, a bone, and woindx, glue: it is otherwife called Lapis oftites, ollofieos, offina, offifana, offifraga, lapis Afinticus, lapis Morocbius, forres arenae, foffle arborefcens, lapis fabilis, and lapis arenofus. It is found in feveral parts of Germany: but our anceftors had no juft knowledge of it; for fome took it to be petrified bones, and others believed it to be a fort of sypsum.

The foil wherein it is produced, is always findy and barren; and feldom produces any fort of plant, except the poplar: but none of them,

as fome have pretended, are ever found in vallics, or fprings, of in May 9.1745 clay.

Krauterman has mentioned one that had the figure of a fort of cheft : but it feems rather to have been a tophus, than offeocolla. Mercaties alio had no juft krowledge of chis fubitance, when he cailed fome pecrefactions, and topbi calcarit by that name, which in the opinion of Herman are rather bolaria or cifti.

As to it's origin, it is produced in the fandy foil mentioned above, at the depth of lome feet, and has the form of a root. The largeft can hardly be compaffed by both hands, but the others are gradually lels. As to it's confittence, the offeocolln, whilft under ground, is never hard, but always foft and muddy, fo that it feems like fuet or fat to the touch, but when dry it is white, like any calcaricus fubftance. As it is found under ground, it is partly grey, partly yellow or white, and the fand adheres copioufly to it's outlide. It's foft confitence will not permit it to be taken out whole, fo as to shew the true form of a root, unlefs the work is carried on with great art, and fome weeks, or even months are beftowed upon it: for if it is taken up haftily out of the fand, it will break: wherefore the following rules are to be obferved:

1. It mult be fought for with labour and patience. 2. The fand muit be gently wiped off. 3. It mutt be taken far from the roor. 4. An examination muft be made, whether there are any fmall fecondary roots footing forth, of which great care mult be taken, that they are not loit. 5. Several muft not be taken at the fame time; but liberty fhould be given them to grow dry and hard. 6. The pit fhould be covered with boards, to keep off any rain that may happen to fall. 7. The digging mult rot be repeated, till thole which are alrady expofed, are grown fufficiently hard. 8. In warm, dry, and clear weather, the planks fhould be removed, that they may be the fooner dry. 9. The digging fhould be begun at a good diftance, as water is generaily found underneath.

Many authors have obferved, that ofteocolla is hollow within; but they.do not agree, whether it is to be referred to the vegetable or mineral kingdom. Many of the Ancients thought they were bones tranfformed; but many denied it, becaufe there are not found any perfect fragments of bones, nor is any trace of animal parts difcovered by Chemiftry. Erafmus wrote very probably concerning it: thofe who would not acknowiedge it to be bones, have fuppofed it to be a mineral naturally generated from the fand. Prof. Teichmeyer calls it a marle. The fkilful Metallift Henckelius refers it to minerals; but is filent as to it's generation. Vrof. Juncker will have it to be generated in the land, bui does not add, whether it proceeds from the trunks or roots of trees. For my part I think it is a root, to which the find adheres, and that it is thus gradually generated. And tho' there is a great quantity of ofteocolla found, yet there is never any wood, at leaft fuch as is green, found ftanding above ground; and tho' I made a very exact inquiry into the origin of this ofeocolla, and of it's tree, the root of which had degene. rated into ofteocolla; yet it was a long time before I difcovered a dry bough, and green twig adhering to a tree, which ftill remained woody in the upper part, and was at the fame time changed into mere ofteocolla in the luwer part, and upon a more ferupulous examination appeared to be a fort of poplar. It's origin therefore is to be fought in the black poplar, on the roots of which, when the tree is cut down, the affeocolla is formed.

In all the parts of of eocolla, fomething ligncous is found, tho' rotten, and the decay of the wood leaves them hollow; fo that they have the relemblance of bones. But 1 never found any ofteocolla on the trees near them, and growing in the fame foil: whereas if the caule of it's production was in the foil, it would be found on pines, birches, and other trees.

Hence we may learn, x. That ofteocolla is hardly ever found in faline places. 2. That it is probable, that there have always been poplars, where offeocolla is found. 3. That all the diggers up of oftcocolla may fee that it has been a root. 4. That another criterion may be made, that when any offeccolla is found, fome calcarious bones are prominent, which feem to exprefs a flower: whence many have fancied, that it grows and flowers.

The ofteocolla therefore is always under the fand, but never in any place but where it's roots had been, in adhering to which it has gradually grown hard, and fo far as it has appeared above ground become white; and if any difference is found, it muft be imputed to accident. When the root is once found, if you dig a fpan deeper, you will certainly find offeocolla. So long therefore as it remains under ground, it is foft, or about the confiftence of macerated lime mixt with land; but as the moifture is evaporated, it becomes gradually harder.

To the generation of it therefore is required, 1. The root of a poplar. 2. If the root of a poplar cannot be feen, yet by diftillation it's vegetable fubftance may be demonftrated in the empyrcumatic oil 3. The acid of falt clofely united with fand conduces much to it's generation. 4 . that, as we know by Chemiftry, that there always remains fomething of an acid in fand, and confequently fomething lapidefcent; fo by the force of thefe, the acid of falt with much moifture of the fand conftitutes a fubftance, only here the free accefs of the air is ftill wanting, whereas otherwife it muft have been transformed into a ftone in the earth.

It appears from this, becaufe I . The mafs hardens as foon as it is expofed to the air and dried. 2. Diftillation difcovers fomething of an empyreumatic petroleum compofed of vitriolic and bituminous parts. 3 . If oil of vitriol is poured on ofteocolla, an acid of common falt feparates from it. 4. I infer that ofteocolla, is not a calx, becaufe it can by no means be extracted from it.

I have tried the offeocolla with various menftrums what weight of each would be diffolved in each of them : wherefore I always took z is
of ofeocolla, and ${ }^{2}$ is of each menfrumm; and obferved, I. That oil of vitriol diffolved gr. iv. of it, that the folution was yellow, and that the refidue was of a yellowifh white. 2. That fpirit of vitriol reduced all into a faline form. 3. That Sp. of Nitre diffolved Эi. gr. iv. And 4. The acid of common falt $Э \mathrm{i}$. gr. vi. 5. That $1 q u a \operatorname{Regia}$ diffolved $Э \mathrm{i}$. gr. iv. and that both folutions were yellow, and the refidue of a yellowifh white. 6. That diffilled vinegar diffolved Jifs, and that the folution of it was yellowith; but that the refidue, like the others, remained lree from the shenftrum: as to any change of colour.

Offecolla thereforc, as it is uled in the flops, is to be reputed a mineral from which a vegetable has been feparated: it may be called a calcarious earth; bue ic does not change the lyrup of violets.

By diftillation with an open fire, itaffords an urinous fpirit, it ferments on the pouring on of a fixt alkali, and difcovers at the fame time an urinous fpirit: the refidue being mixt with water, and reduced to a lixivium, didi not produce any thing faline; I endeavoured at the fame time to reduce one part into a calx, but could not obtain any. But if oil of vitriol is pourcd on offecolla, an acid of common fat feparates from it. Offeocolla being calcinced with an aliali feems to confitute an opake glats, but it may be refolved again minto water, and therefore it cannot be looked upon as a true glafs. Oflcocolla being put into a tubulated retort, and fet over a flow fire, and having oil ot virriol poured thro' the cube, gets free from the fpirit of falt, which may alfo be obtained by diftillation. I have alfo faturated the Sp. of falt thus obtained with a fixt alkaii, and produced a regencrated common falt: I have pur it again into the retore after it has been dried, and poured oil of vitriol upon it, and at latt have obtained by diftillation an acid fpirit of common falt.

The chief bafis of of eocolla is fand; fome will have lac lunae, medulla fiaxomum, and lapis offeccollae to be one and the fame thing, but they are miftaken. If any rednefs is found in the offeocolla, it is owing to fomething of iron. It's ufe in medicine is abforbent ; whence fome preferibe it for the Fluor albus.
XII. An accident calling me yefterday to Hedgerley, the place where A letter froms there is dug an earth commonly called Windjor loam, and famous not Mr John Hill, only in England, but many other parts of the world, I took an opportunity of going to the pits, and informing myfelf of the prefent concition of them: and as there appears too much probability that this earth will be exhaulted, and loft intirely to the world, in a few years, earth will be exhaufted, and loft intirely to the world, in a few years, $\mathrm{N}^{\circ} .483$.
I prefume it may not be unacceptable to you to have an account of the p. 45.5 . Mar. pits of it, and whatever elfe relates to it, taken on the fpot; which I here do myfelf the honour of communicating to you, and fhall take Apotbecary, to the Pref. concrrning Windfor Loam. $\mathrm{N}^{\mathrm{N}} .483$. here do myleif the honour of communicating to you, and fhall take ${ }_{2} 8$. 1746 . 19 . therty of adding to it what has fince occurred to my thoughts in Read Mar. 19 . regard to the fupplying it's place when loft, in the many different oe- 1746.7 . cations on which it is now ufed.

This earth itfelf is a coarfe harfh loam, compofed of a very large Shining fand, of extreme harducfs, and a fine fott tenacious clay: it's value is it's remarkable quality of thanding the force of the moft violent fires without running to a glafs; which makes it extremely ufeful to all who have occafion for fuch fires, and is the reaton of it's being fent not only into all parts of Englani, but to Holland, Germany, and many other parts of the world. It is ufed for making the bricks empioyed in building the wind-furnaces for melting iron, for coating over tire infides of alfay-furnaces, ufed by the workers on metals, and on many occafions of like kind at the glats-houles, both in England and other nations.

The place where it is dug is Ifelgerly before-mentioned, a fmall village abour 22 miles from Londen, furrounded with hills, under one of which this loam lies. The pits are about \div of a mile S. W. from the town, and 5 miles N. of WindJor: they extend over 4 acres of ground, fituated on the defcent of a hill ; and were intended to have been carricd over much more ground by the perfon who now works them ; but, on trials, the loam is found not to extend as was imagined.

They dig, before they come at this, a very good common brick-clay, a tilc-clay, and a potter's earth, a kind of clay of a firmer texture, and deeper colour, than either of thofe; but the frata of thefe are feldom pure or regular, and at the boundaries of the fratum of loam a pure hard fand, evidently the fame with that in the compofition of the loam, but left loofe, from there not having been clay in the way to bring it into the condition of the perfect mats. They have already worked the fratum fo far as to find it bounded E. and W. by beds of this fand, and N . by chalk, and are therefore afraid it will be foon exhaufted; at leaft, whatever they get hereafter, mult be procured with more labour and expence, as they have no where to fearch for it but higher up in the hill ; from whence it muft be fetched at greater depths, and much more expence: and this increafing difficulty of procuring it has been the reafon of it's rifing in it's price to that it is now fold at, which is 5 fiillings a bufhel in London; but which is not to be wondered at, fince on the fpot the quantity that makes 1000 bricks, which ufed to coft 15 . and 8 d . now cofts 10 s . the digging, and will every year coft more and more, unlefs a new fratuon of it fhould be difcovered fomewhere thereabouts, which their many unfucceffful trials make them at prefent defpair of.

It is to be obferved, that this valuable earth forms but a fingle firatum, and that does not rife and dip with the elevation and delicent of the hill, as the frata of the earth, ftone, $\xi^{\circ} c$. in hills ufually do, but feems to be even and flat at it's bottom; for the higher up the hill they open their pits, the deeper in proportion they find the firatuiit of loam lie.

It is worthy obfervation, that this hill appears from this not to have been formed as the hills and mountains on the earth in general have
been by a difruption and elevation of the frata by violence from within the earth; for, in that cafe, this fratuiz of loam muft have been elevated with them, and would have been as near the furface, or nearly fo, in one part of the hill as in another, and need have been dug for no deeper from the top than from any other part; whereas, on the contrary, it appears to lie flat and level underneath the whole mafs of earth, which makes the hill, and was, in all probability, the furface, on the firft feteling of the terreftrial and other mater from among the waters of the Deluge.

The eartin, which makes the hill, feems to have been a prodigious mals of matter, rolled along by the irrefifible force of that immenfe body of water, and afterwards lodged upon it.

That this might be the cafe, the immenfe force of that vaft quantity of water, and the cafe with which heavy bodies are moved in water, may ferve to make probable; and what the more favours the conjecture is, that the earth which makes the hill is not difpoled in fuch regular pure friata as the earths fettled regularly from the waters always are, but ieens svidently a mixed mafs, made by the jumbling together of various kinds of clay, E_{6} c. which are, in fome parts of it found pure, tho' not in whole firata; and in others irregularly blended in differene proportions one with another; which, as the principal matters that compofe it are of very different colours, viz. a red and a white clay, is the more apparent. And this is further confirmed, by there being none of thafe common extrancous nodules found lodged in it, which are fo frequene in the ftrata of clay formed by fubficience; fuch as the Ludus Helmontii, pyrite, $E^{2} c$. Thefe have fettled with, and loulged themlelves almoft cvery-where among thofe frata; but it is no wonder there are none of them here, if this hill has been formed, as I imagine; fince, in the rolling it along, they muft naturally have been left bohind: and I promife myfelf, that the frequency of thefe bodies in almoft all our little clay-pits, and the intire abfence of them in the vaft quantities of clay that have been dug here, will be efteemed, by all who have looked deeply into thefe ftudies, one great argument of the truth of this fyitem; which may alfo extend perhaps to many other hills as well as this.

As the workmen are now obliged to dig this loam at 26 feet deep, inftead of about 14, at which depth they long found it, and muft hereafter, as they are obliged to afcend the hill, dig it at 38 or 40 feet, the p:ice of it will, I am afraid, rob us of it, before the vein is exhaufted. Ithink it would be a matter worthy confideration, whether, from examiring the parts it is compofed of, a fuccedaneum might not be found for it, by an artificial mixture of fimilar fubftances. In order to attempt this, I have, by means of water, difunited it's parts, and procured them feparate; and, on comparing them with the various earths and fands from different parts of England, which I have at times procured, I think that I can exactly match the fand with one from Hampflead-Heath,

Tise Formation of Pibbles.

and the clay with one from a pit near the lower end of Highgate: the proportions may be eafily learned, by accurate obfervation of the quantities of each, where difunited; and a fuccedaneum on thefe principles eafily made.

It is evident to ine, that the only reaton why it endures the fire fo much better than other clays, is the extreme hardnets and great quiantity of the fand it contains : and as I imagine it eafy to throw a fand of equal hardnefs, and in equal quantity, into an artificial loam, I fee no reaton to doubt of making it equally ufeful.

The formation of Pebbles; in a letter from Mr. W. Arderon. F. R. S. 10 Mr H. Baker F. R. S. Ibid p. 467. Read April 2.1747
XIII. In my late fearches after fands, pebbles, and other foffils, in our county of Norfolk (fome whereof I had the pleafure to fend you not long ago) I made fuch occafional obfervations on the fituation and condition of the feveral bodies I met with, as reaton mult, I think, fuggeft to every man that confiders them. I fhall trouble you with no hyporhefis, nor form any random guefles, to account for fuch their fituation, and the condition wherein they are found; but, if a relation of true facts, and conclufions naturally deducible therefrom, may prove acceptable, they are intirely at your fervice.

In all frata of pebbles, that I have yet examined, there are fome which are broken, and whofe pieces lie together, or very near each other; but, as bodies of fuch hardnefs could not be broken without fome confiderable force or violence, their fituation implies, that they fuffered fuch force or violence as broke their parts afunder, in or near the place where they at prefent lie.

Others again have had pieces broken from them, though not the leaft fragment of thofe pieces can now be found: from whence we muft conclude, that whatever might be the caule of their fracture, they muft either have been broken at fome place diftant from where they now lie, or the pieces broken from them muft at fome time or other have been semoved to fome diftant place.

Several of thefe pieces of broken pebbles have their edges and corners fo very fharp, that it feems as if they had never been removed from the place where they received the damage. Others have their fides and corners fo blunted, rounded, and worn away, that one cannot help imagining they mult have been very roughly toffed back wards and forwards againtt other hard bodies, and that too with great violence, or for a very long continuance; fince, without a great deal of friction, fuch hard bodies could fcarcely have been reduced to the forms they are now found in.

It may poffibly be objected, that thefe pieces of ftones grew in the figure wherein they now appear; but I am fully fatisfied, that any man who will take the pains to examine thefe bodies carefully, will foon be convinced, from their veins, or grain, or coats, which furround each wher, fomewhat like the different ycars growth in erecs, that they muft

Oifergations on Precicies Stones.

once have been complete and ineire: and this will be more fully evident, if they are compared with a fone broken by art.

Among thefe frata of pebbles are feveral fragments of various kinds of marble, various kinds of fand-Itone, and various kinds of gypfum (though this part of the kingdom affordeth no fuch thing); moot of which have attained the hardnefs of the very harcent of our pebioles, as it fhould feem, by lying amongt them.

Such pebbles as are found here in firata near the furface of the earth, are much more brittle, and break eaficr without comparifon, than thofe which lie in deeper firala: for, if the firt of thefe fall, but with their own weight, upon any other ftone, from the height of 3 or 4 feet, they will break very frequently into 10 or 12 pieces; whereas fuch as are found deep in the earth will endure being thrown againft one another: with all the force one can give, and that too 20 times perhaps, before the lealt fplinter of them can be broken off.

I have conitantly found, that the more clean and tranfparent the fands are with which our pebbles are mixed, the more beautiful the pebbles themfelves are, however different their colours be.

It is wonderful to obferve and confider with what amazing flill the Creator of all things hath difpofed the different firata of the carth, to ferve the purpofes of His Wifdom.

The vegetable mould or furface of the earth is compounded or made up of fands, clays, marls, loams, rotten ftalks, and leaves of herbs, \mathcal{F}^{3}. Serving as a proper bed and covering, as well as a receptacle and conductor of moifture, to the roots of trees and plants in general.

Sands and pebbles may be confidered as drains for carrying off the redundant moitture, to where it may be ready to dupply the place of what is continually rifing in exhalations; but, left the ftrata of fand fhould be too thick, fmall ones of clay are often placed between, and feem intended to prevent this moilture from departing too far from where it may prove of general ufe. And, left thefe curious but thin partitions of clay flould give way, by their foftnefs, for the particles of fand to infinuate into them, and thereby let the moifture pafs through, thin crufts of a ferrugineous fubftance are placed above and beneath each of thefe clayey firata, and ferve effectually to keep the clay and fand afunder.

The obfervations you have now read muft be underftood to relate to the county of Norfolk only; for I have never had any opportunity of fearching the bowels of the earth in orher places; but the general uniformity of nature makes me fuppofe the fituation and circumitances of pebbles, fands, $E \dot{c}_{i}$. in other countries may not be very different.
XIV. Gems or precious ftones, of all fpecies, are fometimes tound some objereaof regular fhapes, and with a natural polifh; and fometimes of irregu- fions apon lar hapes, and with a rough coat. The firf fort may be confidered as of the pebble kind; and they are faid to be found near the berts of cious Stones ; VOL. X. Part ii.

4 I
rivers,
larly fucb as the Ancients uffd to engrave upon; by Robert Dingley: Efq; Ihid. p. 502 . Read May 7. 1747.
rivers, after great rains : the others are found in mines, and in the clefts of rocks.

The gems of the firft fort were what the Ancients mort ufually engraved upon : thefe are commonly called intoglio's; and they are moftly of a long oval figure, inclining to a point at cach end, convex as well on the engraved face, as on the others, with a ridge running from end to end on the under fide, which is hereby, as it were, divided into two faces; both which are allo, though not fo diftinctly, parted from the upper face, by another ridge running quite round the oval.

The ftone moft commonly found engraved is the beryl; that moft frequently found next is the plafm, or prime emerald; and then the byacintb or jacintb. The cbryjolite is fometimes, but rarely, found engraved; as are alfo, but that very feldom, the crylfal, or orimial pebble, the garnet, and the ametbyff.

Of the beryl there are three fpecies; the red, inclining to orange-colour, tranjparent and lively; the yellow, of an ochre-colour; and the white, commonly called the cbalcedon, of the colour of fheer milk. Thefe two laft have lefs life than the first.

The plafim or prime emerald is green, nearly of the colour of ftagnated water; fometimes tolerably clear, but, for the molt part, full of black and white fpecks, and rather opaque.

The jacintb is of a deep tawny red, like very old port wine, but lively and traniparent.

The chryjolite is of a light-green grafs-colour, and is fuppofed to have been the beryl of the Ancients, tranfparent, but not lively.

The criftal or oriensal peblle is harder and more lively than the common rock cryifal; is of a filverifh hue, and but very litcle inferior to the white fappbire.

The garnet is of the fame colour as the jacintb, but more inclining so the purple, and not fo lively.

The amethyft is of a deep purple, tranfparent and lively.
There were fome other fpecies of ftones engraved upon by the Romans; but rarely before the latter times of the empire, when the art itfelf was greatly upon the decline.

All the before-mentioned forts of fones are faid to have been of the produce of Egypt, or of the Eaft-Indies; and to have been brought from the borders of the Nile, or of the Ganges.

Here follows a general table of what are ufually called Precious Stones.

The beryl, is red, yellow, or white.
The plamm, is green.
The jacinth, of a deep tawny red.
The cbryfolite, of a light grafs green.
The cyyftal, or oriental pebble, of a filverifh white:
The garnet, of a deep red claret-colour.
The ametbyf, purple.

The diamond, white.
The ruby, red or crimfon-colour'd.
The einerald, of a deep green.
The aqua marina, of a biuifh fea-green, like fea-water.
The topaz, of a ripe citron yellow.
The fappbire, of a deep fky-blue, or of a filver white.
The cornelian, red or white.
The opnl, white and changeable.
The vermilion-fone, is more tawny than the jacinth.
All thefe ftones are more or lefs tranfparent: the following are all opaque:

The cat's-eye, brown.
The red jajper, called alfo thick cornelian, is of the colour of red ochre.
The jet, black.
Agates, are of various forts.
The blood-ftone, is green, veined or fpotted with red and white.
The onjx, confifts of different parallei ftrata, moftly white and black.
The fardonyx, of feveral flades of brown and white.
The agat-onyx, of two or more ftrata of white, either opaque or traniparent.
Alabafter, different frata of white and yellow, like the agate-onyx, but all opzque.
The toad's-eye, black.
The turquoife, of a yellowith blue inclining to green.
Lapis-lazuli, is of a fine deep blue.
Of moft of the fpecies before-mentioned there are fome of an inferior clafs and beauty. Thefe are commonly called by Jewellers Occidental Stones: they are mortly the produce of Europe, and found in mines or fone-quarries; and are fo named, in oppofition to thofe of a higher clafs, which are always accounted oriental, and fuppofed to be only produced in the more eaftern parts of our continent.

The onyx, fardonyx, agate-onyx, alabafter of two colours or firata, as alfo certain fhells of different coats, were frequently engraved by the Ancients in relief; and thefe forts of engravings are commonly called Cameo's. They alfo fometimes ingrafted a head, or fome other figure in relief of gold, upon a blood-fone.

Befides which there are fome antiques, moftly cornelians, that are covered with a firatum of white. This ftratum has by fome been looked upon as natural; but it was really a fort of coat of enamel that was faid on. This was ufed only in the times of the iower empire.

The ftones efteemed the beft for engraving upon were the onyx and farious):x; and next to them the beryl and che jacintb.

$$
412
$$

Of Cryfal Stones and Diamonds.

The Ancients engraved moft of their fones, except the onjx and fardonyx, juft as they were found; their natural polifh excelling all that can be done by art; but the beauty of the feveral fpecies of onj; 's' could only be difcovered by cutting.

The merit both of intaglio's and cameo's depends on their erudition, on the goodnefs of the workmanhip, and on the beauty of their polifh.

The antique gems of Greet work are the moft efteemect; and next to them the Romizais ones, in the times of the highorempire.

In nccount of XV. The drawing here annexed, reprefents a finall cryftal magnicersain perfea fied; it is one of a great number brought by a very curious gentleman minurte eryizal from Gibreltar, who has caufed many of them to be fet in buckles of Poones; by J. Parfons, M. D. ${ }^{\circ}$ F.R.S. ${ }^{\circ}$. 476 P. 468. Apr. \&c 1745. Read June 27. 1745.

Fig. 5°.

The ipecific

Gravity of
Diamonds;
in a letter from Mr John Enlicos,
F. R. S. to the

Prefident.
Ibid. Rcad
July 4. 1745 .
XVI. As, from fome experiments I have lately had the opportunity of making, it appears highly probable, that what has formerly been publifhed concerning the fpecific gravity of diamonds, is not to be ciepended upon; I hope a fhort account of thefe experiments will not be unacceptable to you, efpecially as I do not find the leaft notice taken of the fpecific gravity of diamonds in any of the tables publifhed in the Pbilofopbical Tranfactions.

In the account the hon. Mr Boyle has given of diamonds *, he relates it " as the opinion of a famous and experienced cutter of diamonds, "that fome rough diamonds were confiderably heavier than others of "the fame bignefs, efpecially if they were cloudy or foul; and Mr "Boyle mentions one that weighed 8 grains and ri; which, being care"fully weighed in water, according to the rules of hydroftatics, pro" ved to an equal bulk of that liquor, as $2 \frac{{ }_{2}^{3}}{3}$ to 1 ; io that, as far as "could be judged by that experiment, a diamond weighs net thrice "fo much as water." And yet, in this table of feecific gravities, that of a diamond is faid to be to water as 3400 to 1000 , or as 3,4 . to I; and therefore, according to thefe two accounts, there Gould be fome diamonds, whofe fpecific gravity thall differ nearly the $\frac{2}{5}$ from others; which I am perfuaded, is a much greater difference than could be ex-

[^30]pected in any bodies of the fame kind, or that which, on a more nice examination, will be found to be in diamonds.

The firft diamonds I had the opportunity of feeing weighed, were two very large ones from the Brafils, which were furnilhed by MrCbace, a merchant in Aufin-friers: the fpecific gravities of thele were found to be much greater than the heavieft of Mr Boyle's, the one being to an equal bulk of water as 3518, and the other is 35^{21} to 1000, and the difference between them lef's than the part. There were two imaller Brafil dianonds weighed at the fame time, which indeed were not quite fo heavy as the former, the lighteit being but as 3501, the other as 351 ; but, as thefe were of the fame kind, and comparatively Imail, I judged this difference could not be much depended on. Having therefore an opportunity fome time fince of a large parcel of Eaft-India diamonds, I chofe out ra, which, both in hape and colour, and every other refpeet, were as different from each other as poffible. Thefe being weighed in the lame fcales and water as the former, the lighte?t proved to be as 3512 , and the heavieft as 3525 ; the very near agreement of thefe latt with each other, and with the former, tho' weighed at about eight months diftance, makes it highly probable, that fo gicat a difference as appears from the place above-cited, and Mr Boyie's table, is not to be found in any diamonds whatfoever, much lefs fo great a difference as appears between the lighteft of his and the heavieft of mine, being above $\frac{1}{r}$ of the whole.

I had never made any experiments myfelf, by which I could form a judgment, how much of the difference between thefe and former trials might arife from the different tempers and qualities of the waters ufed; warm water being lighter than cold, and pump-water generally heavier than river-water. But, taking it for granted, that all perfors who make fuch experiments ufe common and not mineral waters, and waters of the natural temper, and not heated defignedly, I am affured by a friend, who has made many careful trials for this particular purpofe, that the fpecific gravity of any body will not differ above $\frac{1}{200}$ at the moft, on account of the quality of the water and temper taken together; whereas the heavieft of Mr Boyle's diamonds, as in las tables, differs from the lighteft of mine by above $\frac{1}{\text { 's }}$ part, which is about fix times as much as $\frac{1}{20}$: and yet I can think of no other way of accounting for the reft of this difference; unlefs it fhould arife from the fmallnels of the diamonds, or any defect in the inftruments with which his experiments were made.

The foales in which thefe diamonds were weighed turned very fenfibly with the ed above 9^{2} grains, it was capable of being weighed to lef's than the 18000th pirt: feveral of them were weighed twice over both in water and air, and the weights found to agree to the greateft exactnefs; and if to this is added the very near agreement of the weights of the feveral diamonds, though weighed at different times, and at a confiderable diftance
diftance from each other, I think it highly improbable, that there could be any confiderable miftake in thefe triais; and therefore their ipecific gravities, as in the following table, may fully be depended on.

I have fet down the weights of the feveral dianonds both in air and water, that if any miftake fhould have happened, it may be the more eafily rectified.

		In Air		Specif. Grav.
	Water			1000
	l diamond, fine water, rough coat			
2	A Brazil diamond, fine water, rough coat	88,21	63,16	
3	Ditto. fine bright coat,	10,025	7,170	3511
4	Ditto. fine bright coat,	9,560	6,830	3501
5	An Eaff-India diamond, pale blue,	26.485	18,945	3512
6	Ditto. bright ycllow,	23,33	16,71	3524
7	Ditto. very fine water, bright coat,	20,66	14,8	3525
8	Ditto. very bad water, honeycomb coat,	20,38	14,59	3519
9	Ditto. very hard blueifh caft	22,5	16,1	3515
10	Ditto. very foft, good water,	22,615	16,2	3525
	Ditto. a large red foul in it,	25,48	18,23	3514
	Ditto. foft bad water,	29,525	21,140	3521
13	Ditto. foft brown coat,	26,535	18,99	3516
14	Ditto. very deep green coat,	25,25	18,08	3521

The mean fpecific gravity of the Brazil diamonds appears to be T he mean of the Eafs-India diamonds

An extract, by Phil. Hen. Zollman, Efg F.R.S of a Philol. Account of a newo opinion concerning the origin of Pe tritactions founa in the Earth, zebich tas been bi: therto ajeribed to the univer fal Del..ge; as sonsained in
XVII. The Italian author has adopted a new fyftem concerning marine perrifaction, the caufe of which he refers to fire, inftead of water, according to the opinion commonly received.

The place of his abode has furnifhed him with particular opportunities of comparing marine perrifactions found in the mountains, with the true marine bodies produced by the fea. The faid place is called Sant Vito di Tagliamento, 6 hours journey from Venice, under the Bifhop of Concordia, belonging to the patriarch of Aquilcia.

The author is a clergyman; but never entered into any ecclefiaftical community, nor into any univerfity as profefior; to be out of the way of envy: however he keeps a boarding fchool for young men. He has publifhed the book at his own expence ; which has brought him inte lome trouble, and rendered the book at firft very fcarce. He fhews a great conformity to the principles of Sir Ifanc Newton, and other modern

The Origin of Petrijactions found in the Earth.

 dern Philofophers, not very common in Italy, grounding himfllf upon an Iralian experience, and mathematical proois.Having in the firtt part formed the fate of the queftion, he examines the fyttems of Burnet and Woodroard, almoft generally received by the learned, though the former does not make any exprets mention of petrifaction. He refutes their opinions abour the Deluge, and of it's being the caufe of peerifactions. IHe lays down for a fuidamental maxim, that the Deluge ought to be believed, according to the Scripture, as a miracle, and not to be proved by natural rules; from which he pro- communicated ceeds to another; eviz. That whoever lays down, for a foundation, a together weith principle which does not fit the feveral plocnomena, builds upon an er-feveral reroneous principle.

After having refuted at large Dr Woodward"s opinions, he proceeds Ehrhart, pbyto the eftablifhing his own fyftem, grounded upon fubterrancous fire, frian in ordiwith various arguments of his own, and with the refutation of thofe of others.

He firft lays down fome general principles, according to Sir Ifanc Newton, \&c. and then applies to them feveral inftances for fupporting his fyitem.

The firft is the new inand rifen out of the fea in the year 170%, near the ifland Santorini in the Archipelago.

The fecond is a mountain, which rofe out of the earth in 1538. near 4to. No. Mar. Porzuolo in the kingdom of Notles,信 pergula, and dried up a navigible lake named Lucrano; being now Read April called the New Mountain, equal in height to a neighbouring old one, nary at Memmingen, and member of the Acad Nat.
Curiof in High Duich at Memmingen, 1745. called Monte Barbaro. From the circumitances attending thofe events, he endeavours to prove his new hypothefis. He calls to help the feveral eruptions of the mountains Vefuvias and Eine; and then forms his thefis; viz. " That marine animals and productions (for inftance, "f fhells, $E^{2} c$.) which are now found in high mountains, were firf ge"s nerated in the fea: but when thofe mountains were raifed, by fub"terraneous fire, above the furface of the fea, were petrified fo as they " now appear."

This thefis Moro endeavours to fupport, by giving the detail of the 12 feveral firata found in the territories of Modena, when they are digging for wells, mentioned by Woodward, Camerarius, Vallifnieri, and Ramazzini; whofe remarks, as well as the newer ones of Wbifon and Bourguet, he will not allow to be fatisfactory; the greateft difficulcy being this, that, from the nature of fome of thofe frata, it feems that the fea has twice covered the plain of Modena, now above fome hundreds of feet above the level of the fea; and that from another firatum it inay be inferred, that, in the intervals between thofe overflowings of the fea, the land has been inhabited and cultivated. His thefis he endeavours to fupport, by a remarkable paffage from Pliny, book II. sbap. 87. Ingens terrarum portentum L, Marcio, Sux. Julio Coff. in agra fillantes, recedentefque; ince cos fiamma funcquc in calum exeunte, \&ic.

Dr Ebrlart compares with this the feveral firata found in digging in the neighbnurhood of NXemmingen latt year.

Moro couches next upon the hypothefis of fome, that the fea increafes about one foot in height in about two centuries; and of fome others, that it decreafes 5 feet in one century; as allo, how the faltnefs of the fea may be deduced from his hypothefis.

Dr Ebrbart hopes that Mero's fyltem may one time prevail againft prejudices, as well as thofe of Vergilius, Galilaus, Harveg, \&xc.
XVIII. Moft of the antient writers, that have treated of Ireland, have made mention of the peculiar qualities of Lougb-Neagh of turning wood into ftone; fome of them (a) have gone fo tar as to fay, that it would turn chat part of the wood which was in the mud into iron; the part in the water into ftone, whilft the part above water remained wood.

Some later writers, particularly Mefficurs Willian Molyncux, Francis Nevill, and Edward Simyth, and from them the late learned Dr Woodward, (b) the author of the notes on Varenius's (icography, and others (c), feem rather to think, that this petritying quality doth not lie fo much in the lake itfelf, as in the ground near or about it.

Mr Edso Smytb (d), who inlarges the moft on this fubject, and feems to have led the others, and drawn them into his opinion, tells you, "That no experiment or obfervation yet made, that he could hear of, " could prove that this lough has really the quality of petrifying wood, " or that the water doth any way help or promote the petrification." He there gives you an example of a genteman of worth and credit, " who had fixed two ftakes of holly in two different places of the lough, " near that place where the l'pper Bann enters into it, and that the " parts of the ftakes which had been wafhed by the water for about 19 " years, yet remained there without any alteration, or the leaft advance "to petrification."

Another reafon for his doubting of this quality is, "That tho' it is "reported that the water hath this virtue, elpecially where the black" water difcharges itfelf into the lake, yet that, as it feems evident, " from the nature of liquid bodies, that any virtue received in one part " mult neceffarily be diffufed thro' the whole, at leaft in fome degree; " therefore (faith he) there is good reaion to believe, that the water is "wholly deftitute of this perrifying quality:" But a few lines lower he tells you (e), "That he had fufficient ground to conjecture, that

[^31]
Of Petrifactions of Lough-Neagh in Ireland.

"s other wood as well as holly had been petrified about this Lough; be"caufe fome fifhermen, being tenants to a gentleman from whom he " had this relation, told him, that they had found buried, in the mud of "s this Lough, great trees, with all their branches and roots peerified; " and fome of that bignefs, that they believed they could farcely be "drawn by a team of oxen; that they had broke off feveral branches "s as big as a man's leg, and many bigger, but could not move the great " trunk."

I fuppofe Mr Smytb (or the gentleman his friend) faw thefe branches, and was thereby convinced of their real petrification, as he was by the bulk of thofe trees of their being oak, and not holly; " becaufe, fays " he, no other tree in that country, thefe excepted, grows to that " prodigious bignefs; at leaft it is certain, that holly never grows to "that bignefs."

Hut how Mr Smytb came to be convinced, that thefe trees were oak, and not holly, and yet was not convinced of the petrific quality in fome parts of the Lough, tho' thefe trees were found petrified in it's mud, is amazing to me: for, if a team of oxen could fcarcely draw them from thence, it was as hard, in my opinion, to draw them from any adjacent ground (where they mult have grown, lain, and been petrified) into the mud of the lake, where they were afterwards found: for it mult be fuppofed, that either thefe trees grew on the banks of the lake, and, thro' age, or any other accident, fell into the water or mud, and were there petrified; or that, with great labour and expence, they were brought into it from fome adjacent ground, after their actual petrification, which is hardly to be fuppofed.

Mr Smytb (a) tells you farther, that "Two gentlemen of the north " (of Ireland where this Lough lies) had told him, that they had feen the "s fame body, partly wood, and partly ftone; but the only reafon for " thinking fo, being the diverfity of colours, which might well enough "s proceed from feveral degrees of petrification, we may properly think "t them deceived; for they made no experiment on that part which "s they reputed wood. The bark is never found perrified, as I am in"formed by a diligent inquirer; but often fomething rotten about the " ftone, anfwerable to the bark."

Mr Smyth I think contradiets himfelf no lefs in his laft fuppofition than he did in the firf. His friends affured him, that they had feen one or more of the Luugb-Neagb ftones partly wood and partly ftone; but they were deceived, he fays: the diverfity of colours, by which they judged one part of the ftone by it's colour to be wood, and the other part likewife, by it's colour different from the other, to be ftone, were no more than different degrees of petrification. What are we to underftand by thefe different degrees of perrification? by this fomething rotten about the ftone often found? if not, that fome part of the wood
(a) 16:d. us fupra.

Of Petrifactions of Lnugh-Neagh in Ireland.

was actually turned into fone, fome other part in a degree Jefs petrified, and fome other part not petrified at all, as thefe gentlemen affured him: the diverfity of colours, feeing and feeling, was enough to convince them, and to determine the point.

As to his affertion, That, becaule the water of this lake has not everywhere, and in every place, that petrefcent virtue, it muft therefore be a gnod reafon to doubt of it's having that peculiar quality in fome particular places, I think it may be denied for thefe reafons; iff. Be.tule a furing, tho' ever fo much impregnated with petrific, mincral, or metalline particles, iffuing out in tome particular place of the lake, can no more communicate it's petrifying virtue to the waters of the whoie take, than the river Thames it's fweetnefs to the fea, and make all it's water frefh.

Secondly, Becaufe that if this lapidefcent quality was equally diffufed thro' the water of the whole lake in a degree fufficient to turn a whole tree, or any of it's larger branches into ftone, in all parts of the lake without exception, that petrefcent virtue muft act equally on all the plants or vegetables whatfoever that grow in the lake, and upon all other bodies, gravel, fand, mud, and clay, that are in, or are daily brought into it ; and, at laft, by a general aggregation, agglutination, and attraction of thefe different bodies together, the whole bottom of the lake, nay the whole lake itfelf, by the different degrees of coalition of particles, muft become a folid body; unlefs you would fuppofe, that that this petrific quality has no power on any other matter but wood, which is contrary to experience, rufhes, or other plants, having been found petrified on the fhores of this lake, as alfo fhell's, clay, and fand petrified in different thapes, of all which I have fpecimens.
"The earth, fays the great Robert Boyle (a) harbours different kinds " of petrefcent liquors, and many of them impregnated with one fort "of mineral or other." There are no fprings, no waters, but are more or lefs impregnated with fuch mineral and faline particles; which appears from the moft limpid; which, alter evaporation, ftill in the reflduum, gives fome particles of fatt together with fome ftony and mineral ones.

I have found by experience, that petrifying fprings are generally impregnated, fome with calcarious and particles of other ftones, and others with ferrugineous and vitriolic particles. Thofe of the fony or calcarious kind, I have obferved, when they drop on wood, or other vegetables, act on them for the moft part by incruftation, having different degrees and periods for their refpetive incruftations and coalitions, which yet ftick clofe to one another: they feldom turn the wood into ftone; but, fticking to the wood, plants, $E^{2} c$. coagulate on it , and by degrees cover it with a cruft of a whitifh fubftance of different thickmefs, whereby the wood is immerged or wrapped in a fony coat, which,
(a) R. Boyls, of the origin and virtucs of Gems.
if it be broken before the wood be rotten, you will find it in the hears of the ftone or incruftation, as is feen in thofe petrifications at Maudlin Meadows in Gloucefcrfbire, at Hernitage near Dublin, and many other places: or, if the wiod be rotten, you will find a cavity in the ftone, which very often is filled by a fubfequent incruffation or peerification ; the flony particles then taking the place of the rotten wood.
Sonictimes indecd, thefe waters, permeating the pores of the wood either longitudinally or tranficeriely, infinuare themielves therein, fill them up with their flony particles, fwell, and, by their burning or corroding quality proceeding from the lime-ftone, deftroy the wood, and affume the flape of the plant, the place whereof they have taken.
Thefe kind of perrifications generally ferment wish acids and fpirit of vitriol, and, by calcination, may be reduced to lime.
Ferrugineous or metallic petififying waters moftly adt by infinuating their fineft particles through the pores and veficis of the wooci, or other vegetables, without increafing their bulk, or altering their texture, tho' they greatly increafe their fyecific gravity: and fuch is the petrified wood found in or on the fhores of Lough-Neagb; for it doth not fhew any outward addition or coalition of forcing matter fticking to or covering it except in fome places, where a chin nimy fubftance, taken notice of hereaffer, is fometimes obferved), but preferve the grain and veffigia of wood; all the alteration is is in the weight and clofenefs, by the mineral particles pervading and filling the pures of the wood: thefe ftoncs, or rather wood-ftones, do nor make the leaft effervefcence with fpirit or oil of vitriol, nor aqua fortis ; which Shews, that they are impregnated with metalline particles, or fony ones, different from the calcarious kind, and may be the reafon why the perrified wood, mentioned by N. Grew (a), made no cbullition, at which it feems he was furprized (b). Thefe ftones I could not reduce into lime by the moft intenfe fire, nor, with proper ingredients, procure a vitrification or fufion (c).

Altho' mines have not perhaps been difcovered near the Lough, I have reafon to believe that there are fuch in its's neighbourhood, from the great quantity of iron-ftones found on it's fhores, and places adjacent to it, and from the yellowifh ochre and clay to be met with in many places near it. Of there iron-ftoncs, which are very ponderous, outwardly of an ocheriih yellow colour, and inwardly of a reddifh brown, I have calcined many, and do find the powder of all to yield ftrongly to the magnet.
(a) Reg. Soc. Muf. p. 270.
(b) This contradicts an obfervation of Mr Jobn Reaumont (Phil. Tranf. N°. 329. p. 731.) That monly mineral foncs will fir with acids; whereas all thofe that I have tried, whether Englifh or Iribs, did not at all ftir with acids.
(c) Stones of the calcarious kind turn to lime by calcination, and ferment with acids; but other kinds, fuch as flate, fire-fone, free-ftone, rag, grill, Eic, will do ncither, as experience has hitherto tellified.

Gcrald Boate (a) mentions an iron mine, in the county of Tirone, not far from the Lough, and fuch others at the foot of Slew-Gallen mountains.

That mincs are generated and found in the bowels of hills and mountains, is obvious to any that have the least knowledge of Metallurgy; and that fprings alfo proceed from mountains, is no lefs obvious; therefore fhould a fering happen in the bowels of any of thele mountains to run thro' a vein of mineral of any kind foever, it will waih and dilute fome parts of fuch mineral, impregnate itfelf with the unctuous, faline, and metallic particles of fuch mines, and convey them along with it's water; and if in it's way, whether under-ground, or at it's iffuing out of the cliffs of a mountain, of the fides of a river, or of the lake in queftion; or whether it rifes under water, in the middle of fuch a river or lake in any particular place, and in it's courfe meets with wood, vegetables, or any other lax bodies (lodged in the mud or gravel), whofe pores, by the natural heat of the mineral fteams, or any other accident, being open and duly prepared, thefe metallic molecula and faline particles will penetrate through, infinuate and lodge themfelves in the pores and veffels of fuch wood, \mathcal{E} c. fill them up, and, by degrees, turn $^{\text {c }}$ them into ftone; (b) "There being fome of thefe lapidefcent juices of " fo fine a fubftance, yet of fo petrifying a virtue, that they will pene" trate and petrify bodies of very different kinds, and yet fearce, if at " all, vifibly increafe their bulk, or change their fhape and colour."

That fuch fprings there are, hidden under the water or mud of this lake, I hope will appear probable, from what has been faid, and perhaps evident, from the account I have fince received, that, in the great froft of 1740 , the lake was frozen over fo as to bear men on horfeback, yet feveral circular faces continued unfrozen. But how the feveral attempts, made, as mentioned, by Mefieurs Molineux, Nevil, and Smyth, to procure wood half petrified (by fixing ftakes of holly in the lake, which received no alteration) proved unfuccefsful, the reafon I think is plain, becaufe they were not fixed in the proper place, viz. the courfe or vein of the fpring, where nothing but chance could have directed them. This petrified wood is often found in different places on the fhores of the Lough, but generally in greater plenty when the water has been difturbed by great ftorms; which makes it impolfible to fix on the particular place where the petrifying juice moft prevails; except a tree, or any large piece, fhould be found fo fixed as to refift the force of the waves.

Mr Smytb (c) makes this further obfervation: "This virtue is cer"s tainly, if not only, in the ground or foil, he judges (fays he) for thefe "reafons; That there are many ftones turned up daily, efpecially at
(a) Nat. Hiff. of Ireland, D:ib. 1726,
(b) Reb. Doyle, of Gems, p. 124.8 vo.
(c) Philof. Tranf. ibid, ut fupra.

Of Petrifactions of Lough-Neagh in Ireland.

" the ir breaking up new ground, which we cannot in any probability
"think were broughe thither; they are often found at two miles dif" tance from the Lough, feldom farther, in great numbers, and very " deep in the ground; and a gentleman (on whofe credit I received " the information) faw a ftump of a tree digged out of the ground at a " fmall diftance from the Lough, which, by handling of it, he found to " be petrified. He affured me, the roots and all were ftone, and alto" gether like thofe ftones that are ordinarily found, and go by the
" name of Lougb-Neagb ftones. This gentleman was of opinion, thefe
" were lapides fui generis, till this obfervation convinced him: and that
" thefe ftones were once wood, is, I think, very certain; for they fhew
" the plain veftigia of wood; they likewife burn, and cleave: filings
" of this fone thrown into the fire emit a fragrant fmell ; and they cut
" kindly with a knife, tho' not fo eafily as other wood (a).
That this petrific quality is in fome peculiar parts of the lake, I have endeavoured to prove; that it is or may be in fome peculiar places of the adjacent ground, I grant ; tho' as yet, I could not procure any of thofe itones found in the ground, with wood continuous. Such as I have, or have feen, are of the white whetfone-kind, and feem to be holly or afh, petrified by fome ftrong nitrous and ftony particles; for, in a folution of it in aqua fortis and oil of vitriol, it leaves no tincture, but the liquor growing muddy, like pipe-water after great rains, therefore flews, that they are not fo frongly impregnated with metalline particles, as thofe ftones found in or on the fhores of the lake.

I need not add any more, to fhew how mineral fprings may petrify wood, or any other vegetables under-ground; but as to whole trees found petrified and buried within a fmall diftance from the lake, I Thould think that the Lough might have been formerly broader than it is at prefent, or perhaps hath loft on one fide what it has gained on the other; by which means, what is now dry ground was formerly under water, and the other fide vice ver $\int a$: if fo, fuch trees as are found un-der-ground might have been petrified in that part which was over-Howed, and is now dry land.

Mincral fteams or exhalations, being highly faturated with ftony and mineral particles, are often found to have a perrifying virtue, as is feen at the bath called Green Pillars (b; in the city of Buda in Hungary. If fuch fteams fhould, in certain places, find or force their way thro' the fand or pores of the earth, they may operate on wood, $\xi^{2} c$. buried in the ground, permeate it's veffels, and, by degrees, turn it into ftone; and fuch, I apprehend, is the mof probable, it not the only reafon, that can be affigned for thofe perrifications of wood found in fand, as mentioned by Rogle and Plot.
(a) An anfiver :o this, fee in the defce:ption of the city of Down, p.16玉. The argut ment is confuted by the defired proo.
(b) Pbilof. Tranf. $N^{\circ} \cdot 59 \cdot$ P. 1049.

Of Petrifactions of Lough-Neagh in I reland.

It may be oblerved, that the finer the lapidific particles are, the more beautiful and matural the petrification will appear; fuch is a petrified root of the fag or iris fyluefiris in my poffelfion, which is folid fone at the bottom, the pith being turned into a white or fiparry fubftance, and the growing knots of the root, tho' petrified, preferving their fkin brown, and fomewhat Hexible. This pbenomenon indeed has been lately folved in the defeription of the county of Doain, $p .162$. The lufes naliera, or frortings of nature, is a general folution, too ofen brought in, and comes in very à propos to anfiver queries concerning perrifications, fuch as wood, fhells, worms, \mathcal{E}°. If the fhells, or other like petrified bodies (found in marble or lime-ftone) which preferve the mort exact relemblance of the fifh or body they reprefent, were not former!y a rcal filh, flell, worm, $E^{2} c$. how comes it that fuch thells and other bodies are found unpetrified in marble, lime-ftone, rock, marl, or any other ftone? The R. Rev. Dr Robert Clayton, Bifhop of Clogber, hath fhewn me in his collection a piece of Italian marble, where perrified Thelis are feen, and others no way petrified, but that may be crumbled to ciuf with the fingers. I have a ftone (which I found lately in the river Isify at Cbapel-Izod) of the Lapis vermicularis kind, the furface whereot, on one fide, is covered with a number of imall perrified worms or plants ; part of which, fticking and continuous to the ftony ones, are ftill foft and tlexible.

To return to the Lough-Neagh petrifications; I received lart fummer, 1745. from the Rev. Mr Ricbard Barton, about 30 of thefe ftones, found on the fhores of the lake, fome in the water, fome in the mud, fome in the fand, and others in a yellowifh clay. That they were petrified in the lake is probable, but whether in the water, mud, fand, or clay, is no matter; for certain it is (to ufe Mr Smyth's own words), that they were not brought hither from any diftance, fuch as $2,4,6,8$ miles, after being dug out of the ground, and then thrown and difperfed on the fhores of the lake: and befides, the difference in the eolour of thefe ftones, thofe found in the lake, and thofe found in the ground fomewhat diftant from it, is fuch that they cannot well be mifs taken one for the other. Thofe found in the ground are white, and of a loofer texture; thofe found in or on the thores of the lake are black, clofer, and heavier. That thefe laft were petrified by a mineral fpring, appears from the few following obfervations. They do not ferment with acids, fpirit and oil of vitriol. The folution of this ftone in aqua fortis gives a beautiful red tincture, and in oil of vitriol leaves a tincturc of a brown dark red. The woody part of thefe ftones in aqua fortis alfo gives a red tincture, tho' fomewhat paler; and, when taken out of the liquor, fhews red fpots in it's pores, which I take to be particles of iron and fulphur: thefe fpots, when the wood began to dry, became black; and the wood, when dry, turned of the colour of a deep red Jefuil's-bark.

In fome of thefe ftones, feveral curious veins, of a red and blueifh colour, are very remarkable, being intermixed with black and white Aric.

Having broken fome of thefe flones, I found in the infide a kind of white, and feveral clufters of fimall white and black angular cryftals, which thro' the mifcrofcope appear tranfparent, and of different Thapes, but moftly hexagonal. I difcovered fuch cryftals in fome of the woody part of thefe ftones.

One piece of a white ftone I calcined in a crucible for 24 hours, but could neither reduce it to coal or lime. The powder yielded faintly to the magnet. This ftone was found in the ground at fome diftance from the lake.

Onc piece of a black ftone, found in the lake, I likewife calcined for 24 hours, and could not reluce it to coal or lime : the powder yielded brikly to the magnet.

I calcined one piece of another ftone, about one inch thick, for about 4 hours, in an intenfe fire, until it grew as red as it could be, when I took it out of the crucible. I obferved feveral veins (not difcernible before) of a ferrugineous matter, about $\frac{1}{10}$ of an inch thick, and when reduced to powder, it applied ftrongly to the magnet.

In other ftones I found fome veins of wood, about one and two inches thick, no way petrified, though the ftones were every way fo outwardly.

Some of that woody part I alfo burnt in a crucible; it emitted a bluifh flame, as if impregnated with fulphur, and had the ftrong fmell of burning charcoal. When burnt to a coal, and reduced into powder, it faintly yielded to the magnet.

How wood happens to be found in theere petrifications, found and untouched, is fomewhat furprizing, and to account for it not very eafy. It may be attributed to this, that the texture of the wood is not everywhere equal; efpecially where krots happen, that part is much harder and clofer than any other; and if the petrefcent particles fhould be once ftopped, they will fix there, coagulate, and go no further; by which means that part of the wood will remain free from petrification, while the reft will be turned into ftone; or the pores of the wood may happen in fome places, and in the very heart of it, to be fo full of a refinous matter, that it will keep out the petrific juices, and hinder their further penetrating into them equally: to this may be attributed the ftrong fmell of this wood when burning; and the more fo, as I fufpeet that moft of this petrified wood was fir, there being a good deal of that kinct found daily in torf-pits near the take; fome not above 20 yards diftance from it; and the laft piece of wood and ftone continuous that I have received, appearing by the grain to be of that kind of wood.
Laftly, the petrific juices may happen to be fo ftrongly impregnated with falts and metal, or any other mineral particles, that they will immediately fwell and fill the minuteft pores of the wood, and, by a fud- appear clearly from fome cavities in one of thefe ftones, which I fuppole to have been worm-holes, and which were no way filled by the petiefcent liquor which was fopped round it; all the fides of this hole Leing overlaid with fmall brown cryftals, occationed by the evaporation of the aqueous parts, and their being ftopped and foaked by the neighbouring ftone or wood.

The woody part of thefe ftones, as I have obferved, will burn to a coal, and emit a flame: that part intermediate betwixt the ftone and wood, and which is but partly petrified, being harder than wood, and fofter than ftone, will grow red in the fire, cmit a kind of flame, or rather fparks of fire, but doth not confume, and is properly what Dr Grico * calls incombuftible wood. The ftony fart doch not burn, though it grows as red as coal.

I calcined another of thefe ftones, weighing I oz. I 3 penywots. $12 \frac{1}{\ddagger} \mathrm{gr}$. after burning 4 hours it weighed but 1 oz . 10 penywits. $8 \frac{1}{\ddagger} g r$. and loft 3 pinywts. 4 gr .; which procceds, I fuppofe, from unpetrified veins of wood in the heart of the ftone, which were deftroyed by the fire, as in the crucible it emitted now-and-then a blusifh flame, as brandy doth when burning. This ftone, when taken out of the crucible, and cooled, had the colour of iron, when heated in, and cooled from the forge.

Part of another ftone, which, by vifible veins of ore, appears to contain a good deal of iron, I likewife calcined for 4 hours; the powder yielded moft furprizingly to the magnet; fo that it appears, that the opinion of Nennius, Boëtius, and other ancient writers, was not abjolutely deftitute of foundation.

The white wood-ftones are generally found in the ground at $2,4,6$, and 8 miles diftance from the lake, and fometimes very deep in the earth.

The black ones are always found in the water, or on the fhores of the Lough; fometimes at the mouths of rivers or rivulets that empty themfelves into it; but thofe with wood continuous have not yet been found above 20 yards diftance from the water of the lake; that is, where the water reaches in the winter, or at other times.

Some of thefe fones are outwardly covered with a thin white fubftance, which hath run thro' the pores of that part of the ftone that was expofed to the air, and not covered by the water, mud, or clay; and on fome others it is rather an incruftation of that white fubftance, which I take to be the nimy, unctuous, faline parts of the petrefcent juices that filled the outward pores of the ftone, or coagulated on it. This white part \{craped, and put into a crucible in a violent fire, could not be reduced to lime, tho' it grew red as coal. This powder calcined appeared thro' the microfcope quadrangular, like grains of falt; which makes me fufpect, that thefe petrifications contain, befides metalline, a great

[^32]
Of the Petrifarions of Lough-Neagh in Ireland.

deal of faline particles, whofe fides being ftrongly attracted to each other, and clofely joined, hinders the fire from expanding the pores of thefe flones, and their being reduced to lime.

This black ftone, when broken, appears thro' the microfcope very beautiful, and like cloth of filver, the pores and veffels of the wood being filled with white minute cryitals.

Of thefe fones I have fome with wood outwardly continuous; others with wood inwardly; one, the lealt part whereof is ftone, the reft wood; another vice ver $\int a$; another intirely wood, except a thin coat of ftone on one fide, which appears to be the very bark; one ftone which at one end diftincly hnews the annual ringlets of the wood; one that thews the wood, before it was petrified, had been bent, and partly broken, the fiffure being filled with a fparry matter, and appears plainly from the prefent appearance and pofition of tie fibres of the ftone. Some of thefe ftones ftrike fire with a fteel, and others, by a ftrong collifion, emit a train of fparks.

Some of thefe ftones fhew the grain of holly, afh, and fir. I have but one piece of oak petrified, eafily diftinguifhed by it's grain; it fhews the very knots of the wood where young twigs were cut; and has a hole made thro' it before it was petrified.

As for thefe ftomes being fit for fharpening or fetting of razors, $\Xi^{\circ} c$. the black ones are rather too hard, and the white ones too foft. The whet-ftones or hones, vulgarly to called, which are fold for LougbNeagb ftones, are none of thefe, but of a foft gritty kind, and found near Drogbeda.

When thefe ftones with wood continuous are taken out of the water, mud, or clay, the woody part dries, cracks, and falls away; which is the reafon why few can be well preferved; and befides, every body, unwilling to truft their eyes, will touch and fcrape the wood, and by thefe means, deftroy the moft curious part of the ftone.

The curious gentleman above-mentioned, who hath already begun, and intends, at his leifure, to take an accurate furvey of the lake, will, I hope, be able to give a more juft and fatisfactory account of it's petrifying virtue than I poffibly can; my defign in the prefent attempt being only to pave the way, and induce others to make further experiments in fearch of truth, and for improving natural knowledge.
P.S. I had lent the above papers to the Bifhop of Cloyne, from whom I received them yefterday, with the original letter to T bomas Prior, Efq; of which follows the copy.

Cloyne, Mas 20. 1746.

IHere fend you back the curious Differtation of Mr Simon, which I A later fromer have perufed with pleafure; and though variety of avocations gives the Rigbt Rev. me little time for remarks on a fubject fo much out of my way, I hall VOL. X. Part ii.

4 L lin.
neverthelets venture to give my thoughts briclly upon it, efpecially Fince she author hath been pleafed to invite me to it by a letter.

The author feems to jut it out of doubt, that there is a perrifying quality both in the lake and adjacert earth. What he remarks on the unfruzen fpors in the lake is curious, and furnifheth a fufficient anfwer to thofe, who would deny any petrifying virtue to be in the water, from experinients not fuccceding in fome parts of it; fince nothing bue chance could have directed to the proper places, which, probably, were thofe unfrozen parts.

Stones have been thought by fome to be organized vegetables, and to be produced from feed. To me it feems, that ftones are vegetables unorganized. Other vegetables are nourifhed and grow by a lolution of falt attracted into their tubes or veffels. And ftones grow by the accretion of falts, which often thoot into angular and regular figures. This appears in the formation of cryitals on the Alps: and that itones are formed by the fimple attraction and accretion of falts, appears in the tartar on the infide of a claret-veffel, and efpeciaily in the formation of a ftone in the human body.

The air is in many places impregnated with fuch falts. I have feen at Agrigentain in Sicily the pillars of fone in an ancient temple corroded and confumed by the air, while the Thells which entered the compofirion of the ftone remained intire and untouched.

I have eliewhere obferved marble to be confumed in the fame manner ; and it is common to fee fofter kinds of ftone moulder and difiolve merely by the air acting as a menfruum. Therefore the air may be prefumed to contain many fuch falts, or ftony particles.

Air, acting as a menfirusm in the cavities of the earth, may become faturated (in like manner as above ground) with fuch falts, as, afcending in vapours or exhalations, may petrify wood, whether lying in the ground adjacent, or in the bottom of the lake. This is confirmed by the author's own remark on the bath called the Green Pillars in Hungary. The infinuating of fuch falts into the wood feems alfo confirmed by the aurhor's having obferved minute hexagonal cryftais in the woody part of the petrifactions of Lough-Neagh.

A petrifying quality or virtue fhew's itfelf in all parts of this terraqueous globe, in water, earth, and fand; in Tartary for inftace, and Afric, in the bodies of moft forts of animals, it is even known that a child hath been petrified in the mother's womb. Ofteocolla grows in the land, and coral in the fea. Grottoes, fyrings, lakes, and rivers, are in many parts remarkable for this fame quality. No man therefore can queftion the poffibility of fuch a thing as petrified wood; tho' perhaps the petrifying quality might not be originally in the earth or water, but in the vapour or fteam impregnated with faline or fony particles.

Perhaps the petrification of wood may receive fome lighe from confidering amber, which is dug up in the king of Pruffa's dumminions.

Objérvations on Precious Stoncs.

I have written thefe hatty lines in no fmall hurry ; and fend chem to you, not from an opinion, that they contain any thing worth imparting, but merely in comphiance with your and Mr Simon's requeft.

And yet, before 1 have done, I mult needs add another remark, which may be ulfful for the better underitanding of the nature of ftone. In the vulgar definition, it is faid to be a foffil incapable of tufion. If have neverthele is known ftone to be melted, and when cold to become ftone again. Such is that fuff, by the natives called Sciara, which runs down in liquid burning torrents trom the craters of mount Atna, and which, when cold and hard, 1 have feen hewed and employed at Catania, and other places adjacent. It probably contains mineral and metallic particles; being a ponderous, hard, grey ftone, ufed for the moft part in the bafements and coinage of buildings.

Hence it fhould feem not impofitble for ftone to be caft or run into the fhape of columns*, vales, ftatues, or relievo's; which experiment may periaps, fome time or other, be attempted by the curious; who, following where nature has thewn the way, may (poffibly by the aid of certain falts and minerals) arrive at a method for meiting and running ftone, both to their own profit, and that of the public.
XIX. It was found in a cavern, that was difcovered amidft the vaft maible rocks at Cat-down near Plymouth. It hung jerpendicularly from the top of the rocky cavern, and was a cylindrical tube of 20 inches long at leaft; but was unluckily broken into feveral pieces in bringing to me. This I have fent was by much the longet of them; but Mr L.ong. (the matter of the quarries) affured me the whole was above 20 inches long, and quite cylindrical, and quite hollow. I went to the cave the next day, and found 5 or 6 of fuch kind of tubes, but none above 2 inches long. They all furang from a broad, hollow, protuberating bafis, in fome fort as a nipple arifes from the breatt. Theie alfo were cylindrical and hollow. There were in the fame cavern many other petrifications, which had formed a kind of hollow pilafters againft it's fides; and alfo feveral large folid maffes, which arofe from the continual dropping of the petrefying water through the crevices of the fuperior rock. Thefe all afford very good alabafter.
XX. The beleminites is a foffil of different magnitudes and colours, ever regular in fhape, which is either cylindric, conic, or thereunto approaching. Numbers of them have, on one fide only, a rhap or feam running their whole length; others have it in part; and in others it is not at all to be obferved : it confifts of a talcy matter, with an intermixture of fpar or cryftal, difpofed in ftrie from or near it's centre to

[^33]An acconnt of a beautifiol Stalactitus now in tbe Mufeam of the R. S. by John Huxham, M.D. F. R. S. in a letter to Dr Mortimer. $\mathrm{N}^{2} .474$. p. 20\%. June dic. 1744. Read Dec.13.1744. A difiertation on thofic foljel fogured fones called Belemnites; in a leteer from: Mr Emanuel Mender dar Coila so Martin Folkes, E/g; Pr. R.S. $\mathrm{N}^{3} .48$ z. p.

$$
4 L 2
$$

it's
397. Jan. \& Feb. 1/47. Read Jan. 29 1740.7.

Obfervations on Precious Stones.

it's circumference, and is made up of crufts inclofing cach other, the innermoft whereof is as regular as the outermoft. Sometimes, though feldom, in comparifon to the numbers of the belemnites, in the centre is a cavity ever conic, whatever the external fhape of the bcleminites be. This conic cavity is at different tinies empty, or elfe filled, either with a folid body of mineral matter, cryftal, ftone, pyrites, \mathcal{B}^{3} c. or with a regular-jointed conic body, called by Lithologifts the Alveolus of the Beleimnites; which, though conftantly regular and jointech, is neverthedefs found compoled of various mineral or metalicic fubitances.

The alsechis above-mentioned, tho' not fully provid liuch, yet feems, by the affent of moft of the prefent Naturalifts, to be a body of marine origin; a fhell the nigheft selated to the nautilus kind : it is concamerated, and even in fome is difcovered another great characteriftic of the nautilus kind, 1 mean the gut or fipiouncalus. Therefore, taking this body for granted to be of marine origin (for what reatons, or of what kind, is not my prefent intended fubject to prove) it remains to difcufs, Whether this body became accidentally lodged in the belemnites? or, Whether the belemnites itfelf is alfo of marine origin, anci a part dependent on it's alveolus?

Various have been the opinions of Lithologits concerning the origin of the belemnites; fome have even afferted them of the vegetable kingdom; others, that they are teeth or horns of filh, appendages of mells, bodies caft in thells of the tubuli kind, or the very halls themfelves, fpines of ecbini, or a kind of ftrait nautilus. The three laft opinions are what I fhall ftrive to confute, as they feem fomewhat probable, and are now the moft prevailing; and prove the belemnites to be a natural foffil or lapis fui gencris. I defire no recourfe to the fubterfuges ufed by others, but hope you will agree with me in the axiom, that all bslemmites are of one and the fame origin.

That the belemnites are not teeth or horns of finh, I thall refer you to the letter Drf. Woodward wrote on that fubject to Mr Bourguet, of Switzerland, wherein he fully proves the erroneoufnefs of thole opinions. But a further argument againft their being teeth, which that learned Naturalift has not touched upon, is, that no belemnites have that natural varnifh or polifh, which always covers the teeth of all animals; whereas the greateft part of thofe foffil bodies, which we know to be fuch, as the bufonita, gleffopetra, ECc. are found with that fame varnifh or polifh. As for their owing their form to being moulded in fhells, it will appear contradictory to reafon, when we confider, 1. Their conftitution to be ever as regular as their figure; and, 2. That their inner layer or nucleus is as equally regular as the outer cruft or whole body; which particular could never have happened, had they been moulded in fhells; as is evident, by the turbinita, concbite, and other bodies, which owe their figures to that caufe. That the belemnites are not fpines of ecthini, let us firft confider, that no kinds hitherto difcovered have been ever found to have fpines analogous to thefe bodies; Dor indeed has any
marine fhell whatever fuch a texture. The immediate fubterfuge for an anfwer to this objection is, that the kinds of fhel's unknown to mankind are far more in number than thofe yet difcovered. I aliow it ; but think that cannot be an argument in the prefent cafe, fince no one fingle fyecies is yet difcovered with fuch, nor even any genus, which have finines analogous to the Belemnites. Nature bears an analogy through all her works; and though all the fpecies of any one genus is not known to any man, yet that analogy neverthelefs capacitates us to judge of thofe undifcovered by thofe we know. Thus we find of the ecbinus kind, all the fpecies now known are cver found near the fhores; confequently, are not fubject to be eternally hidden from us; as is undoubtedly the cafe of the cornua ammonis, and concbe anomic. They are no pelagian fhells, as thofe are; bays and harbours are the places where they are fifhed; their ftructure even evinces the reaions for it. We may therefore with probability conclude, that all the ecbinus kind are of the fame nature, and have the fame way of living; that they only inhabit fuch places, and that none are pelagian fhells; confequently might have been difcovered.

I am fenfible there are fome fpecies of foffil ecbini; as, the moft common conoid or pileated ecbini, the common ecbini galeati, the ecbini c'ypeati, and fome kinds of the echini ovarii, \&cc. which though we are certain that they have been marine fhells, yet thofe particular ipecies are not known in the fea: but then feveral other fpecies of that fame genus are. The cafe of this is quite different, fince not one fingle fpecies of fuch a genus has ever been found.

The exceffive bignefs and thicknefs of numbers of belemnites defcribed by authors, viz. of near 2 feet in length, and above 2 inches in diameter in the thickeft part, others of 3 feet long, and others as thick and long as a man's arm ; not to enumerate thofe only under a foot length, and of proportionable thickneffes, concludes ecbini of a vaft bignefs, to have a number of fuch finines to move.

The varieties of the belemnites, how can they quadrate to the fpines of one genus of ecbini only? folid belemnites, belemnites with a lingle cruft, or like a tube, with a conic cavity only; that empty, or otherwife filled with a folid mafs, or with a regular-jointed body, as the alveolus, beiemnites of various magnitudes and thickneffes, \mathcal{E}° c. can all thefe varieties be imagined to belong to one gemus of fhells, which we fuppofe to exift to maintain a favourite fyftem?

The number of fpecies of ecbini difcovered is great; and the fpines of all thofe agree in having a hollow axis, which runs proportionably from their bafis to their apex, quite different to the belemnites: and for their conftitution, a foreign Naturalift, a Member of the R. S. Mr Klein of Dantzick, who has profeffedly written on this fubject, could only find of 2 kinds, viz. thofe of a porous conftitution, which he obferved only to belong to one genus; and thofe of a folid Mattery fubftance, like
like a talcy ipar not friated; which is the moot general, and is exactly the fame contititution as all the foffil fipines, or lapides fudaici are.
Further, the Lapides Yudaici have, at iome times, been found adhering to their papille or tubeccles, and with fragments of their fheils; whercas no Naturalitt has ever known to be found lofilil cither the fhells, or the fragments of fuch a genus of echinus; , hot cven any remains proportionable to fuch large fines. In whatever manner the greater part of fuch fhells may have perithed (which is unilikely, if we confider their texture and ftrength), foime muft have efcaped, when the fipines are found in fuch exceffive numbers every-wher:, and aiways perfect and iegular ; whereas the foffil finincs, or Lapides judaici, as they are called, as likewie the cckini or thel:s, and ait the fofil bodres of marine origin, ate found broken and fhatered in all kincs of tranners.

As for their being thells of the tuiculi kind, my reatons againft it are; Weec the belomnites fuch, they nuff be all tubular more or lefs; or otherwife mult have fuffered fome degree of petrifaction to fill up their cavities. The unreafonablencis of that argument is demonftrated by all belemmite being of one and the fame texture and confitution; though numbers are folid, and numbers are tubular, in cifferent degrecs. Now one kind of petrifaction, or any other change in the earth, which they might have undergone, could never have given io regular a texture and fibibtance, and caufe fuch different effects as folidity and tubularity. And if, on the other hanch, we allow it to be inconliftent, as it is, to form the idea of a flell of the tubulus kind, by a folid bady, without that body having fuffered fome change in the earth, while buried in it, we mutt either deny all folid belemnites to be fuch tubuli, and run to fuberiuges, by owning them to be natural foffils; or elfe allow a great inconfiftency, to uphold a wrong fyffem.

That the belennites are not a tubular care, which is part of, and covers a fhell of the nautilus kind, as is it's alveolus. The variety of circumftances already alledged of the belemnites ferve to demonftrate the improbability alfo of this opinion, as it has cone of the other two. The numbers of belemnites of all kincis, fo plentiful every-where, and the confideration of how few are furnifhed with alveoli.

Numbers, Ian fenfible, have conic cavities; but that thofe cavities never did contain alveoli, is evident; that the fides of the faid cavities are even, and without any circular or other impreffions, which a belemnites that has ever contained an alvechus muft have; that body being in clofe contact to all parts of the inveftient belemmies, muft confequently imprefs it with it's concamerations; which imprefions mult be therefore found on the fides of the cavities of all belemnites which ever contained them.

As for afferting, that all the alvecli, which are now found loofe, were originally lodged in belemnites, it cannot be; without inferring alfo, that all belemnites which are now devoid of alveoli, contained fuch for-

Obfervations on Precious Sicnes.

merly ; which, by fome external or other agent, have been forced out and loofened from them.

To confider fuch an agent, we mutt alfo conclude it's force to have been exceeding great, to loofen out the nucleus of a body in clofe contact with all ir's inveftient parts; and ftrengehened further to it by ridges and grooves, fuch a force muft have comprefled, Shattered, and otherwife broken and deftroyed the belemnites that contained them; which is contrary to obfervation. Further, forcing out the alieclus might perhaps eafily have happened to the conic belemnites; which hath a bafis of a larger diameter than the middle, where the alveolus is lodgcd ; but we cannot conceive the fame by the cylindric, fufiform, and other belemnites, of which the two ends or extremes terminate pointed; while the middle, where the alveolus is lodged, is thick and fwollen.

To force an alveolus out of fuch Thaped belemniles, it is evident, that the narrow ends of the faid belemnites muft be quite forced open, broken, and thattered, before a broader and more capacious body could be forced through, efpecially to fuch a brittle fhattery foffil as the belerimnites is. The evident facts to the contrary of this are alfo tou common to infift on, fince all thefe belemnites are ever found regular, perfect, and intire.

Further, let us confider the alveoli which are now found in belemnites, they are very feldom if ever found as mere fhells, but ever differently changed or perrified. They are moulded of fone, pyritcs, cryftal, Bcc. Now it can never be argued, that the contained bodics can ever be fo differently changed or petrified in their covers or Thells, and thofe covers or thells which admitted fuch different perrifying particles to undergo no change or perrification whatfoever.

Ancther proof againft this opinion, is the diverfe forms of aleeoli now diffovered by Naturalifts, as conic, cylindric, curvect, fpiral at the apex, \&cc. whereas all beleninites which have cavities have nonc but conic ones.

Thefe cylindric, $\mathrm{E}^{3} \mathrm{c}$. aryeoli are now found in Pomerellia in Poland, in the marble of the inand of Oeland in the Baltick Sea belonging to Sweden, and in the marble of Sweden; in Gotbland in maffes of build-ing-Itone; in Ingria, in feveral parts of Pruffa, ©ic. and are commonly of an immenfe bignefs, to feveral fect in length, and proportionably thicl, yet not pertect. For fuch alveolf, whichare only n:stedi, we mutt fuppofe immenfe large belemnites; and fuch we have never heatd of, fo with probability we may conclude none fuch to exift.

I do not doubt the growth of this error, of the belemnites being a part of it's alveolus, to have been caufed by too rafh conclu\{ions, and too little an infight into the mincral kingdom; which has propagated that affertion of the clveoli being found only in the beiemnites; which experience daily contradiets, fince we find them loofe, as well as imbeddect in many other fonill fubftances, as in marble, ftone, $\underbrace{2} c$. as has becn above obferved.

Obfervations on the Turquaife Stones.

Thefe are the arguments which I alledge for the improbability of the faid opinions. I could advance a number of other proofs; but as I have alrcady extended ny letter beyond a due length, I beg leave, before I conclude, only to offer fome few realons for their being a natural foffil, or lapis fui generis.

The very view of a belemnites fufficiently evinces it's mineral origin, and hews it evidently compoled of cwo foffil fubftances, a talc, and a ipar, or baftard cryftal; whereof the former is the bafis, and from which principle I do not hefitate to attribute it's friated texcure. Moft of the talcy bodies are of a fibrous nature, and feveral are compofed of crufts inclofing each other, in the fame manner as the Septa of the ludus Heimontii, fome of the afoefos kind, the Hematites crufts, $\mathcal{E}^{\circ} c$. Of the ftalactites tribe there are feveral, which fo insirely approach the texture and conflitution of the belemnites, that were their hapes a little more regular, the moft experienced Lithologift might eafily be deceived: and I remember, when abroad, to have leen fuch, of a prodigious bignefs, which, though I was then fomewhat converfant in the foffil ftudy, I could not help taking for belemites. I do not therefore wonder, that Petrus Affaltus, in notis ad Metallothecam Mercati, p. 282. and Langius, Hift. Lap. figurat. Helvetice, p. 133. fhould judge them a native figured foninl, formed in the earth, of the falactites kind, if that term for the belemnites might with propricty be ufed.

The cavities of ftalactites in fome meafure illuftrate, and are adequate to the cavities of belemnites ; they are placed in as various pofitions, and are only different from them by not being exactly conic. As for the regular figure of the belemnites being excepted againft, I believe few Foffilifts will argument that, when we fee as perfect regular figures in the mineral kingdom as in any other parts of the creation; as witnefs the falts and cryftals of all kinds; the rhomboid, hexagonal, columnar, and other felenites; the cubic, octangular, dodecacdral, and other pyrites; the quadrangular pyramids of tin, the rhombs of iron, cubes of lead, and infinite other native foffils, which would take up time to enumerate, and which are far more perfect figures than the belemnites are. Chemical and other trials and tefts (which I hope to lay before you in fome future letter) demonftrate a greater certainty of its mineral origin. As for that marine body the alveolus, I cannot think otherwife than that it is of the nautilus kind; and which, at the concretion or formation of the belemnites, became accidentally lodged in it's cavity, in the fame manner as all other marine bodies became lodged in the various foffil fubftances we now find them in.

Some remarks XXI. This ftone has received it's modern name of turchefia, and on the precious turquoife, from it's being mont commonly brought from Turky into foone called rbeTurquoife; various parts of Europe. De Boodt * fays, the colour of this gem is a variegation of green, white, and blue; 'and that there are two forts of - Gemmar. \& Lap. Hir.
it, the oriental, from the Eaft Indies and Perfar, and the occidental, by Cromwels from Spain, Germany, Bobemia, Silefia, Egc. that in Perfia, where it is Mortimer, found in greateft plenty, adheres to black ftones, as if it were an ex- Sec. R. S. \&c. crement or a tranfudation from them. A ftone of this fort is feidom Read Feb. 26. found to exceed a walnut in fize; and he mentions one in the Great $1746 . \%$ Duke's Muffum, on which the head of 'fulius Cafor is engraven as a very extraordinary fample: he adds, that he never faw one bigger than an hazel-nut ; that fome of the oriental ones have the faculty of preferving their colour perpettally, which are called Stones of the old Rock; and that others lofe their colour gradually, and are called of the new Rock. He then gives an inftance of a turquoife which had loft it's colour upon being laid by fome time after it's owner's death, which recovered it's beautiful colour upon our author's wearing it upon his finger in a ring.

Crefus, in his Treatife de Mineralibus, p. 601 . Fays, This ftone is called Turcoïs by Mylius, in his Baflica Cbemica; by Alberius Magnus, in his Treatife of Minerals; and by Rucius, in his Treatife of Gems: but Turca, by Caufinus de Lapillis Symbolicis. De Boodt, and Dr Woodward, * with other modern writers, take it for the Callaïs of Pliny. Salmafius, in his Plinian. Exercit. p. 142. fays, Many have miftaken the modern turquoife for the cyanus, but that the cyanus was tranfparent like the fapphire; whereas the turquoije is a jort of jafper.

Dr Woodward, in his Letter to Sir Fo. Hokyns, + fays, That the turcoïs, or callaïs of Pliny, is nothing elic but foffil ivory tinged with copper. I do not deny, that fome ftones fuld for turquoife, and poffibly all that the Doctor faw were certainly fuch; but I imagine thofe which the authors call of the old Rock, and in which the colour is permanent, are real mineral ftones : this fample now before us feems to Shew this, from both the form and fize: it's fhape fhews it not to be part of any animal bone ; but it's botryoïd form is to me a demonftration that it is the product of fire, which had once melted this fubftance; and that when it cooled, it's furface was formed into bubbles and blifters, in the fame manner as the bamatitis botryoides or blood-ftone, whofe furface confifts of knobs, refembling a bunch of grapes.

That the elepbas spuzris, or ebur foffile of Theophrafius $\|$, faid to be of various colours, I do not in the leaft deny to be tinctured with copper, and to be what Dr Woodzard calls the curquoife: indeed I fufpect it to be what De Boodt calls of the new Rock; and fays is liable to lofe it's colour, which it recovers again from the effluvia of the perfon who wears it. I therefore, for diftinction fake, think all thefe ftomes of the ivory origin fhould be called P feudo-Turchefice, or baftard Turquoife;

[^34]VOL. X. Part ii.

Obfervations on figured Stoncs.

and the other fort, of which this before us is one, the true or real turquoife; for, by examination in the chemical way, I find it to be a very rich copper ore ; fome of it pounded and diffolved in fpirit of harthorn gives a deep blue; in aqua fortis a fine green; and an iron wire pue into it was in I hour's time incrufted with copper: fome of it calcined, without any flux in a crucible, run to a flag, or half vitrified fubftance; whereas the fame hear, had it been ivory or bone, would have rectuced it to a white ahh like bone-afhes; for I expofed it to fuch a fire as vitrified the tile that covered it. It's hardnefs and confiftence to an engraver's tool feems to be the fame as common white marble: it's colow is not mended by heat, but it grows brittle when red hot.

This fuecimen, now fhewn to the Society, was about 12 inches long, 5 inches broad, and in fome places near 2 inches thick; rough on the under fide, as though broken off from the rock it had been affixed to ; and the upper fide was compored of finooth polithed knobs, in form like to the botryoïd iron ore.

Sir Hans Sloane, in his noble Mufeum, has feveral fpecimens of thefe orienta! turquoifes, all botryöd; elpecially a mafs from Cbina, about 3 inches long, 2 broad, and near an inch thick: all which feem to be copper ores: and he has likewife famples of turquoifes from Spain, and the South of France; which are all fmall, and feem really to be pieces of ivory tinged with copper. 1746\%. gone, but remains at other times impregnated with talcy or fparry

Adecription of a curious Echinites ; Mr Henry
Baker, F R. S. Ibid. p. 432. Read Feb. 26.

Fig. 5 .
XXII. I. Mr Baker takes the liberty of fhewing the Society a very extraordinary ecbinites, the like to which he has never feen in any $M u$ feum, or found deferibed by any author. For the ecbenise ufually met with, are made up either of chalk or flint, or fome ftony, chalky, or fparry matter, formed within the fhell of the echinus, and taking their gone, but remains at other times impregnated with talcy or fparry particles: whereas the fubject now laid before us is compofed of a traniparent cryftalline fubftance, which has received it's general figure by having been circumfcribed within the fhell of fome ecbinus, and fhews linear ridges and divifions correfpondent to the lines and plates found in this kind of ecbinus.

Was this all, it would be a very uncommon production, as thefe bodies have been very rarely known to be formed of cryftal *; but it is rendered much more curious and extraordinary, by having exact rows and feries of little cells, all of the fame regular figure, though leffening gradually in fize, as they afcend from the bafe upwards.

[^35]This body having been formed within the fhell of an ecbinus, one would expect (as is the cafe in all other echinite ufually known), that it's figure fhould be exactly anfwerable to the mould wherein it was formed; but Mr Baker begs lcave to take notice, that the echinus' fhell is perfectly fmooth internally, having no rifing parts correfpondent to thefe cells or cavities; and therefore, as it could not receive it's configuration from thence, it muft be owing to the natural flooting of the cryftalline matter (tho' unlike every thing of that kind yet defcribed), or to fome other caufe, which he don't pretend to know *.

The configuration feems neverthelefs in fome meafure to correfpond with the nature of the flell wherein it was formed: as to the number of the rows of cells, they being ranged by fives, as the papilla, indentings, lines, or other marks on the recent fhells of echini conftantly are; thefe rows are twenty in number; viz. five double ranks of large and extremely regular cells, as at $a a, \& c$. between which lie five other double rows of fmaller and lefs diftinct cellule, fhewn at $\dot{b} b$, \&xc. Thefe cells, which are hexagonal, and whereof thofe in every row lie alternately to thofe of the next (by which means they fill up the whole fpace), decreafe in their fize gradually, as they approach nearer to the top; all the rows at laft almoft concenering at the apex, leaving only a fmall frace or vacuity, where in the fhells themfelves of this kind of echinus there is an aperture. The fmooth part at A is formed of a pebbly ftone, bearing the fame marks as are ufually found in the impreffion of thefe ectinite dug up in gravel-pits; which proves, that this muft have received it's general ligure from one of thofe fhells, whatever has been the caufe of this remarlable configuration of the cryftalline part.

This curious eclinite was found in a marl-pit at Baborough, about 3 miles W. of the city of Norivich, and prefented to Mr Baker by Mr Wm. Arderon, F. R. S.
2. I have the honour of laying before you (in order to communicate to the $\mathcal{K} . S$. if you think it worthy) the defcription of two echinites, or ftones moulded in foffil cchini fhells, hitherto undefcribed, as far as I know.

Thefe ecbinites are undoubtedly moulded in fhells, of a genus of
A letter froms Mr Emanuel da Colka, F.R. S. to the Pref. concern-
inzuo braufital Fchinites $\mathrm{N}^{\circ} 492$. p. 143. April le p.c. $143 . A$ genus Ecbinantbus; and Mr Klein (c)Scutum. Woodrvard (d) in his Keadnay 1 . diftribution of Foffil Echini, calls them the Pentapbylloides, from the 1742. rays on the upper part forming a beautiful cinquefoil figure; but wrongly fixes their characteriftics in having only one aperture, and that

[^36]
Obfervations on figured Stones.

at the bafis; in which he not only contradicts nature, but alfo the very fpecimens he quotes in his own Collection, which have all two foramens or apertures, and are clegantly figured fo by Agoftino Scilla (e), who was the perfon that fent them to the Doctor; and Sir Hans Sloane (f) has alfo figured and deffribed two fpecies of this genus, whereof one frecies is an inhabitant of our Engli/b feas.

I obferved above, that, to my knowledge, no author has ever defcribed ecbinites or ftones moulded in the foffil echini of this genus ; nor even have the foffil exbini or Thells themfelves been ever exhibited by any Lithologift, except by the above-quoted A. Scilla, who tent them to Dr Woodsuard, and found them in Malta; to which the Doctor in his Catalogue recounts two other feecimens, which were dug up in Maryland; fo rare are the inftances of the foffils of this whole genas !

The two ecbinites here defrribed (as alfo fome few other fpecimens of this fort, which I hear are in fome cabinets in this metropolis) were all found in the midft of fome rocks, which were blown up at Port Mabon fome years ago, and from whence they were all brought.

The firft or largeft is in the poffeffion of the Kight Rev. Dr Laving ton, L. Bifhop of Exeter; it is compofed of a hard or itony arenaceous greyifh fubitance, and is of an efcutcheon or heart-like fhape: it meafures about $14^{\frac{1}{5}}$ inches in circumference, or quitc round the limb or edge, about two inches high from the flat or balis to the tip of the apex, five inches in length at the bafis, and $4 \frac{1}{5}$ in breadth. On the upper part it rifes nearly gradually from the edge quite to the apex. A central point, with a flight declining fpace, tops the faid apex; from which space the body regularly divides into five parts figured like leaves to the edge. Thefe leaves are narrow at the apex, greatly widen toward the bottom, and narrow a little again at their end. Each divifion or leaf is bounded on each fide by a row of parallel ridges, which are accompanied alfo on each fide of every faid row, with two other ranges of points or knobs; all which rows do not meet or clofe together at the lower end of the divifion, but leave a void unwrought fpace : a row of larger irregular knobs runs through the midit of each leaf. From the divifions between each leaf runs a rugged knobbed pillar, which is joined to the edge : the other parts between the leaves and the edge are hollows, or void fpaces. The edge or limbus is of a thick cylindric make, runs quite round the whole body, and only has fome figns of being disjoined at the one extreme of the length, or where the aperture was; the ftone anfwering which is here extended a little cylindrically outward like an appendage, and was fo formed by the ftony matter being too much in quantity for the fhell, and fo was protruded through the faid foramen. On the outer edge of the limbus are fome few irregular ftony concretions. The bafis is flat, and is likewife divided into five

[^37]parts from the center, which is one of the foramens; the other foramen (as has been above defcribed) being placed at one of the extremes of the length. This foramen or center is about the fize of a filling. The 5 divilions extend to the utmoft edge of the body, or quite over the limbus, contrary to the divifions on the upper part, which extend only to it. Each divifion is formed by a fony line edged on each fide with ftony cylindrical bodies of the thicknets of a pin, but of different lengths, to as to appear like the teeth of a comb, or the gills of a finh; the interfices between all which is a rugged ftony work, and hollows pervading quite through the body to the upper part.

I cannor but think thefe five pectinated divifions on the bafis owe their ligure to fome parts of the included fin_{1}; which I am more confirmed in, as ! have feen fome fecimens of the common pilcated and galeated echisitts, which have been hollowed at their apex, and marked flar-wife; that concavity, and the ftellar mark proceecing from the interpofition of the fifh between the ftony matter then filling the fhell, and the top of the fhell itfelf.

The other echinite I have the honour of producing before the Society, belongs to Mr Edward Yacobs of Ficeerbam. It is of a different fpecies, thougi of the lane genus, of a heart-like fhape, and about one third the lize of the above-defcribed. This is greatly copped, the apex lying very high, and the five divifions running near perpendicularly down to the edge. The upper part of this is elegantly perfect; the work is near the fame as on the other; only that, by the perfection this is preferved in, we obferve that the rows of parallel ridges, which adorn each fide of each leaf or divifion, rife into a kind of arched work or bridge, made up of arched cylindrical bodies, through which the middle row runs, joined or connected in a long ftrait cylindrical ftem, in a moft curious and elegant manner. The bafis or under part of tinis fpecimen is very imperfect, and only feems to differ in the center being greatly excavated or concave, anfwering to the great copping or height of the apex or upper part. This foffil alio confifts of a hard ftony arenaccous fubftance like the other.

From the infpection of the feveral hollows of thefe ecbinites, it is evident they were not immediately moulded in the fnells, but were formed in cavities which thofe fhells formerly filled in the rocks they were lodged in. The rocks were apparently of a loolened arenaceous texture, and the water, E^{c} c. continually pervading them, rotted and deftroyed the inclofed fhells, and bore away their whole fubftance. In the fame manner, and by the fame means, were the ftony particles replaced into thofe very cavities which the theills formerly filled; confequently thefe bodies were moulded exactly to the faid cavitities.

This remark carries a conclufion with it, if obfervation be made, that the hollows and folid parts of thefe ftones exactly anfwer to the hollows and folid parts of the very fhells themfelves; which, had they been moulded in the very hells, mult have happened directly contrary; the folid
folid parts of the fhells forming hollows in the ftone, and vice verfa. In all fandy or lax earthy matter foffil fhells are very felidom found, but only the moulded ftones; the loofe texture of thofe fubftances giving free accefs to water, vapours, and mineral exhalations, ξ^{c}. which intirely corrode and deftroy the fhells buried in it.

I have taken the liberty to produce before the Sociefy a recent echinus of this genus from the Weft Indies, to elucidate my fubject; as alio two drawings done by M: Mynde ; viz. of the bafis of the large ecbinite, and the upper part of the fmall ccbinite.
Fig. 52,53 , Fig. 52. A view of the upper part of a curious ecbinite, in the poffeffion 54.
of Mr Edward Facobs, of Fiever/bam in Kent.
Fig. 53. A view of the under fide of the fame ccbinite.
Fig. 54. A view of the under fide of a curious large echinite, in the poffefion of the Right Rev. Dr George Lavington, Bifhop of Exeser.
N. B. The upper part of this cchinite having nothing remarkably particular or different, it was not judged neceffary to give a figure of it.

> A lefier from Mr Jorfph Platt to Mr Peter Collin. fon, F. R.S. concerning a flat Spheroidal Stone bawing lines re. gularly crof. fong is. No. 496. p. 535. Nov \&c.
1750. Dated Mancheiter, 1)ec 9. $17+9$. Read Nov. 8. 1750.

Fig 55.

Fig. 56.
The def (criptrion and figures of a jmalifint fpheroidal Stone, barving lines formed zpon it; by C. Mortimer, M. D. E Sec.
3. A little while fince a man brought me a ftone, which he found at Ardwick, 7 feet deep, near this town, in driving a flough through fome gret-flone. It is what I call a nodule, of a clofe, compact, fmooth matter; was incruftated with coarfer earth, or foft ftone; is 3 inches and a half diameter; formed not unlike one of the ecbini marini ; except the papille or fmall protuberances, which it wants. Upon examining it, 1 find four white feams, about the bignefs of a horfe-hair, which quarter the ftone very correctly. The angles are exactly the fame, and correfpond fo well, that it would require the niceft mathematical head and hand to draw the like.

The diameter $A B$ is 3.7 inches; the ftrait line $C D$ at the bottom, or greater bafe, is .42 of an inch; that at the top of the ftone is .21 ot an inch, which make the angle $C D$ equal at top and bottom, tho' of different diameters. The feams are like talc or fpar. It weighs about 3 pounds. I have feveral nodules, but none like this. There is nothing curious in this fone but the lines, which I have defcribed in the beft manner I can. I am confident chance had no hand in forming it; and I am as certain, that no artift was ever concerned or able to do the like; therefore I conclude it has been fomething formed before the Flood, and is of marine production*.
4. I lately reccived, by a friend, from the ille of Shepey in Kent, a fmall ftone, with fimilar lines upon it. Mine is only? of an inch in diameter, of a brown colour, and of the confiftence of marble. As a

[^38] R. S.

defcription in words does not convey fo clear an idea as an exact draw- Ibid. p. $62 z$. ing, I have endeavoured to give reprefentations of this ftone in different views.

Fig. 57. reprefents the top of the ftone, on which the lines are moft fig. 57. regular, being depreffed into the ftone, and of the fame colour with it. a, c, d, e, are the four principal lines, anfwering to thofe on Mr Collinfon's ftone, and are connected, as in hir, by the cranfverfe line $g b$. The line b is an irregulariry in this ftone, and fo is f, which are not in the other; thefe irregular, or fupernumerary lines being continued to the other hemifphere,

Fig. 58. or bottom of the fone, make the direstions of the other Fig. 58. lines very irregular, as may be feen in the figure; only the lines c, d, and e, being connected by the traniverfe line $g b$, which here ftands at right angles with that in Fig. 5%.

The following figures reprcfent the fection of the fone through it's equator, as nearly as ponible; only the mill cut away the fubftance to about the thicknets of a fhilling. In thefe fections the ramifications appear quite white.
Fig. 59. fhews the fection of the upper hemifphere, as
Fig 59.
Fig. 60. does that of the lower hemifphere; in bnth of which the Fig. 60. letters of reference anfiwer to thofe in the other figures, fhewing where the outfide lines abutt upon thefe fections.
XXIII. This curious foffil feems to be compofed of a ftony matter A beausiful like marble. which has penetrated the cells of the nautilus while in it's Nautilites, natural ftate. The diaphragms or partitions remain ftill diftinct and R.s. by the the vifible. The different colour of the ftony matter in fome cells of a dark-Rev. Charles brown or hair-colour, in others of a light-brown or alh-colour, with Lyeteten. the natural polifh of the outfide, gives it a beautiful appearance; as it is reprefented in the figure, where it is drawn of it's natural fize in three different views.
A fhews the fide view of it. B the fore part. C the back part.
It was found in Pool's Hole in Derbyffire. It's futures or diaphragms sbrewn May 5_{5} refemble thofe of fome of the lärger cornua ammonis ; but it's fhape be- ${ }^{1748 .}$ fpeaks it to be a Species of nautilus; and it is thought to be a non-defeript, both in it's natural and foffil ftate.
XXIV. Various have been the opinions of authors concerning the Conficierations origin of the belimnitre, and as various the fyftems and hypothefes ad- on two extravanced by them in fupport of their opinions; fome having imagined them vegetable productions; others have taken them for the different parts of animals, as teeth, horns, bones, \mathcal{E}^{c}. in which even thefe again have differed, as to the referring them to land or marine animals; and they have been by others fuppofed of mineral origin, or lapides fuigeneris. What they really are, will, I doubt, be ftill very difficult to Ng N ; P.R.S. determine; but, as one principal objection to their being originally 998 . Dec. marine bodies (which fuppofition feems to carry the greateft colour of probability) has been, that no marine bodies have been found adhering to them, that objection will be obviated hy no lefs than two fipecimens, from the fame place, of belenmit, , whercto undoubted marine fubftances are found firmly affixed; by which inftances, as fome further light may be thrown on this fubjeet, that confideration will, I hope, ftand as an excufe for my troubling you with this paper.

Thete curious fofils were found in a chalk-pit in Norfolk, from whence they were fent not long fince to my Father Mr Hen. Baker, IF. R. S.

Fig. 62. Fig. 62. Is a belimnites, whofe apex is perfect; the conic cavity, and the longitudinal feam, evidently diftinguifhable; which, as well as the contexture of the fubitance whereof it is compofed, fhew it to be a true belemnites; but on it's furface are placed, in their natural condition, by which I mean not at all feemingly petrified, or otherwife altered, two of thofe vermiculi that are to frequently found aticking to oyfters, fallops, and many other kinds of fhells, when taken out of the fea.
Fig. 63. Fig. 63. A frufum of another belemnites, the apex whercof is broken, but the conic cavity is ftill remaining, and fhewn at a. 'To this belemnites adheres a fhell of the oyfter-kind, which is faftened thereto fo ftrongly, that they are not to be feparated without breaking : which fhell, as well as the before-mentioned vermiculi, feems not altered in it's fubftance, but appears like a recent one, of which many are to be met with in the cabinets of the curious.
Fig. 6. Fig. 64. Shews the other fide of the faid fhell, wherein the cardo or hinge at b is plainly difeernible; at c appears the broken end of the belemmites, where the radiated contexture (well known to belong to their bodies) is reprefented, as alfo the longitudinal feam at d.

As thefe fpecimens are undeniable proofs of marine bodies adhering to belemnite, feveral of the curious who have feen them, are of opinion, that they tend likewife to prove the belemnite to be marine productions. It may probably be objected, that thefe fhells might have been brought and depofited near the belemnita whereto they are affixed, by whatever mighty change it came to pafs that productions of the fea are difcovered in moft countries at great depths in the earth, and in the bowels of mountains at great diftances from the fea (even fuppofing the belenmite to be lapides jui generis, ard produced in the carth) and that thefe frells might be cemented to them afterwards by fome mineral, ftony, or other matter. But the following obfervations will render this improbable ; for,

1. The vermiculi of Fig. 62, are not any fpecies of the subuli marini, found fometimes recent, and fometimes foffil, detached intirely from every other body; but are of that fort, which is perhaps never feen fcparate,

UחED

feparate, or in any other manner, when recent, that attached and faftened to other fhells or ftones; and they are placed on this belemnites exactly in the fame manner as they are commonly found on other marine bodies; viz. lying on their broadeft fide, with their ridge upwards, and glued as it were thereto by a meliy fubftance.
 been fahioned thus by the convex furface of the belemnites, in the fame manner as thefe flells commonly receive a form from whatever fubftance they athere to ; which plainly implies, that this fhell was faftened to the belemites when itfelf was very fmall, and in a growing fate; and that the fhell in it's growth was formed according to the figure of the body on which it was affixed : but fuch growth could not poffibly have proceeded any-where but in the fea; and therefore thele two bodies mult neceffarily have been in the fea at one and the fame time.

There is now but one way more, whereby thefe fhells (fuppofing the belemnite to be itones fui generis) could poflibly become affixed ta them; which is, that the belemnile might have been by fome accident thrown on the fea-hore; and that there the fhells might faften themfelves to them, as well as to any other fone. But as this muft imply fome former convulfion in nature, whereby they were calt out of their natural beds upon the fea-fhore; and again a fecond convulfion to carry them to the chalk-pit where they were found; fo far-fetched an objection will, I believe, carry but little weight.

To conclude, I fabmit to your opirion, whether the fides of the conic cavity, whereto the oyfter-fhell is affixed, has moft the appearance of a ftone or of a fhell.
XXV. I lay before you a curious and moft extraordinary foffil, which was lately fent to me for that purpole by my worthy friend Dr Miles, of Tooting, F. R. S. It confifts of 26 joints, which he calls vertebre, and I believe fuppofes to have been the joints of the back-bone or tail of fome animal; bur, upon confidering them with attention, they will perhaps rather be judged to be the feveral articulated divifions that compofe the body of tome kind of nautilus, or of fome one or other of the various feccies of the ammonite: winch opinion is I think fupported not only by the fipiral figure, which they form when puttogether, but likewife by the traces or markings of fuch-like articulations, found on fome particular kinds of foffil nautili and ammonita; one whereof I alfo lay before you, as a proof of this conjecture.

You will obferve ali the parts of this uncommon foffil are converted into a fort of fparry fubftance, and that they are articulated with one another in an exact and beautiful order. I have faftened them together In two divifions, that they may be examined more eafily than they could be, if they were all feparate, and in confufion: and indeed I am not quite fatisfied that thefe two bundles belonged both to the fame individual animal; if they did, fome joints mult be wanting that came beVOL. X. Part ii.
tween them, and united them together, as the two ends do not at prefene match : and what makes me fufpećt they did not, is a different articulation to be obferved on one fide of that divifion made up of the largeft joints: befides, the whole number appears rather cou much, and the fmaller joints feem to make up a body whofe figure is nearly. perfect.
P. S. Dr Miles fays they belong to Dr Clark of St Alban's; that they were found in OxfordBire, and were formerly in the poffefion of the late Mr. Willian Becket, furgeon, F. R. S.

An enquiry
info the originai flate and properties of Spar, and Sparry Pro. ductions; par ticularly, the Spars. or Cry ftals, fourd in sbe Cornifh mines, called Cornith Diamonds; in a letter to Ema nuel Mendez da Colk, $E / q ; F, R S$. from the Rev Mr Wha. Bor lace. No. +93. p 250 OA. \&c. 1749.
Read Dec. 14. 1: 79 . May 3 . 1550. seet. .
XXVI. I fhall confider fpar here as the genus, at the head not only of all the fpecies of common fpar, and incruftations of what colour fon ever, but of cryftals and gems, which are here underftood only as finer and purer fubftances of the fpar kind (I).

There are feveral forts of thele fparry productions, which are carefully to be diftinguifhed from cach other; but they may all be confidered, firft, with regard to their original ftate, or what they have been; and, in the next place, as to what they now are, that is, as to form, fize, colour, hardnefs, texture of parts, and direction of their fhoots in the mines or quarries. Thefe particulars, feparately difcuffed, may poffibly lead us to feveral probable conjectures concerning the original and moft diftinguifhing properties of thefe bodies, fuch as may afford fome light to this perplexed and intricate fubject.

That all fpar has been, at one time or other, in a fate of fluidity, may be maintained, I think, with great reafon, as well as fupported by the authority of fome of the moft eminent Naturalifts (2). In fome fpars are found ftraws, and other light bodies; and we may therefore as juftly conclude them to have been once Huid, as the amber that inclofes the bee. In fome ftones, whereon were fparry concretions, Dr Woodward found fragments of fizells, and pellicles of the ova of fifhes; a
(1) The propertics of crytal afligned by a late treatife (Mr Hill's Nas. Hift of Foffrs), fuch as keeping iffelf unaffected by acid menilrua, remaining unaltered in a mocerate fire, and giving forth fparks of fire by coilifion (whercby that auchor difinguithes is from fpar), are here reckoned, rather to be accidental trian clafical differences, owing to a purer ftony juice, lefs friable and terrene than that of the common fpar, than to any efiential and radichl difference in the Principia of thefc bodies. [" There is in all fpar "more or lefs of cryftal." Woodward's Nat. Hif. Foflils, 158.] For many faars there are, which are opaque, and yet in the fame hexagonal form as cryltals; whence it appears, that farar and cryftal do not differ in fubltance and rature, but in tranfparency, colour, and cifferent degrees of purity "Spars much the fame with cryalals, fiys Dr "Plott, Oxf. P.98. §. 52." And Boc̈lies doubts not, but tixy (viz. Spars) are of the lame matter wilh gems, ib. \$. 53 .
($=$) Foosivard's Cat. Fofi. Vol. I. P. 151, and 157. No. 78 . alibique paffim.
certain evidence, that this fparry production was not anterior to the Deluge; for the ftone muf have coalefced and hardened upon the fhell, before the farry concretion could have fixed upon the furface of the ftone; and as I apprehend, the Learned are now very well fatisfied, that fuch extrancous foffils as are mentioned above, are not the lufus nature; but the exuvix of animals brought where we find them by the waters of the Deluge. Wherever any number of the fhotten fpars occur, there may be feen fuccefive incruftations and cryftals fixing on other cryitals, fome incruftations broken off, and Mewing their concave bafe, nlaped by the cufpis or apex of the diamonds on which they were once faftened; which niews, that there has been a fucceffion of feparate and dillinct indurations. In feveral places we find wavy proceffes form- Fig. 5 g. ed in thin plates, on the perpendicular fides of the rocks, by the fpars flowing down in the fame manner, as one wave fucceeds another on the fea-fiore; to which we may add, the frequent formation of fparry efloreteencies, accretions on walls, and falactites hanging down from the vaults and caverns of deferted mines, evidences fufficient of the modern date of fuch productions. That we may the eafier apprehend this truch of fpars having been once a fluid (upon which much depends), it may behere obferved, that fomething rery like this procefs, (I mean liquors hardening into ftone) is commonly feen in the effects of perrifying waters; where as foon as the fony juice mects a proper nidus of wood, reed, grafs, or the like, it will forlake it's ftate of fluidity, and become a folid flone: why then fhoukd it feem more unaccountable or difficult, to conceive that the fame alteration fhould happen in the bowels of the earth, and in larger maffis of matter? For as the fame caufe will in like and equal circum ances produce the fame effect, fo to produce a greater effect (viz. an alteration of form or motion in a greater quantity of materials), there is need only of a proportionably greater force in the caufe; it being as eafy for a powerful effort to produce a rock, or a mountain, as for a imaller force to congeal a pebble, or form the limalleft gem. If it were poffible, therefore, for us to be as attentive witneffes of the changes which happen under the furface, as we are of thofe which appear on the banks of every petrifying fpring, we flould difcover many new ftones produced every now-and-then, which by their firmnefs appear now to have been as old as the world (3). It is indeed a vulgar miftake to imagine, that time has added, or lhall add, to the firmnefs of a fpar ; or becaufe it is fo hard and compact a body, that it cannot therefore but be as old as the firtt formation of things; for fpar becomes as hard at the firft time of it's confolidating, as it will be ever after, as we find by the exact flape, and the fmooth fides which Cornifh Dianoonds make in incruftations, and all after and fecondary
(3) Since the writing of the following Treatife, Mr Hiil (Nat. Hifl. of Foffils, p. 157.) by a curious chemical inveftigation of tie hapideous contents of water, fay:, "That fones -" and minerals, formed of cryftal and fpar, need not be fuppofed all of them as old as "t the Creation or Deluge; bit may be, and unqueltionably are, formed to this day." concretions. This fparry liquor is ftiff and nuggifh, and apt to harden; but it is a liquor however, before it becomes a fione. Nor is this opinion fingular, but adopted by many of the Murterns as well as Antients. Pliny (4), from the refemblance that cryltals have to water, carricd this hypothefis much too far, and thought them to be nothing more than water congealed by exceflive coid; and Diodoras eftecms them no better than a concretion of pure water, affigning however at tifferent caufe, concluding them hardened by a divene heat. sigricola makes the fuccus lapiucicens the original matter oit which flomes are formed, fome by the heat, others by the cold (5) they meet with, during the ftate of fluidity (6). Mr Geoffray's hypothefis fuppofes cryftal to be formed of thin equable plates, that water is the venicle of cryftalline parts; and when thole parts meet together in any quantities, the water eafily evaporating leaves the cryftals to form themfelves into hard, pellucid bodies. Mr Boyle's opinion was, that thefe bodies were originally in a fluid fate (7).

Seit. 2.
Wbence shis fluilily.

Tis water that firft occafions, and afterwards maintains, this fluidity; and the reafon why we find none of this fparry mafs in it's fluid ftate, nor ever fee this lapideous juice, is, becaufe whillt it remains incorporated with the water, it is not to be diftinguifhed from the liquor in which it fwims; and as foon as ever it is deferted by the water that circulated it in the bowels of the earth, and other neceffary circumftances concur to produce that change, it becomes thone: by water it is that the fparry atoms are wafhed forth out of their repofitories (8), collected into a thick, tranfparent, or opake juice (the iony particles attracting each other as much as the intermediate water will give leave); and as foon as the redundant water is drained off, or evaporated, the lapideous parts (now more at liberty) accede to a clofer union, and are affited greatly therein, as well by the condenfing nature of cold, which compreffes the parts, and forces them nearer one to the other, as by fudden cvaporating heats; and thus the fone forms itfelf, fo much water refting in the pores and interftices of the parts (in proportion to the number and magnitude of thofe pores), as is neceflary to fix it into a confiftency; for, as I apprehend, there is no compound body, but by means of the Chemin's fire will yield fome water ; but as foon as all the water is thrown off, the body lofes it's hardnefs and continuity, and turns to a calx and powder.

[^39]Here I beg leave to propofe a few queries.
Whether ipar is not the univerfal glue of ftones, diftinguifhed from Querys. each other by the various mixtures of earthy, mincral, or metallic particles, but all united by the fparry liquor? for it feems to me, thas there is fcarce any fand, nodule, fone, or ore, which either by the naked eye, or glafles, may not be difcerned to have a certain portion of fpar, clear, or opake, in it's compofition.

Whecther it is not reafonable to believe, that ftones in all ages have ouery z. been, and are ftill forming in the earth, in fome fuch manner as is here mentioned, whenever the neceffary matcrials and caule concur with proper incidents?

Whether this hypothefis is not better adapted to account for teftace- $\mathscr{H u}_{\text {uer }} 3$. ous, and other extrantoous bodies, found inclofed fo often in mafles of ftone, than 1)r Woodward's fuppofition, that all Itones were reduced into a Huid mafs by the waters of the Deluge; which waters being thofe of the ocean, we cannot allow to have any fuch diffolving power inherent in them, and therefore they produce no fuch effect?

Whether there are not quarries of Itone, which when left idle, or ${ }^{(2 y y e r y} 4$. unwrought for fome time, yield a frefh fupply of fone in the chanels and hollows of the faid quarries, which had been before thoroughly cleared by the workmen (9); and whether this will not confirm the fuppofition, that fones formed fince the Deluge, in places where fhells, teeth, and the like bodies, were depofited by the waters, inclofed them in their fubttance?

Our Corni/b fpars are either plain, fimple, and unfigured, or figured Sect. 3. into various and rectilineal fhapes.

All fparry liquor is in itfilf ftiff and nuggifh, and covets no Thape; pearar. but, being intimately mixed with water, which is the reftlefs agent, to difperfe, collect, and renew all fubterraneous nature, it moves as a huid by the rules of gravitation, that is, from a higher to a lower pofition, till meeting with a retentive bed, the water no looner retires, and leaves it expofed to a drier or colder air, than it dries, and hardens into ftone, in Thape and fize, as the attraction and quantity of it's own parts determine, or the circumambient bodies will give it leave to fix and extend itfelf.

Sometimes we find the fparry liquor fpread into thin plates on the Plain Sfars. horizontal or oblique planes of rocks; fometimes we trace it in fheets down the fides of fiffures; and where ir meets with impediments of gravel, or ftone, it will reiemble branched limbs, clay, boughs, and ftumps of fhrubs; fometimes it drops from vaults, and roofs of caves, whence it has the name of Stulastites (10). In all thefe cafes it is plain, that the juice had no other motion, whillt a juice, nor appears in any

[^40]Fig 70.

Of incrufa.

 tions. 1 find the incruftation white, not pellucid, flowing in parallel threads by each other in feveral places pafing from one tubercle to another,[^41]
Of Spar and Sparry Produhions.

without toutching the interfperrel hollows; by which I conclude, that this fpar was fixed on the perpendicular fide of a fiffure; that the juice of this incruftation was of the falactites kind, and, proceeding from the fame caufe, defcended in a limilar direction.

Fig. 72. is a bunch of femi-pellecid fpar, hot into reclined concs, Fig 72. making an angle of 30°, with the furface of the ftone; the fides of chefe cones are a very curious fretwork of little fpires or briftles, many of them harp as the fmalleft needle, and peinting nearly in the fame direction, as the cone on which they rife. The furface of thefe fhonts is of a ferrugineous tint, but their inner fubfance pellucid, very little fhort of that fpar, which for it's clearnefs is called Cryital, and more tranfparent than many hexagonal fhoots; 'tis the only one I have feen of it's kind.

Fig. 75. is an afterifk of the cleareft fpar ; it's fhoots or rays are hexa- Fig 7 \%. gonal, fwelling, or gibbous, in the middle; their fides not plain, or of one level furface, as our Cornifb Diamonds generally are, but ridged near the edges, and fomewhat hollow, but not uniformly, in the middle ; the points or terminations were entire and fharp, but not to that degree aculeated as the former conic fpar ; but it is very plain, that thefe fpires never had any hexagonal apices: the undermoft foots fpread horizontally ; but the other rife grailually, making a greater angle, till the middle ones make nearly a right angle with the bale, which has a ferrugineous circular fpot in the middle, from whence the rays regularly proceed on every fide.

Thefe are fome of the moft fingular fipars which have reached my obfervation; but the general Thape of our figured fpars is hexagonal; and thefe hexagons either confift of a thaft or column, and a point with the fame number of fides correfpondent to the columm, or are only Fig. 77. points, that is, pyramidal hexagons fuck on at their bafe, upon the furface of their ftony beds.

In a thin cake or lump in my poffeffion, one half of the frar moots from one fide, the other half from the other; and fo incrufts the planes of both fides with hexagonal apices.

Here the fpar (as appears by the tendency of it's fibres, when the interior texture is examined) ftruggled to form ftems or ftalks to thefe cufpides; but either the effort was not vigorous enough, or, through the impurities of the juice, the fparry or cryftalline principles had no room to extend or protrude themfelves into the fhape they feem inclinable unto; fo they lie blended, and their lineaments fearcely to be diftinguifhed from the general mafs.

Some fpars rife out of the general furface, into large orbicular blifters, thick fet with hexagonal points diverging, as rays from a center.

Thefe blifters or protuberances are in other fpars fubdivided into numbers of other fmall, orbicular excrefeencies, and the cufpides very fmall, but, like the pointed fhoots of moft Cornifh fpars, hexagonal.

Fig. 84. F.g. 85.

Fig. 86.

Of Spar and Sparry Productions.

At the root, or where they join to the rock, thefe globular maffes thew in what direction the juice excrted itfelf, fpringing commonily, as from one general center, and extending itfelf equabiy on every fide. When the juice is fimple, and of one fort only, the rays are continued from the center to the extremitics. But whan the juice is of two or nore different mixtures and impregnations (which will generally appear from the different colours and degrees of tranfparency, then the effort is various and fuccellive, protruding the juice according, and in proportion to the different activity of the flamina, of which it confifts; and in both thefe cafes I find the coarieft and moit terrene part of the fparry lump next the center, and the moft tranlyarent and pureft fhot forth, to form the pyramidal cujpides of the circumference. Though the effort is various and multiple, the feveral juices preforve a parailelifm to each other, and to the extremity, each juice procceding no farther than it's own impregnation would carry it; and therefore fettling in parallel lifts or lines behind each other, and their angles lefs and letis perfect, that is, becoming more obtufe, till you come to the rock, or lifelefs lump of fpar, which the effort had no power to move, and thro' which the impregnated and parer juices efcaped, according to their degree of mobility: the bafe of one of thefe orbicular lumps, which has feven diftinct lifts or fillets one within the other, befides leffer lifts, marked (b), will explain what is here fuggefted t.

Thefe hexagonal points do not always fit clofe to the body of the rock, but are as often found mounted upon columnar fhoots of the fame number of fides; and thefe are what are commonly called Cornifh Diamonds: they are generally found larger fomewhat at the bale, where they faften on the rock, than at the top, where they fupport the cufpis.

Some of thefe fhoots have alfo hexagonal points at each end, and are fometimes found fingle, that is, detached, and without a root, as the Naturalifts fay; but 1 have them alfo in lumps fixed fide by fide, but in no parallel direction (13).

This is the general and moft common appearance of our Corniff figured fpars and cryftals, cizz. either hexagonal points on the rock, or common fpar, or fixed on fhoots or columns of the fame figure; but we muft not imagine, that fpar affumes no other fhape, but what has been here mentioned. There are alfo trigonal and cubical fpars; but of thefe forts I have not yet feen any in Cornwall; however, as our
ta. The cleareft cryftal.
b. Sup-pellucid, inclining to purple.
s. Flock white, not pellucid.
d. Large fillet of purpled fpar.
e. Flock-white.
f. Small fillet of purpled fpar.
g. Flock-white.
b. Litts of fpar lefs diftinet.
i. That fide on which the effort was faint, and the fhoots fearce perceivable.
(13) Thefe fhoots are not always firair, but are found fometimes bent or crooked; bue as this deformity is owing to fome accidental interpofing force or obftruction, during the sime of forcing, it will not, I apprehend, make the bouy of a different fpecies, as long as all the orher common propertics are continued.
obfervations

Of Spar and Sparry Productions.

obiervations in this inquifitive age are daily growing more extenfive, it is very probable, that new and undefcribed thapes of fpars may often fall under our notice: what I have here mentioned feem moft worth notice; but to pretend to number them all, would be very extravagant ; for they are varying every day upon our hands, and new nimes throw forth new forms, according to the different combinations of their folids, and the impregnation of their waters.

It has been obferved before, 'Seif. 3.) that water and the fparry juice, confidered fimply, without any other aid, will procuce only the irregular, hapelefs maffes of fpar, incapable of any activity, or ftruggle bexagonat towards fhape and figure, and determined only by the common principle of gravitation, to that polition in which we find it: we muft call in therefore the affiftance of fome other principle, to account for the rectilineal regular phanomena of thete fparry productions.

As the general appearance of our Comifis !pars is hexagonal and uniform, there mult be fome one general principle to which this great uniformity is to be referred. If thefe fpars owed their form to any metallic principle, that metal would be found, when the fluor was thrown off by fire : but the contrary is apparent, the cleareft fpars yielding no metal. And, indeed, it may here be obferved, that when the ftony juice meets and coalefces with any metallic particles, that juice moots not into it's natural form, but by tin is forced into prifms, and various fpeculums; by lead, into cubes; and by other metals into other forms: to that it never retains it's hexagonal hape, but when free of metals. As therefore there is no metal in our regularly-figured fpars, we muft have recourfe to another origination; and falt, as I take it, is moft likely to be that active principle, by whofe force the fluid in which it is mixed, be it pure water, or lapideous juice, is made to fhoot forth into regular rectilineal maffes, agrecable to the original thape and figuration in which thefe falts were firft created. 'Tis by the force of falts that liquid bodies are thrown into all the geometrical planes, angles, and more compounded shapes, the variety of which is no lefs furprizing, than the conftancy and uniformity of each particular fpecies; the fame falt fhooting ftill into the fame figure (as is plain from all artificial cryftallizations), when not ftreightened in room, or otherwife determined by heterogeneous mixtures. To produce falt from any liquid body, two things are requifite: firft, that the redunclant liquor, in which the faline particles are kept too much difperfed, and too remote to attract each other, be difcharged (which is ufually performed by evaporation), and that the remainder be expoled to a colder air. This fimple plain procels will produce all the varietics of cryftallization; the falts contained will fhoot into their peculiar forms, pointing forth their darts, regular planes, or fpires, into fuch figures as are proper either to their native or compounded falts. From this eafy and inconteftable procedure of liquids into figured and folid bodies (to which nothing more is required than heat and cold), may it not appear probable, that fome-

VOL. X. Part ii.
40
thing

Of Spar and Sparry Productions.

thing like this has happened, and does ftill happen, among our fparloads in the mine? For inftance: when the juice of fpar, impregnated ftrongly with falts, which have been from time to time imbibed, is fufficiently drained from the water (which not only collected the fparry mafs, but kept it in a fluid ftate), either by natural heat, fo common in mines, or by the water's running off into crevices, where the Atiffer ftone-juice cannot lollow it; in other words, when the water deferts the fpar; the fpar, as foon as a colder air fucceeds (1.4), Thoors, and is protruded into figures by the falt which it contains (15); and thus it happens that we have fuch figured bodies from the fpar, which, without thofe fates, would hew us no fuch Moots as we call Cornifh Diamonds, but fix quietly into fheets, and even plates, or drop down wherever it's own weight would carry it.

What fort of falt it is, which inclines fpar to this hexagonal form, is the next thing to be inquired into ; and moft probably w!!! appear to be that of nitre, if we confider that the refemblance betwixt the figure of what we call Cornijb Diamonds, and that of the pure unmixed nitre, is fo great, that no two things can be more exactly alike. "The known "figure of nitre, fays Grew (Cofmol. p. 15.) is a fexanguiar prifm." "Particulas nitri Lifterus deprehendit fexangulas, tenues, longas, late" ribus parallelogrammis, \& ex altera parte in pyramidale acumen "definentes." Pbjs. Cler. 8 rio, tert. Edit. p. 150. This exact refemblance is fufficient to make us conjecture, that thefe fparry productions may owe their general figure to a nitrous falt, which exerted itfelf at the time when the juice of fpar became ftone; and I hall endeavour to fupport this conjecture only by one authority, which is that of the curious, and, in the Studies of Natural Hiffory, indefatigable Limnaus, which he favoured me with in anfwer to fome queries, jointly with the opinion of the prefent Dr Yobn Fred. Gronovius of Leyden. "The "origine of thofe cryftals (16) is a moft intricate thing; but you may "conclude - quod omnis cryjfallizatio a fale, quod cryjfalli gaudent figura "nitri, quodque omnes generentur in cavo: bi (viz. cryt alli) quo magis " fimplices, eo magis puri $छ$ pellucidi : binc nitro originem debent, quem"adinodum gemme ifte, que prifmaticam nitri figuram exbibent."

As nitre may be reafonably conjectured to give the ordinary and general hexagonal figure to cryftals, it may be as juftly inferred, that when they depart from this uniformity, it is owing to fome mineral,

[^42]earthy, or metallic mixture, fome heterogeneous falt, which impedes the nitre in it's thooting, and turns it into trigonal, cubical, conic, or other unufual figures.

The next thing to be confidered, is the caule to which the different Selt. 5. Of fize in which thefe bodies do appear may be owing. Some cryfals are tincir fize. faid to be a cubit high : Livia Augufta dedicated one in the Capisol of fifty pounds weight (17); and Dr IJaac Lawfon, late phylician to the army in Flanders, informed me, that he faw a cryftal in a foreign mine, with it's edges well prelerved, which he billieved might weigh about 200 pounds. Dr Woodward (18) reckons, among his Cormifi, diamonds, a fingle column or hoot very large, if it be three inches in length, and s: inch in diameter near the bafe. The largeft I have yet feen in Cormwall weighs fomewhat more than 3 pounds, is about 10 inches in girt at the largeft end, and more than feven high; from which lize there are of all degrees, down to the bignefs of a fmall pin. As the fize of this laft mentioned is very unufual, I have given a drawing of it.

The largett proceed out of a large courlic or load of fpar; but the fmalleft of all from finall bits or lumps of fyar; and the fmall pyramidal apices are generally ftuck on upon the fide of the large ones, fometimes in diftant fpangles, other times in thin and broken incruftations. Now the caufe of thefe different fizes feems to be this: wherever great maffes of the fparry juice have happened at the fame time to be in a flate of fluidity, the exuberant water drained off fuddenly, and confequently left cavity fufficient for the falts to extend themfelves, there the great quantities of nitrous falts mixed with the lapideous juice incline it to fhoot vigoroully, and form large cryftallizations; and from proportionably leffer maffes, whilft they are indurating, proceed leffer diamonds. If the whole maf's be impregnated with nitrous falts, the whole furface of the rock Thall rife into points or fipires (19), according as the mafs is more free or more ftubborn to comply with the agitation. If the nitrous falts are not intimately mixed, bur fwim in clouds and bunches, thofe lumps only, where the nitre is, fhall be fhot, and the reft be plain. This is the cafe when the \{parry juice gets into it's proper nidus, or refts in it's fiffure. But where finall fattered quantities of this ftony juice circulate in the fubterraneous waters, fome trickle down the fides of ftones and filfures, and already-formed diamonds, and, fticking in little globules, form a cruft by juxta-pofition, whofe points are fexangular, their columns fhort, fometimes crooked and unfinifhed. At other times water, charged with thefe fparry juices, falling from higher into lower parts of the mine, cannot but be dafhed and difperfed about the cavity in all directions; and thus it is, perhaps,
(17) Pliny, li6. 37. c. 2. Sir Hans Sloane has one block of cryftal which weighs between 40 and 50 pounds, and another about 20 , quite clear and regular. C. M.
(18) Catal. 158. f. 98.
(19) See Fig. $72,75,79,82$

Sett. 6. Of

 their coicur.that the diftant fpangles, like the dew or mift that rifes from a cafcade fprinkled on the furtaces of all bodies in their reach, are there congealed, and fhot by their falts.

Spars are of different colours, and different degrees of tranfparency; fome yellow, fome reddith, brown, green, purple, black, fome of a cloudy fleecy white, fome freckled with little fpecks of various colours and magnitudes, and others of a wa:er not inferior to the purent cry1tals. The yellow is fuppoied to be indebted for it's tinge to fulpheir and iron, or lead, or both; the red to iron, and perhaps goffan, ribat general companion of copper; green, to the folutions or rutt of copper ; copper will alfo probably impart it's purple (for of that ccituai we find fome of our mof beautiful copper ores) to the juices near is: black may poffibly be indebed to copper alfo of like colour, to tin, or the particles of coal; but the moft tranfparent owe that advantage to the purity and fimplicity of the juices of which they are formed. What this purity is owing to, cannot be fo eafily determined. Some think to percolation, or ftraining through the pores of other bodies, the lajeiteous juice depofiting the fediment and impurities, which it ma" have contracted in it's paffage. Now, it is not impolible but that the water, and that liquid fuar, of which thefe bodies are principally formed, paffing by their own weight through a foft, porous, fandy ftone in the $O x$ ford, Bath, and other-like quaries, may undergo a change for the better, and acquire a greater degree of tranfparency; but it cannot be fo with our fpar, on which we find the cryftals above-mentioned: for, Fig. 79. befides that thefe cryftals are found on both fides the ftone, (which, in the procedure of percolation, could never happen), and in very large fhoots, our fpar will no more tranfpire or exude than glafs, it is of fuch confiftency and hardnefs : fo that whatever filtration has happened to thefe cryltals, muft have befallen them during a former percolation, before they refted in their prefent beds, not from any fweatirg through that bed in which we find them, as Dr Plott imagines (20).

Cryftals therefore, it is certain, owe their tranfparency and purity to the fimple fate of the juices that form them; but to what that itate and condition is owing is uncertain. Whether it may be to fome purifying menftruum or jpirit, that precipitates every kind of fediment, I do not prefume to fay: I Thall only obferve, that in Cormwall the cleareft diamonds are for the moft part found in a dry, lax, fandy foil, where no dirty or dark-coloured loam, mineral, or opake fones prevail: fo we may conclude in general, that if, during the fluidity of thefe bodies, no metallic or mineral fume, no duft, clay, or fand, was imbibed, the water and lapideous juice make up a clear pellucid mafs. If the cafe was otherwife, whatever impurities the waters contracted, and had not at the time of forming difcharged, are fill to be feen in the ftone.
(20) Oxfordjh. p. 98. and Ramundus in Alonzo Earba, p. 36.

As to the hardnefs of our Corni/h cryftals, all I have to obferve is, Sect. 7. Of that they cut well into feals, when they have no flaws: their natural their bardmefs. points alfo will cut glafs; but not freely or deep; in which particular they fall much fhort of the true diamond.

Of this I fhall not pretend to affign any other reafon, than that the Conjeflares true diamond feems to have more lapideous juice included, and more relating to the intimately and congenially united under an equal furface, than any other body in the world. It has alfo very little falt in it, as Dr Grew obpropertics of ferves (Cafmol. p. 14.) ; and his opinion is confirmed by it's being found in fuch fmall maffes; and by it's great weight it can have little water ; both which obfervations are fupported by it's great refiftance, and almoft immutability in fire: fo that the true diamond has little falt, and litele water, confifting almoft entirely of ftony juice concreted; to which properties it's great hardinefs may therefore be attributed : whercas in our diamonds there is much falt, and much water (comparatively fpeaking); which two ingredients, mixed with the lapideous juice, may incline thofe bodies to be more friable and tender, and deprive them of that hardnefs, which a lefs-reduced lapidific juice would certainly have had. This feems to me the real caufe of the true diamond's hardnefs, and of our falfe ones falling as much fhort of it in this particular, as in luftre: but I muft acknow lecige, that, for want of fufficient experiments relating to both, I cannot decide peremptorily. However, by weighing the Cornifh diamonds in water, I find they are generally to the weight of our common water, at a medium, as 10 ' is to 4 ; and I apprehend, that if they had more lapideous particles, they would weigh more, as they find the true diamond really does*. I find alfo the cleareft and brighteft Cornifh diamonds weigh much heavier than the other which are more fhady and opake. That they have much falt alfo, may be concluded from their being projected fometimes into fuch large, regular, hexagonal columns.

There are fome little varieties in the texture of our Cornish diamonds, sect. 8. Of which are fometimes to be obferved in their broken fides and edges; the texture of but always, and more diftinctly, in their bafe. Some are uniform, of Cornifh Diaone colour and tranfparency throughout ; fome have hexagonal hheaths monds. defcribid one within another, as in Fig. 88. In the firft cafe, the fhot-Fig. 88. ten juice was of one and the fame nature and confiftency, cqually impregnated, and the production of one effort; in the latter calte, where the theaths are one within another, it is alfo the product of one effort or fhout, the concretion of one and the fame time, as the tremulous undulations upon the furface of water, on throwing in a ftone, are all the offspring of one force, tho' the firft be ftrongeft, and the reft gradually tainter and lefs diftinet: but the juices being differently mixed, gave way to the effort in proportion to their fenfibility of the impreg-

[^43]nation, the mott agile flying off' to the greateft diftance from the center, and the inoft mixed, coariett, and moolt opake, remaining nearelt the center (21). That this is the true procefs, and that thofe different Sheaths are the produce of one effort or birch, and not formed at diffesent tines, and in fucceffion, as Steno and Aldrovandus, and fome others, fay (22), is plain, 1 think, from the two following obfervations. If the juice which forms thele fheaths was impregnated and fhot at different times, it would not form in fhearhs round what appears to be the central or mafter-fhoot, but would project iffelf into it's natural hexaciral figurt. If it were not impregnated, but mere fpar only, without nitre, or any other attive principle, it would form itfelf, as the falactites, in a pendulous undulating direction, drop or wave upon wave; and in this cale thefe fheaths could never furround, in that neat and exact manner, the central fhoot; but would be found only on the under part of that fhoot, where ie's own gravity would inevitably carry it: for it would be obferved immediately, that thefe dianmonds in the mine point forth in all directions; which muft confequently prevent every unimpregnated juice from hardening into a regular uniform fheath.

It is alfo to be noted, that thefe fheaths are often found broken and interrupted: but this cannot be owing to their being germme inchoata \mathcal{E} non perfeefa (23), for the above-mentioned reafons, but to the infufficiency and want of juice, or to fome accidental impediments of thone, earth, or fand, which make thofe breaks, and prevent it from forming a complete freath.

> Seal. 9 of thecir dircation in tbc Mine.

Not long fince I went with a friend or two into a mine called Pillion Erth, in the parifh of St Juft, on purpofe to furvey the Cornibs cryitals in their natural fituation. The cave, to which we were introduced, was not much larger than a common baker's oven, and much of that figure. We had two candles with us, by means of which we faw the roof, which might, in the middle, be about five feet high from the floor; in the other parts not fo much. The roof was the moft furprizing piece of fretwork imaginable, and confifted intirely of fpar fhot into
Fig. 87. Cornifh diamonds, of which the large one (Fig. 87) was a part. I could not difcern any coveting a pofition exactly perpendicular to the horizon ; but in every indifferent direction they pointed forth very plentifully of feveral fizes; fometimes in groupes and clufters, cometimes fingle, now croffing each other, and now ftanding by each other with paralle! fides: fome were fmooth, fhining and clear, others rough and opake; fome veined with red, like porphyry; others fpeckled thick with the fmalleft foots of deep purple, and a bluifh caft: but the fineft of all were thofe which had innumerable little diamonds or fparks (of

[^44]

xocha 4
yind

Uned

A non-defcript petrifed Infect.

the cleareft water) ftuck upon their fides, and, by means of the candle, had a luftre not to be conceived. We gazed here in this incominodious, but beautiful little cave, till we could no longer hold up our heads; and then crept out as we came in, upon our knees.

Now, among the great numbers of fparry productions which I fuw in this mine, I could not obferve, but that they pointed indifferently in all manner of directions; which I fuppofe owing to the great unevennefs of the furface on which the bafes of thefe little columns were fixed; and for the fame reafon I dou't not, but in all concave beds the points converge, as in all convex they turn the contrary way, and diverge, as from a center : fo that the natural caufe of thefe different directions is probably no other than the accidental form of that general mafs from whence thefe fhoots proceed. I would fay, that as the figure and regularity of the lapidific impregnated matter happens to be when drained of all fuperfluous moifture, and by the cold, heat, or dryth, clifpofed to fhoot, fo will the tendency of the fhoots, both column and point, be. If the concave part (for inflance) of the voluta of the cormu-ammonis be fet with cryftals, their points muft tend inwards to the center, where the tail ends, being thereto compelled by the regular contour of the fhell; and indeed they are fo in fact, as fee Fig. 89, But if the cryttal Fig. 89. juice chance to fix on, or proceed from a convex beil (to which it's midus, and other caufes, may contributc), or be itfelf an orbicular lump, and equally impregnated on all fides; then will the fibres fpring as from one common center, and at their extremities point forth their cu/pides. in a circular figure, as in Fig. 90.*

Fig. 90.
If there be a thin plate of fpar equally expofed to cold on each fide, and having equal room and force to thoor, it will throw forth it's points on each fide; and the line from whence the fibres began to fpring fhall be exactly in the middle of fuch plate of fpar, and the figures thall cut the faid line at right angles, as in Fig. 79. whence it feems reafonable to conclude, that the direction in which thefe fparry productions fhoot forth is generally rectangular, or very near it, to the beds or maffes from which they proceed; and that all the feeming confufion in pointings of the Cornifo diamonds in Pillion Ertb, was owing to the great varicty of planes and furfaces, into which that large body of fpar was hardening, when thefe diamonds fhot from it's extremities.
XXVII. 1. The curious foffil I now exhibit to the Society, is as rare Alester from as it's figure is elegant; having been mentioned by none of our own the Rer. Charwriters who treat on foffils, and but very imperfectly defcribed by fo- Lytelton, reign Lithographifts \dagger.

[^45]theitref an.
corning a nondefeript petrified infect. N^{0}. +05 . p. 598 . Now. \&c 17jo. Reáa Dec. 20.1750
Fig. $91,92,93,94$.

Exiration of a letier from the fame: 10 C . Mortimer, Secree R. S. Ibid. p. 600 .

Some furtber ascount of the before mensiomed Dudley Foffil ; by she Editor of tbefe Tranfactions. lbid.

Fig. 98, 3 , 100, 101.
2. The Rev. Dr Sbare, of Oxford, has procured a fpecimen of the extended eruca. As the Foffilits differed in their opinion of this Dudley foffil, fome pronouncing it an cruca, others a bivalie, I thought it beft to leave the reader to judge for himfelf from the engravings; but, as we are now able to add a fpecimen of this foflil in an extencled pofture, there is a better pretence to call it an eruca.
3. The Rev. Dr Pocock, F. R. S. was fo obliging as to fend feveral fpecimens of this foffil to the Pref. who put them into my hands, and defired me to draw up an account of them to be annexed to the preceding paper.
The firft fpecimen is a mals of fone containing the face and eyes, with fome rudiments of legs on the fides; but the back is intirely broken away. Another fpecimen contains the head only: a third, the head, and part of the back, but greatly diftorted. But the moft beautiful and complete are the two which I caufed to be drawn and engraven in Fig. 98, 99, 100, 101.

At Fig. 98. is one of thefe infects completely extended at it's whole length; wherein it appears, that the head is covercd with a fhell or cruft confifting of 3 parts; the middle part is broad and round, a. which I fhall therefore call the nofe : the two fide pieces are of a triangular form, b. b. in each of which is fituated a large protuberant eye, c. c. The anterior part of the whole is encompaffed by a round border, d.d.d. which looks like an upper lip; tho' I do not take it to be fo; but that the mouth is fituated lower down, as in the crab-kind, and does not appear in any of the fpecimens I have yet feen. On each fide the crown of the head, towards the back part of it, are two fmall knobs, c. e. At f.f. in Fig. 99. appear fome traces of feet, which feem to lie under the belly: but, as the belly, or under fide, was not diftinct, not being cleared from it's ftony and earthy matter, I could not difcern any other legs.

Dudley Foffils; the firft was found at Steme, a village in the neighbourhood of Paderborn, given him by D_{r} Kaenig, which he took for a fort of polypus marinus; he fays it is an animal unknown to him, but he gives thofe figures of it, 'in hopes that fome curious perfons, who live near the fea, may light upon fome animal refembling this. The body of this fone, he fays, has, on each fide three ftriated lobes, and three pointed appendices beneath ; it's inner fubfance is white, being felenites, or white fpar; it's colour on the outfide is every-where brown. His friend Linck had fent him fpecimens of thefe fones 6 years before, fome modelled in wax, others engraven upon copper. C. M.

It is moft likely the whole back of this creature was, when alive, covered with a cale, or undivided elytrum, as is the Scolopendra aquatica fcutata, defcribed by M. Klein, of Pantzick *; and afterwards by the Rev. Mr Littleton Brown. M. Klein lays, the cale was whole; and that he was forced to fit it open to thew the back underncath; when it appears, that the body was trilobated, as in Fig. 78. The cale, being very thin and tender, may probably have been broken off at the death of the animal, before it's being petrified.

Mr Brownd does not mention in his infect the property of rolling itfelf up, which this certainly had; as appears by feveral of the figures, as Fig. 91, 92, 93, 96, 100, and 101, which are intirely rolled up; and as is more particularly reprefenced by Fig. 100 and 101, in which it appears, that the tail is turned up under the belly quite to the mouth; and at Fig. 97. the creature feems but half rolled up.

I have confulted all the books I could meet with, which give figures of infects and cruftaccous animals in their natural and perrified ftates; and find none refemble this Dudley foffil fo near as M. Klein's infect; therefore I hall, till we get more information, call it, Scolopendre aquatice foutato affine animal petrifactum.
XXVIII. This work confifts of 295 pages in 8 vo , exclufive of the An aecount of preface, and of 6 copper-plates, exhibiting different views of fait- a treatif/ by houfes, inftruments, Ecc. neceffary to the preparation of falt. It is enriched likewife with notes of great importance to the work, not only of the author, but alfo from the Pbilof. Tranf. Medical Effays, Mcm. of the R. Acad. of Sc. at Paris, Pliny, Agricola, Alonio Barba, Ramufio, Boyle, Hoffman, Lifter, Herrera, Dampier, Baccius, Pomet, Marfill, Plost, Scbeucbzer, Hales, Rafel, Leigh, Boerbaave, Sbaw, and others.

Amongft the vulgar arts, that of preparing fea-falt for the ufes of mankind hath been thought worthy the notice of many great and learned men, as well antient as modern. Thus many things relating to this art are recorded by Cato and Pliny, Agricola and Hoffman, to whom our author is much indebted for thofe memoirs that have been tranfmitted to us, relating to it's hiftory. Had thofe great men been as diligent in improving this art, as they were in recording the improvements made therein by others, there would not now have been occalion " to remark, that, after the practice of fo many ages, an art fo fimple, and withal fo neceffary, hath not yet been brought to any degree of perfection.

That this art was capable of great improvements, efpecially as practifed in Great Britain, was the fentiment of this Sociely foon after it's inftitution; at which time the members thereof were very intent upon bringing it to a greater perfection; as may be gathered from the inquiries and fuggeftions of Dr Beal, and the hiftories of feveral methods of 1748 . Read making falt, which then were publifhed by the Society. And although the Englifh have, fince that time, confiderably improved their method * See Vol. IX. Part iii. §iv.
rigg. M. D.
F. R.S inti-
tuled, " The "Art of ma" king com" moa Salt, " as now " practiced in " moft parts " of the ${ }^{6}$ world ; with feveral Im . " provemenss - propoicd in " that Art, " for the Ufe " of the Bri. tijb Domi"nions;" abfraficd by W. Wation, F. R.S. N°. $487 \cdot R \cdot 35^{1}$ April \&c Jane $15 \cdot 1748$.
of

An Account of Dr Brownrigg's Treatife,

 of boiling falt; yet this art is fill practifed with greater fkill and fuccefs by the Dutch, as the fuperior goodnefs of the finh, cured with their fait, doth fufficiently prove.The Commons of Great Britain, having taken into confideration the great importance of this art, judged fome improvements propofed therein worthy their regard and encouragement; well knowing, that, could this be brought to the fame perfection in Britain as in fome neighbouring countries, farge fums of money might be faved in the nation, which are now paid to the French and others; it's filheries improved, and it's. navies and commerce, and many of it's richelt colonies, would no longer depend upon it's enemies for one of ehofe necelfaries, withour which they cannot be fupported.

Thefe confiderations have induced our author to give a brief account of the various methods of making falt, which are now ufed in Great Britain, and in other couneries, where this art is practifed with more fuccels; and alfo to attempt feveral further improvements for the ufe of the Britifh dominions. How far he has fucceeded in thefe attempts, will beft appear, if the public fhall think the following propofals fo far worthy their attention, as to merit a fair and impartial trial. The principal conclufions, deduced from a varicty of obfervations and experiments, are as follows: s. That, by the methods here propofed, an excellent bay-fait may be made in Britain in very large quantities, fo as to oe afforded cheaper than at the prices paid for foreign falt; and that the Britifs colonies in America may very commodioully be fupplied with bay falt of their own manufacture, without having recourfe for it to the French, spaniards, and Portugzefe. 2. That, by the methods here propofed, an excellent kind of refined white falt may be made in Britcin, as well from fea-water and rock-falt, as from natural brine, in any quantity wanted, fo as to be afforded cheaper than forcign bayfalt; and which will alfo be better for curing fifh, fleh, and other provifions.

In forming thefe conclufions, an impartial regard has been had to truth, without attending to the private advantage of any particular fet of men. The fenfe of this, together with a defire of promoting the publick advantage, has induced our author to communicate the followirg fheets at this time, although by deferring the publication fome time longer he might have made them pofibly more accurate; becaufe, befides other confiderations of no fimall import, an opinion has prevailed, that the eftablining of finerics in the north of Scotland would be the beft means of affording an ufeful employment to more uncivilized inhabitants of that part of the kingdom, for carrying on of which they are moit commodioufiy fituated.

What Mr Lowondes * hath lately done towards the improvement of brine-falt, may, perhaps by fome, be thought to fuperfede the neceffity

[^46]
intituled, The Art of making common Salt, © C.

of further attempts for improving and extending our falt manufaêure. Dr Brownrigg is very far from depreciating the endeavours of that gentleman, which have met with parliamentary encouragement; and had his difcovery appeared to the doctor fufficiently complete and extenfive, he would not have given the public and himfelf this trouble. He makes no doubt but that the fpecimen of falt, which Mr Low:ides oxhibited before the Coliege of Phyficians, was a ftrong and pure falt, fince fuch it appeared to that moft learned Body. Whether the alum mixed with it (agrecable to the antient practice of the Cbephire falt-boilers) contributed any thing to it's goodnefs, is more properly confidered hereafter. It is only necelfary here to obferve, in juitification of the prefent undertaking, that Mr Lowundes's method of making falt for curing provifions, doth not appear to be the beft that may be put in practice; fince our author hopes to fhew, that, by other methods, a purer and a ftronger falt may be made, and at a lels expence. Neither is his method fo general and extenfive as feems to be required for the public good; fince Mr Lowudes confines it almoft intirely to boiled brine-falt; and hath given no directions concerning the preparation of bay-fait. IIe indeed propofes to meliorate the Britifh fea-falt, but feems to defpair of preparing a fait cither from fea-water, or Englifh rock-falt, fit for the ufes of the navy or fifheries; although the Duich falt, which is the ftrongeft and pureft boiled falt now made, is entirely a marine falt, and cven the brine, of which Mr Lowendes makes his falt, is only a folution of the Englifh rock-fale, often in very impure water, as is well known to the Naturalitts.

Our author, treating of falt in general, takes notice of the excellence and ufefulnefs thereof; and that it hath pleafed the Autbor of Nature to provide mankind therewith in fuch abundance, that there are few countries which do rot afford vaft quantities of rock or foffil falt. Mines of it have been long difcovered and wrought in England, Spain, Italy, Germany, Hungary, Poland, and other countries in Europe. Moreover the fea affords fuch vaft plenty thereof, that all mankind might thence be fupplied with quantities fufficient for their occafions. There are alfo innumerable fprings, ponds, lakes, and rivers impregnated with common falt, from which the inhabitants of many countries are plentifully fupplied herewith.

In fome countries, which are remote from the fea, and have little commerce, and which are not bleffed with mines of falt, or falt waters, the neceffities of the inhabitants have forced them to invent a method of extracting their common fale from the ahes of vegetables.

In fhort, this falt is difperfed all over nature; it is treafured up in the bowels of the earth; it impregnates the ocean; it defcends in * rains; it fertilizes che foil; it arifes in vegetables; and from them is conveyed into animals; fo that it may well be efteemed the univerfal condiment of nature.

* See Boyle on the faltnefs of the fea.

Naturalifts, obferving the great variety of forms under which this falt appears, have thought fit to rank the feveral kinds of it under certain general chaffes, diftingaifhing it moft ufually into rock or foffil falt, fea-falt, and brine or fountain-falt : to which may be added others of thofe muriatic falts, which are found in vegetable or animal fubftances. Thefe feveral kinds of common falt often differ from each other in their outward form and appearance, or in fuch accidental properties as they derive from the heterogeneous fubftances with which they are nixed; but, when perfectiy pure, they have all the fame qualities; fo that Chemifts, by the exacteft inquiries, have not been able to difcover any effential difference between them. In this our author agrees with the celebrated *Hofman. Leaving therefore thefe divifions to thofe whom they may concern, it may for the prefent purpofe be more proper to diftinguifh common fait after a different manner into the three following kinds; viz. into rock or native falt, bay-falt, and white falt.

By rock-fale t, or native falt, is underftood all falt dug out of the earth, which hath not undergone any artificial preparation.
Under the title of bay-falt may be ranked all kinds of common falt extracted from the water, wherein it is diffolved by means of the fun's heat, and the operation of the air; whether the water, from which it is extracted, be fea-water, or natural brine drawn from wells and fprings, or falt water ftagnating in ponds and lakes.

Under the title of white falt, or boiled falt, may be included all kinds of common falt extracted by coction from the water wherein it was diffolved; whether this water be fea-water, or the falt water of wells, fountains, lakes, or rivers ; or water of any fort impregnated with rockfalt, or other kinds of common falt.

The firft of thefe kinds of falt is in feveral countries found fo pure, that it ferves for moft domeftic ufes, without any previous preparation, triture excepted. But the Englifh fomil fait is unfit for the ufes of the kitchen, until by folution and cuetion it is freed from feveral impurities, and reduced to white falt. The Britifb white falt alfo is not fo proper as feveral kinds of bay-falt for curing fifh, and fuch flefh-meats as are intended for fea provifions, or for exportation into hot countries. So that, for thefe purpofes, we are obliged, either wholly or in part, to

[^47]ufe bay-falt, which we purchafe in Firance, Spain, and other foreign countrics. To remedy thefe inconveniencies this treatife was written, in order to fhew how the fubjects of Great Britain may be fupplied with falt of their own manufacture, fit and fufficient for all their oecafions.

In order that the methods here propofed might be better underitood, and that the reafonablenefs of them might more fully appear, the author thought it neceffary to premife a brief account of the feveral ways of preparing bay-falt, as well as white falt, as far as they came to his knowledge. From this hiftory may be formed a judgment, how far the methods now in ufe are proper, in what deficient, where erroncous, and how they may be improved.

Bay-falt in general may be divided into two kinds. Firf, bay-falt, drawn from fea-water, as is practifed in France, Spain, Portugal, and many other countrics. Sccondly, bay-falt extracted from falt fprings, ponds, and lakes; as at Cape de Verd iflands, Tortuga, and other places. Of thefe the firft is imported in large quantities into Great Britain and Ireland: our American colonies, in times of peace, are chiefly fupplied with the latter; but in time of war they have large quantities of bayfalt from Liflion, and other parts of Portugal.

Bay-falt is prepared in a manner the moft fimple and eafy, when the water of ponds and lakes impregnated with falt is totally exhaled by the force of the fun and air, and the falt is left concreted into a hard cruft at the bottom of the lake or pond. Of falt thus prepared we have inftances in many parts of the world, as in the Podolian defert near the river Boryftenes, on the Ruflian frontiers towards Crim Tartary, in the kingdom of Algiers, and in other parts of the world.

Bay-falt is alfo drawn from the brine of ponds and lakes, and our author gives us an account of the preparing it it in this manner in the Cape de Verd Inands. This account was collected chiefly from the relations of feveral perfons of credit, who themfelves affifted in making falt in there inands. He alfo takes notice of the bay-falt made at Tortugas, and other places in America. He defcribes likewife the manner of making marine bay-falt in France, and other parts of Europe. For the particulars of thefe operations I mult refer you to the work itfelf; and only take notice, that every kind of bay-falt is prepared without artificial heat, and by only expofing the brine under a large furface to the action of the fun and air, by which, in proportion to the ftrength of the brine, and to the different temperature of climate and feafon, the falt cryftallizes into what we call bay-falt, and comes under different appearances to us from different places, which arife principally from the cleanlinefs and care of the artift.

Our author, when treating of white falt in general, acquaints us, that although falt is made, in warm climates, with the greateft eafe, and at the leaft expence, by the heat of the fun, after the methods already defcribed; yet, in feveral countries, where bay-falt might be conveniently made, they prepare all their falt by culinary fires. Thus in Auftrix,

An Account of Dr Brownrigg's Treatije,

Bavaria, and many other parts of Germany, and alio in Hungary, and even in lome parts of Ifobl', they conftantly boil the water of their falt fprings into white falt. But in other parts of Europe, as in Bribain, and in the northern parts of France and Germany', an crioneous opinion long prevailed, that the beat of the fun was not there fuficiently intenfe, even in the fummer feafon, to reduce fea-water, or brine, into bay-falt. And all arguments would piobably have been infufficient to remove this prejuclice for the Eingiifh, had not the contrary been fully proved by experineents, which were firt accidentally macic in Hamp/ive. However, the method of making falt by coction will probably ftill continue to be practifed in Britain; as the falt fo prepared is for feveral ules preferable te bay-falt; and when prepared after a particular manner, is preferable to common bay-falt, even for curing provifions, as the practice of the Hollanders fufficiently teftifies: fo that the due and right preparation of white falt feems very deferving of the notice andi regard of the public.

White falt, as it is prepared from various faline liquors, may therefore be diittinguifhed into the following kinds:

1. Marine boiled falt, which is extracted from fea-water by coction. 2. Brine or fountain-falt, prepared by coction from natural brine, whether of ponds or fountains. 3. That prepared from fea-water, or ary other kind of falt-water, firft heightened into a ftrong brime by the heat of the fun, and the operation of the air. 4. That prepared from a ftrong brine or lixiviulit drawn from earths, fands, or fones impregnated with common falt. 5. Refined rock-falt, which is buileci from a folution of foffil falt in fea-water, or any other kind of falt-water, or pure water. 6. Laftly, falt upon falt, which is bay-fale diffolved in feawater, or any other falt water, and with it boiled into white falt; and under thefe heads may be ranked the feveral kinds of boiled falt now in ufe. Our author has given us an exaet hiltory of the manner of preparing thefe different kinds of falt, as practifed in different places, with mitcellaneous obfervations and cautions relating to their refpective proceffes, for which in the general I mult refer you to the work itfelf: but the making falt upon falt deferves more particular attention; as the author, being under no tie of fecrecy, has revealed to us the method of making in Holland and Zealand that ftrong and pure kind of falt, with which they cure herrings, and all other provifions for long keeping; which gives the Dutcb a great advantage over all other nations in the herring-fifhery; fince fifh preferved with this falt look much cleaner and fairer than thofe that are cured with bay-falt, and keep much better than thofe preferved with any other kind of white falt.

From the proce's whereby white falt is made from fea-water by coction, it appears, that fea-water, befides common falt, contains feveral other ingredients; fome of which are feparated before the common falt falls, and others remain in the bittern, after all the falt is extracted. Our author has given a full and circumftantial account of thefe in an exprefs
exprefs chapter, under the appellation of menioirs for an analy fis of fca-water.
The falt-boilers. and particularly thofe who prepare brine-falt, have Iong been accuftomed to make ufe of various fubftances, which they call additions or fealonings, and mix them with the brine while it is boiling, either when they firt obferve the falt begin to form, or elfe afterwards during the time of granuition. Thefe additions they ufe for various purpofes. Firft, to make the falt grain better, or more quickly form into cryftals. Sccondly, to make it of a fmall fine grain. Thirdly, to make it of a large firm and hard grain, and lés apt to imbibe the moifture of the air. Fourthly, to render it more pure. And Jafty, to make it ftronger, and fitter for preferving provifions.
Thefe additions, mof commonly ufed to aniwer the above-mentioned purpuofes, are wheat-flour, refin, butter, tallow, new ale, fale beer, bottoms or lees of ale and beer, wine-lees and alum. Wheat-four and refin are ufed for the property they poffers of making the falt a fmail grain. Burter, tallow, and other unctuous bodies are commonly applied, as they are faid to make the brine cryftallize more readily; for which end fome falt boilers mote paricicularly prefer the fat of dogs: but others have lietle to plead for their ufing thefe fubftances, buy immemorial cuftom: how far they have the effects afrribed to them can only be determined by experiments, as feveral boilers, who formerly uled them, now find they can make as good falt without them. Winelees, new ale, fale ale, the lees of ale and beer are now generally rejected by the marine falt boilers; except in the Weft of England, where the briners, who ufe them, affirm that they raife a large grain, and make their falt more hard and firm, and fome fay that they make it cry fallize more readily. Hoofiman prefers the frongeft ale; and Plott affures us, that it makes the falt of a larger or fimaller grain, according. to the degree of it's ftalenefs. The only good effects that fermented liquors can have as an addition, are probably owing to their acid Spirit, which may correct the aicaline falts of the brine, and fo render the common falt more dry and hard, and lefs apt to ciffolve in moift air. If therefore it fhould be thouglit neceffary to ure any of thefe additions, in order to correct the alcalinc quality of the brine, ftale ale, or Rbenifs. wine *, ought to be chofen, as new ale contains but lietle acid.
Alum is an addution long known and ured in C'befhire, togecher with butter, to make the falt precipitate from fome forts of brine, as we are afiured by Dr Lcigb in his Natural Hiftory of Lancaßbire, Chefhire, \&z. who fritt taught the Cbeflire falt-boilers the art of refining rock -alt. As the bad properties of their falt proceeded from hard boiling, they found cvery method ineffectual, until they had recourfe to a more mild and gentle heat. And as alum hath been long difured amongft them, it is not likely, that they found any extraordinary benefit from it ; other-

[^48] wife they would fcarce have neglected it, and continued the ufe of butter. However Mr Lowndes hath lately endeavoured to revive it's ufe; afferting, that brine-falt hath evermore two main defects, flakynefs and foftnefs; and to remedy thefe imperfections, he tried alum, which fully anfwered every thing he propofed; for it rettored the falt to it's natural cubical shoot, and gave it a proper hardnefs; nor had it any bad effect whatever. But our author is of opinion, that whoever confiders the nature of alum, will fearce expect fuch extraordinary effects from it. Neither does it here feem wanted; for the grains of common falt will always be fufficiently hard, and of their natural figure, large fize, and no ways difpofed to run by the moiture of the air, if formed by a gentle heat, and perfectly free from heterogeneous mixtures: fo that the goodnefs of Mr Lowendes's falt does not feem owing to the alum, with which it is mixed, but chicfly to the gentle heat uled in it's preparation.

The Dutch, who have long fhewn the greateft fkill and dexterity in the art of boiling falt, make ufe of another addition, which they efteem the greateft fecret of their art. This is whey, kept feveral ycars 'till it is extreamly acid; now firt revealed by our author to the Britifh falt-boilers, but long held in great efteem by the Dutch, for the good effects it hath upon their falt; which it renders ftronger, more durable, and fitter to preferve herrings, and other provifions.

Bay-falt, as well as white falt, is of different kinds, and poffeffed of different qualities: with the different kinds of thefe provifions muft be cured, according to the ufes for which they are defigned. The Dutch indeed ufe no falt for curing provifions, befides their own refined falt. With it they can preferve fiefh and fing of all kinds as well as with the ftrongert bay-falt ; and chufe to be at the expence of refining bay-falt, rather than to defile their provifions with the dirt and other impurities, with which it commonly abounds.

Salt, effecmed the beft for curing provifions, and for preferving them the longeft time, is that which is the ftrongeft and the pureft. This may be known by the following characteriftics ; viz. it is ufually concreted into large grains or cryltals, which are firm and hard, and in refpect to thofe of other kinds of common falt, the moft folid and ponderous; it is not difpofed to grow moift in a moderately dry air, to which it has been expofed a confiderable time; it's colour is white, and fomewhat diaphanous; it hath no fmell ; it's tafte is truly muriatic, and more fharp and pungent than that of other kinds of common falt. It has, befides thefe, feveral other diftinguilhing properties mentioned by our author. The falts, which approach neareft to this degree of perfection, are the beft kinds of bay-falt, and the ftrong Dutcb refined falt ; but moft of the falt now made for fale is very far from anfwering to thefe characteriftics.

Having related the various methods of preparing falts that now are in ufe, as far as they are come to our author's knowledge, it appears,
that this art is not brought to fuch perfection in the Britif乃 dominions as in feveral other countries, the falt there prepared being unfit for preferving many kinds of provifions. It remains now to fhew, that this want of a ftrong falt of Britifh manufacture procceds not from any defeet in nature, but of art ; and that, if proper fkill and induftry be ufed in the Britifl dominions, and due encouragement there given by the legiflature, luch improvements may be made in this art, that not only Great Britain, but Ireland alfo, and the Britifs colonies in America, may be fupplied with lalt of their own manufacture, proper for curing all kinds of provifions, in quantity fufficient for all their occafions, in quality equal, if not fuperior, to any foreign falt now made, and at a moderate price. Thefe are truths, which the author hopes will appear evident from the facts and reafonings contained under the following pofitions:

The quantity of water which annually falls in rain, frow, and hail, is Lemma I. very different in different parts of Great Britain; there commonly falling almoft double the quantity on the weftern coafts, that falls on the eaftern coafts of that ifland.
The quantity of rain which falls in Lancelbire, during the four hottct L mma II months of the year, viz. May, Fune, Fuly, and Auguf, doth not at a medium amount to more than of the quantity of water, which falls in rain, fnows, and hail, during the whole year.
The water which afcends in vapours from the fea very greatly exceeds Lemma iff that which defeends thereon in rain and other aqueous meteors: but the quantity of water, which ufually exhales from a given part of the ocean in a given time, cannot with any exactnefs be determined.
The quantity of water which commonly exhales in Creat Britain from Lemma IV. Shatlow ponds during the 4 hotteft months of the year, greatly exceeds the quantity of rain which commonly falls on the furface of thofe ponds during the faid months.

From thefe lemmata, which the author has fupported by the obfervations, not only of himielif, but of other learned men, are deduced the following propofitions:

In feveral parts of England large quantities of bay-falt may be extracted Prop. I. from fea-water during the hoteet months of the year, by receiving the falt-water into ponds, and fuffering it's aqueous parts thence to exhale by the heat of the fun, and the operation of the air and winds.
In feveral parts of England large quantities of bay-falt may very com- Prop. II. modiouly be extracted from fea-water, after the fame manner that is practifed in France, and in other parts of Europe.
Bay-falt may be extracted in England from fea-water in larger quantities, Prop. III. and with more certainty, than by the foregoing method, if care be taken to preferve the brine contained in the falt-pits from being diluVOL. X. Part ii. 4 Q ted ted with rains, and to promote the evaporation of the water by feveral artificial means, which may eafily be put in practice.
Prop. IV. In feveral parts of England large quantities of exccilent bay-falt may with great eafe be made from the natural brine of falt fprings, and alfo from rock-falt difiolved in weak brine or fea-water.
Prop. V. Bay-falt may be prepared in England by the foregoing methods at a very moderate expence, equal in goodnels to the but foreign bayfalt, and in quantity fufficient for tiec confumption of all the Britijb dominions.
Frop. VI. In feveral of the Britifb colonies in Americe, bay-falt might, with little expence and trouble, be prepared from fea-water, in quantities fufficient to fupply the American fifheries, and all other occafions of thofe colonies, fo as to become a confiderable branch of their trade.

The author has fupported all thefe propofitions with great ingenuity; but I cannot pals over in filence the artificial means to promote the evaporation of fea-water, mentioned in Prop. III. as well as to preferve the brine contained in the falt-pits from being diluted with rains. I therefore fhall lay before you a mort account of thefe.

It will be proper, fays he, to make all the falt-pits of the marih in one long row extended from E. to W. and for each pit to make covers of thin boards, or rather of coarfe canvas, or fail-cloth, ftretched on frames of wood and painted white. Thefe covers muft all be fixed with hinges to ftrong pofts and beams on the N . fide of the pits; fo that they may be let down and drawn up with cords and pulleys, or by fome other contrivance, fomewhat like draw-bridges. Thefe covers thus fixed may be let down over the pits like a fhed or penthoule in rainy weather; and in dry weather may be erected almoft to a perpendicular, but inclining a litele towards the S. fo as to form a wall with a S. afpect. Thus thefe may ferve a double purpofe, as coverings for the pits inwet weather, and as refiectors of the lun's heat upon them in dry weather, and thus greatly promote the evaporation of the aqueous parts of the brine. The hinges on which the reflectors turn may be fixed about 8 or 10 inches from the ground; by which means, when the reflectors ftand upright, there will be an opening left beneath them, through which the air will continually flow in a brifk current, and greatly increafe the evaporation of the water.

After having gone through that part of Dr Brownrigg's work, which relates to bay-falt, we proceed to the methods that gentleman propoies for preparing and improving white falt, which, it brought into ufe, may probably be of advantage not only to private undertakers, but alfo to the public. For it appears, that two very different kinds of white falt are required; the one for the wie of the table, and the other as a condiment for provifions. It's whitenefs, drynefs, and the fmallnefs of it's grain, are the propertics which chiefly recommend the firft kind; and it's great ftrength and purity the latter. It is this ftrong and pure kind

intituled, The Art of making common Salt, ¿ֻc.

kind of white falt, which is wanted in the Britifl dominions; and it is therefore our author's principal defign here to confider how this defee: may be fupplied; alchough at the fame cime inftructions are given how to prepare table falt, not only better in quality, but alfo at a lefs expence than it is now prepared by the common methods.
In the common proceffes for making white falt, the fait is deprived of Lerma i.
a confiderable part of it's acid fpirit, by the violent boiling ufed in it's preparation.
Moft kinds of white falt are rendered impure by the mixture of various Lemma II. heterogencous fubitances.
White fait, by the violent coction commonly ufed in it's preparation, Lemma III is rendered lefs fit for preferving fifh, flen, and orher provifions, than it would be if prepared with a more gencle heat.
The heterogeneous fubftances which are commonly mixed with white Lamma IV falt, render it lefs proper for preferving provifions, than it would be if feparated from them.
After having fully confidered the foregoing, our author gives a method of preparing a kind of white falt proper for curing fifh, llefh, and other provifions; likewife a method of refining falt; but for thefe I muft refer you to the work itfelf, as well as for the tables, wherein the leveral expences attending thefe operations are minutely confidered.

Moft of the facts referred to in thefe difquifitions are fuch, as the conftant practice of thole who make falt fufficiently warrants us to rely upon for true and certain; or elfe, they are the obfervations of judicious falt-officers, daily converfant in thefe matters, or of curious and inquifitive navigators, merchants, travellers, and Naturalifts; or, laftly, the experiments of many learned Phyficians, Chemifts, and Philofophers: the truth of which feveral facts, though many of them have long been publithed, hath never been called in queftion. So that there obfervations and experiments may probably be more relied on by the public, than if they had only been made by our author; fince they have the teftimony of many fkilful and unprejudiced perfons, who could have no notion of the ufes to which they have been here applied. If therefore the arguments founded upon thofe facts fhould be efteemed any-ways reafonable and fatisfactory, the author prefumes to remark, that it might not be unworthy the wifdom of the Britifh Legiflature to direct a more full inquiry to be made into a matter of this importance, and to order proper works to be erected for making bay-falt, and for making and refining white falt, and to put thofe works under the management of able and judicious perfons, to make exact and accurate trials, in order to difcover the beft and cheapeft methods of doing them. And the miethods, which fhould be moft approved of, mig!t for the general good be made public, and eftablifhed by law as a common ftandard, to which all thofe who make falt in the Britifh dominions fhould be obliged to conform.

$$
4 Q_{2}
$$

XXIX.

Of the Salt-Mines near Cracaus.

of ibs saltmines near Cracan ; by Jemes Mounfry, M. D.

Pbys to the

 Czarina's army, No. 493. p. 219. OA Sic $1 / 49$ ReadNov. 23. $17+9$.XXIX. Near Cracau in Poland are famous falt-mines, of which I fhall give you a fhort account, as well as of the mooft remarkable things I found there. The town is fituated near the foot of a valt chain of mountains, and from it, paffing by hills and rifing grounds about two German miles fouthward, I came to the mincs of Vilitzca. Thefe are in a hill Hat and irregular above, furrourded with hollows and vallies, and to the fouth there is a neighbouring hill much bigher. The mine has ten entries, which are provided with horle-engines, whereof 7 are for hoifting up the falt, and the reft for drawing water from the works, and for the defcent and afcent of the people. I entered the mine by winding ftairs of 484 fteps , which brought me to the firit ftory. The defent into the fecond is by ftrait ftairs of 133 fteps. Into the lowermoff ftory there are no ftairs, but 18 ladders from different floors, which make together 300 feet; and the computed depth of the whole is about goo feet perpendicular.
The feveral ftrata of the earth are as follow.-On the furface is a common clayey ground, next is pure clay, and then a bed of fott, moift, black, llimy earch ; and below this are hills of a kind of carch without any mixture of grit or fand. Here are firt found particles and veins of falt ; and, deficending a good way through this and fome falt rocks, we enter into the firft fory, where there are a great many alleys and crofsways (which are run out to confiderable diftances), and many large caverns, out of which falt has been cut. Here the floor, walls, and cielings, are folid falt rock. As the religion of the country is Roman Catholic, there are feveral large chapels, with altars adorned with columns, crucifixes, ftatues of faints, and other ornaments in that way, hewed out of the falt rock, and well wrought in different orders of architecture. Some of thefe, which are of the purer falt, and not much fmoked with the torches that the workmen ufe in the mine, have a very beautiful effect. In fome places the fides of the alleys, and fome of the great vaults, are lined and doubled with timbers, where they thought the pillars of earth or fale leff for fupporting the fuperior weight might prove too weak. I obierved in one place, that a finking of the earth fome years ago had crufhed fome of the baulks almoft tlat, and made a rent in the fall-rock on the nther fide, about 9 inches wide.

Notwithftanding there is no remembrance or tradition of any remarkable accident by the falling-in of thefe niines, yet they have lately difcovered a wooden houfe, which muft have been fwallowed in very long ago. Thefe mines were on fire in the year 1644 . bur this accident mult have happened long before that time; for they have a plan of thefe works, taken about 200 years ago, with remarks of every thing that was curious in all three contignations ; but no mention is made of this houfe, nor is there any-thing in the regifters of thefe works that fhews it to have funk in fince. The wall of this houfe is feen at the fide of one of the crofs-ways: they have found plates, fpoons, and fome other things
chings of metal; but they make no farther fearch, as the pains would exceed the profit: fo it is left as a curiofity.

Notwithttanding the fale rocks are on all fides, and the earth that is among them is full of veins and particles of falt, there is a fpring of very good frefh water, which is the drink of the thirfty workmen, and of the horfes employed below-ground. This fource comes from above; but directly over that place, on the furface, there is no well, nor fpringy ground, only it is hollow.

They find in thefe mines alabafter, Glacies Marie, gyp fum, and fome-times pectines, or finall fea fhells: but the mott remarkable thing of all is, in the middle of a vaft falt rock, a large tree is found, with all it's branches incafed in it, lying horizontally. Ifend you a piece of it, which I hewed out of the rock myfelf. It feems to be a beech-tree, of which there grow plenty in thefe countrics at prefent.

From the upper llory the rocks grow broader like cones, and the deeper they go, the falt is always finer, and lels mixed with earth : but it is not yet known how deep they run. They do not however find it turns io much to account to work the lowermoft ftory, though it is all pure rock, the hoiiting being more expenfive than the running out crols-ways, and working the upper fories. The rocks have roots or veins, which fhoot into the earth on all fides, fome in ftrait lines, others in zigzag, even to the dittance of 70 feer; whereby the miners are often directed to the body of the rock. Thefe veins are very white and clear, yet they make no ufe of what is found in them, being impure, and mixed with other fatts: it likewife diffolves much eafier than the true falt. Sal gemma is found in veins and nefts in feveral places of the mines, but 'tis often very troublefome to hew, and get it out of the other falt sock. Here are no wells of napbtba, but there are fome cavities where the air is to inflammable, that fome, by going rafhly into, fuch places with a light, have been damaged by the fire, and even run the rifque of their lives. This only happens in places where the air has no free admifion; for in all the main ftreets and crofs-ways there is a confiderable draught of air through the ten entries: and, in the winter, while it is a ftrong froft, and quite calm weather, there reigns a very ftrong wind in the mines: but formy weather makes no alteration; and in the fummer there never happen any fuch changes.

From the feveral ways are entries into the chambers or vaults where they work. They hew the fides of the wall into large fquare columns, the height of the room, and about 2 or 3 feet thick. By driving their wedges in behind thefe pillars, they make them rend from the rock, and their fall on the floor makes a very great noife The workmen are fo accuftomed, that by the found of their blows they know the inftant it: is going to fall, and get out of the way accordinsly. Sometimes they. hew the like pieces from the floors. Thefe pillars are again hewed into blocks, from 3 to 6 feet long, according to their thicknefs. They are drawn up, and tranfported in fuch pieces, and the fimall in barrels.

Of Foffils in Brhenia and Ireland.

The quantity of falt dug here yearly, comes to about 120,000 centeners of Vienna : and the whole expences for officers, workmen, materials, छic, amount to ahout 100,000 dollars. The number of workmen of all forts make about 600 perions : they are very healthy and long-lived, not fubject to the fcurvy, or any particular diftempers. The officers on the contrary are very fubject to difeafes of the breaft, and confumptions, which is probably owing to the frequent changes of air they meet with, their bufinefs obliging them to ftir about much, both above and below ground, where the air is very different.

Of the Foffics of Bohcmia, bo the fame. Ibid. p. 218 .
XXX. The kingdom of Bobemia is a fine fertile country, rich in metals and minerals of all forts. The frontiers all round are very high mountains : the inward parts of the country are hilly, with plains and rifing grounds intermixed, that have the appearance of being the remaining bales and ruins of former mountains, the foil being a compofition of decayed rocks mixed-with fome vegetable earth. The rocks on the higheft mountains are an aggregate ftone of lapides calcarii, Spati, quartzi, mica, Evic. The plains are covered with the leaft diffolvable parts of fuch rocks. Their fineft cryftals, and precious fones, are gathered behind the plough; many ttill retaining the fame figures they had received at their formation in the veins and hollows of the rocks. I found on the tops of mountains decaying rocks, which, when mixed with a little vegetable earth, made exactly the fame foil with that in the riling grounds and plains be!ow.

There are feveral places in this kingdom where the mountains are wholly of lapis fifflitis, which breaks into rhomboids; and I obferved for many miles the fhelves of this fone running through different mountains in the fame direction, facing the S. E. with an inclination of the fhelves of about 35°. The foil here in the plains is clayey.

Of fome Foffils XXXI. In my little excurfions in queft of foffils in this country, I
found in Ire. land; by Mr James Simon. №. 477. p. 531. Aug \&c 1745. Read Nov. 14.
1745. found, Sept. 13. 1 745. what Naturalifts call lac lune: but think Dr Plott is miftaken, when he gives it as a criterion or fign of good limeftone; for the two quarries where I found it were building ftone, but will not burn into lime. This matter or earth makes a ftrong ebullition with vinegar and fpirit of vitriol. Some of it was as foft as creamcheefe, when I took it out of the fiffure of the rock; the other was hard, fome in thin crufts, and fome in pretty thick lumps. It never was taken notice of in this kingdom before. I alfo found, about fix weeks ago, white native vitriol, which I take to be the capillaris fort; but as we have no Naturalift here, nor collection of foffils, or any other natural curiofities (though in great plenty in this kingdom), it is hard for me to give names to fuch as I have (about 800 articles) or do difcover daily.
XXXII. What spelter is I don't well know, nor what uses are already A lefter from made of it; but I believe it was never yet applied to fo large a work as the Rev. Mr the cylinder of a fire-engine, sill Mr Ford, of Coleórook-Dale in Stropfire, did it with fuccefs: it run cafier, and catt as true as brafs, and bored full as well, or better, when it had been warmed a little: while cold, it is as brittle as glass, but the warmth of my hand foo made it fo pliant, that I could wrap a having of it round my finger like a bit of paper. This metal never ruts, and therefore works better than iron ; the rut of which, upon the leaf intermiffion of working, refits the motion of the pifton.

Several attempts have been made to run iron ore with pit-coal; I 370 . Jan. \&ec. imagine it hath not fucceeded any-where, becaufe we have had no account of it's being practifed; but I find that Mr Ford, from iron ore and coal, both got in the fame dale, makes iron brittle or tough, as he pleafes; there being canon thus caff fo loft as to bear turning like wrought iron.
XXXIII. x. I take the freedom to inclofe to you an account of a Several Pa-
femi-metal called Platina di Pinto; which, to far as I know, hath not pers concernbeen taken notice of by any writer on minerals. Mr Hill, who is one
of the moot modern, makes no mention of it. Prefurning therefore that been taken notice of by any writer on minerals. Mr Hill, who is one
of che moot modern, makes no mention of it. Prefuning therefore that the fubject is new, I requeft the favour of you to lay this account before cammuricated
the the R. S. to be by them read and publifhed, if they think it deferving
thole honours. I fould loner have publined this account, but waitthole honours. I Mould loner have publifhed this account, but waitthole honours. I Could toner have publifhed this account, but wait-
ed, in hopes of finding leifure to make further experiments on this body with fulphureous and other cements; alto with Mercury, and feveral corrofive menfltua. But thefe experiments I foal now defer, until I
learn how the above is received. The experiments which I have related
were feveral of them made by a friend, whole exactness in performing
them, and veracity in relating them, I can rely on : however, for greacorrofive menfltua. But thefe experiments I foal now defer, until I
learn how the above is received. The experiments which I have related
were feveral of them made by a friend, whole exactness in performing
them, and veracity in relating them, I can rely on : however, for greacorrofive menfltua. But thefe experiments I foal now defer, until I
learn how the above is received. The experiments which I have related
were feveral of them made by a friend, whole exactness in performing
them, and veracity in relating them, I can rely on : however, for greacorrofive menfltua. But thefe experiments I foal now defer, until I
learn how the above is received. The experiments which I have related
were feveral of them made by a friend, whole exactness in performing
them, and veracity in relating them, I can rely on : however, for greater certainty, I hall myself repeat them. riga , MD F. N, 10 Wm Watson, F. S. Dated Whischeven, Dew brown-
2. Although the hiftory of minerals, and other foffil fubitances, hath Memoirs of a been diligently cultivated, efpecially by the Moderns; yet it mut be Semi-metal. acknowledged, that, among the vat variety of bodies which are the called Platina objects of that faience, there fill remains room for new inquiries.

No wonder that, among the great, and aimoft incxhauttible varieties in the Spanifa of fats, ores, and other concretes, new appearances, and mixtures be- Ibid. p. 585 . fore unknown, should daily be difcovered: but that, among bodies of a more fimple nature, and particularly among the metalline tube, fiverat distinct fpecies fhould fill remain almoft wholly unknown to Natlralifts, will doubtlefs appear more ftrange and extraordinary.

Gold is usually efteemed the mont ponderous of bodies; and yet I have feed, in the poffeffion of the late Profeffor s'Gravefande, a metalline fubftance, brought from the Eiaft-Indies, that was Specifically ha-
vier than gold, by at leaft ' part. Mercury, next to gold, is contmonly faid to be the heavieft body; yet Mercury is greatly exceeded in specific gravity by a femi-metal brought from the Weft-Indies, whereof I have now the honour to prelent fpecimens to the Royal Society. And this femi-metal feems more particularly to deferve our attention, as it is endued with fome very fingular qualities, which plainly demonftrate that certain general theorems, tho' long eftablifted, and univerfally received by the Metallurgifts, yet do not hold true in all cales, and ought not to be admitted into their arts, without proper limitations and reffrictions. For inftance, That gold and fiver may be purified from all beterogeneous fubftances by coppellation, is a propofition that all affayers and refiners have long thought true and undeniable; yet this propofition ought not to be received by thofe artificers, without an exception to the femi-metal here ereated of; fince, like thofe nobler metals, it refifts the power of fire, and the deftructive force of lead in that operation.

This femi-metal was fifft prefented to me about nine years ago, by Mr Cbarles Wood, a fkilful and inquifitive Metallurgift, who met with it in Jamaica, whither it had been brought from Cartbagena in New Spain. And the fame gentleman hath lince gratified my curiofity, by making further inquiries concerning this body. It is found in confiderable quantities in the Spanif/s Weft Indies (in what part I could not learn) and is there known by the name of platina di pinto. The Spaniards probably call it platina, from the refemblance in colour that it bears to filver. It is bright and Shining, and of an uniform texture; it takes a fine polifh, and is not fubject to tarnihh or ruft ; it is extremejy hard and compact; but, like Bath-metal, or caft iron, brittle, and cannot be extended under the hammer.

The Spaniards do not dig it in the form of ore, but find it in duft, or fmall grains, as herewith prefented to the Rogal Society. Whether they gather it in a pretty pure ftate, as brought to us, or wafh it, like gold-duft, from among fand, and other lighter fubftances, is to me unknown: however, it is feldom collected perfectly pure; fince, among feveral parcels of it that I have feen, I conftantly obferved a large mixture of a hining black fand, fuch as is found on the fhores of Virginia and \mathcal{F} amaica, which is a rich iron ore, and anfwers to the magnet. It hath alfo ufually mixed with it fome few Thining particles of a golden colour, which feem to be a fubftance of a different nature.

It is very probable that there is great plenty of this femi-metal in the Spanifh Weft Indies; fince trinkets made of it are there very conmon. A gentleman of Famaica bought five pounds of it at Cartbagena for lefs than it's weight of filver; and it was formerly fold for a much lower price.

When expofed by itfelf to the fire, either in grains, or in larger pieces, it is of extreme difficult fufion; and hath been kept for two hours in an air-furnace, in a heat that would run down caft iron in 15 minutes: which great heat it endured without being melted or wafted; neither
could it be brought to fufe in this hear, by adding to it borax, and other faline fluxes. But the Spaniards have a way of melting it down, either alone, or by means of fome flux; and caft it into fword-hilts, buckles, fnuff-boxes, and other utenfils.

When expofed to a proper degree of fire, with lead, filver, gold, copper, or tin, it readily melts and incorporates with thefe metals; rendering the mixture, iike itfelf, extremely hard and brittle.

Having been melted in an affay-furnace, on a teft with lead, and therewith expofed to a great fire for three hours, till all the lead was wrought off, the platina was afterwards found remaining at the bottom of the teft, without having fuffered any alteration or diminution by this operation,

A piece of platina was put into ftrong and pure aqua fortis, and therewith placed in a fand-heat for 12 hours, the platina, when taken out of the aqua fortis, was found of the fame weight as when put into it; being in no-wife diffolved or corroded by that menfruum.

It had been reported, that this femi-metal was fpecifically heavier than gold; but having weighed feveral pieces of it hydroftatically in a nice affay-balance, I found one of thefe pieces to weigh in air $\mathrm{gr} \cdot \frac{3+5}{5}$, and in water gr. $\frac{322}{3}$: fo that it's fpecific gravity was to that of water exactly as $15: 1$. Another piece, that feemed to be caft very open and porous, I found in gravity to water only as 13.91 to I. Although this laft mentioned piece, could it have endured the hammer as well as gokd, might probably have been reduced to a confiderably greater degree of folidity than that of the firft-mentioned fpecimen. For the purelt gold is feldom found, after fufion, to come up to it's true fpecific weight, until it hath been brought up to it's greateft degree of folidity under the hammer.

I allo weighed an equal mixture of gold and platina, which I found nearly as ponderous as gold itfelf; the fpecific weight of this mixture being to that of water as 19 to 1 .

It hath been reported, that the Spaniards have fometimes been tempted to adulterate gold with platina, as the mixture could not be diftinguifhed from true gold by all the ordinary trials: but the gold thus adulterated was, upon a nicer examination, found hard and brittle, and could not be feparated from the platina, and rendered ductile and pure, cither by cementation, or by the more ordinary operations with lead and antimony. In order therefore to prevent this fraud, the king of Spain commanded that the mines of platina fhould be ftopped up; fo that this femi-metal is now much fearcer than formerly.

From the foregoing account it appears, that no known body approaches nearer to the nature of gold, in it's moft effential properties of fixedednefs and folidity, than the femi-metal here treated of; and that it alfo bears a great refemblance to gold in other particulars. Some Alchemifts have thought that gold differed from other metals in nothing fo much as in it's fpecific gravity; and that, if they could obtain

VOL. X. Part. ii.
a body that had the fpecific weight of gold, they could eafily give it all the other qualicies of that metal. L.et them try their art on this body; which, if it can be made as ductile as gold, will not catily be diftinguifhed from gold itfelf.

Upon the whole, this femi-metal feems a very fingular body, that merits an cxacter inquiry into it's nature than hath hitherto been made; fince it is not altogether improlable, that, like the magnet, iron, antimony, mercury, and other metallic fuoftances, it may be endowed with fome peculiar qualities, that may render it of fitgular ufe and importance to mankind.

Specimens of Platina prefenred to the Royal Society.
N° 1. Platina, in duf, or minute maffes, mixed with black fand, and other impurities, as brought front the Spanifh Weft Indies.
2. Native platina, feparated from the above-mentioned impurities.
3. Platina that has been fured.
4. Another picce of platina, that was part of the pummel of a fivord.

- To the 3. I beg leave to fubjoin a few lines to Dr Frowurigg's paper conRoyalSociety, cerning the Platina di Pinto, or what is likewife called in America Juan by MrWation. dated London, Dec. 13.1750 . Blanco. This fubitance is mentioned in no author I have met with, excent by Don Antonio d'Ulloa, who, in the Hiftory of his Voyage to South America, Vol. II. Book 6. Cbap. 10. which I have here extracted,
and tranfated from the Spanifh, when giving an account of the gold and filver mines in the province of Quito, and of the various methods of feparating thefe metals from other fubftances, with which they are combined, fays, that, " in the territory of Cboco there are gold ", mines, in which that metal is fo difguifed and enveloped with other " mineral fubftances, juices, and ftones, that, for their feparation from "s the gold, they are obliged to ufe quickfilver. Sometimes they find " minctal fubftances, which, from their being mixed with platina, "they chufe to neglect. This platine is a fone (piedra) of fuch refi"ftance, that it is not eafily broken by a blow upon an anvil. It is not " fubdued by calcination; and it is very difficult to extract the metal it "contains even with much labour and expence."

In the before-mentioned work, Chap. II. the fame author, when fpeaking of the remaining works of the Indinus of old, fays, "the spe"cula wrought out of ftones, which are found in the places of worlhip. " of the Indians, are of two kinds, in relation to the matter of which "they are made : one of thefe is called Piedra de Inga, the ocher Pie"dre de Gallinozo. The firft of thefe is fmooth, of a leaden colour, " and not tranfparent; they are ufually found wrought of a circular "figure: one of the furfaces is plain, and as imooth as though it were " made of a kind of cryftal; the other furface is oval, or rather fome"what fpherical, and not fo much burnifhed as the plain one. Altho" "they vary in their fize, they are commonly from 3 to 4 inches in. " diameter; but he has feen one that was 11_{2}^{\prime} foot in diameter. It's. "principal furface was concave, and much augmented the fize of ob"jects,

Of a new Semi-Metal called Platina.

" jects, as it's polifh was in as great perfection as though it had been
"worked by a dextrous artift in thefe times.
" This fone has certain veins, or hair-like appearances, on it's fur" face; whereby it is rendered lefs fit for a ppecrlum, and is apt to " break in thefe veins in receiving any blow. Many are perfuaded, or " at leaft furpect, that the matter of thefe is a caft compofition; and " although there are fone appearances of this being fo, they are not " fufficiently convincing. In this country there are gullics (quebrada.) " where the mineral of them is found rough, and from whence fome " are always taken; but thefe are not now wrought for thofe purpofes "for which heretofore they were employed by the Indians: but this is " no realion but that fome of them may have been calt, as with the " fame material taken out of the mine, they may have been made ar"tificially, and thereby have received a greater degree of perfection, as " well in their quality as in their figure." He fays further, ". that, "a although at prefent, thefe, as well as feveral other things found there " are but of fmall value, neverthelefs they are extremely curious, and " worthy to be efteemed, as well for their great antiquity, as for their " being the performances of thofe barbarous people."
Some of thefe piedras de inga I now take the liberty of laying before the Sociecty, both in their rough and in their polifhed fate. They were brought hither with feveral ocher curiofities from Aimerica, by Don $P_{e}-$ dro Malldonado, and were prefented by him to the Prefident, who was pleared to put them into my hands. They are doubtlef's of a metalline fubfance, and have, in my opinion, exident marks of having been fured and caft. They very much refemble, as you will fee by comparing them, the platina before-mientioned : and though they are callcd (piedras) ftones by Don Alutonio d'Ulloa, he likeivitie gives the fame appellation to the platina. I cannot therefore help recommenuing to fome curious Metallurgit of the Society to make the experiment, whether or no, when the piedras de inga are, by a proper procefs, divefted of their fony and other heterogeneous parts, the metalline refiduum will not refemble, as well in fpecific gravity (for which it is fo remarkable) as in other properties, the purified platina now before us?
4. In Fanuary 1742-3. there were brought from Famaica, in a man -by M_{r} of war, ieveral bars (as thought) of gold, configned from differcnt Emanuel mercl:ants of that inland, to their different correfpondents here, as bars cofta. Rcad of gold. Thefe bars had the fame fpecific gravity, or rather more than Dec:20. 1750 . gold, and were exactly like that metal in colour, grain, ©c. A picce of one of thefe counterfeit bars was fent to the mint to be tefted, and it was found to be 21 carats 3 grains worfe than ftandard.
5. The gentleman, whofe experiments on platima I mentioned to the Exrrat of a Royal Society, was Mr Cbarles Wood, who permitted me to make what ${ }^{l}$ Wtter from ufe of them I pleafed; and I did not pretend to have made any new Wm. Browndifcovery, nor to know fo much of that body, as hath long been known ${ }_{a n i}$ rig. R. S. S.
fon, F.R.S. consaining fome furtiber experiments apon the Platina. Ibid. p. $59+$ dated Whitehaven, Feb. 13. 1750. Read Feb. 28. 1750-51.
to the spaniards. I might indeed have made ufe of his authority; but he was not ambitious of appearing in print.

The chief thing about which I had any difficulty, was what had been afferted of the platina's reffifting the force of fead in coppellation. This experiment I have tried therefore, by adding to gr . xxvi. of platina, 16 times it's weight of pure lead, that I had nuyfelf reduced fron litharge. To the lead pur into a coppel, and placed in a proper furnace; as foon as it was melted I added the platina, which in a thort time was diffolved in the lead. After the lead was all wrought off, there remained at the bottom of the coppel a pellet of platina, which I found to weigh only $g r . x x i$.; fo that, in this operation, the platina had loft near : of it's weight.

According therefore to this experiment, the platina does not wholiy refift the force of lead in coppellation; hut, by repeated operations of that kind with larger quantities of lead, may probably all be deftroyed: and by fuch repeated coppellations, gold and filver may very likely be refined from it; although what was before afferted may hold pretty true, with regard to the common coppellations'of the alfayers and refiners.

Mr Wood faid, that, in his experiment, he thought the platine rather gained than loft in weight by coppellation. This might happen from fome fmall mixture of lead, or other metal continuing with it after it remained no longer fufed.

From this fingle experiment I will not be quite pofitive that lead thus confumes fome fmall quantity of platina, fince it is poffible the platina ufed might not be pure. Befides, in order to keep it longer in fufion, I urged on the experiment with an uncommon degree of heat, efpecially towards the end of the operation; although I think no great error could thence arife; as 3 is of fiver, which I coppelled at the lame time, had loft only gr. $i j$. in the operation.

I am told that one Mr Ord, formerly a factor to the S. S. Company, took in payment from fome Spaniards gold, to the value of 500 l . fterling, which being mixed with platina, was fo brittle, that he could not difpofe of it, neither could he get it refined in London, fo that it was quite ufelefs to him : although, if no error hath been committed in the above-mentioned experiments, it might probably have been rendered pure by a much larger dofe of lead than is ufually applied for that purpofe.

To my memoir I might have added, that, attempting to cleanfe a parcel of the native platina from the black fand, wherewith it was mixed, I found that a great many of it's grains were attracted by the magnet I made ufe of for that purpofe. This circumftance I took notice of in a letter to Lord Lonfdale two years ago.
Extraz of a XXXIV. As the Natural Hiftory of Perfia is but little known, and
lerter frome the authors of the Univerfal Hiffory have given no true account of the the authors of the Univerfal Hiffory have given no true account of the
everlafing facred fire which the Gauers worfhip, I fhall now fend you Dr james a delcription thereof, which you may depend upon, as there was a Mounfey, Ruffian army for fome years in the kingdom of Dageffan, where that fire is; and I took down what I am going to relate from the mouths and journals of many officers that were there, and more particularly from what was communicated to me by Arcbiater Fifiber, who reccived an account thereof from Dr Lerch, Phyfician of that army.

This perpetual fire rifes out of the ground in the peninfula of $A b \int_{c h e}$ ron, about 20 miles from Baku, and 3 miles from the Cafpian flore. The ground is very rocky, but has a fhallow covering of earth over it. It a little of the fiurface be fcraped off, and fire be applied to the hollow, it catches immediately, and burns without interniffion, and almoft without confumption; nor is ever extinguifhed, unlefs fome cold earth be thrown over it, by which it is eafily put out.

There is a fpot of ground, about two Englifh miles large, which has this very wonderful property; and here is a cararanfary, round which are many places where the earth continually burns; but the moft remarkable is a hole about 4 feet deep, and 14 feet in diameter. In this caracianfary live 12 Indian priefts, and other devotees, who worfhip the fire, which, according to their traditions, has burnt many thoufand years. It is a very old vaulted building, and in it's walls are a great many chinks, whereto if a candle be applied, the fire catches inftantaneoufly, and runs inftantly wherever the chinks communicate; but it may be eafily extinguifhed : they have hollow places in the houfe fitted to their pots, which they boil without any other fuel; and inftead of candles, they ftick reeds into the ground; from the tops whereof, upon applying fire thereto, a white flame immediately comes forth, and continues to burn without confuming the reeds, until they think proper to extinguifh it, by purting little covers over them for that purpofe.

They burn lime of the ftones dug hereabouts, firt making an hollow in the ground, and then heaping the ftones on one another. This done ${ }_{2}$ on applying fire to the hollow, a flame burfts out, and is difperfed at once with a very great crack through the whole heap of ftones; and after it has continued burning for 3 days, the lime is ready : but ftones placed in this fire for fetting their pots on never turn to lime; which cannot be made but by hcaping them on one another. The earth and ftone are no farther warm than where the fire reaches: and what feems very well worth obfervation, this Hame of fire gives neither fmoke nor fmell, however great it be.

About an Engliß mile and half from this place there are wells of white napbtha; which is exceedingly inflammable; and though the flame of napbtba affords both fmoke and fmell, it is highly probable the perpetual fire I have been defcribing is owing to napbiba, but fo purified, in filtering through the ftone, that it becomes divefted of all fuch particles as produce fmoke or fmell. The ftone and earth are grey in colour, and faltifh to the tafte; and indeed much fale is found on this peninfula
peninfula of Abjoberon. There is alfo a falt lake, near the fide of which the ewbite napbiba llows by 5 different ferings. This nopbtba is made ufe of oniy in the medicinal way. It is yellowifh from the fpring, but when diftilled refembies pirit of wine. They give it internally, for gonorrhoes's, ciforders of the breaft, and for the ftone; and they apply it externally in gouty cafes, contractions of the finews, and cramps.

Black nopbiba is produced 8 or 9 miles from the perpetual fire; it is thick, and being diftilled grows not clear but yeliow. Abour Bakie there is fome of it fo thick, that they employ ir for grealing wheels : but the beft and greateft plenty, is at Balachame, where there are above 50 (prings, the greatelt whereof produces every day 500 batman, each batman containing ten Ru/s pounds, which are fomewhat lefs than Englifh weight. You hear it make a confiderable noife in rifing out of the ground, though the fpring be 20 fathom deep.

In Baku they have little or no other fewel to burn befides napbiba, but it mult be mixed with earth or afhes to make it fit for ufe. The fire it makes is only good to boil with; and this inconveniency attends it, that all their food fo boiled fmells and taftes of napbtba. For baking and roafting they make ufe of abrotanum, abfyntbium, and fuch-like; but in gencral napbiba is their fire.

$$
\begin{gathered}
\text { CHAP. IV. } \\
M A G N E T I C K S
\end{gathered}
$$

Magnetical Experiments, Bewn before tbe R. S. by Mr Gowin Knight, on Thurfday, Nov. 15.
1744. Read the fame day. N°. 474 . p. 161. June, scc. 1744.

I. $\sqrt{1}$R Knigbt, of Magd. Coll. in Oxfora, being introduced to a meeting of the $R . S$. produced, before the gentlemen there prefent, feveral curious artificial magnets contrived by himfelf; fome of which confifted of plain bars of iteel naked, and other of bars or blocks of the fame fubftance, armed with iron after the common manner of natural loadfones: bur, as he was apprehenfive the trials he had before made of the weights thefe magnets were refpectively capable of lifting, could hardly be repeated with fufficient exactnefs and advantage before fo large a company, he defired to refer himelf, for thofe particulars, to what the Pref. had feen at his lodgings on the 7 th, and $3^{\text {th }}$ of the fame month.

Whereupon the Prefident acquainted the company, that he had lately been feveral times at Mr Knigbt's lodgings, where he had feen many experiments made with his artificial magnets; and that; particularly on the days above-mentioned, he had been preient, and had taken minutes of the following trials then made by that.gentieman; by which it appcared, that,

A fmall eight-cornered bar of fteel, of the length of 3 inches, and almort $\frac{7}{T}$, and of the weight of about $\frac{1}{2}$ an ounce Troy, lifted by one of it's ends about is of the fame ounces.

That anothe r plain bar of fteel of a parallelopiped form, of the length of 5 inches ${ }^{2}$, the breadth of 4^{4}, and the thicknefs of ${ }^{\frac{2}{5}}$ of an inch, weighing 2 ounces 8 : penny weight, lifted, in like manner, by one of it's ends 20 Trcy ounces.

That a fteel bar, almoft of the fame form as the laft, but only 4 inches in length, capped or armed with iron at each end, cramped with fiiver, and weighing all together one ounce 14 pennyweight, lifted by the feet of the armour full 4 pounds Troy.

That a fingle biock of fteel of a parallelopiped form, almoft 4 inches long, I inch * in height, and of an inch in thicknefs, armed with iron, cramped with brats, fufpended by a ring of the fame, and weighing ail together I_{4} ounces 1 pennyweight, lifted by the feet of the armour 14 pounds $2 ;$ ounces \mathcal{T}^{\prime} roy weight.

That a compound artificial magnet was alfo tried, confifting of 12 bars of fteel armed; and that it was found to lift by the feet of the armour as the laft, 23 Troy pounds, 2 : ounces.

The 12 bars, compofing this laft magnet, were each a little more than 4 inches long, depth, weighing one with another about 25 pennyweight each. They were all placed one upon another, fo as to make together one parallelopiped body, of the common length and breadth of the feveral bars, but of the height of near 2 inches, being the fum of the refpective thickneffes of all the bars taken together: and this parallelopiped body, being cramped with brafs, and fitted with an handle of the fame metal, was armed at the 2 ends that were made up of the comrion extremities of all the bars, with 2 fubftantial pieces of iron, after the common manner of arming natural loadftones, the whole frame weighing together about 20 Troy ounces.

Beficies thefe, the Prefident made alfo the following report of fome trials he had feen made at the fame time of the effects of an art Mr Kinigbt is mafter of, by which he can improve or increafe the lifting powers of natural loaditones.

He carried with him, on Wedn. Nov. 7. a fmall armed loadfone belonging to an acquaintance, which weighed, with it's armour, 7 pennyweight 14 grains; but being reputed but of an ungenerous nature, took up, and with fome dificulty, barely 2 ounces. Mr Knigbt took it into his ftudy, and, returning it in about a minute, it then took up. better than 4 ounces with eafe : but, upon his faying, it would ftill gain fome more ftrength, by remaining with him fome time, it was lefe till ${ }^{3}$ the 13th, when it took up diftinctly, with the fame apparatus as before, 6 ounces 18 penny weights and 3 grains; fince which time it has alfo feveral times been found to lift nearly the fame quantity.

Mr Kirigbt further, at the fame time, fhewed the Prefident the following inttances of his ability to invert or change the direction of the poles in natural loaditones.

Such a fone belonging to Mr Fr. Haukluee, weighing about 5 ounces and 14 pennyweights, of an irregular cylindrical form, with 2 of the fides fomewhat flatted, upon which armour had formerly been applied, had the direction of it's polarity from one of thefe flatted fides to the other, notwithftanding the ftone had a diftinct grain running at right angles to that direction. It was tried and obferved, that one of thefe flatted fides ftrongly attracted the N. end, and repelled the S. and that the other attracted the S. and repelled the N. end of the magnetic needle. The end of the ftone, attracting the S. end of the needle, was then marked, by the rubbing of a piece of filver upon it, as upon a touchtone: after which Mr Knigbt carried the fone into his ftudy; and, reproducing it in about a minute, Shewed, that the poles were then directly inverted; and that the fame end, which before attracted the S. end of the needle, now attracted the N. and repelled the S. and vice verfá.

After this, Mr Knight, again taking the ftone, brought it back in as fhort a time as before, with the direction of it's polarity turned at right angles to it's former direction, and into the direction of the natural grain of the ftone, the poles now lying in the flat ends of the cylinder; one of which, being the imoother end, attracted the S. end of the needle, whilft the other, which was of a rougher texture, attracted the N. end, and repelled the S. end of the fame: when it was allo obferved, that the polarity appeared ftronger in this cafe, than either of the former.

Laftly, Mr Kuigbt, in about the fame time, inverted this laft direction of the poles, keeping it ftill parallel to the axis of the cylinder, but caufing the fmooth end of the fone to attract the N. end of the magnetic needle, and the rough end to attract the S. and repel the N. end of the fame needle.

After this report, Mr Knigbt proceeded to flew, at the meeting, fome of the fame artificial magnets therein mentioned; and it was found, that the compound magnet, confifting of 12 fteel-bars, which had, in the experiment made before the Prefident, lifted 23 pounds 2 : ounces Troy weight, did here, under all the inconveniencies and difadvantages of a crouded room, ftill lift a weight amounting to 21 pounds and II of the fame ounces.

It was alfo found, that the fingle armed block of Ateel, which had before lifted 14 pounds and 2 ounces, did here, under the fame difadadvantages as the former, lift 13 pounds and 7 ounces of like Tray weight.

And, Jaftly, Mr Knigbt produced to the company the above-mentioned natural loadftone belonging to Mr Haukbee, but with the direction of it's polarity again altered from what it was when it was laft feen by the Prefident.
P. S. Since the artificial magnets mentioned in the foregoing paper, Mr Knigbt has caufed fome others to be made of a leffer lize, but of a very great lifting power: and one of thefe, weighing without it's armour juft an ounce, and with the armour, cramps, and rings, 1 ounce 17 pennyweights, lifted, before the Prefident of the Society, on Friday July 27, 1745. 6 pounds and 10 ounces Troy weight.
This magnet confitted of 3 plates of ftecl, each 2 inches long, T^{7} of an inch in breadth, and not above of an inch in thicknefs: they were laid flat upon each other, and ferewed together by 2 fmall brafs fcrews going through the 3 plates. After which, the little parallelopiped block fo made up, was armed with iron at the two ends, cramped together with filver, and fitted with a double ring of the fame metal, for the convenient holding of it.
II. 1. Being on Wed. Feb. 11, at the houfe of Mr Knigbt, I did there in company with W ill. Jones, Efq; fee che following experiments; which Mr Knigbt was defirous I Mould, as on this day, report to the Society: before whom he is alfo now prepared to exlibit the fame, as well as the circumftances of the place and the number of the company will allow.

He firft produced two almoft equal bars of hardened Ateel, to which he had communicated a ftrong magnetic virtue. Thefe bars were nearly fquare, each being of the length of about 15 inches $\frac{7}{2}_{2}^{2}$, and of the breadth and thicknets of a little more than $\frac{1}{2}$ an inch: one of thefe bars weighed 2 pounds and 6 pennyweight Froy, the other 4 pennyweight lefs than 2 pounds; and either of them readily lifted with one of ut's ends better than $3:$ pounds.

Thefe bars were then laid down on a table, fo as to be nearly in one and the fame ftrait line, the N . pole of the one being next to the S . pole of the other, and at the diftance of about an inch from it : that is to fay, that the N. poles of both bars were pointed the fame way, but without any regard to the pofition of the natural meridian.

Mr Knight then produced a piece of natural magnet, which was one of the fame he had formerly made ufe of, in fome experiments he had before fhewed to the Royal Society. This piece was in length an inch and $\frac{1}{5}$, in breadth $)^{?}$, and in thicknefs about $\frac{3}{T_{0}}$ of an inch at a medium, being confiderably thicker at the one end than at the other.

This piece of magnet was then applied, fo as to lie between the 2 firft mentioned bars, with it's thin end clofe to the N. pole of one of them, and it's thick end clofe to the S. pole of the other. After it had lain in this pofition a few moments, it was taken out, and upon prefenting it to the magnetic ncedle of a fmall compafs-box, it was obferferved that it's thinner end, the fame which had juft been contiguous to the N . pole of one of the bars, attracted the N. end of the needle; and that the thicker end, the fame which had been contiguous to the S. pole of the other bar, attracted the S. end of the fame needle.

V OL. X. Part ii.
4 S
This

A colleztion of the magnet. Exp. соmmunicated to the R S. by Gowin
Kight, M.B. F.R.S. in 1746́, 1747. N° 484. p . 6;5. Oa. ac. 1iti. Read Feb. 19. 1746-7.

Magnetical Experiments.

This fame piece of ftone was then again put in between the bars, but in a contrary pofition; the thicker end now lying next to the N . pole of one of the bars, and the thinner end next to the S. pole of the other. After a lew moments it was again taken out, and prefented as before to the compals box: when it was found that the thin end now ateracted the S. end of the magnetic needle, and that the thicker end attracted the N. end of the fame.

The piece of ftone was then ayain placed between the bars as at the firt, and being again taken out and prefented to the compafs-box: the thin end was again found as at the firlt to draw the N. end, and the thick end to draw the S. end of the needle.

This fame piece of magnet was then again placed between the bars, but in a pofition at right angles to both the former, one of it's fides being now contiguous to the N. pole of one of the bars, and it's other fide to the S. pole of the other. After which being again in a few moments taken out, and prefented to the compals-box as before; it was found that the fide which had been in contact with the N. pole of one of the bars, did attract the \mathbf{N}. end of the needle, and that the other fide which had been in contact with the S. pole of the other bar, did attract the S. end of the fame needle : whillt the two ends of the fone in which the polarity was before obferved, were now found to be indifierent to either end of the needle; fo that the line of direction of the poles in the ftone now lay at right angles to the fofition in which it was fituated in the former experiments.

Mr Knigbl then produced 2 fteel needles, of the fame fort as thofe which are ufually fixed to the cards of fea-compaffes. Thefe needles were of the length of 5 inches and $\frac{3}{5}$, and weighed feverally with their caps 7 pennyweight 8 , and 7 pennyweight 9 grains; one of thefe was tempered and of a blue colour, and the other was quite hard. He alfo produced two iron weights, feverally weighing 14 pennyweight 22 graips, and 15 pennyweight 7 grains, both nearly of a cylindrical form, but with one of the ends rounded off.

The 2 large bars were then placed in a line, as in the former experiments, but with their ends fo near together, as only to admit of the cap of one of the needles between them.

The tempered needle was then placed flat upon the bars, fo that nearly one half of it refted upon one bar, and the other half upon the other, the cap lying between the two. The needle was prefied clofe to the bars in this pofition, after which the bars were drawn away, both at the fame time contrarywife, till they were clear of the needie; and this operation was repeated 3 or 4 times: after which that end of the needle which had refted upon the N. part of one of the bars, was found ftrongly to attract the N. end of the needle in the compals-box; and the other end which had refed upon the S. part of the other bar, was found to attract in like manner the S. end of the fame needle in the box. The power of attraction allo acquired by this ncedle appeared to

Magnetical Experiments.

be very confiderable, it lifting eafily with either of it's ends, the two iron weights abovementioned, when cemented the one to the other with wax, and weighing together 1 ounce 10 p:nny weights 5 grains.

The hard needle was then applied to the bars like the other and with the very fame fuccefs, it lifted alfo, as the other had clone, both the weights together.

The two needles were then themfelves applied to each other, firt the N . half of the one, in a conerary direction, to the N . half of the other; and then the S. half of the firt, in a like contrary direction to the S half of the laft; and from thefe feveral pofitions, they were feverally drawn till they were clear of each ocher, and this feveral times fucceffively: after which overation it was found that the tempered needle had loft fo far it's virtue, that it's N . end had hardly any effect upon the needle in the box; that it's S. end even began to attract the contrary end of the needle from what it did before, and that it was no longer able to lift at either of it's ends any fenfible weight.

But as to the hard needle, that ftill retained a confiderable fhare of it's former virtue; it's ends ftill ftrongly drawing the fame ends of the needle in the compaifs box as they drew before, and either of them lifting with eafe the heavier of the two above-mentioned weights.

Mr Kuright then produced one of it's common fmall magnetic bars ; the which being applied to the formentioned large bars, in the lame manner as the needles had been applied to the fame, but in a pofition contrary to that of it's prefent polarity, it had it's poles thereby counterchanged or inverted, and was found to lift at that which was now become it's northern end, the weight of 6 ounces 8 pennyweight and 5 grains.

He lafly produced one of his large artificial armed magnets, compofed of feveral thin plates of fteel cramped together, with which he acquainted us he had fome time before lifted 36 pounds, and with which he did now actually lift before us 31 pounds 9 ounces and three fourths.

The tempered needle fpoken of above, and which had nearly loft all it's virtue, had the fame again reftored in great meafure, upon being touched in the common way, on the armed poles of this artificial magnet; after which it difcovered a ftrong verticity, and was able to lift at one of it's ends, the heavier of the 2 abovementioned weights, that is to fay fomewhat more than three quarters of an ounce.

The hard needle which ftill retained, as has been obferved, a confiderable part of the virtue it had acquired by the touch of the large fteel bars, was laftly touched alfo in a contrary fenfe, upon the armed poles of this artificial magnet; whereby it not only loft the polarity yet remaining, bur acquired a new one the other way, it would not however after this laft touch lift more than 9 pennyweight.

This is the true fubftance of the minutes I took, when thefe experiments were made, and which I prefume will now be verified by thofe Mr Knigbt is here prepared to hew.

Magnetical Experiments.

After the reading of this report, Mr Knigbt did accordingly produce before the Sociely the two large bars and all the other particulars therein mentioned, with which he publickly repeated all the fame experiments; which notwithitanding the difadvantagious circumftances of the place, fucceeded perfectly in every particular, and to the entire fatisfaction of ail the company.

It was then further propofed, that the empered needle, having it's virtue again deftroyed, foold be touched upon the fine armed terella belonging to the Society, which was the noble prefent of their late worthy member the R. Hon. James E. of Abercorn, and is efeemed one of the bett in England, and is faid to have lifted in his Lordmip's hands upwards of 40 pounds: the fame was immediatcly brought, and the needle being touched therewith, was found to have acquired a ftrong polarity, and to lift about the fame weight, as when it was before touched upon by Mr Knight's large armed artificial magnet; that is to fay, about 15 pennyweight.

An account of fome new Exf. lately made with Artificial Magnets; by the jame. Ibid. p. 662. Read July 2. 1747.
2. The apparatus for touching of needles, which I fometime fince had the honour to hew before the $R S$. was as perfect as I could have wifhed, as far as relates to the intended ufe of it: but the manner in which the two bars were difpofed in their cafes made the lergth of them fomething incommodious, efpecially in thofe of the largeft fize. This made me defircus of trying if fome method could not be found out of placirg the bars parallel to each ocher without danger of weakening their force, by which means the cafes would be reduced to half the ir length. I remembered that fome years ago, I had tried fome experiments to this purpofe, by placing fome bars parallel and in contact, but fo that their poles were turned different ways: in which pofition I found the virtue of fome of them remained pretty entire, but that others were weakened thereby. I imagined the reafon of their lofing their force was this; that the magnetic virtue was by degrees habituated to fafs out of the fide of one bar into that of the other in contact with it, and thereby was hindered from arriving at the ends in it's full vigour. The reafon why fome fuffered more than others was doubtlefs to be afcribed to their difference in temper. I repeated the experiment about two months ago, with a little alteration. I placed the bars parallel with their poles in an alternate pofition, as before, but not in contact, having kept them at the diftance of about $\frac{1}{6}$ of anch. Then I applied to their ends two pieces of foft iron. Each piece was laid acrofs from the N. end of one bar to the S. of the other, in the fame manner as the lifter is applied to the feet of an armed loadftone. The intent of this was to draw the magnetic virtue thereby down to the ends of the bars, and to convey it through the pieces of iron from one to the other. In this condition I let them lie for about a month, and then tried if they would lift the fame weight as before, which I found they did, and I thought with more vigour After this I repeated the experiment with other

Magnetical Experiments.

bars of various fizes, and with the fame fuccefs: I have therefore now ventured to fit them up in cafes in the manner juft defcribed.

The fuccefs of this experiment had led me to another improvement : I provided a cafe of brafs that would jult contain two burs, fuch as are fold for $\frac{1}{2}$ a guinea. At one end of the cafe were fixed two feet of foft iron, like thole of an armed loadfone, the upper furface of which was within the cafe in contact with the ends of the two bars: which being parallel to each other, and their poles in an alternate pofition, the N. end of one bar will be in contact with one of the feet, and the S. end of the other bar will be in like manner applied to the furface of the other foot. Upon fitting a lifter to this new kind of armour, I found I was able to fupport a weight of about 6 pounds: the bars are kept afunder at the diftance of about $\%$ of an inch, by a flip of wood, which nides in betwixt them.

An inftrument thus conftructed feems capable of anfwering all the purpofes for which loadftones are ufed; for when the bars are taken out of the cafe, they are fit for touching needles, or other magnetical ufes, which may require fingle bars; when in the cafe, the whole together becomes an armed magnet, able to lift a confiderable weight. And if we want to feparate iron filings from thofe of other metals, the feet and all the lower part of the cafe will take them up in great plenty, and by drawing the bars a little way out of the cafe the filings will fall off.
3. The caufe of the furprizing phenomena of the load-ftone has hitherto efcaped our knowledge, though diligently inquired after by men of abilities. Such a difcovery is not to be made without long experience, and a great variety of facts: and the nature of the fubject of Magnetifm; is fuch, that the more facts we are acquainted with, the more we lind ourfelves perplexed. The conclufions we draw from fome experiments are feemingly contradicted by others : and yet thefe feeming contra-

Some furtber
Exp. relating Exp. relating
to the general to the general phenomena by the hid p .665 . ReadDec. 17. 1747. dictions are oft-times very reconcileable upon further experience. If what I am about to lay before the Society will in any-wife contribute to remove thefe difficulties, I am in hopes it will not be unacceptable, though I fhould not fo properly explain the nature of the caufe, as the manner in which it acts. Many of thefe experiments are not altogether new, but have not been fo much attended to as they feem to deferve.
The magnetic matter of a load-fone moves in a fiream from one pole to the Prop. I. other internally, and is then carried back in curve lines externally, till it arrives again at the pole wbere it firft entred, to be again admittted.
If we lay a magnetical body under a piece of paper or glafs that is $E_{x p}$. I Atrewed over with fteel filings or magnetical fand, and by ftriking the table put the filings in motion, they will readily difpofe themielves in fuch a manner as to reprefent, with great exactnefs, the courfe of the magnttic matter. Steel rendered magnetical is beft for this purpofe,
becaufe it is of a more uniform texture, than load-ftones, and will on that account exhibit a more regular appearance. By this exp. the curve lines in which the magnetical matter returns back to the pole where it firlt entered, are accurately expreffed by the arrangement of the filings. The larget curves are fuch as take their rife from one polar furface, and are extended to the other; being larger in proportion as they arife nearer the axis or centre of the polar furface. Thofe curves which arife from the fides of a magnetical body, are always interior to thofe which aitie from the polar furface; and are lefs and Iets in proportien to their diftance from the ends. If any one fhould doubt, wiether the magneticalimuter, which thus difpofes the filings is really moving back in a direction contrary to that with which it paffes through the magnetical body; let him try it in different parts with a imall compais needle, and the fact will appear beyond difpute.

The larger the diftance is from pole to pole in different magnets, the larger will thefe curves be. This appears from examining magnets of different lengths. And this is the reaton why in the fame magnet the curves are lefs in proportion to their greater diftance from the ends of the bars. For the poles from whence thefe curves arife are proportionably nearer each other.

If the S. pole of one magnet be oppofed to the N. of another, moft of the magnetic matter is carried directly out of one into the other: and does not return back in curve lines till after having paffed through both magnets. It appears from the arrangement of the filings that the magnetic matter proceeding from the polar furface, does not now diverge from the axis as before, but runs more in ftreight lines till it arrives at the polar furface of the other magnet. The curves arifing from the fides, which before were bent towards the oppofite end of the fame magnet, are many of them now bent the contrary way towards the correfponding fides of the other magnet. Thofe which are not bent the contrary way, are fuch as are too remote from the oppofed pole of the other magnet to be influenced thereby; and therefore continue their natural courfe.

Exp. IV.

Exp. V.

Whilf the bars are in the pofition of the laft experiment, if a fmall load-ftone be placed in the fream running from one to the other in any pofition whatfoever, the ftream will pals through the ftone: which being again removed, will be found to have a polarity exactly in the direction of that ftream.

If the N. or S. poles of two magnets be oppofed to each other, the filings will exhibit the appearance of two ftreams meeting; and the curves of each will all be turned towards the oppofite pole of the fame magnet. The appearance is altogether the fame, whether iwo N . or two S. poles be oppofed to each other. So that it is not to be determined from any of thefe experiments at which of the poles the magnetic ftream enters. As we bave fome reafon to think it enters at the N. pole, we may fuppofe that the cafe, without danger of error; provided we

Magnetical Experiments.

build nothing upon the fuppofition, but what would hold good (mutatis mutandis) if the contrary fhould be true. This being fuppofed, when the S. poles are oppofite, the two Atreams coming out at them are directly contrary, whereby the magnetic matter is accumulated, and therefore diverges fo much the fafter to return back to the N . polcs. When the \mathbf{N}. poles are oppofed to each other, the ftrcams of magnetic matter returning from the S. poles are directly contrary; and by crouding at once towards each polar furface are accumulated betwixe them, and converge sowards them fo much the fafter.

Thefe 5 experiments feem fufficient to eftablifh the truth of the propofition; many more might be produced to the fame purpofe.

The immediate caule, why t200 or more magnetical bodies attralt each Prop. 2. otber, is the flux of one and the fame fiream of magnetical matter through them.
It appeared in the third experiment, that when the S. pole of one Exp. VI. magnet was oppofed to the N . of another, a frean of magnetic matter was carried from one to the other, and did not return back to the pole where it firft entered, till after having paffed through both bars; and it is needlefs to obferve, that two bars in this pofition are in a ftare of attraction. The fifth experiment fhewed, that when the two S. or N. poles were oppofed, there was no ftream common to both. Now it is well known, that magnetical bodies in this fituation are fo far from ateracting, that they ftrongly repel each other. If the third experiment be repeated, with the magnets placed at different diftances from each other, we Ball find that more of the magnetical matter will pafs from one polar furface to the other, in proportion as the diftance betwixt is lefs. The attuaction is therefore greater as the diftances diminifl. And at diftances where none of the magnetic ftream paffes from one magnet to the other, there is no fign of attraction. So that this caufe is not only co-exiftent with the effect, but alfo proportionable thereto.

If a piece of fott jron which has no fixed magnetifm is any where $\bar{E} \times \mathrm{p}$. Vis placed in the magnetical ftream, it will be in a ffate of attraction whilf it remains in that ftream, and no longer.

A ball of foft iron in contact with the pole of a magnet will attract E.rp. VIIf. a fecond ball, and that a third, and fo on, till the ftream becomes $t 00$ weak to produce an attraction fufficient to fupport a greater weight.

Having hung a number of balls to each orber, by applying the firt Exp. IXto the N . pole of a magnct, upon prefenting the S . of another magnet to one of the middle balls; all thofe below it will thereby be deprived of the magnetic ftream, and inftantly lofing their power of attraction fall afunder: the ball, to which the magnet was applied, will be attracted by it, and all the others will ftill remain fufpenced. But if the N . end of a magnet be prefented, then the ball to which it is applied will alfo drop.

Magnetical Experiments.

In a magnet unarmed the magnetic ftream is carried back on all fides in curve lines to the contrary pole, as was feen in Exp. I. but when armour is applied to each pole, the magnetic matter is thereby conduEted to the feet of the armour; and a litter being thus applyed to the feet, the whole ftrean coming out at one pole is carried back through it to the other: by which means the lifeer is made to adhere to the feet of the armour with very great force. When the lifter is thus in contact, the magnet feems externally to have loft the greateft part of it's force; though in reality it never acted with more. If inftead of the lifter we fufpend a number of iron balls in contact, they will adhere together, and hang like a bracelet betwixt the two feet; the returning ftream paffing now through them, as before through the lifter. Prefent the pole of a magnet, and they inftantly fall afunder.
The immediate caule of magnetic repulfion is the conflux and accumulation of the magnetic matter.
It appeared in Exp. V. that the fame poles of two different magnets being oppofed to each other, there was a conflux and accumulation of the magnetic matter ; and we find by experience, that all magnetical bodies in a like fituation are in a ftate of repulfion.

Two fmall bars, the one hard, the other of a fpring temper, being both magnetical matter, were oppofed to each other, S. to S. the filings produced the fame appearance of repulfion, as defcribed in Exp. V. then the bars being brought fo near as to touch each other at the fame poles, the repulfion was inftantly changed into attraction.

A letter from the fame to tbe Pref. conserning the poles of magnets being varion/lo placed. $\mathrm{N}^{\circ} .476$. p. 361. Apr. E̛c. 1745.
III. The favourable reception which thofe magnetical experiments met with, which you lately did me the honour to communicate to your learned Society, incourages me to hope, that the following facts are remarkable enough to merit their attention.
I. I cut a piece of natural loaditone into the thape of a parallelopiped, I inch ${ }_{T}^{5}$ in length, in breadth $\frac{4}{4}$ of an inch, and $\frac{2}{10}$ in thicknefs; it's weight was 3 drams and 10 grains. In this ftone I placed the magnetical virtue, in fuch a manner that the two oppofite ends became, both dated London, of them, S. poles; and the middle was, quite round, a N. pole.
April 3. 17450 2. Another fone was in length I inch $\dot{\tau}_{i}$, in breadth $\frac{7}{10}$ and in thickRead April 4 . nefs about $\frac{2}{15}$ at a medium, it being thicker at one end than at the other: its weight I dram 57 grains. The 2 oppofite ends of this ftone I made both N. poles, and the 2 oppofite fides S. poles.
3. An irregular ftone, that weighed about 5 ounces and a half, had 2 broad flat furfaces oppofite to each other, at the diftance of 1 inch and $\frac{3}{1}$. I made half of each of thefe furfaces a N. pole, and the other half a S. pole ; fo that the N. pole of one furface was oppofite to the S. pole of the other furface, and vice verfa.
4. I took a ftone of a pretty good kind, that had a grain very apparent, running the lengthways of it: it was 1 inch $\frac{4}{\text { to }}$ in length, x inch $\frac{3}{\text { io }}$

1 Defcription of a Mariners Compafs.

in breadth, and it's thicknefs at the fides was $\frac{6}{\circ}$ of an inch; but in the middle $7^{\frac{7}{0}}$ it being tapered away from the middle to the fides; it's weight was 3 ounces wanting 4 grains. At one end of it I placed a N. pole furrounded by a S. and at the other end a S. furrounded by a N. pole; fo that the edges of each furface had a pole of a different denomination from that which occupied the middle.

A great many varieties of this kind might be eafily devifed, but the examples feem fufficient to thew how manageable the magnetic virtue is in refpect to it's direction ; and how defective mort of the hypotheles are, which have been raifed to account for the phanomena of the loadfone.
IV. The difcovery of the mariners compafs has probably been of more A defiription general and important ufe to human fociety, than the invention of any one inftrument whatfoever: and yet fo far have they been from ftudying the improvement of it, that there would be no abfurdity in fuppofing that the firft which was made might be as much fuperior to thofe in common ufe now, as the moft improved inftrument we have is fuperior to it's firft contrivance.

The compafs which appeared before this Sociely laft year on account of it's being rendered ufelefs by lightning*, was what afforded me the 1750 . firft idea of their imperfections, fome of which I then enumerated; but others have fince occurred to me, arifing from the ftructure of the needle, which I had not fufficiently confidered at that time. It was then obferved, that almoft all the compaffes on board our merchantfhips had their needles formed of two pieces of fteel wire ; each of which was bent in the middle, to as to make an obtufe angle ; and their ends, being applied together, make an acute one; fo that the whole reprefents the form of a lozenge; in the centre of which, and of the card, is placed the brafs cap. I procured 20 cards, with needles of this kind fixed to them; and after touching them with a pair of large bars, I tried each of them, with the fame cup and pin, by drawing them afide 90° from the true point, and then feeing where they would reft. I found them all to vary more or lefs, either to the E. or W. and fome of them as far as 8°. Few of them came to the fame degree twice together; and when they did, that was never the true point. In fhort, they not only varied from the true direction, but from one another, and from themfelves. I then tried, by drawing them gently afide, how far I could make them ftand from the true point, without returning; and found they might frequently be made to do it at the diftance of a whole point on either fide. One of them, which generally varied 6 or 7° to the E . being drawn the fame way, would ftand at 1°.

All thefe irregularities are owing to the ftructure of the needle: for the wires, of which it is compofed, are only hardened at the ends; and
VOL. X. Part ii. . See Art, VI. of this Chap.

A Deforittion of a Mariners Compals.

that is done by making the ends red hot, and quenching them in water: if all thefe ends are not equally hard, or if one end be hardened higher up than the other, when they come to be put together, in fixing them to the card, that end which is hardeft, will deftroy much of the virtue of the other; by which means the hardeft end will have moft power in directing the card, and muft confequently make it vary towards it's own direction. If you retouch thefe wires when fixed to the card, the error will ftill remain; for that wire which is beft hardened will always become the ftrongeft. Confidering how uncertain this method of hardening the ends of the wires muft be, it is a great chance if they flould once in an hundred times be equally and uniformly hard: and unlefs. they are, the card to which they are fixed muft neceffarily vary.

The wires boing difpofed in the form of a lozenge, is the reafon why thefe cards had fo little force, that they might be made to ftand at the diftance of feveral degrees, on either fide the point from whence they were drawn. For a!l magnetical bodics receive an additional ftrength, by being placed in the direction of the earth's magnetifm, and act proportionably lefs vigoroufly when turned out of it. Wherefore, when thefe kind of needles are drawn afde from their true point, two of the parallel fides of the lozenge will confpire more dirtetly than before with the earth's magnetifm ; and the other two will be lefs in that direction: by which means the two firft fides will very much impede it's return; and the two latter will have that impediment to overcome, as well as the friction, by their own force alone.

The needles that are ufed on board the men of war, and fome of the larger trading mips, are made of one piece of fteel, of a fpring temper, and are broad towards the ends, but tapering towards the middle, where a hole is made to receive the cap. At the ends they terminate in an angle greater or lefs, according to the Rill or fancy of the workman. Now, though the worft of thefe are infinitely preferable to thofe of wire, yet the beft of them are far from being perfect. Every needle of this form has 6 poles inftead of two. There is one at each end, two where it becomes tapering, and two at the hole in the middle. This is owing to their fhape; for the middle part being very nender, it has not fubftance enough to conduct the magnetic ftream quite through from one end to the other. All thefe poles appear very diftinctly, when examined with a glafs that is Sprinkled over with magnetic fand. Neverthelefs this circumftance does not hinder the needle from pointing true; but as it has lefs force to move the card, than when the magnetic ftream. moves in large curves from one end to the other, it is certainly an imperfection.

I examined a hard needle of this fort, whofe ends were very broad, and terminated in an acute angle; and obferved, that, tho' it's motion was very free and vigorous, yet I could make it ftand one degree on either fide the true point; and being at a lofs to account for it, I tried what appearance it would make under a glafs with magnetic fand, and difcovered
difcover'd that the magnctic ftream came out of the fides, which formed the acute angle at the ends, in lines that were almoft perpendicular to thofe fides, and then was bent round to go to the other pole: from whence I concluded, that when the needle was drawn a little from the true point, the ftream, which canse out of one of thefe lides, would be more in the direction of the earth's magnetifm than before; on which account it would act fronger in retaining the needle in that fituation, than the ftream of the other fide in reftoring it; efpecially as that ftrean would be now weaker, on account of it's being turned out of the magnetical line, and would have the friction betwixt the cap and pin to overcome at the fame time.

I tried two other needles, whofe ends were formed into angles very obtule, and could not find that they were liable to the fame objection.

Two ncedles, that were quite ftrait, and fquare at the ends, were found to have only two poles; but about the hole in the middle the curves were a little confufed. Thefe always came exactly to the fame point, after vibrating a long time; and if drawn never fo little on one ficle, would return to it again without any fenfible difference. We may therefore conclude, that a regular parallelopiped is the beft fhape for a needle, as well as the fimplett; with the holes for the caps as fimall as can well be contrived; or if it can be made to anfwer the purpofe without any hole at all, it will be fill more perfect.

Yet the common hape has one advantage which this has not: for, being made broad at the ends, and flender in the middle, it's weight is removed as far as poffible from the centre: on which account, if it once points truc, the frietion at the centre cannot fo eafily put it in motion; and it's vibrations, when in motion, will be flower; fo that their limits may be more nicely obierved, and the middle point betwixt them is that where it would ftand, if at reft. Being unwilling to part with thefe advantages, I contrived a light circle of brafs, of the fame diameter with the card, which will fupply a weight acting at the greateit diftance from the centre of motion, and alfo ferve to fupport the card; which may now be made of thin paper, without any thing to fliffen it... So that the extraordinary weight of the brafs ring is compenfated in a great meafure by the lightnefs of the card. This ring is of fervice in another refpect; for, being fixed below the card, and the needle above it, the centre of gravity is placed low enough to admit of the cap being put under the needle; whereby the hole in the needle becomes unneceffary ; and the latter being placed above the card, renders it eafier to be touched with a pair of bars.

Having thus completed the needle and card to my fatisfaction, what chiefly remains, is, to contrive fuch a cap and point as will have the leaft friction, and be moft likely to continue in a ftate of perfection. The caps in ufe are either of brafs, a mixed metal, like that of a reflecting telefcope, cryftal, or agate. The two firf will only admit of brafs points, and the latter are rather too expenfive for common ufe. Where-

A Defcription of a Mariners Compafs.

fore I bethought myfelf of trying glafs caps: I had three of them made by a glats-blower, two of which 1 got pulifhed: they were all fet in brafs, fo as to ferew into the fame needle, which had alfo one of agate fitted to it. I compared them with that of agate, by trying with each of them how many vibrations the fame card and needle would make, when drawn afide 90°, on the fame point; which was a very fmall fewing needle.

The number of vibrations with the agate cap, on the firft trial, were 39 , then 37 , then 39 again; with one of the glafs caps it made 23 , and then 20. This difference from the agate cap was fo great, that 1 concluded the point mult be damaged, and therefore chofe a finer ; on which the fame glafs cap made 41 vibrations; then 43 ; and another glafs cap made 47 , and the next time 43 . But the agate cap with this point made 51,57 , and 58 vibrations. The unpolifhed glafs cap performed much the fame with the others. I had two of them polifhed again by Mr Smeaton; and in company with him repeated the fame cxperiments; but with no better fuccefs. The agate cap made always many more vibrations than the glafs one ; and generally with the latter the number diminifhed by repeated trials; whereas with the agate cap it ufually increafed.

Thefe experiments made me lay afide the thoughts of glafs caps, and put me upon thinking how agate ones might be made with as little expence as poffible.

With this view I got a cap turned of ivory, in fuch a manner as to receive a fmall bit of agate at the top. This being ground concave, and polifhed on that fide, where it formed the apex of the hollow cone in the cap, was capable of anfwering the purpofe as well as if the whole had been agate, and was much lighter. Thefe caps may be made cheap enough for common ufe; and, if good at firft, cannot eafily be impaired.

For a point, I chofe a common fewing needle, and contrived to fix it in fuch a manner as to be taken out with the greateft cafe, and replaced by another, if neceffary; by which means an excellent point may be always had with little trouble or expence. Common needles, when well tempered, have all the qualifications that can be defired for the purpofe intended. The fmalleft are ftrong enough to bear the weight of a card; and are neither fo foft as to be liable to bend, nor fo hard and brittle as to break; and they are generally better pointed than any that a common workman could pretend to make extempore.

Thus we have gone through all the parts that are effential to a mariner's compais; and endeavoured to put them upon fuch a footing, as to leave as little room as poffible for error in their firft conftruction, or failure in the long continued ufe of them.

This, which I have now the honour to exhibit to the Society, was made by Mr Smeaton, a gentleman whofe uncommon fkill in the theory and practice of mechanics has enabled him to execute whatever I pro-
pofed in fuch a manner as always to excecd my expectations : and not only fo, but he has added a confiderable improvement of his own. By a very fimple contrivance he has made the fame inftrument capable of ferving the purpofes of an azimuth and amplitude compais; and that in a manner much preferable to any thing hitherto contrived; the defcription and ufe of which he has drawn up himfelf, for the perufal of the Society.
V. The cover of the wooden box being taken off, the compafs is in An account of a condition to be made ufe of in the binacle, when the weather is mo- $\frac{-\mathrm{fome} \text { improve- }}{\text { ments of the }}$ derate: but if the fea runs high, as the inner box is hung very frec upon Mariners it's contres (the better to anfwer it's other purpofes) it will be neceffary Compafs, in to flacken the milled nut, placed upon one of the axes that fupports the order to renring, and to tighten the nut on the outfide that correfponds to it. By this means the inner box and ring will be lifted up from the edges, upon which they reft, when free ; and the friction will be increafed, and that propoped by $^{\text {K }}$ K to any degree neceffary to prevent the too great vibrations; which other- of general $u f$ e ; wife would be occafioned by the motion of the fhip.

To make the compafs ufeful in taking the magnetic azimuth, or amplitude of the fun and ftars, as alfo the bearings of head-lands, Ahips, and other objects at a diftance, the brais edge, defigned at firft to fupport the card, and throw the weight thereof as near the circumference as poffible, is itfelf divided into degrees and halves; which may be eafily eftimated into fmaller parts, it neceflary. The divifions are determined by means of a cat-gut line ftretched perpendicularly within tioms. the box as near the brafs edge as may be, that the parallax arifing from a different pofition of the obferver may be as little as poffible.

Underneath the card are two fmall weights, fliding on two wires, placed at right angles to each other; which, being moved nearer to, or farther from the center, counterbalance the dipping of the card in different latitudes, or reitore the equilibrium of it, where it happens by any other means to be got too much out of level.

There is alfo added an index at the top of the inner box, which may be put on and taken off at pleafure, and ferves for all altitudes of the object. It confifts of a bar, equal in length to the diameter of the inner box; each end being furnifhed with a perpendicular ftile, with a nit parallel to the fides thereof. One of the flits is narrow, to which the eye is applied, and the other is wider, with a fmall cat-gut ftretched up the middle of it, and from thence continued horizontally from the top of one file to the top of the other: there is alfo a line drawn along the upper furface of the bar. Thefe four, viz. the narrow nit, the horizontal cat-gut thread, the perpendicular one, and the line on the bar, are in the fame plane, which difpofes itfelf perpendicular to the horizon, when the inner box is at reft, and hangs free. This index does not move round, but is always placed on fo as to anfiwer the fame lide of the box.

When the fun's azimuth is defired, and his rays are ftrong enough to calt a fhatiow, turn about the wooden box, till the fhadow of the borizontal thread; or (if the fun be too low) cill that of the perptndicular thread in one ftite, or the light through the lit in the other, falls upon the linc on che index bar, or vibrates to an equal diitance on cach fide of it, gently iouching the box, if it vibrate too far: obferve at the fame time the degrec marked upon the brafs edge by the cat-gut lime. In counting the clegrec for the azimuth, or any other angle that is reckoned from the meridian, make ule of the outward circle of figures upon the bralis edge, and the fizuation of the index bar, with regard to the card and neetle, will always direct upon what quarter of the compars the object is piaced.

But if the fun does not faine out fufficiently frong, place the cye behind the narrow fit in one of the ftiles, and tura the wooden box about, cill fome part of the horizontal or perpendicular thread appears to interfect the centre of the fun, or vibrate to an equal diftance on tach fide of it, ufing fmoked glais next the eye, if the fun's light is too Atrong. In this method another obferver will be generally neceflary to note the degree cut by the cat-gut line, at the fame time the firf gives notice chat the thread appears to fplit the object.

From what has been faid, the other obfervations will be eafily performed; only in cafe of the fun's amplitude, take care to number the degree by the help of the inner circle of figures on the card, which are the complements of the outer to 90 , and confequently fhew the diftance from E. or W.

The azimuth of the flars may alfo be obferved by night ; a proper light ferving equally for one obferver to fee the thread, and the other the degree upon the card.

It may not be amifs to remark farther, that, in cafe the inner box should lofe it's equilibrium, and confequently the index be out of the plane of a vertical circle, an accurate obfervation may ftill be made, provided the fun's fhadow is diftinet: for, by obferving firf with one end of the index towards the fun, and then the other, a mean of the two obfervations will be the truth.

Explanation of the figures. Fig 102.

Fig. 102. is a perfpective view of the compafs, when in order for obfervation. The point of view being the centre of the card, and the diffance of the cye two feet. $A B$, is the wooden box. C and D are two milled nuts; by means whereof the axes of the inner box and ring are taken from their edges, on which they move, and the friction increafed, when neceffary. $E F$ is the ring that fupports the inner box. $G H$ is the inner box; and I is one of it's axes, by which it is fufpended on the ring $E F . \quad K L$ is the magnet or needle; and M a fmall brace of ivory, that confines the cap to it's place. See Fig. ro3. The card is a fingle varnifhed paper, reaching as far as the outer circle of figures, which is a circle of thin brafs, the edge whereof is turned down

Effects of Lightning on the Mariners Compofs.

down at right angles to the plane of the card to make it more fiff. O is a cat-gut line drawn down the infide of the box; for determining the degree upon the brafs edge. $P Q R S$ is the index bar, with it's two ftiles and cat-gut threads; which being taken off from the top of the box, is placed in two pieces, T and V, notched properly to receive it. W is a place cut out in the wood, ferving as an handle.
Fig. 103. is the card in plano with the needle fixed upon it; being one Fig. 103. third of the diameter of the real card.
Fig. 104. is a perfpective view of the backfide of the card, where A B Fig. 104. reprefents the turning down of the brafs edge. C is the under part of the ivory cap. D and E are the two fliding weights to balance the card; and F and G, two fcrews that fix the brals edge, $\bigotimes^{3} c$. to the needle.
Fig. 105. is the pedeftal that fupports the card, containing a fewing Fig. 105. needle, fixed in two fmall grooves to receive it, by means of the collet C, in the manner of a port-creyon. At D the ftem is filed into an octogon, that it may be the more eafily unfcrewed.
VI. Fan. 9. 1748-9. the new Thip Dover, bound from New York to A licter froms London, being then in Lat. $47^{\circ} 30^{\prime}$ north, and long. $22^{\circ} 15^{\prime}$ weft, from London, met with a very hard ftorm of wind, attended with thunder and lightning, as ufual, moft part of the evening, and fundry very large comazants (as we call them) over-head, fome of which fettled on the fpintles at the topmalt heads, which burnt like very large torches; and at $9 p . m$. a fingle loud clap of thunder with lightning ftruck the fhip in a violent manner, which difabled myfelf, and great part of the Ship's company, in the eyes and limbs; it ftruck the mainmaft about ${ }_{T}$ ap almoft half-through, and fove the upper deck one carling, and quick-work; part of which lightning got in between decks, ftareed off Compals; to the bulk-head, drove down all the cabbins on one fide of the fteerage, ftove the lower deck, and one of the lower deck main lodging-knees.

A nother part of it went through the ftarboard fide, without any hurt tbereonans by to the cieling (or infide plank); and ftarted off from the timbers four Gow. Knight, out-fide planks being the whale upwards; one of which planks, being the fecond from the whale, was broke quite afuncer, and let in, in about Io or $15^{\prime}, 9$ feet water in the Thip.

It alfo drew the virtuc of the loadtone from all the compaffes, being ${ }^{17+9 .}$ Read It alfo drew the virtuc of the loadtone from all the compafies, being tpril 13
4 in number, all in good order before, one in a brafs and three in 1799 . wooden boxes. The hanging compafs in the cabbin was not quite fo much difabled as the reft ; they were at firf very near reverfed, the \mathbf{N}. to the S.; and after a little while rambled about fo as to be of no fervice. The ftorm lafted 5 days, we loft our mainmaft and mizenmaft, and almoft all our fails; arrived at Cowes 7gn. 21. in a very thattered condition.

Effects of Ligbtning on the Mariners Compa/s.

In account of th. Mariners Compals, that was firuck with Lighsning, and Berzen as the laft meeting of the Royal Socicty ; avith fome furtber particulars reiating to that acsident; communicated ty Gowin Knigh:, M. B F. R.S. When I came to examine the compals ftruck with lightning, I obferved that the outward cafe was joined rogether with piects of iron wire, 16 of which were found in the fides of the box, and 10 in the bottom. I applied a fimatl needle to ach of thefe wires, and immediateIy perceived that the lightwing had made them frongly magnetical; particularly thofe that joined the fides. All the heads of the wires on one fide of the box attracted the N. point of the needle, and rcpellied the S. whilft all the heads on the the other fide attracted the S. and repclled the N . The wires at the bottom attracted the S , and repelled the N . but it is not cerrain, whether this polarity was any-ways owing to the lightning; fince it might be acquired by their continuing long in an erect poiture:
In examining the card, I found the needle was vigorous enough in performing it's vibrations, but that it's polarity was inverted; the N . point turning conftantly to the S. I then rried to take out the card, to examine the ftate and itructure of the needle: but the junctures were every-where well fecured with putty, and that grown fo hard, that I was obliged to ufe fome violence, and at laft broke the glafs. The needle (if I may fo call it) confifted of two picces of fteel wire, each of which was bent in the middle, fo as to make an obtufe angle; and the ends of thefe wires applied together, forming an acute one, the whole appeared in the fhape of a lozenge; in the centre of which was placed the brats cap whereon the card turned. And fo far was it from being made with any tolerable degree of exacters, that there was not the leaft care taken either to bend the wircs in the middle, or to fix the cap exactly in the cencre of the lozenge: for, upon trying it with a pair of compaffes, I found it's greateft eccentricity to be full $\frac{2}{T 0}$ of an inch. The pin, upon which it turned was made of a llip of plate-brafs tharpened to a point.
Befides the particulars already communicated to the Society, the Captain informed me, that he was obliged to fail above 300 leagues, after this accident happened, without a compars, till he arrived at C cowes in the I $l_{\text {e of }}$ Wigbt; where being provided with one, he placed it in the binacle, but was much furprized to find that it varied from the direction if food at when out of the binacle nearly 2 points. He removed the binacle to different parts of the deck, but found that it always made the needle to vary after the fame manner when placed in it. He repeated the fame experiment lately in the river, with the like fuccefs; only that he obferved, that the variation of the needle, when placed in the binacle, was rather lefs than at firft. It was natural to enquire if there was any iron about the binacle ; but I was furprized when the Captain informed me, he had given ftrict charge to the maker not to put fo much as a fingle nail in it; and that he firmly believed that there was not the leaft bit of iron about it
Being willing to be fatisfied of the truth of a circumftance fo very extraordinary, the Captain was defired to fend the binacle to a houfe in
the City; where, in company with the Captain, Mr Ellicot, and another Gentleman, I tried it with a large compafs touched by my bars; but finding no fenfible variation, we at that time deffifed, thinking the fact quite improbable: but having difcovered the cffect which the lighening had produced upon the wires which faftened the fides of the compafs-box, I was induced to examine the binacle a fecond time; which I did with a fmall compafs, and with great care, in every part; and at laft, about the middle of the binacle, I found it to vary very fenfibly, bat could not difcover any nails or iron any-where thereabouts; till, curning it up to cxamine the bottom, I there found 3 or 4 large nails or rather fikikes, driven through it to faften the upright partitions in the middle of the binacle.

It would not be difficu't to explain why any needles, under the like circumftances with thofe above related, fhould be rendered ufelefs by lightning, though the needles themfelves had remained unhurc. So many iron wires made ftrongly magnetical would doubtlefs have effected it; and 3 or 4 large nails in the binacle, if made magnetical, wouk alone have been fufficient to have done it. But I have already taken notice that the polarity of the needle was inverted by this accident; and I would further obferve, that all needles conftructed after this manner are liable to be rendered ufelels not only by the lightning's deftroying their virtue, but allo by it's placing it in a particular direction; e. g. if the lightning ftruck the needle in the direction of either of the two parallel fides of the lozenge, it muft ftrike the other two fides very obIiquely; whereby the firft two fides may have their polarity deftroyed, and a very ftrong one given them in the contrary direction; whillt that of the other fides, if it be inverted, will be very weak; but it is probabie that the virtue would be placed obliquely in the direction of the ftroke; in either cafe, thefe two fides can contribute but very little (if any thing) in directing the card; and if the two firft fides only are capable of acting upon it, it will point in the direction of thofe fides, which will produce a variation of about 4 points.

It may further be obferved, that a needle would not continue long in this ftate, but would every day grow more and more regular ; becaufe if the virtue be placed obliquely, it generally turns itfelf in the direction of any piece of fteel that is long and fender; and that may be the reafon why this card is now become regular, except that it is inverted.

The wires that join the box feem weaker than when I firft examined them; which makes it very probable, that they might be vaftly ftronger when firt ftruck with the lightning : and the fame may be likewife true in regard to the nails in the binacle; which may account for the experiments not anfwering exactly the fame as at firtt.

From what has been faid it appears, that this form of needles is very improper, and ought to be changed for that of one itrait piece of fteel; and then if a needle frould be inverted it might frill be ufed. It alio fhews the abfurdity of permitting iron of any kind about the compafsV OL. X. Part. ii. box, or the binacle. Whoever confiders the whole defcription here given of this compafs, I am perfuaded, he will efteem it a inolt defpicable inftrument : how then muft any one be fhocked to hear, that alinoft all the compafies, made ufe of by our trading veffels, are of the fame fort! the boxes all joined with iron wire, and the fame degree of accuracy obferved throughout the whole!
This I am credibly informed, is the cafe; and that for no other reafon, but that one of this fort may be purchafed for 5 s . and it will coft about 2 s . 6 d . more to buy a tolerable good onc. So that the lives and fortunes of thoulands are every day hazarded for fuch a triling confideration.

p. 279 Apr.

dc. 1748.

The inclination of the dipping needle has been during the fame time Read Apr. 21. about $73 \frac{1}{2}$ degrees.
${ }^{1748}$.
N. B. As the variation of the Needle at London bas not been regularly publifbed from time to time in the Philof. Tranf. it may not be improper to take notice bere, that according to the beft obfervations extant, and which were made by perfons of great fill and exaEInefs, the Needle at London declined to the E. $11^{\circ} 15^{\prime}$ in the year 1580 . In 1657 there was no variation, the needle then pointing due N. In 1672 the variation was obferved by the late Dr Halley $2^{\circ} 30^{\prime}$ towards the W. and in $169,26^{\circ} 0^{\prime}$. And towards the beginning of the year 1723 , it was found by Mr Graham, from the medium of a vaft nuriber of obfervations, to be then $14^{\circ} 17^{\prime}$ the fame way. So that, during the courfe of 167 years elapped fince the year 1580 to the end of the laftyear 1747 , the magnetic needle at London bas moved to the weftward $28^{\circ} 55^{\prime}$. See before $\mathrm{N}^{\circ} .148$, and $\mathrm{N}^{\circ} .3^{83}$, of the Philos. Tranf.

C HAP. V. BOTANY, AGRICULTURE.

I. FHHIS plant is woody. It grows fometimes into a tree, fonse- The efablijh. times into a fhrub, and fometimes into a bufh; fpreading very ment of a now tufted branches on all fides down to the ground. It's native countries are the parts adjacent to the Perfic Gulph, the N. of Arcbia, and the S. of Perfia. I cannot find that any author has known, or made the leaft suitb it's demention of it.
frription: by
Firft I will give it's characters, and then it's defcription from accurate obfervations, which I have made on the fpot. Laurence Garcin, M.D. F.R.S of

Neufchatel in Switzerland; communicated in a lefter so Dr Mortimer, Secr. R. S. N. 491. p 47. Jan. \&ec. 17+9. Tranflated from the French, by T. Stack, M2. D. Read Feb. 23.1748.9.

Calix. This is a monophyllous cup, divided into 4 lobes, which, as Charazerso foon as they fpread open, turn outward, and roll backward on themfelves; then wither, grow whitifh, and dry up.
Corolla. It's flower is void of petals.
Stamina. Thefe are 4 in number, anfwering to the 4 lobes of the calix, and being likewife of the fame length. They fpring from the bafis of the pifillum, and, as they moot up, tend outward. Their fummits are round, with a furrow turning in on one fide; which gives each of them the form of a purfe.
Pifillum. It is round, it's fityle fingle and fort, and the figma is blunt, and Thaped like a navel.
Pericarpium. Is a round berry, of a middle fize, with one cell or lodgment in it.
Semen. It is fingle, fpherical, inclofed in a callous firm fkin, befet with fpots, forming a fort of hufk like that of hemp.
I know but one fpecies of this genus, which I defcribe thus.
It is a plant which varies confiderably in fize; that of a larger fort Defrriptio a.
of fhrub, is what it moft frequently grows to. It produces a number
of boughs without order, and very tufted branches, which moft commonly hang down to the ground. It's bark is moderately thick, fometimes fmooth, fometimes full of cracks, of an afh-colour, both in the trunk and branches, but green on the tender fhoots. It's wood is every where brittle, and nearly of a fraw-colour.

The leaves are borne on young fprigs, which fhoot out along the boughs. Thefe fprigs are ftrait, generally fhort, but fometimes pretty long, like little wands. The leaves are thick-fet, and tufted on the former, but thin on the latter. They grow fometimes oppofite to one another by pairs, croffing alternately; and fometimes by three and three difpofed like rays; but this more rarely. Their length, which varies on the fame falk, is gencrally from 1 ; inch to $2:$ inches, and their width is from 9 lines to an inch a litcle below the middle in each, which is the wideft part. They are thick, pointed at their extremity, and sounded at their bafe, very even on their edges, fomewhat fucculent, but firm : their colour is a pale green, but fomewhat yellowifh, in thole that are flooting out. The pedicles which fupport them are very fhort, each being but a line in length, and \ddagger in thicknefs. Every one of thefe pedicles, which is round, furnifhes a litele nerve, which runs thro' the middle of the leaf; it is a little hollowed on the upper fide, and fomewhat raifed on the back; and terminates at the end of it's refpective leaf. This nerve gives 2 or 3 pair of almoft imperceptible chreacs, which fpread and divide into other finall irregular threads, through the body of the leaf. In fine, thefe leaves in thape nearly retemble thofe of the fea-purnain, and fometimes thofe of the minetoe of the appletree. There are fome generally on each plant, which have one, two, or more black fpots, as in the Perficaria, but aimoft round, and fmaller.

The flowers, which are ftamincous, that is, without petals, are fmall, and difpofed in clufters on the tops of the finoots. 'S hefe bunches of flowers intirely refemble thofe of the vine-bloffoms. The empalement is fnall, green on the under fide, having four fegments almoft pointed, which roll outward, and then dry up. It's diameter in this rolifed ftate of it's lobes, is but of one line. The famina are of a ftraw-colour. The hollow furrow in each of their fummits is not cafly difcovered without a glafs.

The piftil or embryo of the fruit, which is little, and yet occupies the whole infide of the calix, is of the fame colour with the bottom of this, that is, green. Afterwards it fwells in all dimenfions, and grows into a berry, of the fhape and fize of a goofeberry, of three or lour lines in diameter. At firit it is of a pale green, then a bright purple, and in it's maturity of a dark red. Eacla berry is fupported on a ftrong thick pedicle, attached to a fmall bunch. It's fubftance is a white tranfparent flefh, full of juice, much refembling gelly, which furrounds a fingle round grain, marbled with black or brown fpots, as in the tortoifethell, when ripe. This grain is as large as a grain of hemp-feed, that is, about two lines in diameter, but fometimes lefs. It is properly a kernel, or a fhell that has a cavity, which inclofes a fort of little round almond, of a ftraw-colour, yellowifh on it's outward furface, and pale in it's inward fubftance, which is pretty firm.
2ualitics.
All the parts of our plant have an acid pungent tafte and fimell, vaftly like our garden-crefles, but more biting. The fruit is the moft pungent part of the whole. The fmell of the plant is perceptible at 7 or 8 paces diftance, when a perfon is to leeward.
The natives of the country ufe it againft the bite of the fcorpion, by rubbing the wounded part with it's bruifed leaves. They employ alfo
it's warm infufion to wafh the bodies of their children, in order to keep them healthy. And they feed camels with it, who love it naturally.

This fhrub, which is fometimes large, fometinjes fmall, is moft Remarks. commonly found aiong high roads, and in dry low places of it's climate. As it's branches, which are fender and brittle, fpontaneoully bend downward, and form a thick tuft, this makes it generally refemble a great bufh, which takes up a goot deal of ground in moft places, where it grows naturally. It delights in the hotteft and drieft places, fuch as thofe adjacent to the Perfic Gulph, and perhaps more fo than palm-trees: wherefore I doubt of there being any growing in the countries that lie to the eaft of the Gulph. And accordingly I have met with none, either in the neighbourhood of Surat, or in the kindom of Bengal, where there are reguiar rainy feafons every year.

I flould rather believe, it is more likely to be found in the deferts of Africa, on this fide of our tropic ; thofe being proper places for it, and where it rains feldomer than in any other part of the globe.

It's leaves have frequently excrefcences of different fizes and Thape, round, oval, and fometimes very large. They are the work of thofe flying infects, which commonly abound in thefe parts.

The inhabitants of the Gulph call this Arrub by the name of Tcbuch. Perhaps it's nature would not allow it to grow in lands far difant from the fea, no more than the fea-plants, to which chis furname is given for that reafon.
It's parts are all brittle, and even the leaves crack, if bent in the middle.

In fine, I have chofen a name, which I imagined I ought to give it, after the example of Mr Limnous, who has called feveral plants by the names of Botanifts of reputation. This laudable proceeding is a way to perpetuate the memory of all thofe who have contributed to the progreis of Botany ; and that much better than medals do with regard to Princes or Emperors. A proceeding, which, if duly purfued, will encourage thofe who come after us, to make ufeful difcoveries in this fcience for the good of mankind, and in much greater number than have been publifized on the fubject of plants up to our times. For it is eafy to comprehend, that what remains to be difcovered on this fubject for our ufe, muft infinitely furpafs all that man has hitherto found out.

The name of Salvedore, which I have chofen for our flarub, is that of the late Mr Salvador of Bercelona, a very Rkilful Botanift, of whom M. de Tournefort makes mention in his Introduction to his Inft. rei berbarie, where he files him the Phanix of bis Nation; becaufe he was really the richeft Naturalift, and the molt expert in botanical matters that Spain ever produced. Before the lait fiege of Barcelona, in the years 1713 and 1714, they herborized together in Catalonia, and on the Pyreneans, wini: M. de Tournefort was on his traveis there. They were intimate friends, and carried on a correfpondence fome years: and as I was perfonally acquainted with him for 3 or 4 years, and have
likewife herborized with him before the faid fiege, and have fince been honoured with his friendfhip and correfpondence, I thought it incumbent on me to do honour to his memory, by giving his name to this plant. And I have done it with the greater juftice, becaufe it is certain, that, had he lived, he would have given a hiltory of the plants of Spain, which, by it's accuracy, would have afforded much pleafure to the Botanifts of Europe.

To conclude; from the characters of our Salvadora it is manifeft, that it's place in Tournefori's fyftem ought to be in the firft fection of the 18 th clafs. In the fyftem of Mr Linneus it ought to be placed after the Rivina in the fourth clafs, which receives plants with 4 famina (tetrandria and monogynia).

Ar aquatic Plant found at Bagneres in Galcony ; by M. Sccondas de Monterquicu ; in a letere to M. Folkes, E/fs; Pr. R.S. No. 472. p. 31. Jan \&.c. 1744. Read Mar 8. 1743-4.
II. I have found, at Bagneres, a particular aquatic plant, which I had feen, for the firft time, in the great baton of the boiling fpring at Dax: it bears neither fruit nor flower, as far as appears; it's fubftance is entirely compofed of fmall bladders full of air ; the furface of it is like net-work or canvas; it grows only in the hotteft mineral fprings; it may be found at the fpring, called, de la Reine, at the Batb des Paurres, and at the New Spring ; but moft plentifully at that place where part of the Spring de la Reine iffues out of a rock near the Capucbins. Nobody, as far as I know, has ever fpoken of this plant, before I gave an account of it two years ago, at the public relumption of our academical meetings. The vegetation, and particular qualities of it, may, perhaps, deferve to be more narrowly examined; and I believe it may be properly called, Fucus thermalis veficularis, fuperficie reticulari.

A defription of the Cyanus foliis radicafibus partim integris, partim pinnatis, bractea caly. cis ovali, flore fulphureo; by Albert Haller, Prof. Anat. Ef Bor. Gorting R.S.
Aug. \& Suec. Soc. $\mathrm{N}^{\circ} .472$ p. 94 . Jan. \&c. 1744.

Fig. rob.
III. The root is perennial : the leaves at the rout are various, they are all green and firm, and have a fmall quantity of fhort down. Some are fimple, with entire edges, and others are ferrated. Others are half divided into unequal lobes. Others are varioufly femipennated and jagged. Others are quite pennated, with broad lobes, and the extreme one large and almoft rhomboide. There are other leaves alfo of this fort accompanying the ftalk, with a long, firm, hollow rib, on which are placed a great many pairs of lobes, 12 or more.
The ftalk is a cubit high, winged, and having leaves rifing under the origine of the branches.
The flowers are like thofe of the jacea cullgaris laciniata, but of a full yellow colour, like gamboge, and without fmell. The head is of the fame fize as in the figure.

The calys is globote, contracted at the upper part. The green part of the fcales is oval; the dry part ovato-rhomboide, yellowifh, and fringed. In the upper fales it has fome dry, thin, ferrated additions. The crown is compofed of barren, refext, bilabiated, quadrifid petals. The feed of the fertile ones is crowned with down; the floret is long, crooked, quinquefid, having one fegment deeper cut. The tube of chives

Of the Gcafter ECC.

chives appears out of the floret, and out of that a club headed tube. The ripe feed is a flat oval, and crowned with black hairs.
It was fent me by M. Gerber under the name of jacea laciniata, flore Iuteo magno, Squamis calyoum ciliaribus, splendentibus.

It's native place is in Ruffia, or at leaft on the banks of the Wolga.
By the empalement and Hower, it is a fpecies of jacea, according to Vaillant, according to me a cynnus, and according to Limnous, a centauren, under which name, he comprehends too great a number of plants, to have convenient names affigned them.
IV. Geafter volvec radiis E operculo elecatis. Geafer is a genus of Concerning a plants conttituted by Micheli ; of which the author difcovered 5 Jpecies , and figured them in his Noova Plantarum Genera. It is fo called from minterra, and $\dot{\alpha} \cdot \dot{r}$, fella, on account of fome acute angles radiated from the centre in all the species of this plant, like the corufcations of ftars reprefented in pictures.

This genes is very nearly related to the Iycoperdon (n) of Tournefort and (b) Linnous, or Bovifa (c) of Dillenius, to the (d) Lycoperdoïdes, Lycoperdaftrum, and (e) Carpobolus of Micbeli, (f) Limncus, and his follower (g) van Royen have comprifed all thcfe plants under the generical name of Lycoperdon. But with all the refpect due to thofe eminent mafters of Botany, to whofe rules in conftituting the genera of plants from the fructification I Arictly adhere; yer in many of the Cryptogamia of Linneus, as well as in the Corptantbere of ran Royen it feems to be abfolutely neceffary to have recourfed to the habit of the plant, in conftituting genera; Efpecially in the Fungi, Fuci, Algre, and perhaps in the Capillaries.

In order to form a defcription of this wonderful plant, I Thall confider it in it's 3 parts, the volva, the operculum, and the frucification.

The volva, to fpeak not only with Pliny, but with Clufius alfo, and other moderns, is concave, reprefenting the form of a cup, $1 \frac{1}{1}$ inch in diameter. This cup has a broad bafe, from the centre of which, whilft the plant is ftill growing, it fends forth fmall fibrous roots, but few like the reft of it's kind that fupply it with nourifhment. But as moifture is by no means agreeable to this whole family of plants, the little roots, together with the centre of the volva, into which they were inferted, wither before the plant comes to maturity; which caufes a hole to appear in the bottom of the bafe. But when the volva is rifen to of an inch, it becomes quadrifid, having jaggs obtufely laciniated, a little reflexed at the point but entire at the edges. This volva is elaftic ; on the outfide it is of an afh colour with an uneven furface, but it's infide is fmooth and whitifh.

[^49]From earth of the tips of the reflexed fegments of the volva arifus, that part of the plant, which ! call the operculum. By the gradual extenfion of this part, from it's joining with the volva are formed 2 arches, the heighth of which from the fegments of the colva does not exceed $1 ;$ inch. The fubftance and thicknefs of the cperculum equal thofe of cinnamon; it turns up a little at the edge, it is whitifh within, and of a reddifh yelluw without. We may add, that a fort of brown membrane, divided into 4 unequal parts, adheres to the top of each arch.
From the centre of the operculums juft defcribed, on a pedicle fcarce ; of an inch in heighth, appears a pericarpium, of an oblate fpheroïdal figure, brown, of an inch broad, refembling the head of a poppy. At the top is a circular hole, in which are foine lamell, adhering to the infide of the pericarpiumi, through it's whole length, filled with a woolly fubftance; and to thefe lamelle a great number of feeds, like a very fine duft, adhere, as to fo many placente.
It may feem perhaps very difficult to many Botanifts to comprehend, by what means a proper nourifhment is fupplied to the operculum and pericarpium, whilf the plant is in a fourifhing ftate. They muft therefore be informed, that in the more tender ftate of the plane, the volva and operculum lie fpread on the ground, not unlike ftar-filhes, and are joined together with a fort of glutinous fubftance, by means of which they are nourifhed together with the pericarpizin and feed. In this fituation all the fpecies of Geafer are fhewn by the celebrated Micheli; as is alfo the Fungus crepitus lupi ditus coronatus \mathfrak{E} inferne Jtellatus firft mentioned by our great Mir Ray (a), of which there is a figure (b) in the third edition ot his Syn. Stirp. Brit. But when the feed is ripe, the glutinous matter, which lies hetween the rolva and the operculum, dries up; which makes them rigid and elaftic; whence they appear divided, except at the tips of the fegments. Things being thus conftituted, the radii of the volva, the operculum, and the fruit, gradually arife, and the whole plant nearly reprefents an arched tower. This manner of reafoning, for no one has hitherto had the opportunity of examining it as it grows, fearce admits of any doubt, fince the wrinkled exterior coat of the volva at this very time contains not only fand, but alfo a fmall ftone. We learn alfo on the authority of Micheli (c) that the Carpobolus, which, as I faid before, is very nearly related to the Geafer, cannot only raife it's operculum from concave to convex, but even do it violently in an inftant, fo that it's fmall globofe fruit is thrown up on high.

I have never feen more than 2 fpecimens of this plant, which were communicated to me by Mr Robert Nicbolls, Apothecary of London. The larger was gathered not far from Reading by Dr Merrick: the fmal. ler was found near Wickbam in Kent; both of them about the end of March.
A. the
(a) Raii Synopf. Ed. 2. p. 16. (b) Tab. I. (c) Nov. Plant. Gen. Tab. 101.

A. The Pericarpium. B. the Operculum. C. the Volva.

The Pericarpium feen in front; of which A is the circular foramen.
Fig. 107.
Fig. 108.
V. In the latter part of the fummer of $1744, \mathrm{Mr}$ Ebret the Painter 1 n account of brought me a Fungus of a very extraordinary fhape and fize, which had a new pecties been lound growing on a piece of the trunk of an elm, in a damp cellar in the Hay-Market.

The whole plant was about 2 feet in height; and, at firlt fight, feemed not very unlike the horns of fome deer. being varioully branched, and covered with a thick down. It was of a fpongeous fubftance, and of a dufky-red colour inclining to black. The tips of the fmaller branches were of a cream-colour. The larger branches or rather the tops of the whole plant, were expanded in form of a funncl, fmooth on the concave, and full of pores on the convex fide. The inner and lower part of the funnel was of the fame colour with the ftalk; the reft of it was of a cream-colour

1 have not been able to find, that this plant has been mentioned by any author: and am perfuaded, that it is a new fpecies; and, perhaps, the remarkable branching of the ftalks may induce fome to think it a new Genus. As the funnel may be efteemed a cap, and as this cap is not lamellated, it will be a Boletus, according to the method obferved in the ${ }_{3}$ Edit. of Ray's Synopfis. According to Micheli it feems to belong to the genus of polyporus. The method, which I have long ufed in the diftribution of this clafs, is expreffed in the following fynoptical table, which, I think, comprehends all the fpecies hitherto known.

F U N G I funt,
lamellati,
; cauliferi ; AMANITA.
ifeffiles; AGARICOIDES.
porofi,
$\left\{\begin{array}{l}\text { cauliferi ; BOLETUS. } \\ \text { feffiles; BOLETOIDES. }\end{array}\right.$
cancellati, aut fcrobiculis excavati ; $\{$ ex pila erumpentes; PHALLUS, \{ ex pila non erumpentes; MERULIUS. echinati ; ERINACEUS.
in pulverem abeuntes; LYCOPERDON. folidi,
§cauliferi ; CHANTERELLA.
\{ feffiles,
\{ calyciformes; PEZICA.
$\sum_{\text {non calyciformes, }}$ in longitudinem product; DIGITELLUS. $\{$ horizontaliter prodeuntes; AGARICUS. \{ubterranei ; TUBER.

A Defcription of a curious Sea-Plant.

According to this method of mine, as well as that of the Editor of Ray's Sywpfis, the plant in queftion will be a boletus: and, as I do not think it neceffary to conftitute a new genus, I have taken the liberty to call it

BOLETUS caule ramiofo; fummitatibus concavis expanfis; ramis

Fig. 100 .
A defeription of a cusioss Staplant; by Sir Hans Sloane, Rart. M1 D. lare Pref R.S. and Col Med Lond. $\mathrm{E}^{\circ} \mathrm{C} \mathrm{N}^{\circ}$ 478 P. 51 Jan \& Feb :745. Read Feb. 6. 1745-6.
Fig. 110.

Fig 11.
Fig 112.
VI. King Cbarles the fucond had in his clofet at Wbiteball, this coralline (as I call it)*; which, I fuppofe, had been prefented to him by fome of his fea olficers, appointed to cruife in the foundings, lying off the W. of Englaind, towards the Atlantic Ocean. I have had it from thence entire, and in perfection, from fome of the late commanders on that ftation (of which I here give an entire figure when young) who, by their founding lines, brought it up from the rocks at the bottom of the fea; and which being a very curious coralline, I wonder it has been io little taken notice of.

It rifes to 4 feet high, from a woody bafis, near an inch diameter, giving it a firm foundation on the rocks in the bottom of the fea, fpreading out it's branches like a fan, the lubftance or inner part of which is woody, of a light brown, or blackifh colour (as at a, b_{2}) covered all over with a thin cuberculated cruft, of an afh-colour, or fometimes yellowith, feldom joined together, as the rete marimum, but loofe, and difforted ; and not ftrait, as moft of this kind.

I have hadirfrom Tangier, Antigua, and Neciofoundland; from which Jaft place, one with the fella arborefsens Rondeletii, p. 121. (mentioned by Mr Wintborp, in thefe Tranf. $\mathrm{N}^{0} \cdot 57$. p. 1152.) having it's branches fattened ieveral times round thofe of this coralline; a branch of which is here figured, with the animal fticking to it, at Fig. 111. in which a is the mouth, and Fig. 112. reprefents the back part of it, having a crack in it by fome accident. The fineft of this kind was given me by the late Duchefs of Beoufort; who toid me, fhe had it prefented to her by the late Colonel Codrington, Proprietor of the inand of Barbuda; from whence in all likelihood he had it.

I do not pretend to give a new name to this coralline, to make confufion; but only mention fuch authors, as have already taken notice of it; of whom Yobrn Baubin is the firft that cefcribes it plainly, buth by words, and an imperfect figure of a fmall piece or branci, which he had communicated to him by a perfon whom he does not name, by reafon (as I fuppofe) he had by ftealth broke it off a large branch, kept in what he calls Theatrum Naturaliun Serenifime Regine Angliee; whom I fuppofe to be Queen Elizabetb; and which, to my knowledge, is too much practifed lince by unworthy perfons.

[^50]

A Catalogue of Plants, \&cc.
It is likely, that many of the coralline fubtances mentioned by authors, may be this, or parts of it, the cruft being rubbed off more or lefs, and it's colour changed, and thercby deffribed for different corallines.
VII.

No. 474. p. 189. Ann. 1742. 100:. Abrotantins Lini folio acrioti Bs A catalogue odorcto Tourn. Draco berba of plants prePark. Tarragon. Fented to the
No. 472. p. 75. Ann. 1741. 951. Abfinthium Ponticunn Galeni Ger. Cmm. of Apo. 952. Absintbitum Tanaceti folio odora- London, partiffimuin Amm. $p .11^{1} 4^{2}$. The fuant to the moft odorous Wiormwood Sir Hans with Tanfey leaves.
No. 474. p. 189. Ann. 1742. 1002: Mbutilon Americanum Ribrfii fo- by Mr Jofeph lio, flore carneo, fruestu penta- Miller, Apogono afpero Hoult. American ${ }^{\text {tbecary, }}$ Chelf Preef. Abutilon with currant leaves, \& Prelect. a flefh-coloured flower, and a Botan. rough five cornered fruit.
No. 494. P. 359. Ann. 1748. 1301. Abutilon Lavatera flare, frusiu criftato Hort. Elt. Abutilon with a flower like Lavatera, and a crefted fruit.
No. 480. p. 213 . Ann. 1744. 110r. Acacia Americana, flore albo, pinnis latiufculis glabris, filiquis latis Houfton. American Acacia, with a white flower, broad fmooth leaves, and broad pods.
No. 480. p. 213. Ann. 1744. 1102. Acetofa arborefcens, ex. Infulis Fortunatis Pluknet. Shrubby Sorrel with a round leaf, from the Fortunate Iflands.
No. 494. p. 359. Ann. 1748. 1302. Acetofa rotundifolia repens Eboracenfis, folio in medio deliquium patiente *. Creeping roundleaved Sorrel of the North.
No. 474. p. 189. Ann. 1742.1003.\} Aconitum caruleum, five Napellus
$\mathrm{N}^{\circ} .475 \cdot \mathrm{p} \cdot 403$. Ann. 1749.135 I. S
C. B. 183. Blue Helmet-flower or Monks-hood.
No. 476. p. 421. Ann. 1743. 1051. Aconitum byemale Ger. Park. Winter Wolfs-bane.

$$
\begin{equation*}
4 X_{2} \tag{N.484.}
\end{equation*}
$$

A Catalogue of Plants, \&c.
N‥ 484. P. 597. Ann. 1745. 1152 . Aconitum Lycoitonum caruleum calcari oblungo f. B. Blue Wolfs-bane with a large fpur.
No. 474. p. 189. Ann. 1742. 1004. Aconitum Lycoitonum luteunn C. B. The yellow poifonous Wolfsbane.
No. 495. P. 403. Ann. 1749. 1352. Aconitum Pyrenaicum, ampliore folio tenuius laciniato T. 424 . Pyrenean Wolfs-bane, with a larger leaf, divided into finer fegments.
No. 484. p. 597. Ann. 1745.1151. Acorus verus, five Calamus aromaticus. Off. \& C. B. The fweet-fmelling Flag or Calamus.
No. 491. p. 43. Ann. 1746. 1203.
Acriviola maxima, odorata, fore pleno Bcerb. The great double Nafturtium, or Indian Crefs.
No. 495. P. 403. Ann. 1749. 1351. Adbatoda minor Canarienfis Pluk. The fmaller Canary Adhatoda. N°. 491. p. 43. Ann. 1746. 1201. Adiantum Americanum Cornut. Black Maiden-hair of America.
1202. Adiantum nigrum Offic. Common black Maiden-hair, or Oak-fern.
No. 484. p. 597. Ann. 1745. 1153.
Adonis alias Erantbemum, F. B. Adonis flower, or red Maithes. 1154. Agrimonia Orientalis, fpica brevi crafla, Esc. Tourn. \dagger Dwarf Eaitern Agrimony, with thick creeping roots, and the fruit growing in fhort thick fipikes.
No. 494. P. 359. Ann. 1748. 1303. Agrimonoides Column. E., I. 145. Baftard Agrimony.
No. 491. p. 43. Ann. 1746. 1204. Alaternoides Africana Telepbiz Imperati folio Hort. Amft. Baftard Alaternus of Africa, with leaves like the Telepbium Imperati.
No. 472. P. 75. Ann. 1741.953. Alcea senuifolia crippa F. B. Narrow curled leaved VervainMallow.

+ Agrimonia Orientalis, buntilis, radice crafisfima repente, frudiu in ficicam brevem Ef denfam congefio Tourn. Cor. 21.

A Catalogue of Plants, \&c.
N°. 494. P. 331. Ann. 1747. 1251. Alcbimilla Alpina Quinquefolii folio, fubtus argenteo 7. R. H. 218. The Alpine five-leaved Ladies Mantle with the under part of the leaves white.
Alnus nigra Offc. The black Alder-tree.
AlyJoides incanum, foliis finuatis Int R. H. 218. Hoary Alysfoides with finuated leaves.
1253. Alvyon Creticum, foliis angulatis, flore violaceo T. Cor. 15. Candy Madwort, with angular leaves, and violet coloured flowers.
1254. Aly.fon Creticum, Saxatile, foliis undulatis, incanis T. Cor. 15. The Alyfon of Candia, with hoary undulated leaves.
———P. 359. Ann. 1748. 1304. Aly yon fruticofum incanum Tourn. hoary, fhrub Madwort.
Anarantboides Lycbididis folio capitulis argenteis Tourn. The white or filver coloured Globe Amaranthus, or Eternal flower.
956. Idem capitulis purpureis. The purple Globe-A maranthus, or Eternal-flower.
954. Amarantbus maximus Offic. purpurcus major Park. The tree Amaranth.
No. 484. p. 597. Ann. 1745. 1155.
Amarantbus Siculus Spicatus Boccone. Boccone's perennial fpiked Flower-gentle of Sicily.
No. 474. p. 189. Ann. 1742. 1005. Ammi majus Off. C. B. ${ }^{159 .}$ Common broad-leaved Bihops Weed.
No. 494. p. 359. Ann. 1748. 1301. Anantbocyclus Coronopi folio Vaill. Ananthocyclus with a Buckshorn leaf.
No. 474. p. 181. Ann. 1742. 1006. Ancbufa purpurea Park. Purple Alkanet.
No. 472. p. 75. Ann. 1741. 957. Anifum Offic. berbariis C. B. Annife.
№. 474. p. 189. Ann. 1742. 100\%. Anonis non Jpinofa, vifcida, hirfuta, odore Theriace Hort. Catbol. Hairy, vifcous Reftharrow

A Catalogue of Plants, Sxc.
N^{0}. 494. p. 359. Ann. 1748. 1306.
N. $495 \cdot$ P. 403. Ann. 1749, 1354.

No. 49 1. P. 43. Ann. 1746. 1306.
$\mathrm{N}^{\mathrm{O}} \cdot 475$. p. 42 I. Ann. 1743. 105^{2}.
No. 484. p. 597. Ann. 1/445. 1156.
No. 495. p. 403. Ann. 1749. 1354.

NO. 474. p. 189. Ann. 1742. 1008.

No. 491. p. 43. Ann. 1746. 1207.
harrow, without fpines, and fimelling like Venice Treacle.
Anonis purpurea, spicata, alopecaroides major Boerts. The greater fox-tail, purple, spiked Reft-harrow.
Apocyuum majus Syriacum rectum Cornut. 91. The greater upright Syrian Dogs-bane.
Aquilegia bortenfis multiplex, fore * pleno C. B. Double Columbines.
Arbutus folio ferrato C. B. Straw-berry-tree.
Arifolocbia, Clematitis reEia Off. E C. B. Creeping Birthwort.
Ariftolocbia, Piffolocbia Cretica. The ever-green Birthwort from Crete.
Arum Africanum fore albo Parad. Bat. The African Arum with white flowers.
Arum maximum, quod Colocafia vulgo caulibus nigricantibus Hort. Lugd. The greateft Egyptian Arum with blackifh ftalks.
No. 476. p. 421. Ann. 1743.1053. Arum venis albis, lituris nigris maculatum Hort. R. Par. The white-veined Arum, fpotted with black.
No. 494. p. 360. Ann. 1748. 1307. Afarina caule ereEto ramofo, foliis oblongis acutis fefflibus, floribus ereEtis. Upright MJarina with long fharp-pointed leaves.
p. 331. Ann. 1747. 1255° Afarum Dod. Pempt. 358. Offic. 54. Afarabacca.

No. 472. p. 75. Ann. 1741. 859. Afparagus aculeatus fpinis borridus C. B. Prickly Sparagus or Sperage.
858. Afparagus fylveftris tenuiffmo folio C. B. Wild Sparagus or Sperage with narrow leaves.
No. 491. 1. 43. Ann. 1746. 1208. Apperula odorata, flore albo Offic. E Dodon. Wood-roof.

No. 484. P. 597. Ann. 1745. 1157. After Atticus caruleus rulgaris
C. B. P'urple Italian Starwort. No. 491. p. 43. Ann. 1746. 1209. Afterifcus perennis marieimus patulus Tournef. The maritime perennial dwarf yellow Starwort. No. 476. P. 42 I. Ann. 1543. 1054. Afteroides Alpina, falicis folio Tcurn. Baftard Starwort of the Alps, with a Willow leaf.
No. 494. p. 360. Ann. 1748.1308.
Afragalus annuus, angufis foribus, pediculis longis Tourn. Annual Milk.Vetch, with narrow flowers, and long foot-ftalks.
————P. 331. Ann. 1747.1256. Afragalus luteus annuus Monspeliac procumbens Mor. Hif. Yellow annual trailing MilkVetch of Montpelier.
No. 494. p. 360. Ann. 1548. 1310. Afragalus luteus perennis procumbens vulgaris five fylveftris*. Wild-Liquorice or Liquorice-Vetch.
No. 480. p. 213 . Ann. 1744.1103. Aftragalus luteus perennis faliqua gemella rotuida Tourn. Yellow perennial Milk-Vetch with a round pod.
No. 4.94. P. 360. Ann. 1748. 1309. Aftragalus Orientalis altiff. Galege foliis T. Tall Oriental MilkVetch with Goats-rue leaves.
No. 480. p. 213. Ann. 1744. 1104. Aftragalus pumilus filiqua epiglothidis forma Tourn. Dwarf Milk-Vetch with a pod Shaped like the epiglottis.
1105. Atriplicis marine species Valerandi: F. Baub.

No. 495. p. 403. Ann. 1740. 1356. Baccbaris Africana, Coronopi folio Vaill. Acad. African Plowman's Spikenard with a Buckshorn leaf.
$\mathrm{N}^{0} \cdot 484 \cdot$ p. 597. Ann. 1745.1158 . Balfamina famina C. B. The female Balfam Apple.
No. 474. p. 189. Ann. 1742. 1009. Balfamita major Dod. Coftus Hortorum Off. The greater Coftmar.
No. 495. P. 403: Ann. 1749. 1357.
dibus pinnatis; flore caruleo Boerb. The African Jupiter's

* Mor. Hif.

Beard with deep green leaves and blue flowers.
No. 480. p. 213 . Ann. 1744. 1106. Barba Fovis Hifpanica incana flore luteo Tcurn. Spanifh Jupiter's Beard.
No. 476. p. 42 I. Ann. 1743. 1055. Barbarea J. B. flore fimplici Park. Winter Cieffes.
N^{J}.484. p. 597. Ann. 1745.1159. Bellis radice repente, latioribus ferratis foliis Morifon *. Cretp-ing-rooted Ox-eye Daifie with broad ferrated leaves.
No. 472. p. 75. Ann. 1741. 961. Bellis fpinofa foliis Agerati C. B. Santolina Jpinofa Agerati folits Tourn. Prickly-leaved naked yellow Daifie.
960. Betonica Alpina incana purpurca Barellier Icon. Hoary Alpine Betony with purple flowers.
No. 474. p. 189. Ann. 1742. 1010. Bidens folio tripartito, divifo Tourn. Water Hemp-Agrimony, with a yellow flower.
No. 484. p. 597. Ann. 1745. 1160. Bidens foliis non diffectis Tourn. Water Hemp-Agrimony with an undivided leaf.
No. 480. p. 213. Ann. 1744. 110\%. Biftorta major, radice minus intorta C. B. The greater Biftort or Snake-weed.
No. 495. p. 403. Ann. 1749. 1358. Blattaria alba C. B. 241. The white Moth-Mullein.
No. 476. p. 421. Ann. 1743.1056. Blitum perenne: Bonus Henricus $^{\text {1 }}$ 7. B. G. Englifh Mercury or All-good.
No. 494. p. 331. Ann. 1747. 1257. Borrago Conftantinopolitana, fore reflexo caruleo, calyce vefic. T. Cor. Borrage of Conftantinople, with a blue reflexed flower , and a fwelling empalement.
——p. 360. Ann. 1748. 1312. Brunella folio laciniato C. B. 261. Laciniated Self-heal with a fmall white flower.
1311. Brunella major, folio non diffecto C. B. 260. Off.386. Common Self-heal.

* Bellis major radice repente foliis letioribus ferratis D. Morif. Pralud. Bot. Hif. Ox. iii. 29.

No. 494. p. 360. Ann. 1748. 1313. Bugloffum Creticum majus, flore creruleo purpurante H. K. Par. Greater Buglofs of Candy with a blue flower inclining to a purple colour.
--p. 33 1. Ann. 1747. $135^{8 .}$
Bugloflum Creticum vierrucofum perlatum quibujdam H. R. ''ar. Warted Buglós from Crete.
No. 474 . p. 189. Ann. 1742. 1011. Buglofurn latifolium Sempervirens C. B. Ever-green Borrage.
1012. Bugloffum Orientale, fore lusea Tourn. The Eaftern Buglofs with yellow flowers.
No. 472. p. 75. Ann. 17.41. 962. Bugula Orientalis fiore inverso creruleo Tourn. * Hairy Eattern Bugle, with an inverted blue flower, fpotted with white.
No. 491. p. 43. Ann. 1746. 1210. Buphtbalmum Orientale, Tanaceti minoris folio, fore luteo amplo \dagger Tourn.
No. 495. p. 403. Ann. 1749. 1359. Bupleurun foliis linearibus acutis Sefflibus Fl. Leyd. Hares-ear, with narrow fharp-pointed fef? file leaves.
No. 480. p. $21 \hat{3}$. Ann. 1744.1108. Burfa-Paftoris major, folio fonuato eleganti, inftar Coronopi repentis C. B. Greater Shep-herds-purfe, with an elegant finuated leaf.
No. 491. p. 43. Ann. 1746. 1211 . Calendula minor Hifpanica Hort. Lugd. Bat. Small Spanifh Marygold.
No. 480. p. 213. Ann. 1744.1109. Calendula i| polyantbos maxima C. B. The larget double Marygold.
1111. Calthoides, foliis oblongis, cafiis, craffis Shaw Specimen. Calthoides with thick, bluifh-green, oblong leaves.
No. 474. p. 189. Ann. 1742. 1013. Campanula bortenfis, folio छ fore oblongo C. B. 94. Coventry Bells.
V OL. X. Part ii.
${ }_{4}$ Y
No. 494.

- Bugula Oriensalis, villofa, fore inverjo caruleo, alba macula notaso Tourn. Cor. 14: + Amplifimo. \| Caltha. cifis Mor. Ilift. 2. 458. Small annual cut-leaved Bell-flower, or Venus's Looking glafs.
——p. ${ }^{260 .}$ Ann. 1748. 1314. Companula minor, foliis incifis H. L. B. Sinall cut-leaved Bell-flower.
No. 474. P. ISg. Ann. 1/42. 1014.
Campanala Perface folio, flove albo pleno Lob. The couble Peach-leaved Bell-flower.
$\mathrm{N}^{\mathrm{o}} .476$. p. 42 1. Ann. 1743. 1057. Canella alba Off. Cort. Winteranus vulgo Winter's Bark.

1058. Cardiaca flore canefcente Amman. Mother-wort with a hoary fower.
No. 474. p. 190. Ann. 1742. 1015. Carduus acaulis minor, fore purpureo C. B. 380 . * Dwarf Carline Thifte.
1059. Carduus aculeatus, Ptarmicae AuAriacae folio Triumfetti. Prickly Thiftle with leaves like the Auftrian Sneezewort.
No. 484. p. 507. Ann. 1745.1161. Carthamus Off. flore croceo Tourn. Baftard Saffron or Saf-flower. N°.472. p. 75. Ann. 1741. 964. Carthamus Africanus folio Ilicis, flore aureo Boerb. Shrubby African Baftard Saffron with an ever-green Oak leaf, and a golden flower.
N^{o}. 474. p. 190. Ann. 1742. 1018.
$\mathrm{~N}^{\mathrm{O}}$. 494. p. 331. Ann. 1747. 1260.
Carum Off. Carawaies.
Caryopbyllata montana, ficre luteo, nutante H. R. Par. Mountain Avens, with ycllow nodding flowers.
No. 480. p. 213. Ann. 1744.1112. Caryophyllus barbatus fylveftris C. B. Deptford Pink. N^{0}. 484 . p. 597. Ann, 1745. 1163.

Caryopbyllus Sinenfis fore vario Rand. Hort. Cbelf. Chinefe Pink with a variable flower.
1162. Catanance fore luteo latifolia + Tourn. Broad-leaved Candy Lion's-foot with a yellow fower.

* There is no fuch name in Bauhin's Pinax : I fuppofe the Carlina acaulos minore purpureo flore of that author is the plant intended.
+ latiere folio.

No. 494. P. 3^{60}. Ann. 1748. 1315 . Cataria minor Alpine T. Inf.
————P. 332. Ann. 1747.1261. Cataria, qua Ncpeta mizinor foliis Meliffe Turcice Hort. Cuth. Lsfier Catmint with leaves like Turkey Baum.
No. 49 5. P. 403. Ann. 1749. 1360. Censanyea calicibus Setaceo-Spinolis, foliis lanceclatis petiolatis dentetis Hurt. Cliff. Great Centory with fpear-pointed leaves.
No. 480. p. 213. Ann. 1744.1113. Centaurium majus Alpinum luteum C. B. Greater yellow Centory of the Alps.
1ir4. Centaurium minus luteum perfoliatuin 7 . B. Yellow Centory.
1115. Cerintbe major, ficre verficalore C. B. * Great Mountain Ho-ney-wort.
N'. $49+$ P. 360 . Ann. 1748. 1316. Cerinttie minor, flaso fore C. B. 258. Yellow flowered Honeywort.
No. 484. P. 597. Ann. 1745. 1164. Cbamecerafus Alpina fructu gemino rubro C. B. Mountain upright Honey-fuckle with red berries.
No.491. p. 43. Ann. 1746. 1212. Cbamepitys lutea vulgaris, folio trifido C. B. \& Oßfc. Common Ground-pine.
No. 494 p. 360 . Ann. 1748. 1317 . Chenopodio-morus minor Boer. Ind. 91: Smaller Bloody Spinach.
\mathbf{N}^{0}. 494. P. 332. Ann. 1747. 1262. Cbondrilla Soncbi foliis t, flore purpurafcente major Tourn. 475 . Blue flowered Mountain Lettuce of the woods.
No. $480 . \mathrm{p} .2$ 2.3. Ann. 1744. IIIO. Cbriftophoriana vulgaris Park. Herb Cbriftopher or Bane-berries.
No. 484. p. 597. Ann. 1745. 1166. coii folio craflo Pluk. Corn Marygold of Bermudas,

* Cerintbe quorundam major verficolore fiore J. B. \quad † folio.

4 Y 2
N". 480.
111. Cbrysanthemum fore plero I curn. Corn Marygoid with ciouble Howers.
1118. Cbryfantbemuin mixtum, fore pleno Hort. Eyst. Mixt Corn Marygold with a double flower.
No. 484. p. 598. Ann. 1745. 1166. Cirfium Anglicum Ger. The Eng-

116\%. Cifus famina Salvia folio C. B. Female Rock-rofe with Sage leaves.
No. 494. p. 360. Ann. 1748. 1318. Ciffus ladanifera Hifpanica, flore albo macula punicante infignito.* Spanih gum-bearing Cijfus, or Rock-rofe, with Willow leaves, and white flowers fpotted with purple.
No. 484. p. 598. Ann. 1745. 1169.

Ciffus ladanifera Hifpanica Salicis folio C. B. † Spanifh gumbearing Cifus or Rock-rofe, with Willow leaves and white flowers.
1168. Ciffus mas Lufftanicus folio amplifimo incano Tourn. Male Portugal Rock-rofe, with an ample hoary leaf.
No. $\mathrm{H7}^{2}$. p. 75. Ann. 1741. 963. Cilrullus Eive Anguria vulgo Park. Citruls.
No.491. p.43. Ann. 1746. 1214. Clinopodiume Americanum. rotundifolium, Pullegii odore Houff. Round-leaved American FieldBafil, with a fmell of Pennyroyal.
1313. Clinopodium minus Ocimi facie. C. B. § Wild Bafil.

No. 494. P. 332. Ann. 1747. 1263. Clutia foliis petiolatis Linn. Hort: Cliff. Clutia with foot-ftalks. to the leaves.

[^51]N°.474. p. 190. Ann. 1742. 1017. Cnicus AtraEtylis lutea dithus Off. Hort. Lugd. Bat. The Diftaff Thirtle.
№. 480. p. 214 Ann. 1744. 1119. Colutea EEtbiopica fore pharvicee; Barbe Yovis folio Breyn. Aithiopian Bladder-Senna with ficarlet flowers and leaves like the Silver Bufh.
N’. 480. p. 214. Ann. 1744. 1120. Coma autrea Africana fruticans, foliis Linarice anguftis Horr. Amft. African fhrubby Guidilocks.
No. 495. p. 403. Ann. 1749.1361. Commelina foliis crato-lanceolatis; petalis tribus majoribus equalibus Linn. Commelina with oval lanccolated leaves, and the three greater petals equal.
No. 494. p. 360. Ann. 1748..1319. Commelina radice Anacamp ferotis Hort. Elt. Tab. 79. Commelina with a root like O_{rf} pine.
No. 495. P. 403. Ainn. 3749.1362. Conicolvulus argenteus elegantiflmus; foliis tenuiter incijes Int. R. H. The moft elegant Silver Bindweed with fine cut leaves.
\mathbb{N}°. 491. p. 44. Ann. 1746. 121 5. Convolvilus caruleus major, folio fubrotundo Ger. Park. The greater Bindweed with roundinh leaves.
No. 476. p. 421. Ann. 1743.1059. Convolvulus caruleus minor Hi.panicus Park. Spanifh, blue, leffer Bindweed, with an ob: long leaf.
No.495. P.404, Ann. 3749. 1363. Convolvulus peregrinus pulcher folio Betonica $\mathcal{F} . B$. Bindweed with Marlh-mallow leaves.
1364. Convolvulus Siculus minor; fore parvo auriculato Bocc. Rar. Small blue-flowered Sicilian Bindweed.
No. 472. p. 76. Ann. 1741. 965. Conyza bumilior, Linaria folio, foribus luteis umbellatis Amm 141. L.ow Flea-bane with 'Toad-fax leaves, and yellow umbellated flowers.
$$
\mathrm{No}^{\mathrm{O}} .4 \mathrm{~S}^{1},
$$

No. 491. p. 44- Ann. 1746. 1216. Conyza minima Ger.emnc, Small Fileabane.
No. 494. P. 3^{60}. Ann. 1748. 1310. Cornus foliis lancolatis acutis fubsus ircanis, umbellis minoribus. Cornel with fharp fpear-pointed leaves, hoary underneath, and fraiter umbells.
No. 49r. p. 44. Ann. 1746. 1217. Corona Solis annua, fore pleno Tourn. The double annual Sun-flower.
1218. Coronilla berbacen, ficre vario Tourn. Herbaceous jointed-podded Coluten, with a variable flower.
No. 494. P. 360. Ann. 1748. I311. Coronilla leguminibus teretibus articulatis erestis Fl. Leyd. 387. * Candia herbaccous jointedpoided Colutea with a fmall purplifh flower.
№. 484. P. 598. Ann. 1745.1170. Cotyledon Africana fruteficens fore coccineo umbellato, Commecin. Shrubby African Navel-wort, with fcarlet umbellated flowers. No. 480. p. 214. Ann. 1744. 1121. Cuminoides Tcurn. Baftard or Wild Cummin.
1122. Cyanus minor, fore purpureo C. B. Small Blue-bottle with a purple fower.
No. 472. p. 76. Ann. 1741. 966. Cyanus Turcicus, feu orientalis odoratus major Park. 'The Sultan fower.
No. 494. p. 360 . Ann. 1748. 1322. Cynog lofum Creticum argenteo folio C.B.† Candia Houndstongue with narrow filver coloured leaves.
No. 476. p. 42 1. Ann. 1743.1060. Cyperus odoratus radice longa C.B. The ordinary fweet Cyperus, or Englifh Galingale.
1061. Cyperus rotundus efculentus angufitiolius Ibid. Sweet Cyperus, or Rufhmit.
No. 484. P. 598. Ann. 1745. 1171. Cytifus Alpinus fore luteo racemofo pendulo. Bean-trefoil, with a yellow fower, hanging in bunches.

[^52]$$
N^{\circ} .476 .
$$

No. 476 . p. 42 T. Ann. 1743. 1063. Cytifus glaber folitis fubroturdis pediculis brevifhais C. B. RoundJeaved fmooth Bafe Shrub-Trefoil with fhort foot-ftalks.
1062. Cyitifus incanus, filiquis falcatis Ib:d. Shrubby three leaved hoary Moon-tretoil.
N゚. 472. p. $7^{6 .}$. Ann. 1741. 96\%. Dierammus montis Sipyli. Sir Geo。 Wheeler. Dittany of Mount Sipylus.
No. 480. p. 214. Ann. 1744. 1123. Digitalis lutea magno fiore C. B. Fox-glove with a large yellow flower.
No. 495. p. 404. Ann. 1749-1365. Digitalis lutea major; parvo flore Mor. Hift. Great yellow Foxglove with a fmall flawer.
No. 474. p. 190. Ann.1y42. 1019. Doronicum Americanum Park. American Lcopard's-bane. Dorycnium Monfpelienfum Lob. Icon. Shrub-trefoil of Montpelier.
No. 476. p. 42 1. Ann. 1743. 1064. Draba foliquis donata C. B. ${ }^{*}$
No. 495. p. 404. Ann. 1749. 1366. Dracocepbalon Canariense tripbs?loin ; Cedronella H. Amfel. Trifoliated Dragon's-head of the Canary Mands.
1367. Ecbium Creticum angufifolium rubrum C. B. Narrow-leaved Candia Viper's Buglofs, with a red flower.
No. 472. p. 76. Ann. 1745. 968. Elaterium Tourn. Cucumis afininus Ger. Wild Cucumber.
 Tourn Broad-leaved American Eternal-flower.
1020. Elicbryfum, feus Stacbas citrina angujfifolia C. B. Goldilocks or Caffidony.
No. 484. p. 598. Ann. 1745. 1174. Elicbryym Spicatum Tourn. Spiked Eternal-fiower.
N°. 495. p. 404. Anns 1749. 1368. Emerus. Amoricanus, filiqua incurva Inft. R.H. \dagger American Scorpion-Senna with a crooked pod.

- I do not find this name in the aushor here quored.
+ This name is not in Tournefort's Infitutioncs R. H.

A Catalogue of Plants, \&ec.
No. 484. p. 59S. Ann. 1748. 1172. Emerus Tourn. "Colutea Scorpioides rark. The leffer Scorpion Senna.
1173. Epbedra major maritima Tourn. Greater Sea Horfe-tail.
No. 494. p. 33^{2}. Ann. 1747. 1266. Eryimum Orientale, foliis Sonchi, flore fulphureo, filiquis longiffomis Boerb. Oriental Hedgemuftard, with Sow-thiftle leaves, a pale yellow flower, and very long pods.
No. 474. p. 190. Ann. 1742.1022. Eryfimum polyceratium vel corniculatum C. B. ror. Hedgemuftard with many crooked pods.
No. 472. p. 76. Ann. 1741. 969. Euonymo adfinis Etbiopica fruelu globofo, Salicis folio Plukn. An Ethiopic plant approaching to the Spindle-tree, with a globote fruit, and Willow leaves.
No. 494. p. 332. Ann. 1747.1165. Euonymus latifolius C. B. 42 8. Broad-leaved Spindle-tree.
1164. Euonymus vulgaris, granis rubentibus C. B. 428 . Spindle-tree or Prickwood.
No. 491. P. 44. Ann. 1746.1219. Eupbrafia pratenfis rubra C. B. Red meadow Eye-bright, or Eye-bright Cow-wheat.
No. 474 p. 190. Ann. 1742. 1023. Fabago Belgarum, fire Peplus Parifienfium Lugdunenf. BeanCaper.
No. 476. p. 42 1. Ann. 1743. 1665. Fagopyrum rulgare erectuen Tourn. Common upright Buck-wheat. No. 480. p. 214. Ann. 1744. 1125. Filipendula omni parte major Boerbaave t. Larger Dropwort with a narrower leaf.
No. 474. p. 190. Ann. 1742. 1324. Filix mas aculeata, pinnulis auriculatis anguftioribus Raii\|. Prickly Male-Fern with narrower leaves.
N°. 484. p. 598. Ann. 1745. 1176. Fritillaria alba procox C. B. The early white Fritillary.

[^53]1 Catalogue of Plants, \&c.
No. 494. p. 332. Ann. 174\%.1267. Iritillarialutea, foliis Polygonati, - fructu breviore Boerh. 2. 139. Yellow Fritillary, with Solo-mon's-feal leaves, and a fhorter fruit.
 gaia C. B. Common Fritillary or chequer'd Lily.
No. 491. p. 44. Ann. 1746. 1220. Galega Africana, floribus majoribus, E JLliquis craflioribus Tourn. African Goat's-rue with large flowers and thick pods.
No. 484. P. 598. Ann. 1745. 1177. Galega vulgaris foribus caruleis C. B. Common Goat's-rue with blue fowers.
No. 495. p. 404. Ann. 1749. 1369. Gallium faxatile minimum fupinum E pumilum Inft. R. H. 115 . The fmalleft fupine dwarf L.adies Bedftraw.
No. 474. p. 190. Ann. 1742. 1025: Genifta juncea J. B. Hifpanica Ger. The Yellow Spanifs Broom.
1026. Gentiana Alpina magno fore F.B. Large flowered Gientian of the Alps, commonly called Gentianella.
No. 484. p. 598. Ann. 1745. 1177. Gentiana Offic. major lutea C. B. The moft common great Gentian or Felwort.
No. 491. p. 44. Ann. 1746. 1221. Geranium Africanum Malva folic, petalis florum inferioribus vix confpicuis Index. Hort. Cbelf. African Mallow-leaved Cranesbill, with the lower petals fcarce difcernible.
No. 494. p. 332. Ann. 1747. 1268. Geraniunt latifolium longifima acte C. B. 319. Candy Cranes-bill.

No. 480. p. 214. Ann. 1744.1126. Geum folio rotundo majori, pifillo foris rubro Tourn. London Pride or None-fo-pretty.
1127. Geum folio fubrotundo minori \dagger. Sanicle with a leffer roundifh leaf, and a red pointal.

- Subrotundo. $\quad+$ Geum fol. fubrot, min. pintillo floris rubro Tourn. VOL. X. Part ii.

42
$\mathrm{N}^{\circ} .474^{\circ}$
$\mathrm{N}^{\circ} .474$ P. 190. Ann. 1742. 1027. Glaucium flore luteo Tourn. Yellow horned Poppy.
No. 476. F. 422. Ann. 1743.1066. Glaucium flore purpureo Tourn. Purple horned Poppy.
N^{0}. 495. p. 404. Ann. 1749. 1370. Glaucium birfutum flore phaniceo Tourn. Hairy horned Poppy with a deep fcarlet flower.
1371. Glaucium Orientale fire magno aureo * T. Cor. Ealtern Horned Poppy with a large red flower.
N^{3}. 484. p. 598. Ann. 1745.1179. Glychirrbiza fylveftris fore luteo pallido C. B. + Wild Liquorice or Liquorice-Vetch.
No. 474. p. 190. Ann. 1742. 1028. Gramen Dactylon efculentum C. B. Manna zulg. H. L. Bat. The Manna Grals.
No. 472. p. 76. Ann. 1741. 970. Guaicana Virginiana Pifhamin. dieza Park. The Pifhamin Plum. No.491. p. 44. Ann. 1746. 1222. Guidonia Ulmi folio flore rofeo Pluin. Guidonia with Elmleaves and a rofe-coloured flower.
No. 476. p. 422. Ann. 1743, 106\%. Hedy farum annuum foliquis afperis pendulis intortis Tourn. \| Annual French Honeyfuckle with a rough waved and wreathed pod.
15068. Helenium Off. Enula campana Park. Elecampane.
No. 494. p. 360. Ann. 1748. 1323. Heliantbemum foliis Sampfucbi, capitulis valde birfutis '7. B. Dwarf Ciftus with a Marjoram leaf and very hairy heads.
p. 332. Ann. 1743. 1269. Helianthemum Salicis folio T. 249. Dwarf Ciftus with a Willow leaf.
No. 491. p. 44. Ann. 1746. 1223. Heliantbemum rulgare, fore luteo 7. B. Dwarf Ciftus or litcle Sun-flower.
No. 495. p. 404. Ann. 1749. 1372. Helleborus Fumaria foliis Amman. Ruth. 74. Hellebore with Fumitory leaves.

* rubro. + Glycbirrbiza Sylv. foribus luteo-pallefrentibus C. B.
- Hedyaram annuun, filiqua afpera, undulata, intorfa Tourn.
N^{0}. 476. p 422. Ann. 1743. 1069. Helleborus niger, fore roseo C. B. Off. True black Hellebore or Chriftmas flower.
No. 474. p. 190. Ann, 1742. 1029. Helleborus niger fotiaus C. B. 126. Stinking black Hellebore, Bears-foot or Setterwort.
N^.484, p. 598. Ann. 1745.:1880. Helleborus niger, folio Ranunculi fiore globojo Touin. The Globeflower or Locker-gowlons.
N0. 4 i. 4. p. 190. Ann. 1742. 1030. Hermannia, folio Lavendule obtufo, flore parzo aureo Boerbaave. * Shrubby Hermannia with a broad blunt Lavender leaf, and a fmall golden flower.
No. 494. p. 332. Ann. 1747.1270. Hermannia frutefcens, folio oblongo ferrato T. 656. Shrubby Hermannia with an oblong ferrated leaf.

1274. Hefperis caule ramcifimo; foliis lanceolatis fepius dentatis Linn. Hort. Cliff. Dames-violet with a very branched ftalk, and fpear pointed, thickly indented leaves.
1275. Hefperis exigua lutea; folio dentato angufto Boerb. 2. 20. Small yellow Dames - violet with a narrow indented leaf.
1276. Hefperis flore allo minimo; filiqua longa ; fore + profunde dentato Boerh. Ind. Dames-violet with a very fmall white flower, a long pod, and a deeply indented leaf.
1277. Hefperis maritima, anguftifolia, incana T. 223. Dwarf annual ftock.
1278. Hefperis fylveftris inodora C. B. 202. Unfavoury wild Damesviolet.
No. 494. p. 360. Ann. 1748. 1324. Hieracium amygdalas amaras clens flore Juaverubente C. B. 127.!!

* Hermannia frutefcens; folio Lavendulce latiori Es obrufo ; fors parvo aurco H.R.D. Boer. Ind. I. 273 . + folio.

4 I do not find this name in C. B. perhaps it should be Hicrecinm amy dalas amaras olens, fou odire apuli fuaverubentis H. R. Par.
N^{o}. 495. p. 404. Ann. 1749. 1373. Hieraciunn calyce barbato Col. EC. 2. 27. Hawkweed with a baarded empalement.
No. 47.t.p.190. Ann. 1742. 1031. Hieracium montanum tomentofuns Morifon. Hort. Reg. Blef. Downy Mountain Hawk weed.
No. 491. p. 44. Ann. 1746. 1224. Horminum coma purpuro-violacia 7. B. Clary with a purple violet top.
$\mathrm{N}^{\mathrm{o}} .476$. P. 422. Ann. 1743.1070. Horminain luteum, glutinofum C.B. Yellow Clary or Jupiter's Diftaff.
№. 474. p. 190. Ann. 1742. ro32. Horminum pratenfe, ficre minimo Schol. Botan. Meadow Clary with a very fmall fower.
1033. Horminum fylvefre, Lavendule flore C. B. 219 . Common Englifh wild Clary.
No. 4j6. p. 422. Ann. 1743. 1021. Hydropbyllum Morini Tourn.* Water-leaf of Morinus.
N°. 494. p. 360. Ann. 1748. 1325 . Hypecoum latiore folio T. 230. Brond-leaved Hypecoon.
No. 480. p. 214. Ann. 1744. 1128. Hypericum orientale, Rorifmarini folio Amman. Oriental Saint John's-wort with a Rofemary leaf.
№. 494. P. 360. Ann. 1748. 1326. Facea cinerea laciniata, fore purpureo Triunisel. Jagged afhcoloured Knapweed with a purple flower.
No. 472. p. 76. Ann. 1741. 971. Facea non ramo fa tuberofa radice latifolia Banifter. Pluk. Broadleaved unbranched Knapweed wish a tuberous root.
972. Eadem anguufifolia ξ^{c} c. The fame with a narrow leaf.
No. 491. P. 44. Ann. 1746. 1225. Facea Jpinofa alata cinerea caule Spinis luteis longiJImis. Afhcoloured winged Knapweed with very long yellow prickles. N‥494. P. 3^{60}. Ann. 1748. 132\%. Facea fpinofa Cretica Zanon. Prickly Knapweed of Candy.

[^54]No. 472. p. 76. Ann. 1741. 973. Jacobira EEtnica Cberopodii folio Hort. Catbol. Ragwort of EEtna, with a Goofe-foot leaf.
No. 495. p. 404. Ann. 1749. 1374. Fasminum Africanum; ilicis folio; flore allo Com. Rar. African Jafinine with a Holm-oak leaf, and a white flower.
No. 476. p. 422. Ann. 1743. 1072. Fafninuin luteisn Indicum odoratifl mum: Ferrar. Yellow Indian Jafmine.
N°. 484 . p. 598. Ann. 1745 . 118 r . Fafminum five Sumbach Arabum Alpini $7 . B$. Single Arabian Jafmine.
Nग. 474. p. 190. Ann. 1742. 1034. Ilex oblongo Serrato folio C. B. 234. Narrow-leaved Ever-green Oak with ferrated leaves.
No. 480. p. 214. Ann. 1744.1129. Imperatoria major C. B. Common Mafter-wort.
No. 474. p. 190. Ann. 1742. 1035. Ketmia Syrorum fore albo Boerhave. Altbea frutex with white fowers.
No. 484. P. 598. Ann. 1745. 1182. Lamium rubrum minus foliis profunde incifis Raii Syn. Leffer red Dead-Nettle with leaves deeply cut.
No. 494. p. 361. Ann. 1748. 1328. Latbyrus tuberofus arvenfis repens C. B. Peafe-Earthnur.
No. 491. P. 44 Ann. 1745. 1226. Lavatera folio fo facie Altbare Act. Reg. Sc. Lavatera with the leaf and face of Marlh-mallow.
1227. Lavatera flore albo. Lavatera with a white fower
N^{0}. 476. p. 422. Ann. 1743.1073. Laurus Alexandrina Off. Alex-
N° andrian Laurel. 474. p. 191. Ann. 1542. 1036. Lenlifcus vulgaris C. B. 399,
N^{0} - 476. p. 422. Ann. 1743.1073. Laurus Alexandrina Off. Alex-
andrian Laurel.
$\mathrm{N}^{\circ} \cdot 474$. p. 191. Ann. 1742. 1036. Lentifcus vulgaris C. B. 399. Cominon Maftich-tree.
Leonurus Africanus, Sideritidis folio, floribus phreniceis. Boer. * Perennial African Lion's-tail with an Ironwort leaf, and a large fcarlet flower.
N^{0}. 484. p. 598. Ann. 1745. 1183. Lepidium latifolium Off. \& C. B. Dittander or Pepper-wort.

* Leonuris perennis Ajricanus, Sideritidis folio; fiore pliceniceo majore Breyn. Prod. $\mathrm{N}^{\circ} .494^{\circ}$

A Catalogue of Plants, \&cc.
N°. 494. p. 332. Ann. 1747. 1278. Leucoiunn Hefperidis folio T. 22 x. Great Tower-Multard.
p. 361. Ann. 1748. 1329. Lilium. convallium, flore pleno varieg ato Didac T. 77. Broadleaved Lily of the valley, with a double friped flower.
N. 472. p. 76. Ann. 1747. 976. Limonium lignofum Bcllidis folio C. B. *
975. Limonium maritimum majus C. B. Sea Lavender.
No. 476. p. 422. Ann. 1743. 1074. Linaria latifolia Dalmatica C. B. 2 \dagger Broad-lcaved Dalmatian Toad-flax, with a large flower.
No. 495. p. 404. Ann. 1749. 1375. Linaria pumila foliis carnofis, fiofoulis minimis favis C. B. ${ }^{213}$. Dwarf Toad-flax with flefhy leaves and very fmall yellow flowers.
\mathbb{N}°. 494. P. 361. Ann. 1748. 1330. Linaria tripbylla minor lutea, foris vexillo \& calcari purpureo Boer. Small three-leaved yellow Toad-flax, with the ftandard and heel of a purple colour. No. 474. p. 191. Ann. 1742. 1037. Lingua cervina multifida C. B. 354. Harts tongue with divided leaves.
No. 49r. p. 44. Ann. 1746. 1228. Lotus angufifolia fore luteo-purpureo ex infula Sancti facobi Hort. Amfl. Narrow-leaved Birds-foot Trefoil from the ifland of St James, with a purple yellow flower.
N^{N}. 474. P. 191. Ann. 1742. 1038. Lotus bemorrboidalis major Park. Upright hoary Birds-foot Trefoil.
N^{o}. 484. P. 598. Ann. 1745. 1184. Lotus rubra filigua angulofa C. B. Square-codded Vetch.
N°. 480. p. 214 . Ann. 1744. 1130. Lotus filiquis Ornithopodii F. B. Birds-foor-Trefoil with pods like a Bird-foot.
N°. 472. p. 76. Ann. 1741. 977. Lupinafter ficwibus purpureis 今iliquis minoribus Amm. p. 147. Lupinafter with purple flowers and fmaller pods.

[^55]+ This is Parkinfon's name : C. B. adds magno fore.

$$
\mathrm{N}^{\mathrm{o}} \cdot 4 ; 6
$$

1 Catalogue of Plants, \&c.
\mathbb{N}°. 476. p. 422. Ann. 1743. 1075. Lupinus angufifoliis fylvefiris caruleus elatior Hort. Eyst. Nar-row-leaved tall blue wild Lupine.
N°. 474. P. 191. Ann. 1742. 1041. Lupinus peregrinus major villofus caruleus C. B.* Great bluc Lupine.
1039. Lupinus faticus flcre albo IVid. White Lupincs.
1040 Lupinus Sxlvefris flore luteo IVid. The yellow Lupine.
1042. Lycbnis Cbalcedonica fore miniato Park. Nonefuch or flower of Conftantinople.
№: 476. P. 422. Ann. 1743. 1076. Lycbnis coronaria vulgaris 7. B. Garden Campions or Rofe Campion.
No. 494. P. 332. Ann. 1747. 1276. I.ycbnis Cretica parvo fore; calyce friato purpurafcente T. Cor. 24. Lychnis of Candy, with a fmall flower, and a purplifh frriated empalement.
\mathbb{N}°.480. p. 214. Ann. 1744. 1131. Lycbnis birfuta, fiore eleganter variegato Raii Hijt. Hairy Campion with a flower beautifully variegated.
№. 494. P. 332. Ann. 1747. 1277. Lycbnis Jupina Sicula, calyce ammplifirmo Ariato T. 337. Low Sicilian Campion, with a large ftriated empalement.
N°. 491. p. 44. Ann. 1746. 1229. Lycbnis Glveefris fore albo minimo Raii Hirt. Small Corn Campion with a very fmall white flower.
1230. Lychnis Sylv. que Saponaria T'urn. Common Sopewort.
№. 476. P. 422. Ann. 1743. 1077. Lycbnis vifcofa rubra angufififolia C. B. Red Geriman Catchlfy.
 coridis Off: \& C. B. Yellow Willow-herb or Loofe-frife.
No. 494. P. ${ }^{66 \mathrm{r} .}$ Ann. 1748. 1331. Malva Alexandrina Alcbimille folio Sberard. Alexandrian Mallow with a Ladies-Mantle leaf.

[^56]$$
\mathrm{N}^{\circ} .480 .
$$

A Caialogue of Plants, Stc.
No. 480. p. 214. Ann. 1744. 1132. Malua fylo. mininer, folio rotundo C. B. Sma! wild Mallow or Dwarf Mallow.
No. 494. P. 361. Ann. 1748. 1332. Malva - rifcus arborefcens, flore mintiato clauso Horr. Ehb. Tree Maiva-vilcus, with a hut fcarlet flower.
1333. Marrubiaftrum limbo airo-purpureo Esc.* Buftard Horchound with a yellow flower, edged with a dark purple.
No. 472. p. 76. Ann. 1741. 978. Marum vulyare Park. vulgo Maficben redolens C. B. Hicrb-Maftick cr Maftick Thyme.
No. 478.p. 422. Ann. 1743.1078. Matricaria foliis florum fiftulofis Hort. R. Par. Feverfew with fiftulous flowers.
No. 484. p. 578. Ann. 1745. 1186. Medica orbiculata F. B. Orbiculated Snail Trefoil.
No. 495. p. 404. Ann. 1749. 1376. Melilotus Italica folliculis rotundis C.B. P. 331. Italian Melilut.

No. 474. p. 191. Ann. 1742. 1043. Melilotus major candida Tragi. White flowered Melilot.
1044. Melilotus odorata violacer Hitt. Oxon. Lotus urbana Off. Sweet Trefoil.
No. 484. p. 598. Ann. ${ }^{\text {7 }} 445$. 1187. Melilotus Offic. \&. C. B. Common Melilot.
No. 476. p. 422. Ann. 1743. 1079. Melifa Moldavia flore albo Park. Turkey Baulm with a white flower.
No. 495. p. 404. Ann. 1749. 137\%. Melifa Romana molliter birfuta E' graveolens.H. R. Par. Stinking Roman Baulm, with fofter hairy leaves.
No. 472. p. 76. Ann. 1741. 979. Mentba verticillata Ocimi odore, venis luteis Ind. Hort. Chelf. Whirled Mint, with a Bafil fmell, and yellow veins.
No. 491. p. 44. Ann. 1746. 1231. Mejpilus aculeata, Pyri denticulato folio, Splendens Virginiana Pluk. The Virginian Azarol with red fruit.

[^57]No.494. P. 332. Ann 1747.1279. Mefpilus Canadenfis, Sorbi torminalis facie T. 642. Medlar of Canada, with the appearance of the common Service-tree.
Meppilus Virginiana, sipii folio, eul'gari Smimitis, zinajor. Medlar of Virginia, refembling the common Haw-horn, but larger.
No. 472. p. 76. Ann. 1741. 980. Meriii Foliis Anctbi C. B.- vulgatius Park. Common Spignel or Meu.
No. 495. p. 404. Ann. 1749. 1378. Milleria annua ereeta, foilis conjugatis, floribus luteis Jpicatis Houfl. Grcater upright annual Milleria with oppofite leaves, and yellow fpiked fiowers.
No. 472. p. 76. Ann. 1741. 921. Mimaja folio lato Senna Spinofa Boerb. The prickly fenfitive plant, with a broad Senna leaf.
No. 484 . P. 598. Ann. 1745. 1188 . Mirabilis Peruana fore variegato Park. Parad. Marvel of Peru with a variegated flower.
N°. 474. p. 191. Ann. 1742. 1045.
Moldavica Americana trifolia, odore gravi Tourn. Trifoliated American Moldavica with a ftrong fmell.
N°. 48 O . p. 214. Ann. 1744. 1133.
Moldavica orientalis, Salicis folio, fore parvo caruleo Tourn. Oriental Moldavica with a Willow leaf, and a fmall blue flower.
No. 494. p. 361. Ann. 1748. 1335 . Mollugo foliis verticillatis, cuneiformibus acutis Hort. Upfal. Baftard-Madder with fharp wedge fhaped whorled leaves.
No. 495. p. 404. Ann. 1749. 1379. Monarda floribus capitatis, caule obtufo Hort. Cliff. The Ozweega Tea.
No. 491. P. 44. Ann. 1746. 1232. Myagrum fliculis longis C. B. * Treacle Wormfeed.
N^{0}.494. P. 361. Ann. 1748. 1336. Myagrum filiculis obverfe ovatis, lateribus depreflis Fl. Lugd. t Gold of pleafure.

- Myagrum filigua longa C. B.

VOL. X. Part. iu.
$+\operatorname{Linn}$. H. Cliff. 328.
5 A
$\mathrm{N}^{\mathrm{O}} .495^{\circ}$ pods, and obtufe indented leaves.
No. 494. P. 361. Ann. 1748. 1337. Myrrbis lutea ducoides Mor. H. R. Blef. Yellow, carrot-like Cicely.
———p. 332. Ann. 1747.1280. Myrrbis major, vel Cicutaria odorata C. B. 160 . Officin. 321. Sweet Cicely or great fweet Chervil, by fome Sweet-Fern.
No. 476. p. 422. Ann. 1743.1080. Myrto-cifus Pennei Cluf. Myrtle Rock-rofe.
No. 491. p. 44. Ann. 1746. 1234. Myrtus Buxi folio Schyl. Hort. Box-leaved Myrtle.
N^{0}. 472 . p. 76. Ann. 1741. 984 Myrtus flore pleno Cornuti. The double-flowered Miyrtle.
982. Myrtus foliis odore Nucis mofchate Schyl. Cat. The Nutmeg Myrtle.
983. Myrtus latifolia Betica, foliis confertim nafcentibus C. B. The Orange-leaved Myrtle.
No. 491. p. 44. Ann. 1746. 1233. Myrtus latifolia Roniana C. B. Common broad-leaved Myrcle.
N°, 476. p. 422. Ann. 1743.1081. Napus dulcis fativus Off. Navew gentle.
N°. 495. p. 404. Ann. 1749. 138 I . Nardus Anericana procerior; foliis crefis Pluk. Mlm. Tall American Nard with blueifh leaves.
No. 472. p. 76. Ann. ${ }^{1} 441 \cdot 985$. Nigella Cretica femine aromatico C. B. Candy Fennel-llower with an aromatic feed.
No. 480. p. 214 . Ann. 1744. 1134. Nifflia Tourn. Crimfon GrafsVetcis.
N°. 495. p. 405. Ann. 1749.1383.
Obelifcotbeca Hydrapbylli foliis, lobis anguffioribus Vaill. Dwaff Sun-flower with Water-leaf leaves, and narrower lobes.
1382. Obelifcotbeca Hydropbilli foliis, lobis latioribus Vaill. Dwarf Sun-flower, with Water-leaf leaves, and broader lobes.

1 Catalogue of Plants, \&c.
No.480. p. 214 Ann. 1744.1135. Obelifcotheca integrifolia, radio aureo, umbone atro rubente Hort. Elibam. Dwarf Sun-flower, with entire leaves, a golden ray, and a dark red difk.
№. 491. P. 44. Ann. 3746. 1235. Obelifcotbeca minur integro folio Dilien. Smaller 1)warf Sunflower, with an entire leaf.
No. 474 . p. 191. Ann, 1742.1047. Ochrus folio integro capreolas emittente C. B. 24.3. Ocbrus or winged Pea, with an entire leaf, fending forth tenctrils.
$\mathrm{N}^{\circ}: 484$. p. 599. Ann, 1745.1190. Oenanibe Apii folio C. B. Water Drojuwort with Smallage leaves.
1889. Oenentbe Stapbilini folio aliquatenus accedens F. B. Dropwort with Carrot lcaves.
No. 4 76. P. 422. Ann. 1743. 1084. Oenantbe Stellata Cretica P. Alpini Park. Starry Dropworf of Candy.
No.472. p. 77. Ann. 1741. 98\%. Olea maxima Hifpanica C. B. * The Spanifh Olive.
988. Olea minor Lucenfis, fructus odorato Ibid + The Luca Olive.
p. 76. -nd 96. Olea vulgaris fativa C. B. The manured Olive.
No. 494. p. 333. Ann. 1747.1281. Omphalodes Lufitanica Lini folio T. 140. Venus Navel-wort.
N^{0}. 472. p. 77. Ann. 1741. 987. Onagra frutefcens argentea anguftifolia Ind. Hort. Cbelf. Narrowleaved filver fhrubby TreePrimrofe.
No. 476. p. 422. Ann. 1743. 1082. Onagra latifolia Tourn. Broadleaved Tree-Primrofe.
No. 491. p. 44. Ann. 1746.1236. Opbioglofun, Lingua Serpentina Park. Adder's-tongue.
1237. Opbris bifolia C. B. Common Tway-blade.
No. 476. p. 422. Ann. 1743. 1083. Origanum Heracleoticum, Cunila gallinacea Plinii C. B. Winter Sweet Marjoram.
No. 474. p. 191. Ann. 1742. 1046. Origanum Off. Origanum Anglicum Ger. Wild Marjoram.

[^58]A Catalogue of Plants, \&c.
No. 494. p. 361 . Ann. 1748. 1338. Ornitbopodium portulaca folio T. 400. Birds-foot with a purfane leaf.
No. 491. p. 44. Ann. 1746. 1238. Orobus fylvaticus Vicia foliis C.B. Wood Orobus with Vetch leaves.
No. 474. p. 191. Ann. 1742. 1048. Orobus vulgaris berbariorum Ger. Park. The common bitter Vetch.
No. 495. p. 405. Ann. 1749. 1384. Oxys luten 7. B. 388. WoodSorrel with a yellow flower.
No. 494. p. 333. Ann. 1747. 1282. Padus Theophrafti Dalecbampio Lugd. 312. The wild ClufterCherry, or Birds Cherry.
No. 491. P. 4 . Ann. 1746. 1239. Pania mas Officin. \& C. B. The Male Peiony.
N3. 474. p. 191. Ann. 1742. 1049.
Pamicum Indicum spica longifima C. B 343. Indian Panick with a very long fike.
No. 484. p. 599. Ann. 1745. 1191. Papaver bortenfe femine nigro fylveft. Diofcoridis C. B. Garden Poppy with black feeds.
No. 495. p. 405. Ann. 1749. 1385. Partbenic.trum Helenii folio Hort. Elth. Partbeniaflrum with an Elecampane leaf.
No. 494. P. 333. Ann. 1747. 1283. Pavia Boerh. Ind. Alt. 2. 260. Scarlet-flowering Horfe-Cheftnut.
No. 476. p. 422. Ann. 1743. 1085. Periploca foliis oblongis Tourn.
No. 480 . p. 2 4. Ann. 1744. 1136. Pbalaris major femine albo C. B. Canary-grafs.
1137. Pbalaris major spica longiori IVid. Canary-grafs with a longer fpike.
No. 491. p. 45. Ann. 1746. 1240. Pbafeolus fiore coccineo Cornut. The fcarlet Kidney-bean.
No. 472. p. 77. Ann. 1741. 990. Pifum cortice eduli Tourn. Pea with an efculent hufk.
No. 491. p. 45. Ann. 1746. 1241. Pifum bumile caule firmo Tourn. Dwarf Pea.
No. 476. p. 422. Ann. 1743. 1086. Plantago maior incana Park. Hoary Plantain or Lamb's tongue.
No. 491. p. 45. Ann, 1746. 1242. Polemonium vulgare Tourn. Greek Valerian, Ladder to Heaven, or Jacob's Ladder. Solomon's Seal with leaves like the white Hellebore.
No. 494. P. 36 1 . Ann. 1748. 1340. Primula veris fiore rubro Ger. Red Primrofe.
1349. Pfeudo-acacia T. 649. Baftard Acacia.
Nं. 472. p. 77. Ann. 1741. 991. Pfeudo-diclamnus acetabulis. Molucce C. B. Baftard Dittany with Molucca Baulm leaves.
992. Ptarnica flore pleno. Double Sneezewort.
No. 494. p. 333. Ann. 1747.1285. Pulmonaria maxima, foliis quafz faccbaro incruftatis Pluknet. Greateft Lungwort with leaves very much fpotted.
1286. Pulfatilla folio craffiore, 8 majore fiore C. B. 177. The greater or Danifh Pafque-flower.
No. 474 . p. 191. Ann. 1742. 1050. Punica malus Off. Malus Granata Ger. The Pomegranate-tree.
N°. 480. p. 215. Ann. 1744. 1138. Ranunculus aconiti folio, flore albo multiplici C. B. Crowfoot with a Monks-hood leaf, and a double white flower, commonly called the fair maid of France.
No. 476. p. 422. Ann. 1743.1090. Ranunculus ecbinatus Creticus C. B. * Starry Hedge-hog Candy Crowfoot.
No. 494. p. 333. Ann. 1747. 1287. Ranunculus montanus, foliis Plantaginis C. B. 180. Mountain Crowfoot with a Plantain leaf.
No. 480. p. 215 Ann. 1744.1139. Ranunculus pratenfs, erelfus, acris, fore pleno C. B. Upright meadow Crowfoot with a double flower.

[^59] $1+7$. The greatel! Chariock.
No. 476. p. 423. Ann. 1743. 1088. Repunculus montanus corniocu'nius Ger. Hornid Rampion wida a round Spike.
No. 49 1. p. 45. Ann. 1746. 1243. Repuntium maximumncoccineo \int picaio fiore Col. in Rech. Greater Rampion, with a crimfon fjiked flower, commonly called the fearlet Cardinal's fiower.
No. 484 . p. 599. Ann. 1345.1292. Rawalfa tetrapbylla latifolia Plumier. Hour-leaved Rawolfa with broad leaves.
229. Refeda calcitrapa folio Micrifon. + Great white baftard Rocket.
NO. 494. p. 361. Ann. 1748. 1343. Refeda foliis inferioribus integris, fupcrioribus laciniatis. Baltard Kocket with the lower leaves entirc, and the upper jagged.
No. 491. p. 45. Ann. 1746. 1244. Rbammus catbarticus Off. ES C.B. Buck-thorn or common Pur. ging-Thorn.
No.480. p. 21 . Ann. 1744.1140. Rbus Virginiana, sparfa panicula, ramis patulis glabris Hort. Elth. Virginian Sumach, with a fparfed panicle, and fmooth fpreading branches.
No. 472. p. 77. Ann. 1741. 993. Ricinus bumilis, folio fubrotundo, fore fruEfuque conglomerato Houft. If Dwarf Oil-feed with roundifh ferrated leaves, filvered underneath, and the flower and fruit growing in bunches.
No. 484. p. 599. Ann. 1745. 1194. Rofa Jylveftris pomifera noftras Raii Syn. § The greater Englifh Apple-Rofe.
No. 472. p. 77. Ann. 1741. 994. Rubia procumbens bexapbylla purpurea H. L. Bat. Procumbent fix-leaved purple Madder.
No. 476. p. 422. Ann. 1743. 1089. Rubia tinEforum fativa Off. Madder.

* Rapifiram maximum, rotundifolium, monofpermon Cornuti.
+ Refida folio Calcisrape fiore aibo Mor. H. R Blef.
A Ricinus bumilis, foliis fubrotundis, ferratis © fubtus argenseis, fore fruciuque comglomeratis Houft. Miller. Dia
§ Rofa fyluefiris pomifora major nofras Raii Syn, 11. 297.

A Catalogue of Plants, \&c.
No. 484. p. 599. Ann. 1745. 1195. Salvia major, an Splacelues Dio-
\mathbf{N}°. 494. p. 36r. Ann. 1748. 1344. Sambucus folio laciniato C. B.456. The cut or P'arlcy-leaved Elder.
N°. 494. p. 36 r . Ann. 1748 . $1345^{\text {. }}$ Sambucus bumilis, fī̈e Eburus C.B. Off. 180. Dwarf-Eluer, Wallwort or Danewort.
No. 491. p. 45. Ann. 1746.1245. Satureia bortenfis aftiva C. B. Summer Savoury.
1247. Saurucus bumilis, folio carnofo rotundo Plum. Dwarf Lizard'stail with a round fefhy leaf.
No.480. p. 215. Ann. 1744. 1141. Saxifraga pratenfis flore pleno. Meadow Saxifrage with a double flower.
No. 484. p. 599. Ann. 1745.1197. Seabiofa arborea Cretica Pome. Shrubby Scabious of Canc'y.
N^{0}. 480. p. 215 . Ann. 1744. 1143. Scabiofa peregrina, capite ablongo nigricante, Zibethi odore C. B. \dagger
No. 476. p. 422. Ann. 1743. 1091. Sclarea Off. Common Garden Clary.
No. 491. p. 45. Ann. 1746. 1246. Sclarea Indica fore variegato Boerb. Indian Clary with a variegated leaf.
No. 495. p. 405. Ann. 1749. 1386. Scropbularia foliis Filicis modo laciniatis, vel Ruta canina latifolia $\|$. Broad-leaved Dog'sRue.
No. 494. p. 333. Ann. 1747. 1288. Scropbularia Hifpanica Sambuci folio glabro T. 166. Spaniih Figwort with a fmooth Elder teaf.
1289. Scropbularia maxima Lufitanica, Sambuci folio lanuginofo T. 166. Greatelt Portugal Figwort with a woolly Elder leaf.
1290. Scropbularia peregrina Cam. Hort. Tab, 43. Camerarius's foreign Figwort.

[^60]A Catalogue of Plants, \&c.
No. 495. p. 405. Ann. 1749. 1386. Scropbularia Ruta canina diza, zullgaris C. B. 236. Dog's-rue. No. 494. P. 361. Ann. 1748. 1346. Scutellaria foliis cordato-lanceolatis firratis, pedunculis multiforis. * Scull-cap with heart-fhaped ferrated leaves, and many flowers upon each foottalk.
No. 47 2. P. 77. Amn. 1741. 995. Serpyllum odoratifinumn glabrum, longiore folio Amm. P. 52.Smooth fweet-feented wild Thyme with a longer leaf.
No. 494 . p. 3^{61}. Ann. 174 ${ }^{8 .}$ 1347. Sherardia Dillenii Cat. Gif. p.g6. Little Field Miadder.
№. 495. P. 405 . Ann. 1749. 1388. Sideritis orientalis, Pblomidis folio T. Cor. Eaftern Ironwort with a Pblomis leaf.
N°.480. p. 215. Ann. 1744. 1144. Siliqua dulcis C. B. + E Off. The Carob-tree.
No. 495. P. 405. Ann. 1749. 1389. Sinapifrum Luftanicum, tripbyllum, fore rubro, Siliquis corniculatis. || Three-leaved Portugal Sinapijtrum with a horned pod.
No. 494. p. 333. Ann. 1747. 1291. Syyymbrium Orientale, facie Barbarea, foliis Plantaginis T. Cor. 16. Oriental Water-crefs with Plantain leaves.
No. 480. p. 215 . Ann. 1744. 1142. Smilax bumillima unifolia Tourn. The loweft Bindweed or OneBlade.
№. 494. P. 333. Ann. 1747. 1292. Smyrnium Marth. 773. Offcin. 457. Alexanders.
1293. Smyrnium peregrinum folio oblongo C. B. 154. Foreign Alexanders with an oblong leaf.
——p. 361. Ann. 1748. 1348. Sonchus maritimus angufifolius C. B. P. Narrow-leaved SeaSowthiftle.

[^61]A Catalogue of Plants, \&c.
No.480. p. 215. Ann. 1744. 1145. Spiraa Hyperici folio Tourn. Hypericum frutex.
1146. Spirca Opuli folio Tourn. Virginian Gelder-Kofe with a Currant lcaf.
1147. Spirea Salicis folio Tourn. Spirea frutex.
\mathbf{N}°. 495 . P. 405 . Ann. 1749. 1390. Stachj) alba Michel. White Bafe Horchound.
No. 476. p. 42 3. Ann. 1743. 1092. Stachys Canarienfis frutefcens, Verbafci folio Tourn. Canary Shrubby Bafe Horehound, with a Mullcin leaf.
N°. 495. P. 405. Ann. 1749. 139r. Staphylodendron Virginianum triphyllumi T. 616. Three-teaved Virginian Bladder Nut.
N°.484. P. 599. Ann. 1745. 1198. Statice foliis anguffioribus, fore rubro Tourn. * Narrow-leaved Thrift with red flowers.
No. 495. P. 405. Ann. 1749. 1392. Statice Lufitanica Scorzonere folio Inft. R. H. 34 I . Portugal Thrift with a Scorzonera leat.
 Narrow-leaved Goldylocks or Caffidony.
No. 484. p. 599. Ann. 1745. 1199. Stactbas purpurea Off. छ C. B. Caffidony or French Lavender, by fome Sticadore.
N°. 494. p. 333. Ann. 1747. 1295. Sympbytum majus, tuberofo radice C. B. 476. Greater Comfrey with a tuberous root.
$\mathrm{N}^{\mathrm{o}} .476$. p. 423. Ann. 1743.1095. Tacamabac foliis ferratis Pluk. Phyt. 228. Fig. 2. Tacamahaca with ferrated leaves.
N°. 480. p. 215. Ann. 1744.1148. Tagetes minor, fore finplici ftriato Tourn. \dagger
No. 476. p. 423. Ann. 1743. 1093. Tamarifcus latiore folio Park. Germanicus Tourn.!| The German Tamarik.
1094. Tamarrfcus tenuiore folio Park. NarbonenfisTourn. § TheFrench Tamarik.

* Boerh. + This name is not in Tournefort. \quad Tamarifius Germanica Lob. § Tamarisus Narbonerfos Lob.
V OL. X. Part ii.
5 B
$\mathrm{N}^{\mathrm{N}} .476$.

A Catalogue of Plants, \&cc.
\mathbf{N}°. 476 . p. 123 . Ann. 1743. 1096. Tanactumn vulgare luteuns C. B. Cominon Tanfy.
1097. Tanacetum foliis crijpis C. B. Curled or double Tanfy.
N^{o}. 484. p. 599. Ann. 1745.1200. Thblafpi amarum arvenfe umbellatuin 7. B. The bitter Field umbellated Mithridate-muftard.
1098. Tblafpi Creticunn purpureum i ark. Candy Tufts.
No. 495. P. 405. Ann. 1749. 1393. Thiafpi Virginianum Iberidis foliis amplioribus \& Jerratis Tourn. Virginia Mithridate - muftard with leaves like Sciatica Crefs ; but larger and ferrated.
No. 49r. p. 45. Ann. 1746. 1249 . Tbuya Theopbrafic C. B. The Tree of Life.
No. 472. p. 77. Ann. 174I. 997. Titbymalus funiperi folio Boccon. Maritime Spurge with a Juniper leaf.
№. 494. P. 333. Ann. 1747. 1296. Tordyliuni minus, limbo granulato, Syriacum Mor. Umb. 37. Small Hartwort of Syria, with a granulated border.
$\mathrm{N}^{\mathrm{O}} .47$ 6. p. 42 3. Ann. 1743 . 1099.
No. 495. p. 405. Ann. 1749. I393.
Tracbelium umbelliferum Pone. * Blue umbelliferous Throatwort. Tribulus terrefris, foliis Ciceris, frubiu aculeato C. B. P. Land Caltrop with a Chich leaf and a prickly fruit.
No. 494. P. 333. Ann. 1747. 1297. Trifflium clypeatum argenteun Alp. Exotic. 307. Silver clypeated Trefoil.
12g|l. Trifolium montanum [pica longiflma rubente C. B. 328. Mountain Trefoil with a very long reddifh fpike.
\mathbf{N}° : 494. P. 361. Ann. 1748. 1349. Trigonella legunninibus pedunculatis. congeftis \mathcal{G}° c. Hort. Upjal. Wild Fenugreek.
Turritis annua verna, fore purpurascente T. 224 Spring annual Tower-muftard with a purple flower.

[^62]N^{2}. 491. P. 45. Ann. 1746. 1150. Turritis muralis birfuta minor Tourn. * Small Tower-muftard.
No. 476. p. 423. Ann. 1743.1100. Valeriana major bortenfis Morifon. Pbu Off. Great Garden Valerian or Setwall.
No. 494. p. 333. Ann. 1747. 1300. Vella Lin. Gen. 654. Wild Spanifh Crefs or wild Spanifh Mutard.
No. 472. p. 77. Ann. 1741. 999. Verbene angurfifolia C. B. \dagger
N°. 480. p. 215 . Ann. 1744. 1150. Verbera tenuifolia C. B. Narrow leaved Vervain.
$\mathrm{N}^{0} \cdot 495 \cdot \mathrm{P} \cdot 405$. Ann. 1749. 1395. Veronica cerulea, trifido E quinquefido folio Fl. Bat. Blue Speedwell with a trifid or quinquefid leaf.
1396. Veronica petrea Simpervirens Pon. Bald. Evergreen Rock Speedwell.
No. 472. 1. 77. Ann. 1741. 1000. Veronica fpicata anguftifolia Ger. Park. I| The leffer fipiked Fluellin or Speedwell.
999. Veronica Spicata latifolia major Park. Great broad-leaved fipiked Speedwell or Fluellin.
N^{0}. 495. p. 405. Ann. 1749. 1397. Veronica Virginiana altifima fpica multiplici foribus candidis \S. Tall Virginian Speedwell with many fpikes and white flowers.
No. 494. p. 361. Ann. 1748. 1350.
Viola Martia arborescens purpurea C. B. 199. Purple arborefcent Spring Violet.
No. 495. p. 405. Ann. 1749. 139ll. Urica foliis profunde laciniatis, fomine lini Ammax. Siberian Nettle with deeply cut leaves, and a Flax feed.
No. 480. p. 215. Ann. 1744.1150. Xerantbemun fore albo pleno Hort. Lugd. Bat. Eternal flower or Ptarmica with a double white flower.
No. 495. p. 405. Ann. 1749. 1399. Xylon Americanum proftantifimuin Semine virescente Lin. The moft
5 B 2
excellent

- This name is not in Tournefort. Perhaps the Turritis muralis minor P ef. is intended. $\quad+$ This name is not in C. B. \quad Veronica picata angufifolia C. B. - Jurgens five ßpicata Ger. ereana angufifolia Park.
§ Flor. Bat.

Zacintba five Cicborium verrucarius Mattb. 505. Wart Succory.
N. B Part of this Catalogue, containing the plarts numbered from 1251 to 1400, was drawn up after the death of Mr Milicr, by "Fobn Wilmer, M. D. Hort. Chel. Praf. \& Praleet. Botan.

Some account of the remairs of John ITradie fcant's gardon at Lambeth ; by Mr W.
Wation,
F. R S. \mathbf{N}°.
492. p. 160.

Apr. \&c. 1749
Read May 25.
1749.
VIII. Upon a vifit made to Mr Fobn Tradefcant's garcen at Soutb Lambetb, May 21, 1749. by Dr Mickbell and myledf, were obferved the under-mentioned exotic plants.

This garden was planted by the above.mentioned gentleman about 120 years fince, and was, except that of Mr Fobn Gerord, the author of the Herbal, probably the firft botanical garden in Eng.and. The founder, after many years fpent in the fervice of the Lord Treafurer Salifoury, Lord Wotton, \&xc. travelled feveral years, and procured a great variety of plants and feeds before not known in England; to leveral of which at this time the Gardeners give his name, as a mark of diftinction; as Tradejcant's Spiderwort, Tradefcant's Atter, Tradefcant's Daffodil. He firt planted here the Cupreffus Americanus Acacia foliis deciduis, which has been fince fo much eiteemed, and is now one of the great ornaments of the Duke of Argyll's garden at Witten.

Mr Tradefant's garden has now been many ycars totally neglected, and the houfe belonging to it empty and ruined; and though the garden is quite covered with weeds, there remain among them manifeft footteps of it's founder. We found there the Borrago latifolia fempervirens C. B. Poljgonatum vulgare latifolium C. B. Arifolockia clematitis reeta C. B. and Dracontium Dod. There are yet remaining two trees of the Arbutus, the largctt I have feen; which, from their being fo long ufed to our winters, did not fuffer by the fevere colds of 1729 and 1740, when moft of their kind were killed throughout England. In the orchard there is a tree of the rbamnus catbarticus, about 20 feet high, and near a foot in diameter, by much the greateft I ever law.

It is not unlikely but there may be feveral other plants yet remaining in the garden, but flourifhing at a different time of the year.

A ietter from Dr Laurence Garcin, of Neufchatel, F.R.S. to

Sir H Sloane, Bart. .late P. R.S. concerning the
IX. The plant in queftion is a fhrub, which varies confiderably in it's fize and figure, according to the nature and foil of the country where it naturally grows, as well in Afia as in Africa, where this plant is much ufed, both as a medicine, and for it's agreeable odour.

Our author has given us the true characters of the fructification of the Cyprus, after the method of Linneus.

1. It's calyx is an expanded monophyllous cup, cut into 4 lobes, pointed at their extremities, and continuing attached to the fruit.

2. It's

2. It's corolla confifts of 4 oval petals, fomewhat pointed and finuous. Cyprus of the They grow diftant one from the other, and are placed between the lobes of the caly:.
3. It has 8 erect ftamina, ranged two by two almoft horizontally, $\begin{aligned} & \text { French } \\ & \text { Watfon, }\end{aligned}$ and paralle! to the fides of the petals, and furpafs them in length about F. R. S. No. $\frac{1}{2}$ a line. They grow from the bafe of the embryo at a little diftance one from the other, and arife diminifhing in their bulk to their extremities. Their antbera or fummits form each of them a little kind of purfe.
4. It's piffillum is round, and occupies the middle of the calyx. It's ${ }_{1748} 8$. Ayle is erect, and terminated with a pointed figma. It's length fomewhat exceeds that of the Jomina.
5. It's pericarpium is a round dry capfule, nightly four-corned; each of which corners has a fmall prickle. It is divided into 4 compartments by an extremely delicate mombrane, arifing from a placenta which occupies the centre of the capfule.
6. It's feeds are fmall and numerous : each of them is pyramidal, and fomewhat quadrangular, of which the point is fometimes ftreight and fometimes crooked. Every feed is faftened by it's point to the placenta, as to a common centre, and their bafes are fuftained by the fides of the capfule, all the cavity of which is filled by them.

There is but one fpecies of this fhrub generally known through all the Eaft; and this is fubject to vary according to the climate, the feafon, and the foil.

It's names are,

1. According to different nations.

Greek, Kúmp(3)
Latin, Cyprus
Hebrew, Copher
Arabian and Perfic, Henna
Egyptian, Elbanne
Italian, Alcbanna
Spanifh, Alkenna
The Portuguefe in the Indies, Foula, Aybana

Apothecaries, Alcanna
The people of Malabar, MailAnschi
The Brachmans, Mery
Malayans, Daun Lacce
Javans, Bat ccbiar
Chinefe, Tisingka Hou
Indians, Inne
At Bengal and Surat, Mendi
2. According to Authors,

Liguftrum Dioforidis. Matth. 117.
Liguftrum Egyptiacum Latifolium; item angufifolium. C. B. Pin. 476 .

Liguftrum Egyptium. J. B. I. 532.
Liguiftrum orientale. Park. 1447. Raii Hift. 1603.
Rbamnus Malabaricus, fructu racemofo caliculato. Raii Hif. 1573.

Of tie Cuprus of the Ancionts.

The Cyprus grows generally as a fhrub of 10 or 15 feet in height, and has very muck the appcarance of privet.
le's trurk grows fometimes as thick as a man's thigh, is fometimes ftreight and lometimes crooked, and proxuces a great number of branches irrcgulaity. It's ourward bark is ath-coloured, and much furrowed, and cietachics iffelf from the trunk of the tree in long fales or pieces, by the heat and drynefs of the climate, as in the Peeffian gulf. It's inward bark is reddif without, and whitiifh within. That of the branches is fineoth and red, like that of the hazet-tree, and green within. le's young branches are ftreight, flexible, and moderately long. The wood of the trunk is hard and whitith.
It's leaves are diffoled in different orders upon the fame twig. Sometimes they are placed oppofite in pairs along the fmall branches, and this moft generally crofs-wife; fometimes by three and three; but then the leaves are lefs, and this ciffyofition generally takes place in the larger branches; fometimes they are alternate, but ravely, and then the leaves are largeft. The leatt branches are moft charged with leaves, the larger ones leaft. All thefe leaves are pointed at each end ; the largeft are 2 inches long, and about an inch broad in their middle ; the fmalleft bear $\frac{1}{2}$ the dimenfions of the largett : their edges are even: they are fmoorh, fhining, and of a beautiful green colour: their middle rib, which ferves to each leaf as a fhort peoicle, is terminated in their point, but fends out, in it's paffage through the leaf, alternately 4 or 5 nervous filaments on each fide. Thefe leaves are much like thofe of privet.
The flowers grow in bunches at the extremities of the young branches, and are endowed with a very agreeable and fingular odour. They are of a ftraw-colour ; but as they grow old and wither, they become of the colour of a citron. The calyx is more pale than the corolla of the flowers. It's petals are turned up as much if not more than thofe fmall petals are which adorn the centre of a double rofe. The ftamina, which are white, teanfparent, and which grow from the bafe of the embryon of the fruit, form as it were a double crofs, by their almoft parallel fituation and extenfion between the petals. The lobes of the calbx, being of the fame length and form with the petals, feem to give to the entire flower an octogonal figure. The fummits or antberie are fmall, and of the fame colour as the petals, each having a deep furrow in it's bottom; the more thefe decay, the more yellow they grow, in the fame manner as the petals. The furrow in the antbera, which at firt is of a palifh black, grows of a deeper hue, as the flower fades. The pifitilum, after the flower is gone, grows larger in the calyx, and becomes, when perfectly ripe, a dry, membranous, round fruit, of about 3 lines in diameter. But before it arrives to this ftate, it refembles very much a flefhy berty, green on one fide, purplith, and fometimes black on the other, with very lietle juice. This falfe berry is the growing capfule, the fide of which is foft, fucculent, and very thick; which, in proporzion as it increafes, becomes thin, membranous, dry, and briitle: in becoming

Of the Cyprus of the Ancients.

becoming thes capacious and thin it gives room to a large number of pyramidal feeds, very clofe one to another, and faftened all by their points to a common center, a kind of placenta. When this capfule is in it's perfection, its outfide is fhining, and not unlike the feed of corianderincolour. The pericarpium is as it were divided into four loculi, by membranes fo delicate, that they muft be regarded with great artention, to be fatisfied of their reality. The exterior form of this fruit fufficiently thews this divifion, by it's roundnefs being interrupted by 4 flight ribs, like thofe of a melon, which thews as many cells. The membranes, which divide thefe cells, arife from the piacente, and are infereed into the fides of the capfule.

The feeds, which fill all the capfule, amount to about 4 or 5 ciozen, according as they are more or lefs nourifhed; becaufe the larger ones receiving more nourifhment, make the fmaller ones abortive. They are always fo preffed in their apartments, that their pyramidal figure is owing only to this preffure, which arifes from their reciprocal increafe. The pyramidal points of thefe feeds are crooked in fome, and bent in others, according to the direction given them in their growing. Their colour is red or brown, and always fomewhat Thining.

We find, in the ancient writers of plants, fuch as Theopbrafuss, Dio- Rimarks. fcorides, and Pliny, who have all in their manner treated of vegetables, of how much elteem the Cyprus was among the Ancients. The Hiftorian Fcfephus, and St. Ferome have mentioned it as a rare and precious plant, placing it in the fame rank with the moft valued fpices. The fine fmell, which it's flowers fend forth in the countries where they grow naturally, as in Egypt, Syria, Arabia, Perfia, EJc. has occafioned it's ufe in the earlieft time ; and the fame ufe continues in thofe countries. It's being twice mentioned in *Solomon's Song, is a very great proof of it's heing much valued in the moft ancient time. We there fee it was accuftomed to be cultivated even in their vineyards. The perfumers in old times made thereof an oil or precious ointment for various ufes; but principally to give their ancintings a grateful odour, and to make fupple the limbs of the body.

Modern authors have given themfelves great trouble to be thoroughly fatisfied of the Hiftory of this plant. There have been great controverfies among them concerning it in endeavouring to fettle it's defuription ; but it muft be confeffed chey lave made a very fmall progrefs in: difcovering to us it's true characters. How many miftakes have the Botanifts of the two laft centuries made, owing to the bad defcriptions of this plant, which the Ancients have left us.

Diofcorides, who, by defcribing the plants he treats of too briefly, always leaves their characters imperfect, fays (perhaps after fome other author more ancient than himfelf) that the leaves of the plant in queftions

[^63]are like thofe of the clive-tree, that it's flowers are in bunches, and that it's fruit is black, like tbat of clder. This was enough to make the Latins conjecture, that the wíre © $^{\circ}$ of this author was the liguffrum or privet; and the more fo, as the Cypres was entirely unknown to them, fince it only grew in Egypt and in Syria, where it was always called benna, or albenna, and, by corruption, alkama.

There is fome appearance, that, as the Creiks received a good quantity of this drug from the ine of Cyprus, as a fpecies of merchandize, they would chule to call it Cyprus, rather than give it any other denomination, on account of the quantity furnifhed to them from the ifle of that name. Pliny took it firt for a kind of privet or liguftrum, which grew particularly in Eigyt, and afterwards he thought it to be the common ligufirum of Europe: this fhews how uncertain he was as to the plant in queftion. He judged ill in comparing the fruit of the Cyprus with that of the jujube-tree; but was more happy in likening the fruit (capfule) to that of the coriander, as they agree in colour, tho' that of the Cyprus was more large. Matsbiclus, who thought himfelf greatly above his contemporaries in the theory of plants, afferts boldly, that our plant was the common privet: and in this he thinks himfelf juftified, not only from the defcription of D:ofcorides, but from the virtues attributed to the Cyprus by Pliny. He even ridicules thofe who think that the liguftrum and Cyprus are different plants. Fuchfius, who wrote before Malbiolus, had neverthelefs reafon to believe them of a different genus, by the account given of the Eigyptian plant by Pliny; but he was wrong in confounding it with the pbillyrea of Diofcorides; and in this miftake he has been followed by Dodonous.

Bellonius, who has feen this plant in it's place of growth, well knew that it was not the liguftrum or privet: he faw alfo how the Commentators of the Arabian authors were deceived in taking it for fuch.

Rauziolf and Profper Alpinus, who met with it in their travels, after having oblerved it in the places of it's growth, believed, as Pliny had done, that it was a kind of ligufrum, which approached very near to that of Europe. They have each of them given a different figure; which made Cafpar Baubin believe that there muft be two new fpecies of liguftrum; but herein he was not followed by Mr Ray. In fact, we ought to acknowledge, by the characters here fee down, that our Cyprus is of a genus truly different, and the only one of it's kind.

The Hortus Malabar. has given a figure of this plant under the name of Mail-Anscbi, which reprefents the end of a large branch ill-chofen, and fomewhat withered, without doubt by the fault of the defigner, who has drawn it in it's natural fize; which is greater in Malabar than elfewhere, becaufe of the rains which fall there in abundance half the year. This fhrub is lefs in all it's parts in Arabia, and to the fouth of Perfia, becaufe in thofe countries it rains feldom; but, in recompence, it's flowers have much more fmell than in Malabar. It muft be remarked
marked here upon this occafion, that the defcription juft now given, and which contains the fize of the parts, was made in a garden in the Perfian gulf belonging to the Dattch faktory, and fituated about a league from the town of Gameroon, otherwife called Bender-Abaff, where there was one of thefe trees carcfully preferved, which was the firf I faw in the Indies; as it was complete in all it's parts, having flowers and fruit; and as it appeared to me agreeable and curious, efpecially on account of the fine fmell of the flowers, and as it was a new genus to be eftablifhed in Botany, I examined it with great exactnefs, and noted it's characters, figures, and dimenfions. I did not conceive it to be the Cyprus, not then knowing what it was. I afked the people of the country the name of this beautiful hrub: they only called it ITenna, and I could learn no other name: they affiured me it had no other name, either in Perfa, or in Arabia. It was on the firtt of Dec. 1721. that lobferved it, and defcribed it under the name of Frutex Perficus, foliis liguftri, fore © fructu racemofo, Ilenna vulgo dictus. I thus characterized it, in expectation of finding it, if it had already been defribed among authors, after my return to Europe. When I returned in 1730. I had the fatisfaction to find it in Mr Ray's Hiftory, by the defcription which he has given of it, extracted from various authors, in the chapter of liguftrum under the fynonyma of Parkinfon, and to fee it in the other authors I have mentioned, efpecially the figure given by Rauwolf, which is not a bad one, and is copied by Clufus, Dodoneus, Parkinfon, and Dalechamp.

The figure in the Hort. Mal. under the name of Mail-anfch; does not fo happily reprefent our Cyprus, as that excellent work generally does the plants it treats of. The leaves of this plant there are half withered, and not in their natural difpoftion. Raurwolf's figure is much nearer the truth. The flowers are not much better reprefented than the leaves, in the Hort. Mal.; as, befides other things of lefs moment, the authors of that work have neglected to make the petals appear between the lobes of the calyx, as always happens in a natural ftate; by which difpofition the flower appears of an octogonal figure. Rumphius, who has written an hiftory of the plants of Molucca, has given a delcription of this fhrub, not different from mine.

By what is here laid down of the characters of this plant, we plainly fee that it differs widely from the oxycantba and rbamnus; of one of which the authors of the Notes to the Hortus Malabaricus fufpected the Cypras to be a fpecies. This occafioned Mr Ray to range it under the laft, fuppoling it's fruit to be a berry, which neverthelefs it is not. This learned author moreover could not think that the mail-anfcbi was the Cyprus, becaufe of the difference in the defcriptions among authors, and of the imperfection of thofe of Rausolf and Alpinus. Rumpbius, juft now quoted, has ill compared the colour of the leaves of Cyprus to thofe of the olive-tree.

This Shrub, fo cherifhed among the eaftern nations, is cultivated in Africa, Afia, and all the Indies; that is to lay, from near the equinocVOL. X Part ii.

The ufes of Cyprus.

Of the Cyprus of the Ancients.

tial even to 35° of \mathbf{N}. lat. where it is much ufed, as we mall find by the great commerce caufed thereby in the Lezant, according to the redations of travellers of credit.

This plant does not love fhade, even under the torrid zone, becaufe of the violent rains there at the time of the weftern Monfoon, no more than it does in cold courcries, our author means thofe of the difth climate; but towards the cropick, and even in Arabia, it grows beft when a little fleltered from the fun. In hor and dry countries, as in the Perfangulf, where I firft faw it, it produced a great number of boughs and branches very fhort, which gave it the appearance of white-thorn. On the contrary, towards the Equator, it's branches are further from each ocher, and longer, occafioned by sise moitture from the rain. The bark fplits into fales, and detaches itfelf in pieces from the trunk, in thofe councrics where it rains ledion ; but in Malabar, in the illes of Ceylon and Sunde ; the bark continues entire and united almott all the year, becaule of the moifture of thole places.

Rawwolf remarks, that the T'urks and Moors cultivate this plant with care, and even keep it in pots, on account of the dimell of the flowers, which fomewhat relemble murk. They keep dele pots in wister in chambers or caves to preferve the plants from cold.

Our author forgot to remark one circumitance, mentioned by Bellonius in the firft book of his Obf. (chap. 44. apud Clufrum), where it is faid, that the Henna, or Alcbonne, which is our Cjprus, difiers from privet, becaufe the leaves of privet fall, and thofe of Cyprus continue all the year. But this obfervation is of no weight, becaufe this difference is only apparent ; and it is certain, that it our privet was culrivated in Egypt, it's leaves would not fall off in winter, becaufe it is not there fufficiently cold.

Bellonius, who was the firft of the Moderns who treated of this fhrub under the name of Alcomma, and fpoke of it's culture in Egypt, tells us, that the powder of it's leaves is fo great an article of commerce among the Turks, that they load feveral veffels from Alexandria for Confantinople, where the fale of it is fo great, that the grand Signior's revenue therefrom amounts yearly to 18000 ducats. According to him, the great confumption of this powder arifes from it's being ufed in beautitying the fkin and nails, in making them red with a decoction made therewith. The women, he fays, generally ule it all over Turkey, to dye the fkin of thofe parts which are from the navel downwards, as well as their hands and their hair. Their children are ferved in the fame manner. They confider this as a great ornament ; and that the colour may hold longer, and penetrate deeper, they apply it ufually when they go out of the baths. This practice of dyeing, to beautify the body, is extended even to their horfes, of which they tinge the mane, the tail, and the hoofs. They often add alum to heighten the colour. This powder is fent from Conftantincple to Ruffa. Let us now confider the other properties of Cyprus.

Ir is not neceffary here to take notice of what Diofcorides and Pliny attribute to this plant; they may be confulted, if, at the fame time, they are regarded as being very little filled in it's truc qualities. Our author contents himfelf with faying, that the Perfians and Arabiens, who appear to have been anciently the firft that ufed this plant, frequentIy ule at prefent not only it's flowers to perfume their linen, cloaths, and tables, but make a greater ufe of it's leaves in a decoction, for the cure of all diftempers of the fkin, as the itch, fcabs, and ring-worm, which the air of their country caufes from it's heat, and from the drought which often reigns there to a great degree. Thefe diforders, if they are neglected to be cured as foon as poffible in ciry climates, eafily degenerate into the leprofy; and it is on account of thefe diforders of the fkin , that the eating of pork is forbidden to people of every religion in thefe countries; becaule that food there is known to occalion thefe diftempers.

All the nations of the Eaft Indics make ufe of it in medicine, for the fame, as well as for feveral other diforders; but they particularly tife the leaves to dye their nails; which our author thinks they had originally from the Arabions. In dyeing their nails, the Indians make ufe of the frefh leaves, which always grow in great plenty in their gardens, and apply them beaten upon their nails, mixing with them fometimes a little lime and juice of citron. This colour lafts a great while upon the fkin, on account of fiveating. A ftrong decoction of the leaves in water is fometimes ufed to tinge their nails, but more generally their fkin and hair.

There is reafon to believe, that this pretended beautifying of the fkin, the liair, and nails, which long cuftom has eftablifhed among the eaftern nations, owes it's origin to a quite different principle than that of beautifying. The Ancients had no other view in the beginning, than the prevention of pruriginous and leprous diforders in the fkin, to which their climate fubjected them, as well as to preferve them from vermin, as the leaves of Cypres have that property. But as in ufing baths with thefe leaves therein, they dyed their fkin either red or yellow, according to the preparation, they accuftomed themiclves to this colour by degrees, and afterwards regarded it as a falutary embellifhinent.

Thefe baths, which there are conftantly employed for the cleanlinefs and health of the 1 kin, and which the neceffity of ufing has eftabiifhed as a point of religion, and a cluty, for the better prevention of thefe maladies, is certainly a true method to preferve as well tie body as the skin in a good ftate. Thefe good effects are extended further by ufing the Alcaina; becaufe it's colour, paffing in the opinion of thele people for a neceffary ornament, and a mark of cleanlinels, makes the practice of bathing better obferved.

It feens to our author, that thefe remarks fhould be communicated, as well as the characters and defeription of the plant in queftion, to render it's hiftory more complete, and by thefe means to make it known;
to the end that the curious may form fome opinion of the great praifes which the Ancients have beftowed upon this plant.

Aletter fiom the Rev. H. Niles, D. D. F. R.S. to Mr H. Baker, F.R.S. ron scraing tije grect Mould on fire.c.aod; ecuish farme obfervation: of Mr Ba'eer's "pacs tbe minutenefs of the Seeds of jome plants. Nu. 494 p. 334. Jan. \&e. $177^{\circ} 0$ ReadFeb. 15 $17+9$.
X. Some days ago, happening to take notice of a quantity of what we conmonly call Mould *, on the bark of fome fire-wood, I hat the curiolity to view it wich a lens, of about an inch focus, when I found it to confift of numbers of minute fungus's, whofe regular appearance invited me to examine them in the microfcope, with a good magnilier ; upon which their fpherical heads feemed as if they had been nothing elie bit globules of feecis; at the fame time, 1 obferved feveral feeds adhering to the tranfparent footitalks, which lupported the heads, and many feattered on the glafs-plate, whercon the fubftance was placed, in order to be viewed. And here I had an opportunity of lecing many diftinet leeds, which appeared, nearly, of an oval form, but feveral times larger than the leeds of common mufhrooms, even when feen with the fecond magnifier, and the latter with the first.

I pretend not to any Rkill in Butany ; fometimes, and, indeed, but feldom, I look into an author on the fubject, as an amulement and relief to my mind; therefore it would ill become ne to attempt the referring this plant to the proper clafs. Micbeli, in his Nova plantarums genera, has given us the draught of fome, which well reprefent the figure of them, as they appear, when much magnified, Tab. LXXXII. Fig. I. and in page 200. of his excellent Work, deferibech them, uncier this title, Fungoidaftri Senine in fuperna parte donati: but then his figures are fuch as the plants appear to have, to the naked eye (as we may prefume), fince he does not fay any thing to the contrary; not to mention that there are other different characteriftics in his Defcription. The fame celebrated writer deferibes another fpecies, p. 215 . under the following title, Mucores pediculo donati, which in refpect of fize, the lubftance, and fome other characters, correfpond with thefe I am fpeaking of, well enough : but as he refers to Dr Hocke's Micrographia, Tab. XII. for an elegant figure of them (befides what he has himfelf given us Tab. XCV.), both Dr Hooke's and his own figures reprefent the heads, as quite fmooth, on the furface; and the Doctor, in his defcription of them, p. 126. exprcfsly fays they are of a finooth furface. Whence 1 conclude this muft be a different fpecies. However what the ingenious author of the Micrograpbia reftrurata fays of the feeds of thefe diminutive bodics, p. 19. is put out of all doubt.

Permit me to add, that having often viewed the heads of a fmall kind of fungus, which are about $\frac{1}{8}$ inch diameter, of a coriaceous fubtance, I have ever found the feeds which are produced on the gills, much larger than thofe of any mufhrooms I ever examined, though rather lets than thofe produced by this unregarded plant.

Now, that a body whofe form is not to be diftinguifined by the unaffifted eye, fhould produce feeds feveral times larger than another of

- Of a brighr verdégrife colour.
the fame genus does, which exceedeth it many millions of times in bulk, muft fuggeft thofe thoughts to one's mind, which, I know, I need not point out to you.

I have carefully examined the plants and feeds fent me by Dr Miles, some obfervai in order to determine their real bignefs; and, taking the fungous tions on the heads of the middle fize (fome being larger and others fmaller), I find, above-menaccording to my micrometer, that 3 of them take up the fide of a tioned plants fquare, 70 of which fquares make an inch in length, and confequently, H. Baker, that 3 times 70 , or 210 of thefe fung i are required to make a line F.R.S. whofe length is one incly; or, in other words, that the diameter of thefe fungous bodies is, at a medium, the 21 oth part of an inch.

The feeds are oval; and I find, by the fame micrometer, that 10 of them laid by one another the fhorteft way of their diameter, or 8 of them the longeft way, fill up the fide of a fquare, 270 of which fquares make an inch in length. Taking therefore 9 at the inedium, 270 times 9 , or 2430 of thefe feeds will be required to make a line of an inch in length; or, in other words, each feed is the 2430 th part of an inch in diameter.

And according to thefe calculations 44,100 of the fungous heads, or $5,904,900$ of the feeds may lie by one another in the furface of an inch fquare.

Yet minute as the feeds of this little fungus are, Dr Miles obfervcs, very juftly, that they are larger than the feeds of fome mufhrooms, which exceed it many millions of times in bignefs. As to which, I beg leave to take notice, that the proportion, in fize of the fruits or feeds of trees or plants, to the fize of the trees or plants that bear them, comes under no regulations that correfpond with our conceptions. For the valt bulk of fome forts of timber-trees (the beech and afh, for inftance) is produced from a feed fmaller than that of the common garden bean. The towering and mighty oak produces for it's fruit only a little acorn, whereas the pumpkin (fome whereof weigh above 100 pounds) is the production of a feeble creeping plant, unable to fupport itfelf, and much lefs it's enormous fruit. The vanilla (a plant that rifes to the height of fevcral feet, by clafping about whatever it finds near it) produces, in long pods, feeds fo fmall, that their diameter is not more than the 100th part of an inch. Suppofing therefore the cavity of the pod to be equal to a cylindrical tube of : of an inch diameter, and the length of the pod to be fix inches (which dimenfions are taken with great moderation) the number of feeds contained in one fingle pod will be more than 47000 . Moft kinds of fern, of which fome are pretty large plants, bear feeds fo extremely minute, that they appear to the naked cye only like a fine dutt; while feeds of a confiderable bignefs are produced by plants of a great deal fmaller fize.

Otfervations relating 10 vegetable Sueds; by I. Ja: fons, M1D F.R.S.N ${ }^{\circ}$. 47. $\mathrm{P}: 18$. June \&c. $17+$ Read Nor. 22. 1744.

Obfervations on vegetable Seeds.

XI. The feed of the mimy A fabicous refembles an octogonal vaje with a fcalloped brim : the whole is bell-haped, having ribs or divifions, which run down from the mouth of the rafe, and, becoming narrower, form the bottom : between thefe ribs, down to the beginning of the narrow part, it is clear, tho' not quite tranfparent; and, from thence to the bottom, the ribs are hairy. This cale contains a fieed, which is like a pefile flanding in a morter: the pefle is loofe in an octogonal cafe; but the narrowncis of the mouth of this cafe hinders the peftle's being drawn out, becaufe it's extremity, within, is round and bulky. From it's upper end arife 5 fpiculated arijfe, whofe little thorns are directed upwards, and are thereby prepared to caufe the feed to recede from any thing that might injure it upon being touched; and the bafin, from which the ariffe rife, is of a fine green colour ; they are of a thining brown.
The angelica is one of the mont fragrant and agrecable feeds, for it's fmell, in the world. When the hufk is pulled off, the nucleus appears of a brownifh colour. and it's fhape is elliptical. By the help of the microfoope, we know what produces that charming fmell, being a fine amber-coloured gum, which appears in ridges difpoied alternately, with orhers of a browninh colour, in a longitudinal direction all over the nucleus. What appears white, on the flat fide, is a theca, which receives a very minute filus from the pedicle that fupports it.
The feed, which is vulgarly called Grains of Paradife, althouglh promifing from it's afpect but very litele that is curious, being only abrown irregular feed with flats and angles, and having an apex like the mouth of a purfe drawn up with a fring ; yet, when diffeeted, produces a moft beautiful appearance. In a longitudinal fection, you fee, firtt, the edge of the brown cortex; next to that, a black pitchy fubltance; and, within chat, an exceeding white radiated matter, which looks like a fine white falt, and is, probably, a mixture of a volatile pungent falt with a farinaceous fubflance : the radiation feems to confirm this opinion; for, if it were only a farina, it could have no fuch appearance, and fo does it's exceeding fharp tafte. But the moft remarkable and curious part of this feed, is a lietcle piece of caimphire, exactly Shaped like a common vinegar-crewer, having a round bottom, and a long taper neck, This is the conftant form in hundreds of the:c feeds that 1 have cur. Thefe curious appearances, Ibelieve, were never obferved before.
I fhall, at prefent, oniy mention one more feed, which is that of the great maple-tree. It confifts of a pod and it's wing : two of thefe grow upon a foot-ftalk with the pods together, which makes them refemble the body of an infect with a pair of expanded wings. The wings are finely varculated, and the pod is lined with fine filky down, which contains a round compact pellet covered with a brown menbrane, that fticks very clofe to it. When this is peeled off, inftead of difcovering a kernel, as in other feeds, an entire green plant appears to be folded up in a moft furprizing manner, whofe pedicle is about $\frac{2}{3}$ of an inch long, and
it's feminal leaves about $\frac{\text { each ; between which the germina of the next }}{}$ pair of leaves are barely vifible to the naked eye, but plain with a microfcope. This difcovery gave me great pleafure, as believing myfelf the oniy one who had obferved it; but, fome time after, looking into Derboim's Pbyfico-Tbeology, upon another account, I found it mentioned, as if Dr Highmore had feen and communicated it to Mr Rry. I believe, however, as none of this learned Society have feen it, excepe thofe I have thewn it to, the fight of it will not be difagreeable.

Numbers of fuch amazing phenomena appear every day in my obfervations (fome of which fhall hereafter be laid before you, if theie prove acceptable), which excited me to a refolution, of examining and deferibing all the genera of feeds. A work which is now puoblifing under the title of The Microfocpical Tbenter of Seeds, \&xc. in a manner, which, I hope, will render Butany more eafily underftoon, will hand down to pofterity the true figures of every feed and it's fections; and, by the new difcuveries, which ofen occur thro' the courfe of my obfervations, lay a foundation for future obfervers to build fomething uleful upon; and fettle fome points relating to the different fubitances contained in vegetables, which yet remain doubtful.
XII. I. I have fent you fome ruffetings changed by the farina of a Extract of a next-door neighbour, whofe name I wanted fkill to know ; but can only fay, that the ruffeting has exactly acquired his face and complexion.
[Mr Collinjon then produced feveral famples of the apples; an unteinted ruffeting; a ruffeting changed in complexion, which grew among a great clutter of unaitered brethren; and fome apples of the other tree, which had caufed the change in the ruffetings, and whofe fruit had in return received a rough coat from the ruffetings.]

Tbeopbraftus takes notice of this חapainayn, as he calls it; and tells forts of Appleas the old Divines were wont to make a great pother about it, and foretel great events by it : Pliny informs us, there was one who wrote a whole book about fuch changes. But the ufe I hould make of it, is tree. No. N77. chiefly this, that it may be of importance to the curious in fruits, to take p. 525. Aug. care how their trees are forted, and what company they keep. For tho' this change be not fo confpicuous in apples which have a fmooth green coar, as in the ruffet-breed, yet one may fuppofe impreffions of this Mr Beni Cook, F.R.S. to Mr Peter Collinfon, F.R.S. concerning tbo trees bad on neigbbouring \&c. 1745. The Apples fort often made on them; and perhaps their juices altered for the better or worfe. *
2. I fent

[^64]
Of the farina of different apple-trees.

2. I fent you laft year a fpecimen of the effect of the farina of a rough fame. N..490. coat apple ftriking on the flower of a fmooth-coat ; I have now fent an
p. 602 . Dec. p. 602 . Dec. 174. Read Dec. 22 . 1its. example of the farina of the latter changing the former into it's own drefs and likenels.

The fituation of the ruffeting was fuch, that he was furrounded by winte: pippins, pearmains, and fuch-like; and we put the matter-fruit together with Leveral of the changelings, as they grew on the fame branches mixed together.

This inftance will fhew what alterations may be expected in cognate fpecies; and I fhould have given an example of a kind of antipathy betwixt the pear and the apple in like circumftances, but was difappointed.
3. When the farina of one apple impregnates another's bloffom of differing fecies, we fee the change in the fruit; but whether any lafting impreffion is left on the bough which bore it (as feems to be in tulips and fome other fowers), is not fo eafy to determine, experiments of this fort being not to be made at all, but catched at diftant opportunities; and till this point is fettled, the diftemper of my good friend's tree muft reft unexplained.

Artificial helps of fight have added to former difcoveries the explofive manner of the farina's action; but what may be the eficct of the inconceivably fine fubtile matter emitted from it's globules, and continually wafted about in great plenty and variety in the fummer air, not only on vegetable productions (where on different fubjects it may not improbably have oppofite effects) but other matters not yet fufpected to be fo much under it's infuence, remains a field of inquiry for future ages. However, to what Mr Loggan hath very juftly obferved on the manner of impregnation of the feeds in mayze, I can add this, that if the feed and whole fecies of mayze be planted about two yards diftance from each other, there will be a mixture of red and white grains in the ears of each plant, and you may with pleafure obferve the filament in the white plant, which hath been ftruck with the red farina, difcovering it's alien commerce by a confcious blufh, and by counting the threads they ftained, foretell how many correfponding feeds will appear red, at the opening of the ear, when ripe.
autumn, upon gathering fome for feed, he opened one of the pods, and was furprized to fee one blue pea at the end next the flalk, with fix white peafe: but after having ean. mined feveral other thells very carefully, he found a great variety of intermixtures of the white and blue peafe in the fame fhells; fometimes one white for blue; unly at one end, fometimes at each end; fometimes two white (or blue) with one of the other colour interchangenbly; and thus the whole parcel that was rubbed out for feed was intermixt white and blue. The next year, he fays, not having plotts of white and blue peafe flanding near onc another, he did not find any fuch mixture in the feveral parcels then faved for feed. But it is pity he did ro: pick out a fufficient number of the blue peafe from among the white, and fow them by themeives, in order to fee what coloured peafe this mixt breed would have produced. © M.

XIII. . The

Of the Farina fuecundans of the Holyoak and Pafion Flower.

XIII. 1. The firf experiment I made, was gathering the bud of a A letter from hollyhock fo young, that the petala were not yet formed; and ftripping R. Badoock,
 the ftamina were not yet perceptible) : thefe apices appeared to me to be F. R.S. cona kind of bag; and I could plainly perceive a feam (if I may fo call it) faining fome, run down the middle of it. This occalioned me to thke a fine needile, microfopical and carefully open them; which I did, and found cach full of farina, which feemed to lie very regular. This determined me to take notice of the courfe of the farina in each flower, and I obferved the following particulars:
Aug. 24. I took notice of a flower juft going to blow, and the petala appeared; the farina was then juft burit from it's copices. The time of thefe burfting is as foon as ever the petala blow out enough to be affected by the fun.
25. The fower opened more, and the farina appeared fo thick on the outfide of the apices, that they feemed quite covered from fight, without a very narrow infpection.
26. The farina began to decreafe vifibly, and continued to do till the
27. When I perceived fome red curled famina, without any apices, puifhing themfelves out at the top through the others. Thefe were, within their bend, thick fet with a kind or hairs *, and in their paffage took a good quantity of farina with them, which remained a day longer than that which was contained in the apices. I could not obferve che farina to fall on any particular part of the flower, but feemed rather to be difperfed. When thefe red famina appear, the farina is going, and the apices, which contained it, dead.

The flower was kept till it withered, and the $\beta y l u s$, Eec. cut off; but in neither experiment was there found any difference, after a month's keeping the farina, except in the colour, which was decper.

Cutting off the fylus, $E^{3} c$. may have a confiderable effect upon the feed, but feems to have but little on the flower: for, tho' it was cut off as foon as poffible, yet the flower blew out the fame as if nothing had happened, till about the time that the farina might be fuppofed to act; then the petala began to look black next the fylius, and dropped off a day fooner than the regular blowing flower.

Not having an opportunity of purfuing this further, for want of flowers and warm weather, I applied myfelf to the experiments of Mr Needbam \dagger. I brufhed off lome dry farina, and, putting Thbames-water to it, found it would not burft, under the fpace of 7 or 8 minutes, and not till they are foaked in the liquid: for, at the time of acting, they

[^65]VOL. X. Part ii, feldom or ever lic one upon another, but float off, till they are clear of all incumbrances. But lobferved one particular, which feems entir dy to have efcaped Mr Needbam, which was, That, on the appication of water, they inftantly emit a pellucid kind of matter (much tininner th in that at burlting) thro' their capillary prickles, with which chey are thick fet. Upon the application of Briffo! water they ar: fotnd to burft much fooner, and with lefs emifion. In vincgar they carccever burit; at leaft, if they attempt it, are inftantly fopped by the thanjoefs of the liquor. I dont find vinegar to have any other cffect than thas.

In making my experiments on a freth-blown l.olly-hock, I obferved a lufus nature of two globules quite fmooth and nining (contrary to their nature, which is rough): one of thefe acted very foon, the other not at all. The whole farina feem to me to have a ftrong fuction; for I was obliged, in the fpace of 10 minutes, to apply water 3 times, in order for them to have enough to act in; and I oblerve, that they burft with a greater force, and throw out a much larger pulp, when thrown into a depth of water.
Tho' I have been often obliged to fupply them with water, yet I find the greateft number always aft with the firt water. I have often feen a globule, tho' it has been burft on one fide before, yet has burft a fecond time on the oppofite. Which feems to me as if the firft aperture was inftantly clofed, fo as not to emir again : for I have made it an obfervation, that tho' the pulp is never thrown out at the fame place a fecond time, yet the globule, before it has done acting, fhall have had fo many burfts, as to look like a pieture of a bomb-fhell, with it's various difcharges before the feparation of it's parts.

The paffion flower I look upon to be the fitteft flower for experiments on the farina, of any. Firf, as it is large, and long in bloom : fecondly, as the flower by it's nature preferves itfelf and it's farina from injury : for, no fooner is the fun off of the flower, but it gradually clofes up as the fun declincs, till the petala are fo clofe, as not to admit any but very violent fhowers, This, with the difpofition of the farina, which is on the infide of it's apex, when the flower is clofed, likewife preferves it from wind. Add to this the infinite quantity of farina, which may be taken off (from the largencfs of it's apex) without any force, damage to the Rower, or itfelf. To this likewife we may add, that, after a night's keeping gathered, the farina has the fame effect and action in the morning, as it had when frem-gathered: which quality no other farina has. See Needham, page 77.

The farina of the paffion-flower appears (by Mr Cuff's double reflecting microfcope) Mag. 6, 5, 4, to be a fmooth round globule, of a

Fig 113. Fig 114. pretty full yellow, like the appearance Fig. 113. which we fuppofe the area of the microfcope. Thele globules, on being more magnified, are found to have fome 3 circles (as Fig. 114) others two, others none. Among thefe I have found a confiderable number quite white, as attempted to be fhewn in Fig. II 3.; but I never obferved thefe act. When the globules,
bules, Fig. 114. come to be magnified with the firt or fecond magnifier, they appear indented, exactly like Fig. 115. All the coloured Fig. 115. ones, tho' differently marked, yet all act alike. I obferve that thefe act in a much lefs fpace of time than thofe of the hollyhock, which are ten minutes, though frefo; whereas thele act inftantly, tho' kept for 24 hours *: neither have thefe any fuction or convulfive motion; acting entirely ftill, and in the firf water. Attempting to apply them to the opake microfcope after their action, they ftuck round the point like wet fkins: but one thing I obferve, that they burft but once, throwing out all their pellucid matter, which is yellow, at the firt difcharge. They act no otherwife in oil, but by emisting a matter much thinner than that at burting: but, laving lain in oil for a minute, and put from thence into water, they act inftandy, and with a feeming additional force. Being put into malt-fpirits, they exhibit a very agrecable appeararance : all thofe which emit, as in oil, lie dead and ftill; but thofe which neither burft nor emit, are thrown into fo violent an agitation, that they appear like animalcules; fometimes joining ten or a dozen together; on a fudden, an imperceptible force flall throw a glabule, fometimes (two or three) three parts over the area of the microfcope; olten two globules fhall be whirled round with incredible fwifteres, for the fpace of near a minute, then feparated by the fame imperceptible fwittnefs, fly each a different way. They will aet chus, till the fiquor may be fuppofed to dry up, when fupplying them with liquor, will regain their motion; and though you put. liquor often to them, yet every time will give them that lwiftnefs. Upon applying the magnifier, N^{J}. 2. I find it is the white unacting globules that do thus, and imagine that they rife with that (pirit which evaporates; and their not being volatile occafions chem to ftop at top, and continue this motion as long as the liquid has any evaporation; for I obferve, after a certain time, they lie like the others which have acted. In this liquid they burf, in fuch a manner, as that the places from whence they burft are perceptible (See Fig. 117.) and the pieces broke off very plain. The way I obtained a fight of this, was to let the globules dry after their action, on the glafs. Some burft fo fierce as to break off a piece, as Fig. 117.; others can fcarce be feen to have any alteration: yet no Fig. 117. magnifier will go fo far as to thew the matter thrown from them, any otherwife than as a yellowifh water.

Upon applying aqua fortis to this farina, the fhape and marks are inftantly changed to thofe marked in Fig. 116.; whereas, on the holly- Fig 116. hock, it has no other effect than burning up their capillary prickles.

The lilium flore reflexo of Mr Needbam I have never feen; thofe kind of lowers having been a long time out of bloom; but, as to this of the paffion-flower, what is placed on the top of the piftil, the deepeft mag-

[^66]nifier will not thew perfect : and though I have endeavoured all pofible neans, could never obtain any thing fatisfactory; fo that I muft freely own either my misfortune or my igl:orance. On the piftil of the ftock gillhiower there are very plain to be feen fome kind of capillary tubes on it's top ; but then they appear to fland thus 0 , without any aperture, as dercribed by Mr Needbain. Whether thefe may have their pores, or not, I am not able to fay. I flall continue making obfervations on this part of the flowers which may fall under my infpection, and hope froon to $b=$ fatisficd in this point : but, as to his opinion of the action of the farina, I cannot, at prefunt, grant it any other active power than fuction; for had there been any inward mechanifn, the various experiments I have tried mult have fhewn it in fome flape or other; whereas thofe who have the greatelt motion before action, I can only obferve to fwell, and look larger, on the almoft inmediate application of water.

Fursber obferwations ard experiments on the PationFlower, and it's Farina; by the fame. İid. p. 166. Read April 24. $17+6$.
rig 118.

Fig. IIg.
2. In my laft account I concluded with obferving, that what was in the top of the piftil, was fo far from making me believe it papille, or any other paffage for the action of the farina, that I defcribed it to ftand thus D; and queried if there might not be pores on it's top, as granting the action of the farina to have it's effect and confequence, as defcribed by Mr Needbam, p. 80 as there was no pofibility of it's ever being in the nature of the lilinm flore reflexo, defcribed by him, hy it's papills being of ufe in the manner and figure defcribed Plate 5. Fig. 2. of his book. I have fince taken all pofible methods to fatisfy myfelf, and thall communicate the following experiments, being the moft material, without any apology: as, upon a conviction of an overfight or miftake, I am very ready to acknowledge my error.

After the calix, petala, \&c. areftripped off, the firft thing the flower prefents to view are a double row of purple threads: thefe threads appear thus; Fig. I 18. on which we may plainly perceive a fort of capillary tubes (or whatever you will call them) Atanding as I before obferved. Here we may be at a lols for a paflage for the acting matrer of the farine; we muft therefore look further. Upon curting thefe threads longitudinally, they appear in many places as this before us, and are often pretty full. The occafion of thefe appearances, (Fig. I 19.) lown I am not Botanift enough to folve, nor will the firt magnifier give me fatisfaction. At the bottom of thefe, fet round the ftem, is a fingle row of fmall threads, not excceding $\frac{1}{2}$ an inch: thele appear to have much broader heads than the long purple threads around them; and being fo well fecured and fortified from injury, I imagine to be of great uie and confequence to the flower; yet they appear fet in the fame manner, though the tubes do not rife fo high. I am inclined to believe thefe may be defigned in this flower as papille; ift, As they are fo well fortified from all injury from without; 2 dly , As the farima, when the flower blows, and clofes at night, is turned inwards; which time, I am likewife

Sikewife inclined to believe, is the time of action *, at leaft in this flower; for, after a hot day, why may not the evening dews penetrate, and the farina, having at that time a ftrong fuction, trom the droughr, occiafion it to att? But I have not made the obfervation at which time the farina acts moft, morning or evening; which I fancy would fatisfy. 3 dly , From this being the only part of the flower which appears with a hollow or indenting on it's top; by which the action of the forina 'thus jying inwards) may fall down, and fettle in this hollow, as a drop of water would do : for 1 oblerve there are no obltructions to fuch a fuppofition, in the ftructure of the flower.

We will go now to the top of the flower, where are 3 famina placed on the aterus: thefe are fet in a manner defcribed before with tubes; but, on making a longitudinal fection, I cannot find them carried on in any fhape.

We come next to the uterus; here I cannot obferve any tubes at all; nor is there any appearance to me remarkable, till we come to the bottom of the fiylus; and then, by degrees, from a fmaller to a greater it rifes, till the appearance becomes thus; (See Fig. 120.)

On examination, I find the 5 appearances to anfwer the 5 famina on which the apices are fet; and from this appearance, growing nearce and nearer to each other by cergrees, they join at laft all in one in the ftalk of the flower.
3. March 3. I obferved a yew-tree in bloffom, but having at that time Concerning only the bud (Fig. 121.) which, taken out of it's cafe, may be feen the Farina with it's umbilicus a, in Fig. 122. That every flower has it's farina, has been juftly advanced; and as it was my defign to obferve that, I took a branch into the houfe; but, making but a night obfervation at that time, I laid it on half a fheet of brown paper in a warm drawer; and, to my great furprize, coming to examine it in a few hours after, I found the whole number of the buds blown out into full flower, and fuch a quantity of farina on the paper, that it feemed more like a paper of brimitone than any thing elfe. I then no longer neglected a thorough examination, which I began and completed in the following manner:

Fig. 123. is a feparate view of it's partitions, before it is near blow- Fig. $1: 3$. ing. Every five of thefe go to a hlower, and divide properly for blowing, fome finall fpace before they burft: there are fometimes fix to a flower, but it is feldom : they open at the bottom $a a$, and immediately, letting drop the farina, turn themfelves up; fo the top, which now appears the head, will, when blown, be the centre of the flower. (See an explanation of this in Fig. 124. where the whole divifion makes the Fig. 124. flower and the ftrokes the divifion of the petala.) a is the ftem of the

[^67]
Of the feding of Mofes.

Fig 1_{2} S.
si letter from Mir john Hill Apothecary, to the Pref.
concerning the manner of the feeding of Molfes ; and in particular of the Hyp. num terreftre, trichoides, luteo-virens, vulgare, majus, capitulis erçlis. Raii Syn. Ed. 3. p. 84. N^{3}. 478. p. 60. Jan. \& Peh. 1746. Read Feb. 13.
1745-6. with alterations.
flower: now the bottom opening difcovers this ftem; and the caly tranficion of turning very near infide-out, makes a complete Hower, Fig. 125. the fhape of which is feldom exact in any two; tho' there are near 12 flowers formed by the bud. (See the back part of one, Fig. 126. in which thofe lidges hew it's divifion on the back.) We come now to the farina, Fig. 127. which matches the relt of the flower, as to irregularity; there farce being two alike; and, when viewed opakely, has a great refemblance to the imall pieces we oblerve in a paper of gum arabick; 'tis opakely of a clear white; but, when laid on paper in a quantity, appears like flower of brimftone, only paler. It's action is as various as it's Thape. (See feveral forms, Y'ig. 128.) It feems to be only fixed in one particular, which is, that tho there are ever fo many different fhapes, when dry, water once put to them makes them all round, before any action begins: a proof to me, that there is a fuction. In fhort, the whole procefs of this is to various and entertaining, that I never met with any thing hitherto to be compared to it.

My hafte had made me almoft mifs the moft material point of all; which is, that this flower has neither apices, framina, nor fiylus; which is the reafon why fo much farina is fled. I have not yet examined it as to impregnation, but Shall go on that the firft opportunity.
XIV. The many late difcoveries of the feeds of vegetables (formerly fuppofed to produce none) have opened a way to an extenflive fcene of knowledge; and led to a feries of obfervations, in which there will be found an almoft inexhauftible ftore of delight and admiration. The mofles, in particular, one of the moft beautiful parts of the vegretable creation, will afford the curious obferver more matter of entertainment than perhaps any other clafs of it. A fpecimen of which I do myfelf the honour of communicating to you in this letter.

The particular obfervations it contains, though new and furprizing, you will allow unqueftionable in fact and certainey, when I add, thar they are what I have not only often repeated myfelf, but have alfo hewn to Mr Baker, Dr Parfons, and Mr Needbam, Gentlemen of too nice eyes, and too converfant in obfervations of this kind, not to have difcovered miftakes, if there had been any; and who all agree, that no difcovery by the microfcope was ever cicarer.

The manner of feeding of the moffes in general is a thing perhaps as little underftood, as any part of the vegetable fyftem: what I have to offer here is the explaining and defcribing it clearly, in one fpecies at leaft, from a number of obfervations made on it in it's different fattes, and at different feafons of the year.

The thorough knowledge of the operations of nature in the feeding of one of there little plants, may, I hope, be a fair ftep to the difcovering it in them all. And the almoft infinite variety of not only fpecies, but genus's, in this clafs of vegetables, feems to promife the inquirer a vaft variety of new difcoveries.

I fhall

Of the feeding of Moffes.

I fhall not trouble you with an account of the crrencous opinions of others on this fubject; you will find, by this account, that thofe who have been ufed to judge well in other parts of Botany, have been altogether miftaken here: and even the accurate Mr Hook, who of all others has come neareft a difoovery of the truth, and who actually faw fome part of the organization of thefe little bodies, was fo far from making the lealt guefs at the nature and ufes of what he faw, that he even miftook the ftructure of it.

The particular fpecies of mofs, whofe head I here fend you a defrription of, is the IIypnum terreftre, tricboïdes, luteo-virens, vulgare, majus, capitulis ereertis. Raii Syn. ed. 3.p. 84. Hypnumb zulgare, Jericeum, recurvum, capfulis erectis cuspidatis, Dill. Hift. Mufc. 323.

The head of this mofs appears to the naked cye (as at Fig. 129.) of a Fig. 12g. pale-brown colour, and fmooth furface, and is in part covered with a membranaceous calypira, refembling in fhape an extinguifher, or a funnel inverted. When this calyptra is taken off, and the head placed before the microfcope, the furface of it is feen to be ridged with longitudinal firia, the bafis of the head is of a dark orange-colour, and more opake than the rcft; and the top is bounded by an orange-coloured ring, fwelling out fomething beyond the furface of the contiguous parts of the head. A clofe obfervation and good glaffes have intormed me, that in this little head there are not wanting the parts effential to the fructification of what are commonly called the more perfect plants. This ring is truly a monophyllous undulated calyx; and within it arife 16 pyramidal fimbriated ftamina: Thefe are of a pale-greenifh colour, and are loaded with a white oval farina: the famina all bend toward each other from their bafes, and almoft meet in a point at their tops. This is their appearance when the head is nearly ripe, and is what is expreffed at Fig. 130. And immediately under the arch formed by Fig. 130 . thefe framina is placed a flender, cylindric, hollow piffillum, through which the farina makes it's way, and is difperfed among the feeds in the head. The external membrane of the head is a continuation of the outer covering of the ftatk, and is Atrengthened at it's bafis by four or five ribs, which foon lofe themfelves in the frice. A longitudinal fection of the head fhews, that the membrane before-mentioned inclofes a feed-veffel fo large as to fill it every way : in moft places they touch; but wherever they do not, a number of very flender, white, and tranfparent fibres fhew themfelves, which join them together. This feed-veffel is filled with perfect and very beautiful feeds; they are round, tranfparent while unripe, but afterwarcis opake, and of a very beautiful. green; which colour they retain even when dried.

The number of feeds in one of thele heads is aftonifhingly great: I have many times attempted to couite them, in fuch as were full, and out of which few or none had been diflodged by tine cutting; and as the accounts, at differit times, and in various heads, have not much differed, I thall venture to infert a guefs from them. It will cafily be conceived, conceived, that in feeds fo minute as we!l as numerous, this muft be a very difficult tafk; and indeed to court every feparate feed, I believe would be not much let's than impoffible: the method therefore by which I make the calculation is this. I count in part of the circumference of the head 9 feeds, $9 \times 8=72$; there are therefore 72 feeds in a line, which reaches round the circumferance of of the head. I judge the length of this half to be to it's circumference as 3 to 2 , or thereabour: therefore, in one longitudinal ine in it, there nutf be 96 feeds; the whole quantity in $\frac{1}{3}$ the head therefore is $72 \times 9^{6}=6912$; and, coubling that for the equal number of feeds of the other halt, there appear to be in one head $2 \times 6912=13824$ feeds.

Fig 131. fhews a longitudinal fection of the head with the feeds, the famina, and the joining of the capfule with the external membrane of the head.

The ftamina, examined alone, afford a moft pleafing fight; they are compofed of a white tranfparent fubtance, of a pyramidal ligure, everywhere covered with a paie-greenilh cruft; which is the receptacle of a vaft quantity of an oval farina, fo extremely minute, as to be vifible only with the moft powerful magnifiers in the double microfcope.

The outer membrane of the head becomes feparable from the capfule when perfectly ripe and dry; and then, viewed in the double microfope, fhews a reticular texture, not vifible in it before.

When this head is firft produced from the plant, the famina are very nender, and ftand erect; the head is fcarce any thicker than the ftalk, and the calyptra covers the whole, to fhield the tender fubftance of the farina from external injuries. As the farima afterwards fwells in the famsina, the feeds alfo in the head increafe in bulk, and become vifible, and are then tranfparent ; but when it is perfectly ripe, the calyptra falls off, and the wind diflodging the farina at times, as it ripens fome fooner, fome later, it makes it's way through the pifilllum into the head, and the feeds then become much larger and opake; to favour the falling of the farina into the piftillum, the flamina, as they ripen, are, by the increafe of thicknefs in the head, thrown farther and farther from each other at their bafes, but bend inward at the points, fo as to form a kind of arch over the opening of it.

The annual product of thefe moft minute feeds is aftonifhing: an ingenious genticman has given an account of the wonderful increafe of the mallow; one of which he found to yield in one year 200,000. But this is much inferior to thofe of the little plant before us; for, allowing to a root of this 8 branches, and to each branch 6 heads (which any one, who will obferve it in a thriving fituation, will find a very moderate computation), the produce of this is $6 \times 13824=82944$; and $8 \times 82944=66355^{2}$ feeds, the annual produce of one feed; 13824 of which are contained in a head, whofe length is but $\frac{1}{3}$ of an inch, and it's diameter but ${ }_{\frac{1}{3}}$ of an inch, and whofe weight is but the thirteenth part of a grain.

Fig. 129.

Fig. 129. fhews the head of this mofs in it's natural dimenfions, with Explanation and without the calyptra.
Fig. 130. The fame viewed through a powerful magnifier, without it's calyptra.
Fig. 131. A longitudinal fection of the fame.
Fig. 132. Stamina taken off from the lica!, and viewed by a more powerful magnifier.
Fig. 133. A piece of the outer membrane of the head, Aewing it's reticular texture.
XV. About this time twelve-month, I found, accidentally, a paper Concerning of melon fecds that I had laid by, with the date of the year 1710 upon the vegetation it. I fowed fome of them, not with any great hopes of their coning up; but, to my great furprize, I had a fine number of plants from old ; by tbe them, which all profpered very well, till they had put out 4 leaves, late Roger when they were all loft by an accident. This I have mentioned to you, becaufe Mr Triewald has given an account of fome old melon-feeds that produced fruit, though they exceeded mine 10 years in age: however mine may be a confirmation of their long retention of their vegetative quality; which I fuppofe may be afcribed to the oilynefs of the feed, and the hardnefs of it's outward coat.

$$
\text { Yorkhire, Jan. 14. 1743-4. Read Jan. } 2+174+5 \text {. }
$$

XVI. I was poffeffed of feveral good microfcopes, both fimple and Microfeopical compound. The compound microfcope was that portable relecting one without a micrometer, of Mr Benj. Martin's invention, which I brought with me from England. Firtt of all I expofed to the luminous Ipecacuanha ; focus of this inftrument a very fmall, pure, thin bit of the bark of this Gmelin, Med. root fcraped off very carcfully. It's external furface appeared almoft Lic. Wurtenopake, very uneven, of the colour of dry earth, as it appears to the naked eye; but the inner furface viewed in the fame manner difcovered a confufed heap of very fhort and thin little maffes, every where interrupted, and moftly acute, and angular, in the fmallent vifible atoms, May 9. 1745. chiefly purple, almoft tranfparent, like fome rcfin, but connected by interfperfed threads of a like figure, variegated, but chiefly whitifh; but at the edge there appeared real prickles; and the whole contexture feemed like that which in the animal œeconomy Anatomifts defcribe in the fat, when they fay this oil is lodged in cells, which cohere with that lanuginous foft cellular fubftance. Thus alfo this purple fubftance in form of refin feemed to be mixt with the whitifh threads. And thus, in many repeated obfervations, both by fimple and compound microfcopes, this bark always appeared to me, with this only difference, that the reflecting one reprefented every particular more diftinetly than the reft.

But I had not yet examined a nerve of this root, which was very brittle and deprived of it's bark, and made the greatelt bulk of the root,

$$
\text { V O L. X. Part ii. } \quad 5 \mathrm{E} \text { tho' }
$$

tho' it feemed to yield much to the bark in weight, as being very dry, by the compound microfope: but to the naked eye it feemed to be fprinkled with dark purple fpots. I was defirous to know what appearance thefe would have under the focus of a microfope ; and therefore viewed that little bit, which had the fpots. The nerve itfelf appeared equally convex, and cylindrical, confifting of uninterrupted longitudinal fibres, clofely applicd to each other, very thin, and very white : but the fpors, as they appeared to the naked eye, when fubmitted to the microfcope, were found to be tranfparent dark-red little maffes raifed above the convexity of the cylinder: but I was in doube whether I hould believe that thefe little maffes did not rife above the nerve, or deternine that they inhered in the nerve itfelf, and belonged to it's fubfiance. However on the application of fome fimple microfopes, I was convinced that they were raifed above the nerve, and belonged not fo much to the nerve as to the bark.

From thefe feveral microfcopical obfervations I conclude à priori, that the bark mult be more efficacious than the whole root, efpecially if we call in that indubitable and fo often confirmed practical experience, that the purging principle of vegetables refides chiefly in their refinous part. Bifides, from my oblervation, that the appearance of the whole bark by the microfope, which fhews it to be compofed of many finall, fharp, fhort ficula, that bypotbefis will alfo be explained, which mechanically explains the force of purging and vomiting medicines, by fuppofing fuch fpicula, like fo many litcle wedges (or perhaps prickies, fuch as appear even to the naked eye in nettles, which fenfibly irritate a living himan body) which by the periftaltic motion of the flomach, tho' mediately applied to it's mufcular coat, and being frequently toffed about by this perpetual notion, ftimulate the movirig fibres, and excite them to a ftronger contraction than ordinary: though at the fame time I would not yet affert this kypothsfos, how probable foever it may appear from thefe microfcopical obfervations.

Tije Bark

 preventscatcling cold; in a letter from the Rev. Dr Sam. Salter to Mr Arderon. $\mathrm{N} \circ$. 478. p. 3. Jan. \& Fcb. 1746. Read Jan. 9 .
1745.6.
XVII. Dr Saller, one of the prebends of Nowwich cathedral, writes, in a letter to Mr Arderon, that he thought it might be of fervice to take notice of the following effect of the Jefuit's Bark: the doctor ufed to be fubject cafily to take cold, and, in confequence thereof, to be fubjeet to have a fore throat to a very great degree; but the laft time, above 15 years ago, after his recovery, he was advifed, by Sir Benj. Wrench, to take sii of the Bark (after due preparation by bleeding, or purging, or both, when he was altogether without complaint) every ipring and fall. This, he faid, would more effectually guard him againft taking cold; which he has found fo far to anfwer, that he is now able to go 500 miles with lefs hazard of cold, than he could go 20 before; and he has never had what he can ftrietly call a fore throat fince.

XVIII. Notwithftanding the number of inflances, wlich occur amiong Concerning writers, concerning the poifonous quality of our common hemlock, or cicuta major C. B; fuch is, that of Cardanus nentioning a man killed by affures us, that it is mortal not to men only, but to grele and iwine; lock; $b_{3} \mathrm{Mr}$ as well as thofe of Mattbiolus, Scaliger, Kircher, Boccoiic, and vethers; yet the fatality of it's poiion, when growing in this kingdom, has been doubted by many; inalmuch as that faithful collicetor the late Mr Ray mentions, Syn. Ed. 2. p. 326. that not only his friend Mr Pativer cat half an ounce of the root of this plant, but that Mr Henly, a friend of $\mathrm{Mr} P_{\text {efiver's, }}$, in his prefence, eat, without any inconvenience, 3 or 4 ounces of the fame root. From hence it has becn thought, either that the root has effects different from the ftalks and leaves, or, that difference of climate varies the cicgree of the violence of the poifon

An obfervation indeed of the fame kind occurs in the German Eplbemerides. Linn:us, Hort. Cliff. makes alfo fome doubt conceming the malignity of this plant; and, in naming it, has kept to the old aupellation of Theophraftus and Diofcorides, Conium; and has cransferred that of Cicuta, to the Cicuta aquatica of Gefner, and of Wepfor. Befides, many of the accidents, faid to have proceeded from cicuta or hemlock, have been occafioned by different plants; fome of the accidents, probably, from the common one, but many more from the cicuba aquatica before-mentioned, and from the Oenantbe fucco virofo, cicuto facie, Lob. This confufion appears manifetly in feveral authors, and fome of them of the greateft credit. Which of thefe plants, or whether any of them, was the Atbenian poifon, nobody has determined.

Although the eating of the roots, as abovementioned, was attended with no bad confequences, a late melancholy accident has been fufliciently convincing of the poifonous quality of the leaves of the cicuta major.

On Sunday, May 6. 1744. two of the Dutch foldiers lately arrived, who were quartered at Waltham-Abbey in Effex, collected, in the fields adjoining, a quantity of herbs, fufficient for themfelves and two others for dinner, when boiled with bacon. Thefe herbs were accordingly dreffed, and the poor men firft eat of the broth with bread, and afterwards eat the herbs with the bacon. In a fhort time after, they were all feized with violent vertigo's; they foon after were comatofe; and two of them grew convulfed, and died in about 3 hours.

The people of the town being exceedingly alarmed at this accident, Dr Barrowiby, jun. being there, immediately went, and ordered the other two, at that time almoft dead, large quantities of oil ; by which means they threw up moft of what they had eaten, and afterwards grew better. In all of them the effects were the fame as thofe from a large dofe of opium.

Crisical ob
ferciations cuncerring the Oenanthe aquat. fucco visolo crocante Lob. by sbe fame; creafioned ly an extrati of a beteer from

The next day, being at the place, I faw one of thefe men much recovered, and only complaining of a heavinefs in his head; but the other was fo well, as to be gone to perform exercife with the other foldiers. There was a fifth foldier, whom I faw, who told me, he eat fome of the bread out of the broth, but felt fcarce any inconvenience therefrom. If to happened, that the two men, who gathered the herbs, were both killed.

As I went down to the place to fatisfy myfelf in this matter, a Dutch officer went with me very courteoufly to an inn, where there we ci tw, other foldiers, who had feen and knew the herbs which had been taten: he was fo kind alfo as to attend me with thefe foldiers into the fietis, to flew me the plants growing. They firft gathered me the cicutaria iulgaris 7. B. or cow-weed; then, the myrrbis jowiffris Seminibus afperis C. D. or fmall hemlock-chervil. They then gave me fome cicuta major, and, fmelling it, immediately faid, That this was the herb that killed their comrades; which I then had no reafon to doubt of ; as of the two former plants, the firft grows alnoof under every hedge, and is eaten by the cows, and the other is frequently given to tame rabbets for food; whereas cattle conftantly refufe to eat hemlock.

Before I was thus fatisfied, I imagined this accident to have proceeded rather from Lobel's Oenantbe; thinking, that as that plant grows near the fides of rivers, thefe foldiers might have gathered it by the river Lee, which runs by the town, and eaten it for fimallage, to which it has fome refemblance.

It is now known, that the cicula major, the cicuta nquatica, and the cenantbe of Lebel, are certain poifons; but there are two others of the fame clafs, growing common in England, and not much tunlike thefe in fmell and other circumftances, vehemently to be fufpected: the one is the cicutaria tenuifolia of Mr Ray, which grows frequently in wafte places, and in gardens among pot-herbs, of which De la Cbamp gives tome account of it's malignancy; the other is the cicutaris paluffris of Lobel and Tabernemintanus, or pbellandrium of Dodoneus, which grows in muddy ditches and ponds.

I don't remember any hiftory of the pernicious effects of the cicuta major in this kingdom ; but as the detecting poifonous plants is of very great confequence, I prefume to lay this paper before you.
XIX. "Elcven French prifoners had the liberty of walking in and "4 about the town of Pembroke: 3 of them, being in the fields a little
c. before noon, found and dug up a large quantity of a plant with it's " roots (which they took to be wild celeri) to cat with their bread and " butter for dinner. After wahing it, while yet in the fields, they all " 3 eat, or rather tafted, of the roots.
"As they were entering the town, without any previous notice of " ficknefs at the fomach or diforder in the head, one of them was " feized with convulfions. The other two ran home, and fent a fur-

Obfervations on the Oenanthe aquat, \&cc.

" geon to him. The furgeon endeavoured firf to bleed, and then "vomit him ; but thole endeavours were fruitlefs, and he died pre" fently.
" Ignorant yet of the caufe of their comrade's death, and of their " own danger, they gave of thefe roots to the other cight priloners, " who all eat fome of them with their dinner. I cannot learn exactly " how much they eat, they being fent away a little time before your " letter arrived.
"A few minutes after, the remaining two, who gathered the plants, " were feized in the fame manner as the firt ; of which one died : the 6 other was bled, and a vomit with great difficulty forced down, on " account of his jaws being, as it were, locked together. This ope"rated, and he recovered; but was fome time much affected with a " dizzinefs in his head, though not fick, or in the leaft difordered in
" his ftomach. The other 8, being bled and vomited immediately, " were foon well.
"There were in thefe men none of thofe comatofe fymptoms you " mentioned * to have happened to the Ducch foldiers, who were poi" foned by eating the cicuta major.
"As I was not prefent myfelf, I fund you the beft information I was " able to procure. After I had done examining, I ordered fome of the " herb and root to be brought me. As you fuggefted in your letter, "I found it to be the oenantbe aquatica cicutre facie of Lobel, which " grows in great plenty all over this country, is callect by the inhabi"tants five-fingered root, and is much ufed by them in cataplafms for " the fellon, or worft kind of whitflow. The Frenchmen eat only the " root, and none of the leaves or ftalk. - I muft beg your parcon for "fending you this imperfect account: had this accident happened at "Haverford, you foould have had one more exact."

So far Mr Haruell's letter.
The poifonous effects of this plant, in the inftance beforementioned, exaetly fquare with thofe mentioned of the fame plant, in N°. 238. of the Pbil. Tranf. where 8 young lads, near Clonmel in Ireland (where this plant is called tabow) miftook it's roots for thofe of fum aquaticuriz, or water-parfnep, and eat plentifully of them. About 4 or 5 hours atter, going home, the eldeft, almoft of man's ftature, without the lealt previous diforder or complaint, fell down backwards, and died convulfed. Four more died in the fame manner before morning; not one of them having fpoken a word from the moment the venomous particles had attacked the genus nervofum. Of the other 3, one ran flark-mad, but came to himlelf next morning. The hair and nails of another fell off. One of them only efcaped wifhout any harm, who ran home above 2 miles, and drank warm milk, whieh:caufed a diaphorefis. A Dutchman likewife was poifoned with the leaves of this plant, boiled in his

[^68]pottage ; which he took for fmallage, and to which it's leaves havo great refemblance.

Dr Alien, in his Synopfis Medicine, mentions an inftance of 4 children, who eat of thefe roots. They indeed wite in graat agonies, before they feil into corivulfions In their firs they vomited, which was encouraged by Jarge draughts of oil and warm water; and by other proper care they ail did well. He takes notice likewife of a pig's dying in convulions, from eating fome of thefe roots, which it haid grubbed up.

Staipai: van der Wiel, in his oblervations, takes notice of the de:idly effeets to two perions, wha had eaten thefe roots, miltaking them for Alacedonicen parkey. Thefe men (like thofe quoted from Dr Allen), soon after eating thefe roots, were troubled with violent heats in the throat and ftomach, attended with a verligo, ficknefs at the ftomach, and purging. One of them bled at the nofe; the other was violently convulied. Both of them died; one in 2 hours, the other in 3. This author has given lis 3 figures of the oenantbe: the 2 tables of the ronts and the leaves are colerably well executed; but that expreffing the whole plant is very deficient. It were much to be wifhed, that all botanical authors had induftry and ingenuity enough to delintate their own tables, as Columna and Dillenius have done; which will always heighten the value of their otherwife excellent works.

It is very remarkable, that neither the French prifoners, who were killed at Pombroke, nor thofe before cited in the Pbil. Tranf. felt any heat or diforder in their ftomach, before the attack of the convulfive paroxyfms: whereas thefe mentioned by Dr Allen, and Stalpart van der Wiel, were in great agonics, from the violent heat in their ftomach and throat, before they were attacked by convulfions.

The fame variety of fymptoms we meet with in Wepfer, with regard to thofe people who were poifoned by the cicula aquatica; where fome of them, who had eaten the roots of this plant at the fame time, ftood and affifted their friends, till they died of convulfions, without fecting themielves any wife difordered; and afterwards, in their turns, died in the fame manner. Others were violently affected by it, as foon almoft as they had eaten it. Confer Wepfer's Hiftory with the * German Epbemerides. Linneus mentious, in the \dagger Flora Lapponica, the great Aaughter, and miferable manner, in which the horned cattle died, from eating this plant at Torncia. This author alfo, in his Flora Suecica, acquaints us (notwithftanding Rivinus and Mappus have afferted, that the homed cattle not only eat this plant without detriment, but are very fond of it) that three oxen were killed by eating the roots thereof. He was fully convinced that they were the roots of the cicuta aquatica; becaufe, foon after this accident, the country people brought him fome of them, defiring to know to what plant they belonged. He thercupon

[^69]planted them in the academical garden, and was fully fatisfied what they were.

Wepfer has confounded his cicuta aquatica, in the Hiftory thereof*, with the poifonous oenantbe of Lobel; where he fays, that Lobel has defcribed the cicuta aquatica under the name of Ocnantbe cicutse facie, fucco virofo crocante; and mentions, that it is not very frequent, but in the northern parts of England by the fides of rivers, and in watery places : he adds, that Lobel has not been exact in his defcription. To which I antwer, that Lobel's defcription of the oenantbe is very exact, for the time he lived; and it is very evident, that Wepfer never faw this ocianthe; which plant, I believe, is not found in Germany. Wepfer likewife, in the Epbem. Nat. Curiof. \dagger is under the fame miftake; and tells you, that Stalpart van der Wiel differs from him; and calls the plant, mentioned in his Obfervations, Oenantbe, as Lobel does: and though Stalpart has given figures of the plant accurate enough for a common oblerver to diftinguifh the plants by, and tho' nine years lapfed between the publication of his book de Cicula and his Obfervations in the Epbemerides, he was ftill in the fame error; and believed the oenantbe of Lobel, and his cicuta aquatica, as well as that of Gefner, to be the fame poifonous plant. The accurate Hoffman $\|$ alfo, when treating of vegetable poifons, makes no mention of this difference.

Neither the roots of the oenanthe of Label, nor thofe of the cicyta of Wepfer, have any flavour in them difagreeable enough to deter thofe, who tafte them, from eating. They both occafion violent convuifions, and death, if not timely prevented. The intention of cure feems in both to be the fame; viz. firft, by emptying the ftomach and inteftines as foon as poffible, and then by caufing the patient to fwallow large quantities of oleaginous fluids. But it is to be obferved, that the caufing the patient to fwallow any quantity is attended with great difficulty, after he is attacked by the poifon; becaufe of the jaws being, as it were, locked together by the violence of the \{pafn. After the ftomach is freed from this pernicions vegetable, the fymptoms have generally diminified by degrees, and the patient recovered.

[^70]Tbrelkeld, in his Synopsis Plantarum, mentiors, that he has feen great plenty of this oenamibe in Cumbcrland, where the country people call it Dead Tongue, and ufe it, when boiled like a pultice, to the galled backs of their horfes.

Neither the German Botanifts *, nor Haller in his Enumeratio Stirpiums Helvetis, mention this plant as growing amonit them. I believe, therefore, it is Feldom met with but in Holland, England, and in fome parts of France; for Morifon mentions it growing in Bretngne near the mouth of the river Loire. This plant was communicated to Matlbiolus by a Profeffor of Phyfic at Padua. (Sec Mattb. p. 628.) Linnous, in the Flora Suecica, lays, that he received it from a correfpondent, who gathered it in Scania.

Lobel, and after him Gobn Baubin and others, take notice of this plant's growing in the northern parts of England. It grows alfo in the weftern and fouthern parts, by the fides of rivers, large waters, and fometimes by ponds. It grows near Bath. Dr Allen mentions it growing within 3 miles of Bridgewater. It's being produced in Wales, is the occafion of this paper. I have feen it very frequently by the fides of the river Thames, both above and below London. I have found it likewife by the fide of a large pond near the road, in the town of Dulwich, not far north of the college; likewife by the fides of a large water near the mills, half a mile S. E. of Dartford in Kent.

Lobel is the firft, who has given a fmall figure and a tolerable defcription of this oenantbe, in his Adverfaria Plantarum \dagger. He has likewife reprefented it in the 730th of his Icones. This feems likewife to be the plant defcribed by Valerius Cordus \|, under the denomination of olfenicbium; and, by Dodoncus, under that of apium fylveftre, five thy f felium \S; where the defcription, place of growth, and form of the roots, agree exactly with the plant under confideration; tho' his figure is execrably bad. This bad figure is copied, and the defcription trannated, by Gerard ** in his Herbal, without making any mention of Dodoncus. This figure is likewife copied in Parkinfon's Theatre of Plants. Fobn Baubin, Matthiolus, Gerard, Parkinfon, and Morifon, have given us figures of this oenantbe; but thefe reprefentations give us fcarcely any other idea of the plant, than that it is an umbelliterous one, with roots divided like thofe of A Sphodel. Of thefe, however, Morifon's $\dagger+$ is the beft; and his defcription, in his Book de U_{m-} belliferis, is very exact and copious. Mr Ray's defcription is taken from Lobel. I have at the bottom of the ||l| page recited the various fynonyma, under which this plant is mentioned amongft authors.

[^71]As it appears, from what I have laid down, that the coiansibe of Zobel, and cicuta aquatica of Wepfer, have not been lufficiently diftinguifaed by medical writers hitnesto, I hope I thall ftand excufed for making a few oblervations upon this latt. This, though a plant frequently met with upon the Continent, and very well delcribed by butanical writers, we feldom find near London; but it grows in many parts of England by the fictes of large ftanding pools, and near the banks of fens. 1 am informed by Robert More, Efq; an excelient Botanift, and a very worthy Member of this Socie!', that it grows plentifully in many parts of Sbropßire. I have latcly received it from Dr Wilmer, who gathered it by the fides of the river Colne, not far from Uxbridge. It is mentioned by Mr Ray to grow near Brereton-Miere in Cbefizire, and in feveral other places. Youlind it mentioned by Gefner *; and Wepfor, in his Hiftory thercof, has given us four tables of different parts fufficiently accurate. It is figured and defcribed by Jobn Baubin t. Lobel's Icon. 208. relates to this plant. Lodonaus's figure, which is not a bad one for the time, is copied both by Gerard and Parkinfon. Morifon has given us two figures thercof, one in his general Hiftory, the other in his Book de Umbelliferis, though under different names. But the moft elegant and defcriptive figures are thofe of the Hortus Eyfodtenfis and Rivinus. As the jymanyma of this plant are very many, and very different, I have inferted them at the bottom of the page $\|$.

Though the medical writers have not fufficiently diftinguifhed thefe plants, the Botanifts have. Thefe indeed, in their turns, have been as

Cenanthe, fucco virofo, Cicuta facic Lobelii. J. B. III. p. 193.
Oenanthe, Chxrophylli foliis. C. B. P. 162.
Filipendula, Cicute facie. Ger. Emat. 1059.
Oenanthe, Cicutr facie Lobelii. Park. 894.
Oenanthe maxima, Succo virofo, Cicutæ fucie. Morif. Hitt Sect. 9. Tab. 9.
Oenanthe, foliis omnibus multifidis obtufis, fere aqualibus. Hort. Cliff. 99. Rojen. 10\%. Englifh wild l'arfley. Ger. 1020. and Hemlock Dropwort, p. 10;9.
\# CICUT E aquatice frronjma.
Cicuta aq̧uatica. Gefn. Hort 254. Wepfer. Linnei Flor. Lap. 103. Cicuta maxima quorundam. Hors. Eyfes.
Cicuta. Linn. Hort. Cliff. 100.
Cicutaria. Riv. Tab. 76.
Sium alterum. Dod. Pempe. 579.
Sium alterum Olufatri facie. Lob. Ic. 208. Ger. Em. 256. Raii Hif. 450.
Sium Eruex folio. C. B. P., 154°
Sium majus anguttifolium. Park. 1241.
Sium foliis rugofis trifidis, feu multifidis dentatis. Mor. Umb. 63. Tab. 5.
Sium, pinnis laciniatis, pinnulis trifidis, nervo non foliofo. Haller. Helv. 436.
It is called in Englifh Long-leaved Water-Crefes by Gerard, p. 256. very injudicioufly ; and Water Parlieppe by Parkinfon, p. 1241. but much bettes named by Mr Ray, Longleaved Water Hicmlock.
negligent, when writing concerning their ufes (1). So that, notwithftanding Lobel long ago (2) informed the world, that the oemantbe cicutre facie, in it's cffects, was very like hemlock; and that thofe, who had eaten it in fallads, were almoft killed by it; this plant occafioning vertigo's, and other violent fymptoms; yet Morifon, in his Treatife of umbelliferous plants, though very exiet in the defcription of the fpecies of which we are now treating, recommends indifcriminately the whole genus, as being temperately warm and dry; that they are ufeful in cleanfing the urinary paffagcs, and in opening obftructions: he quotes the authority of Diofcorides for giving the powdered ronts in wine to cure the dyfury, and to help afthmatic comp aints. What the cenantbe of D:ofcorides was (3), nobody has determined. He defcribes it, as having leaves like parfneps, white flowers, a thick fta!k about a fpan high, feeds like thofe of arrach, a large root divided into feveral round heads, and that it grows in rocky places. A fhort account of the oenantbe, together with it's ufes in medicine, is taken from Diofcorides by Pliny (4) the Naturalift. What the plant was that Diofoorides here recommends, is uncertain: none of the fpecies we are acquainted with come near this defcription; all thofe, that we know, much exceed his meafure; none of them have leaves like parfneps, and all grow in warery places. Ruellius (5), Fuchfus (6), Tragus (7), Dodonaus (8), and Mattbiolus (9), have given us the filipendula or dropivort, for the oenantbe of Diofcorides: but this cannot be that plant, becaufe it's feeds are not like thofe of arracb; neither has it a large root divided into many heads. Parkinfon (10), no great favourer of Lobel, fays, that "Lobel only brandeth his oenantbe cicutce facie to be virulent and ve" nomous, from the relations of the north country pcople, where he "fays it chiefly grows." Mr Ray, in his Hiftory, though he has tranfcribed Lobel's Defcription, in which it's venomous qualities are taken notice of, leaves this matter to further examination, other Botanifts being of a different opinion.

The inftances mentioned in thefe papers are but too fufficient teftimonies of the malignant properties of this plant ; but Mr Miller, a worthy Member of this Society, informed me furcher, that, not many years fince, a whole family were poifoned therewith at Batterfea. As this plant is frequent fo near us, and as it's appearance and fmell are fo like fmallage and celeri, we are greatly interefted that the knowledge of it be extended as much as poffible. As I find no good reprefentation thereof among authors, and as a good figure conveys a ftronger idea to the generality of readers than the moft accurate defcription, I have procured
(1) Mattbiofus, fpeaking of the ornanthe, fays, p. 628 . Putamus famien a critcrisffilipendulis non multimm differre: \{2) Lobel's, Mdverfaria were publifhed in 1572.

 Nat. Hift. lib. xxi. cap 24. ${ }^{24}$. (5) Pag. 265. ${ }^{\text {a }}$ (6) Fuchfii Hilt. 563 . (7) Trag. p. 883. (8) Dodon. Pcmpt. 56. \quad (9) Pag. 627. (10) Park. Theat. 895.
that
that admirable artift Mr Ebret to draw not only this plant, but alfo the cicuta aquatica of Wepfer; that they may be the more cafily known from all plants, and diftinguifhed from each other by their being both feen at one view. From thefe drawings the ingenious Mr Myinde has very accurately engraved the figures hereunto annexed.
P.S. I am informed by Mr Ebret, that, in drawing the ocnantbe, which he has executed with his ufual elegance and accuracy, he was obliged to have a quantity of it placed before him upon a table; when, the room bcing fmall, the effuria thereof caufed in him an univerfal uncafinefs, with a vertigo; fo that he was conftrained to have it removed, and never after place before him but a fmall piece at a time.
There is fomething in the formation of the root of the cicuta aquatica before-mentioned, deferving particular notice. This plant general!y grows either near the fides of large ftagnant waters, or in fhallow rivers, whole ftreams are flow. Towards the end of autumn, or the beginning of winter, the root for the fucceeding fummer is formed out of the lower part of the ftalk. Out of the crown of this root are then feen the rudiments of the leaves of next year (See Fig. I 36. a.) Fig. 130. and from the fides of this grow the crowns of feveral fmaller roots. This root, in it's whole length, is divided tranfverfly into a number of large unequal cells (See Fig. 137.) correfponding with the par- Fig. 13% titions, which divide thefe cells, the furface of the root is marked circularly with little round depreflions. So great a part of this root is occupied by the cells, that it becomes fpecifically lighter than water; fo that, in winter, upon the increafe of water in the rivers and pools, this root, as well that part intended for the fucceeding fummer, as that which furnifhed the plant the preceding, is bunyed up. The old root then rots, and floats upon the furface of the water with the new one all the winter (See Fig. 136.6.); and in rivers thefe are frequently carried to very great diftances from the places of their growth. In the fpring the old root is wafhed away; and the new one, upon it's coming near the foil, fends out from the circles be-fore-mentioned, particularly from thofe neareft the bottom, a great number of long nender white fibres, by which this root becomes again fixed to the foil, propagates it's fpecies, and remains thus, until, by the rotting of thefe fibres, it is again weighed up. The old root decaying, and being wafhed from the new, is the caufe of that truncated appearance we obferve in the root of the figures of Dodonous, Parkinfon, and Morifon, who have exhibited this plant in a flowering ftate. This provifion of cells in the root feems to be given to this plant by nature, that, as great part of it's root is apt to perifh in winter, vegetation might not be prevented, nor the root deftroyed, unlefs the whole number of cells are fpoiled, which very rarely happens.

Explanation of Fig. 134 cibbibiting the (Lenanthe Cicuta facic.
a, It's tuberofe roots furrounding the ftalk. b, b, b, b, A leaf taken from near the bottom of the ftalk. c, A branch with the umbels of flowers in different ftates. d, An anterior view of the flower of it's natural fize. c, A pofterior view of the fame. f, The anterior appearance of the flower through a mifcrofcope. g, The pofterior view of the fame. b, A view of the rudiments of the fruit after the decay of the flower. i, The fame magnified.
Expiaration n, A branch of this plant with it's umbels of flowers in different ftates. of Fig. 135 . rupreferting the clicuta aquas:ica of Wepfer.

Explantion of Fig. 136, and 137 . re. prefenting tbe
$\dot{\dot{b}}$, The appearance of the buttom of the ftem, growing from the crown of the old root. c, An anterior view of the flower of it's natural fize. d, An anterior vicw of the fame magnified. e, A pofterior view of the fower magnificd. f, The Vafculuizh fiminale, and feed. g, The fame magnified.
Fig. 136. a, The rudiments of the leaves. b, The old rotten root not yet feparated from the new one of the preceding fummer.
Fig. 137. A longitudinal fection of the root exhibiting the cells.
roct of tioe Cicura aquatica in IV inter.

An accouns of tbe poifonous root late. ly found mixed a.my rg the Gentian ; by Rich birock. lefry, M.D. F.R.S. No. 486. F. $2+$ Feb. \& Max 1748. Read March 17.
1747.
XX. The following account is the beft I have received of the poifonous effects of a noxious root, lately found in a parcel of gentian, and exhibited for ufe to feveral perfons inftead of it. And as it is attended with fuch dangerous confequences, I thought even an imperfect relation of facts had better be given immediately, than to expect more circumftances, and wait fo long for them, till greater mifchiefs might happen, by the inattention of fuch as are conftantly adminiftring medicines. The following account was fent by a gentleman of Hambleden parifh, Buckingbamblire; and is found to agree in general with fome other fatal inftances that have happened fince in London.

Mary Burgefs, aged 60 years, about 5 in the morning, drank of an infufion of only one pennyworth (without other ingredients) of fuppofed gentian-root, in $\frac{1}{2}$ a pint of white wine: it is uncertain what precife quancity fhe took; but in 2 hours afterwards the faltered in her fpecch, had twitchings and convulfions of her hands fo far, that the ignorant by-ftanders alledged the poor woman was drunk; and foleft her in bed till 12 to feep it out. On their return however fhe appeared much vorfe, was fpeechlefs, and remained so 3 whole days, and did not know any body all that time. In her illnefs a purging came on, and at laft carried her off.

Katbarine Woodward, aged 44, took about a tea-fpoonful of the fame wint, and foon after fell down fpeechlefs, and her limbs were paralytic near 36 hours: after that ne recovered her fpeech, but continued ill above a fortnight, and part of that time her under jaw was convulfed, and the bled both at mouth and nofe, in the beginning.

Mary Diggins, aged 33 years, tafted a much lefs quantity of the fame wine than the former had done; and though terrified at her neighbour's bad fymptoms, fhe drank warm water with oil, in order to vomit; yet

$$
\begin{aligned}
& \text { alt } \\
& \text { 2/B } \\
& 4 \\
& \begin{array}{l}
5 \\
5
\end{array}
\end{aligned}
$$

UnED

A poifonous root found mixed with, Gentian.

The foon ftaggered, and grew delirious, could not fwallow any folids, and loft the perfect ufe of her eye-fight a fortnight.

The vague reports of thefe, and Mr Pots's cafes induced me to obtain the favour of 2 or 3 Druggifts to look over fome gentian-root, one parcel of which had no lefs than 'of a root, which at firft fight was difcovered to be no gentian.

This root, for which we have yet no name, is of a greyifh brown colour externally, but it is browner, and more refinous internally: moft of that which I have feen, is about the thicknefs of a finger; tho' fome is much larger and whiter; which is a reafon with feveral for thinking there are 2 forts of it ; and indeed fome pieces emit a fronger and more naufeous finell: but this I apprehend may be occafioned only by a larger quantity of refin in them. All of them are of an acrid pungent tafte, and leave a drynefs on the tongue.

I judged it therefore neceflary to try what effects this root might have on dogs, that I might thereby the better conjecture concerning them on the human fpecies. With this intention I decocted \%fs of this unknown root, powdered grofsly in ${ }_{5} x$ of fair water, till ij were evaporated; then let the decoction ftand 6 hours. After this I gave half of it, ftirring up the powder, to a young dog. This made him inftantly foam at the mouth; he grew fick, and vomited part of the dofe; yet in lefs than an hour reeled like one drunk, had twitchings of his limbs, and after fome time the motion of his heart was irregular, and intermittent, tho' ftong: he was ncepy about an hour, but came gradually to himfelf in $\{$ an hour more, and eat victuals, which before he refufed.

Two days after, the fame dog took 弓iv of decoction of gentian made as ftrong as the former; but I difcovered not any bad fymptom from it. I ufed this quantity, as gentian-root is fometimes given to that quantity in the practice of phyfic. It is above 10 days dince he touk the firlt decoction; and hitherto continues well.

A nother dog took above 3 i of the unknown root, finely powdered, and mixed with butter: it inftantly made him foam from the mouth, and caufed fudden vomiting, and, in $\frac{1}{2}$ an hour, weaknefs of his limbs, and ftaggering, which lafted an hour, and then he recovered.

I tried to give a larger quantity to another dog; but it being too much like other irritating medicines, caufed fo great a vomiting, as deftroyed the effects which a finaller quantity had before produced. One of the dogs had fome loofe ftools after taking it ; another urined plentifully. Like experiments have been made by Mr Pearce at St Thomas's hofpital, which had nearly the fame event.

Though none of the dogs were killed by this drug, but remain to appearance well, yet all Apothecaries have fufficient reafon to examine very ftrictly their gentian, and to reject what they find not genuine, fince one of the women before-mentioned, and a man that I have heard of, are both dead; and fince gentian is of general ufe in medical compolitions,

An Eflay upon the origin of Amber.

pofitions, as well as the primary ingredient in the cordial bitters ladics make for their own ufe.

Extract of on effay aforn the origin of Amber; by Joinn Fothergill, M. D. Lic. Coll. Reg. Med. Lond. ${ }^{\circ}$. 472 . p. 21. Jan \&cc. 1744 Read Marchi. 1743-4.
XXI. After all that has been written upon the fubject of amber, it's origin is yet, in a great meafure, unknown. Several ingenious men have fearched into this affair upon the fpot where the amber is principally gathered : they have related their obfervations with great candour; they have given us the conclufions they drew from the facts they difcovered ; yet without fatisfying us intirely about many particulars.

But, as a knowledge of the nature of things can only be acquired from the chings themielves, I have carefully collected every material fact I could meet with, from thofe who were beft acquainted with the natural hiftory of this fubject, and whofe induftry and accuratenels in obferving, and good faith in relating their obfervations, have been generally efteemed unexceptionable. Of thele I fhall only mention Wigandus, Hartman, and Sandelius; the laft who has written, as far as I know, profeffedly upon this fubject.

The evidence which thefe gentemen afford us, I have endeavoured to throw together, in the moft natural order I could, withont refpect to any hypothefis : but as this enumeration of facts admits of no abridgment, my papers would take up too much room: therefore I can only refer to the effay itfelf. Upon this foundation of facts is built a difcuflion of the following problems :

1. Whether amber is not ftrictly a marine production; or is reduced by fome quality of the fea-water into the condition we find it in ? Or,
2. Whether it is not to be confidered only as a bituminous body, generated in the bowels of the earth ? Or, laftly,
3. Whether it is not, in it's origin, a vegetable production, a refin; but changed into it's prefent form by a mineral acid?
It will only be neceffary, in this place, to mention, that, after having fhewn the difficulty of maintaining the 2 firft, I have undertaken to fupport the laft of thefe opinions.

1 endeavour to make it appear, that Amber was, in it's origin, a vegetable refin; the product, perhaps, of the fir or pine kind; by confidering the appearance of the fubftance itfelf: and that though it has fome diftinguifhing properties, yet it has many others, which are common to an indurated refin. It's afpect, it's texture, it's form, are arguments for this. The bodies which it is known to inclofe, are urged as proofs, that this inclufion could not happen in the fea, nor in the earth, but upon it's furface; as the included objects are moftly animals, moftly volatiles too; very few reptiles, except fuch as are often found aloft in trees, as ants, fpiders, E'c. and fcarcely ever any aquatics, are found in amber. And, I believe, I may challenge all the cabincts of the curious to produce one inftance of a marine body having been found
naturally inclofed in amber. That there are feveral fictitious ones, is granted.

That this refin with the trees which afforded it were buried in the earth by the Deluge, or by fome fuch violent renverfenient, and there conftitute the proper veins of amber, I likewife endeavour to make appear, from the fame evidence of facts. The fubftance of which thefe veins confint, hath feveral genuine characteriftics of wood fill remaining. The texture of this fubitance is often an undoubted proof of what it hath been; being fibrous, and, when dried, fwims in water, and burns like other wood. The amber is not difpofed in thefe veins in one continued /tratum ; but lumps of it are irrcgularly diffeminated through the whole of what I call the woody mafs.

A difinculty, which naturally offers itfelf in this place, is attempted to be removed: what proof have we, that this, which is called wood, is not mere foffil wood, the product of creating power, exerted in the place where it is now found? It is anfwered, That as there are undoubted proofs, that many fubftances now occur, where they were not originally framed, we are under no greater difficulty in accounting for the change of place in one than the other. It is known, that the exuvie of fifhes are fometimes found on the tops of the higheft mountains. The bones of large animals are met with at prodigious depths, where nature never formed, nor art conveyed them. Whole woods are found underground. The caufe that effected thefe, was capable of the other.

Yet, allowing thefe allegations to be juft, by what caufes is this change produced? It is urged, That time is one of the caufes; and that the reft is completed by the acid of the earth, a vitriolic mineral acid. It is proved, from the facts above-mentioned, that fuch an acid is prefent wherever amber occurs in it's proper matrix: that it is fometimes found in the amber itfelf, in it's genuine appearance; that the acid of the falt of amber appears, from experiments, to be vitriolic; that common zurpentine (a known vegetable refin) affords, by proper management with a vitriolic acid, a confiderable portion of the fame chemical principles that' amber does; that thofe pieces of amber, which have been found foft and imperfect, are ncarly related to a vegetable refin : in fhort, it is endeavoured to be proved, that we have the ingredients of amber in our power, and that nothing is wanting but a fucceffful application of them to each other; at leaft to procure the medicinal preparations of amber at an eafy expence. Time and repeated trials may, perhaps, ripen this beginning, in fomebody's hands, into an bappy ufeful imitation of this valuable fubftance.

This account is concluded with an inquiry into the medical virtues of amber, and fome of it's principal preparations. It is obferved, that a fubitance of fo firm a texture, as farce to yield to any common menftruum, is not likely to produce any confiderable effects upon the human body; and that, indeed, there are very few genuine inftances recorded of any : that bufy imagination might, probably, at firft, intro- recommend it to their inatentive fuccelfors.
I fhall finifh this abitract with remarking, that, were fome of the leifure moments of men of great abilities and experience devoted to inform the world of the inefficacy of fuch methods and mexicines as they have proved to be fo, thylic would be reciuced into narrower bounds; they would meris the tha:ks of every one in the profeflion; and poftcrity, at leaft, would conimend cheir endeavours.
XXII. At Arienzo, a town between Neples and Benevento, I found an afl-coppice, of 8 or 10 years growth, from which they collected manna. It feemed to have been tapped 2 years for that purpofe; the branches had been barked each year about an iach broad, and 2 feet high; but they told me this was done by an inch at a time.
They place a cup at the bottom of the wound, which they empty every 5 days. This liquor becomes manna. They formerly let it dry upon the tree; but the preient way keeps it cleancr. The manna begins to run (they fay in the Scripture ftyle to rain) the beginning of Auguft; and if the feafon proves dry, they gather it 5 or 6 weeks. The King of Naples has fo large a revenue trom it, that he is extremely jeaious of it, during the feafon guards the woods by Sbirri, who even fire upon people that come into them, and he makes the ftealing of the liquor death. The feafon in which I was at Arienzo prevented my feeing the fpecies of afh. I believe it to be what our Gardeners call the flowering afh ; the complexion of the bark and bud agrees with one of them I have in my garden at Lindley. The man who fhewed me the wood, told me, it bore a pretty flower in the fpring. At Pifa in the phyfic-garden they thewed me that tree in bloom as the manna-afh. The tree is indeed common enough in that neighbourhood: I wonder Mr Ray does not mention it among the plants found there by him. The Italiens call it Orno. A Botanift at Rome told me it was the ornus officinarum. A Phyfician at Benevento to the fame purpofe, that it was the ornus ufed in medicine. A perfon is gone from Rome to Naples, who has promifed to be very particular in getting you information of their manner of curing it. He was bred a Chemift, and told me many ways of counterfeiting the feveral appearances of it. The moft common is with Glauber's falts and fugar, with a fmall mixture of manna. The price of manna at Naples, they told me, was 4 carlins ($4 \frac{1}{2} d$. fterling each) the rotolo (32 ounces).
XXIII. Altho' pot-afh is a thing daily ufed, and well known even

An accouns of the preparation and eyes of the various kinds of Pot-ahn ;
by John Mit.

Concerning the metboit of gathering
Manna near
Naples, in a leiorr from Robers Mose, E/g; 16 M1r W. Wiation.

F R.S. No
195. F 4^{-0} W.ay \&c.
1750. Renú june 21. 1;0.
for making foap, glafs, dying, or bleaching, fo the way of making it chell, M.D. is generally underitood in moft countries, except our own. For in F.R.S. Ne France, and other countries where they make wine, they make a kind $489 . p .54 \mathrm{f}$. of pot-afh in an eafy manner from the lees of their wine. In thofe and other more fouthern climates, they have many kinds of herbs hereafter Nov. 17 a.d inentioned, either fpontancous, or cultivated on purpofe, which they as $2+1 / 17\}^{3}$. cafily convert into pot-ah. In Gerimany, and other more northern countries, they make great quantities ot pot-afh by extracting the falts of their wood-afles, in a manner that is well known. But it is only in Ruffia, Sweden, and other northern nations, where the art of converting their wood-afhes into pot-afh, without the tedious procefs of elixiviation, is cither well known to the learned, or practifed by the vu!gar.

By this means moft nations are fupplied with this neceffary commodity of their own, except the Englifh, who might be fupplied with any quantities of it, from the great plenty of otherwife ufelefs wood they have in their colonies, if not at home, if they knew how to make it. But it fecms this art is fo little underffood among us, that many attempts I have known to make pot-afh have all proved unfucceffful merely upon that account, fo as to be entirely laid afide. This has put me for fome time upon inquiring into the ways of making this commodity, of which feveral have been fuggefted to me, from the feveral trials and informations hereafter mentioned.

It is well known, that the athes of all kinds of vegetables whatever, afford pot-ain in fome meafure or other; altho' fome are much more fit for that purpofe than others, which may be determined from the experiments of Redi, Phil. Tranf. N. 243, p. 281. Boerbaare, Merret, and others; fo that we need not infitt upon them here.

As for the trees and herbs of our colonies in N. Anerica, moft of thofe that are common in their woods are known to be fit for this purpofe, as the afhes of them all, burnt promilcuoully in their houfes, make a very ftrong lye fit for foap. Of thefe, the fitteft for that purpofe is their biccory, the moft common tree in their woods, which makes the pureft and whiteft afhes, of the fharpett tafte, and ftrongeft lye, of any wood I have feen. Their flickweed is faid to do the fame, which is as common a weed. For this reafon the afhes of both thefe plants were ufed by our Indinns there, inftead of falt, before they learnt the ufe of common falt from the Europeans. The afhes of tobacco likewife, when damrified, or nut fit for a market, or it's ftalks, ftems, and fuckers, of which great quantities are thrown away, and rot and perifh, are very fit for pot-afh, as they contain a great deal of falts, and are well known to make a ftrong lye.

On the other hand, pines, firs, fafofras, liquid amber, or fweet gum, or all odoriferous woods, and thofe that abound with a refin or gum, are unfit for pot-afh, as their afhes are well known, even to our planters, to make a very weak lye, unfit for foap. tables that afford a large quantity of it, but make a bad kind of potath, at lealt for many purpoles, on account of a ncutral falt with which they abound. This feems to have been the cafe of the pot-afh made in Africa, in a manufacture of that commodity fet up there by the Africon Company, which Mr Houfton (who was chiefly concerned about it) tells us, in his Travels, proved fo bad, on account of a neutral falt it contained, that the manufacture was left off on that account ; or, perhaps, from their not knowing how to make it aright. What thole vegetables are, that afford this kind of afh, is not well known, if it be not fern, and fome fea-plants.

Whatcer vegetables we make our pot-anh of fhould be frefh or green, and no ways rotten, dried, or decayed. They fhould likewife be burnt to athes by a flow fire, or in a clofe place; otherwife, when they are burnt in the open air by a ftrong fire, great quantity of the afles is confumed in fmoke, by the faline and terreftrial parts being carried up in fumes, before they are feparated from thefe exhalable parts by the action of the fire. For the difference between burning wood in a clofe place, or the open air, is fo great, that the quantity of afhes obtained from one is more than double the other. This we learn from the experiments of Lundmarck hercafter mentioned, who tells us, he burnt a quantity of birch in a clofe flove, from which he obtained 5 pounds of afhes; whereas the fame quantity of the fame wood burnt in the open air, yielded only 2 pounds.

It is for this reafon, that molt people who make pot-afh, burn their wood in kilns, or pits dug in the ground; altho' the Sevedes burn it in the open air, as the author above-mentioned informs us. This firlt ftep, or the burning the wood to afhes, feems to be taken by many for the whole procefs of making pot-afh; for they who pretend to have learned this art in Ruffia, as well as Lemery and fome other authors, hardly give us any other account of it.

But, in order to convert the afhes, prepared in this or any other manner, to what is called pot-afh, there are many different ways practifed in different countries, which make as many different kind's of potath, that are all to be found in our markets, and have all their refpective ufes.

1. The firt of thefe is commonly called pearl-a thes by our people, who import great quantities of it from Germany. This is no other than the lixivial falt of wood-afhes, extracted by making a ftrong lye of ihem, and by evaporating it to drynels, in a manner that is well known, and fufficiently explained by Kunkelius in his art of making glafs, Boerbaave, and many others; fo that we need not infift upon it here; we fhall take a more fit opportunity to explain it, for the ufe of our people in America.
2. But the art of converting thefe wood-afhes into pot-afh, without this tectious procefs of elixiviation, is only practifed in Rufia, Sweden,

An account of the presaration and ujes of Pot-2:h.

and other northern countries, where it has been lately difclofed by one Lundmarck, who tells us he had often made it himfelf, in the manner he now defcribes. This account is contained in an academical differtation upon this fubject at Aboe in Swoden, and was communicated to me by Dr Linneus, Profeffor of Botany at Upfal, as a genuine account of this art; which I think has hitherto been generally unknown.

This author tells us, "They have many large wools of beech in "Smoland, and ocher parts of Sweden, in want of which they take alder : " of thefe they are allowed to ufe only the old and decaying trees for "this purpofe, which they cut to pieces, and pile in a heap, to burn "them to athes, upon the ground, by a flow fire. They carefully " feparate thefe afhes from the dirt or coals in them, which they call " raking them; after which they colleet them in bafkets of bark, to "curry them to a hut built in the woods for this purpofe. This they " continue to do till they have a fufficient quantity of thefe afhes. Then " their whole art follows; for which they choofe a convenient place, "" and make a pafte of thefe afhes with water, by a little at a time, in " the fame manner, and with the fame inftruments, as morter is com"s monly made of clay or lime. When this is done, they lay a sow of " green pine or fir-logs on the ground, which they plafter over with "this pafte of afhes : over this they lay another layer of the fame terait "6 logs of wood, traniverfely or acrofs the others, which they plafter " over with the afhes in the fame manner: thus they continue to erect "a pile of thefe logs of wood, by layer upon layer, and plattering "s cach with their pafte of athes, till they are all expended; when their " pile is often as high as a houfe. This pile they fet on fire with dry "s wood, and burn it as vehemently as they can; increafing the fire from
" cime to time, till the afhes begin to be red-hot, and run in the fire.
"Then they overfet their pile with poles, as quickly as they can; and
"s while the afhes are ftill hot and melting, they beat and clap them, "6 with large round flexible fticks made on purpofe, fo as to incruft the " logs of wood with the afhes; by which the afhes concrete into a folid "s mats as hard as ftone, providing the operation has been rightly per" formed. This operation they call Walla, i. e. Dreffing. At latt they "6 frape off the falt thus prepared, with iron inftruments, and fell it " for pot-afh; which is of a bluifh dark colour, not unlike the forice "of iron, with a pure greenink white falt appearing here and there " in it."

All the pot-afin we have from Ruffia, Sweder, and Dantzick, is exaetly like what our author here defcribes, and feems to be made in this manner. It is, however, generally obferved, that the Ruffian is the bef? of the fe, on account of the greater quantity of falt in it. Now if, in the preceding procefs, we make our pafte of the affes with lye, inftead of water, it is plain the pot-ath will be impregnated with more falt, and make all the difference there is between thefe forts of pot-afh. This then is likely to be the practice in Ruflia; where their wood may like- wife be better for this purpofe, and afford more falt. This is well known to be the cafe of differene kinds of wood: fo our author above-mentioned telis us, he obtained 2 the falt out of eight cubic ells of poplar, which was very fharp and cauftic; but the lame quantity of birch afforded orily one pound of falt, and that not fo ftrong; and fir hardiy yiekded any at all.

The way of making por-anh above defcribed may be the more eafily underftond by our people in Aimerica, for whom this is chiefly intended, as it is the fame with their way of making lime of hells, the only lime they ufe in moft places. Thefe fhells they burn to lime between the layers of a pile of wood (inftead of a kiln) till it is reduced to affes, in the fame manner as is here directed to be cone with afhes, to m.ke potaflh. The lime, thus made, is reckoned very good; but, as it is impregnated with the a.hes of the wood, and the marine filt that is often in the frells, it is apt to make the houres that are built with it very damp in moift weather; fo that the water often runs down their walls in ftreams; which camot but be very unwholiome in an air that is naturally clofe and damp: the only way to prevent which would be, to wafh and dry their hells frequently, and burn them in dry pine, that afford litele or no lixivial falt. But to return to our purpole:
3. There is another way of making pot-ath, practifed chiefly in England, where they make it in the following manner, as I am informed by leveral, who have feen it done:

With their ahes of fern, or wood of any kind, they make a lye, which they reduce to what they call pot-anh, by burning it with fraw. To do this, they place a tub full of this lye migh a clean hearth of a chimney, in which they dip a handful of loofe ftraw, to as to take up a quantity of lye with it. The fraw thus impregnated with lye they carry as quick as they can, to hold it over a blazing fire on their hearth, which confumes their fraw to athes, and at the fame time evaporates the water from the falts of the lye. Over the blaze of the firft parcel of ftraw they burn another dipt in lye in the fame manner. This they continue to do till their lye is all expended. By this means the coals and afhes of the ftraw, and falts of the lye, are left on the hearth, and concrete together into a hard folid cake of a greyifh black colour, which they fcrape off, and fell for pot-afh.

This is an cafy way of making pot-afh, in want of proper veffels to extract the falt of the lye by evaporation, or in want of wood to reduce the afhes to pot-afh in the way above mentioned, for which it feems to be contrived, and for which it is only to be commended. For the pot-ath made in this manner is full of the coal of the ftraw, and it's falt is not fo ftrong, as our workmen fay, or fo fharp and corrofive as the falt of the foreign pot-ah, that is calcined in an open fire; befides other differences hereafter mentioned; which makes this pot-anh unfit for fome purpofes, and not above half the value of the foreign.
4. They have a very different way in the north of England of reducing their kelp to pot-afh, which they ufe for making ahum. This is made

An account of the preparation and ufes of Pot-afh.

of the different kinds of fuci, or fea-weeds thrown upon the fhore, or gathered on the rocks; which they dry a litele in the fun, and afterwards burn them in a kiln, built of the ftones they find on the fhore, in a cylindrical form, and about 2 foot or lefs in diameter. In this they firlt burn a finall parcel of the herb, and before it is reduced to athes they throw on more, till the kiln is full, or their materials are expended. This is faid to reduce the afhes to a hard and folid cake, by the heat of the kiln, and quantity of falt in the herb, which makes what is commonly called Kelp-Ahses.

There are fome other ways of making pot-afh, fuggefted by feveral, both authors and others, which appear to be more eafy and ready than any of the above mentioned; for which reafon they are apt to be tried by thole who make attempts of this kind. Thefe are deduced from what they reckon the nature and properties of this production: and there is no doubt, but if that was well underfood, it might afford fome infight in the way of making it. For this rcafon we made the following experiments with the beft Ruffa pot-afh, in order to difcover it's nature and properties, and how they are moft probably communicated to it ; that we might fee what we are to make; in order to imitate the beft, or to make what is accounted good pot-afh.

1. Rufir pot-ah, as it is brought to us, is in large lumps, as hard as a fone, and black as a coal, incrufted over with a white falt, that appears in feparate fpots here and there in it.
2. It has a ftrong fetid fulphureous fmell and tafte, as well as a bitter and lixivial tafte, which is rather more pungent than other common lixivial falts.
3. A lixivium of it is of a dark-green colour, with a very fetid fulphureous fmell, and bitter fulphurcous tafte, fomewhat like gun-powder, as well as fharp and pungent like a fimple lixivium.
4. Altho' it is as hard as a fone, when kept in a clofe place, of in large quantities together in a hog thead; yet, when laid in the open air, it turns foft, and fome pieces of it run per deliquium; whilft mott other kinds of pot-afh only turn friable, and crumble in the open air.
5. It readily diffolves in warm water, but leaves a large fediment of a blackifh grey colour like afhes, which is in a fine foft powder, without any dirt or coals in it, that are to be obferved in moft other kinds of put-afh.
6. As it is diffolving in water, I have feummed off from fome lumps of it a dark-purple bituminous fubftance, like petroleum or tar, which readily diffolved in the lixivium.
7. This, or any other true pot-afh, or a lixivium made of them, will prefently tinge filver of a dark purple colour, difficult to rub off; whilft a mere lixivial falt has no fuch effect.
8. Pieces of this pot-afi boiling in water make a conftant explofion like gun-powder; which was foltrong as not only to throw the water to fome height, but to lift up and almoft overfet a fone cup in which

I boiled them. Thefe explofions were owing not fo much to the included air, which fome perhaps may imagine, as to the fulphureous parts of the compofition exparding and lying off: for this boited lixivium had neither the green colour, nor fetid fulphurcous finell and tafte; at leat in any degree like what it has when made of the lame pot-alh by a fimple influfion in warm water.
9. I evaporated fome of the green lixivium, made only by infufion, and filtered thro' a double rag: as foon as it began to boil, a green powder, to which it's culour is owing, fell to the bottom, and the lye became pale. After it was evaporated to a pellicle, and fit in a cool place, a falt feparated from it on the fides of the cup, in angular cryfals like tarear. Thefe cryftals were foon formed, and in pretty large quancities, but were difficult to feparate from the alkaline lye and lalt, in which and the open air they were apt to diffolve: but from the pellicie i obtained fome pieces of the fame falt that would not diffolve in the open air.
10. Oil of vitriol makes a ftrong effervefence with this green precipitate, with a white fume, and a very ftrong fulphureous finell. It does the fame with there white cryftals, aleho' the lulphureous fmell is not fo ftrong. But with the pure fixed alkali there was no fuch fulphureous fmell to be difcerned.

From thefe experiments we may determine fomeching about the nature and contents of pot afh. This we are the better enabled to do, from the accurate experiments and reafonings of the learned Mr Geoffroy, on a like fubftance made of charcoal and an alkali falt calcined together, in which he obferved all the propertics and contents of pot-aflabevementioned, particularly related in the Mem. R. Acid. 1717. This was made of the fame materials, and had all the properties above related of our pot-afls ; particularly a green lixivium, a ftrong fulphureous fmell and tafte, a fulphureous green precipitate, cryftallized falts, and fulphureous fumes with oil of vitriol. From hence this learned author concludes, that this fubftance contained the active fulphurcous parts of the wood, blended with more active igneous particles. Thefe, united with the alkaline falts, make a kind of foap, or fulphureous faponaceous falt, refembing foap of tartar, or bepar fulpburis. The cryftallized falts he attributes to the acid of the wood, mixing with the alkaline falts. All thefe parts of the wood then are contained in our pot-afh; and he oblerved the fame in the common fodn, or cineres clavellati; alcho' they are in a lefs degree in that than in the Ruflian pot-afh.

Befides thefe, he fhews that pot-afh contains a metallic fubftance, which affords the Pruffien blue. We may add further, that the combination of thefe principles makes many properties in pot-afh, more than what refult from them in a ftate of feparation. The moft remarkable of thefe feems to be it's explofive quality; which we take to proceed from the cryltallized falts approaching to the nature of nitre, and uniting with the fulphur and charcoal; by which they form, from all
thefe ingredients of gun-powder, a kind of that explofive fubftance, whofe parts are highly rarefied in an intenfe and confined heat, by whichs they readily explode in boiling lye.

By this we may perceive, that the difficulty in making pot-all aright, is, firt, to. reduce the materials to cinders and afics, and at the tame time to preferve cheir volatile, fulphureous, and exhalable acid parts, that arc totally deftroyed in fuch a degree of heat; and, fecondly, to calcune thete athes fill further, fo as to fux their falts, and vitrify their terreftrial parts, and at the fame time to keep them feparate fron each other, or prevent their running into an indiffolvable glais. To give pot aht fome of thefe properties, feems plainly to require a degree of heat that will totally deprive it of others.

The moft likely way by which it comes to receive all thefe properties, is from the way of making it in Sweden above defcribed. In that procefs, the green fir, in which the aflees are burnt, impregnates them with the acid faline parts of the wood or tar, which is well known to be in pretty large quantities, and is abforbed and fixed by the alkaline fials, and porous terreftrial parts of the ahes in this procefs; fo that, befides the fixed alkaline falts of the afhes, the pot-afh, thus made, muft likewife contain the more volatile falts of the pine, which are exhaled in finoke by burning the pine alone in the open air. Befides thefe, it likewife contains the refinous parts and fulphureous fumes of the pine, that are hindered from exhaling by the heap of the mass.

At the fame time the alkaline falts are fluxed in the open fire, and in a manner vitrified with the terreftrial Parts of the afhes, which gives them their hard and folid confiftence; whillt the fulphurtous and acid parts of the green wood hinder then from turning to a perfect glafs, or inert calx. All thefe parts united together in the fire, make that faponaceous lubftance we find in the pot-afh thus made, which further hinders the vitrification of the mafs, and endows it with many of it's moft peculiar and active properties.

From hence we may fee how difficult it is to muke a fubftance endowed with all thefe properties in any other manner. This is the reafon why we could never before make pot-an equal to that of $R_{1} f_{i} a_{\text {, }}$, and the other northern countries, although we have much greater plenty of materials, and perhaps better: for this way of naking it has never before been thought of by the Learned, or practifed any where elie, as far as I can learn.

Somewhat of the fame qualities are communicated to the Engli/ß pot-alh, by the way of making it above delcribed; but in a degree as much inferior, as dry ftraw, ufed for that purpofe, is to green wood: accordingly our workmen find that pot-afh as much inferior to the foroign, for many purpofes.

From this account of the contents and qualities of pot-afh, and the way of making it, we may form fome judgment of the other ways of making it, propofed by authors, and fuggefted by many. Thus Le- mory and others tell us, pot-afn is made in Ruflia, and all the nerth rna countries, only by calcining the athes in pits bricked within, and Iprink. ling thens well with lye, till they become hard and folid. But fuch a calcination of afhes with a lixivial falt, mult render them whiter, inftead of black, and muft further deffroy the active fulphurcous parts of the wood, which we find in pot-afhe rightly made. So that this only leavis the afhes in the ftate they were at hirlt, or turns them into a kind of indiffoivabic glafs, as we have found upon trial.

This, and the like miftakes about the way of making pot-ant, feem to proceed from a general crror concerning the nature of it; for it is commonly fuppofed to be only a kind of inert calk, impregnated with nothing but a lixivial falc. Some fuch miltake feems to have fruftrated all the attempts hitherto made of making pot-anh in America; for, upon trial, what they have made there was found to be no better than common afles.

But the moft general miftake about the way of making pot-anh, feems to proceed from the accounts we have of making it, from glaffwort, and fome marine plants, which are faid to be eafily converted to this kind of fubfance, in the manner above-mentioned. But we apprehend, the way of making if from wood mult be very different: for thele herlos are eafily reciuced to afhes by a fmall fire that does not intircly confume thcir fulphureous parts, which wood is not. Thefe a hhes abound with a great quantity of alkaline and fome neutral falts, that readily convert them to a hard and folid confiftence, which wood does not. They have likewife few or no terreftrial parts, to run them into an indiffolvable glafs, when fluxed in the firc, as happens in woodafhes. Beffides, thefe herbs have few or no fulphureous or acid parts, like moft woods; and the pot-afh made of them has few of thefe principles in it, like what is made of wood.
It is however generally faid, if we burn our wood in a clofe place, as a kiln in which we buirn lime, or make charcoal, or a pit dug in the ground, we may impregnate the afhes with the fulphureous fumes and aciid parts of the wood, only by the clofenef's of the place, or by fmothering the fire in it. If at the fame time we impregnate then with a greater quantity of lixivial falt, it will fux the whole mafs, and make it run into a folid hard confittence like pot-afh. This is commonly directed to be cione, by throwing frefl or green wood or herbs upon the others, as they are burning, before they are quite reduced to alhes; or by fmothering the fire, as in making charcoal; and at the fatue time to foprinkle the a fhes, thus burnt, with a ftrong lye from time to time, in the manner commonly practifed with glafliwort.
This would be a more ready way of making pot-ahn than any of the above-mentioned; but as thofe who give their advice about it, have neither tried it, nor feen it done; and thofe who have tried this or any other way, find more difficulty in it, than they at firft imagined, we fhall fufpend our judgment about it, till we fee it fairly tried, left we fhould
thould deter fome from making ufeful experiments of it, or lead others into fruitlefs and expenfive attempts.

By the various ways of making pot-afh above-mentioned, and the different materials it is made of, there appear to be many different kinds of it, that have as different qualities. It would lead us too far beyond our prefent defign, to give a particular account of each of thefe; but as they are ufed in many of our manufactures, it feems worthy inquiry, to know what forts are generally ufed, and what are the fitteft to be ufed in them.

The workmen in England make two general kinds of it, which they diftinguifh by the names of pearl-afh and pot-afh. The firtt is a mere Jixivial falt, which is fuppofed to be the only ingredient of any efficacy in pot-afh; but, upon crial, there is found to be a great difference between them, efpecially in making foap. The falt is fo weak in the pearl afh, that it does not incirely diffolve and unite with the fat. The reafon feems to be, that thefe falts are diffolved in water, in order to extract them, by which they lofe many of their cauftic igneous parts; whereas in pot-afh, the falts are calcined and fluxed in an open fire, with the ignited terreftrial parts of the afhes, which makes them more fharp and corrofive : they are likewife incorporated with the coal, and fuliginous parts of the vegetables they are made of, or with the refinous parts of fir, which gives them the fulphureous quality above-mentioned, and makes a kind of fonp of tartar, or bepar fulpoburis, in all pot-ath; which makes thefe falts fo ready to diffolve, and incorporate with oil, or orher pinguious fubftances.

This is perhaps the reafon, why the Cineres Ruffici are ordered for this purpofe, inftead of a mere lixivial falt, by the College of Pbyficians in their late Difpenfatory. The foap made of them muft be impregnated with their heating fulphureous quality, which will make it more aperient and detergent, but not fo mild and foft as fome others; by which it may be more fit for obftinate and indurated obftructions, but will be more offenfive to the ftomach; which is much complained of by fome people, who take large quantities of the fharper kinds of foap.

But, to confider pot-afh as a commodity in trade and manufactures, which is it's chief ufe; it appears, that the people in England not only have it at a dear rate, but the worft forts of it, at leaft for moft purpofes; which cannot but have a proportional influence on their manufactures: for it is generally of as great, and fome forts of a greater value in their markets, than a pure lixivial fale; notwithftanding the finall quantity of fuch falt in afhes, and the trouble and expence of extracting it; which feems to be occafioned by their not knowing how to convert afhes into this commodity; for in Sweden, where this art is known, Lundmarck tells us, pot-afh is fold for little more than a farthing a pound, which cofts our workmen nigh fix-pence.

But this is not the only inconvenience we labour under for want of this commodity; the forts we are chiefly fupplied with are perhaps the worft of any, and unfit for many purpofes for which pot-afh is ufed. The only pot-afh almott to be met with here, comes from Ruffia, Sweden, and Dentzisk, or is made in England. Thefe are all made either of wood or fern-alhes, whofe falts are never fo pure and white at the beft, as fome others: but, by the way of making them, and the experiments on them above-mentioned, they appear to be impregnated with coal, fnook, and foot, which renders them itill more foul and impure, makes them of a black, brown, or green colour, and of a peculiar fulphureous quality. On this account they are entirely unfit for making white glafs: they make a very coarse and ftrong kind of foap; they are too foul, farp, and corrolive for bleaching, and are as unfit for dyeing, at lealt many colours.

It is perhaps for this reafon, that the workmen here, as they fliewed me themfelves, make all their white glafs with falt petre; which muft not only be more coftly, but Neri, Merrett, and others, tell us it is not fo good, at leaft for the better forts of glafs, as a fharper lixivia! falt. What they ufe for dyeing I am not fo well apprifed of: it is faid, they ufe the volatile alkali of urine; but the French put-afh, made of the lees of wine, is generally allowed to be the boit for that purpote. So likewife the Alicant pot-afh is reckoned nuch the beft for bleaching, and making of foap; as the Syrian and Egyption is tor making glafs.

Thefe purer kinds of pot-afh are all made of herbs, that grow only in the more fouthern climates, whofe falts are finer and whiter, and lefs acrid and corrofive than the falts of wood, or moft other vegetables; and by the way of extracting them by calcination in a more open fire, they are more free of coal, imoak, and foot, or any other heterogencous mixture. On this account they are much better for the purpofes abovementioned, than the coarfe and foul kinds of pot-afh that our people are fupplied with.

All we have of thefe kinds of pot-ahh, it feems, comes only from Spain; for which reafon our people were obliged to petition to allow the importation of pot-afh from thence, during the late war; as appears by an order of the king and council of the 24 th of June 1742. Fince they could not do without it in many manufactures: fo that it may be worth our inquiry, to know what it is that produces fo neceflary a commodity.

This kind of pot-afh is commonly called Barrilba, from an herb of the fame name in Spain that produces it. The firft account we have of this Barrilba is from Amatus Lufitanus, who leaves us much in the dark about it. It is generally faid in England to be a plant pretty well known to the Botanifts by the name of Ficoides Neapolitana, flore candido. Hort. Lugd. Bet. but for what reafon I cannot fay. We have as little reafon to believe with fobn Baubine that it is what he calls Kali vulgare: For Mr de Jufieu has mewn us, that the true barrilba is a different plant
from any of thefe, from his own obfervations of it in Spain, where it was cultivated; of which he has given us a particular account, by the name of Kali Hifpanicum, fupinum, annuum, fedi foliis brevibus. Mens. Acai. 1717. p. 93. or Alicant gla/s-wort.

The pot-alh made of this plant, he tells us, makes the beft foap, the fineft glats, and is the beft for bleaching of any other; for which reafon it is much fought after in all countries, where they value themfelves for thefe manufactures. But I queftion very much, whether our workmen have it either pure and genuine, or in fufficient quantities for thefe purpoles. All the ufe I find made of it among them, is to make hard foap; although they fay what they have of it fpoils their foft loap, by making it curdle. This is well known to be the effects of feafalt; and Mr de Fu fieu and others tell us, that the true barrilba is often adulterated with fea-weeds, which contain fuch a marine falt; fo that it is probably only this adulterated fort that they have. Accordingly, all the barrilba I have found here, was of a dark brown colour, and very foul and ponderous; whereas the true fort is faid, by all who know it, to be more porous, pure, and of a bluifh colour. It is for this reafon in all probability, that, notwithftanding all the barrilba our worknen have at fo dear a rate from Spain, yet they can never make fo good foap, as what comes from thence, and fome other places.

The only way then, by which we are likely to have this commodity either pure and genuine, or in fufficient quantities at a realonable rate, is from the herb itfelf that produces it. Whether or not it would grow in England is not known, as I believe it has never been tried: but there is no doubt but it would grow very well in our colonies in America, as I am certainly informed it does in the spanifb colonies there, where they have great plenty of it ; and a fort that is indigenous, particularly in Pere, which might probably be found in our colonies, if fought for by thofe who knew it. But wherever it will grow in any of the Englifh dominions, there is no cioubt but it would be a confiderable improvement, where pot-afh of all kinds is fo valuable a commodity, and fo much wanted; for it grows on the fame ground with corn of any kind, which it does no harm to, as it is a fmall annual herb, that docs not fpread till the corn is ripe, or off the ground.

There are fome other plants that are known to make a kind of potafh, commonly called rocbetta, which is taid to be even preferable to the barrilha, efpecially for making glafs. Thefe are the firft and fecond kinds of kali, defcribed by Profper Alpinus, in his account of the plants of Egyph. The firt of which is the above-mentioned ficoides that grows in Italy, and all over the Lecant, but the other is peculiar to Egypt. Thefe would be fit inprovements for our coionies in America, where we feem to want nothing more than fome proper production for the vaft tracts of land we are pofieffed of there. But there plants alone afford a commodity, which Pr. Alpinus and Rawsolfus tell us shey faw

Concerning she Propaga. tion and Cul . sure of Muth. roans ; by ble Rev. Mr Roger Pickering, V. D. M. $\mathrm{N}^{\mathrm{O}} .4 \mathrm{H}^{72}$. p. 96. Jan. Sec. 17+t. Read April 26. 1744.

Of the Propagation and Culture of Mufhrooms.

many large Thips yearly loaded with iu Egypt, and which gives the excellency to the glafs and foap that are made at Venice.

It would be worth while then at leaft to make a trial of a production, that is likely to improve both our trade abroad, and our manufactures at home. It was this that put me upon the prefent inquiry, as an improvement fit for our colonies, which if I find acceptable, I hall hereafter confider fome others.
XXIV. I. The late rains having thrown up upon my muflroom beds a great quantity of thofe plants, I take the opportunity to fend fome additional obfervations to thofe printed in thele Tranfalitions. *

After having repeated the experiments, then made, upon plants and feeds of this year, I find no reafon to alter any thing there mentioned, either as to the lamelle or chives on the concave fide of the uatiolla, being the filique or feed-veffels; or the feeds falling from thence to a lodgement wifely prepared for it on the middle of the caulis, and from thence eafily fliding to the earth contiguous to the mother-plant; or as to it's propagation by fibrous runners, or folones, like potatoes; all which, I am perfuaded, thefe following new obfervations fufficiently confirm.

1. Upon examination of feveral lamelle, I not only diftinctly obferved feeds, of fize and colour proportionable to the maturity of the plant, lodged therein, but alfo a filiquaceous aperture, with a row of feeds ready to fall through it; which is a very evident proof, that each diftinct chive is a filiqua or feed-veffel.
2. Upon obfervation of the filament fituated on the middle of the caulis, upon which, as I before obferved, I at firft difcovered the feed, I found both it's contexture and fituation evidently demonitrating the end for which the wife Creator placed it there; viz. to intercept the feeds in their fall to the ground; whereby the power which the wind would otherwife have upon fuch minute bodies is leffened, and the feed, with little or no diffipation, fecurely directed near the ftem of $i t$'s mo-ther-plant. For this filament is indented and pappous, to catch and lorge the feed as it falls from the filiqua ; and is, at firtt, rigid, and ftanding horizontal to the umbella or head, and at right angles with the caulis; whereby few or no feeds can fall without being intercepted: but, as the plant comes nearer to it's decay, this filament relents, falls down clofe to the fides of the caulis; and it's feveral indentures then making parallel lines with the fibres of the ftalk, the feeds are, through them, conveyed, as through little ducts or channels, to the ground.
'Tis further to be obferved, that this filament is not of fo fucculent a contexture as the filiqua or feed-veffel; fo that the feeds, which would otherwife rot in the jligua, are here retained in full health, till the perod of their falling to the ground. I have now by me the filament of a plant, laid by for obfervation ever fince Ociober the 28th laft paft, - Sce Vol. Vili. Part ii. Chap. v. \$xi. I.

Of the Propagation and Culture of Mufhrooms.

which is near half a year ago ; from which, two days ago, I took feeds fair and perfect.
3. Upon examination of the caulis in feveral fections, I find the mufhroom a plant more perfect than has been thought. It has a perfect radix; a caulis confifting of fibres, the interftices of which are filled up by a parenchymous fubftance, leading from the radix to the umbella or head: it has, as has been obferved, it's femen and filiqua, and more regular periods of vegetation than is fuppofed. The common opinion of a muthroom's fpringing up in a night, and perifhing in a day, has no foundation in fact. I have now by me fome in all ftates of maturity; fome of which, to my knowledge, are near a fortnight old, and yet but juft arrived to a fitnefs for the table.
4. Upon examination of feveral mufhrooms, expofed to the open air, but kept from the injuries of the fun and rain, Ifind no animalcula bred therein, nor, as yet, a tendency to putrefaction; though they have been expofed thus for a week. On the other hand, upon examining a mufhroom, very far from being full grown, putrefied by the rain, and moifture of the dung in the bed, I found animalcula, difcoverable only by the third magnifier, flating in the Jiquor, fqueezed out from it: from which I think it evident, that the dangerous confequences which hiftory has informed us to have attended the eating of mufhrooms, have not arifen from any poifonous quality effential to them, but from the accidental ova or cmimalcula, which the richnefs of their nutriment has allured to them, and which their contiguity to the ground, and the places they are produced in, render them obnoxious to. Thefe animalcula I have lately had an accurate view of; but as they demand a fuller account, than this paper, already too long, will permit, I fhall referve the obfervations upon them for another opportunity of being honoured with the attention of the Society.

However, it may not be amifs to fubjoin a fhort account of the culture in the kitchen-garden of a plant which contributes fo much to the delicacy of polite tables, which may be depended upon, from perfonal trial and fuccefs; as thofe few writers upon the fubject, not being acquainted with the true mufhrooms, are not entirely to be depended upon.

In the melonry, or place allotted in the garden for hot-beds, the mufhrooms muft be thus ordered : having marked out a portion of ground one yarc and a half broad, and of any length, as the ground will permit ; faften two fticks at each end of the diametrical diftance already marked our, which fhall, by inclining to each other on the top, form an Ifofeles triangle. To the breadth and height of thefe fticks muft the bed be made, of old, rich, dry dung, clofely trod together : neither new nor moift dung is proper; for the mufnroom being naturally of a fucculent and fpongy contexture, too much heat, and too much moifture, mult neceffarily injure it. Having raifed your bed to the height and breadth propofed, cover it with fine fereened mould, to

Remarks on the preceding paper, with Obfervations upon the poifonous faculty of fome jorts of fungi ; by Mr W. Watfon, F.R.S. N°. 473. p. 51. May \&e. 1744. Read May 31. 1744.

Remarks on the priceding Article. the thickneis of three inches, into which, at proper diffances, put either that white fibrous fubtance, which may be collected from the place where mufhrooms fiave formerly grown; or elfe water it with water in which the chives and parings of muflhrooms have been itteeped; or you may put in the chives in grofs. If you take the firft flep, the mufhroom is propagated by tranfliantation; that white fibrous fubftance, already mentioned, being no other than the folones of old mufhrooms, from which others are propagated, like potatoes: if you take the fecond, that is, by watering; the feeds lodiged in the parings being, by the water, feparated from the filique, and with it poured upon the mould, are that which gives fertility to the beds thus managed. If you put the chives in grofs into the mould, it is no more than fowing the feeds in the pods, as in other plants it is fometimes neceffary to do. Over the bed, thus prepared, muft conitantly be kept a covering of long new litter, to the thicknefs of one foot, to preferve the plant from the froft, the fun, and the wind. During the niddle of fummer, and the extremity of winter, it is bent to make thefe beds under fhelter ; but at other times they are beft expofed, the warm rains not a lietle contributing to their fercility; which, by the lloping fafhion of the beds, are fuffered to moiten them no more than necefiary.
I fhall only add, that when I feak of the mulhrooms, as I have all along done, i miean the fungus " porofis, craffus, tragguss, called, by way of eminence, in England, the Mufbroom.
2. I hope I hall have the Rev. Mr Pickering's excufe, if I lay before you a few further obfervations upon his papers concerning mufbrooms.

With regard to the feeds of mußbrooms, although they were never fhewn to the R. S. before, the fact wasknowis to many Members thereof: for the induftrious Micheli did not only raife mufhrooms from their feeds, but has, in his tables, flewn the daily progrefs from their firt point of vegetation, even to their perfect ftate.

The Fungus porofus craffus magnus is not the mufiroom ufually raifed in England for the table, as this gentleman did imagine; that name being given by Fobr Boubint, to a fpecies which is to be diftinguifhed from all other fungus's, by the inferior fubftance not being divided into lamella, or (what we call in England) gills; but has, in lieu thereof, a great many papille; and being of a greenifh yellow colour. But what is raifed in England (of which this learned gentleman brought feveral famples to the Socicty) is the Fungus campefiris albus fuperne, inferne rubens, of Jobn Baubin, which differs toto calo from the former, and which Dr Dillenius enumerates among the fpecies of boletus; whereas the latter is a fpecies of amanita.

I muft beg leave to differ from this gentleman likewife, in regard to the ufe of the ring, which furrounds the falk of this mußroom. He imagines it placed there, by the wife Author of Naturc, to break the

[^72]fall of the feeds when ripe; whereby thofe light bodies may be preferved from the fury of the winds, in order to the abundant propagation of their fpecies. I have reafon to believe, that thofe feeds, which fall upon this ring, fall there by accident; and adhere there only from the vifcofity, whereby they are intangled. But, before I examine this matter, give me leave to make a few obfervations upon the occonomy of this plant: The fungi, then, are of that clafs of vegetables, which are ranged, by that moft kilful Botanift Linnaus, under the appecllation of Cryptogamia, or thofe which perform their fructification in fecret. Under this head we find the fig-tree, all the fpecies of fern, moffes, mulhrooms, and a few others, whofe flowering and feeding are obferved with more difficuley, than in thofe we ufually call the more perlect plants. In fome of this clafs, the fructification, notwithftanding the great affifance furnihed to the modern Botanifts by microfcopes, which the aucient were wholly deftitute of, remains yet undifcovered. This plant then being of this clafs, almoft all thofe whofe ftems are thick and flefly, as well as their umbels, have a ring upon their ftem; from which, when the plant is young, and until it arrives at a llowering fate, there arifes a membrane, which connects the rim of the umbel to the ftem, and preferves the under part of the plant in this fate: bur, when this is over, the umbel, which before was almoft of an hemifpherical figure, growing larger, and the membrane not giving way, is loofencd from the rim of the umbel, and adheres only to the $\mathfrak{l i s m}$. Soon after this flate, the fieds ripen, and the umbel, lofing it's former figure, commences almoft a plane; and the plant in this ftate is fold in our markets, by the name of flaps. Now, when the umbel is of this figure, the feeds, being perfectly ripe, muft fall naturally upon the whole fpace the umbel covers (which Micbeli obferved, by placing leaves of trees under them); and, upon the ring, as well as any other part; though I have reafon to believe not more. As for thofe fpecies of fungi whofe ftems are thin, and whofe umbels are foft, and more ductile, they need not, nor have they, this ring or membrane; becaufe, in their tender ftate, the rims of their umbels clap themfelves quite clofe to the ftalk, in the form of a contracted umbrella; and expand as the others do, when their feeds are ripe: neverthelefs the fpecies of this tribe are as numerous as the former.

I now come to confider how far the poifon of mufbrooms can poffibly proceed from animalcules: but, firft, give me leave to doubt, whether or no any perfon was ever injured from eating the common mufbroom, or amanita; unlefs fuch accident may have proceeded either from cating too many at once, and thereby overloading the ftomach; or from fomie particular dinike in the conftitution; as we fometimes fee, even with regard to honey, cheefe, and fome of the moft innocent parts of our diet; but which, notwithftanding this, are by no means to be ranked among poifons. If there were many inftances of their being pernicious, fuch muft frequently occur to the practitioners in Phyfic, on account

Remarks on the preceding Article.

of the vaft quantity annually confumed in London; but I don't remember to have even heard of any fuch accident; bur many initances occur of the noxious quality of many of the other fpecies of this tribe: nor is it at all wonderful, that the diffcrent fubjects of this clafs of vegetables fhould differ in their effects more than thofe of the more perfect kind. The roots of carrot, parfnep, and many others of the umbelliferous clats, are daily ufed as food; but the water-hemlock, and Loiel's oenantbe, though of the fame clafs, are moft certain poitons.

Here I mutt obferve what pains have been taken by Naturalifts, to diftinguin the ufeful from the pernicious kinds. Among the Romans, the boletus mentioned by fuvenal, on account of the death of the Emperor Claudius, is fufficiently defcribed by Plizy; but, among the later writers, Carolus Clufius was of the firt of thofe, who, about the middle of the fixtcenth century, being tired with the Critics and Commentators of the time he lived in, prefumed to believe, that the whole of knowleelge was not confined to the writings of the Greek, Roman, and Arabian Phyficians; becaufe, from the revival of letters in the weltern world to his time, nothing was regarded, as of any importance, but what was dignified with the authority of antiquiry: and hence it came to pafs, that when the clouds of ignorance began to difperfe, the epocha of Commentators took place; but many of the defcriptions of the plants of T'beopbraftus, Diofcor:des, and P!:ny, were fo very deficient, that little light could be acquired therefrom; efpecially from this laft author, who is to be confidered as the only Roman Naturalift that we have handed down to us; and it is no wonder, if, among the vaft variety of fubjects that this moft admirable Hiftorian treats of, he is, in many inftances, rather to be confidered as an Enumerator, than as a Defcriber: I Thall only mention the imperfect fetches he has left us of Silaus, Geum, Molon, among the many others.

There arofe, I fay, fuch heats and difputations among the critics upon thofe authors, very often about trifles, that they rather increafed than diminified the ignorance of thofe times. This excellent Clufus, finding that a thorough knowledge of nature was neceffary, not only to underftand rightly the Ancients, but to lay the foundation of future knowledge, was defirous to join careful obfervations of his own to thofe which were to be acquired from books. How much he travelled, and what progrefs he made in this undertaking, his many valuable works are the beft teftimony. Among them, his hiftory of fungus's bears not the leaft character; he therein enumerates a great variety, not only of the efculent, but noxious kinds; but, as the different appellations of every fpecies was not, at that time, much confidered, he gives no other fynonyms to either clafs, than that of, viz. Efculentorum primum genus, noxiorum decimum genus, and fuch-like. But this want of fpecific names has been fufficiently fupplied by Fobn and Cafpar Baubin, Ray, MoriSon, Tournefort, Vaillant; but, above all, by Dillenius, in his Catalogus Giffenfis, and by Micbeli, in his Nova Plantaruin Genera. In moft of thefe
thefe authors we find inftances of mifchievous effects from the pernicious kinds; which property fome of them have equal to opium, aconitc, or henbane; but how far this property proceeds from animalcules, the following inftance will fulficiently demonitrate. We have a fore growing in England, called, by Cajpar Baubin, Fiungus albus acris; which MIonficur Tournefort has rightly obferved ftimulates the tongue, and is almoft as Marp as though it were fteeped in fipirit of nitre; and, being rubbed upon paper dyed blue with turnlole, turns it as red as any violent acid fpirit will. This cauftic quality remains even after the fungus is dry. We need make no further inquiry for the caufe of the poifon in this plant; the above-mentioned is a fufficient criterion. Yobn Baubin likewife tells you, that after having handled this furigus, he rubbed his eyes by accident, and brought on a violent irritation upon his eye-lids. Cajpar Baubin mentions a fort which kills the very flies. Micheli defcribes a fpecies, which, upon eating them, almoft killed the Painter he ufually employed, and an old woman, the painter's mother. This man, being fent by the author to delineate fome of thefe fungus's, and being taken with their appearance, ordered fome of them to be fried, and he and his mother ear thereof; but were, in about two hours, feized with violent pains in their boweis, from which they were with great difficulty relieved. I might produce many other inftances of this fort; but the above, I believe, are fufficient.
XXV. By covering up my trees with ivy, in February 1 have vaft of covering

$$
\text { F.R.S. } \mathrm{N}^{\circ} \text {. } 475 \cdot \text { P. } 267 \text {. Jan. Sc. } 1745 \text {. Read Jan. } 24 \cdot 17+4 \cdot 5 \text {. }
$$

XXVI. The defign of communicating the following paper to the Extrat of a R.S. is, to invite Gentlemen, after the example of a practice that has long obtained in Herefordbire, to attempt an improvement of their wafte lands, by planting fuch kind of fruit-trees, as are mentioned, in hedges Miles, D. DD. and barren places; which, for aught appears, would thrive as well in whe Pref, other counties, perhaps in fome parts of moft counties in England, as relating to in that of Herefort. S. Hartlib, Efg; for bis ufe, and that of Mr Pell, the then Britifh Refs- 477. p. ${ }_{2} 16$. dent at Zurich; and which appears to bare beens intended as a Sequel to Aug. \&c. 1745 . The tbat foarce and valuable piece intituled Herefordfhire Orchards, infort- letter read ed in the later editions of Mr Bradley's New Improvement of Plant-Nov. iit5. ing, \&xc.

The author undertakes to evince, "That crabs and wild pears, fuch Concerning an " as grow in the wildeft and barren clifts, and on trills, do make the excalient itVUL. X. Part ii. 5 I
"s richeft, ftrongeft, the moft pleafant and lafting wines that England " yet yields, or is ever like to yield. - I have fo well proved it al" ready (fays he) by fo many hundred experiments in Herefordflire, "t that wife men tell me, that thefe parts of Eugland are fome hundred " thoufand pounds fterling the better for the knowledge of it."

He mentions, of thefe kinds of auftere fryit, the Bareland pear and the Bromblury crab, of which notice is taken page 4 th of the Tract intituled Herefordfire Orchards; and intimates, "That tho' the diifco" very of them was but then lately made, yet they had gotten a great "s reputation." - He adds, "The croft crab and white or red horfe-pear " do excel chem, and all others, known or fpoken of in oticer coun" tries." Of the red horfe-pear of Felton or Longland he obferves, "That it has a pleafant mafculine vigour, efpecially in dry grounds, " and hath a peculiar quality to overcome all blafts." - Of the quality of the fruits he lays, "That fuch is the effcet which the aufterity has " upon the mouth on tafting the liquor, that the ruftics declare 'tis "as if the roof were filed awway;" and that " neither man, nor beaft, "care to touch one of thefe pears, tho' never fo ripe." Of the pear called imay-winter, which grows about Roffe (in that county) he obferves, "That it is of no ufe but for cyder; that if a thief Iteal it, he " would incur a fpeedy vengeance; it being a furious purger; but, " being joined with well chofen crabs, and referved to a due maturity, " becomes richer than a good French wine; but, if drank before the " time, it ftupifies the roof of the mouth, affaults the brain, and pur" geth more violently than a Galcuije." This quality, he apprehends, will 〔ufficiently fecure the fruit from bcing ftolen, tho' the trees fhould be planted in the moft remote grounds.

Of the quality of the liquor he fays, "That, according as it is mana": ged, it proves ftrong Rbenilh, Backrac, yea pleafant Canary, fugar"ed of itfelf, or as rough as the fierceft Greek wine, opening or bind" ing, holding one, two, three, or more years - that no mortal can yet " fay at what age it is pait the beft. This (adds he) we can fay, that " we have kept it till it burn as quickly as fack, draws the flame like "Napbiba, and fires the fomach like aqua vita." He faith, "That "s he made trial at his own houfe with wine d'Hay, by a Merchant of "Briffol highly extolled, which, compared with a liquor made of crabs " and wild pears, was fo much inferior, in the judgment of all, that "the comparifon was ridiculous." And he further relates, "That a "Gentleman (Sir H. Lingen) a great Planter, and expert in many ex-
"periments, had then by him many tuns of a liquor made with this
" mixture of fruit, which he, by a defigned equivocation, called pear-
" maine cyder, that carried the applaufe from all palates-that all his
"common hedges yielded him ftore of the faid fruit.".
To recommend this eafieft, cheapeft, and moft profitable kind of agriculture, (as he calls it) he fays, "That the beft of thefe pears grow " upon very bare and fandy hills, or vales; crabs on any mound or

Of planting Seeds in Mofs.

" bank that may be raifed on an heath; that one pear-tree ordinarily " bears yearly 40, 50, 60, 70 gallons of ftatute-meafure, and fome 5, " 6 , or 7 times as much. Since I undertook this argument (adds he)
" within 10 miles of this place we made in one year 50,000 hogfheads;
"as I examined, not by fancy, but by rule and inquiry; and this fhews
" the hardinefs of the fruit. Lee our noble patriots weigh, that tinis is
" not a thing in the air, but a noft certain and apparens truth, import-
" ing no lets than the art of raifing ftore of rich wines on our common
" arable, on our hills, and wafte grounds; the charge a erifl", the pains
" very fmall, the profit incredible. Hence my defign is to urge the
" incredible benefit that would redound to thefe nations, if leading per-
" fons would make themfelves, their tenants and cottagers, ail happy
" by following our example. I leave the reader to caft up how many
" millions of hogheads of wine, in a few years, would be raifed in the
" land. And truly I conceive it the chief caufe, that, in all thefe times
" of late wars, none of our pooreft cottages did lee want; in all houfes
"s they had the fatme number of meals, and the fame conftant fare: our
"a arable feems not a jot the lefs, nor our pafture the lefs; and for fome
" ufes the fadow of the orchard brings on the grafs a fortnight the
" fooner, as commonly for cwes and lambs."
The author concludes his tract with thefe words, "If this Difcourfe
" be duly valued, we need not raife wars to deftroy one another, or eat
" up one another, as we do; in a fhort time we may be provided of
"fruit enough for another world as big as this, and to make this a true
"Paradife."
XXVII. Mr Bownet was inclined to try whether piants were capable The fabfance of vegetation, when they were only fet in mofs, inftead of being plant- of iome expeed in the earth. With this defign, he filled with mofs feveral garden riment of pots, and he compreffed the mofs more or lefs, as he judged, the feve- planting feeds ral plants he intended to place in them, might refpectively require a $1 / \mathrm{y}$ made by Mr clofer or a loofer foil.

He then fowed in mofs, wheat, barley, oats, and peafe. And he found, firt, that all the grains fowed in that manner came to maturity later than thofe of the fame forts which were fowed at the fame time in mould.

2 dly . That the ftems from the feveral grains fowed in the mofs were generally taller than thofe which fprung from the ground.
 ber of blades than from the grains fowed in the earth.

4thly. The grains fowed in mofs produced more plentifully than the others.
5 thly. Thofe grains that were gathered, from the produce of thole which vegetated in the mofs, having been again fowed fome in mols, and fome in earth, fucceeded well in both.

Manuring Land with Foffil Sbells.

Mr Fonnet has alfo planted in mofs, pinks, gillyflowers, daifies, tuberoles, tulips, hyacinths, jonquils, and narcillius's; and all thefe plants ficcecileci as weil as others of the lame forts, which he at the fame time planteci in mosk..

He alfo placed in: mors cuttings and layers of vines, and thefe cuttings and layers became vines; and thele vines in a thort time grew larger than otices, that cance from cuttings and layers planted at the fame time in the ground.

A ietter from sise Reve inir K. Pickering, F R S. 10 she Irci. con cerning ple manuring of land wish form thells. N°. 474-8. 191. June \&ic $17+1$. Read Dec 6. 1744°

XXVHII. I take the liberty of offering. by your hands, to the Society, a fpecimen of fofil thells, lately fent me, which are pretty perfect; and, on accotint of the place from whence they were taken, remarkable. At Woodbridge in Suffolk, in a Farmer's ground, there are fome pits, in depth equal to the ufual height of houles, confiting of feveral firata of fhells from the bottom to within about 9 fect of the furface, where the natural foii of gravel and fand begins. The mafs of fhells here collected is prodigious; the forts various; but that kind which I have taken the liberty to produce, and which, I apprehend, is the buccinum sulyare, or whitk, prevails the moft. The fhells before you were taken up from the bottom of the pit, where the depth to which thefe fhells reach is net yet dug down to. Wooduridge is feated 7 miles N. E. from Ipfüch; alid is about the fame diftance trom Orford on the fea-coalt, which bears from it due E. How, therefore, fuch a mafs of fhells hould get there at fuch a diftance from the fea, when hiftory has informed us of no remarkable inundation in thofe parts, or that fuch a tract of land was ever recovered from the fea, appears to me difficule to deternine, by any other than the Mofaic hypothefis of an univerfal Deluge. 'Tis true, indeed the river Deben, which rifes at Debenbam fome miles off, runs by Woodbridge, within a mile of thefe pits, in it's courle to the German ocean, where it empties itfelf: but fuch a collection of mells can hardly be fuppofed to have been thrown up by it, and a furface of earth, to the depth of 9 feet, fettled over it, without allowing a fpace of time for fuch a circumftance, almof equal to the interval between us and the Deluge. But, however thefe things be, the Farmer, in whofe ground thefe fhells are, has, as I am informed, daid the foundation of an ample fortune from them. The man contented himfelf in the old beaten track of the Farmers (a behaviour which does infinite prejudice to the improvement of Natural Knowledge in Agriculture), till an happy accident forced him upon a bold improvement. He ufed to mend his cartways, when broken up by harveft-work, with thefe Theils; in which bufincis his cart one day broke down, and threw the fhells out of the cart-track into the cultivated part of the fied. This fpot produced fo remarkable a crop next year, that he put fome loads upon a particular piece, kept the fecret to himfelf, and waited for the event. This trial aniwering expectation, he directly took a leafe of a Jurtre quantity of poor land, at about five fillings the acre; and having manured

Manuring Land with Fofil Sbells.

manured it heartily with thefe fhells, in about 3 years it turned to to good an account, that he had 15 hillings the acre profered to take the leafe out of his hands. I know that manuring land with fhells, thofe of oyfters in particular, is no novelty: I mention this with regret, as an inftance of what poor hands, both as to landlords as well as tenants, agriculture, an extenfive branch of Natural Knowledge, is generally thrown into; which both requires and deferves the clofe attention of a philofophical mind.

A PAPER omitted.
A fummary of fome late obfervations upon the Generation, Compofi-N ${ }^{\circ}$. 470 . p. tion, and Decompofition of Animal and Vegetable Subftances; in a letter 615. to M. Folkes, Efq; P. R. S. by Mr Turbeville Needham, F. R. S.

The End of the Second Part.

a H T

$$
\therefore
$$

$$
\psi^{\prime \cap}
$$

PHIL OSOPHICAI, TRANSACTIONS

VOL. X
PT. 1 \& 2
1743-1750

[^0]: - Interce lepra L'Eledrisitá principainente ier quants ipstea alla Miedicina. Ir Vene2i atprefo Simone Occhi, con Licenza de uferiori 1.4.

[^1]: - Tentamen de vi Elearic. \&sc. p. 183i.

[^2]: - De Electricit. Comment. novus, pag. xvi.

[^3]: - Exparionces fur IElegricito. p. 50.

[^4]: - The firf of thefe works is a letter of Mr Pivati, an Advocate at Venice. It was firf printed at Lucca in 1747. and fome time after reprinted at Venice, always with the fame title, Della Elestricita, Letira Al chiariffomo Signar Francijco Pivati, NE This letter was tranflated into Fronch, and [rinted at Paris. In 1748, there appeared another treatife, printed at Bologna, intituled, Obfervation: ffaro-mediclis intorno alla Elcafricita, da Gio. Giujeppe V'orati publ. Profefl. nella Univerfita, enchla Academia delle Scienze del infitato acadrmiso Benedestino. In the fame year, 1748 , there was printed at Vrrona a little weatife concerning medical Electricity, intituled, Lestra dal Signiore Cazariso Brigoli fopra la Macbina Elettrica. Afterwards, in 1749, there was publiged at Venice a new treatife, considerably larger than the firf, in which we find not only the authoris own experiments, but alfo thole of Mr Bianchi of $\tau_{\mathrm{H}} \mathrm{Min}$, and of fome other perfans who had taken pains with this view. This laft work is insituled, Refefforit fifec fopra ha Medicina Eieftrica. It is principally in this volume that the facts of which we are now creating are mentioned.
 + Mr Pivati has given this name to the manner in which he prepares bnllow cylinders of glafs in filling them, or lining them, with fome drug, the virtue of which, he pretends, will sranfude with the electric matter.

[^5]: - See Mr Pivati's'e er, printida: Lasca, p. 37.

[^6]: - This young man made himfelf very happy in relating to every body, that he had been electrized; and shat he had been purged thereby, as though he mad taken phyfic: and added, that, an hour afier his clectivation, having had the curiofity of vifting his wife, to fee what would be the confequence, he had communicated this Electricity to Her, and that the had been purged as well as himfelf.
 + M. Biarchi fufpected, shat the drugs we had made ufe of in our firf experiments had lolt their nolt fubtile parts, only capable, as he faid, of being introduced with the clectric maticr.

[^7]: 1)
[^8]: - Reffeffioni fócobé foptra lu viedicina elestria, p. 149.
 t They have trar naied Haster, willuad of sboomsaker, in taking the Italian word Caficfario for thet of Coliolaio, which was fufficiently Iegibleia the manufcript.

[^9]: - I bad been asguainted, that my artival at V enice hed been notified by let:ers from Tiurin, which had defcribed me as an min fo prejudiced againtt facts, that the flrongeit could not make ane believe. In this they did me great injuftice; urlefs they took for incredulity on my pars the precaution I took, againit illufion, and falle appearances.

[^10]: * In a difcourfe read to the Rojal Academy of Sciences juft after Eafer, 1746 .

[^11]: - Page 28. Un tale dileguamento fuccedutomi in un cylindro, non mi è poi veramente fuccedito in altri, di quali mi jon fervito per varie guarigions
 + si confumo la materia interna a fegno, cbe fo ridufle non oftante feffere quafe ermeticamente ferato alla fottiliezza di un delicato foglio di carta, e come un capo morto, the ne tenea più odore ni fapore, efino il vetro medifimo quafo confunto fo apri da fe peflo in piz̀ fiffure per longo.

[^12]: * Refiefioni ffficbe fopra la medicina ellettrica, p. 103. La fubita efficacia (della ellestricita) in dar giufo movimento alle mofire, di eroiogio, o firme, o refice, o risardanti Janza simedio.

[^13]: - See my Effay far l'Elefiriciti des Corps, printed at Paris, 17.46, and my Recherches fur les Crizfes parsicilieres des Phrenomenes sleतिriques, $17+9$.
 + Efai fur i' Eqricitc des Corps. p $1 \ddagger^{8}$ et füv.

[^14]: - This inftrument hath fince been greatly improved by Mr Jobn Ellicot, F. R. S.
 + Vol. I. p. 421. Eis.
 \sharp See his Chemiffry, Tom. I. P. 152, 153.

[^15]: - But, with fubmifion to fo great a man, I cannot apprchend that his Thesmometers, when the fpirits are raifed up to 80 do mark any greater degree of heat than their own fpecific boiling heat, which, if they are alchiol, or the mont reclified fpirits, anfwer to 174. of Fabrenbeit's fale; if of the frength of common brandy to 190.

[^16]: * See Dr Marsin's Effays Med Eo Philof. P. 225. Sir I. Nerwfon's Thermometer is made of linfeed Oil. See his Scale of Heat, Vol. IV. P. ii. §. 1.
 + See Boerb. Cïem. Tom. I. p. 1/4.
 1 But what is this to the marvellous natural cold of Siberia, 120°. below 0 ? See the preface to Gmelin's Flora Siberica, Petrop. 1747. 410.
 ** Tom. 1. p. 163.

[^17]: - See AuguRin. Grifchow Thcrmometria comparata accuratius, EO barmonica. Berolini 1740. 410. P. 10.

[^18]: - In the beginning of the year 1735. I invented, and caufed to be conftructed, a Thermumeter on the fame principles as this: 1 found that a sod of brafs 3 feet long was fenfibly affeited by the changes of heat of the weather, having one expofed in my garden during the hard frof of the winter 1739 and 40 . And my inftrument was very fenfible with either a brafs rod or an iron rod, when the botom of it was placed in a fand heat for chemical ufes; but I fall refer the reader to the preceding paper, wherein 1 have given : full defcription of my invention, and the reafons why I did not publifh is before ; tho' I have fhewn the intrument to fcores of people ever fince May 1735. and fent a defeription and draught of it to M. B:sfon, fuperintendant of the Royal Pbyfock Gaiden at Paris in the year 1 174. in ordes for his laying it before the Royal Academy of Sciences at Paris.

 > C. M.

[^19]: VOJ. X. Part ii.

[^20]: - Su Vol. II. Cbap. I. §xvi. I.
 + This author fays, Poplar wnuld do muct better ; but of that I have had no trial. |Sea Vol. II. Cuap. I. 'f xvi. 2.

[^21]: YOL. X. l'art ii.

[^22]: Storn of Thunder, nubich happened June 12. 1748. at Streatham in Surry, N ${ }^{\circ}$.488. p. 383. Junc

[^23]: * Toosing in Surry.
 $+\operatorname{Sec}$ Ast. 14.
 Chelifer.

[^24]: P. S. Deene ftands clofe to the road which leads from Nortbampton to Stamford; it is about 25 miles from the former, and 10 from the latter.

[^25]: - Read Nor. 16, 1749. publifhed with other tracts on Elc:ricicy; by Mr Peter Collinfon, F. R. S. Londsn : 750.8 vo.

[^26]: - Sce Vol. I. p. 5^{86}.

[^27]: - One of which Mr ilbeler made a preient of to the R. ؟.

[^28]: - His obfervatiors were comx unicated to Sir Ro!ert Sibbald, in crder to affir him in. compilirg a Scorifo Aclas.

[^29]: - Thofe are commonly caufed by fulphureous rapours, which never appear in clanlk.
 C. M.

 ## YOL. X. Part ii,

 4 G
 be

[^30]: - Pag. 83. Vol, V. new edition of Mr Boyle's works in folio.

[^31]: (a) Buëtius Hiff. Gem \& Lap.
 (b) Catal of $E_{n g}$ lifl Fofilis, Part II. p. 19.
 (i) Sir James W'are's Aneiq. by W'ale Harris, p. 22\%. Edit. 1745. Colio.
 (d) Afterwards kithop of Down. Sec Thil. Irans. No. 174.
 (6) Ibid. ut Jupra.

[^32]: - Muf. R. S. P. 269.

[^33]: - To confirm what the Bifiop fays, I remember when I was in the eollicge in France, that I went to fee a relation of minc, a frier, at Fortseraud, where he thewed me in their church two pillars of ftone, about 60 feet high, all of one folid picce, which he faid had beca ran. 7. S.

[^34]: * Method of Fofils. Lecters, p.17. \quad Ibid. p. 16.
 || See Theoghrafus's Hilk of Stones, tranlated, E゙c. Jolun Hill, Lond. 1746. 8vo. P. 94 .

[^35]: - Sir Hans Sloane has a maifs, which was formed within an echinus, the fhell being broken off; it is one half or fide cryltal, the other fide of a fublinnce like chaik, but much harder.

[^36]: * Perhaps to fome cells or membranes belonging to the body of the echinus. C.M.
 (a) Mujezm Reg. Soc. p. 139.
 (b) Scbediafina de echinis, p 60.
 (c) Naf. Di/p. Eckinodermatum, p. 20. 'ТАв. 17. A, \& TAB, 18. B.
 (d) Cade of foreign extrancous Fofills, p. 16.

 $$
 4 \mathrm{M}_{2}
 $$

[^37]: (e) La vana speculazione difingannata dal fenfo, TAB. 9, 10, and it.
 (f) Nat. Hijt. of Jumaica, Vol. II. Tas. 242. Fig. 3. हo' feq.

[^38]: - The flone having been fince cut in two, it was found that thofe regular lines, compofed of a iparry matier, penetrated the whole fubtance of the ftone quite thso', and that they grew wider as they were neares to the centre. See Fig. 56.

[^39]: (4) Lib 37. 62
 (5) "Cifl oque enim modo effis: poref: Lapis." Ag. de Ore. Suier. Lib. 4. Bofíl. Edis. p. 57.
 (6) Ib. p. 5 (6.
 17) See Boerlaave's Theory of Chemiftry, by SLazv, Nof. 120.
 (8) W"codward's Nat. Hift. of she liarth, $2 d$ Edit. p. 189.
 -. Wiater is cie ouly agent that educes the matter, of which they iwiz fear and "cryffal) confith, out of the trata. and compiles and forms it in the perpencicular " fillires." Vioodward's N. Hif. Foff. Vol. I. p 150.

[^40]: (9) See Addifon's Travels into Italy, and Bp. Barnes.
 (10) Ie allo veins or granulates, or Loth, every kind of fone ; and is oftentimes found to compofe whole loads or veins, without any metallic or mineral mixture, or any par. ticuliar thape, more than the fillure in which it relled compreffed it into.

[^41]: (11) Cockle is a black, mining, light fone, free of all metal, different from mock-lead, common in the tin-mines of Cornwiall.
 (12) Incruftations are fo many cvident proofs of flones not being formed all at the fame time ; formany Cornifh Diamonds, and columnar fhooss of tin, cubes of mundic, and grains of lead, are often broise off from thefe their irclofures; but the angular cavities, with :heir itrait edges and finooth fides, Atill appear in the ircruftation; which phain!y Thews, that the diamonds and tin hoois, Eic. were frot formed and hardened, and then furrounded and united into one lump, by a fuecerlive induration of thefe cryfal or fpar crulls.

[^42]: (14) "Crypallus ef fucres, quen frigus int': a terram congluinavit", Agric. P. 282.
 (15) Mr Boyle's opinion is, that fuch flones, (viz. Spars and Cryptals) were originally in a fuid fate; tbat the figure of them is determinate and geometrical, like the cryfals produced by alum, nitre, vitriol, in water; and theis texture like the congelations of Sile produced in cryfallization by cold.

 Grew (C_{0} frol. p. 14.) after talking of the regularity of forms, and the falts of bodies, proceeds thus: " Arguing (fays he) that the atoms of the lapicific, as well as of the faline *. principle, being regular, do therefore concur in producing regular flones."
 (16) Gornijb Diamonds, fent to Dr Gronovius from Cornwall.

[^43]: - The weight of Cryfals to water is as $2 \frac{1}{2}$ to : of Diamond's 35 $3 \frac{1}{3} 101$. See thefe Tsanf. N'. 488. p. 453. C. M.

[^44]: (21) See Fig. 83. and it's defcription, p. 648 .
 (22) See Plott's Oxf. p. 98.
 (23) As Plost, ibid, ut Supra.

[^45]: - See Fig. 76.
 - I fuppore the Dcan means Dr Bruckuanx, and the late Mr Linck, an eminent Apothecary at Leeiphe: for Dr Bruckmann, in his Censuria Epifo. Ilinerar. bryoffenbussho 74^{2}. 4to, Epif. XXILL. has given feveral figares of perrifations, very much refembling thefe

[^46]: * Mr Lowindes's procels is inierted in this Work. See p. 104, E゚ feq.

[^47]: - Hoffran de falinibus Hallenf. cap. viii.

 Ut igitur noftra hac de re insotefcat fententia, banc interponimus ; ficuti in tora univerfa hujus orbis compage, una tantum eft aqua, unus per fermentationem paratus foiritus ardens, unus Mercurius, unum volatile fal, unum acidum nitrofum ac vitriolicum fal; ita, pari ratione unum idemque fal commune eft. Sed quum plures aliene, terrex, lapidofx, fulphurex, calcaria minerales ac pingues particula cum hife corporibus connubium ineant, diverfa exinde emergit corum indoles; \& fal commune idem femper obsiseret ingenium, fiquis pingues terreas, calcareafque partes ab illo artificiofe fegregaret.

 1. By Rock-Sait, or Sal Rupiam, the antient Chemifs mean falt adhering to the rocks above the high water mark, being there lodged by the fpray of the fea, evaporated by the heat of the fun; which is the puref falt of all for chemical ufes, and is to be had off the rocks of Sicils, and feveral inands in the Wef Indies. C. Mertimer.
[^48]: * Why not Malt. Vinegar?
 C. M.

[^49]: (a) Inft. R. Herb. p. 563. (b) Linn. Gent. Plant. p. 5 10. (c) Cat. Giff. P. 196. (d) Michel. Nova Plant. Gen. p. 221. (c) Ibid. (f) Linn. Gen, p. 510. H. Cliffors. p. 479. (g) Flor, Ledeut. Prod, I. 518.

[^50]: - Frutex marinus Flabelliformis cortice verrucooo obduEzus. Doodii Raii Hitt. Tom. III. p.7. Ef Syn Ed. 3.p.32. Coralloides granulofa alba. 7. B. Tom. II. p. Scg. Erica marina alba frutefcens. Minf. Yet. 50. Keratophyton Flabelliforme, corbice vertucofo - $\stackrel{\text { dū̄̄̆um. Kaii Ŝyn. Ed. 3.p. } 32 .}{ }$

[^51]: - Cifus Ledanifora, Hifpanica, Salicis folio, fiore albo, macula punicantc infignico, Tourn.
 + Ciffus Ladanifera Hi/panica incana C. B.

[^52]: * Coronilla legum teres. artic. eref. caule herbaceo Fl. Lejd.

[^53]: - Emerus minor Tourn.
 + Filipendula omni parte major, folio angufiori Bocr.
 |I Filix aculeata major, pinnulis auriculatis crebrioribus foliis integris angufioribus Raii Syn. Ed. 3.121.

[^54]: * Hydropbj/llon Morini Hort. Joneq.

[^55]: * This name is not in C. B.

[^56]: - Lepirns peregrinus major vei villofus cerulous major C. B.

[^57]: - Marrubiafrum Sideritidis folio, caliculis asulcatis, fore farvo cum limbo atropurpureo, some flavefcente T. Cor. 12.

[^58]: - C. B. makes a query what this is; fed quid funt Oliva maxime Hifpanica? Toarnefort calls it Olen frutu maximo, Olive d E/fagne. + This is not the name of $C . B$. but of Tournefort.

[^59]: - Ranunculus Aeliatius echinatius Creticus C. B.

[^60]: - Theophrafti.
 + This name is net in C. B.
 C. B.

[^61]: - Flor, Leyd. \ddagger Siligut eduslis C. B.

 甘 H. L.

[^62]: - Tracieliam azarcum umbellifirinm Pona.

[^63]: - Solomon's Song, chap. i. 14. chap. iv. 13. In boih the'e places the Englijo tranfation of the bible has it Campoizer, inftead of Cyprus.

[^64]: - Sir Fof. Ayloffe, Bart. F. R. S. communicated, on July 1. 1738. from the Rer. Mr Henchman, Prebendary of Salißury, fome obfervations of peafe of different colours infecting one another in the fame manner as the apples above-mentioned.

 Mr Henchman, in the fpring 1729. fowed a piece of ground in his garden with white peafe, and two double rows of blue peafe, with an alley foar feet wide between; in

[^65]: - I cannot obferve any thing in this flower, unlefs it be thefe, that deferve the name of Papille: tho' the firf magnifier could thew nothing fatisfackory as to this point.
 + New Microfropical Difcoveries, E'c. Lond. 1745. 8vo. p. 74.

[^66]: * I have fince had a flower lay in a window from Friday morning till Monday, and the farina has acled very brikkly.

[^67]: * The two following experiments have given me grounds for this ; ift, That the farina I obferve, is always damp in the morning ; 2 dly , On examining it after a frofty night, fearce one burft. I at this time made an obfervation, which, I believe, has as yet efcaped every one. That the intenie cold has fuch an effect on the globules as to throw many into the fame flape as aqua fortis will.

[^68]: - See the preceding article.

[^69]: - Epbemerid. Natur. Curiofor. Dec. 2, Ann. 6. Obf. 116.
 + See Flor. Lappon. p. 72.

[^70]: - Ciute aquar hifloria \& noxic, p. 15.
 \dagger Dec. 11. Ann. vı. Oof. 116.
 |l Fred. Hofman. Medicia. Rational. SyRemasic. Tom. II. p. 174. Edis. in f10. "F.e
 "vegetabilium regno inter prefertifina venena referri aibcat cirusa uera, nafollas five
 "aconitum caruleum, folanum furioliam, bjoforamas, at dalura." If here the epither eyera to cicuta is underlood only to point out the poifonous fort of hensiock, there are no lefs than thrce fpecies of this clafs, which, from their being known certainly to be poifonous, may lay claim thereto; riz. Cicupa majar C. B. Cicuta aquatica Wipf. and Oenantbe cicute facie Lob. Bat, it is very probable, the two latt werc unknown to the Ancients. The defeription of Diofcorides, lib. iv. cap. 79, which is the only one to be met with among the Greck writers, and that but obliure, relates, in my opinion to the

 fcription, lib. Xxv. cap. wit. is taken from this of Diojsorides.

[^71]: - Unlefs the olfonichium of Valerius Cordus, and shyfolium of Dodonreus, hereafier mentionecu, are other names of the plant in queftion.
 + Adverfaria Plant. nov. 326. $\|$ Valer. Cord. p. 849. § Dodon. Pcmpt. 687. ** Gerard. Emac. $1020 . \quad+\dagger$ Morijon Umbel.

[^72]: - See the following article. + HifR. MI. 833.

