

139989

$$
12+25 \text { foldijp pus }
$$

Filosof1a y C. Educacion
K. 00001533305

$$
\begin{aligned}
& \text { F.A. } 059 \\
& \text { v. } 10
\end{aligned}
$$

PHILOSOPHICAL TRANSACTIONS

(From the Year 1743, to the Year 1750)

AB RI D GE D,

A $\mathrm{N} \quad \mathrm{D}$
Difpofed under GENERAL HEADS.
The Latin PAPERS being tranflated into Englifb. By $\mathcal{F} O H N M A R T \Upsilon N$, F.R.S.
Profeffor of Botany in the Univerfity of Cambridgers

VOLUME THE TENTH.

CONTAINING,

Part I. The Mathematical PAPERS.

Part II. The Physiological PAPERS.

Part III. The Anatomical and Medical Papers.
Part IV. The Historical and Miscellaneous Papers.

$$
L O N D O N:
$$

Printed for LOCKYER DAVIS and CHARLES REYMERS; against Gray's-Imn-Gate, Holborn, Printers to the R OYAL.SOCIETX.

$$
\overline{\text { MDCCLV1. }}
$$

PHILOSOPHICAL

TRANSACTIONS

(From the Year 1743, to the Year 1750)

AB RI D GE D.

VOLUME THE TENTH.

CONTAINING,
Part I. The Mathematical Papers.
Part II. The Physiological Papers.

LO ND ON, ${ }^{1756}$.

TOTHE

PRESIDENT,

COUNCIL, and FELLOWS

OFTHE
ROYAL SOCIETY O F
$L O N D O N$,

For the improving of
NATURAL KNOWLEDGE,

This Abridgment of the Philosophical Transactions is moft humbly dedicated by

Cbeljey, Jan. Io 1756.

Fobn Martyn.
2WO. IIMM bris

$$
3 \div 110
$$

$$
Y: T^{M} J D O D M A X O M
$$

$$
40
$$

BOCUIWOMA UAMUTAM
Yd batsoibob pkimun form ai
:myTuMI sodote
-"んっ

A TABLE, fhewing for what Months each Tranfaction was publifhed.

VOL. No.
XLIII. 472. Fanuary, February, March, and April, 473. May, and Part of Yune,
474. June, Jouly, Auguft, September, Oïober, No- ${ }^{1744 .}$ vember, December,
475. Fanuary, February, Marcb,
476. April, May, Fune, July,
477. Auguft, Seprember, Oitober, Noverwber, Dicember,

Supplement,
XLIV. 4\%8. January, February, 479, March, April, 480. May, Fune,
481. Oetober, Nozember, December, Supplement,
482. Fanuary, February,
483. March, April, May,
484. OEtober, November, December, Appendix, Supplement,

At the beginning of VoI. XLIII. the following Advertifement is inferted.
Where-ever it is faid, at the head of any paper, bere printed with Additions, or with Allerations; It is to be underftood, that the author of fuch paper made fuch additions or alterations himfelf; for none of them have been made by the editor. And where it is faid, prefented on fuch a day; it implies that the paper was not read; the contents of it being of fuch a nature as not to be underftood at a bare reading; and that therefore the fubject in general was only mentioned, or the title read.

This Advertifenent is aljo publifhed at tbe beginning of Vol. XLVI.
This XLVI. Volume of the Pbilofopbical Tranfactions concludes thofe publihed by the late Cromwell Mortimer, M. D. Secresary of the Royal-Society; the laft number being printed off juft before his death on the 7 th of Fanuary 1752 .

The following ER R A TA were corrected in the Tranfactions at large, too late to be reclified in the Abridgment.

Vol. VIII. Page 199. in the margin, for Oct. 31. 1738. read Ott. 31. 1736.

This article tberefore inftead of being numbered XXVII. Bould be XXV. 4.

Vol. IX. Page 461, line 29. read, mentions not only a Pen of Iron, but alfo the Point of a Diamond.

The READER is defired alfo to correif the following ERRORS in tbe prefent Volume.

Page 301, in the margin, for Fig. 18. read Fig. 12.
Page 473, in the tabit, May 13. for 33.23. (the height of the Batometer) read 30, 23. and July 24, for 22, 66. read 29, 66.

Page 481, in the margin, for July 15, read July 18.
Page 1034, in the margin, for Warren, read Warwick.

THE

CONTENTS.
V O L. X. PARTI.
The Mathematical Papers.

C HAP. I.
Algebra, Arithmetick, Fluxions, Geometry.
1.

()F the Fluents of Multinomials, and Series affected by radical Signs, wbich do not begin to converge till afier the fecond Term; by Mr Simpron,

Page I
II. Concerning the eafieft metbod for calculating the value of annuities upon lives, fram tables of obfervations, by Mr de Moivre,
III. An account of a new invented aribbmetical inftrument called a Shwan-pan, or Chinefe Accompting Table; by Mr Smethurf,

13
IV. A commodious difpofition of equations for exbibiting the relations of Goniometrical Lines, liy Mr Jones,
V. An Efay on Quanticy, by Dr Miles,

> CHAP. II.
> Opticks.

1. \bigcircF the application of a Micrometer 10 a Microfcope, by Prof. Hollman
YOL X.
II. Of fallacious Vifion through compound Microfoopes, by Mir Gmelin, Page 30

C HAP. III.
Astronomy.
I. $A \quad N$ apparent motion in fome of ley, the fixed Stars, by Dr BradII. Declinations of fome Southern Stars of the ift and $2 d$ magnitude, in June 173^{8}; evith the method of finding the time at fea in the nigbt, by sbe afpait of tbe Southern Crofs, by M. de la Condamine, 53
III. A nerw metbod of calculating Eclipies of the Sun; or any Occultations of the Stars by the Moon ; by Prof. Gerften,

55
IV. i. The Sun's Eclipfe of July 14, 1748. obferved at Marlborough houfe, with the 12 foot refracting Telefcope fixed as a finder to the tube of the great 12 foot refficior: by Dr Bevis, 68
2. \quad by Mr Day, ibid.
3. at the Obfervatory Royal at Berlin, by Mr Grefchow,
a
4. - by the Earl of Morton, Mr le Monnier, and Mr Short, Page 69 5. —— at Madrid, by Don Ant. de Ulloa,
V. 1. Solar Eclipfe, Fan. 8, 1730, N.S. at Rome, by Mir Maire, 7^{8}
2. - - at tbe Obfirvatory a! Berlin, by M. Grifchow, jun. and M. Kies, ibid.
VI. Concerning the Moon's motion, by Mr Dunthorne, ibid.
VII. Of tbe Acceleration of the Moon by the fame,

84
V111. 1. The Moon's Eclipfe of July 28, 1748, objerved at Marlborough houfe by Dr Bevis,

89
2. - at Madrid, by D. Ant. de Ulloa, ibid.
IX. 1. An Eclipfe of the Moon, Dec. 12, 1749, obferved at Mr Graham's in Fleet-Itreet, by Dr Bevis, and Mr Shore,

90
2. - - at Earith, near St Jves, in Huntingdonhire, by Mr Elftohb, 91
3. ——— at Rome, by $1 / 2 \mathrm{Maire}$, ibid.
X. 1. Eclipfe of the Moon, June 8, 1750, obfirved in Surry-ftreet in the Strand, by Mr Catlin, and Mr Short,
2. --m al Wittemberg, by Prof. Bofe, ibid.
XI Total Eclipfe of the Moon, obferved Dec. 2, 1750 , in the Strand, by Dr Bevis, and Mr Short, 94
XII. Occultation of Jupiter by tbe Moon, obierced at London, by Dr Bevis, 95
XIII. The Phaenomena of Venus, reprefenied in an Orrery by $M r$ Fergufon, agrecible to the obfervations of S. Bianchini,
XIV. Obfervations concerning Mercury, by Dr Bcvis,

104
XV Tranfit of Mercury over the Sun, Nov. 5, 1743, at ibe Obfervatory at Giefen, by Prof. Gerften, ibid.
XVI. Occultation of Cor Leonis by the Moon, Mar. 12, 1747 , in Surryftreet in the Strand, Loncion, by Dr Bevis, Page 110
XVII. Obfervations on the late Comet, made at Sherborn and Oxford, with tbe Elements for compuring it's motions, by the Rev. Mr Jof. Betts,

111
XVIII. The Path of the Comet, wibich appeared from tbe beginning of March 1742, 10 the beginning of April, from the obfervations mads at ibe Obfervaiory and College of tbe Jefuits at Pekin in China, 116
XIX. Tbe Patbs of Comets, according 10 the Hypoibifis, which makes tbem deScribe a Paraiola about the Sun, by Nicholas Struyck,

117
XX. Various affronomical obfervations made in Ps ragua, in S. America, 118
XXI. Remarks upon lbe Sular and Lunar years, the Goldien Number, the Epact, and a metbod of finding the time of Eafter, as it is now offirved in moft parts of Europe, by the E of Maccleffield.

131
XXII Gradual Approach of the Earth to the Sun, by Prof. Euler, 141
XXIII. Contraction of the Orbits of the Planets, by tbe foime, ibid.
XXIV. A new metbod of making a Mural Quadrant, wobich Ball be free from many of tbe inconveniencies to wibicb tbofe now in uje are Jutijeft, by Mr Gerfen,
XXV. Defcription and Ufes of an Equatorial Telefiope, by Mr Short, 154
XXVI. Improcement of the Celeftial Globe, by Mr Fergufon, 156 XXVII. A Letter from the Widow of the late Mr Senex to the Pref. concerning the large Globes prepared by ber bufband,

$$
158
$$

C. HAP.

C H A P. IV.
 Mechanicks, Acousticks.

1. THE Aution of Springs, by Dr 150
II. An inquiry into the Mcafure of tbe Force of Bodies in Motion: with a propofal of an Experimentum Crucis 10 decide the Controverfy about it; by the fame,

174
III. Dynamical Principles, or Metaphyfical Principles of Mechanicks, by the fame,

182
IV. 1. A new Mirror, which burns at 66 feet diftance, invented by M. de Buffon, in a letter from Mr Turberville Needham,
194.
2. Concerning the fame Mirror burning at 150 feet diftance, in a letter from the Marquis Nicolini, 195
3. AbfraEt of a letter from M. Bufton, concerning bis Re-invention of Archimedes's burning Specula, ibid.
V. The motion of Projectiles near the Eartb's Surface confidered, independent of the propertics of the Conic Scalions, by Mr Simpon,

196
VI. 1. Obfervalions on the beight to webich Rorkets afcend, by Mr Robins, 201
2. An account of fome experiments made by Mr Kobins, Mir Da Cofta, ane Jeveral otber Gentleanen, in order 10 difcovir the beight lo webich Rockets nay be made to afiend, and 10 wobat diftance their Light may be feen; by Mr Ellicott, 202
VII. Deficiption of a Machine to blow Fire by the fall of Water, by Mr Scirling, 205
VIII. Tables of Specific Gravities, exiralid from various Alutbors, weilh fome Objervations upon the jame by Dr D.vis, 206

Efq; to Mr Henry Oldenburgh, concerning fome extraordinary Ecchoes, Page 24^{6}
C H A P. V.
hydraulicks.

$$
\begin{aligned}
& \text { I. Defription of a Water- Wheel for } \\
& \text { Mills, invented by Mir Plitip } \\
& \text { Williams, } \\
& \text { II. A Difcription of a Clepfydra, or } \\
& \text { Water-Clock : by the Hon. Charles } \\
& \text { Hamilton, Ejq; }
\end{aligned}
$$

CHAP. VI.

Geography and Navigation.

I.Berwations deternining the Longituite of Kingtton in Jamaica, by Mr Short, 250
Il Extrad of a Letter froms Prof. Euler to the Rev. Mr Werttein, concerning the Difcoveries of tibe Ruffians on the N. E Coift of Afia, 251
I11. A Letter from Arthur Dobbs, E/g; to tbe fame, concerning the Difances between Afia and America, 252 IV. A Letler from F. Gaubil, to Dr Mortimer, containing fome account of the knoweledge of Geugraphy asnongt the Chinefe, 255 V. A Letter fromi Mr John Robertfon, to tbe Pref. containing an Explaration of the late Dr Halley's Demonftration of the Analogy of Logarithmic Tangents so the Meridian Line, or Sumi of Secants, 255 V1. A Machine for founding tbe Sea at any depth, or in any pari, by Major Cook,

CHAP。

CHAP. VII.
Musick.

'OF the various Genera and Species of Mufick among tbe Ancients,
with fome Obfervations concerning their Scale, by Dr Pepuich, Page 261 II. A Machine 10 ecrice down ext mpore Voluntaries, or orbir picces of Mufick, by tbe Riv. Mr Creed.

266

V O L. X. PAR TI.

The PHYSIOLOGICAL PAPERS.

CHAP. I.

Physiology, Meteorology, PNeumaticks.

1. 2. Afrate of what is contained in a book concerning Electricity, juft publiffed at Leipfick, 1744, by Prof Winkler,

269
2. Of Electricity, by Prof. Hollman, 271
3. Of firing Phofphorus by Electricicy, by Dr Miles, 27^{2}
4. New Obfervations on Electricity, ly Prof Winkler, $\quad 273$
5. Abprace of a letter from M. Dc Bozes, 10 M. De Maizeaux,

277
6. A Letter from Dr Miles to the Pref. containing Obfervations of luminous Emanations fromm ruman Bodies, and from Biutes; with fome rirarks on Eleetricity,
ibid.
7. Experiments and Obfervations, tenaing. to iliuftrate the nature and properties of Electricity, iy Mr Watfor, 279
8. Furtber Experiments and Obfervations by tbe fame,
9. A Sequel to the Experiments and ${ }^{290} \mathrm{Ob}$. fervations, in a letter to tbe Royal-Society, by the fanne,
10. Extraiks of two letters from Dr Miles to Mr Baker, concerning tbe efferis of a
cane of black Sealing-Wax, and a Cane of Brimftone, in Electrical Experiments,

317
11. Extratts of two letters from the fame, containing foveral Electrical Experiments,

319
12. Part of a letler from $M r$ Trembley to the Pref. concerning tbe Ligbt caufed by Quickfilver fouken in a Gilajs Tuke, proceeding from Electricity,
13. Part of a letier from Dr Miles to Nir Baker, concerning Electrical Fire,
14. A letter from the fame, concerning tbe Elcatrivity of Water, 323 15. A lester from - io Mr Ellicor, of weigbing tbe firengtb of Electrical E.fluvia,
16. Part of lievo lellers from Dr Miles 10 Mr Baker, coniaining fome Electrical Obfervations,
17. ExiraEE of a letter from Prof. Wink-
lir, concerning the effets of Electricity on bimfelf and bis wiffe, 327 18 Aletter to Mr Robins, foewing that
the Electricity of Gla/s difurbs the Mathe Electricity of Giafs diffurbs the Mariner's Compafs, and alfo nice Balances, 19. ExtraEZ of a letter from Mr Bofe 10 Mr Wation, on the Eleetricity of Glafs that bas been expofed to firong Fires, 329 20. ExiraEE
20. Extrall of a letter from $M r$ Need. han to the Pref. concorning fome new Electrical Experiments lately made at Paris,
21. ExtraEt of a Memoir concerning tbe Communication of E.lectricicy; by M. le Monnier tbe jounger, $\quad 33^{6}$
22. Obfervations upon fo much of the preceding Arsicle, as relates to the communiating the Electric Virtue to Nonelectrics, by Mr Watfon,

339
23. Part of a levicr from Mr Browning of Briftol, 10 Mr Baker, concerning the Effict of Electricity on Vegetables, 342
24. Extrale of leller from Mr Crooke to Mr Collnfon, concerning tbe Property of New Flannel Jparkling in the dark.

343
25. Part of two lenters from the fame, concerning the fparkling of Flannel, and tbe Hair of Animals in tbe dark, ivid.
26. Defiription and Figures of an Electrical Machine, by Prof Winkler, 345
27. A colltation of ibe Electrical Experiments communicated to the R. Soc. by Mr Wafon,

347
28. Some farther Inquiries into the Nature and Propersics of Electricity, by the fame,

368
29. Part of a letter from the-Abbé Nollet 10 Mrr Folkes, concerning Elestricity,

382
30. 31. An Effay lowards difcevering the Laws of Electricity, by Mr Ellicotr, 386 32. A Continuation of the foregoing Effay, 394
33. A new difcozery of the ufefulnefs of Eledriciry in Medicine, by Prof. Winkler,
34. Aletter from Mr Baker, to tobe Pref. concerning feveral Medical Experiments of Electricity,

404
35. Aleder from Mr Roche to tbe Pref.
of a Fuftian Frock being fes on fire by Eleetricity, 406 3^{6} ExtraEt of a letter from $\mathrm{Dr} \mathrm{H}_{3}$ les 10 Mr Hall, concerning fome Electrical Experiments, ibid.
37. An account of the Experiments made by fome Gentlemen of the R. S. in order to meafure the atjoiute Vilocity of Electricity,

407 38. A letter from Mr Watfon, 10 the R. S. declaring that be as weil as miny olbers bave not been able to make Odours pafs through Glafs, ly means of Eleetricity; and giving a particular account of Prof. Bofe at Wittembergh's Experiment of Beatification, or saufing a Glory to appear round a Man's Head by Electriciry,

410
39. Extract of a letier from the Abbe Noller, so the Ditke of Richmond, ascompanying an Examination of ceriain Phaenomena in Electriciry publifocd in Italy, by the fame,

414
II. 1. An Obfervation on tbe Barometer, by Prof. Hollinan,

428
2. The Ag reement of Barometers, with the changes of the Wzatber, by the fame, ibic.
111. 1. A letser from Dr Miles 10 Mr Baker, concerning tbe difference of the degrees of Cold marked by a Thermo. meter kept witbin doors, ar without in the open Air, 433
2. A difourfe concerning tbe U/ifulnefs of Thermometers in Cbemial. Experiments; and concerning the Principles on which the Thermonnters now in u/e bave been confirukted; logether with ibe defcription and ufes of a Metalline Thermometer, newly invented by Dr Mortimer,
3. Aletrer from Maurice Johnfon, ${ }^{4}{ }^{4} / q_{q}$; Pref. of the Gentleman's Society at Spalding, to Dr Jurin, concerning a Metalline Thermometer is the Mir feum of tbat Society, $\quad 446$
4. A Lrobler from Dr Miles 10 Mr Folkes, concerning Thermometers, and fome olfervations of the Weather, Page 447
IV. The Heat of boiling Water, varies according to the Weight of the Air; by M. de Montefquieu, in a letter io Mr Folkes, 449
V. Of fudden Freezing, by Prof. Hollman,

450
VI. Defcription of an improved Hygrofcope, from Mr Arderon 10 Mr Baker, 453
VII. Improviement of the Weather-Cords in a letter from Mir Arderon to Mr Baker,
ivid.
VIII. An Hygrometer made of a DealRod, by tbe fame.
IX. Scheme of a Diary of ibe Weather; togetber with Draugbes and Defcriptions of Machines fubforvichl tbireunto, by Mr Pickering,
45^{6}
X. A letter from Dr Lining to Dr Mortimer, concerning the Weather in South-Carolina; with abferalts of the tables of his Meteorogical Obfervations in Charles Town,

465
XI. A letter from Dr Miles to Mr Baker, concerning a very cold Day, and ano:bcr a very hot Day, in June and July 1749, and of the near Agreement of Thermometers in London and it Tooting,

471
XII. Twio letwers from Dr Miles to Mr Baker, concerning the Heat of the Weather in July and September 1750, 474
XIII. Extrace of a letier from Mr Arderon to Mr Baker, concerning tise hot Weather in July 1750, ibid.
XIV. A letter from Dr Miles to tbe Pref. coizcerning the Storm of Thunder, webich bappened June 12, 1748, ai Streatham in Surry,
XV. Of the burning of the Steeple of Danbury in Eifx, by Light-
ning; by Smart Lethieullier, E / q; Page 478
XVI. The appearance of a fiery Meteor, as feen by Mr Cradock, ibid. XVII. Concerning a fiery Meteor, feen in the Air ly the Rev. Mr Coftard, 479
XVIII. A remarkable Meteor fein in Rutland, webich refersbled a WaterSpout, by Tho. Barker, E/q; ibid. XIX. An extraordinary Fire-Ball, burfoing at Sea, by Mr Chalmers, 480 XX. An obfervation of an uncommon Gieam of Light proceeding from the Sun, by Mr Collinfon, 48 r XXI. A Halo, or Mock-Sun, obferved by Mr Arderon, ibid.
XXII. A Defiription of an extraordinary Rainbow, obferved July 15, 1748, by Peter Daval, Ejq; ibid.
XXIII. A luminous Arch, by Dr Cowper, Dean of Durham, 482 XXIV. An obfervation of an extraordinary Lunar Circle, and of two Parafelenes, made at Paris, Oli. 20. 1747, by Mr Grefchow,

483 XXV. 1. An Aurora Borealis Sein at Chelfey, by J Martyn, ibid.
2. -_ at Tooting, by Dr Miles,
3. at Plymouth, by $\operatorname{Dr} \mathrm{H}^{484}$ ham, 485 4. Anotber by tbe fame, 485 5. -at Londua, by Mr Baker, ivid.
6. at Norwich, by Mr Arderon, ibid. XXV I. Aurora Auftralis feen al Chelfey by J. Mareyn,

$$
488
$$

XXVII. Ais Earthquake at Taunton, Fuly 1,1747 , by Mr Forfter, ibid. XXVIII. 1. at London, Feb. 8, 1749-50, by Mr Baker, $\quad 489$ 2. - by Dr Knight, 490
4. $\frac{\text { Efq; }}{}$ at Eltham, by Will. Fauquier,
5. - at Tuoting, by Dr Miles,
6. - at Chelley, by J. Martyn, 493
7. at London, by Mr Trem. bley,
8. - Eaf from London, by Smart Lethieullier, E/q;

494 9. -at Plymouth, by Mr Barjow,
ibid. XXX. 1. Mar. 8, 1749.50 , at London, by tbe Prefident, 495
2. \quad by Dr Birch, 496
3. - by Mr Baker, ibid. 4. -at Kenfington, by M Clare, E/q; 5. at London, by Dr Layard,
6. by Mr Pickering, ivid.
7. - by Ja. Burrow, E/g: 499
8. - - at Tooting, by Dr Miles, 500
9. -at Chelfey, by J. Martyn, 10. -.. at London, by Michael Ruffel, Efg;
11. -- iy Dr Parfons, 502
12. - al Southwark, by Ja. Burrow, E / q;
13. - at London, by Dr Mortimer,

504
14. - at Tooting, by Dr Miles, ibid.
15. - by the Rev. Wm. Cuoper, Dean of Durham,
16. —— The Prefident's report of the account given bin by Tho. Burrat of Kenfington,
17. —— an account of part of a Roof of a Pot-hnufe al Lambeth being flung down ; communicated by Mr Jackion so D) Mortimer,
inid.
XXXI. 1. - Mar. 18. 1749-50,
at Portfmouth, in a letter 10 Mr E]licot,

Page 507
2. ——— in a letler 10 Dan. Wray, Ejq; ibid.
3. -- in a letser from the Rev. Mr Taylor 10 Mr Roderick, ibid.
4. —— in a letter from $M r$ Couke to Mr Cullinfon, 508
5. —— in a letter to Mr Colebrooke, ibid.
6. - at Hackney, in a letter from Mr Newcome, to the Prefident, ibid.
7. -- at Eaft-Sheen, near Rich-mond-Park in Surry, by James Burrow, Eiq;

509
XXXII. - Mar. 14. 1749.50, by the Rev Stephen Hales, D D. ibid. XXXIII - - Mar. 18, 1749-50, al Briclpore, by Mr Downe, 510
XXXIV. 1. ———Apr. 2, 1750, in a lester from Chefter, communicaied by Rob. Paul, E/q; F. R.S.
ibid.
2. - in Flinthire, in a letter from Mr Pennant 10 Rich. Holford, E $/ q$;
3. - - in Chefhire, in a letter from Mr Warburton, oibe Pref. ferving 10 inclofe an extrait of a letter fromithe Rev. Mr Seddon, of Warrington in L.ancafhire, to Mr Philpot of Chefter, ibid.
XXXV. - - a! Winbourn in Dorfethire, May 4, 1y+9, and at Taunton in Somerlethire, July 1, 17+is. hy Mr Baker,

512
XXXVI. - - al Norwich, fune 7 , 1750, by Mr Arderon, $\quad 513$
XXXVII. 1. - Aug. 23, 1750, by Maurice Johnfon, Eq; ioid. 2. - - by Dr Jolin Green, $\quad 5^{14}$ XXXVIII. r. - - at Newton in Northamptonfhire, Sept. 30, 1750, ly W. Folkes, Efq; ivid. 2. -- near Bury St Edmund's in Suffolks

Suffolk, and at Narborough in Leicefterfhire, by James Burrow, E/q;

Page 514

 3. -- - in a letter from tbe Rev. Mr Nixon, to Prof. Ward,515 4. - - farther particulars in a letior from the Rev. Mr Nixon, to the Pret. 516
5. -- in a letter froms Dr Doddridge, to Mr Baker, 517
6. - - ly the Sicivard, to ibe Earl of Cardigan,

522
7. -... in a leiter from Mr Green 10 Mr Ayfcough,

523
3. - in a letter from Dr Miles 10 Mr Baker,
ibid.
9. -- a letier from tbe Rev. Mr Nixon to the Pref. Serving to accompany a letter from Mr Smith to Mr Nixon, 524
XXXIX. - - in France, by M. de Reaumur, 526
XL. - at Smyrna, by Dr Mackenzie, ibid.
XLI. I. On the Canfes of Earthquakes, ty Dr Stukely,
ibid.
2. - - - by the fame,
3. -- by Dr Hales,

529
XLII. Tbe Philorophy of Earthquakes, by Dr Stukely,
XLIII. Two letters from Mr Wheeler 54 tbe Pref. concerning a Rotatory Motion of Glafs Tubes about lbeir Axes, when placed in a certain mamer before the fire, 55 I
XLIV. Aicount of a Book intituled, De quamplurimis Phofphoris nunc prinuum detectis Commentarius Auctore Jac. Barthol. Beccario, by Mr Watfon,
XLV. Tbe Lacrymix Batavicx, or Glafs Drops, the tempering of Steel and Effervefence accounted for by the fame Prinsiple, by M. lc Cat,

> C H A P. II.

Hydrology.

I. \bigcircF the Fontaine du Salut near Bagneres in Gafiony, with olber Obfervations, dy M. Secundat de Montelquieu,

567
II. Of the bot Springs at Carlfoad, by Dr Mounfey, 569
111. An Examination of the Strength of ferceral of tbe Principal purging Waters, efpecially of that of Jifrop's Well, by Dr Hales,

574 IV. The ftate of the Tides in Orkney, ly Mr Mackenzie, 577
V. An irregular Tide in the River of Forth; by Mr Wright,
VI. A furprizing Inurdation in bbe valley of St John's near Kefwick in Cumberland, by John L.ock, E/q; 584 VII. A Burning Well, by the Rev. Mr. Mafon,

586

C H A P. III.

Mineralogy.
I. S O ME account of the finking down of a piece of Ground, at Horfeford in Norfolk, by Mr Arderon,
II. A letter from Mr Durant, to the Hon. Rob. Boyle, Efq; concerning a CoalMine taking Fire near Newcaftle; of the Blue Well ; and of a fubterraneous Cavern in Weredale,

588
1II. 1. Objervat: ns on the Precipices or cliffs on the N. E. Sea-Coaft of Norfolk, by MEr Arderon,
2. An account of ibe Serata of Shells, and otber Foffils, found at Cantly Whitehoufe in Norfolk, by the fame, 590 3. An account of otber Foffils found near Hartford-

Hartford-bridge in Norfolk, by the fame,

Page 59^{2}
IV An account of large fubterraneous Caverns in tbe cbalk bills near Norwich, by Mr Arderon,

593
V. An account of the Giant's Caufeway in Ireland, by Dr Pococke,

594
VI. A moving mols in the neigbbourbood of Church-Town in Lancaihire, by tbe Rev. Mr Richmond,

596
VII. A Foffil Skeleton of a Man, by Koger Gale, E/f;

597
VIII. An account of fome human bones incrufted with fone, now in the Villa Luciovifia at Rome, by the Prefident,

598
IX. A letter from Mr Baker to the Pref. concerning an extraordinary large Foffil Tooth of an Elephant,

599
X. An Accoult of 2 extraordinary Deer's horns, found under ground in different ports of Yorkthire ; in a letter from Mr Knowleon to Mr Catefby, Gor
X1. An inquiry into the Lapis Ofteocolla, by Mr Beurer of Nuremberg, 603
XII. A letter from Mr Hill to the Pref. concerning Windior Loam, 605
XIII. Tbe formation of Pcbbles, by Mr Arderon, 608
XIV. Some objervations upon Gems or Precious Stones, more paricularly fucb as the Ancients ufed to engrave upon, by Robert Dingley, Efq;

609
XV. An account of certain perfice minule Cryfal Stones, by Dr Parfons, 612 XVI Tbe frecific gravily of Diamonds, in a lester from Mr Ellicot to sbe Pref. ibid.
XVII. An Extraet, by P. H. Zolman, Efq; of a Philof. Account of a new opimon concerning tbe origin of Petrifactions found in the Earth, which bas bilberto becin afcribed to the univerfal Deluge; as contained in an Italian book, intitled De Cruftacei ed altri VOL. X.
marini Corpi che fe trovano fu' Monti di Anton. Lazaro Moro, Venice $1 / 40$, communicated togetker wi:! foveral remarks ; by Mr Ehrhart, in HighDutch, at Memmingen, $1745,4!0$.

Page 615
XVIII. A letter froms Ar Simon, of Dublin, so tbe l'ref. concerning the l'etrifactions of Lough. Neagh in Ireland, 10 zubich is amexed a letier from the Bifbop of Cloyne to Tho. Prior, Eig:

616
XIX. An account of a beausiful Stalactites, noro in the Mufeum of the R. S. by Dr Huxham, in a lisicr io Dr Mortimer,

627
XX. A Diflertation on tbe Pelemnitcs, by Mr Da Cofta,

627
XXI. Remarks on tbe Turquoife, by Dr Mortimer, 632
XX1I. 1. A defcription of a curious Echinites, by Mr Baker, $\quad 6_{34}$
2. Concerning two beautiful Echinites, by Mr Da Cofta, 635
3. Concerning a flat fpheroidal Stone, baving lines regularly croffing it, by Mr Plat, 638
4. The defcription and figures of a firall flat fpheroidıl Stone, baring lines formed upon it, by Dr Mortimer, ibid.
XXIII. A beautiful Nautilites, becwn so the IR. S. by the Rev. Dr L.ytteton, 639
XXIV. Confiderations on two extracrdinary Belemnitw; by Mr D. E. Baker, ibid.
XXV. Some Vertebre of Ammonite or Cornua Ammonis, by Mr Baker, $6_{4} 1$
XXVI. An inquiry into tbe original fate and properties of Spar, and Sparry Productions; particularly the Spars, or Cryitals found in the Cornifh Mines, called Cornifh Diamonds, by tbe Rev. Mr William Borlace,

642
b XXVII.
XXVII. I. Concerning a non-defcript petrified Infect, by the Rev. Dean Lytrleton,
2. A fartber account by the fame, 656 XXVIII. An accouns of a treatife, by Wm . Brownrigg, M. D. I. R.S. in ituled, The Art of making common Salt, as now practifed in moft parts of the World; with feveral Improvements propofed in that Art, for the ufe of the Britifs Dominions, abfracled by Mr Wation,

657
XXIX. Of the Salt-mines near Cracau, by Dr Mounfey,
XXX. Of the Foffils of Bohemia, by the fame,

670
XXXI. Of fome Foffils found in Ireland, b) Mr Simon,
ibid.
XXXII. Concerning Spelter, and melting Iron waisb Pis-Coal, by Mr Mafon, 671
XXXIII. I. Concerning a new Semimetal called Platina, by Mr Watfon, ibid.
2. Of the Same,
ibid.
3. Of the fame,

674
4. -—— by Mr Eman. Mendez da Cofta 675 5. - —— by Dr Brownrigg, ibid. XXXIV. Concerning the Everlafting Fire in Perfia, by Dr Mounfey, 677

> CHAP. IV.
> Magneticks.
I. Agnetical Experiments Buezon before the R. S. by Dr Knight, $\quad 673$ 11. 1. A Collection of the magnet. Exp. communicated to the R. S. by Dr Knight, 681
2. An account of fome new Exp. lately made with artificial Magnets, by the same,
3. Some further Exp. relating to the general Phrenomena of Magnetifm, by the fame, Page 685
III. A letter from the fame to the Pref. concerning the Polcs of Magncts being varioufly placed, 698
IV. A defcription of a Mariner's Compats contrivea ly the fame, 689
V. An account of fome improvements of ibe Mariner's Compals, in order 10 render the Card and Needle propofed by Dr Knight, of general ufe, by Mr Smeaton, 693
VI. A letter from Capt Waddell, 10 Mr Franks, concerning the effects of Lighcning, in deftroying the Pularity of a Mariner's Compals; to wibich are fubjoined fome Remarks thereon, by Dr Knight, 695
VII. Obfirvations made during the laft 3 years, of the quantily of :be variation of the magnetic horizontal Needle to the W. by Mr Geo. Graham,

698
CHAP. V.

Botany, Agriculture.

1. THE efablifbment of a new Genus of Plants called Salvaitora, with $i l^{\prime}$ defcription, by D. Garcin, 699
1I. An aquatic Plant found at Bagneres, by M. de Montefquieu, 702
1II. A defcription of the Cyanus, follis radicalibus, EJc. by Prof. Haller, ibid.
IV. Concerning a Plant but little known, and bitberto undefcribed, by Mr Watfon,
V. An account of a new specics of Fiungus, by John Martyn, 705
V1. A defcription of a curious Sca Planr, by Sir Hans Sloane,

The CONTENTS.

VII. 1 Catalogue of Plants prefented to the R. S. by the Comp. of Apotb. of Londor, purfuant to the Direefion of Sir Hans Sloane, Bart. by Mr Jofeph Miller, Page 707
VIII. Some Account of the remains of John Tradefcant's Garden at Lambeth, by $M r$ Watfon,
IX. Concerning the Cyprus of the Ancients, by Dr Garcin, 741
X. A letter from Dr Miles to Mr Baker, concerning the green Mould on FireWood: With fome Obfervations on the minuteness of the Seeds of fome Plants, by Mr Baker,

748
XI. Obfervations relating to vegetable Seeds, by Dr Parfons, 750
XII. 1. Tbe Effect of the Farina of different Sorts of Apple-Trees, on the Fruit of a neighbouring Tree,

751
2. and 3. by the fame, 75^{2} XIII. 1. A letier from Mr Badcock 10 Mr Baker, containing fome microfcopical Obfervations on the Farina Fuecundans of the Holy-Oak, and the PaffionFlower,

753
2. Fartber Obfervations and Experimints on the Paffion-Flower, and it's Farina; by the fame,
75^{6}
3. Concerning the Farina Fcecundans of the Yew-Tree ; by tbe fame,

757
XIV. A letter from Mr Hill to the Prefident, concerning the Manner of the feeding of Moffes; and in particular of the Hypnum terreftre, trichoides, luteo-virens, vulgare, majus, capitulis ereetis,
XV. Concerning the Vegetation of MelonSeeds 33 Years old; by Roger Gale, E/q;
${ }^{661}$
XVI. Microfcopical Obfervations on the Root of Ipecacuanha; by Mr Gmelin,
XVII. The Bark prevents catcbing cold, by the Rev. Dr Salter, \quad;62 XVIII. Concerning fome Perfons being poifoned by eating boiled Hemlock; ly $M r$ Watfon, Page 763
XIX. Critical Obfervations concerning the Oenanthe aquat. fucco virofo crocante Lob. by tbe fame; occafoned by a letter from Mr Howell, giving an Account of the poijonous Efferts of tikis Plant 10 fome French Prifoners of Pembroke, 765
XX. An Aicount of tbe poifonous Root lately found snixed amorisg the Gentian, by Dr Brocklefby,

772
XXI. ExtraEt of an Efay upon tbe origin of Amber, by Dr Fothergill, 774
XXII. The Metbod of gatbering Manna near Naples, in a letser from Rob. Moore, E $\int_{q} ; 10 \mathrm{Mr}$ Watfon, $\quad 776$
XXIII. An Account of the Preparasion and Ufes of the various Kinds of YorAht, by Dr Mitchell, ibid.
XXIV. 1. Concerning the Propagation and Culture of Mufhrooms, by Mr Pickering, 788
2. Remarks on the freceding Paper, with Oblervations upon the puifonous faculty of fome Sorts of Fungi, by $M r$ Watfon,

790
XXV. Of covering Trees with Ivy, by R. Gale, $E / q ;$ F. R. S.
XXVI. Extrait of a lester from Dr Miles to the Pref. relating to fome Improvements wobich may be made in Cy der and Perry, ibid.
XXVII. The Subfance of fome Experiments of planting Seeds in Mols, by Mr Bonnet,

795
XXVIII. A letter from Mr Pickering 10 the Pref. concerning the manuring of Land with Foffil Shells, $\quad 796$

V O L. X. PARTII.
 CONTAININGTHE

ANATOMICAL and MEDICAL PAPERS.

C HAP. I.

Zoology, and the Anatomy of Animals.
I. Concerning the minute Eels in Pafte being viviparcus, by $M r$ James Sherwood,

Page 799
11. A letter from $M r$ Baker to the Pref. concerning a new difcavered Sea-Infect, wobich be calls the Eye-Sucker, 800
1II. 1. Obfervations upon fizeral newly difcovered Species of frefh-water Polypi, by Mr Trembley, 801
2. - continued by the fame, 807
IV. A Suppofition bow the white Matter is produced, which floats about the Air in Autumn, by Mr Arderon, 820
V. A letter from Mr Baker to the Pref. concerning tbe Grubs deftroying the Gra/s in Norfolk, ibid.
V1. A lether from the Earl of Orrery to the Pref. inclofing an Account of the Cornel Caterpillar," in a letter from the Riv. Mr Skelton, to bis Lord/bip, 824
VII. An Abfirale of Mr Bonnet's Memoir concerning Caterpillars, by Mr Trembley, 83 I
VIII. An Abfragt of Mr Gould's Account of Englifh Ants, by tbe Rcv. Dr Miles,

833 IX. An Account of the Locufts, wbicb did vaft damage in Walachia, Eoc. by a

Ginilleman who lives in Tranfilvania, Page 84°
X. 1. Some Obfervations on a fort of Libella or Ephemeron, by Mr Cullinfon, 843
2. Obfervations on the Dragon-Fly of Penfilvania, collected from Mr Bartram's letters, by Mr Collinfon, 845 3. A furtber Account by the fame, 846 XI. I. An Account of fome very curious Wafps Nefts made of Clay in Penfilvania, by the fame, 847
2. A Defcription of ibe great black Wafp from Penfilvania, by tbe fame, 848
XII. A letter from Archur Do'sbs, E/g; 10 Cha. Stanhope, E/q; concerning Bees, and their metbod of gatbering Wax and Honey, 849 XIII. ExtraEz of a letter from Bombay, communicated by Francis Wollafton, Efq; of a Porcupine fwallowed by a Snake,
XIV. A letter from Mr Breintal to Mr $\begin{array}{r}855 \\ \hline\end{array}$ Collinfon, containing an Account of wibat be felt afier being bit by a RattleSnake,
XV. A letter from Mr D. E. Baker to the Prel. concerning the Property of WaterEfts in flipping off tbeir Skins as Serpents do,
XVI. ExiraEt of a lester from Dr Bartram to Mr Collinfon, cont inining fome Obfervations concerning the Salt-MarthMufcle, the Oyfter-Banks, and the Freth-

Frefh Water-Mufcle of Penfilvania, Page 860 XVII. Some Obfervations on the bardne/s of Shells, and on the Food of the SoalFifh, by Mr Collinfon,

861
XVIII. Obfervations upon certain Shell. Finh lodged in a large Sione brougbt from Manon Harbour by Mr More, by Dr Parfons,

862
XIX. Obfervations on tbe Cancer-Major, by Mr Collinion.

864
XX. Some Acrount of the Rana Pifcatrix, by Dr Parfons,

866
XXI. 1. A leiter from Mr Arderon to

Mr Biker, on keeping fmall Fioh in Glafs Jars: and of an eafy Metbod of catching Fifh,
2. - by tbe fame, 871
3. - by the fame, 872
XXII. Conierning the perpendicular Afcent of Eels, by the fame, 874
XXIII. The Figure of ibe Moftela Foftlis, communicated from Dr Gronovius to Mr Collinfon, ibid.
XXIV. Some Obfervations on the Belluga Stone, by Mr Collinfon, ibid.
XXV. A letter from Mr Baker to the Pref. concerning an ex:raordinary Fifh, called in Ruffia, Quab; and concerning the Stones called Crab's E.yes, 876
XXV1. The Defcription of a Fih Beren to the R. S. by MIr Ralph Bigland, drazon up by Dr Mortimer, 879
XXVII. 1. Extract of a letter from Mr Arderon to Mr Baker, concerning tbe Hearing of Finh,

S80
2. An Account of Mr Klein's Treatife upon the Sounds and Hearing of Fifhes, by Dr Brockelfby, 883
XXVIII. Of Birds of Paffage, by Mr Caterby,

886
XXIX. Divers means for preferving dead Birds from Corruption, by M. de Reaumur, tranflated from the Erenib by Mr Zollman,
XXX. An Account of a Quadruped brougbt from Bengal, by Dr Parfons,

Page 898
XXXI. 1 Nat. Hifory of the Mus Al. pinus or Marmot, ly Mr Klein, 900 XXXII. Concerning ibe natural Heat of Animals, by Dr Mortimer, ibid. XXXIII. I. Concerning a large Stone found in the stomach of a Horfe, in a letter from Mr —o Mir Wollafton,

904
2. Of a very large Stone found in the Colon of a Horfe; and of Sever al Stones taken from the Inteftines of a Mare; soith fome Exp. and Obf . by Dr Bailey,
3. Concerning a Stone taken out of 905 Bladder of a Dog; wibich being cus afunder bad a Piece of Dog's Grafs in it's center; in a letter from Mr Fidge 10 Dr Mortimer,
XXXIV. A letser from sir H Sioane, 10 Mr Folkes, containing Accourts of the pretended Serpent-Stone, called Pietra de cobra de cabelos, and of ibe Pietra de mombazza, or the Khinoceros Bezoar, logetber with the Figure of a Rhinoceros with a double Horn,
XXXV. Account of a Horfe bit by a 910 mad Dog; in a lether from Dr Starrio Dr Huxham,

913
XXXVI.s. Some Account of ibe Diftemper riging among the Cow kind in ibe Nigbbourbood of Londun, rogetber witb fome Remedics fropofed for tbeir recovery, by Dr Mortimer, 916
2. Furtber Obfervations by bbe fame, $9: 7$
3. Aibird Account, by the fame, 9^{20}
4. Ais Appendix to the foregoing Paper, by the jame,

922
5. A letier from Dr Parfons to the Pref. ferving 10 introduce a Remark from NIr Milner, concerning the burying of the Cows wiith or witbout Lime,

925
XXXVII.
xxii The CONTENTS.
XXXVII. Concerning the Ruffia Caftor, in a letser from Dr Mounfey to Mr Baker,

C H A P. II.

Structure, External Parts, and Common Teguments of the Body.

1. $A N$ Eflay upon tbe Caules of the different Colours of People in different Climates, by Dr Mitchel, 9^{26}
2. Concerning a Plica Polonica; in a letter from Mr Ames to Dr Mortimer,

C H A P. III.

The Head.

I. Schirrus of the Cerebellum, by
II. Ain Account of a remarkable Cure performed on the Eye of a young Woman in Scotland, by Dr Hope,

951
III. Cure of a Wound in the Cornea, and a Laceration of the Uvea in the Eye of a Wo inan; in a letter from Dr Aery 10 Dr Mortimer,
IV. Concorning a large Piece of a Lath being thruft inio a Man's Eye; wbo recovered of it, in a letter from Mr Haffel to Mr Daval, 955
V. A Pbyjological Account of the Cafe of Murgare: Cutting, wobo Speaks difinelly, thougg Joe bas laft ibe $\mathrm{A} p \times \mathrm{x}$ and Body of ber Tengue, by Dr P'arfons, ibid.
VI Thi Caje of Hemry Axford, who recnived be Ule of his Togue, after baving been fonie Yeurs dumi, by means
of a frimisful Dream, by Dr Squire, Page 95^{8}
VII. An Account of a very learned Divine, who was born with two Tongues; communicated by Dr Mortimer, 959 VIII. An Account of a Ciergyman's Lady, who bad a Stone under ber Tongue, by W. Freeman, Efq; ibid.

C H A P. IV.

The Neck and Thorax.
I. N Account of the Morbus Strangulatorius, by Dr Starr, 960 II. A gibbous Sternum, by M. Hubert, 964 III. Experiments relating 10 Refpiration, by Prof. Haller,

965
IV. The Cafe of a Lad who was Boot tbrough the Lungs ; by Mr Peters, and Dr Hallet,

966
V. Obfervations on a Cafe of recovering a Man dead in appearance, by diftending the Lungs with Air; by Dr Fothergill, 969

C HAP. V.

> The ABDOMEN.
I. A extraordinary CyItis in the A Liver full of Water; by Dr Jernegan,
II. Of ibe Diffection of a buman Body, in which the Gall-Bladder was wainsing, by Dr Huber, 97^{2}
III. The Cafe of Mr Smith; tbe Coals of woloofe Stomach were changed inso an almoft carcilaginous Subftance; by $M r$ Sayer, 973 IV. The Operation of Lithotomy on Women; by M. le Cat,

974
V. An extraordinary Calculus, by Dr Huxham, Page 97^{6} VI. Remarks on tbe Operation of culling for the Stone, by M. le Cat, ivid. VII. A Propofal to tring small pafiable Stones foon and with Eafe out of the Bladder, by tbe Rev. Dr Hales, 990 VIII. A remarkable Cafe of a Pirfon cut for the Stone in the new Way, commonly called the Lateral, by W. Chefelden, Efq;
IX. The Efciets of the Lixivium Saponis, taken inwardly by a Man aged 75, wibo bad the Stone; and in webofe Bladder, afler bis deceafe, were found 214 Stones, from W. Chefelden, E/q;

992
X. An Obfervation of an Operation misade by the High Apparatus, in 1743, by Dr Le Cat,

995
XI. Part of a letter from Mr Howell so Mr Watfon, concerning tike extralling a large Stone by an Aperture in the Urethra,

999
XII. A letser from $M r$ Lucas, concerning the Relief be found in tbe Stone, from the U/e of Alicant Soap and LimeWater,

1000
XIII. The Figures of fome very exiraordinary Calculous Concretions formed in the Kinney of a Woman; by Mr Charles Lucas, at Dublin, 100 I
XIV. ExiraEt of a letter from Mr Heath to Mr Daval, inclofing a Propofal for entirely remoring the only real Defect in the lateral Operation for the Stone, by Mr Mudge,

1002
XV. Concerning a Bcy webo bad a Calculus formed between the Glans and the Præputium, by the Rcv. Mr Rub. Clarke,

1004
XVI. An Account of a very large buman Calculus, by Dr Hebe den, 1005
XVII. A Shutte-Spire taken out of the Bladder of a Boy, in a letter from Mr Arderon to Mr Baker,
XVIII. Tbe Cafe of a Tumnur growing on ibe Infili of be Blatider, fuccef:fuily extirpated, by M Warner, Page 1006 XIX One f be Ureters grown up, by Dr Huxam, 1007
XX. In Obfer eation of a Sieatoma of Wi O wary, and of Hairs found iberein, Ly Prof. Haller, 1008 XXI. An extra uterine Conception; by D. Myddleton, 1010
XXII. An aljfralt of the remarkable Cafe and Cure of a Wonzan, from ribom a Foetus was extracled, that bad been lodged 13 Years in one of the Fallopian Tubes; fent from Riga, by Dr Mounfey,

1012
XXIII. I. An Account of the Bones of a Foetus coming away by the Anus; communicated by John Scill Winthrop, E/q;

1015
2. in a letter from Mr James Simon, to tbe Pref. 1016
XXIV. An Account of a Child being baken out of the Abdomen, afler loaving lain there upwara's of 16 rears, during whicb vime the Woman bad 4 Cbildren, all born alive; by Dr Myddleton, 1017
XXV. Concerning tbe Bones of a Fœtus being difcharged ibrough an Ulicer near tbe Narel; by Mr Drake, 1018
XXVI. A Child born with an extraordinary Tumour near the Anus, containing fome Rudinients of an Embryo in it; by Dr Huxham, 1019 XXVII. Concerning a Polypus at the Heart, and a fchirrous Tumour of the Uterus; by Dr Templeman, 102 : XXVII. The Extirpation of an 'Excrefeence from the Womb; by Dr Burton,

1023
XXIX. An extraordinary Impofthume in the Stomach; by Dr Layard, ibid.
XXX. Of ans lliac I'ation, occofioned by
xxiv
The CONTENTS.
an Appendix in the Ilion; by Mr Amyand,
XXXI. A Rupture of the Navel; by Mr Taube Dove:, 1027
XXXII. An uncommon Droply from the zuant of a Kidney; and a Defcription of a large Saccus that contained the Water, by Mr Glafs,
XXXIII. 1. An Improvement in the PraEtice of Tapping, where tbat Operation, infiead of a Relief for Symptoms, becomes an abfolute Cure for and Afcites; by $M r$ Warwick, $\quad 1030$
2. A metbod of converying Liquors into lbe Abdomen, during ibe Oferation of Tapping; propofed by the Rev. Dr Hales,

1034
3. A letser from Mr Warwick 10 Mr Machin, containing furiber Accounts of the Succers of injecting medicated Li quors into tije Abdomen, in the Cafe of an Alcites. ibid.

CHAP. VI.

The Humours and General Af. fections of the Body.
I. COncerning the Ufe of the Peruvian Bark in the Small. Pox ; by Dr Wall,

1035
11. 1. Tbe Cafe of a Lady, who wwas delivered of a Cbild, wbich bad the Small-Pox appeared in a Day or tsio after il's Birtb; by Dr Mortimer, 1041
2. Some Accounts of the Fœtus in utero being differently affected by the SmallPox; by Mr Watfon,
104^{2}
III. 1. A letier from Dr Wilmot to the Pref. ferving to inclofe the teeo following Papers;

1. Of the exiracrdinary Effects of

Murk, in convulive Diforders; by Dr Wall, Page 1044
2. A letter from Andr. Reid, ESq; 10 Dr Wilmor, concerning the Effoits of the Tonquinefe Medicine, 1051
2. A remarkable Inftance of the bappy Eff. Et of Mufk, in a viry dangerous Cafe; by Dr Parfons, 1054 IV The Caje of a Perfon bit by a mad Dog, communicated to the Pref. by MIr Ranhy, from Dr Peters, 105^{6} V. A Short Fiiffory of the Difeafe, that put an End lo tbe Life of F. Bolognini, extracted by Dr Mortimer, from an Epifle zeritten by Dr De Camilis, to the Abbot De Revillas,

1059
VI. Two Obfervations of a dijeafed Conformation of the Body found on Diffection; by Prof. Haller, 1062 VII. Of a Cbild born with the Jaundice, Ėc. 1063 VIII. An Account of tbe Vomito Prieto, or Black-Vomit of S. America, y Dons Antonio de Ulloa, ibid. IX. 1. EstraEt of a letter from Mr B $\mathrm{B} — \mathrm{r}$, containing an Account in Pounds and Ounces, of the Jurprifing 2uantities of Food, devoured by a Boy 12 Years old, in 6 Jucceffive Deys, who laboured under a canine Appetite, 1066
2. Of the fame, by Dr Cookfon, 1068 X. An Extraet by Mr Rolli, of an Italian Treatife, suritten by the Rev. Jofeph Bianchini, upon the Dealb of the Countess Cornelia Zangari \& Bandi. To wobich are added Accounts of the Dea:b of Jo. Hitchell, wolo weas burned 10 Deall by Lighening; and of Grace Pett at Ipfiwich, whofe Body was confumed to a Coal, 1069
XI. Of a cleaving of the Diaphragm, and of the Situation of fome of the Vifcera being altered, obferved in the Body of a

Female

Female Child of 10 Montbs, in a letter from Dr Fothergill 10 Dr Mead, Page 1077 XII. Of 2 Men of extraordinary Bulk and Weight; by Mr Catefby, 1083 XIII. Of one wobo bad no car to Mufick, naturally finging feveral Tunes in a Delirium, in a letter from Dr Doddridge 10 Mr Baker, $\quad 1084$ XIV. A letter from Dr Le Cat to Dr Mortimer, concerning the Cure of dry Gangrenes; logetber with a Defcription of a new invented Inftrument for the Extirpation of Tumours out of the Reacb of the Surgeon's Fingers, ivid. XV. Of the Paffages of the Semen; by Dr Haller,

1091

C H A P. VII.

Bones, Joints, and Muscles.

1. A Objervation of a Spina bifida; by Mr Aylete,

1093
1I. Some Obfervations on the Spina ventofa, by Mr Amyand, 1094 III. An Obfervation of a Fratture of the os humeri, by the Power of the Majcles only; by the fame, 1103
IV. An extraordinary Cafe of a Frasture of the Arm; communicated by Mr Freke, 1108
V. A letter from Mr L.ayard to Dr Mortimer, inclofing an Account of a Fracture of the os ilium and it's cure, 1109
VI. The Cafe of a young Child, born with all il's Bones difplaced; communicated by $M r$ Davis 10 Dr Heineken,

1110
VII. An Account of the Deat'b of Dr Greene, wobo died of a Hurl be reccived as be was riding; by Dr Cameron,

IIII
V OL. X.
VIII. Tbe Cafe of Nicholas Reeks, wbo was born with bis Feet turned inwards, which came to righ!s after being fome time ufed to fit crojs-legged, tranjmitted from Wm. Milner, E/q; 10 Sir Peter Thompfon, Page 1113 IX. An Account of a Briftle, ibat was lodged in a Gentleman's Foot, and caufed a violent Inflammation; in a letter from Mr Arderon to Mr Baker, 1114 X. Tbe Crounian Leefures on Mufcular Motion ; by Dr Parfons,

Lecture I.
ivid.
Lecture II. Containing the Author's Scbeme of Mulcular Motion, 1133
Lecture III.
1144
XI. Human Phyfiognomy explained in tbe Crounian Lectures on Mufcular Motion ; by the Same,

L.ecture I.	1150
Lecture II.	1162

XII. The Croonean Leglures on Muicular Motion ; by Dr Langrifh,

Lecture I.
1181
Lecture II. 1189
Lecture III.
1197

C H A P. VIII.

Monsters.

I. SOME Account of the gigantic bridge,

1. Rev. Mr Almond's letter, 1205
2. Aletter from Mr Dawkes to Dr Mead,

1206
II. Exiraet of a letter from Mr Arderon to Mr Baker, containing an Account of a Dwarf; logetber zeith a Comparifon of his Dimenfions with shofe of a Cbild under 4 Iears old; by David Erkine Baker,

1207
c III. Defcription
111. Defcripition of a montrous Faetus, without any Diftinition of Sex, by Mr Bafter,

Page 1208
IV. An Account of a preternatural Conjunction of two Female Children, in a letter from Dr Parfons to the Prefident,
V. An Account of double Fcetus's of Calves, by M. Le Cat,
$12: 6$
VI. Concerning a Wether giving fuck 10 a Lamb; and of a monftrous Lamb; in a letter from Dr Dodderidge to Mr Baker,

1218

C H A P. IX.

 Period of Human Life.AN Abfirate of tbe Bills of Mortality in. Bridge-Town in Bar-
badoes conmanicated by tbe Rev. Mr Clark,

Page 1219
C HAP. X.

Pharmacy and Chymistry.
1.

CBfervations on the Manna Perficom, by D^{r} Forhergill, ivid. II Concerning the Irdian Poifon, fint over by Don Ant. de Ulloa, and mentioned by M. De la Condamine, (in bis Account of the River of bke Amazons in S. America) in a letter from Dr Brocklefby, to the Pref. 1223 III Concerning a new Contrivance of appying Receivers 10 Retorts in Diffillation; in a letter from Dr Langrifh 10 Dr Hales.

1225
IV. An eafy Metbod of procuring the volatile Acid of Sulphur; by Mr Seehl, 1226

V O L. X. PART IV.

CONTAININGTHE

HISTORICAL and MISCELLANEOUS PAPERS.

C H A P. 1.

History and Antiquities.

1. Oncerning the Chinefe Chronology and Aftronomy, in a letter from the Rev. Mr Coftard, to the Rev. Dr Shaw,
II. Some Account of a curious Tripos and Infeription found near Turin, ferzing to difcover tbe irue Situation of the ancient Cily of Induftria, by David Erfkine Baker,

1240
III. 1. Concerning the Situation of the ancient Town Delgovicia, in a letter.
from Mr Knowlton 10 Mr Catciby, 1245
2. A Differtation on the fame, by Dr Burton,

1246 3. An Appendix to the foregoing Paper, by Mr Drake, 1252 IV. 1. Ans Account of a Difertation publißed by Dr Weidler, concerning the vulgar Numeral Figures, as alfo fome Remarks upon an Infcription cul formerly in a Windor, belonging to the Parifo Cburch of Rumicy in Hampfhire, by Prof. Ward,

1254 2. A brief Inquiry into the reading of 2

Dates in Arabian Figures, cul upon

Stones which were found in Ireland, ty the fame,

Page 1260
3. Abrief Account of an ancient Da!e in Arabian Figures, at Shalford Farm (adjoining to Wafing) in the F'arillb of Brimpton, near Aldermarnon in BerkGinire, by the fame, 1264
V. 1. An Explication of a Roman Infcription found not long fince on a Stone at Silchefter in Hampfire, by the Jame, ibid.
2. A Defription of the Town of Silch Macr, in il's prefent Slaie, by the Jame, 1267
VI. An ancient Roman Infeription at Rochefter in Northumberland, and 2 otbers at Rifingham ; by Mr. Hunter,

1272
VII. The Infcription ufors a Roman Altar found near Stanhope in she Bißboprick of Durham, by the Rev. Mr Birch,
ibid.
VIII. A Roman Infcription found as Bath, communicased by the Rev. Dr Stukely, ibid.
1X. Rensarks upon an ancient Roman Infrription, found in tbat Part of Italy, robich formerly belonged to the Sabines; and now in tbe Poficfion of Dr Rawlinfon, by Prof. Ward,

1273
X. An Altcmpt to explain an ancient Greek Infeription ingraven upon a curious Bronze Cup with 2 Handles, and publijped wistb a Draugbt of the Cup, by Dr Pocoke, in bis Defcription of the Eaft, by the fame,

1278
XI. An Explanation of an ancient Infcription difcovered al Rutchefter, the laft Station in England, upon the Roman Wall, by Dr Taylor, 1284 XII. Concerning 2 ancient Camps in Hamphire, in a letter from Mr Wright 10 Mr Theobald, 1294
XIII. An Account of tbe prefent Condition of the Ronian Canp at Caftor in Norfolk, with a Plan of it, in a
lether from Mir Arderon to Mr Baker, Page:295 XIV. An attermpt by Prof. Ward, to cxplain Jome Remains of Antiquicy lateíy found in Hertforchire, and communicated 10 the R. S. by Will. Freeman, $E / q_{;} ;$

1298
XV. Concerning tbe ancient Bridewell at Norwich, $1 y$ Mr Ardcron, 1304 XVI I. Exiriciz of a lether ciated at Runie, from M Hoare, a young Slaluary, 10 his brober Mir Hoare, an cminme Painter at Bath, giving a fiort Account of fome of the princizal antique Pictures jound in the Ruins of Herculaneuor, communicated by tbe Rev. Mr Birch, 1305
2. Remarks on the principal Paintings found in the fubterrancois Cisy of Herculaneum, and at prefin! in ibe Poffeffion of the King of Naples, by Blondeau, Ej q; communicaied by Dr Stack,
XVII. Account of a Bas Relief of Mithras found at York; explained by tke Rev. Dr Stukely, and communicated by Nir Drake,

1311
XVIII. An Account of an ancient Shrine, formerly belonging to the Abbey of Croyland; by Dr Stukely, $13: 3$
XIX. An Atfiract of a Difcourfe intitled Reflections on the Medals of Peffennius Niger, and upon fome Circumfances in lbe Hifory of his Life; zeritten in French by Mr Claude Gros de Boze, and fant by bim 10 Dr Mead, 1314 XX. A Defcription of fome clay Moulds or Concaves of ancien: Roman Coins, found in Shrephire, by Mr Baker, 1320
XXI. A brief Account of a Roman Teffera, by Prof. Ward, 1321
XXII. A letter from $M r$ G. Stovin, to bis Son, concerning tbe Body of a Woman, and an antique Shoe found in a Morafs in the Ine of Axholne in Lincolnfhire,

C HA ${ }^{132}$.

The CONTENTS.

CHAP. II.

Voyages and Travels.
3. Nocerning tbe Ifand of Zetland, in a liwer from Mr Prefton 10 Mr Ames,

Page 1328
11. A letter fromis Robert More, Efq; 10 the Pref. containing fereral curious Remarks in bis Travels tbrough Italy, 1331
111. Obfervations and Experiments made in Sibiria, extrailed from the Preface to the Flora Sibirica, five Hift. Plant. Sibiriæ cum tabulis reri incifis Auct. D. Gmelin, by Dr Fothergill,

1333

C H A P. III.

Miscellaneous Papers.

I.

AN eafy Metbod of procuring the true Impreffion or Fïgure of Medals, Coins, \&cc. by Mr Baker,

$$
1339
$$

II. I. Concerning the Bologna Bottles ; in a letter from Dr Bruni to Mr Baker,

1343
2. An Account of fome Experiments, lately made in Holland, upon the Fragility of unnealed Glafs Veffels; communicated to the Pref.
III. 1. An Account of Glaffes of a new Contrivance, for preferving pieces of Anatomy or Nat. Hift. in Spirituous Liquors, by M. le Cat, 1349
2. Addition to the preceding Paper, by the same,
IV. A letter from Dr Lining to Dr Jurin, ferving to accompany fome Additions to bis Statical Experiments,
V. A State of the Englinh Weights and Meafures of Capacity, as they appear
from the Lawes, as well Ancient as Modern, with fome Confiderations ibercon; being an Atreinpt so prove, that the prefient Averdepois Weight is the legal and ancient Standard for the Weights and Meafures of tbis Kingdom, by Mr Reynardfon, Page 135^{6} VI. An Account of two Chinete Paper Money Bills, by F. Anth. Gaubil, 1364
VII. 1. Some Experiments on Subftances refjling Putrefaction, by Dr Pringle, 1365
2. The fame continued, 1369
3. Tbe fame continued, 1373 VIII. A Remark on F. Hardouin's Amendsnent of a Paffage in Pliny, 137^{8}
IX. I. The Elements of a Short Hand, by Mr Jeake, $\quad 1330$
2. A letter from Mr Byrom to the Pref. containing fome Remarks on Mr Jeake's Plaw for Short-Hand, 1384
3. A letter from the fame to the Pref. containing fome Remarks on Mr Lodwick's Alphabet, 1386
X. A Propofal for warming Rooms by the Steam of boiling Water conveyed in Pipes along tbe Walls: And a Metbod of preventing Ships from leaking, whofe bottoms are eation by the Worvis; by Colonel Cook, 139 r
XI. 1. A Propofal for cbecking in jome Degree, the Progreits of Fires; by Dr Hales,
2. An Addition to the former, by Dr Mortimer, 1392 XII. The great Benefit of Ventilators, by Dr Hales, ibid. XIII. Extract of a letter from Mr Arderon to Mr Baker, giving an Account of the Weavers Alarm,
ibid.

THE

Philofophical Tranfactions
 A BRIDGED.

PARTI.
CONTAININGTHE
\section*{Mathematical P A P E R S.}
\section*{C H A P. 1.}
ALGEBRA, ARITHMETICK, FLUXIONS, and GEOMETRY.

I. sispenary I T H O' the Application of inlinite Series, and the of tbe flucres Quadrature of the conic Sections, to the inverie Method of Multinomiof Fluxions has exercifed the Pens of the molt able Ma- als, and Series thematicians, and produced many curious and ufetul Dif- afoatd by racoveries. know of, whereby the Fluents of radical Multinomials and Series, which begin to condo not begin to converge till after the fecond Term, can be determined, verge till affo as to be of Ufe in the Solution of Problems: the common Method, ter tbe fecond by expanding the given Expreffion, being altogether impracticabie in Lefter ; in a this Cafe.

This little Effay is not merely an abftracted ufelefs Speculation, but F. R. S. to may be apply'd to good purpofe in many difficult and important Inquiries W. Jones

VOL. X. Part i .
B

PrefenedMay into Nature; whereof I have put down one or two Inftances, and fhall ${ }^{26}, 1748$. further obferve here, that moft of the lunar Equations, given by Sir I. No 487. p. Newton, are only fuch Approximations as may be exhibited by the firt 828. April. Term of a Series derived by the Method here delivered.

Propsfition. The Fluent of $\overline{a+c z^{n}} \mathrm{~m} \times \dot{z}{ }^{\text {pn }}-1 \dot{z}$ being given (either in algebraic Terms, or from the Quadrature of the Conic Seections, \&ec.) it is propofed, by means thereof, to approximate the Fiuent of a $+c x^{n}-\frac{1}{1} d x^{2 n}+e x^{3} 3^{n}$ Ffxingc. ${ }^{m} \times \dot{x}$ pn $^{-1} x$; fuppofing the Series not to converge till of ter the ficond Term.

Make $c x^{n}=c x^{n}+d x^{2 n}+e x^{3 n} \delta^{\circ} c$. and let 2 be the given Fluent
 Moreover let $y=x^{? n}$, or $y^{\frac{1}{p}}=x^{n}$, and let this Value of x^{n} be fubftituted in the firf Equation, and it will becomc $c z^{n}=c y^{\frac{1}{p}}+d y^{\frac{2}{p}}+e y^{\frac{3}{p}} \varepsilon e^{p}$. Whereof the Root y being extracted, we fhall (by making $R=-\frac{p d}{c}$, $s=\frac{p p+3}{2} \times \frac{d_{2}}{c 2}-\frac{p e}{6}, \tau=\frac{-p p+4 p+5}{6}+\frac{d_{3}}{c_{3}}+\frac{p p+4}{1}$ $x \frac{d e}{62}-\frac{p f}{c} \mathcal{E}_{c} c$.) have $y\left(x^{\mathrm{pn}}\right)=z^{\mathrm{pn}}+R z z^{\mathrm{mn}}+\mathrm{n}+S z^{\mathrm{pn}}+{ }^{2 n} \mathcal{E}_{c}$ c. whence we alro obtain $x^{\mathrm{pn}-1} \dot{x}=z^{\mathrm{pa}-\mathrm{s}} \dot{z}+\frac{p+1}{p} \times R z^{\mathrm{pu}+\mathrm{n}}$ $-1 \dot{z}+\frac{p+2}{p} \times S z^{\mathrm{pn}+2 \mathrm{n}-1} \dot{z} \vartheta c$.

Let this Value, with that of $c x^{n}+d x^{2 n}+e x^{3 n} \varepsilon^{3} c$. (above given) be now fubftituted in the propofed Fluxion, and it will become $\overline{a-c c z^{n} m} \times z^{\overline{\mathrm{pn}-1}} \dot{z}+\frac{\bar{p}+1}{p} \times R z^{\mathrm{pn}+\mathrm{n}-1} \dot{z+\frac{p+2}{p}}$ $x S z^{\mathrm{pn}+2 \mathrm{n}-1} z \mathcal{E}_{\mathrm{c}}$.

Moreover, let v denote the Place, or Diftance, of any Term, of this Expreffion, from the firt (exclufive) then the Term itfelf (drawn into the common Multiplicator) will be denoted by $\overline{a-c-1} \mathrm{~m} \times \frac{p \frac{1}{1} v}{p} \times$ $A z^{\mathrm{pn}+\mathrm{vn}-\mathrm{I}}$
z; and the Fluent thereof will be truly expreffed by

$\times A 2+\frac{\overline{p+v A}}{p} \times \frac{\overline{a-\left(z^{n}\right)^{m+1} \times z^{p n-n}}}{p+m+v \times n c}$ into $z^{\mathrm{vn}}-$
$\frac{p+v-1}{p+m+v-1} \times \frac{a z^{v n-n}}{c}+\frac{p+v-1 . p+v-2}{p+v+m-1} p+v \dagger^{m-2}$
 $\%$. Wherein let v be expounded by $1,2,3$ ع ε^{c}. fucceffively, and R, $S, \tau, \varepsilon \in c$. by Λ refpectively: By which means the Fluent of the whole Exprefion will be obtained.

Becaufe the Fluent of the general Term, when the Multiplicator Coroi. a. ${\bar{a}+c z_{i}}^{m}+1$ becomes $=0$, is barely $=\frac{p+1}{p+n+1} \times \frac{p+2}{p+m T^{2}}$ $\times \frac{p+3}{p+m+3} \times \cdots \frac{p+v}{p+m+v} \times \frac{a}{2}^{v} \times A \Omega$ the Fuent of the whole Expreffion will, therefore, in this Cafe be trulv defined by $2 \times 1-\frac{p+1 \cdot R a}{p+m+1 . C}+\frac{p+1 \cdot p+2 \cdot S 2 a}{p+m+1 . p+m+2 \cdot C^{2}}-$ $\frac{p+1 \cdot p+2 \cdot p+3 \cdot T a^{3}}{F^{m} T^{1} \cdot p+m+2 \cdot p+m+3 \cdot c^{3}} छ^{2} c$. Where 2 cienotes the Fluent of $\left.\overline{a+c z^{n}}\right)^{m} \times z^{p n-1} \dot{z}$, when $z^{n}=\frac{a}{-i}$.

But, if $m \rightarrow 1$ and p be, each of them, the Half of an odd affir- $C_{\text {crol }}$ a. mative Number, and P be taken to denote the Periphery of a Circle whofe Diameter is Unity, and - c be put $=b$, then the Value of \mathcal{Q} (or the Fluent of $\overline{a-b z^{n}} \times z^{n-1} \dot{z}$, when $z^{n}=\frac{a}{-b}$) will be $=\frac{a^{\mathrm{p}+\mathrm{m}} p}{n \mathrm{p}^{\mathrm{P}}} \times$

1. 3. $5 \cdot 7 \mathrm{E}^{\circ} \mathrm{c}$. (to $p-\frac{1}{2}$ Factors) \times 1. 3. 5. $7 \mathrm{E}^{2} \mathrm{r}$. to ($m+\frac{1}{2}$ Factors) 2. 4. 6. 8. 10. 12 छsc. (to $p+m$ Factors)

Therefore the Whole, required, Fluent, of $a-b x^{n}-\frac{1}{1} d x^{2 n} \frac{1}{1} e x^{3 n} \xi^{3} c$.) ${ }^{m} \times x^{\mathrm{pn}}-\mathrm{r} x$ is, in this Cale, equal to the Product of that Expreffion into the following Scries, $x+\frac{p+1 \cdot R a}{p+m+1 . b}+\frac{p+1 \cdot p+2 \cdot S a^{3}}{p+m+1 \cdot p \dagger^{m} \dagger^{2} \cdot b^{2}}$ Sc. Wherein R is to be taken $=\frac{p d}{b}, S=\frac{p \cdot p+3}{2} \times \frac{d^{2}}{b^{2}}+\frac{p_{e}}{b}, \tau$ $=\frac{p \cdot p+4 \cdot p+5}{6} \times \frac{d^{3}}{b_{3}}+\frac{p \cdot p+4}{1} \times \frac{d e}{b^{2}}+\frac{p f}{b}, \varepsilon^{2} c$, according to what is above fpecified.

The

The USe of what has been deliver'd above will, in fome meafure, appear from the Solution of the two following Problems, which I fhall fubjoin as Examples thercof. The firft is;

To find the Timi of Ofilllation in the Arch of a Cicloid, in a Medium reffitins according to the duplicate ratio of ibe Velocity.

Let A denote the whole Arch of the Semi-Cycloid, or the Length of the Yendulum, a the Arch defcribed in the whole Defcent, and x any varidble Part thercof defcribed from the Beginning of the Defcent; and let the Denfity of the Medium be, every-where, as $\frac{1}{b}$: Then the Fluxion of the Time will be found $=$
$a-1+\frac{2 a}{b} \times \frac{x}{2}-\frac{2 x^{2}}{2 \cdot 3^{b}}+\frac{4 x^{3}}{2 \cdot 3 \cdot 4 b^{2}}-\frac{8 x^{4}}{2 \cdot 3 \cdot 4 \cdot b^{3}} \varepsilon^{3} c .\left.\right|^{-\frac{1}{2}}$
$\times \overline{2 A}^{5} \times:^{\frac{x}{4}} x^{*}$: which being compared with $\overline{a-b x^{n}-1} d \overline{x^{2 n} \frac{1}{1} e x^{3 n}} \boldsymbol{\varepsilon} c$. ride Corol. $2 .{ }^{\mathrm{m}} \times x^{\mathrm{on}-\cdots}$ we fhall, in this Cafe, have $n=1, n=-\frac{1}{2}, p=\frac{1}{2}, a=a$, $b=\overline{1 \times \frac{2 a}{b}} \times \frac{1}{2}, \frac{d}{b}=\frac{2}{3 b}, \frac{e}{b}=-\frac{1}{3 b^{2}}, \frac{f}{b}=\frac{2}{15 b^{3}} \delta^{2} c$. Whence $R=\frac{1}{3 b}, S=\frac{2}{9 b^{2}}, T=\frac{B}{45 b^{3}} \mathcal{E}^{2} c$. Alfo $\frac{a^{\mathrm{p}}+\mathrm{m} P}{n b^{\mathrm{p}}} \times \frac{1 \cdot 3 \cdot 5 \cdot 7\left(\mathrm{p}-\frac{1}{2}\right)}{2.4 .6}$ $\frac{\times 1.3 .5 \cdot 7\left(m+\frac{x}{2}\right)}{s .10 .(p+n)}=\frac{p}{b \frac{1}{2}}$, and $1+\frac{p+1 . R a}{p+m+1.6}+\frac{p+1 .}{p+m+1 .}$ $\frac{p+2 \cdot S a^{2}}{m+m+2 \cdot b^{2}} \varepsilon c=1+\frac{a}{2 b b}+\frac{5}{12 b^{2} b^{2}}+\frac{7 a^{3}}{18 b_{3} b^{3}}$ \&8c. Whence we have $\overline{2 A_{1}} \frac{1}{2} \times \frac{p}{b^{\frac{1}{2}}} \times 1+\frac{a}{2 b b}+\frac{5 a^{2}}{n b^{2} b^{2}}, \varepsilon^{c} c$. for the Time of one Vibration of the Pendutum; which, by fubftituting $1+\frac{2 a}{b} \times \frac{1}{2}$ for its Equal $b, \xi \xi_{6}$ becomes $P A^{\frac{x}{2}} \times I^{*}+\frac{a^{2}}{6 b^{2}}-\frac{2 a^{3}}{9 b^{3}}$ छc. From which it appears, that the Effect of the Refiftance on the Time of Vibration, in fmall Arches, is nearly in the duplicate Ratio of thofe Arches.
Princip. Prop. Sir I. Nerwton has, indeed, given a very different Solution to this
27. B. 2. 27. B. 2. Problem. But as the Conclufion here brought out exactly agrees with what I have elfewhere given, by a different Method, I have great Reafon to believe I have no where fallen into an Error.

The

[^0]
Of the Fluents of Multinomials, \mathcal{O}^{c}.

The fecond Example I thall give as an Ulluftration of the foregoing Method is,

To determine the Apfide Angle (or the Angle of the two Apfes at the Center) in an Orbit defcribed by means of a centripetal Force, wbich varies sicording to amy Pciver of the Difance.

In order to which, let the Velocity of the Body at the higher Apre be to thist whereoy it might defcribe a Circle at the fame Diftance from the Center, in the given Ratio of p to Unity; alfo let that Diftance be denoted by Unity; and, fuppofing z to denote any other Diftance, let the centripetal Force be univerfally expreffed by z^{n}. Then the Fluxion of the Angle at the Center will be exprefed by

Put $a=1-p^{2}, v=$
$\frac{n+3}{2}$ and $x=1-z^{2}$, and it will become $=\frac{2}{1-x} \frac{\sqrt{1-a} \times \sqrt{1-a}}{\sqrt{a x-j}}$ $\frac{\overline{1-v-1-x}}{1-v}=\frac{1}{2} 1-a_{\frac{1}{2}}$ into $a-\frac{v \dot{x}}{2}+\frac{v \cdot v-2}{2 \cdot 3} \times x^{2}-$ $\frac{\text { v. v-2.v-3 }}{2 \cdot 3 \cdot 4} \times x^{3}$ छc. $-\frac{1}{2} \times x^{-\frac{1}{2}} \dot{x}+x^{\frac{1}{2}} \dot{x}+x^{\frac{\pi}{2}} \dot{x} \xi^{2} c$.

Now, to find the Fluent of the firt Term hereof (drawn into the gencral Multiplicator) or $\left.a-\frac{v x}{2}+\frac{v v-2}{2 \cdot 3} \times x^{2} \xi_{c} c.\right)^{-\frac{2}{2}} \times x^{-\frac{\pi}{2}}$ \dot{x}, we have (as before) $n=1, m=-\frac{1}{2}, p=\frac{1}{2}, b=\frac{v}{2}, \frac{d}{b}=\frac{v-2}{3}$. $\frac{e}{b}=-\frac{v-2 \cdot v-3}{3 \cdot 4}$, छcc. Alfo $R=\frac{v-2}{6}, s=\frac{v-2.4 v-5}{7^{2}} ;$ and confequently the Fluent itfelf (when the Body arrives at the lower Apfe) $=\frac{P}{\sqrt{\frac{1}{2} v}} \times 1+\frac{v-2}{2 v} \times a+\frac{5 \cdot v-2 \cdot 4 v-5}{4^{8} v^{2}} \times a^{2}+$ $\frac{7 . v-v .16 v^{2}-37 v+22}{6.48 v^{3}}$ \}c. After the fame manner the Fluent of the fecond Term will come out $=\frac{P}{\sqrt{\frac{1}{2} v}} \times \frac{a}{v}+\frac{5 \cdot \overline{v-2}}{4 v^{2}} \times a^{2}$
$+\frac{35 \cdot \overline{v-2} \cdot 2 v-3}{48 v^{3}} \times a \hat{3} c$, that of the third $=-\frac{p}{\sqrt{\frac{1}{2} v}} \times \frac{3 a^{2}}{2 v^{2}}+$
$\frac{35 . y-2}{12 y^{3}} \times$ as E vc. Bc. Sic. Whence, by collecting thee several Fiuents together, we have $\frac{P}{\sqrt{\frac{1}{2} v} \times 1+\frac{1}{2} a+\frac{20 v^{2}-5 v+2}{48 v^{2}}}$ $\times a^{2}+112 v^{3}-63 v^{2}+42 v-1 \times a^{3} v^{3} c$. for the Fluent of the whole Expreffion: And this, drawn into $\frac{1}{2} x-1-\frac{a}{2}-$
 $x \overline{\overline{n+3}}) ;$ Ec. for the true Meafure of the Angle required.

A letter from II. Altho' it has been an eftablifhed cuftom, in the payment of Mr Abr De annuities on lives, that the lat rent is loft to the heirs of the late Moivre. F. R. poffeffor of an annuity, if the perron happens to die before the expiraJones, $E / /_{q}$ ion of the term agreed on for payment, whether yearly, half-yearly, Jos. corning the enfieft method for calculating the value of annuities upon lives, from tables of obfervazions. Presented or quarterly: nevertheless, in this treatise I have luppos'd, that foch a part of the rent Gould be paid to the heirs of the late poffeffor, as may be exactly proportion'd to the time elaps'd between that of the lat paymont, and the very moment of the life's expiring; and this by a proper, accurate, and geometrical calculation.

I have been induced to take this method, for the following reafons; first, by this fuppofition, the value of lives would receive but an inconfiderable increase ; fecondly, by this means, the feveral intervals of life, June 7, 1744. which, in the tables of obfervations, are found to have uniform decreNo. 473. P. I have framed the e wo foll 65. May. I have framed the two following problems, with their folutions.
ir. 1744.

To find the value of an annuity, fo circumfantiated, that it frall be on Prob. I. a life of a given age; and that, upon the failing of that life, fuch a part of the rent foall be paid to the beirs of the late poffefor of an annuity, as may be exacily proportioned to the time intercepted between thai of the laft payment, and the ecery moment of the life's failing.

Let n reprefent the complement of life, that is, the interval of time Solution
between the given age, and the extremity of old-age, fuppos'd at 86.
r the amount of $I l$. for one year.
a the logarithm of r.
P the prefent value of an annuity of 1%. for the given time.
2 the value of the life fought.
Then $\frac{1}{r-1}-\frac{P}{a n}=2$
For, let z reprefent any indeterminate portion of n. Now the pro-Demonfrabability of the lite's attaining the end of the interval z, and then failfig, tion.
is to be expreffed by $\frac{\dot{z}}{n}$, (as mewn in page 77 , edit. I. and in page 115 , edit. 2. of my book of anntrities upon lives) upon the fuppofition of a perpetual and uniform decrement of life.

But it is well known, that if an annuity certain, of $1 l$. be paid during the time z, its prefent value will be $P=\frac{1-r^{\frac{r}{2}}}{r-1}$ or $\frac{1}{r-1}$ -$\frac{1}{r-1} \times r^{2}$.

And, by the laws of the doctrine of chances, the expectation of fuch a life, upon the precife interval z, will be expreffed by $\frac{\dot{z}}{n \times \overline{r-1}}-$ $\frac{\dot{z}}{n r^{2} \times r-1}$; which may be taken for the ordinate of a curve, whofe area is as the value of the life required.

In order to find the area of this curve, let $p=12 \times \overline{r-1}$; and then the ordinate will become $\frac{z}{p}-\frac{z}{p r^{2}}$, a much more commodious. expreffion.

Now it is plain, that the fluent of the firft part is $\frac{z}{p}$: but as the fluent of the fecond part is not fo readily difcover'd, it will not be improper, in this place, to Shew by what artifice I found it; for I do not know, whether the fame method has been made ufe of by others:

A Metbod for calculating Annuities upon Lives.

all that I can fay, is, that I never had occafion for it, but in the particular circumftance of this problem.

Let, therefore, $r^{2}=x$; hence $z \log , r=\log . x$; therefore $z \log . r$ $=$ (fuxion of the log. $x \Rightarrow \frac{\dot{x}}{x}$, or $\alpha \dot{z}=\frac{\dot{x}}{x}$; confequently $\dot{z}=\frac{\dot{x}}{\alpha x}$, and $\frac{\dot{z}}{r^{2}}=\frac{\dot{x}}{\alpha x x}$: but the fluent of $\frac{\dot{x}}{\alpha x x}$ is $\left(-\frac{1}{\alpha x}=\right)-\frac{1}{\alpha r^{2}}$; and thercfore the fluent of $-\frac{z}{p r^{2}}$ will be $+\frac{1}{p \alpha r^{2}}$.

The fum of the two fluents will be $\frac{z}{p}+\frac{1}{p_{x} r^{2}}$; but, wheri $z=0$, the whole fluent fhould be $=0$, let therefore the whole fluent be $\frac{z}{p}$ $-1 \frac{1}{p \alpha r^{2}}+q=0$.

Now, when $z=0$, then $\frac{z}{p}=0$, and $\frac{1}{\alpha p r^{2}}$ becomes $\frac{1}{\alpha p}\left(\right.$ for $r^{2}=1$, $)$ confequently $\frac{1}{\alpha p}+q=0$; and $q=-\frac{1}{\alpha p}$: therefore the area of a curve, whofe ordinate is $\frac{\dot{z}}{p}-\frac{\dot{z}}{p r^{2}}$ will be $\left(\frac{z}{p}-\frac{1}{\alpha p}+\frac{1}{\alpha p r^{2}}=\right)$ $\frac{z}{p}-1-\frac{1}{r^{2}} \times \frac{1}{\alpha p}$.

But $P=\frac{1}{r-1}-\frac{1}{r-1} \times r^{2} ;$ therefore $1-\frac{1}{r^{2}}=\overline{r-1} \times P$, and the expreffion for the area becomes $\frac{z}{n \times \overline{r-1}}-\frac{P}{\alpha n}$: And putting n inftead of z, that area, or the value of the life, will be expreffed by $\frac{1}{r-1}-\frac{P}{\alpha n}$. QE. D.

Thofe who are well verfed in the nature of logarithms, I mean thofe that can deduce them from the doctrine of fluxions and infinite feries, will eafily apprehend, that the quantity here called α, is that which fome call the hyperbolic logarithm; others, the natural logarithm : it is what Mr Cotes calls, the logarithm whofe modulus is 1: laftly, it is by fome called Neper's logarithm. And, to fave the reader fome trouble in the practice of this laft theorem, the moft neceffary natural logarithms, to be made ufe of in the prefent difquifition about lives, are the following :

A Metbod for calculatiag Anmuitics uponl Liters:

$$
\text { If } \begin{aligned}
r & =1.04, \text { then will } \alpha
\end{aligned}=0.039220-0.0 .0 .0 .057901 .
$$

It is to be obferved, that the theorem here found, makes the values of lives a little bigger, than what the theorem found in, the furf problem of my book of annuities on lives, does; for, in the prelent cafe, there is one payment more to be made, than in the other; however. the difference is very inconfiderable.

But, altho' it be indifferent which of them is ufed, on the fuppofition of an equal decrement of life to the extremity of old-age; yer, if it ever happens, that we fhould have sables of obfervations, concerning the mortality of mankind, intirely to be depended upon, then it would be convenient to divide the whole interval of life into fuch finaller intervals, as, during which, the decrements of life have been oblerved to be uniform, notwithftanding the ciecrements in fome of thofe intervals fhould be quicker, or flower, than others; for then the theorem here sound would be preferable to the other; as will be thewn hereatter.

That there are fuch intervals, Dr Halley's tabtes of oblervations fufficiently fhew; for inftance; out of 302 perfons of 54 years of age, there remain, after 16 years (that is, of the age of 70) but 142; the decrements from year to year having been conftantly 10 ; and the fame thing happens in other intervals; and it is to be prefumed, that the like would happen in any other good tables of obfervations.

But, in order to fhew, in fome meafure, the ufe of the preceding theorem, it is neceffary to add another problem; which, tho' its folution is to be met with in the firf edition of my book of annuities on lives, yet it is convenient to have it inferted here, on account of the connexion that the application of the preceding problem has with it. - In the mean time, it will be proper to know, What part of the yearly rent hould be paid to the beirs of the late poffeffor of an annuity, as may be exailly proportioned to the time elapfed between that of the laft payment, and the very moment of the life's expiring. To determine this, put A for the yearly rent; $\frac{1}{m}$ for the part of the year intercepted between the time of the laft payment, and the inftant of the life's failing; r the amount of 1% at the year's end : then will $\frac{r^{\frac{1}{m}}-1}{n-1} A$, be the fum to be paid.

> To find the value of an annuity for a limited interval of life, during which Prob. II. the decrements of life may be confidered as equal.

Let a and b reprefent the number of people living in the beginning Solution. and end of the given interval of years.
VOL. X. Part i. ly extinct in the time s; or (which is the fame thing) the value of an annuity for a life, of which the complement is s.
Then $2+\frac{b}{a} \times \overline{P-Q}$ will exprefs the value required.

Demonitration.

For, let the whole interval between a and b be fill'd up with arithmetical mean proportionals; therefore the number of people living in the beginning and end of each year of the given interval s will be reprefented by the following feries; ciz.
a. $\frac{s a-a+b}{s} \frac{s a-2 a+2 b}{s} \cdot \frac{s a-3 a+3 b}{s} \cdot \frac{s a-4 a+4 b}{s}$.

Erc. to b.
Confequently, the probabilities of the life's continuing during 1,2 , $3,4,5, \Xi^{\circ} c$. years will be exprefied by the feries,
$\frac{s a-a+b}{s a} \frac{s a-2 a+2 b}{s a} \cdot \frac{s a-3 a+3 b}{s a} \cdot \frac{s a-4 a+4 b}{5 a}$. \mathcal{E}^{2}. to $\frac{b}{a}$. Wherefore, the value of an annuity of 13 . granted for the time s, will be expreffed by the feries

$$
\frac{s a-a+b}{s a r}+\frac{s a-2 a+2 b}{s a r^{2}}+\frac{s a-3 a+3 b}{s a r^{3}}+\frac{s a-4 a+4 b}{s a r^{4}}
$$

Bc. to $\uparrow \frac{b}{a r^{5}}$; this feries is divifible into two other feries's, viz.

$$
\begin{aligned}
& \text { 1f. } \frac{s-1}{s r}+\frac{s-2}{s r^{2}}+\frac{s-3}{s r^{3}}+\frac{s-4}{s r^{4}}, \varepsilon^{c} c \text { to }+\frac{s-s}{s r^{3}} \\
& \text { 2d. } \frac{b}{a} \times \frac{1}{s r}+\frac{2}{s r^{2}}+\frac{3}{s r^{3}}+\frac{4}{s r^{+}}, \varepsilon^{c} \text {. to } \frac{s}{s r^{3}}
\end{aligned}
$$

Now, fince the firft of thefe feries's begins with a term whofe numerator is $s-1$, and the fubfequent numerators each decreafe by unity; it follows, that the laft term will be $=0$; and, confequently, that feries expreffes the value of a life neceffarily to be extinct in the time s. The fum of this feries may be efteem'd as a given quantity; and is what I have expreffed by the fymbol \mathcal{Q} in problem 1 .

The fecond feries is the difference between the two following feries's,

$$
\frac{d}{a} \times \frac{1}{r}+\frac{1}{r^{2}}+\frac{1}{r^{3}}+\frac{1}{r^{4}}+8^{c} c \text {. to } \frac{1}{r^{2}}
$$

$\frac{b}{a} \times \frac{s-1}{s r}+\frac{s-2}{s r^{2}}+\frac{s-3}{\operatorname{si}}+\frac{s-4}{s r^{2}} \varepsilon^{2} c$. to $+\frac{s-s}{s r^{s}}$ Where, neglecting the commom multiplier $\frac{b}{a}$, the frof feries is the value of an annuity certain to continue s years; which every mathematician knows how to calculate, or is had from tables already compoled for that purpofe : this value is what I have called P; and the fecond feries is Q

Therefore $Q+\frac{b}{a} \times \overline{P-C \cdot}$ will be the value of an annuity on a life for the limited time. \because E. D.

It is obvious, that the feries denoted by Q, mut of neceffity have one term lefs than is the number of equal intervals contain'd in s; and therefore, if the whole extent of life, beginning from an age given, be divided into feveral intervals, each having it's own particular uniform decrements, there will be, in each of thefe intervals, the defect of one payment; which to remedy, the feries \propto muft be calculated by problem 1 .

To find the value of an annuity for an age of 54, to continue 16 years and Example. no longer.
It is found, in Dr Halley's tables of oblervations, that a is 302, and $b 172$: now $n=s=16$; and, by the tables of the values of annuities certain, $P=10.8377$; alfo (by problem 1.) $2=\left(\frac{1}{r-1}-\right.$ $\frac{P}{\alpha n}=$) 6.1168. Hence it follows (by this problem), that the value of an annuity for an age of 54 , to continue during the limited time of 16 years, fuppofing intereft at 5 per cent. per annum, will be worth $\left(2+\frac{b}{a} \times \overline{P-Q} \Rightarrow 8.3365\right.$ years purchafe.

From Dr Halley's tables of obfervations, we find, that from the age of 49 to 54 inclufive, the number of perfons, exifting at thofe feveral ages, are, $357,346,335,324,313,302$, which comprehends a fpace of five years; and, following the precepts before laid down, we fhall find, that an annuity for a life of 49, to continue for the limited time of 5 years, intereft being at 5 per cent. per annum, is worth 4.0374 years purchafe.

And, in the fame manner, we fhall find, that the value of an annuity on life, for the limited time comprehended between the ages of 4^{2} and 49 , is worth 5.349^{2} years purchafe.

Now, if it were required to detcrmine the value of an annuity on life, to continue from the age of 4^{2} to 70 , we muft proceed thus:

It has been proved, that an annuity on life, reaching from the age of 54 to 70 , is worth 8.3365 years purchare; but this value, being eftimated from the age of 49, ought to be diminifhed on two accounts:
becaufe of the probability of the life's reaching from 49 to 54 , which probability is to be deduced from the table of obfervations, and is proportional to the number of people living at the end and beginning of that interval, which, in this cafe, will be found 302 and 357: The fecond diminution proceeds from a difcount that ought to be made, becaufe the annuity, which reaches from 54 to 70 , is eftimated 5 years fooner, viz. from the age of 49 , and therefore that diminution ought to be expreffed by $\frac{1}{r 5}$; fo that the total diminution of the annuity of 16 years will be expreffed by the fraction $\frac{302}{357 r^{5}}$, which will reduce it from 8.3365 years purchafe to 5.5259 ; this being added to the value of the annuity to continue from 49 to 54 , viz. 4.0374 , will give 9.5633 , the value of an annuity to continue from the age of 49 to 70 . For the fame reafon, the value 9.5633 , eftimated from the age of 42 , ought to be reduced, both upon account of the probability of living from 42 to 49 , and of the difcount of money for 7 years, at 5 per cent. per omum, amounting together to 3.8554 , which will bring it down to 5.7079 ; to this adding the value of an annuity on a life to continue from the age of 42 to 49 , found before to be 5.3492 , the fum will be 11.0571 years purchafe, the value of an annuiry to continue from the age of 42 to 70 .

In the fame manner, for the laft 16 years of life, reaching from 70 to 86, when properly difcounted, and alfo diminifhed upon the account of the probability of living from 42 to 70, the value of thofe laft 16 years will be reduced to 0.8 ; this being added to 11.0571 (the value of an annuity to continue from the age of 42 to 70 , found before), the fum will be 11.8571 years purchafe, the value of an annuity to continue from the age of 42 to 86 ; that is, the value of an annuity on a life. of 42 ; which, in my tables, is but 11.57 , upon the fuppofition of an uniform decrement of life, from an age given to the extremity of oldage, fuppofed at 86 .

It is to be obferved, that the two diminutions, above-mention'd, are conformable to what I have faid in the corollary to the fecond problem of the firt edition, printed in the year 1724.

Thofe who have fufficient leifure and fkill to calculate the value of joint lives, whether taken two and two, or three and three, in the fame manner as I have done the firft problem of this tract, will be greatly affifted by means of the two following theorems:

If the ordinate of a curve be $\frac{z}{r^{2}}$; it's area will be $\frac{1}{a^{2}}-\frac{1}{a^{2} r^{2}}-\frac{z}{a r^{2}}$.
If the ordinate of a curve be $\frac{z^{2}}{r^{2}}$; it's area will be $\frac{2}{a^{3}}-\frac{2}{a^{3} r^{2}}-$ $\frac{2 z}{a^{2} r^{2}}-\frac{z^{2}}{a r^{2}}$.

I beg leave, in this place, to take notice, that in the theorem in line 12, page 63. of the lecond edition of my book of annuities on lives, inftead of p, it ought to be $\frac{p}{n} p$; where n and p reprefent the complements of the age, in the beginning and end of a given interval of time.

And I defire the reader of that edition to adaje the fourth article of the rule put in words at length, in page 64 , to the theorem fo corrected: thein the folution there given, and that in page 21. of the firfe edition, will perfectly agree; provided that the decrements of life be fuppofect, in boih cales, uniform, from an age given, to the extremity of okl-age.

1 mutt alfo take notice of an accidental error, that has crept into thic 2 th propofition of the ficond edition; which I chufe to correct as follows;

1. Let the firf line of the propofition, and part of the fecond line, as far as A exclulive, be erafed.
2. Let the folution proceed thus: fince the life of A is fuppofed to be worth 14 years purchafe, when intereft is at 4 per cent. per annum, is follows, from our tables, that A muft be 35 years of age; therefore find, by the twenty-third propofition, the value of an annuity of a life for 35 to continue for a limited time of $3:$ years: let that value be fubducted from the value of an annuity certain, to continue 31 years; and the remainder will be the value of the reverfion.
III. The Cbinefe have for many ages picqued themfelves on being the An account of moft wife of any nation in the world; but late experience and clofer a new invertconverfe with them hath found this pride to be ill-grounded. One-par- ${ }^{\text {ed }}$ arithmetiticular, in which they think they excel all mankind, is, their manner of called a accompting, which they do with an inftrument compofed of a number Shwan-pan, of wires with beads upon them, which they move backwards and for- or Chinefe wards. This inftrument they call a Sbwan-pan.

Now I truft I have formed one on the plan of our 9 digits, that in no cafe falls fhort of the Cbinefe Sbwan-pan, but in many excels theirs.

The Cbinefe, according to the accounts of travellers, are fo happy as to have their parts of an integer in their coins, $\mathcal{E}^{\circ} c$. decimated, fo can multiply or divide their integers and parts as if they were only integers. This gives them the advantage over Europeans in reckoning their 1749. money, $\varepsilon^{2} c$. But then, as they have no particular place fet apart for the leffer denominations of coins, weights, meafures, \mathcal{E}^{c}. their inftrument can't be ufed in Europe, nor can it be fo univerfally applied to arithmetick as mine, for I have provided for the different divifions of an integer into parts.

This inftrument hath the advantage of our digits in a great many Cafes. Fint, the figures can be felt, fo may be ufed by a blind man. If it had no other, this alone would be fufficient to gain it the attention of mankind.

Another advantage from it is, that, when attain'd, this method is much fwifter than by our digits, and lefs liable to miftakes: it is likewife not fo burdenfome to the memory in working the rules of arithmetick, as by our digits, we being oblig'd to carry the tens in the mind from one place to another, which are fet down by the Sbwan-pan. One may work a whole night, without confufing the head, or affecting the eyes in the leaft.

It may be of great ufe to teach people the power of numbers, likewife to examine accompts by; for, as the perfon will, by the Sbwanpan, work quite a different way, it will ferve as if another perfon had gone mro' the accompt; if it proves right with the written one, they may reft affured the work is true.

It may be a very pretty lure to lead young people to apply their minds to numbers *.

THEOREM.
An extratat of a letter froms
William

Eqg; Prefident of the Royal Society ; containing a com- to their correfponding ones in any otber column.
midious dijpo-
frition of equa-
tions for exbibiting the relations of Goniometrical Lines. Prefented + July 1747. No. 483. p. 560. March, E_{c}. 1753.

ATABLE of the Relations
of romeinmeticical thines:

25, 2	$\frac{5,2 z}{\text { s.ita }}$	$\frac{0,2 z}{x, 4+a}$	r $A+s, a$	s. $2-3, A$ $v, A-r, a$
2 5, x	$s, A-s, a$	$\begin{aligned} & s, \mathrm{a}-\mathrm{d}, \mathrm{~A} \\ & v, \mathrm{~A}-\mathrm{v}, \mathrm{a} \end{aligned}$	$5,2 x$	$\frac{\nu, 2 x}{v, A-a}$
23) z	$\frac{\sin 2}{x+a}$	$\frac{s, 2 z}{s A+a}$	$s, A+s, a$	$s, \mathrm{~A}-s, \mathrm{a}$
2 s. x	s, A+sa	$s \mathrm{~A}+\mathrm{s}, \mathrm{a}$	$\frac{1, x x}{2-3}$	$5, x-2 x$
\cdots	3%	$s \mathrm{z}$	$\checkmark_{0} x$	s, x
. 10	\cdots	tiz		
$\zeta,=$	s, z	$\mathscr{S} z-\xi^{2}$		
fiz^{\prime}	5\%	-		
$6 \mathrm{z}+6 \mathrm{z}$	\int_{1}^{\prime}	N\%	3vari	101
S, x			r	5 x
t, x			s sx	. $1,4 x$

- The inventor produced one of thefe inftruments before the Sosisfy, and work'd feveral queftions in arithmetick upon it. It much refembles the abacus of the ancients. C. M.

From

A conmodious Difpoition of Goniometrical Lines.

From hence, almoft an infinite number of theorems may eaffly be derived; fome of which are the following, given here as examples of the ufe of the table.

$$
\begin{aligned}
& \text { I. } s, z \times s, x=\frac{1}{2} r \times \overline{s^{\prime}, a-s^{\prime}, A}=\frac{1}{2} r \times \overline{s^{\prime}, \overline{z-x}-s^{\prime}, \overline{z+x}} \\
& =\frac{s, z}{\int^{\prime}, x} r r=\frac{s, x}{\rho^{\prime}, z} r r . \\
& = \\
& \frac{s^{\prime}, z}{f, x} r r=\frac{s^{\prime}, x}{s^{\prime}, x} r r .
\end{aligned}
$$

II. If A, B, C, be any three angles; $Z=A+B, X=A-B$, $H=\frac{1}{2} A+B+C$.
 $\times s,{ }_{r}^{\frac{1}{B}+C-A}=s, \overline{H-B} \times s, \overline{H-A}$.

And $\frac{1}{2} r \times \overline{v, Z-v, C}=s, \frac{\frac{1}{2} Z C}{Z+C} \times \frac{1}{2} \overline{Z-C}=s, \frac{1}{2} \overline{A+B+C}$ $\times s, \frac{1}{2} \overline{\mathrm{~A}+\mathrm{B}-\mathrm{C}}=s, \mathrm{H} \times s, \overline{\mathrm{H}-\mathrm{C}}$.
III. $\frac{s s, z}{s^{\prime} s^{\prime} \mathrm{z}}=\frac{t t, \mathrm{z}}{r r}=\frac{r r}{t^{\prime}, \mathrm{z}}=\frac{v, 2 \mathrm{z}}{v^{\prime}, 2 \mathrm{z}}=\frac{t, \mathrm{z}}{t^{\prime}, \mathrm{z}} ;$ Or $\frac{s s_{0} \frac{1}{2} \mathrm{z}}{s^{\prime}, \frac{1}{2} \mathrm{z}}=\frac{t t_{3} \frac{1}{2} \mathrm{z}}{r r}$
$=\frac{r r}{t i, \frac{1}{2} z}=\frac{v, z}{v, z}=\frac{t, \frac{1}{2} z}{t, \frac{1}{2} z}$.
IV. $\frac{1}{2} r=\frac{s s, z}{v, 2 z}=\frac{s s, \frac{1}{2} \mathrm{z}}{v, z}=\frac{s s^{\prime}, z}{v, 2 z}=\frac{s s^{\prime}, \frac{y}{2} z}{v_{2} z} ;$ and $s, z=\frac{2 s s, \frac{s}{2} z}{s_{,} \frac{s}{2} z}$
$=\frac{2 s^{\prime} s_{2}^{\prime} \frac{1}{2} \mathrm{z}}{i_{i}^{1} \mathrm{z}}$.
V. $\frac{s, z}{v, z}=\frac{r}{t, \frac{1}{2} z}=\frac{r, \frac{1}{2} z}{r}=\frac{v^{\prime}, z}{s, z}$.
VI. $\frac{t, \mathrm{z}}{t, \mathrm{x}}=\frac{s, \mathrm{~A}+s, \mathrm{a}}{s, \mathrm{~A}-s, \mathrm{a}}=\frac{t, \mathrm{x}}{t, \mathrm{z}}$; and $\frac{r r}{t, z \times t, \mathrm{x}}=\frac{t, \mathrm{z}}{t, \mathrm{x}}=\frac{t, \mathrm{x}}{t, \mathrm{z}}$

VII. $\frac{s, \mathrm{~A}}{s, a}=\frac{t, z+t, \mathrm{x}}{t, z-t, \mathrm{x}}=\frac{s, \overline{z+\mathrm{x}}}{s, z-\mathrm{x}} ;$ if z and x are two arcs, then
$A=z+x, a=z-x$.
VIII.
VIII. $s, \overline{z \pm x}=\frac{s, z \times s, x \pm s^{\prime}, z \times s, x}{r}=\frac{t, z \pm t, \mathrm{x}}{\sqrt{, z} \times \sqrt{s}, \mathrm{x}}$.
IX. $s, \overline{z \pm \mathrm{x}}=\frac{s, z \times s, \mathrm{x} \mp s, z \times s, \mathrm{x}}{r}=\frac{r r \mp t, z \times t, \mathrm{x}}{\int, z \times \int, \mathrm{x}} r$.
$\mathrm{X} . \quad t, \overline{\mathrm{z} \pm \mathrm{X}}=\frac{t, \mathrm{z} \pm t, \mathrm{x}}{r r \mp t, \mathrm{z} \times t, x} r r ;$ and $t, \overline{\mathrm{z} \pm \mathrm{x}}=\frac{r r \mp t, \mathrm{z} \times t, \mathrm{x}}{t, \mathrm{z} \pm t, \mathrm{x}}$.
XI. $\int, \overline{z \pm}=\frac{\int, z \times \int, \mathrm{x}}{r \mp \bar{\mp}, \mathrm{z} \times t, \mathrm{x}} r$; and $\int, \overline{z \pm z}=\frac{\int, z \times \int, \mathrm{x}}{t, z \pm t, \mathrm{x}}$.
XII. In three equidifferent arcs A, z, a; where $z\left(=\frac{1}{2} \overline{A+a}\right)$ is the mean arc, and $x\left(=\frac{ \pm}{2} \bar{A}-a\right)$ their common difference; put $p=$ $\frac{s^{\prime}, x}{\mathrm{r}}, q=\frac{\mathrm{s}, x}{\mathrm{r}} ; P=2 p \times s, z, Q=2 q \times \mathrm{s}^{\prime}, z$.

Then $\mathrm{s}, A=P-\mathrm{s}, a=Q+\mathrm{s}, a ;$ And $\mathrm{s}, a=P-\mathrm{s}, A=\mathrm{s}, A-2$.
XIIL. Let $d=\mathrm{v}, A-\mathrm{v}, a=\mathrm{s}, a-\mathrm{s}, A$; then $\mathrm{ss}, A-\mathrm{ss}, a$ $=\overline{2 s, A+d} \times d=\overline{2 s, a-d} \times d:{ }^{*}$
XIV. Let $A, B, C, \xi^{2} c$. be the fines, $a, b, c, \xi^{2} c$, the co-fines, a, b, i, $\mathcal{J}^{\circ} c$. the tangents, of the arcs, $\alpha, \beta, \gamma, \mathcal{V}^{\circ} c$. whofe number is n; the radius being r; put S for the product of the n co-fines, $S^{\prime}, \mathcal{S}^{\prime \prime}, S^{\prime \prime \prime}, \mathcal{E}^{2} c$. for the fum of the products made of every fine, every two, three, $\mathcal{E}^{\circ} c$. fines, by the other $\left(n-1, n-2, n-3, \varepsilon_{c}\right.$.) co-fines, where the co-fine noted by $n-n$ is unity.

Then the fine of $\overline{\alpha+\beta+\gamma+\delta, \mathcal{E}^{2} c}=\overline{S^{\prime}-S^{\prime \prime \prime}+S^{v}-S^{v \prime \prime}, \mathcal{E}_{c}}$. $\times \frac{1}{n-1}$.
: And the co-fine of $\overline{\alpha+\beta+\gamma+\delta, \delta_{c}}=\overline{S-S^{\prime \prime} T S^{\prime v}-S^{\prime}, \delta_{c} c}$ $x \frac{1}{n-1}$.

[^1]XV. Alfo putting T^{\prime} for the fum of the tangents of the arcs, α, β, γ, $E^{*} c . T^{\prime \prime}, T^{\prime \prime \prime}, T^{\prime \prime}, \mathcal{G}^{\prime} c$. for the fum of the products of every two, three, four, $E^{\circ} c$. tangents; and $A=T^{\prime \prime}$
\[

$$
\begin{aligned}
& B=A T^{\prime \prime}-T^{\prime \prime \prime} \\
& C=B T^{\prime \prime}-A T^{\prime \prime}+\tau^{y} \\
& D=C \tau^{\prime \prime}-B \tau^{\prime y}+A T^{y^{\prime}}-\tau^{y^{\prime \prime}} \\
& E=D T^{\prime \prime \prime}-C T^{\prime \prime} y+B \mathcal{T}^{y^{\prime}}-A T^{\prime} y^{\prime \prime \prime}+T^{\prime \prime x} . \\
& \text { Put } R=\frac{1}{r r} \text {. }
\end{aligned}
$$
\]

Then the tangent of $\overline{\alpha+\beta+\gamma+\delta, \delta_{0} c_{1}}=A+B R+C R^{2}+D$ $R^{3}+E R^{+} ; \xi^{\circ}$.
XVI. Hence, the fine, tangent, and fecant, of any arc a, being reprefented by s, t, f, the co-fine, co-tangent, and co-fecant, by s, t, f^{\prime}; thole of the arc $n a$ are expreffed as in the following theorems.

Putting $n^{\prime}=n \cdot \frac{n-1}{2} ; n^{\prime \prime}=n^{\prime} \cdot \frac{n-2}{3} ; n^{\prime \prime \prime}=n^{\prime \prime} \cdot \frac{n-3}{4} ; n^{\prime} y=n^{\prime \prime \prime} \cdot \frac{n-4}{5} ;$ E_{c}.

Sine of $n a=\overline{n A-n^{\prime \prime}} \overline{A P \frac{1}{1} n^{\prime v} B P-n^{\prime} C P+n^{v / \prime \prime} D P, \xi^{\prime} c} \times$ $\frac{s^{n-1}}{r^{n-1}} ;$ where $P=\frac{s s}{s s^{\prime}} ; A=s ; B=A P ; C=B P ; D=C P ; \mathcal{E}_{C}$.

$$
\text { Or }=n \mathrm{~s}-\overline{\frac{n-1}{2} \cdot \frac{n-2}{3} A P+\frac{n-3}{4} \cdot \frac{n-4}{5} B P-\frac{n-5}{6} \cdot \frac{n-6}{7}}
$$

$\overline{C P} \xi^{3} c . \times \frac{s^{n-1}}{r^{n-1}}$; where $A, B, C, \xi^{2} c$. flan for the reflective preceding terms.

$$
\mathrm{Or}=n s+\frac{1+n}{2} \cdot \frac{1-n}{3} A 2+\frac{3+n}{4} \cdot \frac{3-n}{5} B Q+\frac{5+n}{6} \cdot \frac{5-n}{7}
$$

$C 2+\frac{7+n}{8} \cdot \frac{7-n}{9} D 2$. Bc. where $^{2}=\frac{s s}{r r} ; A, B, C, \Xi^{\circ} c$. ftand as before.
 $\frac{s n}{r^{n-2}}$, where $P=\frac{s s}{s \xi}$.
$\mathrm{Or}=r+\frac{0+n}{1} \cdot \frac{0-n}{2} A Q+\frac{2+n}{3} \cdot \frac{2-n}{4} B Q+\frac{4+n}{5} \cdot \frac{4-n}{6^{n}}$
© VOL.. X. Part i.
D
CQ+
$C 2+\frac{6+n}{7} \cdot \frac{6-n}{8} D 2, \xi^{2} c$. where $2=\frac{s s}{r} ;$ and $A, B, C, E_{c} c$. fand for the refpective preceding terms.

Or put $M=\left.\overline{\frac{2 s^{s}}{r}}\right|^{n} \times r ; N=\frac{r r}{4 s^{s} s^{3}} ; A=\frac{x}{2} ; B=A N ; C=B N ; D=C N$, $\xi^{\circ} c ; p=n ; p=n-\mathbf{1} ; p^{\prime \prime}=n-2, \mathcal{E}^{2} c$. And $a^{\prime}=p ; b^{\prime}=p . \frac{1}{2} p^{\prime \prime \prime} ; c^{\prime}=p$. $\frac{1}{2} p^{\prime v} \cdot \frac{1}{3} p^{v} ; d^{\prime}=p \cdot \frac{1}{2} p^{v} \cdot \frac{1}{3} p^{y^{\prime}} \cdot \frac{1}{4} p^{v / \prime \prime} ; e^{\prime}=p \cdot \frac{1}{2} p^{y^{\prime}} \cdot \frac{1}{3} p^{y^{\prime \prime}} \cdot \frac{1}{4} p^{y^{\prime \prime \prime}} \cdot p^{\frac{1}{3}} p^{\prime x} ; \varepsilon \varepsilon^{2} c$. The co-fine of $n a=\overline{A-B a^{\prime}+C d^{\prime}-D c^{\prime}+E d^{\prime}, छ^{2} c} \times M$.
XVIII. Let $A=-n^{\prime \prime}+n n^{\prime}$

$$
\begin{aligned}
& B=+n^{\prime v}-n n^{\prime \prime \prime}+A n^{\prime} \\
& C=-n^{\prime \prime}+n n^{\prime}+B n^{\prime}-A n^{\prime \prime \prime} \\
& D=+n^{v \prime \prime \prime \prime}-n n^{\prime \prime \prime}+C n^{\prime}-B n^{\prime \prime \prime}+A n^{v} \otimes_{c} .
\end{aligned}
$$

$$
A^{\prime}=\frac{1}{n} \cdot n^{\prime \prime}-n^{\prime}
$$

$$
B^{\prime}=\frac{1}{n} \cdot n^{\prime \prime} A-n^{\prime y}+n^{\prime \prime \prime}
$$

$$
C^{\prime}=\frac{1}{n} \cdot n^{\prime \prime} B^{\prime}-n^{\prime} A^{\prime \prime}+n^{\prime \prime}-n^{y}
$$

$$
D^{\prime}=\frac{1}{n} \cdot \overline{n^{\prime \prime} C^{\prime}-n^{\prime}} B^{\prime}+n^{\prime} A^{\prime}-n^{y^{\prime \prime \prime}}+n^{-\prime \prime \prime} \mathcal{E}^{\prime} .
$$

The tangent of $n a=n t+A t^{2} r^{-2}+B t^{5} r^{-4}+C t^{9} r{ }^{0}+D t^{0} r-1 \varepsilon^{2} \sigma_{0}$
Or $=\overline{n+A N+B N^{2}+C N^{3}+D N^{*}-\xi^{2} \varepsilon_{r}} \times t_{t}$, where $N=\frac{t t}{r r}$.
$\mathrm{Or}=n a^{\prime}+A b^{\prime}+B c^{\prime}+C d^{\prime}+D d^{\prime}, \xi{ }^{\prime} c$. where $a^{\prime}=t ; b^{\prime}=N a^{\prime} ; d^{\prime}=$ $N d^{\prime} ; d^{\prime}=N e^{\prime} ; \varepsilon^{2} c$.

$$
O_{r}=\frac{n-n^{\prime \prime} N+n^{\prime \prime} N^{2}-n^{\prime} N^{3}+n^{\prime \prime \prime \prime} N^{4}, \S_{c}}{1-n^{\prime} N+n^{\prime \prime \prime} N^{2}-n^{y} N^{3}+n^{\prime \prime \prime} N^{N^{4}} . छ_{c}^{2} c} \times t
$$

Co-tangent of $n a=\overline{r^{2}+A^{\prime} t^{2} N+C^{\prime} t^{2} N^{2}+D^{\prime} t^{2} N^{3}+E^{\prime} t^{2} N^{4} \xi^{2} c}$. $\frac{r r}{n t}$; where $N=\frac{t t}{r r}$.

$$
\mathrm{Or}=\overline{1+A^{\prime} N+B^{\prime} N^{2}+C^{\prime} N^{3}+D^{\prime} N^{4}+E^{\prime} N^{3}, \varepsilon_{6}^{2}} \times \frac{1}{7} r^{2} t^{\prime}
$$

wherc $N=\frac{r r}{t^{\prime} t^{\prime}}$.

A commodious Disposition of Goniometrical Lines.
Or $=\frac{\mathrm{I} \longrightarrow n^{\prime} N+n^{\prime \prime \prime} N^{2}-n^{v}}{n-n^{\prime \prime} N+n^{\prime}+n^{\prime \prime} N^{\prime 2}-n^{\prime \prime} N^{4}-n^{\prime} \times N^{s}, \mathcal{V}^{2} c .} \times \frac{r r}{t}$; where $N=\frac{t t}{r r}$.
XIX. Let $A=n^{\prime}$

$$
\begin{aligned}
& B=A n^{\prime}-n^{\prime \prime \prime} \\
& C=B n^{\prime}-A n^{\prime \prime \prime}+n^{v} \\
& D=C n^{\prime}-B n^{\prime \prime \prime}+A n^{v}-n^{\prime \prime \prime} \varepsilon \sigma^{\circ} \sigma . \\
& A^{\prime}=\frac{1}{n} \cdot n^{\prime \prime} \\
& B^{\prime}=\frac{1}{n} \cdot \frac{n^{\prime \prime} A^{\prime}-n^{\prime} Y}{}
\end{aligned}
$$

$$
C^{\prime}=\frac{\mathbf{x}}{n} \cdot \overline{n^{\prime \prime} B^{\prime}-n^{\prime v} A \frac{1}{1} n^{v \prime}}
$$

$$
D^{\prime}=\frac{1}{n} \cdot \overline{n^{\prime \prime} C^{\prime}-n^{\prime v} B^{\prime}+n^{v /} A^{\prime}-n^{v / \prime \prime}} \varepsilon c^{3}
$$

Secant of $n a=\overline{1+A N+B N^{2}+C N^{3}+D N^{4}+E N^{3}, छ_{c}} \times M$.
Or $=\frac{1}{1-n^{\prime} N+n^{\prime \prime \prime} N^{2}-n^{\nu} N^{3}+n^{v / \prime} N^{4}, \varepsilon_{c} c_{c}} \times M$; where $N=\frac{t t}{r r}$, $M=\frac{r \int n}{r n}$.

Co-fecant of $n a=1+A^{\prime} N+B^{\prime} N^{2}+C^{\prime} N^{3}+D^{\prime} N^{4}+E^{\prime} N^{5}, छ_{c} \times$ M; where $N=\frac{t t}{r r}, M=\frac{r r \sqrt{n}}{n t r n}$.

$$
\text { Or }=\frac{1}{n-n^{\prime} N+n^{\prime v} N^{2}-n^{\prime} N^{3}+n^{y^{\prime \prime \prime}} N, \delta a_{0}} \times M \text {; where } N=\frac{t t}{r r},
$$ $M=\frac{r n-2}{l d n-2}$.

XX. Let c be the chord of an arc (a) of the circumference of a circle, whole diameter is d. Put $N=\frac{c c}{d d}$.

The chord of $n a=n c+\frac{1+n}{2} \cdot \frac{x-n}{3} A N+\frac{3+n}{4} \cdot \frac{3-n}{5} B N+$
D 2
$\frac{5+n}{6}, \frac{5-n}{7} C N+\frac{7+n}{8}, \frac{7-n}{9} D N, \mathcal{E}_{C}$, where $A, B, C, \mathcal{E}_{C} C$ fland for the refpective preceding terms.

As the preceding theorems are eafily deduced from the firft, fo the following are mont readily feen to be the immediate confequences of thefe; and all depending upon no other principles than what are generally made ufe of in conmon computations.
XXI. Putting s, s, t, t, f, f, for the fine, co-fine, tangent, co-tangent, fecant, co-fecant, of an arc (a), and v it's verfed fine; let $q^{\prime}=\frac{1}{3}$; $q^{\prime \prime}=\frac{1}{5} q^{\prime} ; q^{\prime \prime \prime}=\frac{1}{7} q^{\prime \prime} ; q^{\prime v}=\frac{1}{3} q^{\prime \prime \prime} ; q^{v}=\frac{1}{6} q^{\prime v} ;$ ®r $^{2} . N=\frac{a a}{r r}$.

Then $s={ }_{1}-q^{\prime \prime} N+q^{\prime v} N^{2}-q^{y^{\prime}} N^{3}+q^{y^{\prime \prime \prime}} N^{4}+q^{\prime \times} N^{s}, \varepsilon^{j} c . \times a$.
$=a-q^{\prime \prime} a^{3} r^{-2}+q^{\prime 2} a^{5} r^{-4}-q^{y^{\prime}} a^{7} r^{-6}+q^{\text {¹/I }} a^{9} r^{-8}, \varepsilon^{3} c$.
$=a-\frac{1}{2.3} A N+\frac{1}{4.5} B N-\frac{1}{6.7} C N+\frac{1}{8.9} D N, \exists^{c} c$. where
$A, B, C, \mathcal{E}^{2} c$. ftand for the refpective preceding terms.
And $s^{\prime}=r-q^{\prime} a^{2} r^{-x}+q^{\prime \prime \prime} a^{4} r^{-3}-q^{0} a^{0} r-s+q^{y^{\prime \prime}} a^{8} r-7, \mathcal{E}^{2} c$.
$=1-q^{\prime} N+q^{\prime \prime \prime} N^{2}-q^{v} N^{3}+q^{\text {v/ }} N^{4} q^{\prime x} N^{5}, छ^{2} c \times r$.
$=r-\frac{1}{1.2} a^{2} x^{-r}+\frac{1}{3.4} A N-\frac{1}{5.6} B N+\frac{1}{7.8} C N$, छc. A,
$B, C, \Xi c$. as before.
XXII. Alfo $v=q^{\prime} a^{2} r^{-1}-q^{\prime v} a^{4} r^{-3}+q^{y \prime} a^{0} r^{-5}-q^{y / \prime \prime} a^{3} r-7$, Evc.

$$
\begin{aligned}
= & \frac{1}{1.2} a^{2} r^{-1}-\frac{1}{3.4} A N-\frac{1}{5.6} B N-\frac{1}{7.8} C N-\frac{1}{9.10} \\
& D N, \delta^{\circ} c . \\
= & \frac{1}{1.2} N-\frac{1}{3.4} A N-\frac{1}{5.6} B N-\frac{1}{7.8} C N, \delta_{c}, \times \%
\end{aligned}
$$

$$
A, B, C, \xi^{2} c \text {. as before. }
$$

XXIII. Let $A=+q^{\prime}-q^{\prime \prime}$

$$
\begin{aligned}
& B=-q^{\prime \prime \prime}+q^{\prime v}+A q^{\prime} \\
& C=+q^{\prime}-q^{\prime \prime \prime}+B q^{\prime}-A q^{\prime \prime \prime} \\
& D=-q^{\prime \prime \prime}+q^{\prime \prime \prime}+C q^{\prime}-B q^{\prime \prime \prime}+A q^{v}, \mathcal{B}^{\circ} c
\end{aligned}
$$

And $A=-A$

$$
\begin{aligned}
& B^{\prime}=-B-A A^{\prime} \\
& C^{\prime}=-C-B A-A B^{\prime} \\
& D^{\prime}=-D-C A^{\prime}-B B^{\prime}-A C^{\prime}, E^{2} C_{0}
\end{aligned}
$$

Tangent $t=a+A a^{3} r^{-2}+B a^{5} r^{-4}+C a^{7} r^{-6}+D a^{9} r^{-8}$, $\varepsilon^{\circ} c$.
Or $\quad=1-A N+B N^{2}-C N^{3}+D N^{3}+E N^{5}, छ_{c} . \times a$.
Co-tangent $t=a^{-1} r^{2}+A a+B^{\prime} a^{3} r^{-2}+C^{\prime} a^{5} r^{-4}+D^{\prime} a^{7} r^{6}$, छ c^{2}.
Or $\quad=\overline{r r+A a^{2}+B^{\prime} N a^{2}+C^{\prime} N^{2} a^{2}+D^{\prime} N^{3} a^{2}}, छ^{2} c, \times \frac{1}{a}$.
XXIV. Alfo let $a=+{ }^{\prime}$

$$
\begin{aligned}
& \beta=-q^{\prime \prime \prime}+\alpha q^{\prime} \\
& \gamma=+q^{y}-\alpha q^{\prime \prime \prime}+\beta q^{\prime} \\
& \delta=-q^{\prime \prime \prime}+\alpha q^{y}-\beta q^{\prime \prime \prime}+\gamma q^{\prime}, \varepsilon^{\prime} c .
\end{aligned}
$$

And $\alpha^{\prime}=+q^{\prime \prime}$

$$
\begin{aligned}
& \beta^{\prime}=-q^{\prime v}+\alpha^{\prime} q^{\prime \prime} \\
& \gamma^{\prime}=+q^{\prime \prime}-\alpha^{\prime} q^{\prime \prime}+\beta^{\prime} q^{\prime \prime} \\
& \delta^{\prime}=-q^{\prime \prime \prime \prime}+\alpha^{\prime} q^{\prime \prime}-\beta^{\prime} q^{\prime \prime}+\gamma^{\prime} q^{\prime \prime}, \delta^{\circ} c .
\end{aligned}
$$

, \quad Secant $\delta=r f \cdot \alpha a^{2} r-^{-1}+\beta a^{4} r-3+\gamma a^{6} r-s+\delta a^{8} r-7, \delta \sigma$.
Or $\quad=\overline{1+\alpha N+\beta} N^{2}+\gamma N^{3}+\delta N^{2}, \delta c$. $x r$.
Co-fecant $\int^{\prime}=a^{-1} r^{2}+\alpha^{\prime} a+\beta^{\prime} a^{3} r^{-2}+\gamma^{\prime} a^{5} r^{-+}+\gamma^{\prime} a^{7} r^{-6}, \mathcal{E}^{2} c$.
do Or $=\overline{r r+\alpha^{\prime} a a+\beta^{\prime} N a a+\gamma^{\prime} N^{2} a a+\gamma^{\prime} N^{3} a a, \mathcal{V}^{2} c}$. $\frac{I}{a}$. where $N=\frac{a a}{r r}$.
XXV. Putting $p^{\prime}=\frac{1}{2} ; p^{\prime \prime}=\frac{p^{\prime}}{4} p^{\prime} ; p^{\prime \prime \prime}=\frac{3}{6} p^{\prime \prime} ; p^{\prime v}=\frac{7}{8} p^{\prime \prime \prime} ; p^{v}=\frac{9}{2} p^{\prime \prime} ;$ Ec. $N=\frac{s s}{r r}$.

Or $\quad=s+\frac{2}{3} p^{\prime} A N-+\frac{1}{5} p^{\prime \prime} B N-1 \frac{1}{2} p^{\prime \prime \prime} C N+\frac{1}{9} p^{\prime v} D N, \mathcal{E} c$.
Or $\quad=s+\frac{1.1}{2.3} A N+\frac{3.3}{4.5} B N+\frac{5.5}{6.7} C N+\frac{7.7}{8.9} D N$, हथ. where $A, B, C, E^{\circ} c$. ftand for the refpective preceding terms,
XXVI. If v is the verfed fine of an arc a, diameter being $d_{2} M=\frac{v}{d}$, $R=\sqrt{d v}$.

Then arc $a=1+\frac{1.1}{2.3} M+\frac{3.3}{4.5} A M+\frac{5 \cdot 5}{6.7} B M+\frac{7 \cdot 7}{8.9} C M$, E. $_{c}$. $R ; A, B, C, \delta^{\circ} c$. are as before.

XXVII．And putting $N=\frac{t t}{r r}, A=t, B=A N, C=B N, D=C N, \mathcal{B}_{\circ}^{\circ}$ ．
Then arc $a=t-\frac{1}{3} A N+\frac{1}{5} B N-\frac{1}{7} C N-1 \div D N \div \frac{1}{11} E N, S_{3} c$ ．
Or $\quad={ }_{1}-\frac{1}{3} N+\frac{1}{5} N^{2}-\frac{1}{7} N^{3}+\frac{2}{9} N^{4} \frac{1}{5} \frac{1}{11} N^{s}, \varepsilon^{2} c, \times 6$ ．
XXVIII．Alro，if c is the chord of an arc (a) ；and $N=\frac{c c}{d d}$ ．
Then arc $a=c+\frac{\mathbf{1 . 1}}{2.3} A N+\frac{3.3}{4.5} B N+\frac{5.5}{6.7} C N+\frac{7.7}{8.9} D N, E_{0} c$ ．
where $A, B, C, E \mathcal{G}$ ．Itand for the refpective preceding terms．

An E CJay on Quantity ；os caforined by reading a Treasije，in
which Simple

end Com－

 pound Ratio＇s are applied to Virtue and Merit，by theRev．Mr
Reid ：commu－ nicated in a Lizter from she Rev．
Henry ivites
D．D．E゚F．
R．S．so Mar－ z： n Folkes， E／q；Pr．R．S． Read Nov． 3 1748． N° ． 489 p． 505 October，ళ゚゙ 178.

Sect． What 2uan－ tily is．

V．Since mathematical demonftration is thought to carry a peculiar evidence along with it，which leaves no room for further difpute；it may be of fome ufe，or entertainment at leaft，to inquire to what fubjects this kind of proof may be applied．
Mathematics contain properly the doctrine of meafure；and the ob－ ject of this fcience is commonly faid to be quantity；therefore quantity ought to be defined，what may be meafured．Thofe who have defined quantity to be whatever is capable of more or lefs，have given too wide a notion of it，which I apprehend has led fome perfons to apply mathe－ matical reafoning to fubjects that do not admit of it．

Pain and pleafure admit of various degrees，but who can pretend to meafure them？Had this been poffible，it is not to be doubted but we thould have had as diftinct names for their various degrees，as we have for meafures of length or capacity；and a patient Thould have been able to defcribe the quantity of his pain，as well as the time it began，or the part it affected．To talk intelligibly of the quantity of pain，we thould have fome ftandard to meature it by；fome known degree of it fo well afcercained，that all men，when they talked of it，Should mean the fame thing；we fhould alfo beable to compare other degrees of pain with this， fo as to perceive diftinctly，not only whether they exceed or fall fhort of it，but how far，or in what proportion；whether by an half，a fifth，or a tenth．
Whatever has quantity，or is meafurable，mutt be made up of parts， which bear proportion to one another，and to the whole；fo that it may be increated by addition of like parts，and diminified by fubtraction， may be multiplied and divided；and，in a word，may bear any proportion to another quantity of the fame kind，that one linc or number can bear to another．That this is cffential to all mathematical quantity，is evi－ dent
dent from the firf elements of algebra, which treats of quantity in general, or of thofe relations and properties which are common to all kinds of quantity, Eivery algebraical quantity is fuppofed capable not only of being increafed and diminihed, but of being exactly doubled, tripled, haifed, or of bearing any affignable proportion to another quantity of the fame kind. This then is the characteriftick of quantity; whatever has this property may be adopted into mathematicks; and it's quantity and reiations may be meafured with mathematical accuracy and certainty.

There are fome quantities which may be called proper, and others improper. This diftinction is taken notice of by Ariftotle; but it deferves Of Proper fome explication. and Improper
I call that proper quantity which is meafured by it's own kind; or शantity. which of it's own nature is capable of being doubled or tripled, withour taking in any quantity of a different kind as a meafure of it. Thus a line is meafured by known lines, as inches, feet, or miles; and the length of a foot being known, there can be no queftion about the length of two feet, or of any part or multiple of a toot. And this known length, by being multiplied or divided, is fufficient to give us a dittinct idea of any length whatioever.

Improper quantity is that which cannot be meafured by it's own kind; but to which we aflign a meafure by the means of fome proper quantity that is related to it. Thus velocity of motion, when we confider it by itfilf, cannot be meafured. We may perceive one boly to move fafter, another nlower; but we can have no diftinct idea of a proportion or fatio between their velocities, without taking in fome quantity of another kind to meature them by. Having theretore oblierved, that by a greater velucity a greater fpace is paffed over in the fame time, by a lefs velocity a less fipace, and by an equal velocity an equal fpace; we hence learn to meafure velocity by the fpace paffed over in a given time, and to reckon it to be in exact proportion to that fpace : and having once affigned this meafure to it, we can then, and not till the:n, conceive one velocity to be exactly double, or half, or in any other proportion to another; we may then introduce it into mathematical reafoning without danger of confufion, or exyor, and may alfo ufe it as a meafure of other improper quanticies.

All the kinds of proper quantity we know, may, I think, be reduced to thefe four, extenfion, duration, number, and proportion. Though proportion be meafurable in it's own nature, and therefore hath proper quantity; yet as things cannot have proportion which have not quantity of fome other kind, it follows, that whatever has quantity mult have it in one or other of thefe three kinds, extenfion, duration, or number. Thefe are the meafures of themfelves, and of all things elfe that are meafurable.

Number is applicable to fome things, to which it is not commonly, applied by the vulgat. Thus, by attentive confideration, lots and chances of various kinds appear to be made up of a determinate number of chances that are allowed to be equal; and by numbering thefe, the va-
lues and proportions of thofe which are compounded of them may be demonftrated.

Velocity, the quantity of motion, denfity, elafticity, the vis infita, and imprefla, the rarious kinds of centripetal forces, and different orders of fluxions, are all improper quantities; which therefore ought not to be admitted into mathematics, without having a meafure of theon affigned. The meature of an improper quantity ought always to be included in the detinition of it; for it is the giving it a meafure that makes it a proper fubject of mathematical reafoning. If all mathematicians had confidered this as carefully as Sir I. Newison appears to have done, fome labour had been faved both to themfelves and to their readers. That great man, whofe clear and comprchenfive underftanding appears, even in his definitions, having frequent occafion to treat of tuch improper quantities, never fails to define shem, to as to give a meafure of them, either in proper quantities, or in fuch as had a known meafure. This may be feen in the detinitions prefixed to his Princip. Pbil. Nat. Matb.
It is not eaty to fay how many kinds of improper quantity may in time, be introduced into mathematics, or to what new fubjects mealurcs may tee applied: but this I think we may conclude, that there is ne foundation in nature for, nor can any valuable end be ferved by, applying meafure to anything but what has thefe two properties. Firft, it muft admit of degrees of greater and lefs. Secondly, it muft be affociated with, or related to, fomething that has proper quantity, fo as that when one is increafed, the other is increafed, when one is diminifhed, the other is diminifhed alfo; and every degree of the one, muft have a determinate magnitude or quantity of the other, correfponding to it.

It fometimes happens, that we have occafion to apply different meafures to the fame thing. Centripetal force, as defined by Newont, may be meafured various ways, he himfelf gives different meafures of it, and diftinguifhes them by different names, as may be feen in the above-mentioned definitions.

In reality, I conceive that the applying of meafures to things that properly have not quantity, is only a fiction or artifice of the mind, for cnabling us to conceive more cafily, and more diftinctly to exprefs and demonftrate, the properties and relations of thofe things that have real quantity. The propofitions contained in the two firlt books of Newton's principia might perhaps be expreffed and demonftrated, without thofe various mealiures of motion, and of centripetal and impreffed forces which he ufes: but this would occalion fuch intricate and perplexed circumlocutions, and fuch a tedious length of demonitrations as would fright any fober perton from attempring to read them.

Sset 3. Corol 1.

From the nature of quantity we may fee what it is that gives mathematics fuch advantage over other fciences, in clearnefs and certainty; namely, that quantity admits of a much greater varicty of relations than any other fubject of human reafoning; and at the fame time, every relation or proportion of quantities may, by the help of lines and numbers,
be fo diftinctly defined, as to be eafily diftinguifhed from all others, without any danger of miftake. Hence it is, that we are able to trace it's relations through a long procels of reafoning, and with a perfpicuity and accuracy which we in vain expect in fubjects not capable of menfuration.

Extended quantities, fuch as lines, furfaces, and folids, befides what they have in common with all other quantities, have this peculiar, That their parts have a particular place and difpofition among themfelves : a line may not only bear any affignable proportion to another, in length or magnitude, but lines of the fame length may vary in the difpofition of the:r parts; one may be fleight, another may be part of a curve of any kind or: dimenfion, of which there is an endlefs variety, The like may be laid vi firflaces and folids. So that extenced quantities, admit of no lefs variety with regard to their form, than with regard to their magnitude: and as their various forms may be exaetly defined and meafured, no lets than their magnitudes, hence it is that geometry, which treats of extended quantity, leads us into a much greater compals and varicty of realoning than any other branch of methenaticks. Long deciuctions in algebrat for the moft part are made, not fo much by a train of reatoning in the minc, as by an artificial kinu of operation, which is buile on a few very limple principles: But in geometry, we may build one propolition upon atiother, a third ugen that, and foom, without ever coning to a limit which we cannot exceed. The propertes of the more fimple figures can hardil: be exhaufted, much lets thote of the more complex ones.

It may I think be deluced from what hath been ahove faid, that ma- Sfet + . thematical evidence is an evidence fili generis, not comperant oo any pro- Cooois' pofition which docs not exprefs a relation of things meatimable by limes or numbers. All proper quantity may be meafured by thefe, and improper quantities muft be meafured by thofe, that are proper.

There are many things caprable of more and leis, which perhaps are not capable of menfuration. Taftes, finctls, the fenfitions of heat and cold, beauty, pleafure, all the afections and apperites of the mind, witdom, folly, and moit kinds of probability, with many other things ax, tedious to enumerate, admit of ilegrees, but have not yet been reduced to meafure, nor, as I apprehend, ever can be. I lay, moit kinds of probability, becaufe one kind of it, viz. the probability of chances is properly meafurable by number, as is above oblerved.

Although attempts have been made to apply mathematical reafoning to fome of thefe things, and the quantity of virtue and merit in actions has been meafured by fimple and compound ratio's; yet I do not think that any real knowledge has been ftruck out this way: it may perhaps, if difcretely ufed, be a help to difcourfe on thefe fubjects, by pleafing the imagination, and illuftrating what is already known; but until our affections and appetites fhall themfelves be reduced to quantity, and exact meafures of their various decgrecs be affigned, in vain thall we effay to meafure virtue and merit by them. This is only to ring changes upon VOL. X. Part i. E: words,
words, and to make a thew of mathematical reafoning, without advancing one ftep in real knowledge.
1 apprehend the account that hath been given of the nature of proper

Sect. 5. Cisroll 3.

Sect. 6.
Of the Niuwsonian meafire of forse. and improper quantity may alfo throw fome light upon the controverfy about the force of moving bodies, which long exercifed the pens of many mathematicians, and for what I know is rather dropped than ended; to the no fmall fcandal of mathematics, which hath always boaited of a degree of evidence, inconfiftent with debates that can be brought to no iffue.

Though philofophers on both fides agree with one another, and with the vulgar in this, that the force of a moving body is the fame, while it's velocity is the fame, is increafed, when it's velocity is increafed, and diminifhed, when that is diminifhed. But this vague notion of force, in which both fides agree, though perhaps fufficient for common difcourfe, yet is not fufficient to make it a fubject of mathematical reatoning: In order to that, it muft be more accurately defined, and to defined, as to give us a meafure of it, that we may underftand what is meant by a double or a triple force. The ratio of one force to another cannot be perceived but by a meafure; and that meafure muft be fettled not by mathematical reafoning, but by a definition. Let any one confider force without relation to any other quantity, and fee whether he can conceive one force exactly double to another; I am fure I cannot, nor fhall, till I thall be endowed with fome new faculty; for I know nothing of force but by it's effects, and therefore can meafure it only by it's effects. Till force then is defined, and by that definition a meafure of it affigned, we fight in the dark about a vague idea, which is not fufficiently determined to be admitted into any mathematical propofition. And when fuch a detinition is given, the controverfy will prefently be ended,

You fay, the force of a body in motion is as it's velocity: either you mean to lay this down as a definition as Newton himfelf has done; or you mean to affirm it as a propofition capable of proof. If you mean to lay it down as a definition, it is no more than if you fhould fay, I call that a double force which gives a double velocity to the fame body, a triple force which gives a triple velocity, and fo on in proportion. This I intirely agree to; no mathematical definition of force can be given that is more clear and fimple, none that is more agreeable to the common ufe of the word in language. For, fince all men agree, that the force of the body being the fame, the velocity muft alfo be the fame; the force being increafed or diminifhed, the velocity muft be fo alfo, what can be more natural or proper, than to take the velocity for the meafure of the force?

Several other things might be advanced to fhew that this definition agrees beft with the common popular notion of the word Force. If two bodies meet directly with a fhock, which mutually deftroys their motion without producing any other fenfible effect, the vulgar would pronounce, without hefitation, that they met with equal force; and fo they do, according to the meafure of force above laid down: for we find by experience, that in this cafe their velocities are reciprocally as their quan-
tities of matter. In Mechanics, where by a machine two powers or wcights are kept in equitibrio, the vulgar would reckon that thefe powers act with equal force, and fo by this clefinition they do. The power of gravity being conltant and uniform, any one would expeet that it fhoird! give equal eegrees of force to a body in equal times, and fo by this def. nition it does. So that this decinition is not only ciear and fimple, buet it agrces beft with the ufe of the word Force in common Linguage, and this I think is all that can be defired in a definition.
But if you are not fatisfied with laying it down as a definition, that the force of a body is as it's velocity, but will needs prove it by iemonftration or experiment; I mult beg of you, betore you take one ftep in the proof, to let me know what you mean by force, and what by a double or a triple force. This you muft do by a definition which contains a meature of force. Some primary meafure of force mult be taken for granted, o: Laid down by way of definition; othervifie we can never reafon about it's quantity. And why then may you not take the velocity for the primary meatire as well as any other? you will find none that is more fimple. more diftinct, or more agreeable to the common ufe of the word Force: and he that rejects one definition that has thefe properties, has equal right to rejeet any other. I fay then, that it is impofible, by mathermitical reafoning or experiment, to prove that the force of a boiy is as it's velocity, without taking for granted the thing you would prove, or fomething elfe that is no more evident than the thing to be proved.

Let us next hear the Leibnitzian, who fays, that the force of a body is as the fquare of it's velocity. If he lays this down as a definition, 1 thall rather agree to it, than quarrel about words, and for the future thall underftand him, by a quadruple force to mean that which gives a double velocity, by nine times the force that which gives three times the velocity, and fo on in duplicate proportion While he keeps by his definition, it will not necelfarily lead him into any error in Mathematics or Mechanics. For, however paradoxical his conclufions may appear, however different in words from theirs who medure foree by the fimple ratio of the velocity; they will in their meaning be the fame jult as he who would call a foot twenty-four inches, without changing other meafures of length, when he fays a yard contains a foot and a halt, means the very fame as you do, when you day a yard contains three feet.

But tho' I allow this meafure of force to be diftinct, and cannot charge it with fallhood, for no definition can be falie, yct I fay in the firft place, it is le's fimple than the other; for why fhould a duplicate ratio be ufed where the fimple ratio will do as well? In the next place, this meafure of force is lets agreeable to the common ufe of the word Force, as hath been fhewn above; and this indeed is all that the many laboured arguments and experiments, brought to overturn it, do prove. This alfo is cvident, from the paradoxes into which it has led it's defenders?

We are next to confider the pretences of tie Leibnitzian, who will in - dertake to prove by demonftration, or experiment, chat force is as the
fiuare of the veiocity. I afk him firt, what he lays down for the firft meafure of force? the only meature I rcmember to have been given by the philofophers of that fide, and which feems firft of all to have led Leibnitz into his notion of force, is this: the height to which a body is impell'd by any impreffed force, is, fays he, the whole effect of that force, and therefore muft be proportional to the caufe: but this height is found to be as the fquare of the velocity which the body had at the beginning of it's motion.

In this argument I apprehend that great man has been extremely unfortunate. For, $1 f t$, whereas all proof fhould be taken from principles that are common to both fides, in order to prove a thing we deny, he alfumes a principle which we think farther from the truth; namely, that the height to which the body rifes is the whole effect of the impulfe, and ought to be the whole meafure of it. 2d y, His reafoning ferves as well againft him as for him: for may I not plead with as good realon at leaft thus? the velocity given by an improfifed force is the whole effect of that impreffed force; and therefore the force mult be as the velocity. 3 dly, Suppofing the height to which the body is raifed to be the meature of the force, this principle overturns the conclufion he would eftablin by it, as well as that which he oppofes. For, fuppofing the firft velocity of the body to be ftill the lame; the height to which it rifes will be increafed, if the power of gravity is diminifhed; and diminifhed, if the power of gravity is increafed. Boxies defcend flower at the equator, and fafter towards the poles, as is found by experiments made on pendulums. If then a body is driven upwards at the equator with a given velocity, and the fame body is afterwards driven upwards at Leipfock with the fame velocity, the height to which it rifes in the former cale will be greater than in the latter; and therefore according to his reafoning, it's force was greater in the former cale; but the velocity in both was the fame; confequently the force is not as the fquare of the velocity any more than as the velocity.
srct. 8. Upon the whole, I cannot but think the controvertifts on both fides
ing and experiment, what ought to be taken for granted; the other by the fame means to prove what might be granted, making fome allowance for impropricty of expreffion, but can never be proved.
If fome mathematician fhould take it in his head to affirm, that the relocity of a body is not as the fpace it paffes over in a given time, but as the fquare of that fpace; you might bring mathematical arguments and experiments to confute him; but you would never by thefe force him to yield, if he was ingenuous in his way; becaufe you have ro common principles left you to argue from, and you differ from one another, not in a mathematical propofition, but in a mathematical definition.

Suppoie a philofopher has confider'd only that meafure of centripetal force which is proportional to the velocity generated by it in a given time, and from this meafure deduces feveral propofitions. Anothes
ther philofopher in a diftant country, who has the fame general notion of centripetal force, takes the velocity generated by it, and the quantity of matter together, as the meafure of it. From this he deduces feveral conclufions, that feem dircetly contrary to thofe of the other. Thereupon a ferious controverfy is begun, whether centripetal force be as the velocity, or as the velocity and quantity of matter taken together. Much mathematical and experimental duft is raifed; and yet neither party can ever be brought to yield; for they are both in the right, only they have been unlucky in giving the fame name to difficent mathematical conceptions. Had they diftinguifhed thefe meafures of centripetal force as Nereton has done, calling the one Vis centripete quantitatis acceleratrix, the other quantitas inotrix; all appearance of contradiction had ceafed, and their propofitions, which feem to contrary, had exactly rallied.

> CHAP. H.
> $O P T I C K S$.

1. Thave obferved, in Mr Baker's Microfrope made enfy, edit. 1743, p. Of the Appli47, that Mr Martin has invented a Micrometer, to be applied to cation of a any Microfcope whatfoever. I have for fome years made wie of another Micrometer to fort of Micrometer, which I have applied to one of Mr Scarlet's a Microfopos; Sam ChriMicrofcopes, and placed it in the focus of the firf eye-glass. It Rian Holl: is a very fmall piece of the thinnett black filk, divided into vary mi-man, Proferf. nute fquares, and is extended on a little ring of wood or paper, in fuch a manner, that it may conveniently be placed in the focus of the firt eyeglafs. Thefe fquares indeed are not all of the fame magnitude. But, as tingen. No. this conduces greatly to the more eafy and convenient enumerasion of 475 . p. 23% them, which would be impofible if they were all of the fame magnitude, fo it is little or no hindrance in deducing the conclufions. For as often 1745. as I have counted 20,30 , or 40 of thele fquares, according to one line of the Micrometer, or fine filk. I have proceeded in counting the whole line, and let me begin to count from which end I will, I have always compared it exactly with fome certain object placed under the Micro. fcope; and thus I have found the number of little fquares to anfwer to the diameter of the object fo juftly, that there is very feldom half a fquare too much or too little, which may very fafely be nighted in fuch an incomprehenfible fubtility of objects.

When by repeated experiments I had found, that the diameter of an object was inlarged at leaft 27 times, 1 allowed the augmentation to be only 25 times, that I might be certain that the augmentations of the following glaftes, found by my Micrometer, were not greater, but lefs than the truth, when I had them found, that N°. I of the fame Microfcope magnified 250 times, and that the animalsula feminalia bumana, without
without their tails, appeared hardly fo big as a large cheeft-itheldocs to the noked eye, it became evident, that $15,625,000$ ot chefe akinalcules were contained in the fpace of a cheede-nite. And yet I lave obferved much fmatler animalcules than thefe, in an infufion of commom jepper, or even of common hay, after it had fond for fome days. By the ufe of the fame Mictometer, I alfo found two ways of determining the quantity of feminal animalcules in the initt of a fifh, mote accusately than had been done by Leucoenbocck. I Rall only add at prefent, that one cubical decimal line of a Khenifh foot, in the mile of a capp, contained above $244,140,625$ feminal animaleules; and that the whole milt of a carp, weighing not quite 2 Norrinberg pounds, which had 1084 grains, made aboue 20 So cubical decimal lines, as I found by a hydroftatical experiment. That whole milt therefore contained above $507,812,500,000$ feminal animalceles. But if we fuppote the half of this milt only to confift of animalcules, and the other half to be a fluid in which they live, which will eafily be allowed to exceed the truth, by all thofe who have obferved how fmall a proportion of fluid there is in the feed of this fifh, before it has been diluted by water; there will. even upon this fuppolition, be more than $253,906,250,000$ living animalcules in the feed of a carp, weighing lefs than 2 Norrinberg pounds: which tho' it is beyond the reach of our imagination, dues not exceed the power of the inminte creator.

Gottingen, Oct. $15,1744$.

Of fallacious ν_{i} fon thro' sompound Microficopes; by Philip Fredrick Gme. Jin, Med. Licent. Wharterbergenfis. No. 476 . p. 386, April ษ゙c. 1745° Prefented
May 9. 1745
II. Being informed by a friend, that if a common feal was appliced to the focus of a compound Microfcope, or optical tube, wiuch has 2 or 3 convex, or piano-convex glaffes, that pare which is cut the deepeft in, would appear very convex, and fo on the contrary; and that fometimes, but very feldom, it would appear in the fame ftate, as to the naked cye, I was defirous to make the obiervation myfelf; and found it conftantly to happen, as my friend told me. I thought the experiment worthy of being farther profecuted: and accordingly, on the 16 th of laft Apvil, the morning not being very clear, but in a pretty light chamber, I viewed a watch hanging againft a plain wall, thro' the left part of an optical tube: the whole of it appeared concave, and fixed into the wall. I alfo obferved fome flies, that were running about the wall, and they appeared in like manner. I alio viewed a fimall globe of a Thermometer fflled with red fpirit: and this alfo feemed hollow, and fixed within the frame. I found the fame to happen with the railed parts of garments of all colours, and with the brazen protuberances of a tinall cabinet; all which appeared concave, and deeply funk into the cloth and woot. I alfo viewed a fmall ftags head, cut in wood, and lianging horizontally on the wall; this alfo appeared concave, and fixed into the wall.
After this I obferved a ball of one of Fahrenheit's Thermometors, full of quickfilver: but it did not change it's natural convexity; nor did the empty glafs ball of the inverted Thermometer, hanging againit the wall,
tho the lower ball of the fame filled with red firit, and that alfo of Fahrentheit's filled with fpirit loft their convexity. Hence I prcfently concluded, that white or Ahining uncolourcd bodies appeared under the foous of this tube in the fame mamer as they appear to the naked eye, at the fane time I muft fairly acknowledge, that an affifting friend has, fometimes made obfervations directly oppofite to mine in the fame circumftances: nay, in a darker day I myfelt have found my oblervations quite contrary to thole which I had made the day beforc. Hence, tho' the obfervation with the feal held conftantly the fame, I imagined there muft be fome particular circumftances hicherto unobferved, in which thefe objects appcared thus perverted. I therefore endeavoured to difcover fome certain laws, according to which thefe perverted objects always appearect when expofed to thefe foci, and fome others, according to which they conftantly appeared as when they were expofed to the naked eye. After various experiments I partly obtained my end.

As often as I viewed any object, rifing upon a plane, of what colou: foever, provided it was neither white nor fhining, with the eye and optical tube directly oppofite to it, the elated parts appeared depreffed, and the depreffed parts clated, as it happened in the feal, as often as I held the tube perpendicularly, and brought it in fuch a manner, that it's whole furface almoft covered the laft glafs orb of the tube; and in like manner it happened under the compound Microfcope. But as often as I viewed any of the other objects depending perpendicularly from a perpendicular plane, in fuch a manner, that the tube was fupported in a horizontal fituation directly oppofite to it, the fame always happened, and the appearance was not altered, when the object hung obliquely or even horizontally. I was mightily cielighted with the obfervation of a tobacco pipe, which had a porcellane bowl of a fnowy whitencfs, and a tube of horn almoft black, and hung obliquely from a horn; the bowl preferved it's natural convexity, and the tube was deeply funk, and feemed to be almoft immerfed in the wall. I alfo obferved, that when I placed the watch horizontally on a horizontal plane, and then looked on it perpendicularly, near the window, it no longer appeared fo deprefferl, and furrounded with a fhady ring; whence I began to fufpect, that all thefe fallacies were owing to fhade, juft as Painters can elevate or deprefs a figure by making the ground lighter or deeper. Thus when the raifed object was fo placed between the windows, that it might be illuminated on all fodes, it did not change it's convexity. But at laft I difcovered a method of making objects always appear with their natural convexity. If any object hung againft a wall, or was contiguous to it in any fituation whatfoever, I viewed fidewife in fuch a manner as not to oppofe the tube directly againft it, but below the eminence near the plain at fome diftance. By thefe means the protuberances of the cabinet, and other objects, always appeared to me with their true natural convexity. With regard to the feal, I hele it in fuch a manner, that the

An Apparent Motion in fome of the fxed Stars.

 the whole circumference was perpendicular, or rather a little inclined. Then I applied the lower rim of the tube exaetly to the upper margin of the difk of the feal, fo that the rube formed an obtufe angle with the feal; then carefully preferving the fame firuation, I very gently moved the tube from the rim of the feal upon it's face; and thus I lalways faw the feal with it's true natural face. But why all thefe things happen exactly after this manner, I do not pretend to determine, nor why white, or uncoloured tranfparent Mining bodies, rifing in any manner above any plane, afford an exception from this rule ot Vition, and do not appear cejerefed when viewed after the method above mentioned.
CHA P. III.

ASTRONOMY.

A letter to George Earl of Maccler. field, concern ing an apparent Motion obierzed in iome of the fixed scars; by the Rev.
lames Bradlev, D. D. Afiron Reg. F. R.S.No. 485 . p. 1.
Jan. 1747-8. Read Jan. 7, 1747.
I. THE great exactnets, with which inftruments are now comftructed, hath cnabled the Aftronomers of the prefent age to difcover Reveral changes in the pofitions of the heavenly botics; which, by reafon of their fimallnejs, had efcaped the notice of their predeceffors. And altho' the caules of fuch motions have always fubfifted, yet philoonghers hat not to fully confider'd, what the effects of thofe known catics would be, as to demonftrate a priori the phanomend they might produce: fo that theory itfilf is here, as well as in many other cales, indebsed to practice, for the dilcovery of fome of it's moft elegant deductions. This points out to us the great advantage of cultivating this, as well as every other branch of natural knowledge, by a regular deries of obtervattions and experiments.
The progrefs of Aftronomy indeed has always been found, to have fo great a dependence upon accurate obfervations, that, till fuch were made, it advanced but howly: for the firt confiderable improvements that it received, in point of theory, were owing to the renowned Tycho Brabe; who far exceeding thofe that had gone before him, in the exactnefs of his obfervations, enabled the lagacious Kepler to find out fome of the principal laws, relating to the motion of the heavenly bodies. The invention of telefcopes and pendulum-clocks affording proper means of ftill farther improving the praxis of Aftronomy; and thele being alfo foon fucceeded by the wonderful difcoveries made by our great Newton, as to it's theory; the fcience, in both refpects, had acquired fuch extraordinary advancement, that future ages feemed to have little room left, for making any great improvements. But, in fact, we find the cafe to be very different; for, as we advance in the means of making more nice inquiries, new points generally offer themSelves, that demand our attention. The fubject of my prefent letter

An Apparent Motion in fome of the fixed Stars.

to your Lordmip, is a proof of the truth of this remark: for, as foon as I had difoovered the caufe, and fettled the laws of the aberrations of the lixed ftars, arifing from the motion of light, \mathcal{J}^{c}. * my attention was again excited by another new phonomenon, criz. an annual change of declination in fome of the fixed ftars; which appeared to be fenfibly greater about that time, than a preceflion of the equinoctial points of $50^{\prime \prime}$ in a ycar would have occalioned. The quantity of the difference, tho' fmall in itielf, was rendered perceptible, thro' the exactnets of my inftrument, even in the firft year of my obfervations; but being then at a lots to guefs, from what caufe that greater change of declination proceeded, I endeavoured to allow for it in ny computations, by making ufe of the obfersed annual difference, as mentioned in the fanme Paper.

From that time to the prefent, I have continucd to make obfervations at Wanfled, as opportunity offered, with a view of difcovering the laws and caufe of this phrenomeizon: for, by the favour of Matthew Wyinondejold, Efq; my inttrument has remained, where it was firft erected; for that I have been able, without any interruption, which the removal of it to another place would have occafioned, to proceed on with ny intended feries of obfervations, for the fpace of ewenty years: a term fomewhat exceeding the whole period of the changes, that happen in this ploct:omenon.

When I fhall mention the fmall quantity of the deviation, which the ftars are fubject to, from the caufe that I have been folong fearching after; I am apprehenfive, that I may incur the cenfure of fome perfons, for having jpent fo much time in the purfuit of fich a feening trifle: but the canciid lovers of fcience will, I hepe, make due allowance for that natural ardour, with which the mind is urged on cowards the difovery of truths, in themfelves perhaps of fimall moment, were it not that they tend to illuittate others of greater ufe.

The apparent motions of the heavenly bodies are fo complicated, and affected by fuch a variety of caules; that in many cafes it is extremely difficult to affign to each it's clue fhare of influence; or diftinctly to foint out, what part of the motion is the effect of one caule, and what of another: and whilft the joint effects of ell are only attended to, great irregularities and feeming inconliftencies frcquently occur; whereas, when we are able to allot to each particular caufe it's proper effee, harmony and uniformity ufually enfuc.

Such feeming irregularities being alio blended with the unavoidable errors, to which aftronomical objervations muft be always liable, as well from the imperfection of our fenfes, as of the inftruments that we ufe, have often very much perplex'd thofe, who have attempted to fuive the phanomena: and till means are difcovered, whereby we call feparate and diftinguifh the particular part of the whole motion, chat is owing to each

[^2]
An Apparent Mo:ion in fome of the fixed Stars.

 refpective calufe, it will be impomble, to be well aflured of the truth of any fülution. For thefe reafon;, we generally find, that the more exact the inftruments are, that we ufe, and the more regulat the feries of obfervations is, that we take, the fonner we are enabled to difcover the caufe of any new phenomenon. For when we can be well alfured of the limits, wherein the crrors of the obfervations are contain'd; and have reducect them within as narrow bounds as porfible, by the perfection of our inftruments; we need not helitate to alcribe fuch apparent changes, as manifetly exceed thofe limits, to fome other caufes. Upon thele accounts it is incumbeat ujoon the praetical Aftronomer, to fet out at firft with the examination of the correctnefs of his inftruments; and to be alfured that they are lufficiently exact for the ule he intends to make of them: or at laalt he fhouk know, within what limits their criors are confinct.This practice has, in an eminent manncr, been lately recommendes? by your I.ordikip's noble exansple; who having, out of a fingular regard for the feience of Atronomy, erected an obervatory, and fumined it with as complete an appuratis of intruments, as our beft artifts conld contrive; would not fully tely on their exaetnets, till their divifions hati undergone the ftricteft re-examination: whereby they are probably now renderd as perfect in their kind, as any extant, or as human fkill can at prefent produce.

The lovers of tbis fcience in general, cannot but acknowledge their obligations to your Lordfhip on this account; but I hind myfelf more particularly bound to do it; fince, by means of your moft accurate observations, I have been enabled to fettle fome principal elements; which I cruld not at prefent otherwife have done, for want of an inftrument at the Royal Obfervatory, preper for that purpofe: for the large mural quadrant, which is there fixed to obferve objects lying fouthward of the zeaith, however perfect an inftrument it may be in itfelf, is not alone fufticient to determine, with proper exactncfs, either the latitude of the Obfervatory, or the quantity of refraction correfponding to different altitudes: for it being coo heavy to be conveniently removed; and the room wherein it is placed, being too fmall to admit of it's being turned to the uppofite fide of the wall, whereon it now hangs; I cannot, by adtual obfervations of the circumpolar ftars, Fettle thofe neceflary points; and therefore have endeavoured to do it, by comparing my own with your Lordhip's odfervations: and until this defect in the apparatus belonging to the Royal Obiervatory be removed, we mutt be indebted to your Lordthip, for the knowledge of it's true fituation.

A mind intent upon the purfuit of any kind of knowledge, will always be agreeably entertaimed, with what can fupply the moft proper means of attaining it: fuch, to the practical Aftronomer, are exact and well-contriv'd inftruments; and I reflect with pleafure on the opportunities I have enioyed, of cultivating an acquaintance and friend fhip with the perfon, that, of all others, has moft contributed to their improve-
ment. For I am fenfible, that if my own endeavonrs have, in any refpect, been effectual to the advancement of Atronomy ; it has principaily been owing to the advice and affiftance given me by Mr George Grabem; whofe great ikill and judgment in mechanicks, join'd with a complete and practical knowlenge of the ufes of aftronomical inftruments, enable him to contrive and exccute them in the moft perfect manner.

The Gentlemen of the Royal Acatemy of Sciences, to whom we are fo highly obliged for their exact admeafurement of the quantity of a degree under the arctic circle, have already given the world very convincing proots of bis care and abillities in thofe refpects; and the particular delineation, which they have lately publifined, of the feveral parts of the fector, which he made for them, hath now rendered it needlefs, to enter upon any minute defeription of mine at Wanfed; both being confructed upon the fame principles, and differing in their component parts, chiefly on account of the different purpofes, for which they were intended.

As mine was originally defigned to take only the differences of the zenich diftances of flars, in the various feafons of the year, without any view of difcovering their true places; I had no occafion to know exactly, what point on the limb correfponded to the true zenith: and therefore no provifion was made in my le\&tor, for the changing of it's fituation tor that purpole. Neither was it neceffary that the divifions or points on the arc hould be fet off, with the utmoft accuracy, equidiitant from each other ; becaufe, when I oblerve any particular ftar, the fame fpot or point being firtt bifected by the plumb-line, and then the forew of the Micrometer turn'd until the far appears upon the middele of the wire, that is fixed in the common focus of the glaties of the Telefcope ; I can thereby collect, how far the ftar is from that given point at the time of obfervation: and afterwards, by comparing cogether the feveral oblervations that are made of it, 1 am able to difcover what apparent change has happen'd. The quantity of the viifbie alceration, in the pofition of the itars, being expreffed by rewohitions and parts of a revolution, of the ferew of the Micrometer: I endeavoured to determine, with great care, the true angle anfwering thereto: and after various trials, I thoroughiy fatisfied myfelf, botiz of the equality of the threads of the ferew, and of the precile number of feconds correfponding to them.

But altho' thefe points could be fettled with great certainty, I was neverthelefs obliged to make one fuppofition; which perhaps to fome perfons may feem of too great moment in the prefent inquiry, to be admitted without an evident proof from facts and experiments. For I fuppofe, that the linc of collimation of my Telefcope has invariably preferved the fame direction, with refpeet to the divifions upon the arc, during the whole courfe of my obfervations, And indeed it was on account of the objections, which might have been raifed againft fuch a poftuiate, that I thought it necelfary, to continue my feries of obfervations for fo many
years, before I publifhed the conciufions, which I hall at prefent endeapour to draw from them.

Whoever compares the relult of the feveral trials, that have been made by the gentlemen of the Acadian of Sciences, for determining the zenith point of their lector, fiance their return from the north; will, I prefume, allow that mine is not an unreasonable or precarious fuppofition: fence it is evident, from their observations, that the line of collimation of that infoment underwent no fenfible change in it's direction, during the face of more than a whole year; alcho' it was feveral times taken down, and fee up again in different and remote places; whereas mine hath always remained fufpended in the fame place.

But befides fuck a flong argument for the probability of the truth of my Juppofition, I have che satisfaction of finding it aciuciu) verifical By the oblervations themfeives; which plainly prove, that at the end of tie e full print of the deviations which I ain going to mention, the ftars are found to have time fame pofitions by the instrument, as they ought w hare, fuppoting the line of collimation to have continued unaltered from the time when I first began to observe.

I have already taken notice, in what manner this phenomenon difcover'd ittelf to me at the cod of my fire year's observations, wiz. by a surface apparent change of declination in the furs near the equinoctial colure, than could aril from a precefion of $50^{\prime \prime}$ in a year; the mean quantity now ufially allowed by Aftronomers. But there appearing at the fame tine, an effect of a quite contrary nature, in forme fats near the folltitial colure, which feem'd to alter their declination leis than a preceflion of $60^{\prime \prime}$ required; I was thereby convinced, that all the phenomena, in the different fears, could not be accounted for, merely by fuppoling, that I had afiumed a wrong quantity for the precefion of the equinochal points.

At firth, I had a fufpicion, that forme of thee frail apparent alterations in the places of the tars, might poflibly be occaiioned by a change, in the materials, or in the pofition of the parts of my lector: but, upon confidering how firmly the are, on which the divisions or points are made, is fattened to the plate, wherein the wire is fixed that lies in the focus of the object-glafs; I haw no reafon to apprehend, that any change could have happened in the pofition of that wire and thole points. The furpenfion therefore of the plummet being the mont likely cause, from whence I conceived any uncertainty could anile; and the wire of which had been broken three or four times in the firft year of my obfervatons: I attempted to examine, whether part of the 'foremention'd apparent motions might not have been owing, to the different plumb-lines that had been made ufe of. In order to determine this, I adjufted a particular point of the are to the plumb-line, with all the exactness I could; and then taking off the old wire, I immediately hung on another, with which the fame for was again compared. I repeated the experimont three or four times, and thereby fully datisfied myfelt, that no fenfimble
fible error could arife from the ufe of different plumb-lines; fince the various adjuftmears of the fame peint agreed with each other, within leis than half a fecond.

Having then, from fuch trials, fufficient reafon to conclude, that thete fecond unexpected deviations of the flars, were not owing to any impertection of ay inftrument; after I had ferted the laws of the aberrations arifing from the motion of light, $\varepsilon^{2} \varepsilon$. I jutged it proper to continue my obfervations of the lame ftars; heping that, by a regular and longer Feries of them, carricet on thro' feveral fecceeding years, I might, at length, be enabled to difcover the real caule of fuch apparent inconiffencies.

As I relided chiefly at Wanfted, after my fector was erected there in 17:7, till the beginning of May 1732, when I removed from thence to Oxford: I ha: , during my abotie at Winfted, frenuent cpporttinities of repeating my obfervations; and thereby cifcovered fo many particulars relating to thefe phamomenn, that I began to guefs what was the rcal caufe of them.
it appeared from my oblervations, that, during this interval of time, fome of the ftars near the folftitial colure, had changed their declinations $9^{\prime \prime}$ or $10^{\prime \prime}$ lefs, than a preceffion of $50^{\prime \prime}$ viould have producect; and, at the fame time, that, others near the equinoctial colure, had aleered theirs about the fame ouantity more, than a like precefion wouk have occafioned: the north pole of the equaror feening to have approached the ftars, which come to the meridian with the fun, about the vernal equinox and the winter folltice; and to have receded from thofe, which come to the meridian with the fun, about the autumnal equinox and the fummer folftice.

When I confider'd thefe circumftances, and the fituation of the afcending node of the moon's orbit, at the time when I firf began my obfervations; 1 lufpected, that the monn's action ujon the equatorial parts of the earth might produce thefe effects: for, if the precefion of the cquinox be, according to Sir I. Nowiton's principles, cauted by the actions of the fun and moon upon thofe parts; the plane of the moon's orbit being at one time, above ten degrecs more inclined to the plane of the equator, than at anotber; it was reafonable to conclude, that the part of the whole annual preceflion, which arifes from her action, would in different years be varied in it's quantity; whereas the plane of the ecliptic, wherein the fun appears, keeping always nearly the fame inclination to the equator ; that part of the preceffion, which is owing to the fun's action, may be the fame every year: and from hence it would follow, that, altho' the mean annual precefion, proceeding from the joint actions of the fun and moon, were $50^{\prime \prime}$; yet the apparent annual preceffion might fometimes excced, and fometimes fall fhorr, of that mean quantity, according to the various fituations of the nodes of the moon's orbit.

In 1727 , when my inftrument was firf fet up, the moon's afcending note was near the beginning of aries; and confequently, her orbit was as much inclined to the equator, as it can at any time be; and then the ap- be greater than the mean: which proved, that the flars near the equinoctial colure, whofe declinations are moft of all affected by the preceffion, had clanged theirs, above io more than a preceffion of $50^{\prime \prime}$ would have caufed. The fucceeding years obfervations proved the fame thing; and in 3 or 4 years time the difference became to confuderabic, as to leave no room to fufpect, that it was owing to any imperfection, either of the inftrument or oblervations.

But fome of the itars, which I had obferved, that were near the folfitial coiure, having appeared to move, during the fame time, in a manner contrary to what they ought to have done, by an increate in the preceffion; and the deviations in them being as remarkable as in the others, I perceived that fomething more, than a meer change in the quantity of the preceffion, would be requifite to folve this part of the phenomenon. Upon comparing my oblervations of ftars near the folftitial colure, that were almolt oppofite to each other in right afeenfion, I found, that they were equally affected by this caule; for whiln γ draconis appeared to have moved northward, the fmall ftar, which is the 35th Camelopardali Hevel. in the Britilh catalogue, feem'd to have gone as much towards the fouth : which fhew'd, that this apparent motion, in both thofe ftars, might proceed from a nutation in the earth's axis; whereas the comparifon of my obfervations of the fame ftars, formerly enabled me to draw a cilferent conclufion, with refpect to the caute of the annual aberrations arifing from the motion of ligit. For the apparent alteration in y draconis, from that cause, being as great again as in the other finall ftar, proved, that that phenomenon did not proceed from a nutation of the carth's axis; as, on the contrary, tbis may. Upon making the like comparion between the obiervations of other ftars, that lie nearly oppofite in right afcenfion, whatever their fituations were with refpect to the cardinal points of the equator, it appeared, that their change of declination was nearly equal, but contrary; and fuch as a nutation or motion of the earth's axis would effect.

The moon's afcending node being got back towards the beginning of capricorn in 1732, the ttars near the equinoctial colure appeared, about that time, to change their declinations no more, than a precelfion of $50^{\prime \prime}$ required; whilf fome of thofe near the iolftitial colure altered tbeirs above $2^{\prime \prime}$ in a year lefs, than they ought. Soon after, I perceived the annual change of declination of the former to be diminihed, fo as to become lefs than $50^{\prime \prime}$ of preceflion would caufe; and it continued to diminifn rill 1736 , when the moon's afcending node was about the beginning of libra, and her orbit had the leaft inclimation to the equator. But by this time, fome of the ftars near the folfitial colure had aitered their declinations $18^{\prime \prime} 10 \sqrt{5}$, fince 1727 , than they ought to have done from a preceffion of $50^{\prime \prime}$. For γ draconis, which in chofe 9 years flould have grone about $8^{\prime \prime}$ more foulberly, was obferved in 1736 , to appear $10^{\prime \prime}$ grore noriberlys than it did in 1727 .

As this appearance in $\%$ draconis, indicated a diminution of the inclins: tion of the carth's axis to the plane of the ecliptic; and as feveral Aftrnomers have luppofed that inclination to diminifh regularly: if this phenomenon depended upon fuch a caufe, and amounted so $18^{\prime \prime \prime}$ in 9 years, the oblisuity of the ecliptic would, at that rate, alter a whole minute in 30 years; which is much fafter than any oblervations, before made, would allow. Ihad reafon therefore to think, that fome part of this motion at the leaf, if not the roblici, was owing to the moon's action upon the equatorial parts of the earth; which I conccivec?, might caufe a libratory motion of the earth's axis. But as I was winable to juige, from only 9 years obfervations, whether the axis would entirely recover the fame pofition, that it hadd in $17^{2} \%$. I found it neceffary to continuc my oblervatioris thro' a whole period of the moon's nodes; at the end of which 1 had the fatistaction to fee, that the ftars returned into the fame pofiticns again; as it there had been no alteration at all in the inclination of the earth's axis: which fully convinced me, that I had greefed rightly as to the caufe of the phanomena. This circumfance proves likewife, that if there be a gradual diminution of the obliquity of the ecliptic; it cioes not arife only from an alteration in the pofition of the carth's axis, but rather from lome change in the plane of the ecliptic itfelf: becaufe the ftars, at the end of the period of the moon's nodes, appeared in the faime places, with refpect to the equator, as they ought to have done, if the earth's axis haci retained the fame inclination to an invariable plane

During the courfe of my obfervations, as Mr Macbin was employed in confidering the theory of gravity, and it's confequences, with regard to the celeftial motions; I acquainted him with the phor:omena that I had obferved: and at the fame time mentioned, what I fufpected to be the caufe of them. He foon after fent me a table, containing the quantity of the annual preceffion in the various pofitions of the moon's nodes, as alfo the correfyonding nutations of the earth's axis; which was computed upon the fuppofition, that the mean annual preceffion is $50^{\prime \prime}$, and that the whole is governed by the pole of the moan's orbit only: and therefore he imagined, that the numbers in the table would be too large; as in faet they were found to be. But it appeared, that the changes which I had obferved, both in the annual precelfion and nutation, kept the fame law, as to increafing and decreafing, with the numbers of his table. Thofe were calculared upon the fuppofition, that the pole of the equator, during a period of the moon's nodes, moved round in the periphery of a little circle, whofe center was $23^{\circ} 29^{\prime \prime}$ diftant frrm the pole of the ecliptic; having itfeff alfo an angular motion of $50^{\prime \prime}$ in a year, about the fame pole: the north pole of the equator was conccived to be in thet part of the fmall sirche, which is fartheft from the N . polc of the ecliptic, at the time when the moon's afrending node is in the boginning of eries: and in the oppofite yoint of it, when the fame node is in libra.

An Apparent Motion in fome of the fixed Stars.

Such an hypothefis will account for an acceleration and retardation of the annual preceffion; as alfo for a nutation of the earth's axis: and if the diameter of the little circle be fuppofed equal to $18^{\prime \prime}$; which is the whole quantity of the nutation, as collected from my obfervations of γ draconis: then all the phenomena in the feveral ftars which I observed, will be very nearly folved by it.

Fig. 2.
L.ct P reprefent the meain place of the pole of the equator, about which point, as a center, fuppure the true pole to move in the circle $A B(D)$, whofe diameter is i $\delta^{\prime \prime}$. Let E be the pole of the ecliptic, and $E P$ ' be equal to the mean diftance between the poles of the equator and ecliptic; and fuppofe the true pole of the equator to be at A, when the moon's afcending node is in the beginning of aries; and at B, when the node gets back to capricoin, and at C, when the fanse node is in libra: at which time the N . pole of the equatur being nearer the N . pole of the ecliptic, by the whole diameter of the little circle $A C$ equai to $18^{\prime \prime}$; the obliquity of the ecliptic will then be to much lefs than it was, when the moon's afcending node was in aries. The point P is fuppoied to move round E, with an equal retrograde motion, anfwerable to the mean precefion arifing from the joint actions of the fun and moon : while the true pole of the equator moves round P, in the circumference $A B C$ D, with a retrograde motion likewife, in a period of the moon's nodes, or of eighteen years, and feven months. By this means, when the moon's afcending nole is in aries, and the true pole of the equator at A, is moving from A towards B : it will approach the flars, that come to the meridtian with the lin about the vernal equinox; and recele from thofe that come with the fun near the autumnal equinox, foffer than the meen pole P does. So that, while the moon's node goes back from aries to cepricom, the apparcnt preceffion will feem fo much greater than the menn; as to caule the ftars, that lic in the equinoctial colure, to have altered their declination $9^{\prime \prime}$, in about 4 years and 8 months, more than the mean precefiton would clo: and in the lame time, the N. pole of the equator will feem to have approached the ftars, that come to the meridian with the fun at our winter folftice, about $9^{\prime \prime}$; and to have receded as much from thofe, that come with the fun at the fummer-folftice.

Thus the phanomena before recited are in general contormable to this liypothefis. But to be more particular; let S be the place of a far, $P S$ the circle of declination paffing thro' it, reprefenting it's diftance from the mean pole, and γP P it's mean right afcenfion. Then if O and R be the points, where the circle of declination cuts the little circle $A B C D$; the true pole will be neareft that far at O, and fartheft from it at R; the whole difierence amounting to $18^{\prime \prime}$, or to the diameter of the little circle. As the true pole of the equator is fuppofed to be at Λ, when the moon's alcending node is in aries; and at B, when that node gets beck to capricorn; and the angular motion of the true pole about P, is likewife fuppofed equal to that of the moon's node about E, or the pole of the ecliptic: fince, in thefe cafes, the true pole of the equator
is 90 degrees before the moon's afcending node, it mult be fo in all others.

When the truc pole is at A, it will be at the fame diftance from the flars that lie in the equinoctial colure, as the mean pole P is, for Ineglect at prefent the cafe of fuch ftars as are sery near the pole of the equator; and as the true pole recedes back from A towards B, it will approach the ftars, that lie in that part of the colure reprefented by $P r$; and recede from thofe, that lie in $P \bumpeq$; not indeed with an equable motion; but in the ratio of the fine of the diftance of the moon's node from the beginning of aries. For if the node be fuppoted to have gone backwards from aries 30°, or to the beginning of pifces; the point, which reprefents the place of the true pole, will in the mean time, have movet in the little circle, thro' an arc, as 10 , of 30° likewife: and would therefore in effect have approached the ftars that lie in the equinoctial colure $P r$, and have receded from thofe that lie in $P \bumpeq 4^{\prime \prime} \frac{1}{2}$; which is the fine of 30° to the radius $A P$. For if a perpendicular fall from O upon $P A$, it may be conceived as part of a great circle, paffing thro' the true pole and any ftar lying in the equinoctial colure. Now the fame proportion, that holds in thefe ftars, will obtain likewife in all others; and from hence we may collect a general rulc, for finding how much nearer or farcher, any particular ftar is, to or from, the mean pole, in any given pofition of the moon's node.

For, if from the R. afcenfion of the ftar, we fubftract the diftance of the moon's afcending node from aries; then the radius will be to the fine of the remainder, as $9^{\prime \prime}$, is to the number of Seconds, that the flar is nearer to, or farther from the true, than the menn pole. When that remainder is lefs than 180°, the ftar is nearer to the true, than to the mean pole; and the contrary, when it is greater than 180°.

This motion of the true pole, about the mean at P, will alio produce a change in the R. afcenfions of the ftars, and in the places of the equinoctial points; as well as in the obliquity of the ecliptic: and the quantity of the equations, in either of thete cafes, may be eafily computed for any given pofition of the moon's nodes. But as it may be needlefs, to dwell longer on the explication of the hypothefis; I fhall now proceed to Shew it's correfpondency with the pheriomena, relating to the alterations of the polar diftances of fome of the ftars which I have obferved: by laying before your Lordfhip the obiervations themielves, together with the computations that are neceffary; in order to form a right judgment about the caule of thefe appearances.

I have endeavoured to find the exact quantity of the mean preceffion of the equinoctial points, by comparing my own obfervations made at Greenwich, with thofe of Tjcho Brabè and others, which I judged to be moft proper for that purpofe. But as many of the ftars, which 1 compared, gave a different quantity; I fhall affume the mean refult; which gives a preceffion of one degree in feventy-one years and an half: this agrecing very well likewife with my obfervations that were taken at

VOL. X. Part i.
G
Wanfed.

Wanfed. The numbers in the following tables, which exprefs the change of declination in each ftar, are computed upon the fuppofition, that the mean obliquity of the ecliptic was $23^{\circ} \cdot 28^{\prime} \cdot 30^{\prime \prime}$, and that it continued the fame, during the whole courfe of ny obfervations. And as the moon's afcending node was in the beginning of aries about March 27 th 1727, I have reduced the place of each ftar to that time; by allowing the proper change of declination from that day, to the day of each refeective obfervation.
It being alio neceffary to make an allowance for the aberrations of light; I have again examined my oblervations, that were moft proper to determine the tranfverfe axis of the ellipfis, which each ftar leems to defcribe; and have found it to be neareft to $40^{\prime \prime}$; which number I therefore make ufe of in the following computations.

The divifions or points upon the limb of my fector are placed five minutes of a degree from each other; and are numbered fo, as to fhew the polar diftances nearly; the true polar diftance exceeding that, which is fhewn by the inftrument, about $\mathrm{I}^{\prime} \cdot 35^{\prime \prime}$. When I firt began to obferve, I generally made ufe of that point on the limb, which was neareft to the ftar's polar diftance, without regarding whether it was more northerly, or morc foutherly than the ftar: but as it fometimes happened, that the original point, with which I at firt compared the ftar, became, in procefs of time, pretty remote from it; I afterwards brought the plummet to another point, that was nearer to it ; and carefully examined, what number of revolutions of the fcrew of the Micrometer, Eic. correfponded to the diftance between the different points, that I had made ule of: by which means I was able to reduce all the obfervations of the fame ftar to the fame point, without fuppofing the feveral divifions to be accurately 5^{\prime} aliunder.

I have expreffed the diftance of each ftar from the point of the are, with which it was compared, in feconds of a degree and lenth parts of a fecond, exactly as it was collected from the oblervations; alcho' I am fenlible, that the obfervations themfelves are liable to an error of more than a subole fecond; becaufe I meet with fome, that have been made within two or three days of each other, that differ $2^{\prime \prime}$, even when they are not marked as defective in any refpect.

It would be too tedious, to fet down the whole number of the obfervations that I have made; and therefore I thall give only enough of them, to fhew their correfpondency with the 'forementioned hypothefis in the feveral years, wherein any were made of the ftars here recited. When feveral obfervations have been taken of the fame ftar, within a few days of each other; I have either fet down the mean refult, or that obfervation which beft agreed with it. I have likewile commonly chofen thofe, that were made near the fame feafon of the year, in fuch ftars as gave me the opportunity of making that choice; particularly in γ draconis, which was generally oblerved about the end of Auguft or tise beginning of September; that being the ufual time, when I went to

Wanfed on purpofe to obferve both that, and alfo fome of the ftars in the great Bear. But the weather proving cloudy at that fealon in 1744, prevented my making a fingle obfervation, either of γ draconis, or any other ftar, while I was there; which is the caufe of one vacancy in a feries of 20 fucceeding years, wherein that particular ftar had been obferved. Such ftars, as were either not vifible in the day-time, towards the beginning of September, or came at fuch hours in the night, as would have in. commoded the family of the houfe wherein the inftrument is fixed, were but feldom obferved, after I went to refide at Oxford: which is the reafon, why the feries of obfervations of thofe is fo imperfect, as fomctimes to leave a chafm for feveral years together. But notwithftanding this, I doubt not, but upon the whole they will be found fufficient, to fatisfy your Lordnip of the general correfpondency between the bypotbefis and the phenomena, in the feveral ftars; however different their fituations are, with relpect to the cardinal points of the equator.

As I made more obfervations of γ draconis than of any other ftar; and it being likewife very near the zenith of Wanfted; I will begin with the recital of fome of them. The point upon the limb, with which this itar was compared, was $3^{8 \circ} \cdot 25^{\prime}$ from the \mathbf{N}. pole of the equator, according to the numbers of the arc of my feetor. The firf column, in the following table, fhews the year and the day of the month, when the oviervations were made; the next gives the number of feconds, that the ttar was found to be S. of $38^{\circ} \cdot 25^{\prime}$: the third contains the alterations of the polar diftance, which the mean preceffion, at the rate of one degree in $71 \div$ years, would caufe in this ftar, from March 27 th 1727 , to the ciay on which the obfervation was taken: the fourth fhews the aberrations of light: the fifth, the equations arifing from the 'forementioned hypothefis: and the fixth gives the mean diftance of the ftar from the point with which it was compared, found, by collecting the feveral numbers, according to their figns, in the 3 d , 4 th, and 5 th columns, and applying them to the obferved diffances contain'd in the fecond.

If the obfervations had been perfectly exact, and the feveral equations of their due quantity; then all the numbers in the laft column would have been equal; but lince they differ a little from one another; if the mean of all be taken, and the extremes are compared with it, we fhall finci no greater difference, than what may be fuppofed to arife from the uncertainty of the obfervations themfelves; it no where amounting to more than !"s. The hypothefis therefore feems, in this far, to agree extremely well with the obfervations here fet dow'n; but as I had made above 300 of it; I took the trouble of comparing each of them with the hypothefis: and altho' it might have been expected, that, in fo large a number, fome great errors would have occurred; yet there are very few, only 11 , that differ from the mean of thefe fo much as $2^{\prime \prime}$; and not one that differs fo much as $3^{\prime \prime}$. 'This furprifing agreement, therefore, in to long a feries of oblervations, taken in all the various featons of the year, as well as in the different pofitions of the moon's and alfo of that which I formerly advanced, relating to the aberrations of light; fince the polar diftance in this ftar may differ, in certain circumftances, almoft a minute, viz. $56^{\prime \prime} \stackrel{1}{2}$, if the corrections refulting from both thefe hyportefes are neglected; whereas, when thofe equations are rightly applied, the mean place of the ftar comes out the fame, as nearly, as can be reafonably expected.

I made about 250 obfervations of β draconis; which I find correfpond as well with the hypothefis, as thofe of γ; but fince the pofitions of both thefe ftars, in refpect to the folftitial colure, differ but little from each other; it will be needlefs to fet down the obfervations of β. I fhall therefore proceed to lay before your Lordfhip, fome obfervations of a fmall ftar, that is almoft oppofite to γ draconis in R. afcenfion, being the 35th Camelopardali Hevel. in the Britifs catalogue. Mr Flamfeed, indleed, has not given the K. afcenfion of this ftar; but that being neceffary to be known, in order to compute the change of it's declination arifing from the preceffion of the equinox; I compared the time of it's tranfit over the meridian, with that of fome other ftars near the
fame parallel; whereby I found, that it's R. afcenfion was $85^{\circ} \cdot 54^{\prime} \cdot \frac{1}{2}$ at the beginning of the year 1737 .

This fmall ftar was compared with the fame point of the limb of my lector, as γ draconis; and the fecond column, in the following table, fhews how many feconds it was found to be S. of that point, at the time of each refpective obfervation. The other colunnns contain, as in the foregoing table, the equations that are neceffary to find, what it's mean diftance from the fame point would have been on March 27th 1727 , which is exhibited in the laft column. The whole number of my obfervations of this ftar did not much exceed 40 ; the greateft part of which were made before 1730; in fome of the following years none were taken; and only a fingle one in any other, except in 1739. However, their correfpondency feems fufficient to evince the truth of the hypothefis: for if the mean of thefe, contain'd in the table, be taken, not one, among the reft of the obfervations, will differ from it more than $2^{\prime \prime}$.

	$\begin{aligned} & \text { amelopard. } \\ & \text { Ievelii. } \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { South of } \\ & \text { 38. } \\ & \text { 3. } \\ & \text { a }\end{aligned}\right.$	$\begin{array}{\|c} \text { Precer- } \\ \text { ion. } \end{array}$	$\begin{array}{\|l\|} \text { Aberra } \\ \text { tion. } \end{array}$	Nutation	Mean Dif: Soul South
		$\begin{array}{\|l\|l\|} \hline 11 \\ 0 & 73.6 \\ 2 & 60.8 \\ 1 & 57.8 \\ 6 & 75.2 \\ \hline \end{array}$		$\begin{array}{\|c\|c} 11 & 11 \\ +0.9 & -6.7 \\ 1.2 & +6.1 \\ 1.4 & \pm 9.4 \\ 2.3 & -8.8 \\ \hline \end{array}$		$\begin{array}{r} 11 \\ +8.9 \\ 88 \\ 87 \\ 81 \\ \hline \end{array}$	$\begin{gathered} 11 \\ 76.7 \\ 76.9 \\ 76.9 \\ 77.3 \\ 76.8 \\ \hline \end{gathered}$
	OCtober						
	January						
	September						
17	February	26	56.4	2.8	+ 9.4	7.6	762
	March	3	57.8	4.4	$9 .+$	5.4	770
1731	February		591	5.6		+ 3.0	76.2
1733	January	31	64.1	8.7	8.2	2.9	\%81
1738	December	30	61.8	17.2	4	6.5	78.8
1739	February	4		17.3	8.5	6.3	764
1740	January	20	56.0	18.6	7.0	- 4.0	77.6
1747	February	27	323	28 ;	4	+ 84	78.6

The obfervations of the foregoing flars are the moft proper, to prove the change of the inclination of the earth's axis to the plane of the ecliptic; thole which follow, will fhew in what manner the fars, that lie near the equinoctial colure, are affected, as well as others, that are difficrently fituated, with refpect to the cardinal points of the equator. Some of thele ftars are indeed more remote from the zenith, than I would have chofen, if there had been others, of equal luitre, in more proper pofitions; becaufe experience has long fince taught me, that the obfervations of fuch ftars, as lie near the zenith, do generally agree beft with one another, and are therefore the fitteft to prove the truth of any hypothefis. I thall begin with thofe near the vernal equinox. and at firft was found to be more foutberly，but afterwards became more nortberly than that point，as in the following table；the latt column of which 作数s it＇s mean diftance S．of that point on Marcb 27， 1727. The obfervation of Dec．23，1738，differs $3^{\prime \prime}$ from the mean of the others； as does alfo another，that was taken 5 days after this；neither of which being marked as uncertain，I judged it proper to infert one of them； altho＇they give the mean place of the ftar near $2^{\prime \prime}$ more nortberly than any other，in a feries of above 100；all of which correfpond，with the mean of thefe here recited，within lefs than $2^{\prime \prime}$ ；excepting two，that give the ftars mean diftance almoft $3^{\prime \prime}$ more foutberly；but thefe laft mentioned are marked as dubious；and indeed they appear to have been bad，by comparing them with feveral others，that were made near the fame cime， from which they differ almoft $2^{\prime \prime}$ ．

Altho＇I have taken no obfervation of τ Perfei fince Fanr．22， $1 / 40$ ； yet，as this ftar is very near the zenith，and a fufficient number were made about the times when the equation，refulting from the hypothefis， was at it＇s maximum；I judged it proper to infert fome of theom in the next table；the laft column of which Thews，how much the ftar＇s mean diftance was \mathcal{S} ．of $3^{8^{\circ}} .20^{\prime}$ ．on March 27,1727 ．Among near 60 ob－ fervations I meet with 2 only，that differ from the mean of thefe fo much as $2^{\prime \prime}$ ；and thote differ almoft as much from the mean of others，that were taken near the fame time：fo that the hypothefis feems to corre－ fpond，in general，with the obfervations of this ftar as well，as with ci－ ther of the foregoing．

	t Perjei.	$\begin{array}{cc} \text { South of } \\ 0 & 1 \\ 38 & 20 \end{array}$	Precefion	Aberration.	Nuta. tion.	Mean Dif. South
		11	1	11	"	11
1727	Seprember 16	60.1	$7 \cdot 4$	-3.2	$+6.7$	71.0
	December 29	39.7	11.9	+ 129	7.2	71.7
1728	December 21	22.5	27.2	12.8	8.7	71.2
1729	December	S. 9.2	42.0	11.5	9.0	71.7
1738	January	N. 8.2	59.0	12.8	8.3	71.9
1732	January 8	22.0	74.8	12.7	6.7	72.2
1733	January 21	34.6	$9{ }^{1} 0$	11.7	+ 4.3	72.4
1738	December 23	117.0	1834	12.8	-90	70.2
1740	January 22	132.5	200.2	11.7	8.6	70.8

After the laft recited obfervations, it may perhaps feem needlefs to add thofe of a Perfei, which is farthcr from the zenith; but however, as this ftar lies very nearly at an equal diftance from the equinoctial and folftitial colures, and the feries of obfervations of it is fomewhat more complete, than that of τ Perfei; I fhall infert one at leaft, for each year. wherein it has been obferved; whereby it may appear, that the hypothefis folves the phonoinena of ftars in this fituation, as exactly as in others: for if a mean be taken of the numbers in the laft column of the following table, which expreffes the mean diftance of the Itar S. of $41^{\circ} \cdot 5^{\prime}$. on March 27, 1727, it will agree within $2^{\prime \prime}$ with every one of 80 obiervations, that have been made of this ftar.

	a Perfei	$\left\lvert\, \begin{array}{cc} \text { Souch of } \\ 0 & 1 \\ 41 & 5 \end{array}\right.$	Prece1 fion.	$\begin{gathered} \text { Aoerra- } \\ \text { tion. } \end{gathered}$	Nutation.	$\begin{aligned} & \text { Mean } \\ & \text { Dift. } \\ & \text { South. } \end{aligned}$
$\begin{aligned} & 1727 \\ & 5728 \end{aligned}$		-	11	11	"	"
	December 29	79.4	$+10.5$	$+11.4$		1cg. 2
	April	87.5	14.3	0.8	8.2	109.2
	July	34.6	17.7	-11.4	8.5	109.4
	December 12	65.7	23.8	± 10.6	8.8	108.9
1729	December	. 4	. 2	9.7	8.9	2
1731	January	38.6	52.3	11.4	7.8	. 1
1732	January	26.8	66.2	+ 11.	$+5.9$	110.3
1734	July 11	S. 21.3	1.	11.	1	109.8
173^{8}	Deremoer 24	N. ${ }^{66.3}$	162.6	+ 11.2		108.5
1740	January 21	71.8	177.4	10.0	- 8.2	108.3
1747	February 27	182.5	275.4	6.6	+ 8.5	108.0

Having already given examples of fars, lying near both the folftices and the vernal equinox; I fhall now add the obfervations of oile, that is not far from the autumnal equinox, viz. n uifer majoris, the brightelt ftar in that part of the heavens, which approaches the zenith of Wanfted within a degree; and which, by reaton of it's luftre and pofition, gave complete than of many others. This far was compared with the point marked 39°. 15^{\prime}. and was S. of it as in the following table; wherein your Lordthip will lee, that the obfervations of the years 1740 and 1741 give the polar diftances $3^{\prime \prime}$ greater, than the mean of the other years. Had there been only a fingle obfervation taken in either of thofe years, part of this apparent difference might have been fuppofed to arife from their uncertainty; but as there were 8 obfervations taken within a week, either before or after ©yne 3, 1740, which agree well with each other; and three were made within 20 days in Sept. ${ }^{1741}$, which likewife correfponded with each other; I am inclined to think, that the 'foremention'd differences mult be owing to fomething elfe, befides the error of the obfervations. This phenomenon therefore may deferve the confideration of thofe gentemen, who have employed their time in making computations relating to the quantity of the effects, which the power of gravity may, on various occafions, produce. For I fufpect, that the polition of the moon's apogee, as well as of her nodes, has tome relation to the apparent motions of the ftars that I am now fpeaking of.

My feries of obfervations of feveral ftars abound, of late years, with fo many and long interruptions; that I cannot pretend to determine this point; but probably the differences before taken notice of in the obfervations of α Ceflopea, and fome others that I have found likewife among the obfervations of otber ftars, that are not here recited, may be owing to fuch a caufe; which, altho' it fhould not have any large fhare of influence, may yet, in certain circumftances, difcover a defect in a hypothelis, that pays no regard at all to it. But whether thefe differences do arife from the caufe already hinted at; or whether they proceed from any defect of the hypothefis itfelf in any other relpect; it will not be very material in point of practice; fince that hypothefis, as it was before laid down, appears to be fufficient to folve all the phonomena, to as great a degree of exactnefs, as we can in general bope or expect to make obfervations. For if I take the mean of all the numbers in the laft column of the following table for $n u r r_{\imath e}$ majoris, and compare it with any one of 164 obfervations that were taken of it, the difference will not exceed $3^{\prime \prime}$.

"Urfe Majoris		$\left\|\begin{array}{cc} \text { South of } \\ 0 & 1 \\ 39 . & 15 \end{array}\right\|$	Preceffion.	Aberra. tion.	Nutation.	Mean Ditk. South
1728		11		"	"	
	Oclober 17	153.3	10.2	+ 1.0	5.2	8.9
	January 24	176.4	15.2	-17.6	5.8	137.8
	July 17	150.8	23.9	+17.8	6.9	137.8
	Otrober 11	170.6	28.2	+ 2.6	7.3	137.7
1729	January 16	196.6		- 17.8	7.8	. 9
	July 21	170.4	42.4	+ 778	8.4	137.4
1730	July 19	189.6	60.6	+ 17.8	9.0	137.8
	December 28			-16.7	8.9	138.1
1732	September 18	218.1	81.9	+ 9.4	8.4	137.2
	January 10	250.7	87.7	17.7	8.0	137.3
	April 13	238.7	92.3	- 0.8	7.7	137.9
1734	Tuly 11	255.7	133.3	+ 17.6	2.3	137.7 138.8
1735	September 10	280.8	154.6	+ 11.4	+ 1.2	138.8
$\begin{aligned} & 1736 \\ & 1737 \end{aligned}$	September	294.7	152.8	11.	4.1	137.6
	July 3	303.0	187.8	1.2	6.1	${ }_{3} 8.5$
17381739	June 29	319.0	205.8	16	7.9	37.9
	Aprit 25	348.0	220.8	2.5	8.8	138.5
1740	June 3	360.3	241.1	12.8	8.9	140.9
1741	September 23	390.9	265.0	7.9	+ 7.4	141.2
174517461747	Seprember 5	466.7	337.1	12.4	-3.3	138.7
	September 20 September	492.0	356.2	8.8	5.9	138.7
1747	September	507.2	373.5	13.2	7.8	139.:

You may perceive, by infpecting the tables which contain the obfervations of α Caffiopere and $n u r \int a$ majoris; that the greateft differences that occur therein may be diminifhed, by fuppofing the true pole of the equator to move round the point P, in an ellipfos, inftead of a circle. For if the tranfverfe axis, lying in the direction $A C$, be $18^{\prime \prime}$, and the conjugate, as $D B$, be about $16^{\prime \prime}$; the cquations, refulting from fuch an hypothefis, will make the numbers in the laft columns agree with each other, nearer than as they now ftand. But fince this would not entirely remove the inequalities, in all the pofitions of the moon's nodes; I hall refer the more accurate determination of the locus of the true pole to theory; and at prefent only give the equations for the preceffion of the equinoctial points, and the obliquity of the ecliptic, as alfo the real quantity of the annual preceffion, to every 5 th degree of the place of the moon's afcending node, in the following tables; juft as they refult from the hypothefis, as at firft laid down; it appearing, from what has already been remark'd, that thefe will be fufficiently exact for practice in all cafes.

	The Equation of che Equinal. Points.		
D's 8	Sig. O I	II	Subit
from r	$\overline{\text { sig. VI }} \overline{\text { VII }}$	VIII	Add
\bigcirc	" 11	II	-
\bigcirc	$0.0 \quad 1.3$	19.6	30
	2.0	20.5	25
10	3.9 14.5	21.2	20
15	5.8 16.0 7.7	21.8	15
20	$7.7-\overline{17.3}$	22.	10
25	9.6 18.5	22.5	5
30	11.3 19.6	22.6	0
Subit.	Sig. V $\frac{1 \mathrm{~V}}{}$	111	i's 8
Acd	$\overline{\text { Sig. }} \bar{X} / \bar{X}$	IX	from r

	The Equation of the Obliquity of the Ecliptick			
D's 8	Sig. O	I	II	Add
from r	$\overline{\text { Sig. Vr }}$	VII	VIII	Subit
\bigcirc		-	"	\bigcirc
\bigcirc	9.0	7.8	4.5	30
5	9.0	7.4	3.8	25
10	8.9	6.9	3.1	20
15	8.7	6.4	2.3	15
20	8.5	5.8	1.6	10
25	8.2	5.2	0.8	5
30	7.8	1.5	0.0	\bigcirc
Add	Sig. V	IV	III	i
Subit	$\overline{\text { Sig. }} \overline{\text { XI }}$		IX	from γ

			Annual Pr Equinoctia	ecedion o 1 Points.			
$\begin{aligned} & \text { D's } 88 \\ & \text { from } r \end{aligned}$	Sig. 0	I	II	JII	IV	V	
\bigcirc							
	57.9	56.6			46.0		30
10	57.9	56.2	53.0	49.0	45.0	43.4 43.2	25 20
15	57.7	55.7	52.3	48.4	45.0	43.0	15
20	57.5	55.2	51.7	47.7	44.5	42.8	10
25	57.3	54.7	51.0	47.1	$4+1$	42.8	5
30	57.0	54.2	50.3	46.5	43.7	42.7	\bigcirc
	Sig. XI	X	IX	VIII	VII	VI	$D \cdot 8$

Sir I. Newson, in determining the quantity of the annual preceffion from the theory of gravity, upon fuppofition that the equatorial is to the polar diameter of the earth as 230 is to 229 , finds the fun's action fufficient to produce a precefion of $9^{\prime \prime \frac{1}{8}}$ only; and, collecting from the tides the proportion between the fun's force and the moon's to be as 1 to 4_{i}^{\prime}, he fettles the mean preceffion, refuleing from their joint actions, at $50^{\prime \prime}$. But fince the difference between the polar and equatorial diameter is found, by the late obfervations of the gentlemen of the Moademy of Scienses, to be greater than what Sir IJaac had computed it to be; the preceffion, arifing from the fun's action, muft likewife be greater than what he has fated it at, nearly in the fame proportion. From whence it will follow, that the moon's force muft bear a lefs proportion to the fun's than $4 \frac{1}{2}$ to 1 ; and perhaps the phanomena, which I have now been giving an account of, will fupply the beft data for fettling this matter.

As I apprehend, that the obfervations already fet down will be judged fufficient, to prove in general the truth of the hypothefis before advanced; I Thall not trouble your Lordthip with the recital of more, that I made of ftars lying at greater dittances from the zenith; thofe not being to proper, for the reafon before-mentioned, to eftablifh the point that I had chiefly in view. But as it may perhaps be of fonme ule to future Aftronomers, to know what were the mean differences of declination, at a given time, between fome ftars, that lie nearly oppofite to one another in right afcenfion, and not far from either of the Cohures; I fhall fet down. the refult of the comparifon of a few, that differ fo little in declination, that I could determine the quantity of that difference with great certainty.

By the mean of 64 oblervations, that were made of a Calfiopea before the end of 1728 , I collect, after allowing for the preceflion, aberration and nutation as in the foregoing tables; that the meun diflance of this ftar was $68^{\prime \prime} .7 \mathrm{~S}$. of $34^{\circ} \cdot 55^{\prime}$, on Marcb 27, 1727. By a like comparifon of 40 obfervations, taken of γ urfe majoris during the fame interval of time, I find this ftar was, at the fame time, $39^{\prime \prime} .6 \mathrm{~S}$. of 34°. 45^{\prime}. I carefully meafured, with the fkrew of the micrometer, the diftance between the points, with which thefe ftars were compared; and found them to be $9^{\prime} \cdot 59^{\prime \prime}$ from cach other, or one fecond lef's than they ought to have been. Hence it follows, that the mean difference of declination between thefe two ftars, was $10^{\prime} .28^{\prime \prime} \cdot 1$, on March 27 , 1727.

By the mean of 65 obfervations, that were taken of β Caffopere, before the end of the year 1728 , this ftar was $25^{\prime \prime} .8 \mathrm{~N}$. of $32^{\circ} .20^{\prime}$, on the 27th day of March 1727: and by the mean of 52 obfervations, :urree majoris was $87^{\prime \prime} \cdot 6 \mathrm{~S}$. of $3^{\circ} \cdot 30^{\prime}$ at the fame time. The diftance between thele points was found to be $9^{\prime} \cdot 59^{\prime \prime} \cdot 3$; from whence it follows, that the mean difference of declination between thefe two ftars was 11^{\prime}. $5^{2 \prime \prime} .7$ on March 27, 1727.

By the meas of 100 obfervations, taken before the end of the year 1728 , the mean diftance of γ draconis was $79^{\prime \prime} .8 \mathrm{~S}$. of $38^{\circ} \cdot 25^{\prime}$ on March 27,1727; and by the mean of 35 obfervations, the $35^{\text {th }}$ camelopard. Hevel. was S. of the fame fpot $76^{\prime \prime} .4$. So that the mean polar diftance of γ draconis was only $3^{\prime \prime} .4$ greater, than that of 35 th camelopard. Hevel. But as the equation for the nutation, in both thete ftars, was then near the meximum, and to be applied with contrary figns; the apparent polar diftance of γ draconis was $21^{\prime \prime} .4$ greater, on March 27, 1727.

The differences of the polar diftances of the ftars, as here fet down, may be prefumed, both on account of the radius of the inftrument and the number of obfervations, to be very exactly determined, to the time when the moon's afcending node was at the beginning of Aries; and if a like comparifon be hereatter made, of oblervations taken of the fame ftars, near the fame pofition of the moon's nodes; future Aftronomers
may be enabled, to fettle the quantity of the mean preceffion of the equinox, fo far as it affects the declination of thefe ftars, with great certainty: and they may likewife difcover, by means of the ftars, near the folititial colure, from what caufe the apparent change in the obliquity of the ecliptic realiy proceeds, if the mean obliquity be found to diminifa graduaily.
Sthe formentioned points indeed can be fettled only on the fuppofition, that the angular diftances of thefe ftars do continue always the lame, or that they have no real motion in themfelves; bue are at reft in abfolute face. A fuppolition, which though ufuaily made by Aftrononoers, neverthelets feems to be founded on tno uncertain principles, to be admited in all calfes. For if a judgrent may be formed, with regard to this matter, from the refult of the compariton of our beft modern obfervations, with fuch as were formerly made with any tolerable degree of exactnefs; there appears to lave been a real change in the pofition of fome of the fixed ftars, with refpect to each other; and fuch. as feems independent of any motion in our own fyitem, and can only be referred to fome motion in the ftars themfelves. Areturus affords a Itrong proof of this: for if it's prefent declination be compared with it's place, as determined either by 9 ycho or Flamffeed ; the difference will be found to be much greater, than what can be fufpected to arife from the uncertainty of their obfervations.

It is reafonable to expect, that other inftances of the like kind muft alfo occur among the great number of the vifible ftars: becaufe their relative pofitions may be altered by various means. For if our own folar tyftem be conceived to change it's place, with refpect to abfolure fpace; this might, in procels of time, occafion an apparent change in the angular diftances of the fixed flars; and in fuch a cafe, the places of the sieareft ftars being more afiected, than of thofe that are very remote; their relative pofitions might feem to alter; tho' the fars themfelves were really inmoveable. And on the other hand, if our own fyftem be at rext, and any of the ftars really in motion, this might likewife vary their apparent pofitions; and the more fo, the nearer they are to us, or the fwifter their motions are, or the more proper the direction of the motion is, to be rendered perceptible by us. Since then the relative places of the ftars may be changed from fuch a variety of caufes, conlidering that amazing diftance at which it is certain fome of them are placed, it may require the obfervations of many ages, to determine the laws of the apparent changes, even of a fingle itar: much more difficult therefore mult it be, to lettle the laws relating to all the moft remarkable ftars.

When the caufes, which affect the places of all the ftars in general are known; fuch as the preceffion, aberration, and nutation; it may be of fingular ufe, to examine nicely the relative fituations of particular ftars: and efpecially of thofe of the greateft luftre, which, it may be prefumed lie neareit to us, and may therefore be fubject to more fenfible changes; eicher

Declinations of fome Southern Stars of the 1/t and 2d Magnitude,
either from their own motion, or from that of our fyftem. And if at the fame time that the brighter ftars are compared with each other, we likewife determine the relative poftions of fome of the fmalleft that appear near them, whoofe places can be afcertained with fufficient exactnefs; we may perhaps be able to judge to what caufe the change, if any be obfervable, is owing. The uncertainty that we are at prefent under, with refpeet to the degree of accuracy wherewith formcr Aftronomers could obferve, makes us unable to determine feveral things, relating to the fubject that I ann now fpeaking of: but the improvements, which have of late years been made in the methods of taking the piaces of the heavenly bodics, are fo great, that a few ycars may hereafter be fufficient, to fettle fome points; which cannot now be fettled, by comparing cven the earlieft obliervations with thofe of the priefent age.

It were to be wifhed thecefore, that fuch perfons as are provided with proper inftruments, would attempt to determine, with gieat care, the pretent relative politions of feveral of the principal flars, in various parts of the heavens; efpecially of thofe, that are leaft affected by refraction: that Caufe having many times fo uncertain an infuence on the places of objecis, that are very remote from the zenith; that wherever It is concernect, the conclufions, decuced from obfervations that are miuch affected by it, will always remain doubtiul, and too precarious, in many cafes, to be relied upon.

The advantages, arifing from different perfons atteinpting to fettle the fame points of Aftronomy near the fame time, are fo much the greater; as a concurrence in the refult, would remove all fufpicion of incorredtnefs in the inftruments made ufe of. For which reaton, I efteem the curious apparatus at Sbirburn Cafle, and the obfervations there taken, as a moft valuable critcrion, whereby I may judge of the accuracy of thofe, that are made at the Royal Oijeroatory: and as a lover of feience I cannot but wifh, that our nation abounded with more frequent examples, of perfons of like rank and ability with your Lordfhip, cqually defirous of promoting This, as well as every other branch of natural knowledge, that tends to the honour and benefit of our country.

Greemwich, Dcc. 31, 1747.
II. Thele declinations are taken from various obfervations, made with Declinations a quadrant of 3 feet, in fune $1737,173^{8}, 8{ }^{\circ} \mathrm{c}$. at . Quito in America, in of fome Sou$0^{0} 13^{\prime} 16^{\prime \prime} S$. Lat. in a place $11^{\prime \prime}$ more to the S. and the place of oblervation of the folftices, Dec. 1736 and Yune 173.7, the latiturle of which I had already determined in my difcourle concerning the diftance of the tropicks. In calculating thefe declinations, I macie ufe of M. Bouguer's table of refractions for the height of Quito, inferted in the Merzaires de l'Acad. 173 B.

In the fhip Argo a Canopus, a ftar of the ift magnitidic, and the greatelt of the lixed ftars, excepting Sirius. thern Stars of the if and $2 d$ magnitude, in Junc 1738, cuith the metrod of jima-
ing the cime at Sea int tio night, by the a/peca of the
$523426 \begin{gathered}\text { Southern } \\ \text { Crofs, by M. }\end{gathered}$ One de la Conda-
red R. Sc. Par. ioc. No $41)=$ p. 139 April, \&'c 1- +0. Read M3y 11, 3%.
(Bayero y) of a middle magnitude between the 2 d and 3 d .
ζ a ftar in the foot of the crofs, is the neareft to the pole of the + ftars which conftitute the crofs, being viewed by a telefope, appears double, but to the naked cye fingle, aid of the it magnitade.
the mut northern in the top of the crofs, of the ad magmitude, ξ in the following arm of the $2 d$ magnitude.

6: $3^{8} 57$

In the preceding or occidental foot of the centaur y of the If imagnitude:
In the foilowing foot of the centeur a of the ift magnitude.
$59 \quad 535$
59445^{6}

When we obferved at Panama, in $\mathcal{F} e n .1736$, we found by repeated triais, that about 2^{\prime} are to be added to the declination of the ftar canopus in the Britifh Cablogue, to make the !atitude of the place taken by the offervations of that ftar to agree with that taken from the altitudes: and this remark was confirmed by all the following obfervations, and partirularly by thofe on which the above declination of canopus depends: whence it alppears to be greater by $2^{\prime} 2^{\prime \prime}$ than in the Britifb Catalogue. All the ftars above-mentioned are very bright, and the moft vifible of any in the S. hemifphere, that are not feen in Europe.
In moft planifpheres the louthern crofs is varioufly reprefented: in fonse it's fituation is from N. to S. in others from'N.E. to $S . W$. Par-. die's celeftial chart of the fouthern part of the heavens, gives two 1chemes of the fouthern crofs, one in the former, the other in the latter direction, the firft of which is the true one. The fouthern crofs therefore, when it is in the meridian, appears upright, that is, perpendicular to the horizon, and therefore may ferve mariners to find out the hour without any fenfible error, the difference of time being known between it and the fun's paffing the meridian, may be eafly accommodated to practice by the following method.

From repeated obfervations reduced to the prefent year 1749 , I gather, that there are about $4^{\prime} 30^{\prime \prime}$ between the mediation of the 1tars ζ and ε in the foot and head of the fouthern crofs, and that the firft reaches the meridian about 13^{\prime} after it has culminated the firt point of Aries in the northern hemifphere. Therefore from the table of mediation of the firft point of Aries in the Connoiffance des Teins, the true hour at night by fea will be eafily obtained by viewing the fouthern crofs, and oblerving at what hour it fhall appear upright and perpendicular to the horizon, or rather when the time will permit, by obferving with a plumb line held in the hand the very moment when the ftars ζ in the foot, and α in the head of the foutbern crofs, fhall appear equally diftant from the perpendicular; the latter on the eaft fide, and the former on the weft. For at the point of time when this pofition of the line fhall happen, there will fcarce be an error of 1^{\prime} the truc hour, if you add 15^{\prime} to the hour of mediation of

A New Method of calculating Eclipfes of the Sün.

the firt point of Aries, which will be determined by the abovementioned table, the difference of the meridians of the calculator and obferver being amended.

The ftar ζ therefore in the foot of the crofs appears the greateft of the 4, becaufe when feen by the naked eye it unites with another fmall one, which comes to the meridian $4^{\prime \prime}$ or $5^{\prime \prime}$ after it, and when oblerved by a telefcope is $1^{\prime} 31^{\prime \prime}$ more to the S; the diftance being meafured by a micrometer.

The following or eaftern foot of the centaur α, a ftar alfo of the firt magnitude, which feems to equal or perhaps exceed capella in brightnets and magnitude, is alfo double, and confifts of two ftars, the fmaller of which is farce difcovered to emerge from the greater by a good telefoope of 3 fect. The latter is alfo more northern, and the other a little more fouthern.

Feuilleé, who obferved them both with a telefcope of 16 feet, determines the greater to be of the third and the lefs of the fourth magnitude; which Ihave not been able to confirm by my own obfervations. But the fame author erroneoully calls the foot of the centour, in which thefe united ftars appear, the northern. The declination of the lame ftar was obferved by Feuille', Feb. 26. 1710 . in the city of Conception in Cbili, and was cetersined by him to be greater than the declination of the other foot by 39^{\prime}.
III. The chief thing required in the prefent calculation, is to meafure arches of parallel circles in a fphere, by degreces and minutes of a great circle. It is part all controverly, that the circumfcrences of cir les are in a ratio of their diameters and femidiameters. Let the femidiameter of a great circle be the whole fine, and the femidiameter of a parallel circle the cofine of declination: it will be eafy to deternine how many feconds of the great circle are contained in a degree of the parallel circle, its declination being determined. For as radius to the number of feconds of one degree in the great circle, fo 3600 , or the cofine of declination, to the number of feconds contained in one degree of the parallel circle. On repeating the calculation, we have found, that the arcs of one degree of parallel circles, proceeding from one degree of declination to 29 , we equal to the following numbers :

$\begin{aligned} & \text { Des. of } \\ & \text { Decl. } \end{aligned}$	Arss of par. Circ. ${ }_{\text {If }}^{\text {If }}$ III	$\begin{aligned} & \text { Deg. of } \\ & \text { Shed } \end{aligned}$	Ares of par. Cire.	$\begin{aligned} & \text { Teg. of } \\ & \text { ITra!. } \end{aligned}$	Ares of par.
	59. 59.27	11	58. 53.51	21	56.
	59. 57.048.	12	58. 41.19	22	55. 37.5
3	59. 5\%. 3.	131	58. 27. 43	23	55. 13. 49.
4	59. 51.13.	4	58. 13	$2+$	54. 48.45.
	59. 40. 18		57. 57. 19	25	54. 22.42.
	59. 40. 16.	15	57. 40. $3=$.	26.	53.-55. 39.
	59. 33.	17	57. 22. 41	27	53.
	59. 24.57	18	57. 3. 48	28	52
	59. 15. 40.	19	55. 43.58	29	52.
10	59. 5. 18.	+	56. 22. 53		5.28 .1

A now methone of calculating Ecliples of :is Sun ; or any Occuitations of the Stars by the Moon; is Chritlian Lewis (ier. ilen, F. R. S. an:i Proit Math Giefen. Nu. 473 $p 22$ Nit

From thefe, by fimple addition, and cutting off the fourths, we compofed a table of the reduction of parallcl arcs to minutes, feconds, \&c. of a great circle, to every degrec of declination from 1 to 29: by the help of which, we may reduce any arcs in parallel circles lefs than one degree, to minutes and feconds of a great circle, the internediate declination of which, and their values alio are found without much difficulty by the help of an additional table. We. have retained the thirds in the table, that when they amount to above 5°, a fecond may be put in their room. By way of example we fhall give a part of the table, namely of a parallel circle, the declination of which is 18 degrees.

$\begin{aligned} & \text { Arcs of } \\ & \text { par. Cir. } \end{aligned}$	Parts of a grear Circle.			$\left\|\begin{array}{c} \text { Arcs of } \\ \text { rar. Cir. } \\ 1 \end{array}\right\|$	Parts of a grent Ciacle.				Parts of a great Circle.		
	1	"	'/I			/	III		1	/	I 1
"	"	III	IIII	/1	11	III	" 1	"	"	'II	111
1	\bigcirc	57	3	21	19	58	19	41	38	59	35
2	1	54	7	22	20	55	23	42	39	56	39
3	2	51	11	23	21	52	27	43	40	53	43
4	3	58	15	24	22	49	31	44	41	50	47
5	4	45	19	25	23	46	35	45	42	47	51
6	5	42	22	26	24	43	38	46	43	44	54
	6	39	26	27	25	40	42	47	44	41	58
8	7	36	30	28	26	37	46	48	45	39	2
9	8	33	34	29	27	34	50	49	46	36	6
10	9	30	3^{8}	30	28	31	54	50	47	33	10
11	10	27	41	31	29	28	57	51	48	30	13
12	11	24	45	32	30	26	1	52	42	27	17
13	12	24	49	33	31	23	5	53	50	24	21
14	13	18	53	34	32	20	9	54	51	21	25
15	1.4	15	57	35	33	17	13	55	52	18	29
16	15	13	-	36	34	14	36	56	53	15	32
17	16	10	4	37	35	11	20	57	54	12	36
18	17	7	8	38	36	8	24	58	55	9	40
19	18	4	12	39	37	5	28	59	56	6	44
20	19	+	16	40	38	2	32	60	57	,	48

Example.
Let $53^{\prime} 47^{\prime \prime}$ of this parallel circle be converted into parts of a great circle :

$$
\begin{array}{lll}
53^{\prime}=50^{\prime} & 24^{\prime \prime} & 21^{\prime \prime \prime} \\
45^{\prime \prime}= & 4^{2} & 47
\end{array}
$$

The Sum
51 7 will be the value fought.
Sect. 2. Small portions of circles parallel to the equator, when they may be fafely taken for right ones, are cut by circles of declinations at right angles. Wherefore a finall fpherical triangle, one fide of which is a portion of a circle of declination, another a portion of a parallel circle, may

A Newe Metbod of calculating Eclipres of the Sún.

be taken for a plain rectangular triangle, and its hyporhenufe may be fafely determined by the Pychagoric theorem, or other rules of plain Trigonometry. But when this hypothenufe is the diagonal of any fpherical quadrilineal, which is effected by the fection of two circles of declination, by two parallel to the equator, the greater of the parallel arcs, and more remote from the pole, is to be chofen for the bafe of the rectangular tiaangle, when the queftion is to find the hypothenufc.

Tables of the parallaxes of the altitude of the moon are conftrukte? two wiys; according to Streete's 12 th precept, prefixed to the Caroline tables, and by his 3 tin precepe alfo. For the diftance of the moon from the earth, the ratio of this diftance to the femidiameter of the earth, which is inmediately known by the horizontal parallax, is fufficient. The firtt way determines the parallaxes to the altitudes feen above the fenfible horizon. For the eclipfes of the fun, and appulles of the moon to the Aars, the firft way is to be chofen, and not the latter, which would introduce very great errors into our calculation. As I judged an accurate table of the altitude of parallaxes to be a thing of the greateft moment, I conftructed a new one for my own ufe to the altitude of 70°. with which however I afterwards found the Lantbergian table, $p .48$, © feq. to agree well enough. But that which is extant in the Ludovician tables, N°. XXV , regards the altitudes feen, but not the true, and therefore is not fit for thefe ufes without reduction. L.et it be obiervecl, that the parallaxes of the fame true altitude, but of different diftances of the moon from the earth, are proportional to the diftances themfelves, and confequently to the horizontal parallaxes.

The following tables exhibit the parallaxes of altitude, buth according to our table, and that of Lanßergius; and the numbers being cither augmented or diminifhed in proportion to the other horizontal parallaxes are lufficient for any cafes whatioever.

$\begin{aligned} & \text { Tius } \\ & \text { A: } \\ & \hline \end{aligned}$		de.	Lavilocry	Alt.	12	t, our	Lanibery.	Tue	I	it. our		Rerig.
49	3)		$395+1$	57	33	10	3310	$0 \div$	26	44		44
50	34	6	347	58	32	17	$32: 6$	65	25	47		47
51		17	$\begin{array}{lll}3 \\ 3 & 18\end{array}$	59	31	23	3122	66	24	4)		45
52	3:	28	$\begin{array}{lll}37 & 25\end{array}$	50	30	28	$30 \quad 28$	67	23	50		50
53		38	3637	61	29	33	=9 33	68	22	$5:$		51
54	35	47	3546	62	28	37	-3 37	69	21	52		52
55			$34 \quad 55$	63	27	41	27. 41	70	20	5^{2}		52
50.	31		, 3									

The longitude and latitude of a ftar being given, its rigit afcenfion and ceeclination is given by trigenomerrical rules. But as that requires a titcome analy fis of triangles, it is better to make ufe of tables confructed on purpole. We have in Flomfled's Hijf. Celeffis, two of sibrabais Sbair's, by whicl there is a converfion made not only from right afcenfion and declination into longitude and latitude, but alfo from longitude and latitude into right alcenfion and declination. Thofe which are laft in order *, lead the fhorteft way of all, and thercfore we have hitherto made ufe of them in this our calculation.

1. When it is known by the ufual methods that there will be an eclipfe of the fun, let the time of conjuction, the longitude and latitule of the moon, the true horary motion thereof, the parallax, and the horizontal diameter, and the horary motion of the lun and its diameter, be found by theoretical tables.
2. By the help of tables, from the given longitude and latitude, let the right afcenfion and declination of the fun and moon be determined.
3. The mean time being converted into apparent, if the point of conjuction happens before noon; then an hour beforchand find out by the horary motion reduced to the ecliptic, the longitudes of the fun and moon, the latitude of the moon, and the rightafcenfions and declinations of each of the points. If it happens after noon, then the fame mult be done an hour after the conjuction.
4. Let the time of conjunction, and that alfo one hour diminifhed be fubtracted from 24 hours, when that happens, that there may be an interval of time from the moment of conjunction, or from an hour beforethe conjunction to noon. In the afternoon hours the time itfelf gives the interval.
5. Let the difcovered intervals of time be converted into degrees and minutes of the equator; and thus we have the angles of the circle of dcclination paffing through the center of the fun with the meridian of the place.
6. The right afcenfion of the moon may at any time be cither greater or lefs than the right afcenfion of the fun. In the morning hours, if it is lefs, then the difference between the right afcenfions of the fun and moon is to be fubtracted from the angle of the circle of declination found in the:
preceding number: if it is greater, then the difference mune be adcied to the fame angle, and then we have the angle of the circle of declination paffing through the centre of the moon with the meridian of the place. In the afternoon hours the contrary is to be done.
7. From the angles found by the proceding number, the declinations of the fun and moon by the fecond number, and the latitude of the place by the rules of fpherical Trigonometry, the true altitudes of the fun and moon in both cafes may be computed; and then alfo,
8. The angles of the circles of declination, paffing through the centre of the moon in both cafes with the vertical circles. The feconds are lighted in this and the preceding number.
9. The true altitudes of the moon being found by number 7 , it's ho. rizontal parallax by number s , the parallaxes of the altitude of the mom are found by the tables of parallaxes of altitude. As we may with Fiamfted allot to the fun a horizontal parallax of $10^{\prime \prime}$, the horizontal paralliax of the moon muft firt be diminifhed by this quantity.
10. As radius to number of feconds contained in parallax of altitude found by the preceding number, fo fine of the angle found in nuin. 8. to the fourth proportional number, fhewn by the calculus, I call it the: parallax of the right afcenfon in a perallel circle.
II. To proceed, as radius to the fame number of feconds contained in the parallax of altitude; fo the co-fine of the angle found in num. 8. to the fourth proportional, which is the parallax of the declination of the moon. In both cafes, that is, at the very time of conjunction, and an hour before or after this computation is te be made.
11. Let the right afcenfions of the fun and moon in both cafes be difpofed according to the natural order of the numbers. Let the dif. ference between the right afcenfions of the fun be added to the firft right afcenfion of the moon, and we Thall have the firft right afcenfion of the fun; there will then remain two right afcenfions of the moon, and one of the fun.
12. The declinations of the fun either increafe or decreafe. In the firft cafe, let the difference of them be added to that declination of the moon, which agrees with the leaft right afcenfion. In the other, let it be fubtracted, and the mutual diftance of the luminaries will be as if the fun without moving, looked upon the progreffive moon for the entire fpace of an hour.
13. Let each right afcenfion be fubtracted, the leaft from the biggen. and let the differences be carefully noted.
14. Let the parallaxes of declination be fubtracted from the declinations of the moon, if they are northern; but added if they are fouthern. Thus are found the vifible declinations of the noon.
15. Let the differences found in num. I4. which are now conceived to be in a parallel circle, be reduced by the table of reduction *, to mi-
nutes and feconds of a great circle. The declination of the parallel is the lame with the vilible declination of the moon or fun. This it quite to be abftracted from the number and diftance of the points of right afeenfion tiom the beginning of Aries: for that is not the concern at prefent, tut only the pofition and diftance of the lunsinaries from cach other.
16. If the moon comes on berore noon, then let the parallaxes of right afention found in the parallel circle, num. so. be added to the competent places of the moon. But if it happens atter noon, fubtract inftead of adding. When this is done, the politions of the lummaries are cieternimed, and their vifible places, at the time of the true coniunction, and an hour before and after it, whence what follow may be nade osit with little or no difficulty. For,
17. In every care from what has been found arifes a rectangular tiangle, the bafe of which is the ciiftances of the apparent places of the moon in the parallel circle; the cethetus the difference of it's vifible declinations; the hypothenufe gives the orbit feen; and the pofition of the fun, whether it falls within or without the triangle, will be alfo fufficiently determined. The triangle ittelf never arites to fuch a magnitude, as to hinder it's being taken for a plain and rectilincal one. Hence by a moft cafy and fimple conftruction, with the he! p of a pair of compafies and a fcale, may be determined the leaft diftance of the centres and points in the orbit, the greateft darknefs and the end fo cxactly, if a proper fale is made uie of, as hardly to err above a fecond. But this, and all the relt may be performed by the rules of plain Trigonometry.
18. When the fum of the apparent femidiameters of the fun and moon falls without the bounds of the hypothenufe of this triangle, then it mult be continued till it meets; and the reft muft be performed after the ufuak mamer, to obtain the time of the beginning and end of the ecliple. But then, when the points of meeting are too far diftant from the points of the triangle already determined, the calculus will want correction, if the time of the beginning and end is exactly required. For the apparent path of the moon in a right line, and alio the equable motion feen, of which neither is ftrictly true, tho' the way feen for the fpace of an hour generally diverges fo litcle from rectitude in eclipfes, that it may be taken for a right line without any confpicuous crror. But the fame cannot be said of the equality of fwiftncfs. There muft therefore be made a calcuius of correction, which will be explained better by an cxample than by rules.

May 12, 1706. there happened an eclipfe of the fun. The quantity, beginning, greateft darknefs, and end, are fought to the longitude and latitude of the obfervatory of Paris. According to the Ludovician tables, a conjunction of the fun and moon happened May $11,21^{h} \cdot 49^{\prime} \cdot 13^{\prime \prime} \cdot$ mean time. To this time, according to the fame tables,

The equation of time, according to the Ludsvician tables, is $8^{\prime} 18^{\prime \prime}$. It muft be added to the mean, to make it apparent. Therefore the trie time of conjuction is $2 \mathrm{I}^{\mathrm{h}} 57^{\prime} 3 \mathrm{i}^{\prime \prime}$.
2. At $\mathrm{I}^{\text {h }}$ before conjunction longit. $\odot=51^{\circ} 4^{\prime} 23^{\prime \prime}$. Longit. $D=$ $50^{\circ} 29^{\prime} 43^{\prime \prime} \mathrm{N}$. Lat. $D=32^{\prime} 53^{\prime \prime}$, confequently the increafe of Latitude in the fpace of one hour $=3^{\prime} 15^{\prime \prime}$. Right alcenfion of © by Sbarp's tables $=4^{\circ} 8^{\circ} 40^{\prime} 24^{\prime \prime}$. Declination of $\odot=18^{\circ} 4^{\prime} 10^{\prime \prime}$. Right afcenfion of $D=48^{\circ} 30^{\prime} 23^{\prime \prime}$. Declination of $D=18^{\circ} 38^{\prime} 59^{\prime \prime}$.
3. The interval from the moment of conjunction $2 i^{\prime \prime} 57^{\prime} 31^{\prime \prime}$ to noon is $=2^{\prime \prime} 2^{\prime} 29^{\prime \prime}$, which being converted into arcs of the equator is $=30^{\circ}$ $37^{\prime} 15^{\prime \prime}$. From 1^{n} before o to noon there are $3^{\prime \prime} 2^{\prime} 29^{\prime \prime}$ to which the arc of the equator $45^{\circ} 37^{\prime} 15^{\prime \prime}$ anfivers. Therefore, according to rule 5 , we have the angles of the circles of declination paffing thro' the centre of σ, with the meridian of the place in both cafes.
4. The R. afc. of \odot precedes the R. afc. of D in thefe two cafes: therefore by prec. 6. the differences are to be fubitracted from the angles found; namely, in \& the difference of the R. afc. of D from the R. afc. of \odot is $10^{\prime} 3^{\prime \prime}$. One hour before σ the difference is $=43^{\prime} 3^{\prime \prime}$. Therefore when thefe arcs are fubducted, there remains for the angle of the circle of declination paffing thro' the centre of $)$ in $\delta, 30^{\circ} 27^{\prime} 12^{\prime \prime}$, and 1^{b} before $\delta, 44^{\circ} 53^{\prime} 37^{\prime \prime}$.
5. From thefe angles, the elevation of the pole of the obfervatory at $P_{\text {aris }}=48^{\circ} 50^{\prime}$, and the declinations of ν, follow the altieudes of ν. Particularly in δ, alt. $D=51^{\circ} 5^{\prime}$. $\mathbf{1}^{\mathrm{h}}$ before δ alt. $D=42^{\circ} 52^{\prime}$. The angles alfo of the circles of declination with the vertical ones at $\delta, 32^{\circ} 4^{\prime}$ at $1^{\text {t }}$, before $\delta, 39^{\circ} 19^{\prime}$.
6. According to our table *, to the horizontal parallax $60^{\prime} 29^{\prime \prime}$, parille

- Introd. 5. 3.
alt. D in $\delta=3^{\prime} \cdot 3^{1 \prime}$ not being fubtracked from the horizontal parall. of \odot, which in this example we have purpofely omitted. The parall. of.' R. afc. in the parallel circle $=20^{\prime} 27^{\prime \prime}$. The parall. of declination is = $3^{\prime} 3^{\prime \prime}$ by prec. 10 and 11 . But at 1^{n} before 6 , the parall. of altitude $=44^{\prime} 53^{\prime \prime}$, parall. R. a ac. in parall. circ. $=2^{\prime} 8^{\prime} 26^{\prime \prime}$, parall. declin. $=$ $34^{\prime} 43^{\prime \prime}$.

7. Now follows, by prec. 12, the difpofition and fubtraction of R. afrenions and declirations competent to R . afcenfions.

$$
\text { Declin. fecn }\left\{\begin{array}{llll}
D & 17 & 51 & 55 \\
D & 18 & 6 & 21 \\
0 & 18 & 4 & 10
\end{array}\right.
$$

8. According to prec. 16 , the difference a reduced to parts of a great circle is $=32^{\prime} 39^{\prime \prime}$; the difference $b=42^{\prime} 13^{\prime \prime}$. The firft is the diftance of the places of the moon in both cafes, the latter the diftance of the fun unmoved, from the firft place of the moon in a parallel circle, the declination of which is $17^{\circ} 51^{\prime} 55^{\prime \prime}$; or, which is not very different, $17^{\circ} 52^{\prime}$ 。
9. The parallax of R. afc. in a parallel circle in $\delta=20^{\prime} 27^{\prime \prime}$ (numb. 6.) being added, by prec. 17. to the fecond place of the moon, $32^{\prime} 39^{\prime \prime}$ makes $53^{\prime} 6^{\prime \prime}$. Therefore the firt place of the moon = parall. R. afc. at \mathbf{I}^{n} before 6 . Therefore, in the parallel ciscle, the places of the luminaries feen are the following.

At 1^{h} before of $D 2626=A$
\bigcirc unmoved $4213=\mathrm{B}$
In the very of $53 \quad 6=\mathrm{C}$
Diff, between A and $B=1347$

$$
A \text { and } C=2440
$$

If the laft declination is fubtracted from the declinations feen, in thie cafe D. $17^{\circ} 51^{\prime} 55^{\prime \prime}$ remains for $01^{\prime} 15^{\prime \prime}$; for D in $614^{\prime} 26^{\prime \prime}$.
10. Now let $b c$ be a portion of a circle parallel to the declination Fig 3 . $17^{\circ} 5 \mathbf{r}^{\prime} 55^{\prime \prime}$, and therein the point c the centre of D at i^{n} before δ, d the place of \odot, b the place of $D^{\prime \prime}$ in δ; then $d c=13^{\prime} 47^{\prime \prime} ; b c=24^{\prime} 40^{\prime \prime}$. From the points d and b, crect the perpendiculars $a f$ and $a b$; of which the former $=12^{\prime} 15^{\prime \prime}$, the difference of the laft declination; the latter, $=14^{\prime} 26^{\prime \prime}$ of the greateft, f will be the centre of the fun unimoved, a the centre of the moon in the very δ, the right line a c the vifible path of the moon at the diftence of one hour.
11. From the point f to $a c$ a perpendicular $g f$ bsing let fall determines the quantity of the eclipfe, and the point g the greatelt darknef. Moreover, if we take with a pair of compaffes, the fpace nf and $f m=$ to the fun of the apparent femidiameters of \odot and $\bar{\delta}$, and if from the fane point f be cut the hypothenule produced min of the triangle abc, we Ghall have the determination of the points n and m, in which the beginning and end of the eclipic happens.
12. By the trigonomerrical caiculation we have $c g=18^{\prime} 4^{\prime \prime} ; g f=$ $3^{\prime} 37^{\prime \prime} ; a c=28^{\prime} 37^{\prime \prime}$. Now it we fay as ac to $g c$, fo the time by ac $=1^{h}$ to the time by $g c$, there refuits $37^{\prime} 37^{\prime \prime}$; this time being added to $20^{\text {h }} 57^{\prime} 31^{\prime \prime}$ ($1^{\text {h }}$ before δ) makes the point of greateft abfcuration $21^{\text {h }}$ $35^{\prime} 26^{\prime \prime}$
13. The horizontal femidiameter of D is $=10^{\prime} 31^{\prime \prime}$ (num. 1.); but corrected by de la Hire, tab. 24. is $=16^{\prime} 43^{\prime \prime}$. The femidiameter of \odot is $=15^{\prime} 54^{\prime \prime}$. The fum of the femidiameters of \odot and $\nu=32^{\prime}$ $37^{\prime \prime} ; g f$ being fubtracted from this fum, there remains the deficient part $=29^{\prime} 0^{\prime \prime}$, this being reduced to ecliptical digits gives the quantity of the eclipfe $10^{\circ} 5^{\prime \prime}$.
14. To determine the beginning and the end, from $g f, f n$ and $f m$, are to be fought $g n$ and $g m$. I make $f n$ equal to the fuin of the apparent femidiameters (num. 13.) diminifhed by one or two feconds, but $f i n$ equal to the fame augmented by one or two feconds; and fo $f_{n}=$ $32^{\prime} 35^{\prime \prime} ; f m=32^{\prime} 39^{\prime \prime}$. Wherefore $g n=32^{\prime} 22^{\prime \prime} ; g m=3^{\prime} 25^{\prime \prime}$; the time by $g n=1^{\mathrm{h}} 7^{\prime} 5^{8^{\prime \prime}}$; which being fubtracted from the point of greateft darknefs, fhews the beginning of the eclipfe, $20^{\mathrm{b}} 27^{\prime} 28^{\prime \prime}$: the time by $g m=s^{\mathrm{h}} 8^{\prime} 5^{\prime \prime}$; which being added to the greateft obfcuration gives the end $22^{\text {h }} 43^{\prime} 33^{\prime \prime}$.
15. One hour before $0=20^{h} 57^{\prime} 31^{\prime \prime}$; the time of the beginning Correation of $=20^{h} 27^{\prime} 28^{\prime \prime}$; therefore the beginning differs from $1^{\text {h }}$ before o 30^{\prime} the begin$3^{\prime \prime}$. To this difference of time anfwers the motion of D in long. 18^{\prime} ning. $34^{\prime \prime}$; increm. lat. $\odot 1^{\prime} 37^{\prime \prime}$; motion of \odot in long. $1^{\prime} 12^{\prime \prime}$: thefe being futhducted from long. and lat. at t^{h} bcfore δ, there is teft at the time of the beginning, long. $\odot=51^{\circ} 3^{\prime} 11^{\prime \prime}$; long. D $50^{\circ} 11^{\prime} 9^{\prime \prime}$; lat. $D 3 x^{\prime}$ § $6^{\prime \prime}$. K. afc. © $48^{\circ} 36^{\prime} 44^{\prime \prime}$; decl. © $18^{\circ} 3^{\prime} 13^{\prime \prime}$; R. afc. $48^{\circ} 35^{\prime}$, $10^{\prime \prime}$; dectin. $118^{\circ} 19^{\prime} 28^{\prime \prime}$; diff berween R. afc. \odot and $\geqslant=30^{\circ} 4^{\prime}$
$34^{\prime \prime}$; the interval of time between the moment of beginning and noon $=3^{\text {h }} 32^{\prime} 32^{\prime \prime}$, which being converted into arches of che equator gives $53^{\circ} 8^{\prime} \mathrm{o}^{\prime \prime}$. Now becaule K . afc. D is lefs than R. afc. \odot, the difference of the R. afc. of \odot and D to be fubtrafted from this arc, remains $52^{\circ} 6^{\prime} 26^{\prime \prime}$, namely the ang!e of the circle of declination paffing thro the centre of D with the meriuian of the place. The altitude of $D=$ $38^{\circ} 20^{\prime}$. The angle of the circle of declination with the vertical $=41^{\circ}$ 28'. Parallax of altitude $=47^{\prime} 58^{\prime \prime}$. Parall. R. afc. in parallel circ. $=31^{\prime} 45^{\prime \prime}$. Parall. declin. $=35^{\prime} 56^{\prime \prime}$.
16. The difpofition and reduction of the R. afcenfions according to prec. 12. now becomes thus:

Fig. 4.
17. From the differences e, f, c, d, is conftructed the type and correction after the following method; let the diff. $e=13^{\prime} 5^{\prime \prime}$ be $=a c$; and diff. $f=26^{\prime} 54^{\prime \prime}=a d$; let the perpendicular bc be $=$ diff. c or $7^{\prime} 26^{\prime \prime}$; let the perpendicular $f d$ be $=19^{\prime} 41^{\prime \prime}$ =diff. d; and $20^{\mathrm{b}} 27^{\prime} 28^{\prime \prime}$ will be the centre of D in a; but 4^{\prime} before δ in b; the centre of the fun unmoved in f. The feen orbit of the moon is determined by the points a and b; becaufe it paffes thro them. But if $f w$ is equal to the fum of
the apparent diameters $=32^{\prime} 35^{\prime \prime}$, it cuts the part ma from the hypothenufe $b a$, which being converted into time, gives the quantity of correction.
18. If the thing is to be performed by calculation, let $b a$ be continu$e d$, and from f let fall the perpendicular $f g$. In the prefent cale $a \dot{b}=$ $15^{\prime} 2^{\prime \prime}, a e=30^{\prime} 55^{\prime \prime}, g e=2^{\prime} 10^{\prime \prime}:$ therefore $g a=33^{\prime} 5^{\prime \prime}, g f=3^{\prime} 50^{\prime \prime}$, $f m=32^{\prime} 35^{\prime \prime}$; therefore $g m=32^{\prime} 2 J^{\prime \prime}$; and $g a-g m=m a=44^{\prime \prime}$; which quantity being converted into time, is $=1^{\prime} 27^{\prime \prime}$. But when ν is moved from a towards b, and the centre of the moon is placed in $a 20^{\prime} 27^{\prime} 28^{\prime \prime}$, it is plain that this time muft be added to the time of the beginning found above, that the beginning of the eclipie may be found true and correct ; $20^{\prime \prime} 28^{\prime} 55^{\prime \prime}$.

19 To fhew the exactnefs of this calculation, let us invertigate the Proof of the diftance of the centres of \odot and D to this corrected time of the beginning. correction. For if thefe are equal to the fum of the apparent femidiameters, is is neceffarily the true point of the beginning; if otherwife, it is falfe. The time that palfes between this point of the corrected beginning and the time of $\delta^{\prime \prime}$ is $=1^{\mathrm{h}} 4^{\prime} 8^{\prime} 6^{\prime \prime}$. With this agrees the motion of D in the ecliptick $54^{\prime} 46^{\prime \prime \prime}$ increment. lat. D $4^{\prime} 4^{8^{\prime \prime}}$; motion of \odot ia lo:ggitucic $3^{\prime} 34^{\prime \prime}$; therefore at the time of corrected beginning, long. $D 50^{\circ} 12^{\prime}$ $12^{\prime \prime}$, N. lat. D $31^{\prime} 19^{\prime \prime}$; long. $\odot 51^{\circ} 3^{\prime} 14^{\prime \prime}$; K. afc. $\odot=4^{\circ} 30^{\prime}$ $47^{\prime \prime}$; declin. $\odot=18^{\circ} 3^{\prime} 14^{\prime \prime}$; R. atc. $D 47^{\circ} 3^{6^{\prime}} 4^{\prime \prime}$; declin. D 18° $19^{\prime} 4^{\prime \prime \prime}$; diff. between R. afc. \odot and $D 1^{\circ} 0^{\prime} 43^{\prime \prime}$; diff. between time of corrected beginning and noon $3^{\text {h }} 33^{\prime} 6^{\prime \prime}$; arc of the equator agrecing with this time $=52^{\circ}{ }_{4} 6^{\prime} 30^{\prime \prime}$ =ang. circ. declin. pafing thro' the centre of \odot with the meridian of the place. The difference between R. afc. \odot and D being fubtracted from this, there remains for ang. circ. declin. paffing thro the centre of D with the meridian $=51^{\circ} 45^{\prime} 47^{\prime \prime}$. Correfponding alt. $D=3^{8^{\prime}} 33^{\prime \prime}$: ang. circ. declin. with the vertical $=41^{\prime} 11^{\prime \prime} ;$ parall. alt. $=47^{\prime} 50^{\prime \prime}$, parall. declin. $=3^{6^{\prime}} 0^{\prime \prime \prime}$; parall. R. afc. in parall. circle $=31^{\prime} 29^{\prime \prime}$; feen declin. $D=17^{\circ} 43^{\prime} 46^{\prime \prime}$; diff. between feen declin. D and declin. $\odot=19^{\prime} 28^{\prime \prime}$; diff. between K. aic. \odot and K . afc. D, reduced to parts of a great circle, allowing the declin. of the parall. 17° $44^{\prime}=57^{\prime} 34^{\prime \prime}$; paratlax K. aic. $=31^{\prime} 29^{\prime \prime}$: therefore the diftance of the places of \odot and D in this parallel circle $=26^{\prime} 5^{\prime \prime}$. If therefore from $26^{\prime \prime} 5^{\prime \prime}$ as a bafe, and from $19^{\prime} 28^{\prime \prime}$ as a cathetus, a reettangular triangle be conftructed, the hypothenufe of this triangle will be the dittance of the centres of \odot and D; but $26^{\prime} 5^{\prime \prime}=1565^{\prime \prime}$; the fquare of which is 2449225: and $19^{\prime} 28^{\prime \prime}=1168^{\prime \prime}$, the fquare of which is 1364224 ; and the fum of the fquares $=3813449$, the fquare root of which is $=1953^{\prime \prime}, 2^{\prime \prime}$ only lefs than the fum of the apparent femidiameters.
20. The point of this, as determined above, numb. 14, is $22^{h} 43^{\prime}$ $3 \mathrm{i}^{\prime \prime}$. Time of of $21^{\mathrm{h}} 57^{\prime} 31^{\prime \prime}$; difference, $46^{\prime} 0^{\prime \prime}$. To this difforence, the motion of D in longit. is $28^{\prime} 25^{\prime \prime}$; increment of lat. $=2^{\prime} 19^{\prime \prime}$; motion of \odot in longit. $=1^{\prime} 51^{\prime \prime}$; wherefure to $22^{h} 43^{\prime} 31^{\prime \prime}$ longit. $D=$ $51^{\circ} 35^{\prime} 3^{\prime \prime}$; latit. $D=3^{\prime \prime} 3^{6 \prime \prime}$; longit. $\odot=51^{\circ} 8^{\prime} 39^{\prime \prime}$; R. afc.

VOL. X. Part i.
K
Corretion for the end.
21. The diff. of time between the end of the eclipfe and noon, is $1^{\text {h }}$ $6^{\prime}{ }^{\prime 2} 2^{\prime \prime}$, which being converted into an arc of the cquator, is $=19^{\circ} 7^{\prime}$ $15^{\prime \prime}$ Dif. between R. afc. \odot and $\nu=16^{\prime} 21^{\prime \prime}, K$. alc. D precedes R. aic. © ; therefore this diff. is to be added, to make $19^{\circ} 23^{\prime} 30^{\prime \prime \prime}$, the angle of the circle of declination paffing thro' the centre of D with the meridian. This angle with lat. of the Obfervatory of Paris and declin. Dpotuces alt. $D=56^{\circ} 8^{\prime}$; and the angle of the ciucle of declin. with the vertical $=23^{\circ} 4^{\prime}$. Hence follows parallax of alt. $=34^{\prime} 12^{\prime \prime}$; parall. declin. $31^{\prime \prime} 27^{\prime \prime}$, and parall. R, afc. in a parallel circle $=13^{\prime} 24^{\prime \prime}$. 22. The reduction therefore and difpolition of R. alcenfons and ceclinations is as follows.

23. Diff. a is the diftance of \odot unmoved from the firft place of D, and diff. b the diftance of the $2 d$ place of ν from the 1 it in the parallel circle, the decl. of which is $18^{\circ} 7^{\prime}$. By the parallaxes of R. afc. the two places of ν are now changed into the following, and fo by adding the parallaxes, the diftances will be of the

$$
\begin{aligned}
& \text { © unmoved }=\begin{array}{rl}
9 & 33 \\
D \text { in o } & =20 \\
27 \\
D \text { in the end } & =3^{8}
\end{array} 29
\end{aligned}
$$

Now if from thefe numbers we fubtract the leaft, $9^{\prime} 33^{\prime \prime \prime}$, there is left for the diftance of the place of D in δ from © unmoved, $10^{\prime} 54^{\prime \prime}$; for the diftance of D in the end of the eclipfe from $\odot 28^{\prime} 56^{\prime \prime}$, the differences of the declinations feen, from the leart feen, are $2 / 11^{\prime \prime}$, and 12^{\prime} $33^{\prime \prime}$.

24 Let $q f$ be the portion of a circle parallel to the declination $18^{\circ} 7^{\prime}$; Fig. 5 . therein let f be the cencre of \odot unmoved; r the place of D in δ; q the place of D in the end of the eclipfe: wherefore $r f=10^{\prime} 54^{\prime \prime} ; q f=$ $2^{\prime \prime} 5^{\prime \prime \prime}$. At the points r and q raife the perpendiculars a r and $q v$; fo that ar may be $=2^{\prime} 1^{\prime \prime \prime}$, and $q v=12^{\prime} 33^{\prime \prime}$. The right line $m v a g$ being drawn thro' the points v and a, will how the orbit of ν feen. But if the aperture of the circle is equal to the fum of the apparest femidiameters, in this cafe $=3^{2 /} 39^{\prime \prime}$, this will cut off from f a portion of the orbit $m v$, which being converted into time, and added to the titic of the end found above, gives the cnd corrected.
25. It this is to be done by numbers alone, firt, let the perpendicular $a r$ be fubtracted from the perpendicular $v a$, to sibtain $v z$. Let the orbit $v a$ be produced, and from f let fall the peryendicular $f g$; hence avife 3 limilar triangles; $a z \%$, $n f n$, and $f n g$. On making the calculation, there comes out for $v a^{\prime} 20^{\prime} 4^{\prime \prime \prime}$; for an $4^{\prime} 22^{\prime \prime}$; for $n \mathrm{~g} 6^{\prime}$ $10^{\prime \prime}$: confequently $v g=3^{\prime} 2^{\prime \prime \prime}$, and $g f=3^{\prime} 3^{\prime \prime}$. But as $m f$ is $=$ $3^{\prime} 39^{\prime \prime}, m g$ will be $=3_{2}^{\prime} 27^{\prime \prime}$, therefore $m v=m g-v g=1_{1} 7^{\prime \prime}$: which quantity being changed into time, is $=2^{\prime} 2^{\prime \prime \prime}$: this time being added to the time of the end found above $22^{h} 43^{\prime} 31^{\prime \prime}$, gives at laft the end of the eclipfe corrected $22^{h} 45^{\prime} 59^{\prime \prime}$.

I made choice of this example, becaufe it is the fame with that by which de la Hire illuftrated the precepts of his calculation: it will therefore not be amifs to Thew it's agreement with the prefent. In de la Itire's calculation, the point of conjunction is fuppofed to be according to true time $21^{h} 57^{\prime} 15^{\prime \prime}$; which however is not exact : for according to the Ludorician tables, it happens at $21^{\text {p }} 57^{\prime} 31^{\prime \prime \prime}$; as we fettled above. Aiter this finall error is corrected, the point of greateft obfcuration, according to de la Hire's calculation, agrees with ours even in feconds, $2 \mathbf{1}^{\circ} 35^{\circ}$ $26^{\prime \prime}$; but there is fome little difference in the beginning, end, and quar:tity, of the eclipfe *. In that calculation, the perpendicular L T produces at the true time of conjunction 211 ; and fo the quantity of the celipfe is $=10$ dig. 49^{\prime}. The beginning happens at $20^{\prime \prime} 27^{\prime} 29^{\prime \prime}$, the end, $22^{\text {h }}$ $43^{\prime} 23^{\prime \prime}$. By de la Hire's precept, that beginning needs no correction; which however is true, if an error of I^{\prime} or $1^{\frac{2}{2}}$ may be nighted. Bat if not, as the thing requires, and the proof of my correction fufficiently fhews, the labour of correcting is alfo to be undertaken in de la Hire's calculation. In mine, the beginning found at firt would agrce exactiy enough; but becaufe of different altitudes of the moon in the end and beginning, I have affumed diverfe apparent femidiameters, which de la Hire did not do; and therefore to make all things equal, let the apparent femidiameter of D be fet at $1^{16 \prime} 43^{\prime \prime}$ in the beginning and end; in which cafe the begianing of my calculation not corrected will be brought back to 20p $27^{\prime} 23^{\prime \prime}$, the end, to $22^{\mathrm{h}} 43^{\prime} 29^{\prime \prime}$; therefore my begining is $6^{\prime \prime}$ before de la Hire's; and the end follows it at the fame diftance; and the quantity of the eclipfe, as we havedetcrmined above, exceeds de lo Hire's $\%^{\prime}$.

[^3]When the apparent orbits of D, or rather the feigned ones in the prefent calculation, and in that of de la Hire, are not right but curves, in this difference that the convexity in de la Hire's may be objected to the point L^{*}, and in the prefent the concavity to the point $f t$, it is evident that the perpendicular $L T$, on the length of which the quantity of the eclipfe depends, is greater than it ought to be in de la Hire's calculation; as in mine the fame perpendicular which is deligned by $f g$ is lefs than it ought to be: therefore if the greatct exactnefs was to be ufed, the quantity of the ecliple ought to be reckoned between them both.

Apparent Time.

The sun's IV. I. Fuiy 14.9. 3.50. The beginning, wihich perhaps might be Eclipre of Ja| $1 y$ | 14 |
| :--- | :--- | obferved ar Marlborough

House, with
she 12 foot re-
frazing Tele.
frope, f:x'ci as
a finder to the
tube of the
great 12 foot refictior ; by
John Bevis
M. D. No.
489. p. 521.

OQ ジఁ.
1748. Read Nov. 10. 1748.
-by Mr
Mark Day, sated Luff. wick near Thrapiton, Northamptonhhire, O\&t.
N. B. The ruind was jo boijlerous, that no phafes could be meafured with a Micrometir.
2. The begimning $9^{4} 1^{\prime} 0^{\prime \prime}$ a. m. The end $0.5 \cdot 25 \cdot p . m$. at $10^{\prime \prime} 32^{\prime}$ $10^{\prime \prime} \mathrm{a} . \mathrm{m} .10^{\circ} 18^{\prime}$ were dark, which I take to be the greateft with us. Thefe are apparent times, from a well adjufted clock (by a meridian drawn Fune 10, on a plate of metal), and corrected to the time of obfervation. Our latitude is $5^{\circ} 27^{\prime} 30^{\prime \prime}$. 21. 1748. Ibid. p. 523.
——At the
Obfervatory
Royal al Ber-
lin, by $\mathrm{Au}-$
guftine Na -
tnanael Gref-
ch w.Memb. The amulus was completed at II 5251 ance meriu?
of the R. - broken - 115413
$\begin{array}{lllll}\text { Acad. of Sc. The end of the eclipfe } \\ \text { at Berlin, } & \text { Esc. The } & \text { I } & 25 & 9 \text { poff. merid. }\end{array}$
ar Berlin,
itid. $\mathrm{P} .5^{26}$. The diameter of the fun was $31^{\prime} 43^{\prime \prime}$.

- Vide Alleg. p. 4^{8} in Tab. Luduo. + Fig. 3 .

This eclipfe was likewife obferved annular at Francfort upon the Oder, but not fo exactly as at Berlin.
4. Thefe obfervations were made at Aberdour cafte, belonging to the -obfenvfaid Earl, whofe lat. is $56^{\circ} 4^{\prime} \mathrm{N}$. Mr le Monnier having coine over ed by the R. from Prance to go to Scotland, to obferve the annular ecliple of the fiun, Hon. Jame Youly 1. +. ${ }^{1} 748$. I was defirous to contribute all that lay in my power $\begin{aligned} & \text { E. of Morton, }\end{aligned}$ to affit him, and therefore refolved to go to Scotland with the Earl of nier, R. Morton, who was to good as to pernit us the honour of accompany-Afron and ing him. We arrived at Edinburgh Juiy 4. and immediately went to Memb. of the the College, to enquire what preparations were made there, in confequence of letters we had writ before we left London; when Mr Ailex. Monro, of letters we had writ before we left London; when Mr Allex. Monro, and Mr Ia.
Prof. Anat. informed us, that, upon receipt of ours, he had writ cir-Short, Felcular letters to all his friends in different parts of the country, to pre-l lows of the pare, in the beft manner they could, for the moft exact obfervation of R. Soc No. this celipfe.
R. Acad. of Sc. at Paris, 490 P $; 82$.
We found that the meridian mark, which had been fettled from ob- Dec. 1748. fervations, by the late worthy Mr Mac Laurin, was loft, by the taking ${ }^{1748}{ }^{8}$. down of a chimncy, upon which it was fixed; and Mr Mattbew Stewart, the prefent Profelfor, having no proper inftruments, had not as yet re-eltablithed it; which wee hoped to cio by an inftrument, which we cvery day expected trom London; and Mr Stewart having promifed to make the belt obfervation he could, we refolved to fet out for Alerdour. a feat of the E. of Morton's, which he readily offered to us, and did us the honour to accompany us thither himfelf, having the fane defire and curiofity to do whatever lay in his power to contribute to an exact obfervation.

Averdour is about 8 miles almof N. W. of Edinturge. We chofe this place, as being, by the computations of this cciipfe, at or very near the fouthern limit of the annulus.

In the caftle of Aberdour, $25^{\prime \prime}$ of time weft of the college of Edinburgh, we fet up a clock, "July 9. and the weather being cloudy, and our equal-altitude inftrument and tranfit not being yet arrived, we on the with made ufe of an equatorial telefcope of Lord Morton's, to find correfponding altitudes of the fun, and at the fame time put up a gnoman of 15 feet high.

Being uneafy that our inftruments were not come to hand, and refolving to have a communication with the college of Edinburgh, where they had a tranfit inftrument; Lord Morton propofed that two cannon Thould be fired from the caftle of Edinburgh, one precifcly at 12, and the orher at 5 after 12 on the day of the eclipfe; and the different obiervers in different parts of the country to be advertifed of this, and to mark down the precife time of fecing the flah, or hearing the found of the cannon; fo that, after having inade a geographicat map of thefe different parts of the country, and having found the exact meridian of one place, we Thould be enabled to fettle the times of all the reft by the difference of meridians found by this map. This was fettlech
and agreed to on the 12 th, and an exprefs fent over to Edinburgb with a letter from Lord Morton to the Lord Juftice Clerk, to defire this favour of General Bland, who very readily granted it.

The $13^{\text {th }}$ being a clear day, we took equal atritudes with the equatorial telefcope, and found our clock gained $1^{\prime} 46^{\prime \prime}$ in two days, and that tie tun paffed the meridian at $12^{h} 7^{\prime} 6^{\prime \prime}$ by the clock.

July 14th was an exceeding bad morning both for wind and rain; but about 8^{h} in the morning, the clouds difperfed, and we had a very clear fun.

In order to obferve the eclipfe, Lord Morton made ufe of a reflecting teleficope, 12 inches focal length, magnifying about 40 times. I made ufe of a reflecting telefcope 4 feet focus, magnilying about 120 times; both belonging to Lord Morton. Mr le Monnier made ufe of a refracting telefcope, about 9 feet focus, which he brought with him from France, armed with a micrometer, made after the method of Mr G. Gralam, by the late Mr Siffon at London. Mr le Mornier took his ftation in the garden, under the window of the room where the clock was placed; Lord Morion was in the room next that where tile clock ftood; and I was at the window next the clock.

$855 \quad 0 \quad 847 \quad 5$ The eclipfe not yet begun. Clouds conse on.	
$8 \quad 5913 \quad 8 \quad 5118$ Beginning of the eclipfe, found by the followdo jirs ous of swum. ing chord.	
$9042 \quad 85247$ Firft view of the eclipfe, then conficerably advanced.	
$9 \quad 2 / 30 \quad 85435$ Meafured the chord of the part eclipfed; which was found equal to the field of the great reflector.	
$10610 \quad 95^{8} 12$ The illuminated part of the fun, meafured by the micrometer, and found $=7^{\prime} 37^{\prime \prime \frac{1}{2}}$.	
104501037 - Again meatired, and found $=7^{\prime} 37^{\prime \prime} \frac{1}{2}$.	
L. Morton jackged the middle of the eclipfe, or neareft approach to an anmulus, at $10^{\text {h }} 17^{\prime}$ $54^{\prime \prime}$ apparent time.	
14 5243 is 4440 The fame phafe or chord obferved as at the be-	
ginning, and meafured both in the telefcope, as at firit, and by the micrometer, and found $=8^{\prime} 25^{\prime \prime}$ of a great circle, as verified by a bafe after the eclipfe was over, which gives the end as exact as the beginning.	
11 5621 II 4818 End of the eclipfe by the preceding chord.	
Mr le Monnier meafur'd with the micrometer the apparent equatorial	

The Sun's Ecliple of July 14, 1748.

$=29^{\prime} 47^{\prime \prime} \frac{1}{2}$. He meafured affo the apparent vertical diamerer of the fun at noon; which he found $=31^{\prime} 40^{\prime \prime}$. The micrometer, with which he meafured thefe dianeters, was afterwards verified, by a bafe of $2.5 \% 0$ feet, and two marks, placed at right angles to it's extremity, at the diftance of 22 feet srom one another.

The llafh of the firt cannon fired from the cafle was feen at $12^{\text {h }} 3^{\prime}$ $4^{\prime \prime}$ by the clock; and the llath of the fecond cannon allo by the clock at $12^{\text {h }} 8^{\prime} 4^{\prime \prime}$. The eclipfe was fo ncarly annular, that, at the neareft approach, the cufps feemed to want about \div of the mion's circumerence to be joined; yet a brown light was plainly obferved, toth by L.: Mortom and myith, to praceed or ftretch along the circumference of the nooon, from each of the cufps, about $\frac{1}{3}$ of the whole diftance of the culps from each cufp; and there remaincl about $\dot{+}$ of the whole diftance of the cufps not enlightned by this brown light; fo that we were for fome time in fufpenfe whether or not we were to have the eclipfe annular with us. I obferved, at the extremity of this brown light, which came from the weftern cufp, a larger quantity of light, than in any othet place, which at firf furprized me; but afterwards I imagined it murt have proccedel from fome cavity or valley mace by two adjoining mountains on the cage or timb of the moon. I had often lormerly obfervect mountains on the circumference of the moon, more or lefs every-where round it, but never faw them fo plain as during the time of this eclipfe; for we had the air exceeding clear, and free of all agitation, notwithtanding it blew a perfect hurricane of wind, which bogan about the middle of the eclipie; and I remember, in the annular eclipfe of the fun in the yeat 1737, it did the fame. The mountainous inequalitics on the fouthern limb of the moon were particularly remarkable; in fome parts mountains and valleys alternately; others extended a confiderable way along the circumference, and ended almoft perpendicularly like a precipice. L. Morton was able to fee them very eafily thro his fimall reflector.

A liftle after the middle of the eclipfe, fome clouds, that feemed fationary below the fun, appeared tinged on their upper extremities with all the colours of the rainbow.

During the greateft darknefs, fome people, who were in the garden adjoining to the caftle, faw a far to the caft of the fun; which, when they atterwards told us, and pointed to the place where they had feen it, we found mult have been the planet Vobus. This ftar, we were afterwards told, was feen alfo at Edinburgb, and other places, by a gecat number of people; but I did not hear of any other ftars being feen. The darknef's was not great, but the fky appeared of a faint languid colour. What is pretty remarkable, is, Mr le Monnier affureci us, that when he looked at the fun with his naked eyes during the middle of the eclipse, he coutd obferve nothing upon the fon, but faw the fun full, tho' faint in his light. This, I am apt to imagine, may be owing to his being fhort-fighted. I obferved alfo, about

Tbe Sun's Eclipre of July 14, 1748.

the middle of the eclipfe, a remarkable large fpot of light, of an irregular figure, and of a confiderable brightefes, about 7^{\prime} or 8^{\prime} within the limb of the moon next the weftern cufp. I thought I loft this light feveral times; but whether chis was owing to my fhutting my cyes, in order to relieve them, or not, I cannot tell. I am told, that the rev. Mr Irwin at Elgin obferved the fame. When I firft perceived it, I called to Lord Moreton, who was in the next room, but he could not fee it.

Before the eclipfe began, and during the whole time of the eclipfe, the air, as I faid before, being exceeding clear, I faw thro' the 4 foot reflector the furface of the fun cover'd with fomething which I had never obferved before; it feemed to be all irregularly overipread with light, and a faint Shade, efpecially towards his equatorial diameter. This appearance was io odd, that it is difficult to defcribe it, fo as to give an adequate idea of what I faw; but if I may be allowed the expreffion, it feemed as it were, curdled with a bright and more dunky light or colour. This appearance was permanent, and regularly the fame; and if in any degree feen before, may have given rife to faculc having been feen in thre fun; but to me the whole fun's body feemed to be more or lefs covered with it. I looked with all the attention poinible, to fee if I could obferve the body or limb of the moon before the touched the fun, and alfo after fhe left it, and was intirely off the fun, but could fee nothing at all of any fuch appearance. I mention it to fatisfy Mr de $\mathrm{Li} / \int \mathrm{l}$, who publickly defired this might be attended to.

The barometer had been falling for feveral days before the eclipfe, and even that morning, when it was at 29.2 inches. But during the eclipfe it began to rife.

Divifions.

fuly II. at $\|^{h}$ in the morning the thermometer ftood at - 54

All thefe obfervations of the thermometer were taken when it food in the fhade ; and the times are by the clock. Immediately after the middle of the eclipfe, the thermometer, when expofed to the fun for the fpace of 10^{\prime} of time, rofe only $\frac{1}{2}$ a divifion.

Thermometer fill expofed to the Sun,

Thermometer replaced in the flade after this laft obfervation,
at $12^{n} .54^{\prime}$ flood at

Guly 15 . Thermometer at 8^{5} a. in. Itood at - - -56

| at 9 at | -1 | $-5 i f l$ | - | -57 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at 10 at | - | - | - | -60 |

Thefe oblervations were made with a thermoncter of labrenbeit's fcale, the divifions of which were very fenfible. We did not at all perceive or feel any greater degree of cold, during the celipfe, than we felt betore it began.

The weather being very bad at Edinburgh, Mr M. Stewart, Prof. Math. could make no obtervations of the E.clipfe; he only faw the cad at $11^{\prime \prime} 50^{\prime}$ $34^{\prime \prime}$ true time; and even then the fun was fomewhat cloudy: he took however the fiun's trenfit over the meridian (as then fuppofed) at $12^{14} 4^{\prime}$ $42^{\prime \prime}$ by his clock, and heard the fecond cannon fired from the caftle at $12^{\text {h }}$ $7^{\prime} 48^{\prime \prime}$ by the clock. We afterwards, in a few days, examined his meridian mark with a very exact equal altitude inftrument by 3 feveral correfpondent objervations; and found his mark $3^{\prime} 22^{\prime \prime}$ of time to the W. of the true meridian. The college is about 2500 feet diftant from the caftle Faftward.

The Rev. Mr Bryce, at Aldifton, about 6 miles to the W. of Edinburgh, lat. $55^{\circ} 55^{1 /}=\mathrm{N}$, obferved with a reflecting telefcope, 9 inches focus,
The begiming of the eclipfe at
Upper horn or culf vertical, at Hitherto the weftern cufp lower than the eaftern.
The two culps horizontal at - 101310 The weftern cufp afcends very faft at - 101410 The weftern culp vertical at - - . 101615 The cufp which was juft now vertical, now becomes Eaft, $\}$ Io 1710010 and about 30° from the zeniti to the Ealt at
and and about 30° from the zenith to the Ealt at The middle of the ecliple as near as he could judge at - 101740 The lower culp at the nadir, and very ragged and uneven at
VOI. X. Part i.

The fame cufp ftill in the fame pofition at - - . 10325
The fame cufp feems to begin to move towards the W. at 104335
The motion of this cufy farce fenfible at - . . - 105545
The other cufp middle between the zenith and the nadir $\}$ is 025
towards the E.at
End of the eclipfe, the fun being quite clear at - II 4840
I fhall fet down the following obfervations of this eclipfe juft as they came to my hand when in Scotland, without making any other remark, than that, from the difagreement among themielves, they do not all of them feem to have been made with due accuracy and attention; for want, I fuppofe, of fufficient practice in this kind of obfervations.

Willian Crow, Efq; at his houfe of Netberbyres near Haynacuth, lat. 55° 51^{\prime} N. fays,
The eclipre began at $\ldots \ldots \ldots 5^{\circ}$
Half of the fun eclipfed at - - 9500
Middle of the eclipie, $\frac{1}{6}$ of the fun's limb cover'd by the moon at 1025° End of the eclipfe at

Mr Fobn Mair, at Air, lat. $55^{\circ} 30^{\prime} \mathrm{N}$. fays, the eclipfe began $8^{\mathrm{h}} 45^{\prime}$; but that, by reafon of clouds, he could make no other particular obfervation; only that, by a view he had of the fun fome little time before the end, he thinks the end of the ecliple might be about $11^{h} 48^{\prime}$.

Mr Mark, teacher of Math. at Dundee, Lat. $5^{\circ} 25^{\prime}$ N. oblerved,

The beginning of the annular appearance at - . . 101644 End of the annular appearance at - . . . - - 10238

He fays, the beft obfervations make the annulus a fmall matter narrower on the upper than lower fide; by which it appears the centre of the eclipfe was to the N. of Dundec.

Mr 'Yobis Stewart, Prof. Math. at Aberdeen, writcs, that by an obfervation made at Monrofs, lat. $56^{\circ} 4 \mathrm{I}^{\prime}$,

And that, by an obfervation made at a place about 18 miles S. W. of Aberdeen.

And that at Aberdeen, Lat. $57^{\circ} 11^{\prime} \mathrm{N}$.
The ecliple began at _- \quad - $-\quad-\quad$ - 8533
Middle of the eclipte, and annular appearance, as near as
he could judge, at $\begin{array}{llll}10 & 23 & 3\end{array}$
End of the amular appearance at \quad _ $\quad-\quad 10244^{8}$
He writes alfo, that he received an account from Mr Reid, Minifter at New Maschar, about 7 Milcs N. W. of sibcrdeen, who observed

The beginning of the annular appearance at - - - 101828 And the end of the eclipte at $\quad . \quad$ nis.

Mr Stewart fays, that, by comparing his obfervation at Aberdecn with this of Mr Reid's, he apprehends he is in a mittake as to his juciging of the middle of the eclipie, and amular appearance; and reckons, that the amular appearance began at A berdeen at $10^{\prime \prime} 19^{\prime}$, and ended as above. By which the total duration of the ammlus was $5^{\prime} 4^{8^{\prime \prime}}$: and the end of the ecliple at Aberdeen was at 11 ${ }^{\text {h }} 49^{\prime}$. $33 \cdot$.

The Rev. Mr Irwin, at Eigiz, lat. $57^{\circ} 34^{\prime}$, fays, the eaftern limb of the moon touched or entered on the weftern limb of the fun at $8^{h} 57^{\prime}$; tho' he fufpects it began a little fooner (another having taken the telefeope out of his hand); for when he looked, the moon was a little advanced on the difc of the fun about 30° from the zenith of the fun towards the W.

The eaftern cufp in the zenith of the fun at - $\quad 9 \quad 610$ Eaftern limb of the moon reached the centre of the fun at 9390 The anmulus began about 30° from the zenith of the fun $\} 10200$ weftward at
The amnulus appeared moft perfect at \quad. 102245
Tho', as nearly as he could difcern, he thought it a little narrower on the S. W. limb of the fun, than it was on the oppofite fide. From hence it fhould appear, that che centre of the ecliple was to the fouthward of Elgin.

The annulus was obferved to break on the S. E. limb of the fun, about 30° from the nadir, at $10^{\prime \prime} 25^{\prime} 30^{\prime \prime}$.

Before the joining of the cufps of the fun, as alfo at the breaking of the annulus, he fays, he obferved a quick tremulous motion, and feveral
irregular bright fyots between the cufps, which difappeared in a few moments; and he thought the moon's body paffed quicker about tine time of the amulus (efpectially as it was forming), than at any other time duing the eclipte.
Before the weftern limb of the moon reached the eentre of the fun's dife, the fun was hid under a cloud, and continued fo, till within fome little time of the end of the ecliphe, which happened at is I $^{15} 50^{\prime}$.

There was no cloud all the time of the formation of the ammlus, or the duration of it; and the thinks he is pretty right, as to the time of its continuance; for both the formation and breaking were very fenfibly to be obferved, and paffed in a moment; affording a very plarant fight, by the irregular tremulous fpots of the fun.

He fays, the darknefs, during the ammens, was not fo great as a lietle before and after; and, when greatef, was only fomewhat dufkifh, but obfervable. Some faw a ftar to the calt of the fin ; but he fiw it not, nor any prefent with him. He was told of it after his obfervation was over.

He fays, that by an obfervation taken of the fun that day at noon, he found that his clock was fomewhat lefs than 1^{\prime} falter than the fum. He fays alfo, that he obferved this eclipfe with a telefonpe: 3 feet long, and that he had a very good burning-glats; but that it had little force, during the ammulus, and fome fhort time before and after.

Mr Duncen Frazer writes to Mr Monro, Prof. Anat. Edin. that he went to the houfe of Culloden, lat. $57^{\circ} 29^{\prime}$ N. on purpofe to obferve the eclipfe; it having been faid, that the centre of the celipfe would pais there; and after having adjufted his clock by the regulator-clock of a watch-maker at Invernefs, he obferved the edipic with a telefcone 5 fect long, and found

| The beginning precifely at | | 8 | 37 | 36 |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Beginning of the ammulus at | | 10 | 0 | 10 |
| End of the ammulus at | | 10 | 5 | 10 |
| End of the eclipe at | | | | |

By comparing his obfervation with that fent him by Mr Irwine at IE/gin, he imagines his clock was not fee to true time, fince there is fo great a difference, and more than the difference of longitude between the two places will allow; it being no more than 26 computed miles, and nearly in the fance parallel of latitude.

Mr Murdock Mackenzic (who has for fome years paft been making a lurvey of the iflands of Orkney, and whofe abilities for fuch an undertaking give us hopes he will for the future, free navigators of a great many melancholy dififters, which formerly happened in thofe feas, thro' the want of true charts) made the following obiervation at Kirkso!!! in the ifland of Poinoma in Orkney the latitude of which is $5^{\circ} 58^{\prime} \mathrm{N}$.

Beginning

Beginning of the eclipfe about - $\quad 840$
End of the eclipfe about - wher - 1137
He lays, that by reafon of cloucs, he could not be perfeetly exact, as to the precife time of beginning or ending; but adds, that the beginning cannot be more than 4^{\prime} wrong, nor the end more that 2^{\prime}. He lays, he is fure he did not fee it amular, but that there remained about \div or $\frac{?}{\text {; }}$ of the fun's circumference intercepted at the middle of the eclipie.
P. S. It having been an opinion pretty generally received, that the darker parts of the moon's furface are water, I take this opportunity to remark, that though thofe lefs lucid fipaces are for the moft part, to appearance, evenly extended furfaces, wisen telefopes of fimall magnifying powers are made ufe of, yct, when they are examined with larger magnifiers, it is caly, to difeern on them many protuberances in a longitudinal direction; and chat thefe rifings are really elevated above the common plane furface, is palt all queftion, from their projecting fhaciows, always oppofite to the fun: Morcover, they are of the very fame colour as the plane they arife from, of the like fnoooth furfaces, without any fenfible afperities; and invariably the fame, under the like pofitions of the fun to the moon, at leaft as far as I have been able to dififover in 12 or 15 years frequent oblervations of them.
5 Being prepared for the obfervation of this celipfe with a reflecting --at Matelefcope about 2 feet long, and being fufficiently acquainted with the drid, by Don motion of an aftronomical pendulum, which I had ufed in my voyage to Antonius de Peru, in making feveral obfervations. I obferved the beginning of the eclipfe to have happened in true time about

The fort al in the dink of the fiun between it's eaftern and fouthern parts, which coukd then be caffly dif- $\}$ cerned, becaufe there was no ether near it, began to bc $\}$. $102344=1-8+9$. immerged

The total immerfion of this fiput
244^{6}
I was not able to oblerve either the emerfion of this fpot, or the end of the whole eciiple; for the fun, being in it's greater altituile above the horizon, made the ufe of the telefeope inconvenient. Nor could the particular number of the digits be conveniently determined for feveral reatons.

About the beginning of the eclipfe, part of the hunar difi had a colour inclining to red, which afterwards increafed with the increate of the eclipte. The day was clear, and the atmofiphere free from clouds, and to it contimued till evening. When the eclipfe was in the middle, there was fome diminution of light; and it's reflexion was obferved to be fomething weaker; and the air was obferved to have loft fomething of it's whial heat; which alteration continued from $\frac{1}{2}$ an hour after the beginning of the c^{-} clipfe to the end.

Fig. 6. Sthe fin, I the moon, a the limb of the fun at which the immerfon began, b the limb of the moon perceived before the beginning of the eclipte.

Fig. 7. NOS I the folar difk; L the eaft, O the wett, N the northern part of the difs, S the fouthern part, a b the fot obferved in the dilk of the fun; c another between the N, and the W. to which the eclipfe did non

Solar Ficlinde. fan 8. 1750. $\mathrm{N} . \mathrm{S}^{2}$
$\mathrm{a}:$ Rome, bs Mr Chrittophes Mare. $\mathrm{N}^{2}+\mathrm{F}+\mathrm{r}$. 3:2. jan. \&cc. 1750. Read Feb. 1. 1749. The firt fyot covered

The obfervation was made with 1 y foot tube, 2610 parts of the micrometer juft clafining the fun's dianmeter. The place of observation was in lat. $41^{\circ} 5 t^{\prime} 0^{\prime \prime}$, and $4^{\prime \prime}$ of time E. of St Piter's.
2. The beginuing was at 859 19 true time. The end of the ecliple at The whole duration

The obfervations were made with the greateft exactnefs, the weather being as favourable as could be withed, the whole time.
M. Euler obferved in his own houle, which ftands a little to the W. of the S. W of the Obfervatory, at the diftance of 1 go Rbinland yaids (verges) in a ftrait line, that

The beginning was at
And the end at
The whole duration

h $/ 1$

That is, $34^{\prime \prime}$ more than at the Obfervatory.
The diameter of the umbra was $6!$ Rbinlend inches.
VI. In the preface to my lunar tables, I hinted, that one ufe of publinhing thofe tables would be , the affifting of perions defirous farther to rectify the lunar Aftronomy, by enabling them more readily to compare the Nexctonion theory with obfervations. Since the publifhing thofe tables, I have fpent fome time myfilf in that comparifon; and here fend you the refult, that you may communicate it to the R. Soc. if you think it deferves to be made publick.

As the morion of every fecondary planet muft partake of the errors in the theory of its primary, I thought proper, before I undertook the examination of the linar numbers, to compare thofe of the fun with obfervations. I compared feveral fets of Mr Flemfead's oblervations, atter the method he himfelf teaches *, which, for many reatons, I think the beft method hitherto ufed; and, with the concurrence of a gentleman well fkilled in thefe matters, determined the mean motion of the fun at Green-

[^4]$85^{8} 30$ true time.
$$
111950
$$

Le:tar frome
Mr Richard Dunthorne, to the Reve. Mr Charles Mafon,
F. R. S. and Woodwardian Prefffor of Nat. Hift. at Cam bridge, centcerning the Moon's Mo. (iom. $\mathrm{N}_{4} \mathrm{R}_{2}$. p. 412. Jan
scc. 1747. Feb. 5. 1 \%4\%.
wich the laft day of Dec. at noon, 1700, O. S. bs $20^{\circ} 43^{\prime} 40^{\prime \prime}$ of its apogec, $=7^{\circ} 30^{\prime} \mathrm{C}^{\prime \prime}$, and the greatelt equation of the fun's centre 1° $55^{\prime} 40^{\prime \prime}$; which, I am fully perfwaded, are very near the truth.

The theory of the fun being thus fectied, I proceeded to examine the elements of the lunar Aftronomy. I began wish oblervations of lunar ecliples about the equinoxes, when the apogee of the moon was in the fun's quadratures; becaule at thofe times I could conceive the moon's motion iffected with no inequality: but the annual one, called by Nexcion the firt equation, and the elliptic one, called profthepberefis: From a comparifon of fuch oblervations I obtained the moon's mean longitude, which came out 1^{\prime}, at leaft, greater than in the tables, and very nearly as Nieiton has it in the Latt ectition of his Principia.

I went on to examine the place and motion of the apogee, and theory of the increafe and decreafe of the eccentricity, as well as the greateft and leaft eccenericities themfelves (from the beft obfervations, and beft fituated that I could procure, all which agreed fo well with the tables, about the fun's mean diftances, that I dare venture to make no alteration therein: indeed I think the Gth equation docs not fo well account for the variation of the motion of the apogee, and change of the eccentricity, according to the greater or leffer diftance of the fun from the earth; and therefore I let mylclf to compute what change this difference of the fun's action upon the lunar orbit would introduce in the moon's place in every fituation of the fun and lunar orbit; and found, after many tedious computations, that the fun being in apogee, this change, where greateft, would amount to about 4^{\prime}, and to $4^{\prime \prime} 16^{\prime \prime}$, when the fun is in perigee. In other diftances of the fun from the earth, this greateft change is proportional to the difference of the cubes of the mean and prefent diftances; and in every Situation of the moon, and of her orbit, the prefent is to the greateft equation nearly as the fine of the excefs of the moon's mean anomaly above twice the annual argument to radius. It increafes the moon's longitude, when the fun is in his
 than 180°; and diminifhes it when otherwife *.

In fine, I compared the theory of the moon, as to her longitude, with feveral obfervations, as well in the octants and femi-octants, as in the fyzigies and quadratures, and found fuch an agreement when the above corrections were made, as feemed ratier to be wifhed than hoped for, confidering the many inequalities wherewith the fun's action difturbs the motion of the moon, and the defects to which the beit oblervations I have hitherto met withal are liable.

I have compared 100 obferval longitudes of the moon with the tables; wiz. 25 ecliples of the moon, all, except the firt, taken from Filampead's Hijacria

[^5]Fizorin Cultefis, the Prisiof. Tramf. and the Mens of the R. Micio. of $S c$. the 2 great eclippes of the fun in 1706 ank 1715: 25 felect phaces of the moon from Flamfeed's Hifforia Cialeftis, and 4 s of thofe longitudes of the nioon computed from Flimafiend's oblervations (by Dr Helley as Lluppofe) printed in the firt edition of the Ififoria Cialefis. They are as fullow:

2; Places of the Moon, computed by myfulf from Flanffead's Obfervations, compared with the 'Tables.

Of the Acceleration of the Moon.

a, the time of the middle of this eclipfe here fet dow:a is from the beginning and end; but Hevelizs fays he could not obferve the beginning exactly. Several intermediate phafes compared tngether mew the middle to have been about 4 ' fooner; to which the moon's place computed is $0^{\circ} 6^{\circ} 14^{\prime} 3^{\prime \prime}$ and diff. $+34^{\prime \prime}$.
b, b, b, the moon's places, obferved on Feb. 2. April 7. and May 22. are computed by mytclf, from the oblervations; there being manifcefly errors, either of the computation or prefs, in thofe prinsed in the Hijt. Caleftis.

Several obferved latitudes of the moon, which I have compared with the tables, flew them to be very near the truth, both in the motion of. the noles, and alfo in the quantity and variation of the inclination.

Of the AcceMoon, by th fame. No
492. p. 162. April, scc.
1549. dated Cambridge, Feb. 28, $1748 \cdot 9$. Read Junc 1 , 1549.
leration of the made in different fituations of the moon and of her orbit in refpect of the
VII. After I had compared a good number of modern obfervations fun, with the Newtonian theory, I proceeded to examine the mean motion of the moon, of her apogee, and nodes, to lee whether they were well reprefented by the tables tor any confiderable number of years, and whether I fhould be able to make out that acceleration of the moon's motion which Dr IIalley fulpected.

To this end I compared feveral eclipfes of the moon obferved by $T y$ cho Brabe, as they are fet down in his Progyminagnata, p. 114, with the tables *, and found them agree full as well as could be expected; ; confidering the imperfection of his clocks, and the difficulty there nzurt commonly have been in determining the middle of the eclipfe from the facts obferved, as publifhed in his 1 Iiff. Colleft. Indeed the finall diftance of time between Tycbo Brabe and Flainfead, rendered Tycbo's obfervations but of little ufe in this enquiry.

The next obfervations that occurred to me were thofe of Bermard Walther and Regionoontanus, which being at clouble the diftunce of time from Flamficad that Tycho's were, feemed to promile fome affitance in this matter : upon comparing fuch of their eclipfes of the moon whofe circumftances are beft related with the tables, 1 found the computed places of the inoon were moftly 5^{\prime} too forward, and in fome confiderably more, which I could hardly perfwade myfelf to throw upon the errors of obiervation; but concluded, that the moon's mean motion fince that time, mutt have been fomething fwifter than the tables reprefent it; though the tiingreement of the obfervations between themfelves is too great to infer any thing from them with certainty in fo nice an affair.

Then 1 compared the four well-known eclipfes obferved by Albangenius with the tables, and found the computed places of the moon in three of them confiderably too forward: this, if I couk have depended upon the longitude

[^6]
Of the Acceleration of the Moon.

longitude or AraEta, would very much have confirmed me in the opinion, that the moon's mean motion mult have been fwifter in fome of the laft centuries than the tables make it; though the difficences between thefe obfervations, and the tables, are not uniform cnough to be taken for a certain proof thercof.

I could meet with no obfervations of eclipfes to be at all depended upon between thofe of Regiomontanus and Albategnius, except two of the fun and one of the moon made at Cairo in Egypt, related in the Prolegomena to Tycho Brabe's IIff. Caleft. p. 34 ; nor any between thofe of Mmbetcgrius anci Ptolemy, befides the eclipfe of the fun obferved by Theon at Alexandria; notwithftanding I carefully fearched all the remains of antiquity I could find with that view. Thefe eclipfes of the fun are the more valuable, becaufe they were obferved in places the longitudes and latitudes whercof are determined by Monfieur Cbazelles of the R. Acad. Sc. who was fent by the Firench King in the year 1693 , with proper infircuments for that purpofe. *

The folar eclipfe oblerved by Theon was in the 1112th year of Nabonafar the 24th day of Thoth, according to the Egyptians, but the 22d day of Pauni, according to the Alcxandrians: he carefully obferved the beginning of 2 temporal hours and 50^{\prime} afternoon, and the end at 4 : hours nearly afternoon at Alexandria. Tbeonis Comment. in Ptol. mag. Conftruct, p. 322. This eclipfe was 7une 16, in the year of Chrift 364 : and the temporal hour at Alexandria being at that time to the equinoctial hour as 7 to 6 , makes the beginning at 3 equinoctial hours and 18^{\prime} atternoon, and the end at 5 equinoctial hours 15^{\prime} nearly.

The eclipfes oblerved at Grand Cairo were as follow.
"Anno Hegira 367 , die 7 foris, qui erat 28 , rabie pofterioris (is eit "ordine menfis quartus, \& incipit illc annus saracenicus die is Auguft, " anno Chiffieno 977) objervatum fuit Cobire in Egypti metropoli mi"tium eclipfis folaris, cuan altitido folis efiet $15^{\circ} 43^{\prime}$. quantitas obicu"tationis 8 digit. Ea finita fol clevabatur $33^{1} \mathrm{~s}$ gr. Ex Scbickardo in "MS."-This ecliple was Decom. 13, in the year of Chritt 977, the beginning at $\delta^{\prime} 25^{\prime}$, and the end at $10^{\prime} 45^{\prime}$, apparent time in the morning.
"Anno eodem die Sabbathi, videlicit 29 menis s Srad' numero diecimi, " qui Padchalis eft corum; eclipfis iolis occupavit digitos 7_{2}^{\prime}. \ln prin"cipio fol altus fere 56°. In fine fol occiduus elevabatur gradibus 26 . "Ex Schickardo in MS." - This eclipfe was 7une 8, in the ycar of Chrift 978. The beginning at $2^{\mathrm{h}} 31^{\prime}$, and the cad at $4^{\mathrm{h}} 5^{0^{\prime}}$ apparcht time afternoon.
"Anno I Iegire 368 (qui incœpit die 9. iugufi, anno Cibrifficno 978) " die Tovis, 14 Syooal, luna fuit orta cum celectu, qui at $5 \frac{1}{5}$ digitos ac"crevit ; cum extaret fupra horizontem gradibus etian 26 dubaudio hi". "s nem nune accidiffe). Schickardus."-.This eeliphe was May 14, in the

[^7]
Of the Acceleration of the Moon.

year of Chrift 979 ; but as the middle cannot be known from what was oblerved of it, I made no uie thercof in this enquiry. The account concludes with the following paragraph:

- "Hæ tres obfervationes habite funt ab Ibn-Yunis, qui juffuregis Abu "Th'y Almanzor, fapientis, Fzypto tunc imperantis, rebus vacabat coat lefibus. Hujus authoris tabulas haber Fac. Golius profefior Lugdun. " (cu: mini inde communicavit ifta) in quibus plurcs alie, fui \& fuperioris "x avi obfervationes extant. Locus obiervationis propinquus urbi Cabiro. "Schickardus."
That the before-mentioned folar celipfes might be applied to the examination of the lunar motions, I contrived the following method; which I think renders eclipfes of the fun as ufeful at leaft as thote of the moon are in that bufincts.

Let $A B C$ reprefent half the carth's enlighteid difk, $A E C$ a portion of the ecliptick projected thereon, FGH tie path of the moon's fhadow over the dik, $E I$ the univerfal meridian, a the fituation of the place at the begiming of the eclipfe, β it's fituation at the eni: thereof, δ the cen. tre of the fhade at the beginning, and sits centre at the end of the eclipfe. Draw $E G, \alpha \zeta$, and β, perpendicular to the path of the fhadow, $\beta \gamma$ parallel thereto; join $\alpha \delta$ and $\beta \varepsilon$, and through α draw θ as perpendicular со $A C$.

Then (computing the true places of the fun and moon at the obferved times of the beginning and end of the eclipfe) we fhall have given δ_{6} the motion of the moon trom the fun in her orbit during the time of the eclipfe, and $\alpha \dot{\delta}=\beta_{6}$ the femidiameter of the penimbra; which are to be rediuced into fuch parts as the femidiameter of the difk contains 10000: The angles $B E I$ and $B E G$, being found by methods commonly known, $\subseteq E I$ their fum or difference will be likewife given. Alfo $E \alpha$ and $E \beta$ will be fines of the fun's altitude at the beginning and end of the eclipfe refpectively; $I E \alpha$ and $I E \beta$, are the angles at the fun betweeen the vertex of the place and the pole of thofe times; which being found, the angle $\alpha E \beta$, their difference will be known, from whence the line $\alpha \beta$ and the angle $E_{\alpha} \beta$ may be computed.

The angle $G E \alpha$ is the fum or difference of the known angles $G E I$ and $I E \alpha$: In the figure before us, the complement of this to a femicircle is $E_{\alpha \gamma}$; which being lubtracted from $E_{\alpha \beta}$ leaves the angle $\gamma \alpha \beta$, from whence and the line $\alpha \beta, \alpha \gamma$, and $\gamma \beta=\zeta_{\eta}$ may be found.

Let $a=\delta_{\varepsilon}-\zeta \eta, b=\alpha \delta=\beta_{\varepsilon}, c=\alpha \gamma$, and $x=\beta_{n}=\gamma \zeta$.
Then $\sqrt{b b-x x}=\gamma, \varepsilon$, and $\sqrt{b b-c c-2 c x-x x}=\delta \zeta$, by Euch. 1. 47.
Confequently $a-\sqrt{b b-x x}=\sqrt{b b-c c-2 c x=x x}$ which being reduced, gives us the quadratic equation $x x+c x=\frac{4 a^{2} b^{2}-a^{4}-2 a^{2} c^{2}}{4 a a+4 c c}$ This equation folved, gives us the value of x, from which $\delta \zeta$ and $n s$ will be likewife had. In the triangle $\alpha \zeta \theta$ we have $\alpha \zeta$ and the angle $\zeta \alpha \theta=$

Of the Acceleration of the Moon.

$G E B$ given, whence $\alpha \theta$ and ζy may be found: confequently iA will be known; and from the obferved time of the beginning of the ecliple, and hourly mution of the moon from the lun, the time when the centre of the Thade is at \forall will be had. Laftiy, in the triangle E ou, we have given the fide E_{α}, and the angle $E \alpha_{1}=B E_{\alpha}$ (the fum or difierence or the angles $B E I$ and $I E, \alpha$) ; therefore the fides E, and x, may be found. But \mathscr{E}_{6} is the diftance of the moon from the fua in the ectiptic, and a. wo.b the moon's latitusle at the time when the centre of the thade is at θ; which may be compared with the computation from the tables for that time.
iay this means I compared the aforefaid folar eclipres with the tables, and found the difference in longitule and latituke, as follows.

The agreement there is between the two lan? of thefe differences in longitude, fhews that the tables reprefent the man mation of the moon's apogee very well for above 700 years, the moun being very near her pe:rigee at the time of one of thofe eclipfes, and near her apogee at the time of the other.

By the fame metho!! I alfo compareci the fun's eclipic, Juby 20, $14 \bar{j}^{-8}$. (which appears, from what is related of it, to have been carefully obfers. ed by Bernard Waltber at Nuremberg), with the tables, and found the dif. ference in long. to be $+10^{\prime} 29^{\prime \prime}$, and in lat. $+9^{\prime} 13^{\prime \prime}$. This wide difference in lat. from the tables, that agree fo well with the former ancient obfervations, confirmed me in the opinion, that the Nuremberg obfervations are too inaccurate to determine any thing from them in this affair.

The eclipfes recorded by Ploiemy in his Almageft, are mort of them fo loodely defcribed, that, if they fhew us the moon's mean motion has been accelerated in the long interval of time fince they happened, they are wholly incapable of fhewing us, how much that acceleration has been. There are indeed two or three of them attensled with fuch lucky circumfances as not only plainly prove, that there has been fuch an accelcration, but alfo help us to guefs at its quantity. Onc of thefe is the eclipfe, faid by Hipparcbus to have been obferved at Bahylon, in the 366 th year of Nabonaflar, the night between the 26 th and 27 th days of T botb, when a fmall part of the moon's difk was eclipfed from the N. E. half an hour before the end of the night, and the moon fet eclipfed. This was in the year before Chrift 383, Decemb. 22. The middile of this eclipfe at $B G$ bylon (fuppofing with Plolemy the meridian of that phace to ${ }^{3} \mathrm{e} 50^{\prime}$ in time E. of the meridian of Alexandria), by my tables was Dec. 22, $21^{\text {b }} 4^{\prime}$ apparcnt time; the duration was $1^{h} 37^{\prime}$, Ftolemy makes i: $1^{h} 30^{\prime}$ nearly; whense
whence the beginning hould have been about $8^{\mathrm{h}} 15^{\prime}$ after midnight: according to Peoleryy, the night at Babyion was at that time $14^{\text {h }} 24^{\prime}$ long, and therefore fiun rife at $7^{\mathrm{h}} 12^{\prime}$ after midnight; and as the moc: had then S. lat. and was not quite come to the fun's oppofition, her apparent fetting muft have been fomething fooner, i. e. more than an lour before the beginning of the ecliple, according to the tables; whereas the monn was feen eclipled fome time betore her fetting; which, I think, demomfrates, that the moon's place niut have been forwarder, and confequently her motion fince that time lefs than the tables make it by about 40^{\prime} or 50^{\prime}. But the computed place of the moon in each of the before-mentioned folar eclipfes obferved at Grand Cairo, being about δ^{\prime} before her place, from oblervation thews us, that the mean motion of shis luminary has been fomething greater in the laft 700 years than the cables fuppofe it, and therefore muft have been accelerated.

This acceleration is further confirmed by the eclipfe, which Hiparchus fays was obferved at Alexandria, in the 54th year of the fecond Calippic period, the 16 th day of Meffori, when (he fays) the moon began to be eclipled half an hour before her rifing, and was wholly clear dyain in the middle of the third hour of the night. This was in the year before Chrift 201. Sep. 22. The middle of this ecliphe at Alexindria by the tables was Sept. 22. $7^{\text {h }} 44^{\prime}$ apparent time; and the churarion $3^{\text {h }} 4^{\prime}$, which makes the beginning at $6^{\prime \prime} 12^{\prime}$ apparent time, that is, about 10^{\prime} after the rifing of the moon at Alexnndria, or 40^{\prime} later than the beginning from oblervation. This difference in time makes a difference of near 20^{\prime} in the moon's place.

The moft antient eclipfe of which we have any account remaining, namely that related by Piolimy, to have been obferved at Babylon the firft year of Nied dokempad, in the night between the 2gth and 30th days of Thooth, in which the moon began to be eclipfed when one hour atter her rifing was fully paft; if, by reafon of the lat. of the expreffion, it be not a direct proof of the acceleration, it may neverthelefs help to limit it's quantity. This eclipfe was in the year before Chrift 721 . March 19. The middle whereof at Babylon, by the tables, was Marcb 19. $10^{\mathrm{h}} 26^{6^{\prime}}$ apparent time; and the beginning at $8^{\mathrm{h}} 32^{\prime}$ the apparent rifing of the mon at that place was about $5^{4} 46^{\prime}$ afternoon; fo that the obferved beginning of the eclipfe was at leat $6^{6} 46^{\prime}$ afternoon, i. e. not above $1 \frac{35}{7}$ before the beginning, by the tables: wherefore the moon's true place coukl precede her place by computation but little more than 50^{\prime} at that time.

If we take this acceleration to be uniform, as the obfervations whereupon it is grounded are not fufficient to prove the contrary, the aggregate of it will be as the fquare of the time: and if we fuppole it to be $10^{\prime \prime}$ in 100 years, and that the tables truly reprefent the moon's place about A. D. 700. it will beft agree with the before-mentioned obfer-

vations; and the difference between the moon's place by the tables and her place in the heavens, will be as follows.

Years before Chif	Etror of「rab.	Years before Chrit	Tab.	Years of Chrif.	Error of Tab.	Years of Chrift.	Error of	Years of Chrift.	Error of Tab.
	11				11		11		
700	560	200	2830	300	- ${ }^{20}$	800	+130	1300	$+40$
600	4950	100	-240	00	- 630	900	+ 240	140	+ 330
500	44 0	A.b.O	1950	500	- 40	1000	$+330$	1500	$+240$
400	3830	,	160		-150	1100	+ 40	10́cs	+ 30
300	- 3320	-	-1230	700		1200	$+410$	17	0 O

VIII. 1. Fuly 28. 10. 13. 28. The penumbra difcernible.
06. 30. The beginning, as moft of the company judged.
18. 38. Mare bumorum juft touch'd.
26. 24. Began to touch Tycbo.
27. 51. Tycho bifected.
24. og. Tycho cover'd.
29. 53. Touch'd Grimaldi.
30. 25. Mare bumorum cover'd.
34. 14. Grimaldi cover'd.

The Moon's
Eccipfe of Ju-
ly $28,174^{8 .}$
obfira'd as Mariborough houfe, by J. Bevis, M. D. No. 4^{89}. p. 522. O\&t. Ev. 1748. Real Nov. 10, 174^{8}.
12. 24. 30. The End.
27. 40. The penumbra quite gone.

About the middle of the eclipfe, the moon's diameter, perpendicular to the equator, meafur'd in a 5 foot telefcope was $33^{\prime} 50^{\prime \prime}$; perhaps $15^{\prime \prime}$ or $20^{\prime \prime}$ greater than it would have been found to be with a 12 foot tube.
2. I made ufe of the fame telefcope, with which I obferved the eclipfe - at Maof the fun mentioned above. The pbafes in this eclipfe being reduced to drid, by D . true time are as follows.

Total immertion of Grimonldus

Snellius and Furnerius under the fhadow	4740
Fracaftorius begins to be immerged	490
Grimoaldus begins to emerge	5116
Mare nectaris begins to be immerged	52.20
Grimonldus totally emerged	5632
Beginning of the immerfion of Mare frecuaditatis	11 1358
Mare bumorum begins to emerge totally emerged	$\begin{array}{rl} 19 & 11 \\ 30 & 18 \end{array}$
Total emerfion of Mare nubiums	4024
Total emerfion of Mare uectaris	
Tycho begins to emerge	4735
Total emerfion of Tycbo	4954
End of the fhadow on the lunar dirk	121022
End of the flronger penumbra	1725
End of any penumbra whatioever	

The beginning of the eclipfe was doubtful, becaufe the fhadow and the penumbra were not well difcerned; and therefore they could not well have been determined, tho' the atmofphere had remained clear, and free from all impediments.
1749. By the Clock. App. Time.

An Ecliple of the Moon, Dec. 12.
1749. obferved at MrGra-ham'sinFlectfreet, by John Bevis, M. D. and Mr James Short, F.R.S. $\mathrm{N}^{\circ} 493$. p. 247. Oct. Acc. 1749. Read Dec. 14.1749.

The appulfes of the fhadow to the fpot Tjcho were obferved with a reHecting telefcope, which magnified about 40 times, and may be ferviceable for geographical purpofes. The beginning and end of the eclipfe were eftimated by the bare eye, and a refracting telefope of a fmall magnifying power; larger powers being apt to dilate the fladow too much, and thereby render thefe phafes more uncertain.

A computation by Dr Halley's tables give the beginning - $65_{2} 0$ end - -9145^{8}
2.

7 o The umbra came on the lower limb of the moon, almoft

ritAt Es: directly under the fpot called $\tau^{\prime} y c b o$, in Keil's map of the moon.
${ }_{2} \frac{3}{7}$ The penumbra overfpread Tycbo.
$6{ }^{+}$The umbra approached the lower part of Mare bumorum, and Tycho immerged into the umbra.
21 Mare bumorum totally immerged into the umbra. ting in Huntingdonfhire, by Mr Wm .
Eltobb, jur.

41 The lower part of Mare neetaris immerged into the umbra.
57 The N. E. limb began to evolve itfelf; and that part of $1 / 49$. the limb below the fpot called Grimaldus, began to appear brighter than when the penumbra covered it.
89 The upper part of Mare bumorum emerged from the umbra.
21 Mare bumcrum totally emerged.
$45^{\frac{1}{2}}$ Tycho emerged from the umbra.
5:. The penumbra left Tycho.
$54 \frac{1}{2}$ Mare neilaris emerged from the umbra.
90 The penumbra left Mare neEtaris.
$4{ }^{7}$ Mare frounditatis emerged from the umbra.
16 The umbra left the moon a little below Mare fäcunditatis. 18 The penumbra went off, and the eclipfe ended.
At the time of the greatelt obfcuration, the edge of the umbra paffed below Grimaldus; approached the lower part of Peninfula fulgurum; pafied over the upper part of Mare neezaris, and croffed about the middle of Mare facuriditatis. The edge of the umbra did not feem to make one regular curve, but looked like two curves, meeting in a very obtufe angle near Peninfula fulgurum. And that part of the moon, immerfect in the umbra, was not vifible.
3. It was fo boifterous a day, that I defpair'd of being able to fee this ecliple, and for that reafon neglected to put my micromater in order. Rome, by Mr My clock had likewile been altered without my knowledge, on which Chrithopher account I betook mylelf too late to the obfervation, as will appear by the following detail. The place of obfervation is in lat. $41^{\circ} 54^{\prime} \mathrm{o}^{\prime \prime}$. and $4^{\prime \prime}$ of time eaftward of St Peter's. For I take it for granted that the Read Feb. i. 4 of Therme Diocleffance are, according to Biancbini's determination, in lat. of $4^{\circ} 54^{\prime} 27^{\prime \prime}$.

Chord of the part eclipfed $1 j^{\prime}$ as was cectuc'd from the ?
map of the moon
Hence beginning of the eciiple N_{2}........... 74053

Eclipfe of the Moon, June 8, 175°. obforved in Sur ry-ftreet in the Strand; ty Mr John Catlin and Mr James Short, F. R. S. No. 496.
X. r. We expected to have feen the moon rife eclipfed before the fetting of the fun; but were prevented by clouds. About half an hour after 9 , we faw the moon then totally eclipfed; tho' confiderably brighter on the E. than on the W. fide; by which we found that the was then paft the middle of the eclipfe.
p. 523 . Nov. E゚ヶ. 1750.
Read Nov. 1. 1750.

Emerfion, or end of total darknefs, at 9450 End of the eclipfe at $\quad \ldots, \ldots, \ldots 5130$

Here follows a computation of the fame eclipfe by Mr fobn Catlina from Dr Halley's tables, which he fays was done in a hurry; however he knows of no error in the calculation.

Beginning at - - - - 71425 Immerfion at 82120
True oppofition at \quad. 9024
Emerfion at - 9455^{2}
End at
$105^{2} 53$
2.

The eaftern part of the fky continued covered with clouds, at

Length time by	true time	Moon vifibl Ariftarchu	Emerf Iready di	$\begin{aligned} & \text { a goo } \\ & \text { red. } \end{aligned}$		
the clock	h ' "	lucid parts		that is	,	"
$1050 \quad 0$	105037		3220		9	49
54 -	5437		475		11	26
5813	5850		4192		12	19
11022	1 I		537		13	52
33^{6}	43		$5 \quad 245$		15	26
63	640		$5 \quad 349$		16	13
- 953	1030		$6 \quad 152$		17	27
121	123^{8}		$6 \quad 321$		18	43
148	1445		$7 \quad 122$		19	56
169	1646		$7 \quad 265$		21	
1832	$19 \quad 9$		$7 \quad 319$		21	25
2040	2117		855		22	9.
23.7	2344					
2516	2553	-				

I can hardly believe that the difference of meridians can be fafely determined by lunar eclipfes.

Time by the clock
h $1 /$
If 40 I I. 4037 end of the fhadow according to me.
$4040 \quad 45 \quad 17$ end according to a friend.
4030 end by the projection of a friend.
393^{8} end by the corrected Kalendar of Leipfick.
39 II end by the connoifance des temps.
39 46. end by the ephemerides of Manfredi.

Making ufe of the difference of meridians which I determined in 1743. by a tranfit of \S over \odot, which is alfo ufed by the Acad. in their Connoiffance.

Diam. of D by a microm. $=11142$ that is 30.57
Hence femidiam. of $D=$ - - $1528 \frac{1}{2}$
The fame according to Nicaf. Grammat. $=1525$ \{See Roft's \} Tab. 12. J. Gauppius $\quad 152^{\frac{1}{2}}\left\{\right.$ Aftron. \int Tab. 13 . Kalend. Leipf. $\quad 1532$

Toral Ficlipre of the Moon, obfereed Dec 2, 1750. in the morn, in phe Strand, London, 2 bout $5^{\prime \prime}$ of fine Ily. of St Paul's, and $2 n^{\prime \prime}$ W. of the
R. Obferv. at Greenwich; by Dr Beris and Mr James Short, F. R. \mathcal{S} ibid. p.
575. Read Dec. 13, 1750 .

The moon was now got fo low, and day-light fo far advanced, that no more phafes could be obferved with any degree of certainty.

Thefe obfervations were made with a reflecting telefcope, that magnified 40 times, and a refracting tclefcope, which magnified 12 times; and the times were the fame through thefe two telefcopes; for the air was exceeding clear, and the fhadow well definech, the penumbra being fcarce fenfible.

Here follows a computation, made from Dr Halley's tables, by Ms Fobn Catlin, of Guy's hofpital; and fent to Mr Sbort the day before the ecliple.

Dec. 1 . in the morning 1750.
Beginning of the moon's eclipfe
Immerfion at
Emerfion at
End at

- From hence it appears, that the celipfe began about o' fooner than the computation from Dr Halley's tables gave it; but the computation which Mr Brent made and publified fome time before the eclipfe happen- ed, was within I^{\prime} of the time obferved; and this exactnefs he imputes to his leaving out 3 of the 7 equations of the moon, publifhed by Sir I. Newaton in his thcory of the moon.

XII.

1744 Tune 6 II 135^{8} Immerfion of the centre of Jupiter certainly
3514 a Serpentaria culminates.
4315 Emerfion of the centre.
With a tube of 12 fect.
N. B. The clock was too now $1^{\prime} 25^{\prime \prime}$

Occultation of Jupiter by the

 Moon, oblerved at London, by J. Bevis, M. D. No.473, P. 65 .
May हैं.
1744. Read

Junc 7,5744 .
XIII. In all the Orrerics that I have feen, Venus is reprefented as having The Pirenomeher axis perpendicular to the plane of the ecliptic, and her diurnal motion na of Venus, thercon equal to 23 hours of our terreltrial tin:e. Hence, as her annual reprefented in
 confequently, to an eye placed in Venus, the fun will always appear to go james Ferguthrough a fign of the zodiac in $19 \frac{1}{2}$ of her days; and as her axis has no fon, agrecable inclination, the muft have a continual equality of her days and nights, to the obfervawithout any variation of fafons, and fo her annual motion can be of no other ufe than to keep her from falling down to the fun.

But Bianchini gives a very different account of her; which is, that March, ${ }^{479, \text { p. }} \begin{aligned} & \text { 287. } \\ & \xi_{c} \text {. }\end{aligned}$ her axis inclines 75° from a line fuppofed to be drawn perpendicular to 1-46. Read the plane of the ecliptic (by which I fuppofe he means her own ecliptic, and not the earth's; ; and that her diumal motion is performed in 24 tions of S . Bitays 8 lours of days and 8 hours of our time; and this will caule her year, which is alterations. almont cqual to 225 of our days, to contain only $9 \frac{1}{+}$ of her days; and this odd quarter of a day in Venus will make every fourth year a leap year to her, as happens to us on earth, by the 6 hours that our year contains above 365 days: and to her the fin will appear always to go thro' a fign of the zodiac in little more than $\frac{3}{4}$ of her day, which is equal to $18 \div$ of our days; and in going round the fun, her N . pole conftaintly leans towards the 20 th degree of cquarius.

Thus, with regard to the abfolute length of Venus's year, Bioncbini agrees with Caffini and other Aftronomers: but differs widely in other very remarkable particulars, from which arife fo many advantages, as to make that planet incomparably more fit for it's inhabitants, than we could poffibly conceive it to be by a quick rotation on an axis perpendicular to it's annual path. For Veimus is fo much nearer the lun than our earth is, that it is well known fhe muft have twice as much light and heat as our earth has; and then, was the fun always perpendicularly above her equator, we cannot imagine but that her equatorial parts inuit be burnt up with heat, and her polar parts minhabitable, by reaton of the greatnels of cold, occafioned by the fun-beams being parallel to, or making fo very acute angles with, the horizon,

The Pbanomena of Venus, reprefented in an Orrery.

But, by fuch a motion as Bianchini defcribes, and which I have exatily reprefented in my Orrery, thefe inconveniences are avoidel; for there is no place in Venus but what will have the four feafons every year, and the heated places will have time to cool; becaufe, to any place over which the fun paffes vertically on any given day, he will, on the next day, be 26° from the vertex thereof, even tho' the place be on the tropic; and if it be on the equator, one day's declination will remove lim $37^{ \pm 0}$ from it.

I having confidered in general what the effeets of the fun's quick and great declination would be in Venus, as occafioned by the great inclination of her exis, with her low diurnal and quick annual motion; and finding that her globe in the Orrery, by being not quite an inch in diameter, was infufficient for folving her phenomena to any degree of exactnefs; I took the following method, by which I could do it mechanically, to ferve my purpofe.

Along the middle of a ftrait narrow nip of parchment I drew a black line, and then meafuring my parchment round a common globe of 9 inches diameter, cutting it to as when the ends were a little overlapp'd, it would become a girdle, and ftick fart on any great circle of the globe. Having thus fitted it, I took it off; and laying it flat on a table, I divided one fide of the black line into $9 \frac{1}{4}$ equal parts for the $9^{\frac{1}{+}}$ days in Venus's year, and then I fubclivided each day into 24^{h} or equal parts, of which the odd quarter contained 6, and fet the proper figures to them. The other fide of the line I divided into 12 equal parts or figns, and each fign into 30° : by this means I could eafily fee, at every day and hour in Venus, in what place of the ecliptic the fun was: and putting this girdle round the globe, at an angle of 75° to the equator, croffing it in two oppofite points, it would, by reprefenting Venus's ecliptic drawn on her globe, ferve for the folution of problems concerning her, as the ecliptic on our terreftrial globe does for thofe relating to our earth : for, by bringing the fun's place, at any day or hour, to the brafen meridian, I had thereby his declination for that time; which gave me both an eafy and fure way for drawing the fipiral of the fun's motion over the body of Venus on this globe; and then, by elevating it to different latitudes, I could immediately fee where the fipais cit the horizon in any lat. and at what height or declination they crofs'd the meridian; as by the hour-circle I could eafily perceive the times of the fun's rifing and fetting, and his amplitudes on the horizon; and I called that the firit meridian, which paffed thro' the northern tropic, in the place where the fun touch'd it at his greateft N. declination; reckoning the E. or W. longitudes on the equator from that merictian. But this meridian will only ferve for one year; becaufe, as the odd quarter of a day in Venus, caufes the fin to crofs her equator 90° weitward of the former place every year, the place of the fun's greatent declination at the N. tropic will be in a meridian 90° weftward of the former alfo. Things being thus premifed in general: I now proceed to

The Phanomena of Venus, reprefented in an Orrery.

give as good a defcription as I can of the particular phanomena in Vemus, confining myfelf chiefly to what happens in her northern hemifphere; knowing that the fame muft happen, mutatis mutandis, in the southern.

1. Her axis is inclined 55^{10} more than the $a x i s$ of our earth, and therefore the variation of her feafons will be much greater than of ours.
2. Becaufe her N. pole inclines toward aquarius, and ours to cancer; her northern parts will have fummer in the figns where thofe of our earth have winter; and vice verfa.
3. The artificial day at cach of her poles (containing 4^{3} apparent diurnal revolutions of the fin) will be equal to $112 \frac{\text { matural days on our }}{2}$ carth.
4. The fun's greateft declination, on each fide of her equator, amounts to 75° : therefore her tropics are only 15° from her poles, and her polar circles at the fame diftance from her equator. Consequently, her tropics are between her polar circles and poles, contrary to what thofe on our earth are.
5. The fun, in one apparent diurnal revolution from the equator, and any meridian where he croffes it, to the fame meridian again, changes his cleclination at leaft 14° more on Wenes, than on our carth from the equinox to the folftice.
6. Let us now fuppofe an inhabitant ftanding on her N . pole, where the fun's declination is always the fame with his altitude, and looking toward that point of the horizon where the firft meridian (above mentioned) cuts it; and let him call that point the S . fo fhall he have a meridran fixt, which will determine the other cardinal points on the horizon; tho' ftrictly fpeaking, every point of the horizon to him is S.: yct, for once, let us fuppofe him to have an horizontal plane, fixed with it's S. point in this meridian, and thence divided and numbered like the horizon of a giobe: put a moveable ruler with fights to turn round the centre of this plane, for obferving the fun's amplitude at rifing and fetting; and a graduated quadrant to be fixed in the N. and S. line, with a moveable index, for taking the fun's altitude, in paffing over the meridian. The fame degree or part of a degrec, that gives him the fun's altitude, will alfo give him it's declination, and he will have the following phanomena.

The fun will rife $22 \frac{1}{2}^{\circ} \mathrm{N}$. of the E. and going on $112 \frac{1}{2}^{\circ}$, as meafured on the horizontal plame, he will crofs the meridian at an altitude of $12 \frac{1}{2}{ }^{\circ}$; then, making an entire revolution without fetting, he will crofs it again at an altitude of $48 \frac{1^{\circ}}{2}$, at the next revolution he will crols it as he culminates, at the height of 75°, being only 15° from the zenith; and thence he will defcend in the like fpiral manner, crolfing the meridian firft at an altitude of $48 \frac{1}{2}^{\circ}$, then, at an altitude of $12 \frac{1}{2}^{\circ}$, and going on thence $112 \frac{1}{2}^{\circ}$ he will fet $22 \frac{10}{2} \mathrm{~N}$. of the W . having been 4 IE volutions and s parts of one above the horizon.

The Pbanomena of Venus, reprefented in an Orrery.

7. If the fpectator turns his inftrument 221° toward the E. and then fuppofes his quadrant in the plane a new meridian to him; the fun will then rife due E. and fet in the N. W.; and his declination in the meridian will not be the fame as before; for he will firf crofs it at an altitude of 10° : next of 46 ; then, of $74^{\frac{6}{3}}$; and, at $1_{\frac{1}{2}}^{\frac{1}{3}}$ after, he will come to his greateft declination; from which, in his defcent, he will not crofs the meridian in the fame degrees of altitude, as in afcending he did.
8. Now, let the fpectator turn his inftrument 90° ftill more toward the E. and the fun will rife due S .; and from thence making a complete revolution, he will crofs the meridian at an altitude of $37^{\frac{1}{2} 0^{\circ}}$, making another revolution, he will crofs it at an altitude of 700^{30}; and, going on $7^{\frac{1}{2}}$ (or 112°) he comes to his greatet declination in the W. N. W.: thence defcending, at the end of the third revolution he croffes the meridian $58 \frac{30}{3}$ high; at the end of the 4 th he crofics it in $23^{\frac{30}{3}}$ of alt. and, going on thence 225°, or $\frac{5}{6}$ of a revolution, he fets in the N.E.
9. If the fpectator will now turn his inftrument juft half round, fhifting his meridian 180°, the fun will rife in the N .; and, going on 180°, or $\frac{1}{2}$ a revolution, he will crofs the meridian at an alt. of 19°; then, making a complete revolution, he will crofs it at an alt. of 55°; and going on thence $292^{\frac{1}{2}}$ he comes to his greateft declination in the E. S. E. from which place he defcends, croffing the meridian in $73^{x 0}$ of alt.; and, in the next rev. he croffes the meridian at an alt. of $4 \frac{1}{2}^{\frac{1}{2}}$: at the fourth rev. he croffes it at an alt. of 5°; and going on thence 45°, or $\frac{1}{5}$ of a rev. he fets in the S. W.
10. The fun being thus for half a year together above each pole of Venus in it's turn, will caufe the whole year at her poles, as well as at the poles of our earth, to contain only one day and one night: but there, the difierence between the heat in fummer and cold in winter (or of mid-day and mid-night) is greater than betwixt the fame on any two places of our carth; becaufe, in Venus, the fun is for half a year together above the horizon of one or other of the poles; and for at least z^{2} of a rev. (or about 16 of our days) within 20° of the zenith; and during the other half of the year, always below the horizon; and for a confiderable part of that time, at leaft 70° from it: whereas at the poles of our earth, the' the fun is for half a ycar together above the horizon, yet his alt. is never more than $23^{\prime \circ}$ above it in fummer, nor his deprefifon greater than that quankity below it in winter. When the fun is in the cquator, he is feen in the horizon of both poles; $\frac{1}{2}$ of his dife above, and the other below: and defcending quitc below the horizon of one pole, he afcends in a vifible fipiral above that of the other, until he comes within 16° of the zenith, where he kceps the fane alt. nearly for fome time; then defcends in the like fpiral manner, till he gets below the horizon, where he continues invifible for the other half of the year. This will uccafion to each pole one fpring, one harveft, a fummer as long

The Pbanomena of Venus, reprefented in an Orrery.

long as them both, and one winter, equal in length to the other 3 feafons.

The fun's great diftance below the horizon of Venus's poles, will make her winters much more uncomfortable than at the poles of our earth, where they have twilighe more than hale the winter-time; unlefs fhe be furrounded with an atmofphere capable of occafioning a twilight, at leaft as long in proportion to her winter, as our twilight is to ours. But this can hardly be fuppofed; becaufe always, when we fee Vemus, She appears with the fame conftant ferenity; and therefore I am apt to believe the has a fatellite, to fupply, in fome meafure, the abfence of the fun; as our moon does to our earth's poles, for one half of the winter conftanty, without ferting, from che firft to the third quarter. 'Tis true, that we are inconveniently pofited, with regard to Venus for feeing her fatellite (if the has one); becaufe, when her moon or fatellite has it's enlighten'd fide toward us, it may be too far diftant to be feen, becaufe Venins is then beyond the fun, and, confequently, furtheft from us; and when fhe is betwixt us and the fun, or there abouts, her full moon would have it's dark fide to us: and tho' Venus be then neareft the earth, yet her fatellite could no more be feen by us, than we can fee our own moon at her conjunction. When Venus is at her greateft elongation, we fhould have only one half of the enlighten'd fide of her full moon turn'd towards us; and even then, perhaps, on account of it's fimallnefs, it may be too far diftant to be feen by our telefcopes. But of this only by the-bye.
11. At the tropics, the fun in fummer will continue for about 15 of our weeks together above the horizon without fetting, and as long below it in winter without rifing. While he is more than 15° from the equator, he neither fets to the inhabitants of the neareft tropic, nor fets to thofe of the other; whereas, at our terreftrial tropics, he rifes and fets every day in the year. But to let us know more particularly the pberomenc of Venus's tropics, we will fuppofe the inhabitant, who has feen the abovemetion'd appearances at the N . pole to have travell'd thence along the firft meridian 15° to the northern tropic, carrying his engine or inftrument along with him; and to have fet it due N . and S . in the place where the faid meridian interfects the tropic; and as the meridian of every place is in a great circle paffing thro' the zenith of the place and both poles, he can now be at no lol's how to fettle his meridian, and obferve as well the amplitucie and azimuth, as the alc. of the fun; who will rife to him $10^{\circ} \mathrm{N}$. of the E. with about I° of N. declination: and going on 100° (to be meafured on the horizontal plane) he will crofs the meridian with $12^{\frac{10}{2}}$ of N . declination, and $27^{\frac{1}{2}}$ of alt.; then, making an intire rev. without fetting, he will crofs the meridian at 482° of decl. and $63 \frac{1}{2}^{\circ}$ of alt. : at the cnd of the next rev. he will crots the meridian in the $z e-$ nitb at the greateft decl.; namely, 75°; and thence he defcends in the like fpiral, croffing the meridian at the fame alt. as above, till, in his fitth rev. he lets $10^{\circ} \mathrm{N}$. of the W.
12. Let our traveller now remove weftward on the fame tropic, to a meridian 97^{10} diftant from the firt ; and there he wiil have very great differences of the rifing, fetting, and meridian alt. of the fun; which will now rife to him the firft time, in the S. point of his horizon, at $12^{\text {h }}$; at 1^{h} he will be about half a degree above the horizon, and will fet at 2^{h} : fo this fhort artificial day in Venus (which is fomewhat longer than, two natural days on our earth) will have no forenoon at all. The fun, after continuing almoft 14 of Vemus's hours below the horizon, fuppofing each diurnal rotation to be divided into $24^{\text {h }}$, will rife a little before $4^{\text {h }}$ next morning, near the N. E. ; and, going on 130°, he will then crofs the meridian with 22° of N. decl. and 37 of alt. : then going on without letting, he again croffes the meridian at 57° of decl. and 72 of alt. ; and
 $7^{\frac{1}{2}}{ }^{\circ}$ to the N . of the E.: from thence, completing his rev. to the meridian, he now croffes it in $71^{\frac{1}{2}}$ of decl. being only $3^{\frac{1}{3}}$ from the zenith: at the next rev. he croffes the meridian with $35^{\frac{1}{2}}{ }^{\circ}$ decl. and 53°. of alt. : at the next, which is the fourth rev. he croffes the meridian with r_{2}^{20} of decl. and 166_{2}^{10} of alt.; and then goes on 65°, and fets near the W. S. W.
13. Suppofe now that our traveller removes ftill further weftward, on the fame tropic, to a meridian 105° diftant from this his fecond ftation; and then the fun will firt rife to him in the S. E. about g^{h}; and going on thence 45° he will crofs the meridian with 6° of S. decl. and 9 of alt. at 12^{h} : about $2^{\text {h }}$ he will be 1° higher; and, thence defcending, he will fet near the N. W. a little before $9^{\text {h }}$: fo the afternoon of this day is almoft 6^{h} (about 6 natural days with us) longer than the forenoon; and it's night is but little more than $3^{\text {h }}$ long: for the fun, after going a little below the horizen, rifes in the \mathbf{N}. point thereof; and, making half a rev. he crofies the meridian with 33° of decl. and 48 of alt. thence, makinga whole rev. he croffes the meridian at 66° of decl. and 81 of alt.: at the next rev. his decl. is 63° (having paffed the greateft 14^{h} before): at the next, it is 28° of decl.; and, going on thence about ${ }^{1} 6^{\circ}$, he fets N. W. by N. about half an hour after 9 ; and continues invifible till 3 quarters paft 5 in the next morning, when he rifes about $4^{\circ} \mathrm{N}$. of the E..; and, going thence forward 94°, he crofies the meridian about 5° alt. and 10 of S. decl. having kept the fame alt. very nearly for $3^{\text {h }}$; then defcending, he fets in the S. S. W. about half an hour pait I; which makes the afternoon 5^{h} and about ${ }^{\prime} 2^{\prime}$ fhorter than the forencon of the fame day. The fun now fets for about 15 of our weeks to Venus's northern tropic, and rifes to the fouthern; in which the phenomene are the fame: each tropic having the 4 feafons once every year; the winters being longer than the fummers, tho' not quite fo long, in proportion, as at the poles.
14. Having faid fo much concerning the N. pole and tropic, proceed we now to ftation our inhabitant in a place of 45° of N . lat. where the firft meridian cuts the parallel, and he will have the following pbenomene.

The fun wiil rife $43^{\circ} \mathrm{E}$. of the S. a little before 9^{h}; and, afcending very quickly, he will, in little more than $3^{\text {h }}$, crofs the neridian at an
alt. of 19°, with 26° of S. decl.; then groing on 62°, he will fet near the W. S. W. about $5^{\text {h }}$ in the afternoon; by which means it is almoft $2^{\text {h }}$ longer than the forenoon; each hour in Venus being equal in length to $24^{\mathrm{h}} 20^{\prime}$ of our terreftrial time. The next day the fun will rife $3^{\circ} \mathrm{N}$. of the E. about half an hour paft 5 in the morning, and will crofs the meridian with $12 \frac{1}{2}$ of N . decl. and $57^{\frac{1}{2}}$ of alt. ; and will fet in the N . W. by W. about half an hour paft $7: 10$ that the afternoon will be $2^{\text {h }}$ longer than the forenoon. The next day the fun rifes $53^{\circ} \mathrm{N}$. of the E . about $3^{\text {h }}$; and will crofs the meridian $3^{\frac{1}{2}} \mathrm{~N}$. of the z nith; or with $86 \frac{1}{2} 0$ of N . alt. and $4^{8 \frac{1}{2}}$ of decl.: then he goes round without fetting; and croffes the meridian $30^{\circ} \mathrm{N}$. of the zenith, where he comes to his greateft decl.; from which he returns in the like firal toward the equator, and beyond it; but will not rife and fet at the fame hours as before: for, having made a rev. without fetting, in the next he fets $53^{\circ} \mathrm{N}$. of the W . about $9^{\text {h }}$: next morning he rifes in the N.E. by E. about half an hour paft 4 ; croffes the meridian with $12 \frac{10}{20}$ of decl. and fets $3^{\circ} \mathrm{N}$. of the W. about half an hour paft 6; and now the forenoon is $2^{\text {h }}$ longer than the afternoon. The next day the fun rifes about $7^{h} 62^{\circ}$ E. of the S. ; paffes over the meridian at an alt. of 19°, with 26° of S. decl.; and fets a lietle after 3 ; which makes the forenoon to be about $2^{\text {h }}$ at leaft longer than the afternoon: and now the fun will continue below the horizon at leaft 12 of our weeks without rifing to this inhabitait of Venizs.
15. In this place of Venss the hour and amplitude of the fun's rifing, for one half of the year, are the fame with thofe of his fetting in the other hall; which will alfo happen in all places under the firft meridian, where he rifes and fets: but, if our Spectator pleafes to remove along the parallel of 45° lat. eaftward 14°, the phanomena of things will then be very different to him; for the fun from once rifing in the N. E. by E., will pafs over the meridian with $3 \frac{1}{2}^{\circ}$ of N. decl. and fet due N .; which will make the afternoon fomewhat above $4^{\text {b }}$ longer than the forenoon; and the next morning the fun will rife at $2^{\mathrm{h}} 21^{\frac{1}{2} \mathrm{O}} \mathrm{E}$. of the N. or about the N. N. E. As to what would happen on the other days concerning the fun's rifing, and fetting, Imall not take any further notice of it; but, if the inhabitant will travel eaftward 37°, fill upon the fame parallel of lat. he will fee the fun, at making his firf appearance from the fouthern tropic, rife due S. at 12^{h}; and, getting about half a degree above the horizon, when he has gone forward about 9°, he will then defcend, and fet about a quarter after $1:$ fo there is only $\mathbf{1}^{\text {h }}$ and a quarter in the firft day of the fun's appearance; and the 2 d day will be 11^{h} long; but the $3^{\text {d }}$ day will be about 87^{h} long; for the fun will make 3 rev. and fomewhat more than an halt without fetting : the fourth day will be 11^{h} long; and the fitth will only contain 1^{h} and a quarter; for the fun will rife about $18^{\mathrm{C}} \mathrm{E}$, of the S . and fet in the S . point of the horizon.
16. We will now fuppofe that the fpectator lias travellied from 45° of N. Lat. to the equator, and has a mind to take a four round the fame, becaufe the phernomena will be very different in different parts thereof; thoi:gh the fun will tife and fet to cyery part of it, in every apparent revolution; but we shall only confider in general what happens at two places thereof: the firft place fhall be that, where the firft meridian crofTes the equator; and the lecond, a place in $2_{2}^{10} \mathrm{~W}$. of the firt. To each of thefe places the finn will always rife at 6 , and fet at 6 , though fometimes his mertitian alt. may be 11° more or lefs than his midnight depreftion; and in other places the difference will amount to 15 or 16°; to that, if the diurnal and noetturnal firials of the fun's motion on the body of this planet were meafured, the one would very much exceed the other. To the firt of thefe two places the fun will rife $74^{\circ} \mathrm{S}$. of the F . in coming from the fouthern tropic, and fet $6 \times$ S. of the W. having been 22° high at mid day, and will be $32^{\frac{1}{2}}$ depreffed below the horizon at midnight. The next day he will rife $44^{\circ} \mathrm{S}$. of the E. and fet $26^{\circ} \mathrm{S}$. of the W. having been 55° ligh at noon, and will be 74° depreffed at midnight. The third day he will rife $\frac{1}{2}^{\circ} \mathrm{S}$. of the E . and croffing the equator at half an hiour alter 10 , he will, in $72^{\text {h }}$ atter, fer $12^{\circ} \mathrm{N}$. of the W. and to proceed, clanging his rifing and fetting amplitude cerery day, in advancing towaril the northern tropic, till he reaches it ; and then lis feeting amplitude, in going from it, will be the fame as his rifing amplitude in coming toward it. In the fecond place, all I fhall take notice of, is, that the fun, in coming from the fouthern to the northern tropic, will crofs the equator at g at night; and, in going from the northern to the fouthern tropic, he will croils the equator at mid-day.
17. At the equator the fün's rays will be as oblique, when his declination is greateft, as they are at London, when he touches the tropic of Capricorn in Deeember; becaufe thic tropics of Venus are as far from cach lide of her equator, as the tropic of Capricorn is from the parallel of LoinHon on our earth, thecefore, at Venus's equator, there will be two winters, two liprings, two fummers, and two autumns, every year: and becaufe the fun flays for fome time near the tropics, and paffes fo quickly over the equator, every winter there will be about twice as long as fummer: buit, becaufe of the quick return of fummers, and the gencral heat on the body of Venus, the winters there will be very mild; and fo will make the equator, and all places thereabnuts, very temperate, and fit for habitation.
18. Thofe parts of Venss which lie between the poles and tropics, and between the tropics and polar circles, and alio between the polar circles and equator, will more or lefs participate of the phanomencia of thefe circles, as they are more or lefs diftant from them.
19. The places of the equinoxes and folftices on the body of Venus go tackward, or from E. toward the W. 90° evcry year. This is not occafioned by any mutation of her axis from its parallelifm; but by the tun's being \div of a day later in croffing the equator every year, than on the year before; and therefore he will crots it in a place 90° wettward

The Pbsenomena of Venus, riprçented in an Orrery.

of the former every year : fo that to any place where he crofes the equator at noon, he will, on the return of that day at noon in the next year be almoft $10^{\circ} \mathrm{S}$. of the equator, and will crols it at 6 in the evening; fuppofing the year to begin when the fun is on the equator, in paffing from the fouthern tropic to the northern. Hence, though the fpiral, in which the fun's apparent motion is performed, be of the lame fort every year, yet it will not be the very farne; becaufe the fun will pafs vertically over all the fame places but once in every 4 years: and, in the above defcription, I have only fhewn what will happen in general, for I year, having only drawn the fuiral of the fun's motion for that time : and if a fpectator, on any parallel of latitude, hould want to fec the fame appearances of the fun's rifing and fetting every year, and, confequently to have the particular days thereof to be ftill of the fame length with thofe of the year, he muft travel weftward every year 90° on the fame parallel.
20. The inhabitants of Venus will be very careful in adding a day to fome particular part of every $4^{\text {th }}$ year, to keep ftill the fame feafons to the fame times; becaule, as the great annual change of the equinoxes and folitices will hift the feafons forward; of a day every year, they would, in 36 years, fhift the feafons forward through all the days of the year: But, by this intercalary day, every $4^{\text {th }}$ year will be a leap-year; which will bring her time to an even reckoning, and keep her Kalendar right.
21. The great change of the fun's declination every day, which caufes his altitude, at noon, or any other hour, and his amplitude at rifing and fetting, to be fo very different in places lying under the fame parallels of lat. will be of one fingular ufe in Vehus, the like whereof we fhall never enjoy on the earth; and that is no lefs than the giving a fure and eafy method of finding the longitude. For, fuppofe to one place, at noon, the fun's declination is 30°, and to another place, it is only $20^{\circ} 35^{\prime}$ at noon, in the fame revolutional fpiral, going from the equator toward the northern tropic; the difference of thele two declinations is $9^{\circ} 25^{\prime}$: in the fame fipiral from the equator, where any meridian croffes it, to the fame meridian again, the declination changes from o to $37^{\circ} 21^{\prime}$; and the fun has gone $38^{\circ} 55^{\prime}$ in the ecliptic. Thefe things being known, the proportion will be thus; As 75°, the greateft declination, is to to the fun's mation in that time, which is 3 figns, equal to $2 \frac{5}{16}$ revolutions round Vemus; fo is $9^{\circ} 25^{\prime}$ (the difference of declination at two given places) to 9° 44 4^{\prime}, which is $\frac{1}{4}$ part of a revolution; and therefore the one place is $\frac{1}{+}$ part of a circle, or 90° of long diftant from the other: and, as the decl was advancing from the equator toward the northern tropic, the place, in whote mexidian it was $20^{\circ} 35^{\prime}$ is caft ward from the place in whofe meridian is was 30°, fuppofing them both to be in the northern, hemifphere.

Imould be very glad to foe this defeription examince, into, and put in 2 better form, by fome whofe abilities are much,greatcr, han mine: And although if feens Atrange, at the firlt view, that the gteat inclination of

Tenes's axis, with her flow diumal, and quick annual motion, frould make fuch mighty differences of her phenomena from the carth's; yet I verily belicve, that, was the firal of the fun's motion for four years, which would contain 37 revolutions, nicely drawn on a large globe, and the times mentioned in which the fun would rife and fet, with his different amplitudes, altitudes, and declinations, where the effects thereof would differ confiderably in many particular parts of each fpiral; and fo occation remarkable differences of the lengths of day and night, in the fame revodutions, to places under the fame parallels of latitude; a whole volume might be writen in the defeription, if the author would defcend to particulars.

Aletter form Iohn Bicris, M. D. 10 Martin Folkes, F/7; P.R.S. Éc. limited, by my friend's requeft; to muft intreat you, if you think containing/ome it worth while, to inform the R. Soc. that Mercury's motion has not Obfervations concerving
Mercury.
No. 473. p. $1744, M a y$ 17. The apparent right afcenfion of a Gemirio- ? 48. May 心́r. rum, according to Dr Bradley's obfervations _ . . 99210
 fented May 4. 1744.

SMay.	Appr, time.	Long, \%	Latitude.	Comp. Rt. Afc.
2315	83115	$\begin{array}{llllll}\text { I- } & 28 & 56 \quad 51\end{array}$	15758	N. 88507
-9 17	8.266		(1)4445	91741
2n3 18	9440	15930	1 3640	921153
(19	84100	2513^{8}	128 128	$93 \quad 9 \quad 12$
May.	Comp. Declin.	Obfd. Rt. Afc. - $1 / 1$	Cbrd Declin. - /"	Error Comput. Rt. Afc. Declin.
15	252612	884920	252620	- $47-8$
17	251300	9174	251256	-37 + 4
18	$25 \quad 415$	921110	$25 \quad 427$	$43-12$
19	245443	$93 \quad 8 \quad 20$	245456	$52-13$

Tranfit of XV. In the obfervation of this tranfit, I chiefly made ufe of 3 inftruMercury over ments ; the firft of which was a good telefcope of 10 feet, to which I fitted
the Sun, Nov. 5,1743 . at the Obfir-
vatory at
Giefen; ly Chrifian Lewis Gertien, Math. Prof. and.F. R. S. No. 482. p. 376. Jan. छc. 3747. Read.Jan. 22, 1746-7.

A little

A little after 8^{h} in the morning, the clouds, which had totally obfcured the heavens, began to break unexpectedly; and in a Thort fpace of time the fun began to fline clear through the opening. I applicd my telefonpe immediately; but not being able to fee any thing of Mercury or of any fpot whatfoever, I endeavoured to talke the horizontal diameter of the fun by repeated obfervations, and though the rapidity of the motion made it not cafy to do this, yet I thought Ihad pretty juftly found the femidiame ter to be $21 \frac{22}{12}$ rev. of the micrometer. I afterwards found the verrical femidiameter at about $11^{\text {h }} 20^{\prime}$ exactly $21 \frac{18}{72}$ rev. How much thefe numbers make in the parts of a great circle will be fhewn below.

When I had taken the horizontal femidiameter of the fun, it was hid again by very thick clouds; but at $9^{\text {h }} 6^{\prime} 25^{\prime \prime}$ on a fudden I faw Mercury on it's difk, being wholly entered, if I rightly remember, but yet adhering to the cdge. But going to look at the clock, in the abfence of my anhftant, on my return, I found the fun covered with clouds; fo that I dare not affirm what was the exaet time of the contact.

The following obfervations were made in the intervals of the clouds. I was favoured by the calm ftate of the air, and by the abfence of many fpectators. The body of appeared round and black with a determinate edge, and without any figns of an atmofphere, but to minute, as to appear to the naked cye not above twice as thick as the hair of a micrometer. About $\mathbf{1}^{\mathrm{h}} 10^{\prime} p$. m. till the egreffion, the clouds were very diftinct; but by that time the fun cauled fuch an undulation of the limb as I could not by any means remove.

The aft col. of the following table fhews the time by the clock. The 2d, the true corrected time. The 3 d , the fpaces of time from the appulfe of the limbs of the fun to the appulfe of to the horary thread, reduced into feconds of a great circle for the declination of the fun $15^{\circ} 39^{\prime} 18^{\prime \prime}$. The 4 th, the obfervations. The 5 th, the ciftances of $\%$ from the lower limb of \odot in parts of the micrometer. The 6th, the parts of the micrometer reduced to feconds of a great circle. The bafis of the reduction is; 23 entire rev. give $17^{\prime} 33^{\prime \prime 1}=$ which I found to be fuch by the tranfit of \odot and fome of the fixed ftars.

Tranfit of Mercury over the Sun.

Time by the clock after noor.	True time corrected.	Dilt. \% in R R.A.	Obfervations.	ier.	$\underset{\substack{\text { in } \\ \text { Decl. } \\ \\ \hline}}{ }$
1	1628		Preceding limb of \odot to the horary. y to the horary.		
017		144	The limb of \odot began to tremble.		
			Preceding limb of \odot to the horary		
- 21	$\bigcirc 21$				
\bigcirc	-2121		Following limb of \odot to the horary		
			cemed to touch the inner edge,		
	- 37				
-	- 3749		a little beyond it. the great undu. lation and trembling of the limb		
			lation and trembling of the limb quite went off.		

I now proceed to the corollaries to be drawn from thefe obfervations. In the firft place, the diameter of \odot is to be determined: in order to this, we muft have it's decl. and alt. at the time when the vertical diameter was meafured. The decl. of \odot is eafily computed from it's longitude. I found it's long. by the Ludovician tables at ${11^{h}}^{\text {h }} 20^{\prime} 39^{\prime \prime}$ true time (near the middle of it's tranfit) for merid. $25^{\prime} 10^{\prime \prime}$ of time E. of Paris to be $m 12^{\circ} 37^{\prime} 37^{\prime \prime}$. To this long. anfwers S. decl. $15^{\circ} 39^{\prime} 18^{\prime \prime}$. The diftance of time from the appulfe of the preceding limb of \odot to the appulle of the following, by obf. $11,12,13$ and 14 , is $2^{\prime} 15^{\prime \prime}$, which time being converted into arcs of the equator, gives $33^{\prime} 45^{\prime \prime}$. Therefore, if this arc for the decl. be reduced according to the rules of the Spherical doctrine into parts of a great circle, the diameter of the fun will be $32^{\prime} 30^{\prime \prime}$.

By the aftron. obf. of Pkilip of Butibach, Laindgrave of Heffe, the latitude of the city of Butijuach, which is not above 4 hours furney diftant from Giefen, is $50^{\circ} 28^{\prime}$. Wherefore I take $50^{\circ} 30^{\prime}$ for the latitude of Giefen. Hence the alt. of \odot when it's vertical diameter was meafured, is between the 23 d and 24 th degree more or lefs. The femidiameter of - in parts of the micrometer was $21 \frac{18}{7} \frac{\mathrm{rev}}{}$. which according to nyy ta- time $32^{\prime} 26^{\prime \prime}$. But becaufe of the refraction it ought to appear lefs thin the truth, and by de la Hire, tab. v. that defect is $4^{\prime \prime}$. This being added, we have again $32^{\prime} 30^{\prime \prime}$. But if we make ufe of a newer table of refractions conftructed from Tcylor's Hypothefes, which Halley * publifhed, and preferred before the reft, the defect will be lefs only by fome thirds.

I found the horizontal femidiameter, as I faid above, to be in parts of the microm. $21 \frac{22}{72}$ rev. the duple of this quantity gives according to my table, $32^{\prime} 31^{\prime \prime}$ of a great circle. Therefore thefe 3 obdervations agree very well together, and make the diam. of $\odot 3^{2} 30^{\prime \prime}$.

I proceed now to the angle feen of the apparent path of with the ecliptick. I followed the method of Manfredi in the tranfit of 1736 +, which alfo I have made ufe of. I drew a fcale with great exactnefs, and found, that if the mean place is fought between the places of ubli. 15 and 16 arithmetically corrected, and then through this, and alio through that, which obf. 5 determines, a rigit line be drawn; that it fhews it's true apparent path in the difk of \odot as near as polfible. This principle being laid down, I applied the numbers. The mean dift. between obi. 15 and 16 corr. from the following limb of \odot is $1817^{\prime \prime}$ of a great circle. The mean dift of \S between the lame obfervations from the inferior limb of \odot $790 \frac{1 / 1}{2}$. The dift. of the place of obr. 5, from the following limb, is $794^{\prime \prime}$. Dift. from the inferior limb, $288^{\prime \prime}$. Thefe differences therefore form a rectangular triangle, the firft of which is the bafe, and the other the catbetus. The calculus being made, the angle at the bafe is $26^{\circ} 9^{\prime}$, to which the angle of the path, with the circle parallel to the equator, is equal. After the fame manner I fought the angles of the feveral places; beginning with obf. 7 , with the place of obr. 5 , and they came out as follows.

By obf. 5 and 7 the angle is 2633

Wherefore, when in the former cafe, the angle at the bate is $26^{\circ} 9^{\prime}$, and in this, $26^{\circ} 11^{\prime}$, I take the mean $26^{\circ} 10^{\prime}$ for the angle feen of the

[^8]+ Sce Vol, VI. p. 195.
path

Fath with the parallel circle. Hence, the angle of the apparent path with the horary, $16^{\circ} 10^{\prime}$. But to the place of $0,12^{\circ} 37^{\prime} . \mathrm{m}$ anfwers by de la Hire's tab. to the angle of the ecliptick with the merid. $107^{\circ} 43^{\prime}$. Therefore the angle of the apparent path of $¥$ with the ecliptick, is $8^{\circ} 26^{\prime}$.

For the left diftance of the centres, I chofe two obfervations, the middle way. between which was fhewn by the type to betaken, nor were they much diftant from the very path, namcly the 7 th and noth. From the diftances of from the interior limb, I fubtracted $8^{\prime \prime}$ allowing $5_{2}^{1 \prime \prime}$ for the femidiameter of $\underset{\sim}{*}$, and the reft for $\frac{1}{2}$ the thicknefs of the parallel thread: for the diftances are to be taken from the centre of the tube, not from the edge of the thread. And then from the diftance of $\%$ from the following limb in obf. 7. Semid. \odot, the angle of the path with the paralitel circle being found, I difcovered, by the analyfis of the triangles, the laft diftance of the path, or of the centres of \odot and $₹$ to be $9^{\prime} 2^{\prime \prime}$. By obl. 10 the diftance is $9^{\prime} 7^{\prime \prime}$; therefore I take the mean $9^{\prime} 4^{\frac{1}{2} \prime}$ for the true dift. of the path from the centre of \odot. From thefe premifes, I drew the following conclufions by a trigonometrical calculation.

The tine of the conjunction, the pofition of the nocie, and the inclination of the orbit, cannot hence oe immediately difcovered; for there is ftill required an exact deternination of the ftay of the centre of $叉$ orn the difk of \odot, which I cannot lafely determine from my obfervations. But by comparing the intervals of the times with the diftances of many places in the path, I found the horary motion to be about $5^{\prime} 5^{\prime \prime}$, and therefore that the whole flay of the centre of on the difk, is pretty near $4^{\mathrm{h}} 33^{\prime}$. And as an error of 1^{\prime} or 2^{\prime} of time in this cafe, makes but a fmall difference in the lower node, in the inclination of the orbit, I hall briefly fet down what is produced by this hypothetical calculus. And becaufe, by probable reafoning, the trepidation of the limb anticipated the contact of $¥$ with the inner edge, and confequently the egrefs, let us fet. down

The true time of the egrefs of the centre of $\not \approx$ on the dijk
of \odot at Giefen - - - - - . . . - - 1370
Fralf the ftay on the difk _ 21630
The middle of the tranfit will be \quad. - Nov. 4. 232030

[^9]By the horary motion and portion of the path, between \& and inidulle, the time of the tranfit through that portion will be

Therefore true time of δ at Giefon
Let us therefore lay down the cift. of merid. between Giefer and the Obf. at Paris, rejecting feconds - $\quad 025$ o
The true time of δ at the Obfervatory at Paris will be - $2242 \quad 2$
Equation of time by the Ludovician tables - . - 02024
Mean time of \& at the Obfervatory at Paris - - - $\quad 222138$
To this time the place of the fun by the Ludovician ta- $0,{ }_{n}$ bles- - - - - M 1237 o

By the diff. between the lat. in the ingrels, egrefs, and δ, and by the ftay of the centre on the difk $4^{\mathrm{h}} 33^{\prime}$ the time h , "/ refults which finifhes from of to \& \quad - - - 103125

By tab. Ludoric. from which the Caroline here fcarcely differ, in this fpace of time $₹$ proceeds heliocentrically in the celiptick - . . - - - - - $\quad{ }_{2} 3913$

Therefore place of the node by thefe hypothefes - - \& 151613
But if the ftay of the centre of $¥$ be fuppofed $4^{h} 32^{\prime}$ then 8 will be

But if the ftay of the centre of be fuppofed to be $4^{\text {h }}$ 34^{\prime}, then $\&$ will be

But if we fuppofe the dift. of from the earth, to be as 676 to 313, as the Great Halley defines it *, then the inclination of $\not \searrow$ in δ will be

From this arc and the dift of $\underset{\sim}{ }$ in the ecliptick from $\&$ follows at length the inclination of the orbit, and in the firft cafe. where the ftay of the centre is fuppofed to be $4^{h} 33^{\prime}-0 \quad 7 \quad 5$

But if the ftay of the centre of $¥$ on the difk is fuppofed to be $4^{\text {h }} 32^{\prime}$, the inclination of the orbit will be - $\quad 0 \quad 7 \quad 6$

Occultation of XVI. Apparent Time.
Cor L.onis
by the Moon,
on Thurday, 1747, Mar. 1282419
March 12.
1747, in Sur-
rey freet in the Strand, London, weith a refiec-

The far immerg'd into the dark limb.
It emerg'd from the cnlighten'd limb a fmall matter to the W . of the moon's zenith.
ting telefope,
made by Mir
Short, F.R.S. in the immerfion, with different telefcopes; but I faw and pronounced rubich magni.

[^10]the emerfion 2 or $3^{\prime \prime}$ before them. - There had been an exact obferva- fet about 100 tion of the fun's tranfit at noon; and the clock gain'd about \div a fecond a day.

We reckon Surrey-Street $27^{\prime \prime}$ in time W. of the R. Obf. at Greenvich. municated to ${ }^{\text {the Royal So- }}$ cicty by J .
Mr Jobn Catin had a few days before deliver'd me a computation of this eclipfe, corrected from two places of the moon, obferv'd the 28th of February and the 2d of March 1729, correfponding pretty nearly with her prefent fituation; as likewife from the ftar's pofition, as I had rectify'd it from feveral late obfervations; and this gave the
$\mathrm{N}^{\mathrm{o}} 4^{8} 3$. p . 455. March \&c. 1747.

XVII. The comet which appeared rowards the end of laft Dec. and Aleter from in the following months 7an. and Feb. 1744. was firft feen in England, the Rev. Mr at the Obfervatory of the Earl of Macclesfield, Dec. 23. between 5 and 6 in the evening. It formed, at that time, an obtufe-angled triangle, with α of andromede, and $\gamma \operatorname{peg} a f$, the comet being at the obture angle; and it's paffage over the meridian was obferved at $5^{\mathrm{h}} 3^{2}$, mean Oxford time. His Lordhhip's obferver could not then take it's diftance from the vertex accurately, the comct's tranfit being unexpected; however, by an obfervation made at Paris the fame evening by Mr. Monnier we have the diftance very nearly.

His Lordfhip the next day acquainting the Rev. Mr Profeffor Blifs with this difcovery, gave us an opportunity of looking after it at $O x$ ford; but, unfortunately, bad weather, and a continued fucceffion of cloudy evenings prevented our obferving it, till Dec. 3 1. but the weather proving more favourable at Sberborn, it's R. afc. and decl. were taken by his Lordflip, the refult of which obfervations is as follows:
Note, That the equal time is made ufe of in the following obfervations, and that the comet's tranfits (reduced to the meridian of Oxford) are only given to the neareft half minute, as being fufficient for computing it's places.

Dec. $23^{\text {A }} 5^{\text {h }} 3^{\prime}$) the R. afc. of the comet by the tranfl inftrument at Sberborn was found to be $5^{\circ} 48^{\prime} \mathrm{I}^{\prime \prime}$; and it's polar diftance by Mr Mor:nier $68^{\circ} 18^{\prime} 35^{\prime \prime}$.

Dec. $27^{d} 5^{\text {h }} 7^{\prime \frac{1}{2}}$) the R. afc. of the comet, obferved at Sberborn, was $3^{\circ} 41^{\prime} 7^{\prime \prime}$; and it's decl. $21^{\circ} 7^{\prime} 13^{\prime \prime} \mathrm{N}$.
$D c c^{\prime} 2 S^{d} 5^{\mathrm{h}} 1^{\prime \frac{1}{4}}$) the obferved R. afc. of the comet was $3^{\circ} 11^{\prime} 8^{\prime \prime}$; and it's diftance from the pole $69^{\circ} 0^{\prime} 38^{\prime \prime}$.

Dic. $31^{d} 4^{1 /} 44^{\prime}$) the R. afc. of the comet, by the transit inftrument, was tound to be $1^{\circ} 44^{\prime} 40^{\prime \prime}$; and it's decl. $20^{\circ} 36^{\prime} 37^{\prime \prime} \mathrm{N}$.

The fame cvening, at $5^{\text {h }} 53^{\prime}$ the fky favouring us at Oxford, the diaunce of the comet from aldebaran, taken with Hosilgy's quadrant, was
$60^{\circ} 10^{\prime}$, corrected for refraction, $60^{\circ} 11^{\prime}$; from γ pegafi $7^{\circ} 2^{\prime \prime}$; corrected, $7^{\circ} 2^{\prime} 40^{\prime \prime}$.

Fan. $12^{\text {d }} 9^{h} 10^{\prime}$ the comet followed ϕ pegaff, in a 5 frot zlafs, $1^{\circ} 43^{\prime} 32^{\prime \prime}$ of \mathbf{R}. afe.; and was more northerly than the ftar $\mathrm{r}^{\circ} 3^{6^{\prime}} \mathrm{co}^{\prime \prime}$: the R. afe. of the ftar, by the Greenswich oblervations at that time, was $354^{\circ} 52^{\prime} 12^{\prime \prime}$, it's decl. $77^{\circ} 41^{\prime} 55^{\prime \prime}$: therefore the comet's R . afc. was $35^{\circ} 35^{\prime} 44^{\prime \prime}$, and ir's dect. $19^{\circ} 17^{\prime} 55^{\prime \prime}$.
Fan. $13^{4} 6^{\text {b }} 30^{\prime}$) the diftance of the comet from aldebaran, at a medium of leveral trials by the quadrant, was $65^{\circ} 26^{\prime} 50^{\prime \prime}$; corrected for refraction $65^{\circ} 28^{\prime} 10^{\prime \prime}$; it's diftance from γ pegafi $6^{\circ} 31^{\prime \frac{1}{2}}$; corrected, $6^{\circ} 3^{\prime} 45^{\prime \prime}$.

At $\delta^{h} 20^{\prime}$ the comet followed ϕ pegaff $1^{\circ} 21^{\prime} 13^{\prime \prime}$ of R . afc.; and was more northerly than the ftar $1^{\circ} 30^{\prime} 33^{\prime \prime}$. Hence the comet's K . afc. was $356^{\circ} 13^{\prime} 25^{\prime \prime}$; and it's decl. $19^{\circ} 12^{\prime} 28^{\prime \prime} \mathrm{N}$.

Fan. $16^{\text {a }}$ at $6^{\text {h }} 33^{\prime \prime}$ the comet's diiftance was obferved by the quadrant from aldelisren $66^{\circ} 33^{\frac{z^{\prime}}{\prime}}$; corrected for refraction $66^{\circ} 33^{\prime \prime} 10^{\prime \prime}$; from $\gamma \operatorname{pegiaf} 7^{\circ} 0^{\prime \frac{1}{7}} ;$ corrected $7^{\circ} 1^{\prime}$.

At 8^{b} the fame evening) the comet followed ϕ pegafs in the 5 foot glafs $10^{\prime} 24^{\prime \prime}$ of R. afc.; and was more northerly than the ftar $1^{\circ} 13^{\prime}$ $24^{\prime \prime}$. Hence the comet's R. afc. was $355^{\circ} 2^{\prime} 3^{6^{\prime \prime}}$; and it's decl. 13° $55^{\prime} 19^{\prime \prime} \mathrm{N}$.

Fan. $23^{\text {d }} 6^{\text {h }} 11^{\prime}$ the comer's diftance was obferved by the quadrant from aldebaran $69^{\circ} 26^{\prime \prime}$; corrected for refraction $69^{\circ} 28^{\prime} 5^{\prime \prime}$; from γ pegafi $8^{\circ} 42^{\frac{1}{7}}$; corrected $8^{\circ} 42^{\prime} 35^{\prime \prime}$.

FInnuary $23^{d} \eta^{\mathrm{h}} 29^{\prime}$ the comet preceded ϕ pegafi $2^{\circ} 43^{\prime} 27^{\prime \prime}$ in R. afc.; and was N . of the ftar, in the 8 foot glats, $26^{\prime} 32^{\prime \prime}$. Hence the comet's R. alc. was $35^{\circ} 8^{\prime} 46^{\prime \prime}$, and it's decl. $18^{\circ} 8^{\prime \prime} 27^{\prime \prime}$.

The comer this evening appeared exceedingly bright and diftinct, and the diameter of it's nucleus nearly equal to that of 'yupiter's; it's tail, extending above 16° from it's body, pointed towards ζ of andromeda; and was in length, fuppofing the fun's parallax $10^{\prime \prime}$ above 23 millions of miles; but cloudy weather fucceeding, we loft this agrecable fight till Fied. $5^{\text {th. }}$.

Feb. $5^{j} 7^{h} 31^{\prime \prime}=$ a fmall ftar of pegafus, marked a by Baver, preceded the comet in R. afc. $1^{\circ} 40^{\prime} 20^{\prime \prime}$; and was S. of the ftar $54^{\prime} 23^{\prime \prime}$: the R. alc. of the ftar, by the Greeniuich obfervations at that time, was $343^{\circ} 0^{\prime} 4^{\prime \prime}$; it's decl. $13^{\circ} 49^{\prime} 56^{\prime \prime}$: wherefore the comet's R. alc. was $344^{\circ} 40^{\prime} 24^{\prime \prime}$; and it's decl. $14^{\circ} 44^{\prime} 19^{\prime \prime} \mathrm{N}$.

Feb. $11^{\text {d }} 6^{h} 37^{\frac{1}{2}}$ the comet followed ξ pegaft; the correction for refraction being allowed $43^{\prime} 1^{\prime \prime}$ in R. afc.; and was S. of the ftar $50^{\prime} 3^{\prime \prime}$: the R. afc. of ξ, by the Greenwich obfervations at that time, was 33° $2^{\prime \prime} 24^{\prime \prime}$; it's decl. $10^{\circ} 51^{\prime} 3^{\prime \prime}$: therefore the comet's R. afc. was 339° $11^{\prime} 25^{\prime \prime}$; and it's decl. $10^{\circ} 1^{\prime} \mathrm{N}$.

Feb. $12^{\mathrm{d}} 6^{\mathrm{h}} 33^{\prime}$ the comet followed ζ pegafi $56^{\prime} 45^{\prime \prime}$ of R . afc. ; and was more foutherly than the ftar $44^{\prime} 42^{\prime \prime}$. The R. atc. of ζ, by the Greenwich obfervations at that time, was $337^{\circ} 10^{\prime} 15^{\prime \prime}$; it's polar diftance
diftance $80^{\circ} 29^{\prime} 53^{\prime \prime}$. Hence the comet's R. afc. was $33^{\circ} 7^{\prime} 00^{\prime \prime}$; and it's decl. $8^{\circ} 45^{\prime} 25^{\prime \prime} \mathrm{N}$.

Feb. $13^{\text {d }} 6^{\mathrm{h}} 25^{\prime}$ the comet preceded p pegafi $7^{\circ} 41^{\prime} 31^{\prime \prime}$ in R. afc.; and was more foutherly than the ftar $1^{\prime} 13^{\prime \prime}$: the R. afc. of the itar, at that time, was $344^{\circ} 41^{\prime} 55^{\prime \prime}$; it's polar diftance $82^{\circ} 40^{\prime}$:- whence the R. afc. of the comet was $337^{\circ} 0^{\prime} 24^{\prime \prime}$; and it's decl. $7^{\circ} 18^{\prime} 47^{\prime \prime} \mathrm{N}$.

This was the laft obfervation made at Oxford, the comet being now fo ncir the fun, and withal fo low in the evening, that the great difficulty of finding any ftar to compare it with, made us defift from attempting it again; however, the prodigious brightnefs it acquired, by it's near approach to the fun, made it vifible in the day-ime. And at Sherborn,

Feb. $16^{3} 23^{\text {h }} 4^{\frac{1}{2}}$ it's R. afc. by the tranfit inftrument, was found to be $333^{\circ} 13^{\prime} 53^{\prime \prime}$; and it's decl. $0^{\circ} 2^{\prime} 40^{\prime \prime} \mathrm{S}$.

Fieb. $17^{d} 23^{h} 36^{\prime \prime}$ the R. afc. was obferved $33^{2} 33^{\circ} 20^{\prime \prime}$; and it's decl. $2^{\circ} 29^{\prime} 00^{\prime \prime}$.

By the help of thefe obfervations, which were made by the $\mathrm{Rev} . \mathrm{Mr}$ Profeffor Blifs (the tranfits excepted taken at Sberborn', I was enabled, by the method delivered in the third book of the Principia, to determine the comet's parabolic trajectory; and found the place of che aicending node to be in $8.15^{\circ} 45^{\prime} 20^{\prime \prime}$; the logarithm of the peribelion.diftance 9,346472: the logarithm of the diurnal motion 0,940420: the place of the peribelion $\bumpeq 17^{\circ} 12^{\prime} 55^{\prime \prime}$, the diftance of the peribelion from the node $151^{\circ} 27^{\prime} 35^{\prime \prime}$: the logarithm, fine, and co-fine of the inclination of the orbit to the ecliptic $9,805138,9,832616$: and thence the time the comet was in the vertex of the parabola, or the time of the peribelion, Feb. $19^{\mathrm{d}} 8^{\mathrm{h}} 121$: the motion of the comet, in it's orbit thus fituated, was direct, or according to the order of the figns.

From thefe elements, by the help of Dr Malley's general table 'to which they are adapted), I computed the comet's places for the times of obfervation, exhibited in the following table: to which are added the comet's longitudes and lat. deduced from the obferved R. afcenfions and declinations together with the errors between the obferved and computed places; the obfervations being all reduced to Oxford mean time.

VOL. X. Part i .

$\begin{aligned} & \equiv 80 \\ & \text { 苗品 } \end{aligned}$	$1=11110.0$	$\begin{aligned} & 1+t+t+t \\ & \text { gNoncon } \end{aligned}$	$1 \log _{0}^{1}+t$
		$\begin{aligned} & \text { manmonn } \\ & \text { anminn } \\ & \text { mogagag } \end{aligned}$	 のペ～～～
		ボットペロッチ ベッロ゚～ロー ＋t＋mmo。 	OMN～＝ Nivoman ジッジッm $\dot{x} \dot{x} x \dot{x}$
		mmento anmmony cogagag	
		 なt／かmoo $\dot{\varepsilon} \delta \dot{\varepsilon} \dot{\varepsilon} \dot{\delta}$	 －ざッごm $\dot{x} \dot{x} \dot{x} \dot{x} \dot{x}$
		ㅇํํํำํํ～ 000000 n 	－mmN゙がm NOOONM $\underbrace{n=2 n v i}_{\text {Nith }}$

Perhaps it may not be thought foreign to my purpofe to remark, that the nodes of the comet, and the planet Mercsiry, are fituated within lefs than half a degree of each other; which, I fuppofe, gave rife to a report, that the comet had carried Mercury from it's orbit. In order therefore to find how nearly they approached each other, I had the curiofity to bring the matter to calculation; and prefently found, there was-above a week's difference in the times of their coming to the nodes; the comet paffing it's defcending node, Feb. 22. about $2^{\text {h }}$ in the morning; and Mercury not coming to his till Feb. 29. the comet moving all that tinte fonthwards with a prodigious velocity. Again, computing their heliocentric conjunction, which happened Feb. 18. about th in the afternoon, I found the comet was, at that time, diftant from Mercury nearly $\frac{1}{5}$ part of the femidiameter of the orbis magnus; being almoft twice as near to the fun as the planet $\not \approx$; ard having then $31^{\circ} 30^{\prime}$ of N. Lat. Mercury's not exceeding $3^{\circ} 5^{\prime \prime}$ to an eye in the fun: whence it is eafily collected, that the comet could have no fenfible influence upon ϑ 's motion.

I fhall now only beg leave to obferve, that the elements above-given cannot poffibly differ much from the truc. For, after an interval of two months (in which time the comet had gone through almoft ; part of it's orbit), it is furprifing to tind the obferved and computed places agree fo accurately, that the difference no-where amounts to a minute. In fome parts of the orbit, the agreement is ntill greater; particularly, in the obfervations made at Sherborn, which come within half that quantity; and would have correfiponded ftill nearer, but that I was ambitious to contine the whole feries of obfervations within the narrow limit above-mentioned; which I have at laft compaffed, not without a long and tedious calculation.

It may, perhaps, be expectect, confidering the great part of it's orbit the comet defcribed during it's appearance, that I hould have fettled it's period, and foretokd it's return. This, I confefs, would have given mc great pleafure; neither would I have fpared any pains in the inquiry, had I met with any profpect of fuccefs; but the period, upon my attempting it at firft, came out io prodigioully long, the tranfverfe ax of the ellipfe being nearly equal to infinity, that I was ftopped fort in my inquiry; neither could I prevail upon myfelf to refume the fubject again, when, upon turning over Hevelius, I found the account of comets, which had appeared at long intervals of time from us, as it might reafonably be expect'cl, to Mort and uncertain: but, coukd I procure Celfius's oblervations, or any made atter the Peribclion, I might be induced to fall to work again; and would not fail communicating the relult, did I meet with fuccels; and, at the fame time, the elements of the comet, which appeared in 1742, which thave had by me fome time; not to perfect as I could wilh, but as perfect as may be obtainet from the few obfervations I niet with.

The comet was in conjunction with the fun, Fie. 15. about inidnight; and it's perigee, Feb. 16. about 1^{h} in the afternoon; at which time it wis fomewhat nearer the earth than the fun is at it's perigee; the comet's meter of the magnus orbis is（, 100 ）；from which we may have fome idea of the comet＇s magnitude；and therefore may fuppole it，at leaft，equal to the earth．
The Path of the Comer， subich appear－ ed from the leginning of March 1742， to the begist－ ning of April， from the obfer－ cuations made at the Obfer－ ecatory and Col－ lege of the Yefuiss at
Pckin in Chi．
na，and com－
puted accord－
ing to tbe equa－
for and eclip．
rick，and alfo
according to it＇s
groper orbit；
communicated by Mr James Hodgron，F ．
R．S．E＇ Scbol．Reg． Math．Pres． in Nid．
Chrifti，Lond． No． $48 \mathrm{i}, \mathrm{p}$ ． 264 ．Oct． ゼィ． 1746.

But

But from the obifervations made March 2 and 4 , it is manifef, that the comet came to the equator March 3. about 6" a.m. and that it paffed in R. afc. $2 \& 2^{\circ} 3^{\circ}$, with inclination of it's path to the equator $84^{\circ} 30^{\prime}$ very nearly; and therefore that it's long. was $13^{\circ} 35^{\prime}$ in ho, with N. lat. $22^{\circ} 54^{\prime}$. Hence we may collect, that the path of the comet, which did not feem to deviate from a great circle, met the ecliptick in we and $\pi_{5}^{\circ} 19^{\prime}$ with incl. of 80° : and the colure of the equinoxes in the diftance of $50^{\circ} 37^{\prime \prime}$ from the poles of the world toward the equinoctial points with the angle of incl. $77^{\circ} 33^{\prime \prime}$: and the colure of the folltices in the dift. of $23^{\circ} 57^{\prime \prime}$ from the poles of the world, toward the folfticial points with ang. of incl. $13^{\circ} 3^{\prime}$ ' equal to the greatelt elongation of it's orbit from the fame colure in the averfe part, and to the dift. of the poles of the orbit from the equinoctial points.
XIX. That the tracing of the courfes of comets belongs to the prin- The Paths of cipal parts of the fublimer Aftronomy, has been paft all doubt, ever fince the grat Neicton 63 years ago publifhed a problem of finding the path of comets. by 3 accurate obfervations, from this hypothefis, that chey defcribe a parabola about the fun in their courfe. Dr Halley by this method determined the matiss of 24 comets, by calculation, in a table publifhed in the Pbil. Firanf. N. 297. P. 1886. and in the A870 Erud. 1707. P. 216. There are in reality, 21 different comets. The difficuity and neceffity of this work has been fufficiently fhewn by the laft mentioned Aftronomer.

Following the fteps of fo great a man, I have noted by the fame method, 18 other comets, which are not found in that table, in hopes that the periodical time of each may at length be found. But left thofe obfervations of the paths of comets, thould, by any accident be loft, 1 determined now to publifh them, at the fame time, thinking it my duty to mention thofe who have accommodated them to an arithmetical calculus. The part of the comets of 1723 and 1737 was determined by Dr Bradley; of 1744, by Mr Betts; of 1699, 1702, and 1739, by the Abbot de la Caille. The path of the 2d comet of 1,43 by Mr Klinkenberg; that of the 2 d comet of 1746 by M. des Chezenux; of the ift comet of 1748, by Maraldi. I gave the obfervations of the comets feen in 15.33, 1678, 1718, and 1729, to Mr C. Doremes to be calculated. But the comets of $1706,1707,1742$, the ift of 1743 , and the ad of 1744,1 calculated myfulf. I am alfo induced by various reatons to be of opinion, that in May 1748, both here at Amfterdam, and in other places of Eitrope, on the very fame night, 3 Comets were vifible; of which there is no other certain inftance in Hiftory. I have alfo added the comet feen at the end of 1680 , and beginning of 1681 ; becaufe, in the laft edition of Sir 1. Newoton, there are emendations, by which the ellipfis, that it decribed about the fun, is determined. I thall only add, that of the 31 obfervations which I have of the comet feen in $1 / 42$, there are 22 , the longi-
rudes of which farce differ Σ^{\prime}; and 23 of which the latitudes do not differ fo much as 1^{\prime}.

I iere follow the paths of the 19 comets mentioned above.

lime of the equations of the Perihelion at London	cenfion.	tion of the Orbit.	Pcrihetion in the Orbit.	Dif. Perih. from the Sun.	Motion.
-	- 11	Q 111		Part.	
1533 June 1619300	Ω	3549 c	Q 2716	20280	
1678 Aug. 1614.30	吹 1140		± 2746	123802	
$1699 \mathrm{Jan} .{ }^{2} \quad 8 \quad 2219$	≈ 214530	6920	$m 2^{31}$	74400	.
1702 Mauch 2141219	~ 92515	430	$\Omega 1841$	64590	
1706 Jan .194560	r 131123	5514		42686	
	$\begin{array}{lllll}8 & 22 & 50 & 29 \\ 8 & 75 & \end{array}$	883740	If 19	85	
1723 Sept. $16: 610$	$\cdots 14$	4959	૪ 121520		R
1729 June $12 \quad 63541$	$=103515$	77158	\# 221653	406980	Di
1737 Jan. 198200	m 16 22	182045	≈ 25550	$22282 \frac{1}{3}$	D
	r 272514	554244	$\overline{\square 12} 3840$	67	o.
$\text { 1742 Jan. } 2842050$	~ 53445	67411	$\begin{array}{lllll}7 & 7 & 33 & 44\end{array}$	76353'	Retro.
$\left\{\begin{array}{llllll} 1742 & \text { Dcc. } & 30 & 21 & 15 & 16 \\ 17+3 & \text { Sept. } & 9 & 21 & 16 & 18 \end{array}\right.$	$\begin{array}{lllll}\text { If } & 8 & 10 & 48 \\ \text { 4\% } & 5 & 16 & 25\end{array}$	2 15 50 -18	0 2 58 4	$83^{811} \frac{1}{2}$	Dir.
$\left[\begin{array}{llll} 17+3 & \text { Sept. } & 9 & 21 \\ 174+ \\ 174 & \text { Feb. } & 19 & 8 \\ \hline \end{array}\right.$		454821	f 63352	52157	
$17+7$ Feb 17114438	$\begin{array}{llllll}\Omega & 20 & 58 & 27\end{array}$	775655	W9 10541		
$\left\lvert\, \begin{array}{lllll} 1748 & \text { April } 17 & 19 & 25 & 4 \end{array}\right.$		852657	7 5 0	$8+066 \frac{2}{3}$	Kerr
$\begin{aligned} & 1748 \text { June } 7 \\ & 1 \\ & 1680 \text { Dec. } \\ & 7 \end{aligned} 2415$	$\begin{array}{lllll}8 & 4 & 39 & 43\end{array}$	50	4p $\begin{array}{llll}6 & 9 & 24\end{array}$	$65525 \frac{1}{2}$	Dir.
1680 Dec. 723	up	161		${ }_{617}$	Dir.

But the peribelian diftances are eftimated in fuch parts, as the mean diftance of the earth from the fun has 100,000.

Various afronomical obferrations nade in Paragua in S. America; communicated by Jacob de Caitro Sarmento, M. D. F. R. S. No. 490. p. 667. Dec. 1748. Preforited Jan. 28, 17478. Eclipfe of the This eclipfe was obferved at the town of S. Ignatius in Paragua, where Sun, Nov. 5, the altitude of the S. pole is $26^{\circ} 52^{\prime}$, and it's merid. dift. from the R. 1706. Obferv. at Paris $3^{\mathrm{k}} 57^{\prime} 50^{\prime \prime}$.

$$
\begin{aligned}
& \text { Beginning of the eclipfe h'st. civ. } \\
& \text { Digits obfcured } \\
& \text { Digits obfcured } \\
& 852 \text { a. m. } \\
& \begin{array}{lrr}
2 & 9 & 15 \\
3^{\frac{1}{2}} & 9 & 40 \\
4 & 10 & 0 \\
1 & 11 & 5 \\
& 11 & 15
\end{array} \\
& \text { The greateft quantity at } 9^{\text {h }} 50^{\prime} \text { dig. } 4.0^{\prime}
\end{aligned}
$$

XX. I. Eclipfes of the fun and moon obferved in the mifions of the Jefufuits to Paragua, by F. Bonaventura Suarez, Mificnary, with a 5 foot selefope, and a pendwum, vibrating feconds, with an equal notion, and rectified to true time, by the altitude of the fixt ftars.

Beginning below the horizon: fun rife $5^{\text {h }} 53^{\text { }}$. a. m.
-March
11. 1709. St. civ.

Digits obfcured

| 9 | 20 | 6 | 15 |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 30 | 6 | 50 |
| 6 | 0 | 6 | 54 |
| 5 | 0 | 7 | 3 |
| 3 | 30 | 7 | 13 |
| 3 | 0 | 7 | 17 |
| 3 | 30 | 7 | 21 |
| 1 | 30 | 7 | 28 |

End of the eclipse $\quad 73715^{\prime \prime}$
The greateft obscuration was $9^{\text {dig. }} 20^{A}$

Beginning . 755
Total obscuration $8 \quad 58$
Beginning of emerfion 1045
The end was not observed because of clouds.

Immersion of D
Into a fencible penumbra.
Into the fhadow Ariftarcbus obscured Plato obscured
$h, \|$ Emersion of b

1218 O Ariftarcbus Plato | 12 | 30 | 29 | Plato |
| :--- | :--- | :--- | :--- |
| 12 | 37 | is | Out of the fad. 14 |
| 15 | 45 | 0 | | $1246 \circ$ Out of the pen. 15 ± 20

${ }^{h}$ " Digits obscured.
Beginning 25230 o
$25810 \quad 1 \quad 0$

35020
$319.45 \quad 415$
$32920 \quad 545$
3. 212260
$33917 \quad 7 \quad 0$
34155720
3450740 Clouds
$4733 \quad 8 \quad 0$
$\begin{array}{llll}4 & 9 & 36 & 745\end{array}$
$41134 \quad 730$ Clouds
$45_{1} 0 \quad 40$
442 ○ 20
450 ○ 030
The end was not observed because of clouds; it fermis to hive been at $4^{n} 52^{\prime}$:

Various Aftronomical Obfervations.

$4^{\text {h }} 52^{\prime}$: at about $4^{h} 55^{\prime}$ the difk of \odot was feen entirc: D did not apyear on his limb.

The greateft obfcuration feems to have been dig. 8 :-
--Toral of the Mions, Aug. 8. 1729.

Clouds
Beginning of emerfion
Digits obicured 11
Digits 6

h , "
Ocrultation of Jupiter by the Moon, Jec. 9.1729.p.m.

II 35 D cclipfed a fatellite of 4
II 1325 D touched the limb of 4
II 15 O D totally eclipfed 4 .
Eclipfe of the This eclipfe was obferved in the town of S. 耳ofepb. Moion, Dec. Diff. of merid. from R. Obr. Par. $3^{\text {h }} 5^{2^{\prime}} 30^{\prime \prime}$.

1. $1713 \cdot p . \pi$.
b $1 /$
Beginning 1033 31

End $\quad 125657$

The greateft quantity obicured was dig. 5. at about $1 \mathrm{I}^{\mathrm{h}} 45^{\prime}$.
March This eclipfe was obferved on the very meridian of S. Cofma. Diff. of $26.1717 \cdot p \cdot m$. merid. from Paris $3^{\text {h }} 52^{\prime} 20^{\prime \prime}$. Sky clear and calm.

Senfible penumbra
Beginning of the eclipfe 9400

Digits obicured

$\mathbf{1}$	10	8	30
2	10	15	2
3	10	13	41
4	10	31	32
5	10	40	56
6	10	52	8
7	11	10	40

The greateft quantity obfcured feemed to be $7^{\text {dig. }} 18^{\prime}$ Emerfion of D from the fhadow.

Digits obfcured 6
11
$\begin{array}{llll}5 & 12 & 6 & 25\end{array}$
$4 \quad 121635$
$3 \quad 122410$
$2 \quad 12 \quad 3246$
I 123925
End of the eclipfe Emerf. from penumb. is is 0

This

This eclipfe was obferved in the town of S. Michael the Archangel with - Feb. 24. a tube of to fort.

Diff of time between S. Mich. and R. ObS. Par. $3^{\text {h }} 4^{8^{\prime}} 50^{\prime \prime}$.
Beginning of the eclipse
14335
End
Digits obfcured at the middle of the eclipfe $9^{\text {dig. }} 40^{\prime}$.
This total eclipfe of D was obferved in the college de las Corrientes. - Mar. 4. Diff. merid. from Paris about $4^{\text {h }} 2^{\prime}$.

Beginning of the eclipfe - - - $1_{3} \$_{4}$
Total immerfion - - - . . 1434
Beginning of emerfion - - - 1615
End of the eclipfe 1715
4 / " Tubes
Emerfion of the aft fatellite observed at S. Ignat. $10 \begin{array}{lllll}52 & 49 & 13 & \text { foot }- \text { Satellites }\end{array}$
——— at Peter burg by M. Vic. de l'Ifle $16 \begin{array}{lllllll}6 & 42 & 36 & 15\end{array}$ of Jupiter, Diff. 54947 1729.p.m.

Immerfion of the $4^{\text {th }}$ fatellite at S. Ignatius $\begin{array}{llllll}7 & 23 & 0 & 18 & \text { - Mar. } 27 .\end{array}$

Peter burg 13 | 12 | 31 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Diff. 549 31
Emerfion of the ad fatellite at S. Ignatius $\begin{array}{llllll}6 & 36 & 45 & 13 & \text { - Apr. } 8 .\end{array}$
$\begin{array}{llllll}\text { Peter/burg } & 12 & 26 & 15 & 13 & 1730 \text { ppm. }\end{array}$

Difference of meridians 54930

The following phenomena of the fatellitcs of 4 were observed at S. Mgstatius p. m.

At $14^{h} 21^{\prime}$ there was a conjunction of the oft with the 2 d both ftars Dec. 29, feemed to be but one.

At $9^{\mathrm{h}} 10^{\prime}$ there was a conjunction of the it and 2 d .
At $15^{h} 2 \mathrm{I}^{\prime} 15^{\prime \prime}$ the int and 2 d were conjoyned, fo as to appear but ${ }^{1730}$. one. At $15^{\mathrm{h}} 27^{\prime}$ one was yet vifible : but ar $15^{\mathrm{h}} 36^{\prime}$ they were disjoined Jan. 25 .

At $1^{h} 3^{6}$ there was a conjunction of the 2 d and $4^{\text {th }}$.
At $10^{\mathrm{h}} 9^{\prime}$ there was an occultation of the 2 d being retrograde in the Mar. 9 . margin of ψ.

At $6^{h} 38^{\prime}$ there was a conjunction of the 2 d and 3 d .
At $9^{h} 7^{\prime} 40^{\prime \prime}$ there was an occultation of the 3 d direct in the margin 29 . of 4.

VOL. X. Part i.
R

122

At $7^{\mathrm{h}} 21^{\prime} 30^{\prime \prime}$ there was an occultation of the 2 d retrograde in the limb of 4.

At $9^{\text {h }} 21^{\prime} 15^{\prime \prime}$ there was an occultation of the ift retrograde in the limb of ψ.

At $6^{\mathrm{h}} 36^{\prime} 25^{\prime \prime}$ with a tube of 18 f . I obferved an occultation of the If direct in the margin of 4 : but at $10^{\text {h }} 16^{\prime} 57^{\prime \prime}$ it emerged from the fhadow of 4 .
-Jupiter. At $11^{h} 3^{\prime} 5^{\prime \prime}$ the margin of D touched the 3 d fatellite of 4 . The Dec.9. 17^{2}. beginning of the occultation of 24 was $11^{\text {h }} 13^{\prime} 15^{\prime \prime}$. The total occultap. 27.
-Saturn.
Apr. 27. 1730. tion of 4 in the margin of D was $11^{\mathrm{h}} 15^{\prime}$.

The anfule of faturn appeared very thin; but May S $17^{\text {b }}$ faturn was sound and quite deprived of his anfuld.

Afronomical obfervations of F. Bonaventura Suarez, in the towon of S . Ignatius in Paragua. There is anotber town of S. Ignatius more to the E. on the river Zabebiri.

The town of S. Ignatius, more weftward than the reft, is 50 Spanib leagues to the S. from the city of Affumption in Paragua. Lat. of Aflumption obferved by me is $25^{\circ} 14^{\prime} \mathrm{S}$. lat. of S. Ignatius $26^{\circ} 5^{\prime}$.
h 111
Diff. mer. S. $\left\{\begin{array}{llll}\text { Peterfuurg } & 5 & 59 & 40 \\ \text { Paris } & 3 & 57 & 50 \\ \text { Ignat. W. from } \\ \text { Londons } & 3 & 48 & 40 \\ \text { S. Cofma } & 0 & 5 & 30\end{array}\right.$ Emerfions of the ift p.m.
d
for 11

Nov. 3162036 - 13 Dec. 21105249 - 13
${ }_{1730}$ Jan. $6 \quad 9 \quad 040$ - 18 $131053 \quad 8-{ }^{1} 18$ Emerfions of the firft

1730. Feb. $774620 \ldots 13$ Mar. $\begin{array}{r}9 \\ 165621-13 \\ 1653\end{array}$ $\begin{array}{lrrrrrrr} &$| 25 | 8 | 49 | 46 | - | - |
| ---: | ---: | ---: | ---: | ---: | ---: |

Apr. \& 1 \& 10 \& 16 \& 57 \& - \& - \& 18

\& 17 \& 8 \& 39 \& 55 \& - \& - \& 18

May. \& 3 \& 7 \& 1 \& 47 \& - \& -18

\& 10 \& 8 \& 56 \& 51 \& - \& -18\end{array}

Emerfions of the fecond p. n.
Apr. 863645 - $\quad 18$ May. $1063230=-18$

Various Aftronomical Objervations.

Emerfion of the third
d h 111 foot
Apr. $20 \quad 84445$ tube 18
Emerfion of the fourth
Mar. 10922 o doubtful
Immerfion of the fourth
Mar. 27723 ○ - 18
2. The Ay was fo cloudy that I could make only the following ob 1749. Prefent fervations, after the cmerfion of the fecond digit of the moon from the $1748 \cdot \mathrm{~g}$. fhadow of the earch, with a telefcope of $10^{\frac{1}{2}}$ feet.

111

The town of S. Angelo in the mifions of Paragua is more caftward than the reft. It's longitude from the Inand of Ferro is $323^{\circ} 30^{\prime}$ and lat. $28^{\circ} 17^{\prime} \mathrm{S}$.

The fenfible penumbra was $14^{h} 44^{\prime}$ Immerfion of the moon and fpots into the fhadow.
Beginning
Ariftarcbus
Galilenus
Mare bumorum begins
Lower angle of terra pruine
Copernicus \&c.
Mare bumorum entire
Plato and Tycho were equally diftant from the centre of the
fhadow
The fame - - - - - - - - - . 15172

Plato and Tycho at the fame time in the edge of the fhadow 152025
6 digits obfcured - - $\quad 15246$
Menelaus - . . . - - 152728
Dionyfus - - - 152935
Lacus fomniorum - 153610
Beginning of mare crifium - 154341
Middlie - - . . - - 154626
End - - - 154916
Tutal obfcuration of D $\quad \mathrm{R}_{2} \cdots \cdots \cdots{ }^{1} 55^{16}$

Emerfion of D from the fhadow

The moon near the W. trembling with the vapours of the horizon was no longer obferved. The fky was very clear during the whole time: of the ecliplic.

Long. of S. Maria Mij. from Ferro $322^{\circ} 40^{\prime}$ lat. $27^{\circ} 5^{\prime}$ S.

- by F. Au. guftin Hallerftein, Pref. of the imperial College of Afron. at Pe - known.
kin in China,
to Dr Mortimer, No. 494. P. 305. Jan. Eic. 1750. Rea.l Jan. 18. 1749.
Tbe Path and Apr. 26. about 3 in the morning it was firt feen by thofe whofe office Ephemeris of it is to watch in the Obfervatory of this palace; and the place of it was the Comet ficn at Pekin in 1748 . rudely obferved to be in $18^{\circ} x$ with $27^{\circ} \mathrm{N}$. lat. namely in the breaft of pegafus under the ftars λ and μ, the head was equal to a ftar of the 3 d order, and the tail feemed to be about 1° long.
Fig. 9. On the following days there was no poffibility of comparing it accurately with any fixed ftar, and therefore fome places of it can only be grofsly determined by configurations with the neighbouring ftars, which as they cannot bear the ftrictnefs of a calculus, do but barely fhew the path which the comet held.

Apr. 27. about 2 in the morning long. $\not{ }^{2} 1^{\circ} 21^{\prime}$ with N. lat. $31^{\circ} 35^{\prime}$.
Apr. 28. about the fame time $x 25^{\circ} 15^{\prime} \mathrm{N}$. lat. $36^{\circ} \mathrm{o}^{\prime}$
Apr. 29. about the fame time $\nless 29^{\circ} 10^{\prime} \mathrm{N}$. lat. $40^{\circ} \mathrm{o}^{\prime}$
ipr. 30. and May 1. nothing feen for the clouds.
May. 2. the comet could at laft be compared with a little finining ftar in the middle of 5 fmall ftars in the bend of the chain of Andromeda, and is obferved by means of a micrometer and pendulum $2^{\mathrm{h}} 31^{\prime} 49^{\prime \prime}$ true time. The comet more caftward than the ftar $I^{\prime} 50^{\prime \prime}$ of the pendulum, and more northward $57^{\prime} 8^{\prime \prime}$.

May 6. in the morning the comet was compared with a fmall ftar, the 6th in order in Cafliopea in Flamfled's Cat. Brit. by the differences of declinations and diftances, on account of the want of clearnefs in the fky, the flow motion, and malignant light of the comet, it's tranfit could not be determined by feveral feconds; at $2^{\mathrm{h}} 3^{\prime} 57^{\prime \prime}$ true time the comet
was more northward than the ftar $44^{\prime} 8^{\prime \prime}$ and the diffance being taken was $50^{\prime} 50^{\prime \prime}$.

On the following days the comet was compared with feveral unknown fmall ftars, to that it's place could not be determined.

May 15. about $9^{\mathrm{h}} p$. m. For the moment of time was forgotten to be noted, the comet was feen between 2 fmall ftars, from the neareft of which it was diftant, not in an inverted but right fituation $11^{\prime} 3^{\prime \prime}$ S. and from the farther $59^{\prime} 58^{\prime \prime} \mathrm{N}$. It was alfo more to the E than the neareft 1^{\prime} of the pendulum. Thefe 2 fars are placed in the Cat. Brit. in Caffioper, the more northern about the end, in $144^{\circ} 49^{\prime} 7^{\prime \prime}$ with N . lat. $5^{8^{\circ}} 6^{\prime} 56^{\prime \prime}$, and the more fouthern in $43^{\circ} 28^{\prime} 12^{\prime \prime}$, with N . lat. 57° $11^{\prime} 10^{\prime \prime}$, in 1690.

May 16. the comet being compared with the more northern i $11^{h} 1^{\prime}$ $59^{\prime \prime}$ p.m. was more eaftward than the ftar $18^{\prime} 26^{\prime \prime}$ of the pendulum, and more to the N. $26^{\prime} 4^{\prime \prime}$.

May 19. the comet being compared with the ftar of the 6th magnitude in Cepbeus according to Herelius's Cat. in 1700, where it is called fub fofcia fequens, was at $10^{\mathrm{h}} 23^{\prime} 29^{\prime \prime}$ in the fame R. afc. with the ftar: there could not be found any difference of time between their tranfits, and the comet was more northward than the ftar $4^{\prime \prime} 14^{\prime \prime}$. On the following days nothing certain could be determined.

May 29. the comet was feen amongft feveral unknown fmall ftars, and on moving the tube a little there appeared one which Hevclius, in his cat. of fixed ftars 1660, places in Camelopardalus, and calls fupra tergum, five in cufpide pedis finjlbri Cephai 5 magnit. But as the parallel of this ftar was too far diftant from the parallel of the comet to be immediately compared with it, it was compared with an intermediate ftar, and the comet is noted $11^{\mathrm{h}} 21^{\prime} 25^{\prime \prime} p . m$. more E. than that ftar $16^{\prime} 13^{\prime \prime}$ of the pendulum, and more S. $1^{\circ} 37^{\prime} 22^{\prime \prime}$.

After this, as there were no fars near the path of the comet, nor any like to be, wish which it could be compared, they were to be lought farther off: and therefore on the following days it was compared with γ Cephei, from the parallel of which it was not very diftant. Therefore, the telefcope being well fixt,

Various Aftronomical Obfervations.

B. a. $m \cdot 2^{\mathrm{h}} 3^{\prime} 5_{5^{\prime \prime}}$ The comet to the horary more S. tha ${ }^{\text {n }}$ the ftar $42^{\prime} 51^{\prime \prime}$.

p. m. 83159

γ Cephei to the horary.
9. a. m. $\begin{array}{llll} & 4 & 3^{8} & \text { The comet to the horary more S. than }\end{array}$ the ftar $55^{\prime} 34^{\prime \prime}$.
12. p. m. When there was hardly any hope of feeing the comet any longer, ifaw it obfcurely, more like the footitep of a comet than the comet itfelf. Befides the brightnefs of the moon, and the reflexion of it's rays from the clouds, which make all obfervations difficult and doubtful, were great obftructions. I compared it however as well as I could with a fmall ftar, which I afterwards found in a little map and cataloguc of M. de la Caille, inferted in the Mem. de I Acad. 1742. on account of a comet obferved in that year, and noted with R. afc. at that time $91^{\circ} 21^{\prime}$ and N. decl. $73^{\circ} 49^{\prime}$; and marked with the letter A; therefore $9^{\mathrm{h}} 33^{\prime} 6^{\prime \prime} A$ to the horary: then $9^{\mathrm{h}} 45^{\prime} 23^{\prime \prime}$ the comet to the horary more N. than the ftar $46^{\prime} 34^{\prime \prime}$.

Yune 13. p. m. $9^{\text {h }} 13^{\prime} 11^{\prime \prime} A$ to the horary: $9^{\text {h }} 29^{\prime} 43^{\prime \prime}$ the comet to the horary more N. than the ftar $3^{\prime \prime} 15^{\prime \prime}$.

Fune 14. p. n. $9^{h} 15^{\prime} 44^{\prime \prime} \Lambda$ to the horary $9^{h} 36^{\prime} 4^{\prime \prime}$: the comet to the horary more N. than the ftar $25^{\prime} 47^{\prime \prime}$. Then being feen at $9^{\text {h }} 55^{\prime}$ the diftances were meafured of the comet from the ftars.
$125^{\prime} 9^{\prime \prime}, B_{3} 3^{\prime \prime} 39^{\prime \prime}, R_{4} 3^{\prime} 3^{\prime \prime}$.
But the comet ftood juft by the ftar \mathcal{Q}, all which ftars are noted in the place cited above.

Fune 15 and 16 . nothing could be obferved becaufe of clouds.
fune 17 and 18. F. Ant. Gaubil obferved in my abfence from home as follows;

Tune 17. p. m. $9^{\mathrm{h}}{ }^{26} 6^{\prime} 30^{\prime \prime} A$ to the horary.
$53 \quad 35 R$ to the horary.
95515 The comet to the horary in the fame parall. with A.
Tune 18. p. m. $95^{2} 14 \quad A$ to the horary.
101921 K to the horary.
92450 The comet to the horary more S. than

$$
A 16^{\prime} 30^{\prime \prime} .
$$

R 1020.
The R. afc. of the ftar R is $98^{\circ} 6^{\prime \prime}$, and N. decl. $73^{\circ} 43^{\prime}$. The times of the obfervations are all true and fufficiently correct. They were made with a tube of 6 feet, in which an Englifh micrometer was inferted. A new conflel- A fmall conftellation was obferved May 29 in purfuing the comet with cation. the telefcope. It is reprefented in Fig. 10. The diftances of the fimall
Fig. Itars that compofed it were α from $\beta 1^{\prime} 2^{\prime} 1^{\prime \prime}: \beta$ from $\gamma 1^{61} 45^{\prime \prime}: \gamma$ from $\delta 10^{\prime} 2^{\prime \prime}: \delta$ from $\varepsilon 1^{\prime \prime} 6^{\prime \prime}$; γ from $\zeta 19^{\prime} 53^{\prime \prime}: \delta$ from $\zeta 28^{\prime} 17^{\prime \prime}$:
γ from $~$
, which is the γ from ϑ, which is the fupra tergum of Camelopardalus $5^{8^{\prime}} 1^{\prime \prime \prime}$: δ from the fame $50^{\prime} 3^{\prime \prime}$. But I leave thefe diftances for others to meafure
more accurately, The fituation of this afterifm is not inverted but right.
b 11
$45^{2} 17$ o diftant from the lucid limb of $D_{5} 50^{\prime \prime} 4^{\prime \prime}$.
Then of was oblerved and compared with the ftar. I. and fo
$\begin{array}{lll}5 & 3 & 9\end{array}$ o to the horary.
1247 I. to the horary more N . than ${ }^{1} 4 \mathrm{I}^{\prime} 6 \mathrm{H}$.
93^{8} Temporary difference.
51826 of to the horary.
282 I. to the horary more N. than ${ }^{*} 4^{\prime \prime} 2^{\prime \prime}$.
93^{6} Temporary difference.
53434 sentering under the obfcure limb of D wholly difappeared,
diftant from the N . horn of $D 23^{\prime} 28^{\prime \prime}$.
The diameter being immediately meafured was $32^{\prime} 53^{\prime \prime}$.
But the lucid part of D was $7^{\prime} 39^{\prime \prime}$.
In the mean time whilft δ lay hid behind D, it was obfer-
ved and compared with 9 wo and fo:
$55^{8} \quad 9$? to the horary.
if 331 Lucid limb of D to the horary.
423 N . horn of D to the horary.
5^{8} S. horn of D to the horary.
The S. limb of D was more S. than $934^{\prime} 27^{\prime \prime}$.
Again,
6 is 3^{6} of to the horary.
1722 Lucid limb of D to the horary.
1812 N. horn of D to the horary.
46 S. horn of D to the horary.
The S. limb of D more S. than ${ }_{3} I^{\prime} 0^{\prime \prime}$.
Thirdly,
62322 of to the horary.
29) 26 Lucid limb of D to the horary:
3017 N . horn of D to the horary.
5^{2} S. horn of D to the horary.
S. limb of D was more S. than $927!4811$.
$63^{8} 5^{2}$ There was a very fmall ftar approaching to the obfcure
limb of D, and when it was juft entering, it was diftant
from the lucid limb of D $41^{\prime} 23^{\prime \prime}$. Then,
64628 firt appeared coming from under 8 and diftant from the
N. horn $29^{\prime} 24^{\prime \prime}$.
7223 The abovementioned little ftar entered the dark limb of D
diftant from the N . horn $29^{\prime} 24^{\prime \prime}$.
Laftly,

The

The moments of time are true, and corrected by correfponding altitudes.

All the phafes with a tube of 6 feet, with an Englif micrometer.

Conjunfion of $A \delta^{\delta}$, the path of δ is near i by the Pekin ephemerides.
Mars and Ve- $\quad B{ }^{0}$, the fame path by the Paris ephem. of de la Caille.
nus, oblerved at Pekin, March 1748.

Fig. 12.
C d, the fame parh by the obfervations.
D_{8}, the fame path by the Bononian eph. of Manfreai.
The ubfervations were as follows:

Mar. 12. 6275^{2} of more E. than 9 \& 4848 more N. - - 05346
13. 62543 more E. - o 568
14. 61033 more E. - o 2934
${ }_{15} 5.6284 \quad$ more E. - $-0 \quad 30$
more N. - - 0 1 30
16. 62713 more W. - - 02348
more S. - - 01041
17. 62514 more W. - - o 503^{8}
more S. - - 02324
19. 6295^{2} more W. - 14447
more S. - - 04814
All thefe differences were determined by repeated operations, with a tube of 6 feet with micrometers. The times alfo are true, and corrested by correfponding altitudes.

h 111

- of Jupiter Јал. 1. 1748. $p . m$.

4. Apr. $27 \cdot 3^{\mathrm{h}} 30^{\prime} a$. m . we faw the comet in the middle of the ftars $--6 y \mathrm{~F}$. of Pegafus $\beta \lambda \eta$.

May 2. we comparcd the comet with the ftars mentioned by F. Hal- Gaubil, of the lerfein in Flamifed 1690 . The ftar in $r_{11^{\circ}} 26^{\prime} 45^{\prime \prime}$. The place of lege of Jefuthe comet was concluded to be almoft the fame as by F. Hallerfein's ob- its at Pekin, fervation.

May 3. $3^{\mathrm{h}} a . m$. α and σ of Coffropea in a right line with the comet. σ is pretty exactly in the middile. ibid. p. 316 .
 Flamf. $5^{\prime} 35^{\prime \prime}$, the comet more S. $1^{\circ} 1^{\prime}$.

May 5. nothing could be obferved exactly.
May 6. $2^{\text {h }} 5 t^{\prime}$ a. m. a line thro' α and β of Cafiop. a little to the S. Comet 1748^{8}. of the comer, diftance of β from the ftar $x=$ dift. of β from the comet.

May ro. $9^{\text {h }} 14^{\prime}$ p. m. the laft true alt. of the comet $20^{\circ} 48^{\prime} 58^{\prime \prime}$. The comet more W. than the eaftern ftar (it is compounded of two) $27^{\prime} 12^{\prime \prime}$; in Flamfl. the itar in Taurus 25° and lome min.

May 15. we compared the comet with the fars of F. Hallerfein. True merid. alt. of the comet p.m. $25^{\circ} 55^{\prime} 30^{\prime \prime} 10^{h} 12^{\prime}$. The comet more S. than the ftar 8^{\prime} merid. alt. of the northern ftar $25^{\circ} 59^{\prime} 30^{\prime \prime}$. We did not well obferve the diff. of R. afc.

May 16. p. m. true merid. alt. of the comet $26^{\circ} 16^{\prime} 32^{\prime \prime}$; in reticulo $10^{\text {h }} 22^{\prime}$: the comet more E. than Mallerfeifein's ftar $1^{\circ} 41^{\prime}$.

May 17. $10^{\text {h }} 40^{\prime}$ p. xi. laft true alt. of the comet $26^{\circ} 46^{\prime} 34^{\prime \prime}$. γ Cepbei to the horary $7^{h} 54^{\prime} 58^{\prime \prime}$. Comet to the horary $10 \quad 41 \quad 43$.
Path of the comet feems inore \mathbf{N}. than the path of the ftar $38^{\prime} 20^{\prime \prime}$.
I do not find any number of obfervations made till fune 7 . But by comparing the comet with the Hevelian ftar, and others not well known to me, I feem to be able to conclude, that from June 2 to 7 the R. afc. of the comet increafed 6° and fome min. and that the decl. decreafed 55^{\prime}.

Yune 7.a. $72.1^{\mathrm{h}} 15^{\prime}$ the ftar to the horary $35^{\prime} 30^{\prime \prime}$ after the comet. The ftar more N. $1^{\circ} 30^{\prime}$ very doubtfully obferved *.

Fune $9.0^{\text {b }} 45^{\prime}$ the comet to the horary.

- $4910^{\prime \prime}$ the ftar to the horary $A \dagger$.

The comet more N. $1^{\circ} 30^{\prime}$.
To June 12. nothing was obferved with fufficient exactnefs.
Fune 13. p. m. $9^{\text {h }} 30^{\prime}$ the diftance of the comet from the flar If $10^{\prime} 20^{\prime \prime}$.
The comet more N. $4^{\prime} 25^{\prime \prime}$.
The comet is more E.

[^11]VOL. X. Eart i.

Tune 17. p. m. 02630 A

Comet and R in the fame declination.
Sure 18. p. m. $\left.\begin{array}{cccc}9 & 52 & 14 & A \\ 10 & 19 & 21 \\ \hline\end{array}\right\}$ to the horary. 2457 Comet
Comet more S. than $A{ }^{1} 6^{\prime} 30^{\prime \prime}$. $R 1020$.
On the following days with a tube of above 7 feet, the aperture of which $=1^{\circ} 0^{\prime} 24^{\prime \prime \prime}$ the comet was observed with the 1 tar D in, Fig. B of la Caille, Mem. Aced. 1742. Many of there observations had hardly any fuccefs: I relate only two which feem to me not very exact.

$$
\mathrm{h} 11
$$

June 27.p.m. the far D enters the tube - - - 92310
goes out of the tube - - $93^{6} 0$
Comet enters - . . . 94028 goes out - - - - 95^{216}
The comet is concluded more N. $19^{\prime} 40^{\prime \prime}$.

$$
\text { h } 111
$$

Syne eg. Deters is 140 p. m.

Comet enters - - - - - - 112354
goes out - - - 11360
The comet is concluded more N . 12^{\prime} or perhaps 13^{\prime}.
The comet was not eafily feer June 29, there were clouds on Tune 30 , and $\mathcal{F u l y} 1$ and 2 ; and it was not afterwards purfued.
Conjuration of ${ }^{1} 74^{8}$ tiv. Mar. 15. pom. gin 10^{\prime} the occidental limb of of is distant Mars and Ve-from the occidental limb of of $1^{\prime} 2 y^{\prime \prime}$. nus.

Eclipfes of the Satellites of Jupiter.

OEF. 13. p. m. temp. vier. 94030 Emersion of the ad.
15. - - $83726-$ - $=1$ - 1 .
20. - - - 1075^{6} Total immerfion of 3 d .
21. - - $55^{2} 12$ Emerfion of the ad doubtful.
28. - - - 82920 If Emerfion of the ad.

Nov. 7. - - - $85^{2} 59$ if Emerfion of the 1 it.
There Obivervations were made with a tube of 15 feet.

- AR notes of alas in Fig. D of da Caille, Mem. Aced 1742.
XXI. The mean tropical folar year, or that mean fpace of time wherein Remarks upon the fun, or carth, after departing from any point of the eclipric, returns the Solar and to the fame again, confifts, according to Dr Halle's tables, of $365^{3}, 5^{-5}$, $48^{\prime}, 55^{\prime \prime}$: which is lefs by $1^{\prime}, 5^{\prime \prime}$, thian the mean Futian year, confi. fting of $365^{\mathrm{d}}, 6^{\mathrm{h}}, 0^{\prime}, 0^{\prime \prime}$. Hence the equinoxes and folftices anticipate, rearr, 19 omor come earlice than the Gulian account fuppofes them to do, by $11^{\prime}, 55^{\prime \prime}$, monly called in each mean yulian year; or $44^{\prime}, 20^{\prime \prime}$ in every 4 ; or $3^{\text {d }}, 1^{\mathrm{h}}, 53^{\prime}, 20^{\prime \prime \prime}$, the Golden in cvery 400 Yuticn years.

In order to corret this error in the fullian ycar, the authors of the Cire- Epact, and a gorian inethod of fegulating the year, when they reformed the calendar in ing the time of the beginning of O 民. 1582, directed that 3 intercalary days fhould be 0 mitted or ciropied in every 400 years; by reckoning all thofe years, whofe
 date confits or a number of emarchumareds not divimble by 4 , fuch as parts of l:a$1700,1800,1900,2100$, §3c. to be only common, and not biffextile rope. Being or ieap ycars, as they would otherwife have been; and conlequently o- part of a letmitting the intercalary day's, which, according to the Julian account, R. Han. Geo. thould have been inferted in Feb. in thofe years. But at the fame time E. of Macthey ortered that every fourth hundredth year, confifing of a number clesfield to of entire hundreds, divifible by 4, fuech as $1600,2000,2400,2800$, M. Folkes, E c. Thould ftill be confidered as biffextile or leap years, and, of confe- E/g; P.R. quence, that 1 day hould be intercalated as ufual in thofe years.

This correction, however, did not entirely remove the error: for the May 10. equinoxes and folftices fill anticipate $1^{\prime \prime}, 53^{\prime}, 20^{\prime \prime}$ in every 400 Grego- ${ }^{1750}$. fian years. But that difference is fo inconfiderable as not to amount to Ye the Selar 24 hours, or to one whole day, in lefs than 5052 Gregorian years.

The fpace of time betwixt one mean conjunction of the moon with the of the Lunar fun and the next following, or a mean finodical month, is equal to 29^{1}, Year, Cycle $12^{\mathrm{h}}, 44^{\prime}, 3^{\prime \prime}, 2^{\prime \prime \prime}, 5^{6 \mathrm{vI}}$, according to Mr Pound's tables of mein con- of 19 Years, junctions. The common lunar year confits of 12 fuch months. The and tbe Epact. intercalary or embolimean year confilts of 13 fuch months. In eacis cycle of 19 lunar years, there are 12 cummon, and 7 intercalary or embolimean years, making together 235 fynotical months.

It was thought, at the time of the General Council of Nice, which was holden in 325 , that 19 Julina folar years were exactly equal to luch a cy cle of 19 lunar yeats, or to 235 fynodical months; and therefore, that, at the end of 19 years, the new moons or conjundtions would happen exactly at the fame times, as they did 19 years belore: and upon this fuppofition it was, that, fome time afterwards, the feveral numbers of that cycle, commonly called the golden numbers, were prefixed to all thofe day's in the calendar, on which the new moons then happened in the refpective years correponding to thofe numbers; it being imagined, that whenfoever any of thofe numbers hould for the future, be the golden number of the year, the now moons would invariably happen on thofe days in the feveral months, to which that number was prefixed.

But this was a miftule:

For 19 fulian folar years contain Whereas 235 fynodical months contain only	$\begin{array}{lllll} 6939 & 18 & 0 & 0 & 0 \\ 6939 & 16 & 31 & 56 & 30 \end{array}$
And are therefore lefs than 10	

This difference amounts to a whole day very nearly in 310.7 years, the new moons anticipating, or falling earlier, by 24 hours in that fpace of time, than they did before: and therefore now in 1750, the new moons happen above $4 \frac{1}{2}$ days fooner, than the times pointed out by the golden numbers in the calendar.

In order therefore to preferve a fort of regular correfpondence betwixt the folar and the lunar years, and to make the golden numbers, prefixed to the days of the month, ufful for determining the times of the new moons, it would be neceffary when once thofe golden numbers fhould have been prefixed to the proper days, to make them anticipate a day at the end of every 310.7 years, as the moons will actually have done; that is, to fet them back one day, by prefixing each of them to the day preceding that, againft which they before ftood.

But as fuch a rule would neither be fo eafily comprehended or retained in memory, as if the alteration was to be made at the end or at the begining of complete centuries of years; the rule would be much more fit for practice, and keep fufficiently near to the truth, if thofe numbers fhould be fet back 9 days in the fpace of 2800 years; by fetting them back x day, firft at the end of 400 years, and then at the end of every 300 years for eight times fucceffively: whereby they would be fet back, in the whole, 9 days in 2800 years. After which they munt again be fee one day back at the end of 400 years, and foon, as in the preceding 2800 years. By which means the golden numbers would always point out the mean times of the new moons, within a day of the truth.

It is plain however, that the lunar year will have loft one day more than ordinary, with refipeet to the folar year, whenever the new moons fhall have anticipated a whole day, as they will have done at thofe times when it is neceffary that the golden numbers fhould, by the rule juft now given, be fet back one day: and confequently the epact, for that and the fucceeding years, muft exceed by an unit the feveral correfponding epacts of the preceding 19 years.

For the epact is the difference, in whole days, betwixt the common Fulian folar and the lunar year; the former being reckoned to confit of 305 , and the latter of only 354 days. If therefore the folar and the lunar year at any time fhould commence on the fame day, the folar would, at the end of the year, have exceeded the lunar by in days: which number Is would be the epact of the next year: 22 would be the epact of the year following, and 33 the epact of the year after that, the epacts increafing yearly by 11. But as often as this yearly addition makes the epact exceed 30 , thofe 30 are rejected as making an intercalary month, and
only the excefs of the epact above 30 is accounted the true epact for that year. Thus when the epact would amount to $31,32,33,34, \mathcal{E}^{\circ} \mathrm{c}$. the 30 is rejected, and the cpact becomes 1, 2, 3, 4, $\xi^{\circ} c$.

Since therefore the lunar ycar will have loft a day more than ordinary in refpect of the folar year, whenever it is neceffary to fet the golden numbers one day back, as was before obferved; it follows, that the epact muft at the fame time be increafed by an unit more than ufual ; the difference betwixt the folar and the lunar year having been juft fo much greater than ufual. That is, 12 muft be added, inftead of 11 , to the epact of the preceding, in order to form what will be the epact of the then prefent year. Which addition of an unit extraordinary to one epact, will occafion all the fubfequent epacts (which will follow each other in the ufual manner, each exceeding the foregoing by II) to be greater by an unit than their refpectively correfponding cpacts of the preceeding 19 years.

If therefore, inftead of the golden numbers, the epacts of the feveral years were prefixed, in the manner the Gregorians have done, to the days of the calendar, in order to denote the days on which the new moons fall in thofe years whereof thofe numbers are the cpacts; there would never be occafion to hift the places of thofe epacts in the calendar; fince the augmentation by an unit extraordinary of the epacts themfelves would anfwer the purpofe, and keep all tolerably right. Thus in a very eafy method may the courfe of the new moons be pointed out, cither by the golden numbers, or by the epacts, according to the Julian account or manner of adjufting the year, which goes on regular and uniform without any variation.

But the regulating thefe things for thofe who ufe the Gregorien account, is an affair of more intricacy; and for them it will require more confideration to determine, when the epacts are to be more than ordinarily augmented, and at what times they are to continue in their ufual courfe; nay, to know when they are not only not to be extraordinarily augmented, but alio when they are to be diminifhed by an unit, by increafing one of them by 10 only inftead of 11 as ufual: and this happens much of tener with the Gregorians, than the increafing one of them by 12 inftead of 11 . For, in every Gregorian folar year, whofe date confifts of any number of entire hun: dreds not divifible by 4 , it is fuppofed that the equinox has anticipated one whole day; and therefore one day, that which ought to be the intercalary one, is omitted; and confequentiy the preceding folar year, where one day was loft, exceeded the lunar year by 10 days only infterad of $i \mathrm{If}$.

In order therefore to adapt the beforemention'd rule to the Gregoriaisaccount, and to know in what years the epacts fhould either be extraordinarily augmented or diminifhed, and the golden numbers thould either be fet backwards or forwards in the calendar; th: following rules and direttions muft be obferved.

Firft. That in the years $1800,2100,2700,3000$, Efic. where the number of entire hundreds is divilible by 3 , but not by 4 , the Cirigorima folar, as well as the lunar year, will have loft a day; and confequenty years there muft be no aleration, cither in the epacts or the golden numbers ; but the former nult go on in the fame marner, and the liitter ftand prefixed to the fame days in the calendar, for another, as they did for the laft hundreed years.
2dly. The like will happen in the ycars 2000, 2800, $3^{200}, 8 C$. where the number of entire hundreds is divifible by 4 , bur not by 3: For neither the Gregorien folar nor the lunar year is to be altered; and therefore the epacts niuft go on, and the golden numibers itand, as they did before.
But 3dly, In the years 2400, and 3600 , whofe number of entire hundreds is divifible bort by 3 and 4 , the Grercrian folar year gocs on as ufual, and the lunar year has lof a day. Thi difference therefore betwixt them being 12, the epact of the preceding year mult be augmented by that number inftead of n , in order to forim the epact of the then prifent year; whereby a new fet of epacts will be introduced, exceeding their precedent correfponding epacts by an unit: and the golden numbers melt be fet one day back in the calendar.

4 thly ant lafty, In the years $1900,2200,2300,2500$, \& $\%$. where the number of hundreds is clivifible neither by 3 nor 4; the Gregorian folar year having loit one day, and the lunar none, the difference betwixt them being only 10 ; that number only, and not 11 is to be added to the epact of the preceding, in order to form the cpatt of that, the then prefent ycar; whereby a new fee of cpacts will be introduced, all of them lefs by an unit than their precedent correfponding epacts: and the golden numbers muft be fet a day forwarder in the calendar; that is, lee prefized to the day following that, againft which they food in the precedent hundired years.

This mechod would preferve a fort of regularity betwixt the folar and the lunar years; and, by means of the rules and directions beforementioned, the days of the new moons might be pointed out, either by the golden numbers or by the epacts, placed in the calendar for that purpofe; according to the Gulian account for ever, and according to the Gregorian account till the year 4199 inclufive, after which there mutt be fome little variation made in the four laft precepts or rules: but it would be to little purpole now, to attempt the framing of new fet of ritles for fo diftant a time.

The Gregorians have chofen to make ufe of the epacts to determine the days of the new moons, and follow pretty nearly the rules prefrribed above; except that they order the epacts to have an alditional augmentation of an unit 8 times in 2500 years, beginning with the year 1800 , as at the end of 400 years; to which 400 years, if there be adked 3×700, or 2100 years, the period of 2500 years will be completed in 3900 . After which they co not make their extraordinary augmentation of an unit in the epacts, till at the end of another term of 400 ycars ; which delers that augmentation from the year 4200 to the year 4300 . And
this is the reafon that the rules above deliver'd will require a variation in the year 4200; whereas it is directed in this paper that the epacts fhould be auginented, or (which is the fame thing) the golden numbers be fet back in the calendar 9 times in 2800 years. This arifes from the Gregcrians fuppofing, that the difference betwixt ig folar and as many lunar years would not amount to a whole day in lefs than $312 \frac{1}{2}$ years; whereas it has appeared above, that it would amount to a whole day in 310.7 years. But although the rule prefcribed in this paper comes much nearer to the truth, yet the error in either cafe is very incontiderable, being lo friall as not to amount to a whole day in many thoufand years; and therefore is not worth regarding.

From what has been already faid, a method may be obtained, for fixing a nictboit of with fufficient exactnels, the time of the celcbration of the feaft of Eafter, which is governed by the cernal equinox, and by the age of the moon neareft to it. The former whereot, when once rightiy adjufted, may (by the corrections mentioned in that part of this paper which relates to the folar year) be made to continue to fall at very near the fame time with, or at rope. moft not to differ a whole day from the ruc equinox: and the fame rules and directions, which, as was before fhewn, would, without any great crror, point out the times of the firt clay of the moon, would with equal certainty point out the $14 \mathrm{th}, 15 \mathrm{th}$, or any other: and thus the simes of the oppofitions or the full moons might be as well marked out thereby, as thofe of the conjunctions or the new moons.

I frall not at prefent take notice of the canon of the Council of Nice, in 325, which directs the time of cclebrating Eaffer: or of the reafons upon which that canon was founded. Nor Rhall I endeavour to explain the rule now in ufe in the Charch of England for hinding Eiafir: for, befides that fuch an explanation would extend this paper to an impropor length, chofe points have already keen treated of by icveral much abler hands, and particularly by our couatryman the learned Dr Prideaus. Nor is it my intention to enter far into the niechods ufed by the Gregorians, or thofe of the Church of Rome, or by any other nations or countries, for finding the time of that feaft. As to our own, I mall only obferve, that the method now ufed in England, for finding the 14th day of the moon, or the ecclefiaftical full noom, on which Einfor dependeth, is, by procefs of time, become confiderably erroneous: as the golden numibers, which were placed in the calendar, to point out the ciays on which the new noons fall in thofe years of which they are refeectiveiy the golien manbers, do now ftand feveral days late: in the fame vima thofenew moons do really happen. Which error, as was beiore obierved, arifes from the anticipation of the moons fince the time of the Council of Nice: and as the veriat equinox has alfo anticipated is days fance that time; neither that equinox, nor the new moons, do now happen on thofe days upon which the Church of England fuppofes them fo to happen.

When Pope Gregory XIII, reformed the 'fulicn folar year, he likewife made a correction as to the time of celebrating the feaft of Enfer, by placing Itcad of the golden numbers) much nearer to the true times of the new moons than the golden numbers then ftood in the old calendar: I fay, snuch nearer to the true times; becaure in fact the epacts, as placed by him, were not prefixed to the exact days upon which the new moons then truly fell. And this was done with defign, and for a reafon which it is not material to the purpole of this paper to mention.

But the Church of England, and that of Rome or the Gregorians, do ftill agree in this; that both of them mark (the former by the golden numbers, and the latter by the epacts correfponding to them) the days on which their eccieflaftical new moons are fuppofed to happen: and that $14^{\text {th }}$ day of the moon inclufive, or that full moon, which falls upon, or next after, the 2 ift of March, is the parchal limit or full monn to both: and the Sunday next following that limit or full moon, is by both Churches celebrated as Eaffer day. But the 2 Ift of March being reckoned, according to the Gregorian account or the new Alyle, II days fooner than by the fulian account or the old ftyle, which is ftill in ufe among us; and their ecclefiaftical new moons being 3 days carlier than thote of the Church of England; it happens that although the Church of England and that of Rome often do, yet more frequently they do not, celebrate the feaft of Eafter upon the fame natural day.

It might however be eafier for both, and could occafion no inconvenience, now that Almanacks, which tell the exact times of the new moons, are in moft peoples hands; if all the golden numbers and epacts now prefixed to thole days of the calendar, in our book of Common Prayer, and in the Roman Breviary, on which the refpective ecclefiaftical new moons happen, were omitted in the places where they now ftand; and were fet only againft thofe 14 th days of the moon, or thofe full moons, which happen betwixt the 21 ft of March and the 18 th of April, both inclufive. Since no 14th day or full moon, which happens before the 2 if of March, or after the isth day of April, can have any thare in fixing the time of Eafter. By which means the trouble of counting to the $14^{\text {th }}$ diay, and the miftakes which fometimes arife therefrom, would be avoided.

We do as yet in Enfland follow the Fulian account or the Old Style in the civil year; as allo the odd method of finding thofe moons upon which Eaffer depends: both of which have been thewn to be very erroncous.

If therefore this nation Thould ever juaige it proper to correct the civil year, and to make it conformable to that of the Gregorians, it would furely be advifable to correct the time of the celebration of the feaft of Eaffer likewife, and to bring it to the fame day upon which it is kept and folemnized by the inhabitants of the greateft part of Europe, that is, by thofe who follow the Gregorian account. For tho 1 am aware that their method of finding the time of Eafter is not quite exact, but is liable to fome crrors; yet I apprehend, that all other practicable methods of doing it would be fo : and if they were more free frome error, they would probably be more intricate,
and harder to be underfood by numbers of people, than the method of determining that fealt either by a cycle of epacts, as is practifed by the Gregorinns, or by that of 19 years or the golden numbers, in the manner propofed in the following part of this paper: and it is of no imall impoitance, that a matter of fo general a concern, as the method of finding Eiafer is, thould be within the reach of the generality of mankind, at leake as far as the nature of the thing will admit.

For which reafon, in cafe the legiflature of this country mould before the year 1900 , think fit to make our civil year correfpond with that of the Ciregorians, and alfo to celebrate all the future fcafts of Eafer upon the fame days upon which they celebrate them; this laft particular might be eafily effected, without altering the rule of the Church of England tor the finding of that feaft : and this only by advancing the golden numbers, prefixed to certain days in the calendar, 8 days forwarder for the new moons, or 2.1 days forwarder for the 14 th days or full moons, than they now itand in our calendar.

In order to explain this, it muft be obferved, that the Gregorian account, or the new ftyle, is I I days forwarder than the Fulian account, or the old Atyle, which we ftill make ufe of; that is, the laft day of any of our months is the 1 th day of their next fucceeding month. If therefore their ecclefiaftical new moons fell on the fame days with thole of the Church of England, the golden number 14, which now Itands againft the laft day of February in our, that is the Fulian, calendar, nould, when we fhould have adopted the Gregoriait calendar, be prefixed to thenth of March. But fince their eeclefiaftical new moons happen 3 days, carlier than our ecclefiaftical new moons at prefent do; fo much fhould be deducted from thole is days, by which the golden numbers ought otherwife to be advanced; and the golden number 14 fhould not be placed againft the isth, but the 8th of March: which being reckoned the firft day of the moon, if we count on to the rith day of the fame inclufive, that would be found to fall on the 21 ft of March; on which day the Gregorien pafchal limit or fill moon will happen when the golden number is 14. And the like courfe fhould be taken with the reft of the 19 golden numbers; which ought to be placed 8 days forwarder than they now ftand, if they are to point out the new moon; or 21 days forwarder than they are at prefent, it they are to mark the 14 th day of the moon or the full moon : the latter of which, as has been fhewn, would be more eligible, than to prefix thofe numbers to the days on which the new moons haypen.

Thus may thie ruie and method now ufed in the Church of Englant, be moft eafily atapted to new the rime of Eafer, as it is oblerved by the Gregrians, till the ycar 1gon, at which time, and at the other proper fucceeding times, if the gokien mumbers in the calendar flall eisher be athvanced or let backward a day, according to the foregoing rules and di rections for that purpore, they will continue to mew us the new or the fult moons of the Church of Rome or the Ciregorien calendar with grait cxact-) VOL. X. Part i. i liefs,
nefs, till the year 4199: when, as las been already mentioned, theremuft be a lietle variation made in thofe rules and directions.

There is however one exception to thofe general rules and directions, which will be taken notice of in the next parigraph.

Upon thefe principles I framed the table accompanying this paper, and fhewing, by means of the gokien numbers, all the Grezorian palchal limits or full moons, from the reformation of the calendar, Eoc. by Pope Gregory to the year 4199 inclufive. Which Space of time is therein divided into 16 unequal portions or periods; at the beginning of each of which, all the golden numbers, when once they Mall have been properly placed in the calendar, mutt either be aivanced or fet back one day, wicin refpect to the place where they ftood in the preceding period, agreeably to the foregoing rules: except thote numbers which thall happen to ftand againft the 4 th and 5 th of April to fhew the pafchal new moons, or againft the $17^{\text {th }}$ and x th of the fame month to mark out the parchal full moons; both which numbers at fome times, and only one of them at others, muft keep the fame place for that, which was alloted to them in the immediately preceding period.

In order to detcrmine at what times, and on what occafions, this exception is to take place; let it be oblerved, that, in the months of $7 a n$. Mar. May, and fome others in our prefent calendar, as well as in the table above-mentioned, fome of the golden numbers fland double or in pairs, and follow one the other immediately; whilft others, on the contrary, generally ftand fingle and by themfelves.

Now, when any of thofe pairs, or 2 numbers which ufually accompany each other, happen, in purfuance of the foregoing rules, to be prefixed the one to the $4^{\text {th }}$ and the other to the 5 th of Aprib for the new moons, or the one to the 17 th and the other to the 18 th of Aprib for the 1 alchal limits or full moons: and when any of thofe numbers, which generally ftand fingle, are prefixed, according to the faid rules, to the 5 th of Aprit for the new moons, or to the a 8 th for the full moons: in thele cafes thufe pairs or lingle numbers that are fo fituated, muft not be fet forward or advanced at the beginning of the next period, but mut keep their places during another period, ii the foregoing rules direct all the golden numbers to be advanced a day; which muft be complied with in refpect to all the other golden numbers, except thofe fo fituated as above. Inftances whereof may be feen in the table, under the refpective periocis beginning with the ycars 1900, 2600,3100 , and 3300 .

But if, in conformity to the foregoing rules, all the golden numbers are to be fet one day backward; thofe pairs or fingle numbers, tho' fituated as is above-mentioned, muft not keep their places, but muft move one day. back ward like all the other goklen numbers; as they may be leen to do in the periods beginning with the years 2400 and 3600 .

To give a plain and intelligible account of the reafon, on which the directions now given with refpeet to this exception are founded, would cxtend this paper, already too long, far beyond its due and proper
bounds. I fhall therefore content myfelf with obferving, that it depends chiefly upon the nature of the Menfes Pleni and Menfes Cavi, into which the lunar year is ufially divided: and that, in order to make uife of the golden numbers for finding the time of the Gregorian Eafer, it will be neceffary not only to conform to the gencral rules laid down in the former part of this paper; but alfo to follow the directions juft now given, with refpect to the abovementioned exception to thofe general rulcs.

But I fhould not do juftice to Peter Davall, of the Middle Temiple Efq; Secretary of the Royal Society, did I not here acknowledge, that, before I had fo fully confidered thefe matters as I have fince done, I had the firft hint of applying the golden numbers to find the Gregorian pafchal limit or full moon, from him; who has fince that time compofed and drawn up tables, $\xi^{\circ} c$. which may poffibly be of conliderable and general ufe in this nation hereafter.

$$
\mathrm{T}_{2} \quad \mathrm{~A} \text { TABLE }
$$

A TABLE, 免解ing, by means of the Golden Numbers, the feveral days on which the Pafchal Limits or Full Moons, according to the Gregorian Account, have already happened, or will hereafter happen; from the Reformation of the Calendar in the Year of our Lord 1582 , to the Year 4199 inclufive.

To find the Day on which the Pafchal Limit or Full Moon falls in any given Year ; Iook, in the Column of Golden Numbers bilonging to that Period of Time wherein the givan Year is contained, for the Golden Number of that Year; over-againft which, in the fame Line continued on the Column intithed Pofikat Full Moons, you will find the Day of the Month, on which the Pafchal Limit or Full Moon happens in that Year. And the Surday next afier that Day is Eafier Day in that Year, according to the Gregorian Account.

XXII. Monfieur le Monnier writes to me, that there is, at Leyden, an Part of aletArabick manufcript of Ibnjounis (if I am not miftaken in the name, for it is not diftinctly written in the letter), which contains a hiftory of aftronomical obfervations. M. le Monnier fays, that he infifted ftrongly on publining a good tranflation of that book. And as fuch a work woukd contribure much to the improvement of Aftronomy, I hould be glad to fee it publifhed. I am very impatient to fee fuch a work which contains oblervations, that are not to old as thofe recorded by Ptolemy. For having carefully examined the moriern obfervations of the fun with thofe of fome centuries paft, although I have not gone farther back than the 15 th century, in which Thave found Wolther's obfervations made at Nuremberg; yet I have obferved that the motion of the fun (or of the earth) is fenfibly accelerated fince that time; for that the years are fhorter at prefent than for:nerly: the reafon of which is very natural; for if the earth, in it's motion, fuffers fome little refiftance (which cannot be doubted, fince the fpace tirough which the ptanets move, is neceffarily full of fome fubtile matter, were it no other tian that of light) the effect of this refiftance will gradually bring the planets nearer and nearer the fun; and as their orbits thereby become lefs, their periodica! times will alfo be diminifhed. Thus in time the earth ought to come within the region of Venus, and in fine into that of Mercury, where it would neceflarily be burnt. Herce it is manifeft, that the fyttem of the planets cannot lan for ever in it's (prefent) fate. It allo inconteftably follows, that this iyfem muft have had a begiming: for wheever denies it, mint grant ine, that there was a time, when the earth was at the diftance of Saturn, and even farther ; and confequently that no living creature couli fubfift there. Nay there muft have been a time, when the planets were nearer to fome fixt flars than to the fun; and in this cafe they could rever come into the folar fyftem. 'This then is a proof, purely phyfical, that the world, in it's prefent fate, muit have had a beginning, and muft have an end. In order to improve this notion, and to find with exactitude, how much the years become. Thorter in each century; I am in hopes that a great number of older obfervations will afford me the neceffary fuccours.
XXIII. I an Alll thoroughly convinced of the truth of what I acd-Part of alarvanced *, that the orbs of the planets continue to be contracted, and ter from Mr confequently their periodical times grow fhorter. But in order to put this fact ont of doubt, we ought to be furninhed with good ancient obfervations, and alfo to be very fure of the time elapled, fince thofe obfervations, to this day: which we are not, with regard to the obfervations that Ptoleriyy has left us. For Chronologits, in fixing the moments of thufe oblervations, run into a miftake, by fuppofing the fan's mean motion to be known; which ought rather itfelf to be determined by thefe farne obfervations. Now, if we reduce the days marked by Paidiny to

[^12]
Profefor

 Euler to the Rev. Mr Weffein, Chaplain to. the Primac, concerning the contraction of the Orbits of the Planets. Irampated from the Fierich byand h R. S. Ni. 494 P. 356. dam Bertio, Leec. 20. 1749. Read March 1. 1749 . on two, in the whole number of days elapfed, from that to our time; becaufe the courfe of the Fulian years, according to which every 4th ought to have been biffextili; has been frequently interrupted by the Pontifices; of which we find fome fure marks in Cenforinus and Dion Caffus. Wherefore it might well happen, fince the times marked by Pioienty, that there las really been a day or 2 more than we reckon, and confequentiy, that Ptolemy's equinoxes, ought to be put a day or 2 back; which would lengthen the years of thole times. I was in hopes, that the Arabien obfervations would not be liable to this inconvenicace; becaufe the Fulian calendar has not been interrupted for thefe laft 1200 years. The late Dr Haliey had alfo remarked, that the revolutions of the moon are quicker at prefent than they were in the time of the ancient Cbaldeans, who have left us fome obfervations of cclipfes. But as we meafure the length of years by the number of days and parts of a day, which are contained in each of shem; it is a new queftion, whether the days, or the revolutions of the earth round it's axis, have always been of the fame length. This is unanimoully fuppofed, without our being able to produce the leaft proof of it: nor indeed do I fee, how it could be polible to perceive fuch an inequality, in cafe it had really exifted. At prefent we meafure the duration of a day by the number of ofcillations, which a pendulum of a given length makes in this fpace of time : but the Ancients were not acquainted with thefe experiments, whereby we might have been informed, whether a pendulum of the fame length made as many vibrations in a day formerly as now. But even though the Ancients had actually made fuch experiments, we could draw no interences from them, without fuppofing, that gravity, on which the time of an ofcillation depends, has always been of the fame force: but who will ever be in a condition to prove chis invariability in gravity? Thus, even fuppofing that the days had fuffered confiderable changes; and that gravity had been altered tuitably thereto, fo that the fame pendulum had always completed the fame number of vibrations in a day; it would neverthelefs be ftill im. poilible for us to perceive this inequality, were it ever fo great. And yet I have fome reafons, deduced from 'yupiter's action on the carth, to think, that the earth's revolution round it's axis continually becomes more and more rapid. For the force of fupiter fo accelerates the earth's 2 motion in it's orbit round the fin, that tine diminution of the years would be too fenfible, if the diurnal motion had not been accelerated nearly in the fame proportion. Wherefore, fince we hardly at all remark this confiderable diminution in the years, from thence I conclude, that the days fuffer much the fame diminution; fo that the fame number will antwer nearly to a year.

A new serticd XXIV. The great ufefuinefs of arches, firmly fixed to walls in the of making a plane of the meridian, is well known to all who are the leaft acquainted Mural Cua drant, which with aftronomical fludies. Hence it comes to pafs, that few oblervato- ries are thought to be well furnifined without one: but however it is Ball be free found, that there is no wall To folid and inmovable, and no bond of iron from many of or other metal fo Atrongs, as to keep this inftrument perfectly true with the incomveniregard to the axis of the earth. Thave thought therefore of a new contrivance, and propofe a mural aich, furnifhed with a telefcope and micrometer, to be conftructed under the following conditions;

1. That it may be feen at any point of time, whether the plane of the inftrument be placed vestically: and
2. Whether a perpencicular pafes exactly through the centre of the quadrint, and beginning of the divifion of the limb.
3. That the aberration of the plane of the quadrant from the vertical line may be corrected, without alsering the pofition of the beginning of the divifion on the limb, with regard to the perpendicular: and again that
4. The aberration of the beginning of the divifion on the limb, from the perpendicular may be corrected, without changing the notable pofition of the planc of the quadrant, with regard to the vertical line: in like manner
5. That the deviation of the plane of the quadrant from the plane of the meridian, may be amended without altering the perpendicular fituation of the plane of the quadrant, and of the beginning of the divifion on the limb.
6. That it may be quite free from the variation that may be produced from the extenfion of the metals by heat and cold.
7. That it may eafily be rectified; that is, that it may eafily be feen, whether the line, paffing from the object, through the interlection of threads in the tube to the cye, is exactly parallel to the line pafting thro' the centre of the quadrant, and the divifion Thewn by the rule, and to let it eafily right when there is occafion; a bufinefs otherwife very laborious and difficult.

To obrain all thefe requifites, let there be

1. An iron fulcrum a a $n, c c b$, of which the part to be applied to the rig. 13, 24. wall is defribed in Fig, 13. and the other in Fig. 14. It confitts of an iron fquare a a a, and a tranfverfe rule $c c$, ftrongly faftered with nails to the fquare. In b, the horizontal arm of the fquare is bent, that it may project behind, having befides, a round horizontal hole, the ufe of which will be fhewn below, and another fmaller vertical one, formed to receive the frew ins.
2. On the back of che fulcrum, at the vertical arm of the fquare, two gars $e b k$, and $d k$, are faftencil with nails. The upper one $e b k$ ends below in a cylinder b, and fkrew \dot{k}. The lower une $d g$ at g is hollowed, and conically excavated in it's lower furface: and the axis of the cylinder b, and the apex of the cone g, muft be in the fame line, and that parallel to the antevior plane of the iquare a a, Fig. 14. but the witmoft exactnefs in theie is not neceffary.

A New Metbod of making a Mural Quadrant.

3. Into the wall itfelf, parallel to the plane of the meridian, iron corbels, $a b, g b, c e$, mult be let in; and ftrongly fattened; two of which, $a b$ and $g b$, are nearly equal, and in the fame perpendicular line. The upper one b a has a cylindrical hele b, of a fufficient capacity to admit the cylinder b of the fulcrum, Fig. 14. The lower corbel $b g$, has inftead of the hole, a conical apex g, to enter into the cavity of the ear g, Fig. 13. The diftance between thefe corbels mutt be fuch, that the cylinder b, Fig. 13, 14, being let into the hole b, Fig. 16. and the afex g, Fig. 16. into the cavity g. Fig. 13. the whole weight of the fulcrum may be futtained by the apex g, and the fulcrum may be turned about horizontally with eale. Therefore the part c of the upper ear, Fig. 14. muft not prefs u_{j} ion the corbel, but be at fome little diftance from it. But to keep the apex g, Fig. 16. from fipping out of the cavity g, Fig. 13. a female fkrew may be added to the mate one k, by means of which, preffing the lower part of the corbel abo the fulcrum is fufficiently deprefied verrically to the apex g.
4. That the cylinder b, Fig. 14. may be kept fteady in the hole b, Fig. 16. let there be added another finaller horizontal ikrew f, or 2 on the oppofite fides, touching the cylinder in the hole. That the axis of the hole b, and the apex g, Fig. 16. may be in the fame perpendicular, is no difficulty to effect in practice, becaute thefe corbels may be fo difpofed in the very building of the wall. Firt, the lower one $y b$, and then, the upper one $b a$, being fet by a perpendicular, the line of which muft pafs through the axis of a brazen difk exactly filling the cavity of the hole b.
5. The third corbel ce, Fig. 16. confifts of a thick male fkrew ftanding out a good way from the wall. The hole b, Lig. 14. being of futficient capacity to let tinis 1 krew pafs, the upper part of the firew mutt be taken off, that it may have a horizontal plane, on which the fkrew in Fig. 14. may reft. Therefore the cylinder b, Fig. 14. being let into the hole b, Fig. 16. and the cavity g of the ear d, Fig. 14. being applied to the cone g, lig. 16. and a female fkrew being added at k, Fig. 14. and applied to the lower part of the corbel a b, Fig. 16. to the threw of the corbel $c e$, let there be applied a plain female fkrew, orbicular, and indented in the edge, that it may be the morc catily turned by akey made on purpofe, and broughe near to the part of the corvel c. Then, by turning the fulcrum about horizontally, let the fkrew e, Fig. 16 . into the hole of the horizontal arm of the fulcium, and turn the ikrew m about, till it touches the plane of the thick firew of the corbele, and the corbel itfelf fuftains fome part of the weight of the fulcrum. Then let there be added inother plain and indented female fkrew to the male one e, Tig. 16. and let it be turned to the plane of the horizontal arm of the fquare, which is bent on purpofe thus to receive this female fkrew, that it may not hinder the fuppenfion of the quadrant on the fuicrum, and that the greater length may be allowed to the thick fkrew of the corbele. Thus the part b of she fulcruin, Fig. 14. refts vertically on the fkrew of the corbele c, Fig. 16.

A New Method of making a Mural Quadrant.

and is kept in the azimuthal pofition by the 2 indented female fkrews of the corbel $c e$. Now if any aberration happens in the pofition of the niural plane, it may at any time be corrected by means of thefe indented Ikrews. The reader will cafily imagine that the hole of the horizontal arm 6 mut be large enough, and of an oval figure, that it's narrownefs may not obftruct the azimuthal motion.
6. The anterior part of the fulcrunn, Fig. 14. has 3 corbels, $n, 0$, and p. The firf, n, is in form of a cuive or parallelipiped, only it's upper furface is excavated femicylindrically. The fecond, 0 , is in form of a hook, and is defcribed feparately, in Figg. 15. The third, p, is only a promi- Fig. 1_{5}. nent male fkrew. They all mutt be fitted as firmly and cxactly as poffible.
7. The quacrant itfelf mutt be of folid metal. It's anterior face is repretented in Fig. 19. It mult be of a lufficient thicknefs, and properly Fig. sg. exceeded by it's limb. To rectify the plane of the limb, there mult be a rule compofed $k k$ of two, one of which $r r$ is perpendicular to the plane of the other $k k$, fo that it may not eafily be bent to cither fide. The edge of the rule ir muft be perfectly ftrait, and fhew the right line which is in the plane of the anterior furface of the limb. This rule is fixed to the back of the quadrant by Ikrews. Now if this rule falls in well with the plane of the limb in m and n, and another rectilinear rule to examine it Fig. 20. is fixed to the centre, it will cafily appear whether the limb and edge $r r$ of the rule are in the fame plane, and confequently whether the plane of the limb is right. For only one right line can be drawn from the points m and n, which by the hypothefis really exitts in the the edge of the rule $r r$: and but one plane can be drawn through the right line on n and the point a. Now if the examining rule fixt at a exactly touches every where the edge of the rule $r r$, and the limb of the quadrant, the plane of the limb nuuf neceflarily be in the plaine of the triangle anm. After examination and correction, this rule $r r$ is fuperfluous, and may therefore be taken away.
8. In the back of the quadrant, Fig. 20. let there be two brazen fupports $a b$ and $e f$, well faftened with fkrews to the furface of the quadrant. Let the fupport $a b$ have an oval hole in b; let there be 2 pointed 1 krews in c and d. The fides of the hole are convex above, that the corbel 0 , lig. 14. being let into this hole, the hollow part a of the corbel, Fig. 15. may be filled, and the points of the horizontal fkrews, Fig. 20. 6 and d, may fit the lower convex part of the corbel or hook, Fig. 15. on the two oppofite parts, that fo there may be no danger of Thaking.
9. Another fupport of fixt in e to the threws in the plane of the quadrant, has a rectangular hole at f, which is entered by the vertical male nkrews b and i, the ufe of which is as follows. The corbel or hook 0 , Iig. . 4. being let into the hole of the fupport $a b$, Fig. 20. the corbel n Fig. 14. is alfo let into the rectangular hole of the fupport ef, and the apex of che fkrew b, which ought to be hemifpherically convex, ftands in tine cavity of the corbel n, Fig. 14. and So be the trotion of the Ikrew b, the pofition VOL. X. Part i.
of the quadrant becomes fomething variable by rifing and falling. The hole f ought to be pretty large for this purpole; but when once a convenient pofition is determined by the upper fkrew, then the fhaking of the quadrant becomes ufelefs, and it is made faft to the corbel by the lower fkrew i.
10. By thefe two fupports the quadrant nay be kept in it's due pofition, and corrected when there is occafion, with regard to the beginning of the divifions on the limb, to make it agree with the perpendicular drawn thro' the centre of the quadrant. But the plane of the quadrant muft alfo be perpendicular. To effect this there nuft be 2 plano-orbicular female fkrews, embracing the male fkrew p, Iig. 14; the firft of thefe, which muft be indented, munt be applied to the male one p before the quadrant is applied to the corbels of the fulcrum. But when the quadrant hangs on the fupports $c d$ and $f e$, Fig. 20. and the fkrew p is lodged in the hole c, Fig. 19. and 20, which muft be fufficiently large and of an oval figure, that it's pofition may be varied by the upper flirew b, Fig. 20. of the ear; then the back of the quadrant is fuftained by the indented orbicular female fkrew, applied to the male one p, Fig. 14. above defcribed, and the face by the other orbicular female fkrew, which is to be turned about by a fort of key thruft into fome little holes made on purpofe. The plane therefore of thefe female flews mutt be fo large as not to enter the hole of the quadrant. And thus the quadrant is not only held tight on both fides by thefe 2 fkrews, but alfo can be moved backwards or forwards on occafion, becaufe it's fufpenfion on the corbels 0 and n, Fig. ${ }_{1} 4$. does not hinder this motion. But becaufe the too great length of the $1 \mathrm{krew} p$ is on obftacle, it will be proper to make the anterior female flerew of fuch a form, as is ciefcri-

Fig. 23.

Fig. 21.

Fig. 22. bed in the fection Fig. 23. where the margin a b mult touch the anterior face of the quadrant, and the neck $c d$ muft enter the hole c, Fig. 19.
11. The centre of the quadrant a, Fig. 19. is hollowed cylindrically to admit the joint of the rule. In the back of the quadrant, by means of the nkrews, is fixt a plate $n n$, Fig. 20 . having a fquare hole m, anfwering to the centre; and let this fquare be infcribed in a circle of the hole a, Fig. 19. or a litcle lefs. The plate $m n$, lig. 20. muft have a proper thicknefs, and be doubly bent according to the fquare, and end in the face in the part b, Fig. 19. diftant enough from the plane of the quadrant, to hold a thin ityle which enters the centre of a pin, and the fuftaining thread of the perpendicular. The pin is delineated in Fig. 21. where a is the head, and b a cylinder exactly filling the cavity of the centre of the quadrant and rule, ca fquare piece to be admitted into the hole m, Fig. 20. d a male fkrew, to which a female one is to be fitted.
12. Fig. 22. Shews the quadrant with the rule and apparatus of the perpendicular: $p r$ is a line infcribed on the furface of the quadrant, which would pals thro' the centre if it was continued, where the beginning is of the divifions on the limb. $b i k g$ is a parallelipiped, hollowed as in the figure, faftened by okrews to the plane of the quadrant, in
which the thread mo hangs perpendicularly on the line $p r$, which may be cafily performed. Another thread $i k$ is parallel to the plane of the quadrant, but at a diftance exactly equal to the height of the centre in the pinc. Let a third be added like the fecond in the oppiofite fide of the parallelipiped $b g v$.
13. The tiread, which is to be hung on the thin ftyle that enters the centre of the pin c, is to be made of human hair, cafily fuftaining a weight of half an ounce f, and munt fwing freely in the cavity of the parallelipiped $b i k g$. The fmaller thrcads of the parallelipiped $m 0, i k$, $\mathrm{E}^{2} c$. muft be allo made of the fame hair, and have an equal thicknefs. The ufe of them is to Thew eafily the pointion of the quadrant with regard to the perpendicular e f. For by levelling by the eye thro' the thread m o to the line $p r$, one may judge exactly whether $p r$, the beginning of the divifions on the limb, agrees with the perpendicular $c f$. Again, by levelling thro' the thread $i k$ to the other oppofite, one may fee whether the plane of the quadrant is parallel to the perpendicular. But if inftead of the parallelipiped, 2 little bridges are fubititured to fuftain thefe 3 threads, the fame end will be more flortly obtained, and as a fmall fuace is fufficient for the ofcillation of the thread $c f$, the difpofition of thefe 3 threads may be fuch, that the level may be taken by convex glaffes; which will be convenient for thote who have not good eyes. The orbicular margin of the female fkrew b, and the male 1 krew of the fulcrum p, Fig. 14. which it embraces, fhould project fo far beyond the furface of the quadrant, as not to hinder the ofcillation of the line $c f$, or the place of thofe fkrews and of the hole in the quadrant fhould be without the fpace of the ofcillation of the line. But if the ftructure of the obfervatory will permit a view of the fars from the horizon to the zenith, then the rule ought to have a free accefs to the line $p r$, and fo the parallelipiped $b i k g$ mult be placed a little lower into the appendix, or a little higher into the vertical arm, and the appendix itfelf ought to have a convenient incifion.
14. I proceed now to the rule itelf, which is drawn as to the greateft part feenographically in Fig. 22, and diftinguilhed by the letters $n n n n$, obforving a juft magnitude and proportion of it's parts. I hall now give a particular explanation of the ftructure of this rule, becaufe it is very peculiar. $n n n n$ is the plane of the rule which turns about upon the pin c. The danger of it's bending is prevented by another rule $d d$ d, to be ftrongly faftened perpendicularly to the plane $n n n$. The diviflons of the limb are hewn in the aperture or window of the rule \& $x . q$ is the tefefcope. Now if you would have the rule to flew exaetly the degree o or 1 of altitude on the limb, there will be nothing wanting in the machine, but to have the line from the object thro' the decuffation of the threads of the telefope to the eje, paraliel exactly to the line paffing thro' the centre of the yuadrant, and the degree o or i of altitude on the limb. But as the tube camot be fix'd at firft alter this manner to the rule, I would have it fo connected thercwith, that in the pofition defcribed in Fig. 22. it may have fume fort of motion, not onIy to the altitude, but alfo to parts of the azimuth. The notion to the altitude is performed by the fkrews $u u$, and the motion to the azimuth by the fkrews $w w$, all which are more particularly and Fig. 25. ditinctly delineated in Fig. 25. EJ feq.
15. The motion to the altitude is effected after the following manner.

Fig. 30. A foot or little bridge, Fig. 30. is faftened to the tube in a convenient place; the bafe $b c k$ is plain and rectangular, at b and $c k$ the thicknefs of the metal is lefs. The part i is perpendicularly faftened to the bate, to this is connected another voluble part $n a-m b$, by means of the fyle b, which paffes thro' the joints of both parts. In a the voluble part is excavated, bending in fuch a manner as to receive the tube faftened into this canal with tin. The bafe of this foot $b c k$ is faftened to the plane
Fig. 3:. of the rule by two brazen pieces, Fig. 31. which I call depreffors of the foot. Thefe depreffors have 2 holes, k and m, to receive the fkrews and the 2 apices b and i, which are to be thruft into little holes perforated for this purpofe in the plane of the rule. All this will be better underftood by the ichnographical horizontal delineation Fig. 26, where a a is part of the tube, $b c, c$ e the foot, $e e$ the base of the foot, $b c$ the voluble part of the foot faftened to the tube, $f f$ the 2 depreffors of the foot, $g g$ male $1 k r e w s$, which enter matrices excavated in the rule, and in this manner depreffing the foot at will to the plane of the rule. Jigg.
Fig. 29. 29. Thews the vertical delineation; a a part of the tube, ee, $f f$ tkrews of the depreffors: and the foot itfelf is hid under the tube: g, b are 2 male fkrews, the ends of which are plain, and keep the foor clofe and unmoveable, and when the horizontal pofition of the tube is to be altered by elevating or deprefling, it is cafily performed by the revolutions of thefe fkrews : but then the fkrews of the depreffors of the foot $f f, c e$, muft not deprefs the foot too ftrongly to the plane of the rule.
16. Now follows the motion to the parts of the azimuth, which be-

Fiis. 33. ing delineated Fig. 33. we fhall call the tabula plicata. It confifts of a rectangular plane of brafs $k f g$, on which refts at right angles another plane $a b c f$, the fldes of which, $a f$ and $b c$, are in the curvature of a circle drawn from the centre of the hole q, the margins, $a f$ and $d b c g$, are hollowed at right angles, in the fame nanner as the bafe of the foot Fig. 30. To this muft anfwer 2 depreffors like that in Fig. 31. only thefe, $b c$, mut have a proper curvature. The plane $k f g b$ has rectangular apertures $n i n$ and $o \int p$, to receive the appendages of the
Fig. 32. tube, which I Mall defcribe prefently. In Fig. 32. a a is part of the tube, ee the vertical part of the tabula plicata, faftened to the plane of the rule by means of the pin b, and turning about the pin, $c c$ and $d d$, the depreffors of the table and their fkrews. $b b$ is a fection of
Fiv. 33. part of the horizontal table, which is mark'd in Fig. 33. by the letters $k f g b$. $g g$ are peculiar appendages, faftened to the tube, which end in male ikrews, and part of this andiwers to the quadrangular perforations in is and op, lig. 33. So that according to the length $n \mathrm{r} r$ or os, they
they may be removed this way and that at any convenient diftance, and yet by means of the female fkrews $k k$, the little orbs $i i$ being interpofed beforehand, be frongly faftened whenfoever you pleafe to the plane of the table. But if, Fig. 25. the telefcope is raifed or depreffed by the fkrews $u u$ againtt the fides of the foot, this is permitted by the pin of the complicated table, the fkrews of the deprefors $x x$ being a little loofened. Again when it is to be performed to the aximuthal motion, the appendages $w w$, the female fkrews being on each fide relaxed, confequently the tube itfelf is moved forward, which is alfo permitted by the juncture of the foot. But if the appendages $g g$, Fig. 32. are conneeted tranfverly by a Arong piece of metal, this azimuthal motion may be rendered eafy and fecure by the ufe of one fkrew.
17. Befides the rule has a peculiar appendage, which fweeps the back of the limb. It confits, Fig. 25, and 26. of a part bent at right angles $A m$, very Atrongly fattened to the plane of the rule, and another voluble one $k 0$, with a fyle m, connected by it's joints with the immoveable $A m$, in the voluble part the little orb i, Fig. 26. turning about the cylinder q, which ends in a fkrew, iweeps the back of the limb, and is preffed againf it by che clauftrum ns with the fkrews ssss, Fig. 25. The rule being then moved to any divifion is faftened by the firew v, to which is objeeted a thin plate u t, Fig. 26. which hinders an immediate contact, that the point may not excavate the metal of the limb.
18. In the glaffes of the telefcope I do not require what they call a ceneration, that is, that the greateft thicknefs may be in the middle of the glafs, a tedious and laborious bufinefs. I would only have the granies, efpecially the object glafs, have a conftant fituation in the tube, to which, if they are taken out to be cleaned, they may cafily be reftored. The Englijbarificers commonly fix the eye glaffes, efpecially of reflecting telefcopes, ftrongly in cylinders cut fpirally, and fo place them in the tube with fit matrices. But if the fiecs are good, and a mark is made in the margin of the cylinder, anfwering to another made in the cavity of the tube, the glafs will neceffarily keep the fame fituation, tho' it be moved 100 times, provided it be inferted again into the tube, fo that one marks may anfwer the other.
19. The micrometer, Fig. 28. has a neck, the margin of which is Fig. 28. Icrupulouly divided into 8 equal parts by lines converging to the centre, or if more vertical threads are required, into as many other parts as you pleafe. To thefe divifions are eafily applied threads either of filk or metal, and are faftened in the neck either by wax, or very thin pins made either of box or metal. a is a quadrangular prominence, having another like it in the oppofite part, but either greater or lefs: let the thickners of both be equal to the thicknefs of the tube into which they are inferted, or a little lefs. The tube itfelf is delineated in Fig. 27. Fis. 2\%. In d it has a rectangular notch, receiving the prominence of the ring a, Fig. 28, without haking. The ring of the micrometer murt be well fited
fitted to the cavity of the cube, and when inferted mult exactly touch it's inner fides. b is an eye glafs, at a due diftance from the threads of the micrometer, f the foranzen orwlare cut into a cochleated operculum of. When this opercuium is removed, another muft be fubftituted furnintied with fmoaked glafies. That the horizontal thread of the mierometer may be always in the fance fituation, or it difturbed be eafily reftored to it's place, let the greater tube of the telefope, Fig. 29. end in a cufp i. Laftly, when the ocular tube b is inferted, and reduced to it's due fituation, let a line be drawn on the exernal furface of the tube b, to the direction of the margin of the horizontal cufp i, and afterwards let there 2 tubes, a and b, the fantened to each other by very fmall fkrews. But if you defire a micrometer furnifhed with a moveable thread, then the ftructure nuuft be conveniently altered.
20. To proceed now to the rectification of the rule; a plank of thick and folid wood muft be provided, with a horizontal furface of nearly the length and breadth of the rule. In the extreme pars of the horizontal furtace let a brazen pin be vertically erected, encing at the top in a kkrow, and exactly filling the cavity of the central hole. Let it have one of the extremes plain, or a parallelipipedal and prominent
Fig. 24. brazen table. $b b$, Fig. 24. denotes part of a plank, f e $g k$ a prominent brazen table, well faftened to the plank by fkrews eeee, but fo that the heads of the fkrews may not appear above the furface of the table. Let the upper furface of the metal be well polifhed, and agree with the upper plane of the plank, and let there be a thin line a b drawn upon it, which if continued would pafs thro' the axis of the pin. Let there be allo two brazen parallelipipeds, $c d$, faftened to the table with 2 fkrews, but at a proper diftance from the extremity $g k$, as may be collected from what follows. Let each of them have bencath 4 cylindrical apices thruft into holes bored in the table, that tireir fituation may be as firm us polible; let thefe 2 parallelipipeds touch cach other exactly, and let the plane of contact be perpendicular to the line $a b$. Now therefore if the divifions of the limb of the quadrant are Shewn by the inner margin of the aperture $x x$, Fig. 22. or by fome line extended thro' that aperture, then the rule of the quadrant is fo laid upon the plank, it's upper furface being firt to placed horizontally, that the reetical pin of the plank may pats thro' the central hole, the telefcope looking upwards, and fo the parallelipipet d_{5} Fig. 24. being removed, the margin of the aperture $x x$ thewing the divifions Fig. 22. or the extended line may be exactly applied to the perpendicular furface of the parallelipiped c, Fig. 24. And when this is done, the margin of the aperture, or the extended dircad, will be in a plane perpendicular to the line ab. Moreover the rule
Fig. 25, $=6$. being faftened to the table $f g$ by means of the fkrew v, Fig. $25,26$. let the telefope with the plank be directed to any remote object, immoveable; and let the point therein be noted, which is covcred by the decuflation of the threads, and let the plank remain unmoved in that pofition. Afterwards let the rule be inverted, the parallefipipedon i be
removed and reftored to it's former place d, Fig. 24; and let the margin of the aperture $x x$, Iig. 22. or the chread be applied to the perpendicular plane of the parallelipiped d. And as in this ftate the left part of the rule refts upon the plank, and fo it is neceffary that the reft fhould preponderate with the telefcope, a prop furnifhed with fkrews muft be combined with the plank. Theretore when the rule is applied in it's inverted fituation to the fame perpendicular plane of the line ab, Fig. 24. you muft again view the object thro the telefcope, and fee whether the point of decuffation of the threads is in the fame point ot the object as before. If this is the cafe, the rule has no need of correction. For when the right line $a b$ is unmoved, paffing thro' the centre of the pin of the rule, and the fame point of the object appears thro' the telefcope both in a right and an inverted pofition, the line pafing from the object to the cye thro' the decuffation of the threads muft neceffarily be parallel to the line $a b$. But as this cale will hardly ever happen at the firft trial, but the croffing threads will generally touch another point of the object, the error may be either in the altitude, or azimuth, or both together. In each cafe the pofition of the telefcope is to be corrected to half the angle of abcrration by the fkrews $u s$ and $w w$, Irg. 22. as far as this can be determined by the judgment of the cyes. Then the rule is to be laid on again in a right fituation as before, and the object to be viewed anew, and then you muft invert it again, and fee whether the lame point appears. If not, the pofition of the telefcope mult be again corrected by the quantity of half the error. This examination muft be repeated, as often as any difference appears. When this is done, all the frews $d d, c c, k k$, Fig. 32. and $e e, f f, g b$, Fig. 29. mult be Fig. 32. made faft, that the telefcope may remain in that ftate. If this manifold Fig. 29. inverfion of the rule on the plank, which may however be performed in a reatonably fhort time, feems too tedious, he may add a micrometer with a moveable thread, or rather a white table, bcde, Fig. 18. which has 2 black $f a f c i c, b l, g f$, croffing each other at right angles, in a horizontal and vertical fituation, which he may difpofe at a convenient diftance, and then fo direct the plank with the telefcope laid on it in a right fituation, that the point of decuffation of the fafcia may be in the point of decuffation of the threads in the tube. The rule being inverted, without moving the plank, an affiftant nuft be near the table, to perform the directions of the obferver by figns, and he muft have 2 other black fafcie, $k m$ and $n o$, which he may move at the beck of the obferver, in a fituation parallel to $g f$ and $b l$, which may cafily be done by fome peculiar ftructure in the plank, n o horizontally and k in vertically. But when the rule is inverted on the plank, if the point of decuffation falls on a point of the table, for inftance g, then the affiftans muft to difpole both the fafcie $k n$ and n o fuccefively, that the vertical thread of the rube may fall on the fafcia $b c$, and the horizontal one of the tube on the fafcic of the table k in. When this is finifhed the in- placed by a motion paraliel to thofe points of bifection. Then, without moving the plank, the rule with the telefcope is reftored to it's right fituation, and the pofition of it rectified by the fkrews, till the point of decuflation of the fafcie on the table, coincides with the point of decuffation of the threads in the tube. But if you look at the table, the firt time with the rule and tube inverted, and the fecond time in the right fituation, mark the point of decufation on the table, and by putting the moveable fafcie in the right place, the error of the rule may be corrected in the fame fieuation. And fo the pofition of the tube with regard to the rule will be fuch, that the fame point of the object may be feen in the tube, either in the right or inverted pofition of the telefcope, and confequently the rule of the quadrant will be rectified.
21. But if the rule cannot be hindered from being too heavy, for a convenient dircetion of it to the ftars, there are two ways of remedying this inconvenience. The firlt is that which Flamiftead long ago applied to his fextant, and defcribed in his Hiff. Caleft. The extcrior limb of the quadrant is cut with correfpondent notches, and fwept by the perpetual ikrew in the verfitile appendage of the rule. But then the apparatus of the appendage, $\int q$, lig. 26. flould not be omitted, that the plane of the rule may be exactly contiguous to the plane of the limb. For in the mural fextant at Peterforg, made by the famous Rowley, i obferved this defect, that the margin of the aperture $x x$, Fig. 22. which Shews the divifions of the limb, preffes the limb indeed very well, but the other part of the rule is too far ciftant from the plane of the limb, fo that the telefcope thakes, though the fkrew be turned ever fo clofe. But this whole artifice feems to the to be too laborious, and not convenient enough in obfervations. For it does not appear to me fafe enough, either to examine, or correct, or compare, the divifions of the limb by the revolutions of the fkrew; but to raife the weight of the rule, and by this artifice to caufe a more ealy dircetion of the tube to the fars, is abundantly too laborious. I would choofe to make ufe of one 100 times more fimple. Let abc, Fig. ${ }^{17}$. be a mural quadrant, ad the rule; in m, vertical to the centre a of the quadrant, let there be an axis of an iron bar, $g m f$, fo that the arm $m f$, and it's revolution, may be very nearly in the plane of the quadrant, and the other $m g$ in another diftant parallel. Let the length $m f$ be about $\frac{1}{2}$ the length of the rule ad, and the length $m g$, 3 or 4 inches. Let the angle $g m f$ of the rotation m, and of the fufpenfions $g f$, be a right one. At f let the rule be connected by a little chain or fmall cord, fo that $m f$ may be equal and parallel to ae. At g let a fmall cord $g \dot{s}$ be faitenech, and extencied horizontally to the extremity of the room ; there let it be fupported by a pulley b, and let down almoft to the ground, with the weight k hung to it. Now if this weight k is made fufficient for the rule, it will remain in any fituation, whether it be clevated or depreffed. It will be but a fmall obitacle, that the centre of gravity of our rule will be diftant from the point of fufpenfion, becaufe
the preffure of the clafticity in the back of the limb, will fufficiently moderate the unequal action of gravity.
22. It remains now to fhew that the inftrument deferibed is fufficient for all it's requifites.
r. As the thread ik, Fig. 22. and the other fimilar to it, in the oppofite part of the parallelipiped have a fituation parallel to the plane of the quadrant, and the fame diftance and point of fufpenfion c, it will cafily appear by looking, whether the thread of the perpendicular is in the plane of thefe threads, and fo the plane of the quadrant in a vertical pofition.
2. Becaufe the thread mo, is in the plane of the line pr, and that perpendicular to the plane of the quadrant, it will be cafly known by looking through $m o$ and $p r$, whether the perpendicular is in this plane, and confequently, whether the beginning of divifion $p r$ is in a vertical plane.
3. Becaufe the quadrant is fufpended by 2 points, firft, by the hook 0 , Fig. 14. and then in the cavity of the corbel n, nothing hinders it's vertical motion but the 2 female fkrews, embracing the male one p. By thefe fkrews, therefore, the fituation of the plane of the quadrant to the perpendicular, may be corrected; and as by this correction, the horizontal arm of the quadrant will not be inclined, it follows, that this correction is independent on the horizontal fituation of the quadrant.
4. The hook, Iig. 15. is not only concave in a, but alfo convex, io that it's fection $a b$ is circular: therefore this form of the hook does not hinder the quadrant from being a little raifed or depreffed in the corbel a by the flkew b, Fig. 20. Therefore, as the pofition of the beginning of divifion, depends, at the fame time, oil the pofition of the horizontal arm, it is evident, by the motion of the fkrew b, that the polition of the beginning of divifion, with regard to the perpendicular, may be corrected.
5. As the iron fulcrum itfelf has fome horizontal motion in the corbels ab and $g b$, Fig. 16. and the axis of rotation is perpendicular, it follows, that all the reft remaining, the deviation of the plane of the quadrant, from the plane of the meridian, may be corrected. And if even the axis of rotation of the futcrusn thould not be exaetly perpendicular, yct it will not hinder the obferver from difcovering to what part the inclination of this axis tends; and fo he may make his corrections as occafion requires.
6. The quadrant ittelf is of one folid metal. Now if this is extended or contracted by heat or cold, it will always remain fimilar to itfelf. Nor does the fulipenfion of it hinder it's extenfion. For in the fulcrust, the corbel u, Fig. 14. Jas a horizontal canal, in which the apex of the fkrew b, Fig. 20. refts, and the hole c, Fig. 19. is large enough for the fmall extenfion or contraction which heat or cold prosuces, nor is the plain furface of the female fkrews, which cover the hole on both fides, and faften the arm, any obitacle.
7. Laftly, as to the rectification, that fufficiently appears from the precepts. Every one will uisterfand, that it is moro eary and expe-

VOL. X. Dart 1.
X
ditious

Defcription and Ufes of an Equatorial Tclefonpe.

 ditious than thofe in ure; and as the plank conitructed for the reetification of the rule may be preferved, the obferver may at any time without much labour examine his rule anew. Thus the inftrument ailfiwers all it's requifites.But as it very rarely happens, that houfes are fo built, as to have walls in the plane of the meridian, or at leaft, places it for conftructing thice walls, the mural arches have hitherro required a buiding exprefily difpofed for this purpofe. But any one will cafily underitand tiat cur conerivance is applicable to almont any place. If, for inftance, in fuch an opening as is ufually made for doors, 2 corbels $a b, g b$, Fig. 16, are let into the wall, the third ec does not require a wall exactly contiguous; but may be fixed ftrongly enough in a piece of iron projecting a good way from the plane of the wall.

Defuiption XXV. I have made 3 of thefe inftruments, one of which was bought ard Ufesof an by Count Bentink for the Prince of Orange; the other two I have ftill by Equatoriai
Telefcope, by Mr James Short, F. R. confifts, the fame combination having feveral times been made before me 3. to the by way of a dial: but I believe the putting fo large a telefcope upon this Pref. No. 793. p. 24^{1}. Oet. ©̛.
1749. Read Dec. 7. 1749.

Defrription and L/ess of the Equatorial Telefcope, ar Portable OB^{2}. lixiatory. Fig. $3+$.

This inftrument confifts of 2 circular planes or plates, $A A$, which are fupported upon 4 pillars; and thefe are again fupported upon a crofs-foot, or pedeftal moveable at cach end by the 4 frews $B B B B$: the two circular plates $A A$ are moveable, the one above the other, and are called the horizontal plates, as reprefenting the horizon of the place; and upon the upper one are placed 2 spirit-levels to render them at all times horizontal: thefe levels are fixed at right-angles to one another: this upper plate is moved by a handle C, which is called the horizontal handle, and is divided into 360°, and has a Nonius index divided into cvery 3^{\prime}.

Above this horizontal plate there is a femicircle $D D$, divided into twice 90°; which is called the meridian femicircle, as reprefenting the meridian of the place, and is moved by a handle E, which is called the meridian handle, and has a Nonius index divided into every 3^{\prime}.

Above this meridian femicircle is faften'd a circular plate, upon which are affixed 2 other circular plates $F F$, moveable the one upon the other, and are called the equatorial plates; one of them, reprefenting the plane of the equator, is divided into twice 12 hours, and thefe are fubdivided into cvery 10^{\prime} of time. This plate is moved by a handle G, called the equatorial handle, and has a Nonius index for hewing every minute.

Above this equatorial plate there is a femicircle $H H$, which is called the declination-femicircle, as reprefenting the half of a circle of declination, or horary circle, and is divided into twice 90°, being moved by the han-

Pla.III.10t.X.Part I. Pag. 154.

Fig. 14.
Fig. 15.

a
d h
Fig. 16.
l^{k}
,

UIED

Defription and Uies of an Equatorial Telcfope.

dle K, which is called the declination-handle. It has alfo a Nonius index for fubdividing into every 3^{\prime}.

Above this declination-femicircle is faftened a reflecting telefcope $L L$, of the Gregcricin conftruction, the focal length of it's great fpeculum being 18 inches.
In order to adjuft the inftrument for obfervation, the firft thing to be clone, is to make the horizontal plates level or horizontal, by means of the 2 fpirit-levels, and the 4 ferews in the crofs-pedeftal. This being done, you move the meridian femicircle, by means of the meridian handle fo as to raife the equatorial plates to the elevation of the cquator of the place; which is equal to the complement of the latitucie (and which, if not known, may likewife be found by this inftument, as fhall be afterwards hewn). And thus the inftrument is ready for obfervation.

Firft find, from aftronomical tables, the fun's declination for the day, τ_{0} find the and for that particular time of the day; then fet the declination-femicircle botr of the to the declination of the fun, taking particular notice whether it is N . or S. and fet the declination-femicircle accordingly.

You then turn about the horizontal handle, and the equatorial handle, both at the fame time, till you find the fiun precifely concentrical with the field of the telefcope. If you have a clock or watch at hand, mark that inftant of time; and by looking upon the equatorial plate, and Nonius index, you will find the hour and minute of the day, which comparing with the time fhewn by the clock or watch, fhews how much either of them differ from the fun. In this manner you find the hour of the day.

Now, in order to find the meridian of the place, and confequently to have a mark, by which you may always know your meridian again, you firft move the equatorial plate by means of the equatorial handle, till the meridian of the plate, or hour-line of 12, is in the middle of the Nonius index; and then, by turning about the declination-handle till the telefcope comes down to the horizon, you obferve the place or point which is then in the middle of the field of the telefcope; and a fuppofed line drawn from the center of this field to that point in the horizon, is your meridian line. The beft time of the day for making this obfervation for finding your meridian, is about three hours before noon, or as much after noon. The meridian of the place may be found by this method fo exact, that it will not differ at any time from the true meridian above $10^{\prime \prime}$ of time; and if a proper allowance be made for the refraction at the time of obfervation, it may be found much more exact. This line thus found will be of ule to fave trouble afterwards; and is indeed, the foundation of all aftronomical obfervations.

The inftrument remaining as rectified in the laft experiment, you fet To fund a far $^{\text {and }}$ the declination-femicircle to the declination of the ftar or planet you want or planet in to fee; and then you fet the equatorial plate to the right afcenfion of the ftar or planct at that time, and, looking thro' the telefcope, you will fee the ftar or planet; and after you have once got it into the field, you cannot lofe it: for as the diurnal motion of a ftar is parallel to the equator field.

The cifieft method for feeing a ftar or planet in the day-time is this: your inftrument being adjufted as before-directed, you bring the telefcope down fo as to look directly at your meridian mark; and then you fet it to the declination, and right afcenfion, as before-mentioned.

By this inftrument moft of the ftars of the firft and fecond magnituic. liave been feen even at mid-day, and the fun hining bright; as alfo Mercury, l'mus, and fupiter: Saturn and Mars are not io eaty to be fecn, upon account of the faintnefs of their light, except when the !um is but a lew hours above the horizon.

And in the fame manner in the night-time, when you can fee a ftar, planet, or any new phaenomenon, fuch as a comet, you may find it's declination and right afcenfion immediately, by turning about the equatorial handle and declination-handle, till you lee the ftar, planet, or phenomenon; and then, looking upon the equatorial plate, you find it's right afeenfion in time; and you find, upon the declination-femicircle, it's cleclination in degrees and minutes.

In order to have the other ufes of this inftrument, you muft make the equatorial plates become parallel to the horizontal plates: and then this inftrument becomes an equal alitude infrument, a tranfit infrument, a tbeodolite, a quadrant, an azimutb inftrument, and a level. The manner of applying it to thefe different purpofes is too obvious to need any explanation.

As there is alfo a box with a magnetic needle faftened in the lower plate of this inftrument, by it you may adjuft the inftrument nearly in the meridian; and by it likewife you may find the variation of the needle: if you fet the horizontal meridian, and the equatorial meridian, in the middle of their Nonius indexes, and direct your telefcope to your meridian mark, you obferve how many degrees from the meridian of the box the needle points at ; and this diftance or difference is the variation of the needle.
XXVI. On the axis of the globe above the hour- लircle, is fixed the

In:frovement of the Celeftial Giobe, by Mr James Fergufon. No..483. f. 535. Mar. E゙夭. 1747. Read Miay 1+. 1747 . Fig. 35.
arch Λ at one end by the ferew D, fo as to leave fufficient room for turning the hour-index occalionally : the other end at B, being always over the pole of the ecliptic, has a pin fixed into it, whercon the collets C and B are moveable by their wires F and G, when the ferew E is nackned, and may be made fart at pleafure by this fcrew; fo that the turning of the globe round will carry the wires round with it, fhewing thereby the apparent motions of the fun and moon by the little balls on their ends at H and I. On the collet C, in which the fun's wire is fix'd, there is allo fix'd the circular plate L, whercon the $2 g_{\frac{1}{2}}^{\frac{1}{2}}$ days of the moon's age are engraven, which have their beginning juft below the fun's wire; confequently the plate L cannot be turned without carrying the fun's wire along with it ; by which

Improvement of the Celeftial Globe.

which means the moon's age is always counted from the fun; and the moon's wire being turned fo as to be under the day of her age on this plate, will fet her at her due diftance from the fun for that time. Thefe wires being quadrants from C to H, and from B to I, mult ftill keep the fun and moon direetly over the ecliptic; becaufe the center of their motions at C and B is perpendicularly over the pole of the ecliptic; in the arClic circle. But, becaufe the moon does not keep her courfe in the ecliptic, as the fun appears to do, but has a declination of $5 \frac{1}{5}$ degrees on each fide of it in cvery lunation, fhe is made to fcrew on her wire as far on both fides as her declination or latitude amounts to. For this purpofe K is a fmall piece of pafteboard, to be applied over the ecliptic at right angles; the middle line 00 ftanding perpendicularly thercon. From this line there is $5+$ degrees marked on each fide upon the outward limb; which reaching to the moon, makes her to be eafily adjufted to her latitude at any time. -N. B. The horizon fhould be fupported by two femicircular arches, inftead of the ufual way of doing it by pillars: becaufe the arches will not ftop the progrefs of the balls, when they go below the horizon in an oblique fphere.

To resiify the Globe. Elevate the pole to the latitude of the place; then bring the fun's place in the ecliptic to the brazen meridian, and fet the hour-index to XII at noon: kceping the globe in this pofition, nlacken the forew E, and fet the fun directly over his place in the meridian; which done, fet the moon's wire under the day of her age for that time on the plate D, and the will ftand over her place in the ecliptic for that time, and you will fee in what conftellation the then is. Laftly, faften the wires by the forew E, and the globe will be rectify'd.

The globe being rectify'd as above to the given time, turn it round in T_{0} find the the ufual way, and you will fee the fun and moon rife and fet for that day rifing and on the fame points of the horizon as they do in the Heavens. The times of fleting of the their rifing and fetting are fhewn by the hour-index, which likewife fhews $\begin{aligned} \text { funth } \\ \text { fund } \\ \text { theor }\end{aligned}$ the time of the moon's paffing over the meridian. If you want to fee to amplitudes on greater exactnefs the rifing and fetting of the moon, find her latitude for the korizon. that day by the Epbemeris; and as it is S . or N. ferew her fo many degrees from the ecliptic, meafuring them by the pafteboard K, appling it to the ecliptic as abovemention'd; and theis turning the globe round, you will fee the time of the moon's rifing and fetting by the hour-index, and her amplitude on the horizon for that time, as it is affected by her latitude, which will fometimes be very confiderable.

This may be very ufeful, efpecially in giving lectures upon the globes; becaufe a large company at fome diftance will eafly fee this fun and moon going above and below the horizon as they rife and fet, and likewife their appulfes to different fix'd ftars: whereas in the uftual way, when there is only the fun's place in the ecliptic fhewn, it is not eafy for any one to keep his cye upon that part of the ecliptic as the globe is turned round, unlefs it be in fome remarkable circle of longitude; and it is not on, or quadratures.

This fimple apparatus thews all the varieties that can happen in the rifing and feeting of the fun and moon, which are very ctiriotis, efpecially about the poles, where the fun is prefent for one half of the ycar, and ablent for the other half; the moon in winter hining conftantiy without fecting from the firft to the third quarter, in the fun's abfence; and in fummer the full moon is never feen at the poles; for fle fets at the firit quarter, and rifes not till the third, fave what may happer on account of her latitucie.

All the fberomens of the harveft-moon become very plain by this additional part: and in making fome trials I find, that, to fome places of the earch, the moon will not differ above an hour in her rifing for 15 nights together, but will differ fometimes $23^{\text {h }}$ in her fetting, within the compafs of that 15 days; and for the next 15 fhe will fet within $1^{\text {th }}$ of the fame time, and differ 23^{h} in her vifing. This is taken in round numbers, but may be confider'd with more exactnefs by thofe who are better acquainted with the celeftial motions. I fhall only add, that the places of the carth where thefe pbenomeno happen, are thofe lying under the polar circles.
A.ciser fromm sbe Wiscous of the late his John Sencx, F. R. S. to M. Folkes, $E_{j q} ;$ P. R. S. concerring thic large Groots pricaradid by ber late husf. band, and now jold by beryetf, as bor Hanje oser a gainfist Duntans Church in Flect.
Street. No. 493. p. z29. uct. © © F . 1749. Read Jan. 19. 1748-9.
XXVII. The Royal Society being lately acquainted with fome improvements that were faid to have been made upon the globes at Nuremzberg, and defired to encourage and recommend the fame *, I am obliged to return you my moft grateful acknowlectgments for your kind interpofition in behalf of mine. It is fufficiently known, that works of art, made in our own country, have, for the moft part, a degree of exactnet's much fuperior to thofe of foreign countries : and I hope I may be allowed to fay in particular, and without difparagement to the performances of others, that my globes will be found, upon examination, as truly made, as accurate, and as well adapted for the purpofes of Geography and Aftronomy, as any now cxtant. For (not to mention that the terreftrial is formed from the beft maps that could be made or procured, and contains no material error in the fituation of any places where obfervations have been really and truly made) the celeftial, upon the niceft examination, will be found to have this advantage above all others, that the figures of the confellations there given, were originally dilineated by a gentleman, whofe fkill in performances of this nature was very well known and allowed; under the dircetion of the Great Dr Halley, to whofe kindnefs my late hurband was upon all occafions particularly indebted. And befides this, to cach ftar are added Bayer's letters of reference; a circumftance extremely ufeful, either for the tracing out the path of a comet, or for defcribing any new phanomenon in the Heavens.

It may be further obferved, that celeftial globes, as they are commonly fitted up, are adjufted only to one particular year; though indeed they

[^13]

Uned

Concerning Mr Senex's large Globes, \&c.

may ferve without any fenfible error, during the life of any fingle perfon; whereas mine, particularly the two greateft, viz. of 17 and 28 inches in diameter, have this further advantage, that they ferve indifferently for any age paft or to come. For by means of a nut and fkrew, which will be hereafter deferibed, the globe is made to turn round an iron axle; whereby the pole of the equator (though fixed in common globes is made here to revolve about the pole of the ecliptic, and reprefents the How motion forwards obferved among the fixed ftars, but really owing to the flow motion backezards of the equinoctial points.

Upon this account it is, that the conftellation of firies is got into the fign of Tourus, and the conftllation of Taurus into that of Gemini, and fo of the reft. Hence likewife it is, that ftars which rofe or fet at parcicular feafons of the year in the times of IIcfod, Eudorus, Virgil, Pliny, iec. by no means anfwer at this time to their defcriptions; but by the improvement I am here fpaking of, my globes (allowing for the preceflion of the equinox, as it is called, i. e. one degree in 7^{2} years) may, without any trouble, be adjuifted to the accounts given by any of thote writers.

By this means likewife, every one may judge of the truth of ancient obfervations without the labour of a tedious calculus, which fome are not able, and others are not willing, or at leifure, to go through. By this means likewife, fome paffiges in thofe ancient writers may be corrected, when manufcripts afford no affiftance. For thefe frequently fuffer by the hands they go through, whilft the Heavens remain invariably the fame.

As by this apparent motion in the Heavens, not only the longitudes, declinations, and right afcenfons, of the fixed ftars are affected, but the pofition of the colures is of courfe altered; yet by the help of this contrivance all may be reftored, and the age of an author in fome fort be afcertained.

The famous aftronomical argument likewife of Sir I. Newton, in his Chron. p. $86,87, \mathcal{E}_{6}$. may hereby be more particularly enquired into, and confidered; all which ufes will be fpeedily fhewn and demonftrated by a regular feries of propofitions, in a treatife, as I am well affured, that is preparing for the prefs, by the Rev. and Learned Mr George Cofard, Fellow of Wadham College, in Oxford.

Thefe, Sir, are fome of the great advantages of my globes over others; and I therefore hope they will merit the encouragement of a Society founded for promoting real and ufeful learning; and that the importation of any globes from abroad may be rendered lefs neceffary, if not entirely ufelels.

P A PERS omitted.

1. A Catalogue of the immerfions and emerfions of the fatellites of $\mathrm{N}^{\circ} 49 \%$-pJupiter, that will happen in 1750 , by Fames IIodgon, F. R. S. Mafter ${ }^{373}$. of the Royal Mathematical School, in Chrifts Hofpital.
2. The fame, for the year 1751 .

The AEtion of Springs.

CIA A. IV.

MECHANICKS,ACOUSTICKS.

The Azion 1 IHE theory of fprings not only is of great ufe in the more
ofsprings. I.
curious parts of mechanicks, as the ftructure of watches, Eic. a letter from James गurin, but may give light to many operations of nature, there being few fubftanM.D. . F. R. ces but what are endued with fome degree of elafticity; and particularly s. Ec Co!!. the bodies of animals, and of vegetables likewife, being known to confift, Med. Lond. to M. Folkes, E/f; P. R. S. reafon it is not to be wondered at, that this theory has engaged the No. 472 . p. thoughts of leveral eminent Mathematicians of the latt and prefent age; 46. Jan. E̛.c. as Dr Hook, Mr Yokn Bernouilli, M. Camus, \&cc. But, as all that I are fuppofed to be bent to the fame degrec, and that without fhewing how the effect of any of them may be reduced to, or compared with, that of any other natural caufe, I flatter myfelf, that the general propofition I am going to lay down may merit your attention, both on account of its fimplicity, and of its comprehending all pofible cake's of a boc'y acting upon a fipring, or a fpring upon a body, where no other power intervenes: and alfo of its reducing the effect to that noft known and fimple one, the effect of gravity upon falling bodies. In order to which to prevent any mifapprehenfion, is will be proper to fix the meaning of fuch terms as I fhall have occafion to make ufe of.

1. By a fpring, I mean a body of any thape perfectly claftic.
2. By the natural fituation of a fpring, I mean the fituation it will reft in, when not difturbed by any external force.
3. By the length of a fpring, I niean the greateft length, through which it can be forced inwards. This would be the whole lengh, were the fpring confidered as a mathematical line; but in a material fipring is the difference between the whole length when the fpring is in its natural fituation, and the length or fpace it takes up when wholly compacfed or clofed.
4. By the ftrength of a fpring, I mean the leaft force or weight, which, when the furing is wholly comprefied or clofed, will reftrain it from unbending itielt.
5. By the fpace through which a fpring is bent, I mean that fpice or length through which one end of the fpring is renioved from its natural fituation.
6. By the force of a fpring bent or partly clofed, I mean the leaft force or weight, which, when the fpring is bent through any fpace lefs than its whole length, will confine it to the fate it is then in, without fuffering it to unbend any farther.

The AEtion of Springs.

This being premifed, I thall next, for the foundation of what follows, lay down a principle, which was verified by experiment, in the prefence of our Royal Founder about 70 years ago, by ${ }^{*}$ Dr Hook; and has been lately coniirmed by the accurate hand of Mr George Graban.

Ut Tenfio, fic Vis: That is, if a fipring be forced or bent inwards, or Princtiple. drawn outwards, or any way removed trom it's natural fituation, it's refirtance is proportional to the face by which it is removed from that fituation.

Thus, if the fpring C L, Fig. 36. refting with the end L againft any immoveable fupport, but otherwife lying in it's nature fituation, and at full Jiberty, mall, by any force, p, be preffed inwards, or from C towards L, through the fpacc of one inch, and can be there detained by that force p, the refiftance of the fpring, and the force p, exactly counterbalancing one another; then the force $2 p$, will bend the fpring thro' the Space of 2 inches, $3 p$ thro' 3 inches, $4 p$ thro' 4 inches, EJc. the fuace Cl, Fig. 37. thro' which the fpring is bent, or by which the end G is removed from it's natural fituation, being always proportional to the force which will bend it fo far, and will detain it to bent.

And if one end L be faftened to an immoveable funport, Fig. 3^{8}. and the other end C be drawn outwards to l, and be there detained from returning back by any force p, the face $C l$, thro' which it is fo drawn outwards, will be always proportional to the force p, which is able to detain it in that fituation.

And the fame principle holds in all cafes, where the fyring is of any form whatfoever, and is, in any manner whatioever, forcibly removed from it's natural fituation,

Here, Sir, I prefiume, you will think it material to take notice, that the elaftick force of the air is a power of a different nature, and governed by different laws, from that of a fpring. For fuppofing the line I, C, Fig. 36. to reprefient a cylindrical volume of air, which, by compreffion, is reduced to $L /$, Fig. 37 . or, by cilatation, is extended to L.1, Fig. 38. it's elaftick force will be reciprocally as Ll, Fig. 36, and 37 . whereas the force or refiftance of a fpring will be directly as Cl.

I now proceed to my gencral propofition, and it's corollaries; in which if I thall happen at any time to exprefs myfelt with lefs accuracy, as in making weights, times, velocities, EJc. to become promifcuouny the fibjects of geometrical or arithmetical operations, I defire, once for all, to be undeiftood, not as fpeaking of thofe quantities themfelves, but of lines, or numbers, proportional to them.

If a fpring of the ftrength P, and the length C L, Fig. 39. lying Theores. at full liberty upon a horizontal plane, reft with one end L againit an immoveable fupport; and a body of the weight M, moving with the velocity V, in the direction of the axis of the fpring, Atrike directly

[^14]VOL. X. Part i.
upon the other end C, and thereby force the fpring inwards, or bend it thro' any face $C B$; and a middle proportional, $C G$, be taken between the line $C L \times \frac{M}{P}$, and $2 a, a$ being the height to which a heary bolly would afcend in viacuo with the velocity V, and, upon the radius $R=$ $C G$, be erected the quadrant of a circle $G F A$; I fay,
I. When the fpring is bent thro' any right fine of that quadrant, as $C B$, the velocity v of the body M, is, to the original velocity V, as the co-fine to the radius: that is, $v=V \times \frac{B F}{R}$.
2. The time t of bending the fpring thro' the fame fine $C B$, is to τ the time of a lieavy body's afcending in vacuo with the velocity V, as the correfponding arch to $2 a:$ that is $t=\tau \times \frac{G F}{2 a}$.
Demonstra- I. While the fpring is bending thro the face CB, let the fpace, TION. thro' which it is at any time bent, be called x, τ the time of bending it thro' the fpace x, and u the velocity of the body at the end of the time τ; and let $C L=L, C B=l$.

Then, if p be the force, with which the fpring, when bent thro' the fpace x, refifts the motion of the body; by Dr Hook's principle, L : $x_{i}:: P: p=\frac{P x}{L}$.

And fince, in the cafe of forces that act uniformly, the quantities of motion generated are proportional to the generating forces, and the times jointly, if $M u$ be the nafcent quantity of motion taken from the body by the refiftance $\frac{P x}{L}$ in the nafcent time $\tau, M V:-M:: M T::$ $\frac{P_{X T}}{L}$ or, $-i=\frac{V P_{X T}}{M L T}$.

Alfo, fince, in the fame cafe of forces acting uniformly, the fpaces are proportional to the velocities, and the times jointly, $\dot{x}: 2 a:: \cup \dot{\tau}$: $V \tau$, or $\dot{r}=\frac{\tau V \dot{x}}{2 a_{v}}$.

Therefore, $-v=\frac{V P_{x}}{M L T} \times \frac{T V x}{2 a u}$, or, $2 v v^{\circ}=-\frac{V^{2} P x \dot{x}}{M L a}$; and the furents of thefe two quantities are v^{2} and $-\frac{V^{2} P x^{2}}{2 M L a}$. But the former
of thefe was V^{2}, when x, and confequently, the latter was nothing; thcrefore $v^{2}-V^{2}=-\frac{V^{2} \cdot P x^{2}}{2 M L a}$, or $v^{2}=V^{2}-\frac{V^{2} P x^{2}}{2 M L a}$.
But, by the conftruction, $\frac{2 M L a}{P}=R^{2}$; therefore, $v^{2}=v^{2}-$ $\frac{V^{2} x^{2}}{R^{2}}$, or, $v^{2}=V^{2} \times \frac{R^{2}-x^{2}}{R^{2}}$; and, when x becomes equal to l, and v to $v, v^{2}=V^{2} \times \frac{R^{2}-l_{2}}{R^{2}}$; and, by the property of the circle, R^{2} l^{2} being equal to $B F^{2}, v^{2}=V^{2} \times \frac{B F^{2}}{R^{2}}$, or $v=V \times \frac{B F}{R}$. Q.E. D. s°.
2. We have above, $\frac{\dot{r}=\tau V_{\dot{x}}}{2 a v}$; and $u^{2}=V^{2} \times \frac{R^{2}-x^{2}}{R^{2}} ;$ or, $v=V \times$ $\frac{\sqrt{R^{2}-x^{2}}}{R}$: therefore, $\dot{\tau}=\frac{\tau V \dot{x}}{2 a} \times \frac{R}{V \times \sqrt{R^{2}-x^{2}}}$, or, $\dot{\tau}=\frac{T}{2 a} \times$ $\frac{R \dot{x}}{\sqrt{R^{2}-x^{2}}}$.
Now let $C D, F i g .40$. be equal to x; and draw the co-fine $D E$, the radius $C E$, and the perpendicular $e d=\dot{x}$: then will the triangle $D E C$ be fimilar to the nafcent triangle de E; and confequently, $D E$: $d e:: C E: e E=\frac{C E \times d e}{D E}=\frac{R \dot{x}}{\sqrt{R^{2}-x^{2}}}$.

Therefore, $\tau=\frac{\tau}{2 a} \times e E$, and $\tau=\tau \times \frac{G E}{2 a}$. And when a becomes equal to $C B$, and τ to t, the arch $G E$ becomes equal to the arch $G F$: therefore $t=\tau \times \frac{G F}{2 a}$. Q. $E . D .2^{\circ}$.

Whereas I have reprcfented the fpring as refting againt an immo-Schouva I. veable fupport at L, it will, perhaps, be objected, that no fupport can be reaily immoveable; fince any body, how great foever, may be moved out of it's place by the lealt force. But this objection may eafily be removed, by fuppofing the fpring to be continued till it becomes of twice the length $C L$, and that a fecond body, equal to M, frikes againft the oppofire end of the fyring with the fame vclocity in a contrary direction; in which cafe the point L will be perfectly immoveable.

Under this theorm are comprehended the 3 following cafes: 1

In cafe 1. The fpring is bent thro' it's whole length, or is intirely compreffed and cloled, before the moving force of the body is confumed, and it's motion ceafes.

In cafe 2. The moving force of the body is confumed, and it's motion ceafes, before the fpring is bent thro' it's whole length, or wholly clofed.

In care 3. The moving force of the body is confumed, and it's motion ceafes, at the inftant that the fpring is bent thro' it's whole length, and is intirely clofed.
For this reafon, and in order to make the following corollaries of more ready ufe, 1 hall take the liberty of diftributing them into 3 claffes, the firft of which are as general as the theorem itielf, extending to all the 3 cafes, but are more particularly uleful in cafe 1. The fecond clafs of corollaries extend to both the fecond and third cafe; but are more particularly ufeful in cafe 2. The third clafs extend only to cafe 3. and, by that means, are much more fimple than either of the former.
Class I. General carol laries, bus of more particklar ufe in cafe 1 ; wherrin the Pring is wholly slofed,

When the fpring is bent thro' any right fine C B, Fig. 39. the lofs of velocity is to the original velocity, as the verfed fine to the radius, or $V-v=V \times \frac{G g}{R}$
before the mo-
tion of the bo. dy ceafes.
Coroll. I .
Coroll 2.
For, fince $v=V \times \frac{B F}{R}, V-v=V-V \times \frac{B F}{R}=V \times \frac{R-B F}{R}=$ $V \times \frac{G g}{R}$

When the fpring is bent thro' any right fine $C B$, the diminution of the fquare of the velocity is to the fquare of the original velocity, as the fquare of that right fine to the fquare of the radius, or $V^{2}-v^{2}=$ $V_{2} \times \frac{C B}{R^{2}}$.

For, fince $v=V \times \frac{B F}{R}, v^{2}=V^{2} \times \frac{B F^{2}}{R^{2}}$, and $V^{2}-v^{2}=V^{2}$ $V^{2} \times \frac{B F^{2}}{R^{2}}=V^{2} \times \frac{R^{2}-B F^{2}}{R^{2}}=V^{2} \times \frac{C B^{2}}{R^{2}}$.
Coroll. 3.
When the fipring is bent thro' any fpace l, v the velocity of the body is equal to $V \times v^{\prime} \frac{2 M L a-P l^{2}}{2 M 1 . a}$, or to $V \times \sqrt{2 M a-p l} \frac{2 M a}{2 M a}$ and is proportional to $\sqrt{ } \frac{2 M L a-P l^{2}}{M L}$, or to $\sqrt{ } \frac{2 M a-p l}{M}$.

For, fince $v^{2}=V^{2} \times \frac{B F^{2}}{R^{2}}=V^{2} \times \frac{R^{2}-l^{2}}{R^{2}} ;$ if, for R^{2}, we fubiti-
cute it's value $\frac{2 M L a}{P}$, we have $v^{2}=V^{2} \times \frac{2 M L a-P L^{2}}{2 M L a}$, or $v=V \times$ $\sqrt{2 M L a-P l^{i}} 2$ and, as by Dr $H 0 o k ' s$ principle, $L: l:: P: p$, or $p l=p L, v=V \times V^{2 M L a-p L l} \frac{2 M L a}{2 M, v}$, or $=V \times V^{2 M a-p l} \frac{2 M a}{2 M}$.

But $\frac{V}{\sqrt{ } a}$, by Galiko's doctrine, is a constant quantity; and therefore v is proportional to $\sqrt{ } \frac{2 M L a-P l^{2}}{M L}$, or to $\sqrt{ } \frac{2 M a-p l}{M}$.

The time r of bending the Spring tiro' any face $l_{\text {, }}$, is proportional to Coral. 4 . the arch $G F$ divided by $\checkmark a ; l$ being the right fine of the arch, and R $=v^{\prime} \frac{2 M L a}{P}$, being the radius.

For, by the theorem, $t=\tau \times \frac{G F}{2 a}$; and $\frac{\tau}{\sqrt{ } a}$ is a conftant quantity.
The diminution of che product of the weight of the body into the Caroll. 5 . fquare of the velocity, or (to use the expreffion of come late writers) the diminution of the Dis viva, that is, $M V^{2}-M v^{2}$, by bending a Spring tho' any face l, is always equal to $\frac{C^{2} P l^{2}}{2 L A}$, or to $\frac{C^{2} p l}{2 A}$; where A is the height from which a heavy body will fall in vacuo in a fecond of time, and C is the celerity gained by that fall.

For, by Cool. 2. $V^{2}-v^{2}=V^{2} \times \frac{C B^{2}}{R^{2}}=\frac{V^{2} r^{2}}{R^{2}}$; and R^{2}, by the construction, being equal to $\frac{2 M L a}{P}, V^{2}-v^{2}=V^{2} i^{2} \times \frac{P}{2 M L a}$.

But, by Galileo's theory, $\frac{V^{2}}{a}=\frac{C^{2}}{A}$; therefore, $V^{2}-v^{2}=\frac{C^{2} P l^{2}}{2 M L . A}$ and $M K^{2}-M v^{2}=\frac{C^{2} P l^{2}}{2 L A}=\frac{C^{2} p l}{2 A}$.

The diminution of the Wis vita, by bending a firing tiro any Corelli. 6. face l, is always proportional to $\frac{P l^{2}}{L}$, or to $p l$: and, if either the faring be given, or $\frac{P}{L}$ be given in different firings, the lofs of the V is viva will be as l^{2}, or as p^{2}.

For,

For, by Coroll. 5. $M V^{2}-M v^{2}=\frac{C^{2} P l^{2}}{2 L A}=\frac{C^{2} p^{2}}{2 A}$; and $\frac{C^{2}}{A}$ being a conftant quantity, $M V^{2}-M v^{2}$ is as $\frac{P l^{2}}{L}=p l$; And, if $\frac{P}{L}$ be given, $M V^{2}-M v^{2}$ will be as l^{2}; or as $l^{2} \times \frac{p_{2}}{L^{2}} ;$ or as $l^{2} \times \frac{p^{2}}{l^{2}}$; or as p^{2}.
Coroll. 7. The lois of the Vis viva, by bending a fpring through it's whole length, or by wholly clofing it, is equal to $\frac{C^{2} P L}{2 A}$, and is proportional to $P I$. and, if $P L$ be given, the lofs of the Vis viva is always the fame.

This is evident from Coroll. 5 . and 6 .; forafmuch as l is now equal to L.

Class II.
Corollaries of m:re particular uje in Cafe 2. wbercintle motion of the body ceafes before the fipring is zwholly cloped. Conoll. 8.

Corill. 10.

 tion of the body ceafing, $v^{2}=0$. Therefore $V^{2}=\frac{C^{2} P l^{2}}{2 M L A}=\frac{C^{2} p l}{2 M A^{2}}$; or $V=C l \sqrt{ } \frac{P}{2 M L A}=C \sqrt{ } \frac{p l}{2 M A}$.If the motion of the body ceaie, when the fpring is bent through any fpace, l, the time, t, of bending it, is equal to $t^{\prime \prime}$ of time, multiplied by $\frac{m}{2} \vee \frac{M L}{2 P A}$, or to $1^{\prime \prime} \times \frac{m}{2} \checkmark \frac{M l}{2 p A}$, where m is to x , as the circumference of a circle to the diameter.

For, by the theorem, $t=\tau^{\prime} \times \frac{G F}{2 a}$; and, by Galileo's theory, $\frac{\tau}{\sqrt{a}}=\frac{\mathrm{I}^{\prime \prime}}{\sqrt{ }}$. Thercfore $t=\frac{\mathbf{1}^{\prime \prime}}{\sqrt{ } A} \times \frac{G F}{2 \sqrt{ } a}$.

Alio, by the theorem, $v^{2}=V^{2} \times \frac{R^{2}-l^{2}}{R^{2}}$; and therefore v^{2} being now equal to $0, R^{2}=l^{2}$, and, Fiz. 41. l becomes the radius of the circle; and l being likewife equal to the right fine of the arch $G F$, that arch becomes a quadrant, and is equal to $\frac{2 l \times m}{4}$. Therefore $t=\frac{1^{\prime \prime}}{\sqrt{A}} \times \frac{2 l m}{4 \times 2 v^{\prime} a^{\prime}}$, or $t=\mathrm{I}^{\prime \prime} \times \frac{l m}{4 \sqrt{ } \text { IXV } a}$.

But l being equal to $R=\sqrt{2 M L a}_{P}^{P}, \frac{l}{\sqrt{a}}=v^{2 M L} \frac{2 M}{P}$; therefore $t=1^{\prime \prime}$ $\times \frac{m}{4 \sqrt{ } A} \times \sqrt{ } \cdot \frac{2 M L}{P}$, or, $t=1^{\prime \prime} \times \frac{m}{2} \sqrt{ } \frac{M L}{2 P A}=1^{\prime \prime} \times \frac{m}{2} \sqrt{2 p A}$.

In the fame cafe, the time of bending the fpring is proportional to Coroll. 11. $\checkmark \frac{M L}{P}$, or to $\sqrt{\frac{M l}{p}}$; and if $\frac{L}{P}$ be given, t will be as $V M$; and, if both $\frac{L}{P}$, and alfo M, be given, t will always be the fame, whatever be the original velocity, or through whatever fpace the fpring be bent.

If the motion of the body ceafe, when the fpring is bent through any Corell. 12. fpace l, the product of the initial velocity, and the time of bending the fpring, or $V t$, is equal to $1^{\prime \prime} \times \frac{m C l}{4 A}$; and is proportional to l, the fpace through which the fpring is bent.

For, by Coroll. 8. $V=C l \sqrt{\frac{P}{2 M L A}}$, and, by Coroll. $9 . t=1^{\prime \prime} \times \frac{m}{2}$ $\sqrt{2 P A}$; therefore, $V t=\mathrm{r}^{\prime \prime} \times \frac{m C l}{4 A}, \frac{M L P}{M L P}=\mathrm{r}^{\prime \prime} \times \frac{m C l}{4 A}$; and, as $\mathrm{I}^{\prime \prime}$, m, C and A, are given quantities, $V t$ is as l.

Hence, any two of the three quantities, V, t, and l, being given, the other is readily determined.

In the fame cafe, the initial quantity of motion, or $M V$, is equal to Corcll. I3. $C l v^{\prime} \frac{P M}{2 L A}$ or to $C v \frac{p l M}{2 A}$.

For, by Coroll. 8. $V=C l \sqrt{2 M L A}=C \sqrt{2 M A}$; wherefore $M V=C l$ $\sqrt{ } \frac{P M}{2 L A}=C \sqrt{ } \frac{p l M}{2 A}$.

In the fame cafe, $M V$ is proportional ta $l \sqrt{ } \frac{P M}{L}$, or to $\downarrow \rho l M$, or to Coroll. is $\frac{P l t}{L^{\prime}}$, or to $p t$: And, if $\frac{P}{L}$ be given, $M V$ is as $l \sqrt{ } M$, or as $l t$.
For, in the preceding Coroll. $\frac{C}{\sqrt{A}}$ is a given quantity; and, by Coroll. 11. t is as $v \frac{M L}{P}=\sqrt{ } \frac{M L}{p}$.

If the quantity of motion $M V$ bend a fpring of the ftrength P, and length L, through the face l, and be wholly confumed thereby, no different quantity of motion equal to the formeri as $n M \times \frac{V}{n}$, will bend the fame fpring through the fame fpace, and be wholly confumed thercby.

Ior, by the preceding Coroll. if the fpring be bent through the fpace l, and each of theic quantities of motion be confumed thereby; $I \sqrt{ } M: I \sqrt{ }$ $n M:: M V: n M \times \frac{V}{n}$. But $M V=n M \times \frac{V}{n}$; and therefore, $l \sqrt{ } M=l \sqrt{n}$ M, or $£=n$, and $M=n M$, and $V=\frac{V}{n}$. Thercfore the quancity of motion $n M \times \frac{V}{n}$ is not only equal to $M V$, but is compofed of an equal mars, and an equal velocity.
Curoll. 16.

Coroll. 17.

Coroll. 18.
But a quantity of motion lefs than $M V$, in any given ratio, may bend the fame fipring through the fame fpace l, and the time of bending it will be lefs in the fame given ratio.

For, let 1 to n be the given ratio; and let the leffer quantity of motion be $\frac{M}{n n} \times n V$; which is to $M V$, as i to n. Then, by Coroll. 14. the fpring being given, $l \sqrt{ } M: l \sqrt{ } \frac{M}{n n}:: M V: \frac{M}{n n} \times n V=\frac{M V}{l \sqrt{ } M} \times l \sqrt{n} \frac{M}{n n}=\frac{M V}{n}$. Therefore the quantity of motion $\frac{M}{n n} \times n V$, being equal to $\frac{M V}{n}$, will bend the fpring through the fame fpace l.

Likewife, by the fame Coroll. $M V$ is as $l t$; and l being given, the quantity of motion is as t : Therefore the time of bending the fring will be lefs in the fame ratio, as the quantity of motion is lets.
A quantity of motion greater than $M V$, in any ratio given, may be confumed in bending the fpring through the fame fpace; and the time of bending it will be greater in the fame given ratio.

This appears after the fame manner as the preceding, by making n a fractional number inftead of a whole one.

If the motion of the body ceafe, when the fpring is bent through any
 and $2 a M=\frac{P l z}{L}=p l$.

For, by Coroll. 8. $V=C l \sqrt{2 M L A}=C \sqrt{ } \frac{p^{l}}{2 M A}$, or $V^{2}=\frac{C^{2} l^{2} \frac{p}{2 M \overline{L . A}}, ~}{2 M}$ $=\frac{C^{2} p l}{2 M A}$: therefore $M V^{2}=\frac{C^{2} P l^{2}}{2 L A}=\frac{C^{2} \hat{p}^{2}}{2 A}=\frac{V^{2} p^{2} l^{2}}{2 L a}=\frac{V^{2} p l}{2 a}$.

In the fame care, the initial V is viva is proportional to $\frac{P l}{L}=p l$ and $C_{\text {col. }}$ is. if $\frac{P}{L}$ be given, the V is viva is as l^{2}, or as p^{2}.

For, in the preceding Cool. $\frac{C^{2}}{A}$ being a given quantity, the V is viva is as $\frac{P l^{2}}{L}=p l$; and, if $\frac{P}{L}$ be given, it will be as l^{2}, or as p^{2}, forafnuch as p and l increase in the fame proportion.
If the V is viva, $M V^{2}$, bend a spring tiro' the face l, and be Carol 20. totally confumed thereby, any other Dis viva, equal to the former, as $n n M \times \frac{V^{2}}{n n}$, will bend the fame firing tho' the fame face, and be totally consumed thereby.
For, the firing being the fame, $\frac{P}{L}$ is given; and therefore by Coroil? 19. the Dis viva, which will be confumed in bending the firing clio the face l, is as l.
But the time, in which the fame firing will be bent throb' the Carol. 21. fame face, by the Dis viva $n n M \times \frac{V^{2}}{n n}$, will be to the time, in which it is fo bent by the Lis viva $M \times V^{2}$, as n to 1 ; n being any whole or fractional number.
For, by Cool. 11. fince $\frac{L}{P}$ is given, the time is as $V M$.
If the motion of the body ceafe, when the faring is bent tho' it's Class mir. whole length, or is wholly clofed, the initial velocity V is equal to Corollaries in $C \vee \frac{P L}{2 M A}$. cafe 3. quberein the motion of the body
For, by Cool. 8. $V=C \sqrt{ } \frac{p l}{2 M A}$; and l being now equal to $\begin{gathered}\substack{\text { reafses, at the } \\ i n f \text { Pant that } \\ \text { the poring is } \\ \text { vubolly }}\end{gathered}$
Fig. 42. p becomes equal to P; and therefore $V=C \vee \frac{P L}{2 M A}$.
aubolly closed.
Carol. 22.

In the fame cafe, the initial velocity V is proportional to $\frac{P I}{M}$.
Coral. 23.
For $\frac{C}{\sqrt{A}}$, in the preceding Cool. is a given quantity.
VOL. X. Part i.
Z
in

Coroll. 24. In the fame cafe, if PI, be given, either in the lime, or in aiffercm forings, the initral velocity V is reciprocally as $\sqrt{ } M$.

This is plain from the preceeting Coroll.
Cirill. 25. If the motion of the body ceafe, when the fyring is wholly clofed, the product of the initial velocity, and the time fpent in cloing the fpring, or $V t$, is equal to $t^{\prime \prime} \times \frac{m C L}{4 A}$; and is proportional to L, the length of the fyring.

For, by Coioll. 22. $V=C \sqrt{ } \frac{P L}{2 M A}$; and, by Coroll. 10. $t=1^{\prime \prime} \times$ $\frac{m}{2} \sqrt{2 P \Lambda}$: therefore, $V t=1^{\prime \prime} \times \frac{m C L}{4 A}$; and $1^{\prime \prime}, m$ and $\frac{C}{A}$, being given quantities, V_{t} is as I..
Ccrell. 26 . In the fame cafe, the initial quantity of motion, or $M V$, is equal to $C \sqrt{ } \frac{P L M}{2 \Lambda}$.

For, by Coioll. 23. $V=C \sqrt{ } \frac{P L}{2 M A}$.
Coroll: 27. In the fame cafe, $M V$ is proportional ta $\sqrt{P} Z M$, or to $P_{t}:$ and, if $P L$ be given, either in the fame, or different furings, $M V$ is as $\sqrt{ } M$.

This appears, partly, from the preceding Coroll. where $\frac{C}{\sqrt{ } A}$ is a given quantity; and, confequently, $M V$ is as $\checkmark P L M$; and $P L$ being given, $M V$ is as $\downarrow M$: and, paftly, from Coroll. II. where ℓ is as $K \frac{M E}{P}$, and, confequently, $P t$ is as $\sqrt{ } P L M$.
Groll. 28. In the fame cafe, if $\frac{P}{L}$ be given, either in the fame, or in different fprings, the initial quantity of motion is as the length of the fpring into the time of bending it.

For, by Coroll. 27. MV is as $P t$, and, if P be as $L, M V$ is as L.t.
Carall. 22. If the quantity of motion $M Y$ bend a fpring thro' it's whole length, and be confumed thereby; no other quantity of motion equal to the tormer, as $n M \times \frac{V}{n}$, will clofe the fame fpring, and be wholly confumed thereby.

This is proved in the fame manner as Coroll. 35 . putting only L for I :
Ccroll. 30.
But a quantity of motion lefs or greater than $M V$, in any given ratio. may clofe the fame foring, and be wholly confumed in clofing it: and
the time fpent in clofing the fpring will be refpectively lefs or greater, in the fame given ratio.

This is eafily proved from Coroll. 1.6.
If the motion of the body ceafe, when the fpring is wholly clofed, the Caroll. 3^{1}. initial Vis vira, or $M V^{2}$, is equal to $\frac{C^{2} P L}{2 A}:$ and $2 a M=P L$.

For, by Coroll. 22. $V=C \sqrt{ } \frac{P L}{2 M A^{3}}$ or $V^{2}=\frac{C=P L}{2 M A}$, or $M V^{2}=$ $\frac{C^{2} P L}{2 A}=\frac{V^{2} P L}{2 a}$.

In the fame cafe, the initial V is vitia is as the rectangle under the coosll. $\hat{j}:$. ftrength and length of the fpring.

For, by the preceding Coroll. $M V^{2}=\frac{C^{2} P L}{2 A}$, and $\frac{C^{2}}{A}$ is a given quantity ; wherefore $M V^{2}$ is as $P L$.

In the fame cafe, if $\frac{P}{L}$ be given, the initial Vis viva is as P^{2}, or as Coroil. ${ }^{3}$.. L $=$

This is evident from the preceding Coroll.
If the Vis viva $M V^{2}$ bend a fpring thro' it's whole length, and be Coroll. 34. confumed in clofing it, any other Vis vioa equal to the former, as $n n$ $M \times \frac{V^{2}}{n n}$, will clofe the fane fpring, and be confumed thereby.

This is evident from Coroll. 32.
But the time of clofing the fpring by the Vis wiva $n n M \times \frac{V}{n 22}$, will be Coroll. 35°. to the time of clofing it by the Vis riva $M V^{2}$, as n to 1 .

For, by Coroll. in. fince the fpring is given, the time is as $\sqrt{ } M$.
If the Vis viva $M V^{2}$ be wholly confumed in clofing a fpring of Coroll. 3_{3}. the ftrength P, and length L; the V is viva, nn $M V=$, will be fufficient to clofe,

1. Either a fpring of the ftrength $n n P$, and length L.
2. Or a fpring of the ftrength $n P$, and length $n L$.
3. Or of the ftrength P, and length $12 n L$.
4. Or, if n be a whole number, the number $n n$ of fpringe, each of the ftrength P, and length L, one after another.

For, $M V^{2}: n n M V^{2}:: P L: n n P L$; and therefore, by Coroll. 32. the V is viva, $n n M V^{2}$, will clofe any fpring that has $n n P L$ for the product of it's Atrength and length. But 13 is $P L$ is compofed cither of $n n P \times L$, or of $n P \times n L$, or of $P \times n n L$.

Alfo the lofs of the Vis viva, in bending a given fpring, being always the fame, by Coroll. 7. and the Vis viva, MV: being wholly loft

The Altion of Springs.

 clofing one fuch tpring, will be $\mathrm{m} \mathrm{V}^{2}$; and it's lofs in cloling a fecond fuch fpring, will again be $M V{ }^{2}$, and foon: confequentiy, the number in of fuch dprings will be clofed one after another, by that time the V is vive, $n n M V^{2}$, is wholly confumed.

If the fpring, intead of being at firf wholly wivent, as we have hither:o confidered it, be now fuppofed to have been already bent through some face $C B$, before the body frikes it; and she velocity of the bociy be required, atter the furing is bent through any further fpace, BD, Fig. 43. this cale, as well as the three other above-mention'd, will be lound to come under our theorem.

For, if v be the velocity with which the body is fuppofed to ftrike againft the bent fpring at B, it is evident, that this may be confidered, either as the original velocity, or as the remainder of a greater velocity l, with which the body might have Atruck upon the fpring at C, and which, upon bending the fpring from C to B, would now be reduced to \because. For, in either cafe, the effect in bending the fpring from B to D, will be exactly the fame.

In order, therefore, to determine this inaginary velocity V, let a midclle proportional, $B F$, be taken between $C L \times \frac{M}{P}$, and $2 \alpha, \alpha$ being the height to which a body will afcend in vacuo with the velocity v; draw $B F$ prependicular to $C B$, and, with the radius $C F$, defcribe the quadrant CGFEA. Then will our prefent cafe be exactly reduced to that of the theorcm; $C B, C D$, reprefenting the fpaces through which the fpring is bent; $B F$ and $D E$ the velocities in the points B and $D ; G F$ and $G E$ the times of bending the fpring through the fpaces $C D, C D$; and $C G$ reprefenting the imaginary velocity $V_{\text {, }}$, with which the body might have ftruck the furing at C.

For, by the theorem, $B F^{2}: C G^{2}:: v^{2}: V^{2}$; and $v^{2}: V^{2}:: a: c$. Therefore $C G^{2}=B F^{2} \times \frac{a}{a}$. But $B F^{2}=2 \alpha \times \frac{L M}{p}$, by the conftruction; and, confequenty, $C G^{2}=\frac{2 a L M}{P} \times \frac{a}{a}=\frac{2 a L M}{P}$, as intheconftruction of the thieorem.

From this cafe we hall draw a few corollaries, as well for their ufefulnefs upon other occafions, as to thew how the theory of fprings may be fafely applied to the action of gravity upon afcending or fatling bodies.

If the body M, with the velocity v, fufficient ta carry it to the height α, Atrike at B, upon a fpring already bent through the fpace $C B=1$; and do thereby bend it through fome farther fpace $B D=s$; at the end of which fpace, or at D, the body has a velocity fufficient to carry it to fome height, as ε_{5} ther $\varepsilon=\frac{2 \alpha M L-P_{s \times 2} \overline{1} s}{2 M L}$

For, by the theorem, $\alpha: \varepsilon:: B F^{2}: D E$, or $D E=B F \times \frac{1}{\alpha}=$ $\frac{20 M L}{P} \times \frac{\varepsilon}{\alpha}$ or $D E^{2}=\frac{2 \varepsilon M L}{P}$.

Alfo, $D E^{2}+C D:=C E^{2}=C F^{2}=B F^{2} \div C B^{2}$, that is, $\frac{2 \varepsilon M L}{P}$ $+l^{2}+2 l s+s^{2}=\frac{2 a M L}{P}+l^{2} ;$ or $\frac{2 \varepsilon M L}{P}=\frac{2 \alpha M L}{P}-2 l s-s^{2} ;$ or $2 \varepsilon M L=2 \alpha M L-P_{s} \times \overline{2 l+s}$.

If the motion of the body ceare upon bending the the fipring through Caroll 38. the frace $B D=s$, that is, if $=0$; then the height to which the body might afcend in sacul, with the velocity v, or $\alpha=\frac{P_{s} \times \overline{2!+s}}{2 M L}$.

For, by the laft, when $\varepsilon=0,2 \alpha M L=P_{s} \times \overline{2 l+s}$.
If p, the force of the Spring when bent through the fpace $C B$, be Caroll. 39 . equal to M, the weight of the body; the height to which the body would afcend in eacuo with the velocity y, is to the fpace through which it will bend the fpring, by ftriking upon it at B with that fame velocity, as $2 l+s$ to $2 l$, or $a: s:: 2 l+s: 2 l$.

For, by the laft, $\alpha=\frac{P_{s} \times \frac{1}{2 l}+s}{2 M L} ;$ and $\frac{P}{L}$ being eq̧ual to $\frac{p}{l}, \infty$ $=\frac{p s \times \overline{2 l+s}}{2 M l}$; and, if $p=M, \alpha=s \times \frac{\overline{2!+s}}{2 l}$.

If $p=M$, and p do alfo continue conftantly the fame while the fpring corolls, 40 . is bending from B to D (both which fuppofitions are neceffarily made in reducing the attion of a fpring to that of gravity upon an afcending budy), the fpring muft be of an infinite length; and h, the frace through which it was bent before the body ftruck it, muft aljo be of an infinite length; and the face $B D$, through which the furing will be further bent, muft be equal to the height the body can afcend to with the velucity v, or $\alpha=s$.

For, by the laft, when $p=M, \infty: s:: 2 l-s: 2 l$; and the refiftances of the fpring at D and B being refpectively as $C D$ and $C B$, that is, as $l-s$ and l; fince thofe refiftances are now fuppofed equal to one another, we muft, upon that fuppofition, confider $l+s$ as equal to l; and adding l to each, $2 l+s=2 l$, that is, l muft be infinitely greater chain s; and then $\alpha: s:: 2 l: 2 l$, or $\alpha=s$.

In this propofition, and all it's corollaries, except the 4 lant, we have scructise confidered the fpring as being, at firt, wiolly unbent, and thera scted IV. upon by a body moving with the velocity V, which bends: it through fome certain fpace: But, as we fuppofe the fpring to be perfectly elaftic, the propofition and corollaries will equally hold, it the fpring beluppofed to have been, at firlt, bent through that fame fpace, and, by unbending itfelf, to prefs upon a body at relt, and thereby to drive that Body before it, during the time of it's expanfion: Only, V, inftead of being the initial velocity, with which the body fruck the foring, will now be the final velocity, with which the body parss from the furing when wholly expminded.

If the fpring, inftead of being preffed inwards, be drawn outwards by the action of the body, we need only make L. the greateft length to which the \{priug can-be drawn out beyond it's natural ficuation, without prejudice to :t's elafticity, l any leffer length to which the fpring is drawn outwards, P and p the forces, which will keep it from reftoring itfelf when drawn out to thofe lengths refpectively, and the propofition will equally hold grod: as it will alifo, if the fpring be fuppofed to have heen already drawn outwards to the length, and, in reftoring itfelf, to draw the body after it: only, in this latter cafe, V, the initial velocity in the propofition, will now be the final velocity, as in Scholimm IV.

Our propofition equally holds good, when the fipring is of any form whatioever, proviled L. be always underftood to be the greateft length it can be bent or drawn to from it's natural lituation, lany leffer lengch, and P, p, the forces which will confine it to thefe lengths. For Dr Hook's principle extends to furings of any form.

I have been at the trouble of crawing fa great a number of corollaries from this propofition, becaufe, in the controverfy about the force of bodies in motion, I hive obierved both parties to flipport their opinion by arguments taken from the theory of fprings; and I was willing impartially to furnifh them loth with neeans to examine into the truth or falfehood of one another's reafonings. I had thoughts niyfelf of making uie of fome of thefe corollarics for that purpofe, being far from thinking that the difpute is about words only ; but this letter is already drawn out to too great a length; and before I have leifure to write again, I may poffibly be prevented by a better hand, which, I hope, may put an end to a difpute thas has too long pefter'd the Learned Work.
II. Mechanical forces may be reduced to two forts; one of a body at

An inquiry inro the Meafure of the Force of Bodics in Motion : awith a proto Sal of an Experimentum Crucis, to decride the centroverty about it; by the fame. N̦ㅜㅇ. 476. p. 423 . April, \&c. 1741. Read Miay 30. 1745 .
reft, the other of a body in motion. The force of a body at reft, is that of a body lying ftill upon a table, or hanging by a rope, or fupported upon a fpring, Eec. This is called by the name of preffure, tenfion, force, or vis mortua.

The meafure of this force is the weight with which the table is preffect, or the rope is ftretched, or the fpring is bent. And that meefure being acknowledged by all writers, there is no difpute about this fort of force, notwithftanding the diverfity of appellations by which it is called.

The force of a body in motion is on all hands agreed to be a power refiding in that body, fo long as it continues it's motion; by means of which it is able to remove obitacles lying in it's way; to leflen, deftroy, or-overcome, the force of any other moving body, which meets it in an
oppofite

oppofite direction; or to furmount any dead preffure or refiftance, as tenfion, gravity, friction, $\mathcal{E}^{2} c$. for fome time; but which will be leffened or deftroyed by fuch obftacles, or by fuch refiftance, as leffens or deftroys the motion of the body. This is called moving force, vis motrix, and by sonse late writers, vis viva, to diftinguifh it from the vis mortea fpoken of before: and by thefe appellations, however different, the fame thing is underfood by all Mathematicians; namely, That power of difplaeing oiftacles, withftanding oppolite moving forces, or overcoining any ciead refiftance, which refides in a moving body, and which, in whole or in part, continues to accompany ir, fo long as the body moves.

But about the meafure of this fort of force, mathematicians are dividet into two parties: And, in order to fate the cafe fairly between them, it will be neceffary to fhew how far the two parties agree, and in what point their difagreement confifts.

Both fides agree, That the meafure of this force depends parely upon the mafs, or weight, of the body, and partly upon the velocity with which it moves; io that, upon any increafic either of the weight, or of the velocity, the moving force will become greater. They alfo agree, That if the velocity continue the fame, but the mafs, or weight of the body, be increafed in any proportion, the moving force is increafed in the fame proportion: fo that, in this cafe, the meafure of the moving force is the fame with that of the weight : or, when two bodies move with the fame velocity, if the weight of the fecond be double, triple, quadruple, of that of the firft, the moving force of the fecond will alro be double, triple, quadruple, of that of the firt. But, when two bodies arc equal, and the velocities with which they move are different, the two parties no longer agree about the menfure of the moving farce.

One fide maintains, That, when the velocity of the fecond body is double, triple, quadruple of that of the firtt, the meafure of the moving force of the fecond is allo flouble, triple, quaciruple, of that of the moving force, being the fame with that of the velocity.

The other fide pretend, That, in the fame cale, the moving force of the fecond boly is four times, nine times, fixteen times, as great as that of the firft; the meafure of the nioving force being the fame with that of the fquare of the velocity.

In confequerice of the agrecment in the firft of thefe two cafis, and the difagreement in the fecond, the one fide pretends, That the sharfiure of the moving force is, in all cafes, the product of the weight into the velocity; and the other, That it is the product of the weight into the fquare of the velocity.

This controverfy was firf ftarted by the iamous Mr Leiveritz, and has. becn carried on by him and his followers for near 60 years; during which time a great number of pieces have been publifhed on both fides of the queftion, and a great number of experiments have been made, orppopofed to be made, in order to decide it. But though both parties agree in the event of the experiments, whether actually made, or only propofel; yet
as the writers on each fide have found a way of deducing from thofe ex. perineents a conclufion fuirable to their own opinion, the difagreement itill continues as wide as ever, to the great fcandal of the learned world.

Now, if we examine carefully into the reafon of this, and would fee by what means it happens, that two oppofite conclufions are fo often drawn from the fame experiment, we fhall find it not fo much owing to falfe reafoning on either fide, (that would be eafily detected, and fet right), as to a:other caufe; namely, to their difagreement in the principles upon which the reafoing is founded.

For, whereas whatever is laid down on either ficie as a principle, ought to be fomething all the world agrees in, at leaft what is admitted by the other party; without which, all reafoning upon it is to no purpofe; this conduct has been fo little obferved in the prelent difpute, that what has been offered on the one fide as an undoubted principle or axiom, has commonly been fomething that the oppofite party does not acimit, nay, even abjolurely denics.

Of this it were cafy to produce a number of examples; but I fhall concone my felf with two only, one taken from each ficle.

Thofe who maintain, That the moving force is as the weight into the velucity, lay down for a principle, or axiom, That when two bodies meet one another in contrary directions, if their moving forces be equal, neither body will prevail over the other: and if their moving forces be unequal, the ftronger will always prevail over the weaker.

This the Leibnition party deny. They maintain, That one of thefe bodies may prevail over the other, though their moving forces be equal: nay, that, in many cales, the weaker will prevail over the ftronger.

It is therefore to no purpofe to alledge, That the principle above laid down is founded on common fenfe; or that it was aiways univerfally received, till this difpute began: for, fince the oppofite party now reject it, all reafoning upon it can have no weight with them; you muft have recourfe to fomething elfe.

On the other hand, thofe who adhere to Mr Leibnitz's fentiment, lay down for a principle, That cqual cffccts always arife from equal caufes; provided the caufes be intirely conlumed in producing thofe effects.

This their opponents do not admit, unlets in the cafe where thofe equal effects are produced in equal times; and therefore, till both fides Shall agree in admitting this principle, no argument can be drawn from it by one party, that will be of any lervice to convince the other.
But as this principle is chiefly made ufe of in reafoning upon experiments made with fprings, many of which have been produced by both parties, in lupport of their opinions, it may be worth while more particularly to confider, What right there is on the one fide to impofe this principle, and what reafons may be given on the other for rejecting it.

When one end of a fpring, wholly unbent, leans againft an immoveable fupport, and the oppofite end is fruck upon by a body in motion, which, bending the fipring to fome certain ciegree, does thereby lofe it's
whole moving force, the moving force of the body may be confidered as the caufe of bending the fyring; and the bending of the fpring may be looked upon as the efiect of that caufe, which is wholly fpent and conlimed in producing it.

Now if two uncqual bodics, moving with unequal velocities, ftrike in this manner upon two equal jprings, and each of them bend the fpring it ftrikes upon, exaClly to the fame degree ; and by fo doing, the moving force of each body be intirely confumed; here, fay the Leibnitzian writers, are two equal effects produced; for the fprings are equal, and are now equally bent; and the moving forces, which are the caules of thofe effects, are wholly confumed in producing them; and therefore, by virtue of the principle above laid down, thole caufes mult be equal; that is, the moving forces of the two bodies muft be equal.

But their antagonifts will reply, that this principle is not admitted by them, except the times of producing thofe effects are equal; and that they are not to in the cafe before us: for the greater body will take up a longer time in producing it's effect, or in bending it's fpring.

If therctore the Leibnitzian party pretend, that equal effects, when produced in unequal times, do always arife from equal cautes, they muft not impofe this upon their opponents by way of principle or axiom, but muft demonftrate it. 'Iill this be done, there will be room to doubt, at leaft, whether the two bodies have equal moving forces, though they bend equal fprings to the fame degree.

For the larger and flower of thefe two bodies will bend the one fpring more flowly; and, confequently, will be refifted for a longer time, than the imaller and fiwifter body will be refifted in bending the other fipring tosthe fame degree. May not therefore the total refiftance of a lipring be greater, if that reffiftance continues for a longer time? and if the total refiftance be greater, muft not the moving force, which is deitroyed and confumed by that refiftance, be alfo greater? is there not reafon then to doubt, whether the moving forces of thefe two bodies be equal, though they bend equal fprings to the fame degree?

In like manner, when a jpring, already bent to fome certain degree does, by unbending, drive before it a body which gives way to it's preffiure, is there not room to doubt, whether the preffure of the fpring may not produce a greater effect, when that preflure continues for a longer time?

That preffure may be faid to produce threc effects, all of which may if we pleate, be conliciercd as different from one another.

1. The prefiure carries the body thro' a certain fpace ; by which fpace the length of the bent frring is increafed, in returning to it's natural fituation.
2. The preflure gives to the body a certain quantity of motion.
3. It gives the body a certain moving force.

Now, the firtt of thefe effects is greater, when the preffure acts for a longer time. For, if the preffure of a bent frring, by acting for one feVOL. X. Part i.

A:
cond

The Meafure of the Force of Bodies in Motion, © \mathcal{C}.

 cond upon the boly 1, carry that body i thro' the fpace 1; the preflure of the fame, or of an equal fpring equally bent, by acting for two feconds upon the body 4 , will carry that body 4 thro' the fame ipace 1.Likewife the fecond effect is greater, when the preflure continues for a longer time.

For, in the cate juft now mentioned, the body 4 will have twice the quantity of motion that the body t has; though thefe two quantities of motion arife from the prefiure of the fame, or, which is all one, of equal fprings equally bent. Why therefore are we to take it for granted, or to have it impofed upon us by way of principle or axiom, that the third effect is not greater, when the time, in which it is produced by the preffure of the fame, or equal fprinys, is longer, nay, infinitely longer?

But we are told, that all the force, which refided in the fpring, while bent, is now, upon the unbending of the fyring communicated to the body moved. I afk therefore, what was that force, or what kind of force was that, which refided in the fipring, while bent, and without motion? was it a bare preflure, or a moving force? A Vis mortua, or a Vis viva? you muft acknowledge, it was a Vis mortua, a bare preffure, and nothing more. But the force communicated to the body, and which now refides in the body in motion, is a Vis viva, a moving force. This therefore is not the fame force, nor a force of the fame kind, as that which refided in the bent fpring.

It will be faid, however, that the force of the bent fpring is intirely exhaufted in giving the body it's moving force. I afk therefore again, what is it I am to underfand by thefe words, the force of the fpring is intirely exhaufted? If the meaning be, that the fpring could not poffibly give that fame body any greater moving force, than what it has already given, I allow it: but this cloes not prove, that the fame fpring, bent atrefh to the fame degree, or an equal fpring equally bent, cannot give a greater force to a greater body.

But if the meaning of thele words be, that the fpring cannot give a greatcr moving force to any body whatloever, I muft anfwer, that this is taking for granted the very point which is in dilpute. For the oppofite party pretenc, that a bolly of four times the bulk, will receive twice the moving force in twice the time, from the preffure of che fame fipring in unbending itfelf, or, if you pleafe, in exhaufting all it's force.

It is plain, therefore, that the followers of Mr Leibnitz have no right to fay, a body has fuch or fuch a force, becaufe fuch or fuch a fipring has put it in motion by unbending itfelf, or can be bent by it. This is not a pofition to be taken for granted, but fands in need of a demontration, which nobociy has as yet attempted to give, at leant from any uncontroverted principle; and, till this be done, the laying down any fuch polition can have no other effect, than to perplex the controverily more and more, without hopes of ever coming to an end of it.

For which reaton I propofe to take a quite different method in what follows, and to lay down nothing, by way of principle or axiom, bue
what is allowed of by all the world, or, at leaft, has never yet beea contradiéted a priori.

When a bent Spring does, by unbending itfelf, puft a body before it, Axiom 1. the greater the boxdy is, the more nowly will the fpring umbend itfelf.

The more any fpring is bent, the greater is it's preffire. Axiom II.
A greater preflure produces a greater moving force, if the time be given. Axiom IIf
Moving forces are not proportional to the maffes of the bodies, and Propoffion I. the fquares of their velocitics.

Let there be two firings, equal, and equally bent, Λ and B, which, Demonfration by unbending themfelves, pulh before them two unequal bodies; the fipring A pufhing before it the greater body. Now, by Axiom I. the firing A will unbend more nowly than the other: from which it follow, that, at cvery intant of the time which the frying B takes up in unbending itfelf, the fpring A will have unbent itfelf lets than B, or will be more bent than B.

Therefore, by A xion II, the preflure of the fyring A will, at any inftant of that time, be greater than the preflure of the fipring B at that tame inftant. Hence, by Axiom III. the natcent, or intinitely fmall moving force, which is proxuced by the prefliure of the firing A in every ininitely fmall part of that time, will be greater than that produced by the preffure of the fpring B in the lame intinitely fmall part of the time: 'Therefore, the fim of the infinitely fimall moving forces; that is to fay, the whole moving force, which is produced by the Spring A, during that time, will be greater than the moving force produced by the fyring B in that lame time: or the moving force of the greater body will be greater thin that of the leffer, at the inftant that the fipring B, being now wholly unbent, ceafes to att any longer upon the body it has pufled before it: and as, after that inftant the fpring A, not being yet wholly unbent, continues to act upon the greater body, the moving force of the greater body will ftill continue to increafe, and confequently will more and more exceed the moving force of the fmaller body.

But every one knows, that the products of the mafles and fquares of the velocities are equall in the two bodies. Therefore the moving forces which we have proved to be unequal, are not proportional to the products of the malfes and fquares of the velocities. Which was to be demonftrated.

To confider this in a particular example, let us fuppofe the maffes of the two bodies expofed to the preffure of the fyrings A and B, to be 4 and 1 refpectively; and let the fyring B unbend ittelf, and thercby give the body I it's whole moving force in one fecond of time. Then, at the end of that fecond, the moving force of the body 4 will already exceed that of the body 1, and will ftill grow greater during another fecond of time. For the times are as the fquare roots of the maffes.

Alio if the mafles be 100 and 1, the moving force of the body 100 , will, at the end of the firft fecond of time, be greater than that of the
body
body 1, and will continue to increare during the fpace of nine other feconds.

Corollary. When a bent fpring does, by unbending itfelf, drive a body before it, the larger that body is, the greater will be the moving force which it receives from the fpring.
Having now clearly proved, that the moving forces are not proportimilal to the fquares of the velocities, I proceed next to demonitrate, that they are proportional to the velocities themfelves : and, in order thereto, I hall, as I have hitherto done, make ufe of no other principles or axioms than fiuch as are admitted on both fides, or, at leaft, have never yet been controverted a priori by cither party.

Springs of unequal lengths, when bent alike, have equal preffures.
We fpeak here of fprings equal in all refpects, except the length only; and, by being bent alike, we mean, that they are to compreffed, as that the lengths they are now reduced to, are cxactly proportional to their natural lengths, or to the lengths they are of when no way compreffed. In this condition, if one be directly oppoled to the other, they will mutually fuftain each other's preffure, fo as to maintain a perfect aquilibrium: or, if each be placed feparately in a vertical fituation, they will liutain equal weights. And in one or the other of thefe cafes, it is evident, that they muft excrcife equal preffures.

Eigual preffures in equal times produce equal moving forces.

Axiom V.
Propofition II.

Demenfration.

Moving forces are proportional to the maffes and velocities jointly.
Let there be two fprings, of the lengths 1 and 2, but equal in all other refpects, and bent alike : and, in unbending themfelves, let the foring I drive before it a body whote mais is 2 ; and the fpring 2 another bocly of the mat's 1. Now, by Coroll. 11. of my general theorem concerning the action of fprings, thefe two fyrings will unbend themfelves exactly in the fame time; and, confequently, the fpring 2 will unbend itielf with a velocity double of that of the fpring 1 : and by Coroll. 12 . of the lame thorem, it will give to the body 1 a velocity double of that, which the body 2 will receive from the fpring 1. Alfo, as the two fprings were fuppofed to be bent alike at firlt, and the tiring 2 unbencis itfelt with a velocity double to that of the fipring 1 , it is, manifeft, that, during the whole time of their expanfion, they will be always bent alike, one to the ather. Therefore, by Axiom IV. their preffures will be conItantly equal one to the other: and hence, by Axiom V. the infinitely imall moving forces produced by cach of thele fprings, in every infinitely finall part of time, will be equal one to the other. Confequently, the fums of thofe infinitely fmall moving forces, that is, the whole moving torces, produced by the two ferings, will be cqual one to the other. Anct the mafies of the two bodies being 2 and 1 , and their velocities being 1 and 2 refpectively, it is plain, that the moving forces are proportional to the maffes and velocities jointly. Which was to be diemonitrated.

For the greater facility of examining this demonftration, we have fuited it to a fingle cafe only, and that the moft fimple that can be fuppofed: but every body will fee, how eafy it is to form a general one upon the fame principles.

As we do not think, that any flaw can be found in either of the demonftrations above laid down; and the axioms, upon which they are founded, have never yet been difputed, as far as we know; we prefume, that the Leibnitzian opinion about the meafure of moving forces, is inconteftably overthrown by the firft propofition, and the oppofite fentiment is as evidently eftablifhed by the fecond.

But, if any reader fhall be of a different opinion, we muft beg leave to propofe to his confideration the following experiment, which we hope may juftly deferve the name of an experimentum crucis; and, as fuch, may put a final period to this controverfy.

It is not new indeed, having been propofed before by myfelf and others; but, as the manner, in which it was formerly offered, has given occafion to fome objections, which, tho' not affecting the fubitance of the argument drawn from it, may yet have amufed and embarraffed the lefs attentive readers, I hall now propofe it in fuch a manner, as: may obviate all thole difficulties, and, I think, will render it abfolutely decifive. To me, I am fure, it will be fo; fince I fhall immediately embrace the Leibniszion doctrine, if my argument drawn from it can receive a clear and fatisfactory anfwer.

Upon an horizontal plane, at reft, but moveable with the leaft force, Experiment. fuppofe upon a boat in a ftagnant water, let there be placed, between two equal bodies, a bent fpring, by the unbending of wiach the two bodies may be pufhed contrary ways.

In this cafe it is evident, that the velocities, which the two bodies receive from the fpring, will be exactly equal, and their moving forces will alfo be exactly equal; and that the plane they move upon, and alfo the boat upon which it lies, will have no motion given them either way. Let us call the velocity of each body 1 , and the moving force alfo 1.

Now, let us fuppofe the fpring to be bent atrefh to the fame degree as before, and to be again placed between the two bodies lying at reft; then let the plane, upon which the fpring and the bodies lie, be carried uniformly forwards, in the direction of the length of the fpring, with this fame velocity I. In this cale it is manifett, that cach of the bodies. will have the velocity 1, and the moving force 1, both in the direction of the axis of the fpring.

During this motion, let the fpring again unbend, and puth the two bodies contrary ways, as before, the one forwards, the other back wards: then the fpring will give to each of thefe bodics the velocity I, as before, when the plane was at relt.

By this means the hindmoft body, or that which is puthed backwards. will have it's velocity 1, which it had before by the motion of the plane, now intirely deftroy'd, and will be abiolutely at reft.

Drnänical or Mitapobyfccib Principles of Meclianicks.

But tie body, winich is pulhed forwards, will now have the velocity 2 , namely itrom the motion of the plane, ander from the action of the fpring.

Thus far cvery body agrees in what will be the event of chis experiment.
But the queftion is, what will be the moving force of the foremolt body, or of that which is pushed forwards, and which has the velocity 2 ; viz. i from the motion of the plane, and a from the action of the fpring.

By. Eix Ieibnit zian docirine, it's moving force mutt be 4 : and, if fo, it mutt have received the moving force 3 from the action of the fpriag ; for it had only the moving force i from the motion of the plane.

Let us cxamine, whether this be poffible, or reconcileable to their own loctrinc.

Their doctrine is, that equal fprings, equally bent, will, by unbending themfelves, give equal moving forces to the bodies they act upon, whatever thole bodies are.

We agree to this, not generally indeed; but in the cafe before us, where the bodies are of equal maffes or weights, we agree to it.
Let us therefore imagine the bent fpring, which is placed between the two bodies, to be divided tranfverlly into two equal parts. In this cafe it is plain, that the two halves of the fpring, may be confidered as two intire fprings, equal, and equally bent, each of which refts at one end in aguilibrio againft the other fpring, and at the oppofite ond, preffes againft the body it is to move.
Conlequently, by the Leibnitzian doctrine, to which, in this particulas cafe, where the bodies are equal, we alfo agree, the two fprings will give equal moving forces to the two bodies.

But the moving force received by the hindmoft body from the hinder fpring, was undoubtedly the moving force 1 : for by that force given it in the direction backwards, the moving force 1 , which it had before from the motion of the plane in the direction forwards, is exactly balanced and deftroyed, the body remaining, as was obferved before, in abfolute reft.

Therefore the moving force received by the foremoft body from the foremoft fpring, was alfo the moving force 1. And this, added to the other moving force 1 , which it had before from the motion of the plane, makes the moving force 2, and not the moving force 4, as the Leibnitzian philofophers pretend.

Confequently, that boly, which had before the velocity 1, and the moving force 1, and now has the velocity 2 , has alfo the moving force 2 : that is, the moving forces are proportional to the velocities.

D-mamicat Principles, or Ahctapeyfical Principices of
III. When the famous Leibnitz publifhed * his new doctrine, by which he determines, that the force of a body in motion is to be meafured by the fquare of the velocity, it raifed a great controverfy in the Mathermatical World. The fame author, in April 1695 , publifhed his

Dynamical or Metaplbyfical Principles of Mechanicks.

 " one a priori, by a moft fimple confideration of fpace, time, and ac"tion, which I fhall explain in another place. The other a pofferiori, by Prefented " eftimating the force by the effeet which it produces in exhaufting it- Mar. ${ }^{13}$. " felf."He feemed to intend the publication of his a priori, which he promifed to explain in anotber place, in May following: for towards the end of his Specimen Dynamicum he adds the following words;
"And now, having difpelled error, we hall produce the true and " really admirable laws of Nature, fomewhat more diftinctly, in the fe" cond part of this effay, to be publiflaed in the month of May."

But, to our great misfortune, this fecond parr never made it's appearance in publick, cither in the month of May, or in any fubfequent month, or year, cither in the Leipfock AOts, or any where elfe, tho' the author furvived above 20 years.

However, to clear this great man from the imputation of not having performed his promife, the world has lately been favoured with it in the Comnercium Literarum between himfelf and another famous Mathematician, Jobn Bernoulli.

Bernouli, it feems, upon feeing the Specimen Lynamicum, wrote to Leibnitz, in fune following, applauding fome things, but at the fame time being fo far from approving his cftimation of forces, that he even endeavoured to demonitrate, that the forces of moved bodies are not in proportion to the fquares of their velocities, but to the velocities themfelves. But at laft, after feveral letters had paffed between them, Bernoulli came over to Leibnitz, who, being willing to reward the docility of fo emment a difciple, communicates to him his argument a priori, which he had hitherto kept to himfelf, and at the dame time affigns the reafon why he did not divulge it fooner;
"I would not honour, fays he *, with this clear light of truth, thofe "Who did not receive as they ought thofe arguments drawn from the " affections of heavy, or other Ienfible bodies; wherefore I would not "make them publick; but referved them to be communicated to "thofe, who had Thewn themfelves to be equal judges."

Bernsulli thereforc, baving fown bimjelf io be an equal judge, and having received as be ought, thofe arguments a pofteriori, that is, having come over entirely to the opinion of Leibnitz, was thought worthy of the bonour to be admitted into thefe fecret receffes of Science.
"Becaule, fays the author + , I fee you are on our fide, I will "freely communicate to you my principle of demonttrating a prior: "the truc eftimation of forees; which I have fometimes mentioned as " being in my hands, but have never yer prociuced. For communi-

$$
\text { * Yan. } 1696 . \quad+\text { fan. } 1 \text { tig6. }
$$

I camot but commend the good gentleman for committing his feed to So fruitfu! a foil: and yet I cannot think him wholly free from deferving fome cenlure. For though he could work no effect on the Papins, Catelons, and other oppofers of his doctrine, who feemed to be incapable of converfion, by any dienonffrations, bow fircigg foever, though he might think them unworthy of this clear light of trwih, yet why did he envy it to the reft of the learned world ? I will not fay, that it was the part of a good, and humane man, and of one who was defirous to increate knowledge, to lay open to all an affair of luch moment, but if he had only ftudicd his own glary, preferably to every thing clfe, he fhould have acted in this manner, that thofe detractors might either have been immediately filenced, or condemned by all the world. Laftly, as great men are not born for themfelves alone, or for a friend or two; but for all; is it not a little unjuft, that Bernoulli and his difciples floould alone enjoy this clear light, when we poor wretches are condemned to live in more than Cimmerian darknefs. But it is weil for us, that after 50 years of darkneis, that light at laft thines forth upon all. But behold the argument!
" 1. An action making duple, in a fimple time, is duple, virtually " of an action making the fame duple in a cluple time; or the walking " of 2 miles in I hour, is duple, virtually, of the walking of 2 miles " in 2 hours.
" 2. An action making duple in a duple time, is duple, formally of " an action making fimple in a fimple time; or the walking of 2 miles " in two hours is duple, formally, of the walking of I mile in a hour.
" 3 . Therefore an action making duple in a fimple time is quadruple " of an action making fimple in a fimple time; or the walking of 2 " miles in I hour is quadruple of the walking of a mile in I hour.
" 4. If for duple we had fubftituted triple, quadruple, quintuple, \&c. " the action would have come out noncuple, fedecuple, 25 ple; and "generally it appears, that equable, equitemporaneous, moving ac"tions, are to equal moveable, as the fquares of the velocities; or, "which is the fame thing, that in the fame or an equal body, the for"ces are in a duplicate ratio of the velocities." ©. E. D.
Having read this argument, and out of regard to the great fame of the author, having confidered it with much attention, I muft confefs, I could not difcover the leaft fpark of truth in it, or even of common fenfe. I fhould have furpected, that this had been owing to the weaknefs of my own eyes, which perhaps were dazzled by the too great brightnefs of the light, if a doubt of Bernoulli himfelf had not raifed my fpirits.

This ingenious perfon was fo far from acquiefcing in this clear light of truth, that he not only mace an objection, but even produced a double demoniftration.

Dynamical or Metaphyical Principles of Mechanicks.

"I do not fee, fays he *, what can be faid by an adverfary to the con" trary; unlefs perhaps, that the virtual action feems to be confounded
" with the formal action; denying the confequence, that A is the qua-
"druple of C, becaufe A is the duple of B, virtually, and B the duple " of C formally.

Having propofed this objection, he adds his denionftrations.
" 1 . An action making duple in a fimple time is virtually duple of
" an action making the dame duple in a duple time."
" 2. An action making duple in a duple time is fimple virtually of
" an action making fimple in a fimple time.
" 3. Therefore an action making duple in a fimple time, is duple of
" an action making fimple in a fimple time. Or,
" 1. An action making duple in a fimple time is fimple formally of
" an action making the fame duple in a duple time.
" 2. An action making duple in a duple time, is duple formally of
" an action making fimple in a fimple time.
" 3. Therefore an action making duple in a fimple time, is duple of
" an aĉtion making fimple in a fimple time.
"You fee the 2 arguments, which plainly conclude the fame thing,
"but are quite contrary to your conclufion, and depend on that com-
" mon axiom, that thole things which are equal to the fame are equal
" amongft themfelves, which indeed holds only in homogeneous quan-
" ties, as here in comparing a virtual action with a virtual, and a for-
" mal one with a formal, but not one with the other."
Thus Bernoulli with no lefs acutenefs than modefty. But Leibnitz, in his letter dated in March, in the firt place endeavours to take off Bernoulli's objection.
"I do not well underftand, fays he, what you mean, when you fay "a virtual action is confounded with a formal one. For I do not here " treat of an action as being either virtual or formal; but one action is "duple of another, either virtually or formally. Virtually, when it is "d duple in eftimation, tho' it is not duple in bulk, or congruence, as " a ducat is the duple of a dollar: but formally, as a dollar is the du"ple of a half dollar. And you mult know, that what is duple for" mally is duple alfo in virtue or eftimation. Therefore as the inquiry " here is only concerning virtue or eftimation, there is no confufion of " the different kind of quantities or eftimations; for by virtually duple, " I underftand that which is fo only virtually; but I call that formally "duple, which is duple both formally and virtually."

It is not to be denied, that Leibnitz has a right to affign what fenfe he pleafes to the words made uie of by him, and that by this means he plainly takes off Bernoulli's objection. But I could wifh he had explained one thing, either of his own accord, or at Bernoull's requeft, by what virtuc or by what eftimation an action making duple in a fimple

[^15]VOL. X. Part i.
B b
time, time, is duple of an action making the fame duple in a duple time. For if 1 am not greatly miffaken notling can be more falfe.

He proceeds, "I might abftain from words ufed only for the fake of " a certain harmony, for as becaufe a ducat is the duple of a dollar, " and a dollar of a half dollar, I conclude that a ducat is the quadru"ple of a half dollar; fo becaufe the walking of 2 miles in one hour " is the duple of walking 2 miles in 2 hours, and the walking of 2 " miles in 2 hours is the duple of walking 1 mile in 1 hour, it will fol" low that the walking of 2 miles in I hour is the quadruple of walk" ing I mile in I hour."

Thefe troubling words, virtually and formally, being new removed which had hitherto fouled this clear fountain of truth, Leibnitz not only took off Bernoulli's objection, but brought him over entirely to his fide. "Your anfwer, fays he in his next letter, quite fatisfies me; for I fee " what you mean by thofe 2 terms: but your argumentation appears to " me very elegant, and that it ought no longer to be detained from " the publick; for it will give great weight to the arguments a pofte"riori."

Thus Bernoulli in his letter dated in April, and I would likewife acquiefce in the fame argument, if any one will hew me, that it is as plain that the walking of 2 miles in I bour is the duple of walking 2 miles in 2 hours, as that a ducat is the duple of a dollar. For I fee that walking 2 miles in 1 hour has duple the velocity of walking 2 miles in 2 hours; but I do not find it to be duple, but equal, fince the fame fpace is gone over in each walk.

But perhaps Bernoulli would not urge the inatter any farther, as Leibnitz feemed to be in a more than ordinary commotion, "I, fays he *, " dare not promife any thing great; but I hoped to be not guilty of a " moft open paralogifm, in an argumentation, which did not lip from " me on a fudden, but had been confidered by me for feveral years, " and was vaunted by me as a thing of fome moment." However, that Leibnitz was guily of a moff open paralogifm, will be fhewn prefently, if I am not greatly miftaken.

I need not dwell upon Leibnitz's examination of both Bernoulli's demonitrations, becaule they depend upon the fenfe of the words virtually and formally, underfood differently from the meaning of Leibnitz. "I "took the terms, fays Bernoullit, in a different fenfe from that in "which you now explain them."

But Leibnitz, being ftill in doubt what weight his firft demonftration would have with Bernoulli, adds another to it. "I add another, fays " he $\|$, which, if you examine it to the bottom, comes to the fame as " the former, and yet it has it's own proper weight. Moving actions, "I mean equable ones, of the fame moveable are in a ratio compounded " of the immediate effects, namely the lengths run thro' and the velo-

[^16]
Dynamical or Metapbyjucal Principles of Mechanicks.

"cities. Now the lengths, equably pun thro" are in a ratio compound" ed of the times and the velocities. Therefore moving actions are in " a ratio compounded of a fimple ratio of the times, and a" duplicate " one of the velocities; and fo, in the fame times, or elements of tiries, " the moving actions of the fame moveable are in a duplicate ratio of " the velocities, or if the moveables are different, in a ratio compoundcd " of a fimple ratio of the moveables, and duplicate one of tie velo" cities.
As Bernoulli had faid, in his letter dated in April, that he aequiefced in the former demonftration, but did not fay a word of the fatter, Leibnitz afked him in May, "what he thought of the other demonittation " of the fame propofition, which (fays he) is a litte more according to " the reccived form, tho" they both agree in the fout."
Bcrnoulli therefore, when he could no longer avoid opening hifs mind, in his letter of Yune, thus expreffes himelf.
" Your other demonitration of the propofition concerning the ratio of " moving actions, which you had alledged in the former, feems to me " to be contrived no ters ingeniounty thin the former, and, as you " exprefs it, more according to form, tho" in the bottom of the thing " they both coincide. For nothing is more evident to me, than that " moving actions ought to be meafured by their immediate effeets; if " therefore the lengths gone thro" and the velocities, unlefs any one will " obftinately have the velocity' to be rather the cmufe, are the effects of " an inmediate action, and indeed the orly ones, of whith ore does " not depend on the other, or is not included" in the other, the mov" ing actions will neceffarily be in a ratio compounded of the Tengths " and the velocities; and fo in equal times in a duplicate ratio of the " velocities."
It is plain that Berroulli in this anfuer approves of the feeond demonftration in appearance, but in reality condemns it, tho' with the greateft caution and modetty. For he iot only hints that the velocity is rather the caure than the effect of an action, but he reffrains his affent to this condition, that one of the effects mentioned by Leibnitz, namely of the length gone thro" and the velocity, does not depend on the otber, or is not included in the otber. Now therefore as it is very evident, that the length gone thro' does depend on the velocity, and is included therein, it is plain that the denionftration is faulty in the opinlon of Bernoulli.

Leibnitz, in his next letter dated in fune, gave a copious and diftinct anfwer to many other things, but to thefe tacit objections of Bernoulli, he anfwers lightly, diffembling their force, and as if he was treating of fomething ellie, only juft fays,
"But as I now eftimate an action by the compound ratio of it's prin" ciples, power and time; fo I had eftimated it a little before by the " compound ratio of what it performs; an extenfive or material effect,

os an intenfive or formal effect. For it is required that much fhould be "performed and foon. You fee now that both the eftimations agree " together."

By the obfcurity of this anfwer, whether affected, or natural to Leibnitz, it is eafily feen that he would have the velocity to be taken for the effect of an action, which Bernoulli had hinted was rather the caufe, but that he did not dare to name it openly, tho' he underftands it under the name of an intenfive or formal effect, which the action performs. Befides as to the other objection of Bernoulli, that tho' the velocity is in the higheft degree the effect of an action, as well as the length gone thro'; yet as one of there effects depends on the other, or is included in the other, and certainly the length gone thro' depends on the velocity, an action ought not to be meafured by thofe effects; as to this, I fay, he oblerves a profound filence.

The fecond demonftration therefore feems to be given up by Leibnitz as well as Bernoulli; and indeed in all cheir fubfequent letters, I do not find the left mention of it.

Moreover, that firf demonftration, which comes to the fame with the other, that is, a true one with a falfe one does not feem to be wholly free from exception, either with Bernoulli, or with Leibnitz himfelf.

For Bernoulli, tho' he had declared in April, that it quite fatisfied him, that be acquiefced in it, and that it was very elegant, and ought no longer to be denied to the publick, in Auguft however did not know what Leibnitz meant by the word aEZion, on which that whole demonftration depends. "You ought, fays he, to define what you mean by action; "otherwife nothing can ever be demonftrated." This was a juft admonition, but to no purpofe; for in the letter which Leibnitz wrote in anfwer to chis, you will not find a tittle of that definition fo highly neceffary.

But Leibnitz himfelf, in his letter dated in fune, expreffes himfelf thus; "my demonftration a priori, for our eftimation of forces, de"pends upon a certain fuppofition. Namely, that an attion which does "any thing umiformly, in a fimple time, is duple of an action doing the "fame thing uniformly, in a duple time. This fuppofition ought to "have been granted by Catelan and the reft, with whom I had difputed." But what if they will not grant it? why then the demonftration, which depends upon this fuppofition, falls to the ground, at leaft till you demonftrate that fuppofition.

But, "I have not yet indeed found out a way of demonftrating this "propofition a priori by the way of congruency, nay not even this, "that an aftion doing the fame thing, in a 乃orter time, is greater; which " ought to have been the beginning."

Therefore fince that fo much boalted demonftration a priori ftood is need of another demonftration, which Leibnitz had not yet difcovered, nor ever after did difcover, nor any mortal ever will difcover, it is no wonder

Dyinamical or Metaphyyical Principles of Mechanicks.

wonder that this feed, tho' committed to a moft fruitfut: Soil, तid not grow up into a large plant. For Bernoulli took a final leave of this clear light of truth, when he faw it dwindle a way to a meer fnuff.

But a gentleman of much higher courage, the learned Chr. Wolfus, having actempted to treat the theory of forces after a geometrical manner, communicated to the publick, in the firft volume of the Comiment. Acad. Imp. Petropol. under the title of Principia Dynamica. ". When he had "communicated," part of this "in 1710 to the moft illuffrious Count "Se Herberftein, to the moff illuftrioxs Leibnitz and others, Leibnitz, "in a letter in 7 II , faid that it agreed with bis, which be bad communi"cated to the famous. John Bernoulli, Jacob Herman, "aid otbers, con" firming it in thefe words: I lay down this calculus of pure forces or " actions. Let the faice be s, the time t, the velocity v, the body c,
" the effect e, the power p, the ation a. Then to will be in equal " motion as s, e as $c s, t p$ as a. And thefe may be affumed without a " demonftration. Add, what is to be demonftrated, eel as a. Hence " many other theorems may be demonitrated; for inftance p as $c v^{2}$.
"Fortpas ev: but e as $c s$, and is as $t v$. Therefore $t p$ as $c t v$, or p "as $c v$. And in thefe is contained part of my Dynaniick, abftracted " from fenfible things, tho' it is afterwards verified by experiments." "I do not doubt therefore, fays Wolfius, bueil have here propofed Dy"namical principles, which are conformable to the fentiment of Leib" nitz."

And this indeed is manifett of itfelf, as the theorems of Wolfus exautly agree with the algebraical notations of Leibnitz; but whether thefe principles are as conformable to truth as they are to the fentiment of Leibnitz, is worth the while to examine. But I find one thing particularly worthy of obfervation in thefe notations, a as ev, xebich is to be demonftrated: whence Leibnitz feems, not even then, after 16 years, to have found out a demonftration of the fuppofition formerly put off to Bernoulli; that an action doing any thing, in a fimple time, is duple of an action doing the fame thing in a duple time; fince an action doing any thing in a fimple time, does it with twice the velocity of an action doing the fame thing in a duple time. But how Wolfus demonftrates this, we flall examine prefently.

For the moft illuftrious Imperial Academy of Sciences at Peter fiurg was pleafed to make me a prefent of the 3 firt volumes of their Commentaries, and at the fame time to fignify that it would not be difagreeable to them, if I would fend them any obfervations of mine to be inferted in their Commentaries. In confequence of this, having fent a paper relating to my theory of the action of capillary tubes, which was well received by the moft illuftrious Academy, and publifted in their Commentaries, I foon after took the liberty of fending another under the title of Principia Dynamica.

For as I faw that the celebrated Wolfurs propofed to explain clearly and diftinetly, and after a geometrical manner, thofe things which had
been lefs perfpicuoully handed by Lerbnisz, fo that it was not cafy to difcover cryth from falkehoorl; and yet that they agreed exactly together in the main; I was willing to take the opportunity of bringing that. theory to an accurate examination.

With this view I tranferibed exactly all that I thought was rightly felivered by Wolfus, and jaferted them in my Dynamicat Principtes; What was wanting I fupplied; and what feemed to be falfe I corfected. When 1 had dape thas, Ifent in is years agoi with all due refpect:to the Imperial Academy. That it was read in their publick affembly, and that thanks were ordered for the communivation, I was informed by the Icarned Muller, wha was then at Petexfurg, and fetting out for the expedition to Kamikat fchi.

But afterwards, when aften fo many years I found no mention of dhat paper in the Commentaries, 1 inquired laft year of affiend, what was become of it. He anfwered me at firt, that so fuch paper had ever been prefented to the Academy. I anfwered, that it had certainly been prefented, that it was read in a publick affembly in fane IT.3., and that thanks were returned me for it. At laft, on examiming their regifters, it was found to be true; but the paper itfelf could no where be found, nor could any one imagine by what accident ic was loft. However the moft illuftrions Academy were pleafed to give me my choice either of iending another copy to Peterfourg, to be interted in their Commentaries, or of publifhing it in our Philofophical Tranfactions.

When I had examined my own papers, I could not find a perfect copy of it any where, whether it had been loft by fame accident in moving twice from one houfe to another, or whether 1 had, written only that copy which I had fent to Peterfurg. I found bowever and imperfect copy, which I fupplied as well as 1 could, and now prefent and dedicate it to the Royal Society of London, and I hope with better fuccels.

We often fee, when perfons are engaged in law fuits, that a thing which was at firt eafy and plain, has by the ill management of the advocates been carried thro' all the turnings and windings of the law, till it has ended in a difficult and almoft inextricable caufe. In fuch a cafe, if any lawyer fhall thew a hort and plain way of coming to a conclufion, I Mall think he deferves very well of both parties, on which fide foever the queftion is decided.

In this light I confider the behaviour of the famous Wolfurs with regard to the controverly concerning moving forces, which has now for many years engaged the learned world. For if he has not attained to the truth, he has certainly fhewn the way by which others may with lafety and eafe arrive at the truth.

Treading therefore in hisfteps and thofe of the illuftrious Leibnitz, whom he profeffes to follow. I hall endeavour to explain the Dynami-
cal Principles, to ufe their own term, with as much peripicuity as is pofible.

To which end I refolved to confider only one very fimple cafe, of a body endued with a Vis viva, which is moved with an uniform motion, that is, without any impediment, either of a refifting medium, or of any oppofite bodies whatfoever, plainly according to the pofitions of Wolfius. And if the candid reader fhall obferve, that I have taken this iearned gentleman's definitions and axioms, nay and the fubfequent propofitions, excepting 1 or 2 , and their demonftrations, without changing a word, I muft give him to undertand, that I did this profeffedly, becaufe I think they can neither be more clearly expreffed, nor more certainly demonftrated.
"I call that Vis viva with Leibnitz, or merely vis or force, which Defnition i. " adheres to a local motion."
"A pure force is that which is not refifted in acting by any con- Def. 2 . " trary force."
"Therefore a pure force remains unvaried in the whole time of Corollary " action.
"Such a force exerts itfelf in an equable motion, if it be con- S choolium.
" A pure aftion is that which is exercifed by a pure moving force." Def. 3 .
"Such is the action of a moveable carried with an equable motion $S_{c b o b}$.
in an unrefifting medium.
"An uniform action is that, which is duple in a duple time, triple Def. 4 .
" in a triple, ${ }^{\circ} c$. or in general, which is as the time.
"Such an action has place in an equable motion, when a moveable Scbol.
continues to be moved with the fame celerity, namely if the motion is conceived to be made in an unrcfifting medium.
"The effeet of a moving force beyond the conflizt is the tranflation of a Def. 5 . moveable thro' a fpace."
" If 2 or more equal moveables are moved with equal celerity, Axiom . the force of them is the fame."
"The fame action is performed by the fame force in the fame Axiom 2. time."
"That a greater action is performed by the fame force in a longer Scbol. time than in a fhorter, and that a greater action is performed in the fame time by a greater force than by a lefs, no one doubts. Therefore the quantity of an action depends on the quantity of forces and
time. Wherefore if the forces are equal, and the time the fame, the action alfo mult be the fame."
"If the fame moveable is transferred thro' the fame fpace, the effect $A x .3$. "s is the fame."

Dynanical or Metaphyfical Principles of Mechanicks.
"We fuppofe the motion to be made in an unrefifting medium, or " at leaft difract it from the action, which is fpent in overcoming the "refiftance of the medium: which may be, whilft we sake no accouns "s of the time in which the effect is produced."

Tberem 1.

Therem 2.

Throrem 3.
Theorem 4 .
Therom 5.
Tiearem 6.
Tispores: 7
Tirarem 8

Tirearem 9
Theorem ic. "If unequal bor
"i as the maffes."
The demonftrations of this and the 8 following theorems, about which we have no controveriy with the Leibnitzians, were fet down in. Wolfius's own words in the paper fent to Peterfourg: but here we thought proper to omit them, to avoid prolixity.
"Uniiorm actions periormed in the fame time are to each other as 4" their forces."
"Uniform actions, performed with equal forces, are to each other, " as the times in which they are perfornied.
"Uniform actions are in a ratio compounded of the times and "forces."
"Unequal forces perform the fame action in times reciprocally pro"portional to each orher."
"If 2 equal moveables are transferred thro' unequal fpaces, the effects " are as the 'paces."
"If any 2 moveables are transferred thro' the fame fpace, the effects " are as the maffes."
"If any 2 moveables are transferred thro' any fpaces, the effects are " in a ratio compounded of the maffes and fpaces."
"In an equable motion, the effects are in a ratio compounded of the " maffes, celerities, and times.
"Actions, by which the fame effect is produced, are as the celeri" ties."

We are now come to that theorem, on which the whole affair turns. If this is true, the Leibnitzian doctrine is to be embraced, if not, it is to be rejected. Therefore the demonftration of this theorem muft be diligently examined.
It is divided by Wolfus into 3 cafes; but as the fecond and third depend on the firft, we fhall confider only this one.
Demonfration "If moveables are equal, and the fame effect is produced in a differof the first caje. "t produced; that is, a body, which produces an effect in the time: τ " is moved with the velocity $2 C$, when another, which produces the " effect in the time τ, is moved with the fimple velocity C, and fo "on. Now it is evident, that an uniform action is duple, which pro"duces the effect in $\frac{1}{2}$ the time, triple, which in fubtriple, and fo on."

But do you fay, Mr Wolfius, that this is evident? what if I Mould deny it? what if I fhould fay that any action, which produces the fame effect, is the fame in what time foever it produces it. This is the very fuppofition of Leibnitz, of which, in his letter to Bernoulli dated in 1696, he fays he has not difcovered a method of demonftrating
a priori, and in his letter to your felf dated 1711, fays is ftill to be demonftrated. And yet you do not endeavour to demonltrate it, but fay it is evident, I deny it's being evident, and fo your demonftration falls to the ground, and the fuppofition itfelf therewith.

But before we fubftitute a new one, let us fee a little, what is underftood by action, and what by effect.

Wolfus, after the example of Leibnitz, has omitted the definition of action. He has only fhewn what is a pure action, namely that which is free from all impediment; and what is an uniform action, namely that which incrcafes in proportion to the time : but what he means by action itfelf he has no where determined. But till this is done, notbing can ejer be demonftrated, as Bernoulli advifed Leibnitz long ago, but in vain.

If I might venture to fupply this defect, I would aferibe the fame definition to action, which Wolfius has given of effect ; fince there feems to be no other difference between action and effect, than that action, if I may fo fpeak, is an effect in fieri, and effect an abfolute action, or one that is perfected. For in Wolfur's example, a Vis ctiva is that which transfers a moveable thro' a face; therefore the action of a.V'is viva is the srainlation of a moveable tbro' a fpace; and the effect of a Vis viva is alfo the tranflation of a moveable thro' a Space; or rather, an effect is a moveable already transferred thro' the fame fpace.

But generally, an action is the preceder of an effect; or rather, an action is that by which any thing is effected, but an effeet is the thing itielf which is effected.

I do not boaft of thefe definitions as being perfect: but yet I think they are without any danger of being miftaken, efpecially if I make the thing a little plainer by fome examples.

If I write a page, my action will be the writing of a page, and the effect will be a page written.

If a workman whitens a wall, his action will be the whitening of a wall, and the effect will be a wall whitened.

If a labourer digs a garden, his action is the digging of a garden; and the effect is a garden digged.

Any one may eafily conceive an infinite number of examples; and indeed I hould have been afhamed to dwell fo long on things fo plain, and in a manner frivolous, if thefe very things fally conceived had not thrown fo many great men into the moft grievous crrors. For

$$
\overline{\text { In mala. }}-\text { He nuge Seria ducunt }
$$

Of equal actions the effects are equal.
Let any Vis viva A perform any action, and let there be fuppofed any Th:oran.. other Vis civa B. Now that the V is viva B may perform an action eçual to the Vis vira A, it is neceffiry that the Vis viva b fhould act exactly as much as the V is vicia A has acted. Thereforo after the com-

VOL. X. Part. i. C c pletion tion．

Our 12：h Tbcorem．
Demonfira－ tion．

Part of a let－ per frome Mr Turberville Neelham to Jamics Par－ folis，M．D． F．R．S．of a ras Mirror， nolich burns at 60 fie：
diffance．is－ vicheed ty M ． de Buffon，F R．S．and Menter of the R．Acad．of Sciences at Paris．Ni． 483．P． 493 ． Маг．ジヶ． 1747．Rcad April 30. $1 i+7$ ．

Of a new Mirror，wobich burns at 66 Feet Dijtance，\＆cc． pletion of the action of B ，as much will be acted by the force B ，as has been acted by the force A ；that is，the eifect of the V is siva B will be equal to the effect of the Vis riva Λ ，the actions of which were equal．2．E．D．

Actions are in proportion to the effects．
Let the effect e be produced by the action a ．Therefore another effect e equal to the firit will，by Theor．ro，be produced by another equal action a ：confequently，the effect b will be produced twice by the action a ．In like manner it appears that the effect thrice e mult be pro－ duced by the action thrice a, \＆c．Nay in genere，that the effect $n e(=E)$ muft be produced by the action $n a(=A)$ ．Therefore $A: a:: E: e$ ， that is，the actions are in proportion to the effects．

Forces are in a ratio compounded of the maffes and velocities．
By T beor．4．actions are in a ratio compounded of the times and forces．
By Tbeor．11．actions are in proportion to the effects．Therefore effects are in a ratio compounded of the times and forces．But by Theor． 8. effects are in a ratio compounded of the maffes and fpaces．Therefore a ratio compounded of the times and forces，is equal to a ratio com－ pounded of the maffes and fpaces．Wherefore forces are in a ratio compounded of the maffes and fpaces direetly，and of the times recipro－ cally，that is，in a ratio compounded of the maffes and velocities． $\stackrel{(}{2}$ E．D ．

IV．r．I have been at the king＇s garden，and ams juft returned ：I there learned，that this morning they have been trying fonme experiments with a new－conftructed refecting mirror or mirrors with fuccefs：I knew in－ deed fome time ago，that they had been upon the defign；and M．de Buffon had acquainted me with the thcoretical part of the whole． I had even reen a part of it executed；but as they had not then effayed it，I would take no notice of it：In one word，it is Archimedes revived；and the credit of antiquity，in this point，is in fone meafure re－eftablifhed．This machine，for fo 1 must call it，con－ fifts of 140 fmall plain mirrors，each of about 4 by 3 Inches fquare ； they are fixed at about \div of an Inch diftance from each other，upon a large wooden frame about 6 feet fquare，ftrengthened with many crofs bars of wood for the mounting of thefe inirrors．Each of them has three moveable frrews，which the operator commands from behind，fo contrived，that the mirror can be inclined to any angle in any direction that meets the fun；and by this means the folar image of each mirror is made to coincide with all the reft．

There are in all，as I told you， 140 mirrors；but they tried the expe－ riment this morning with 24 only；for fo many，and no more，were then ready for the purpofe：the effect was，that，in very few feconds of time，a combuftible matter they had prepared with pitch and tow，dau－ bed upon a deal－board，was fet on fire，and burn＇d vigoroufly at the di－ itance of 66 French fett．Judge now of the effect 140 will produce； and
and whether the invention may not be improved to the height of all that has been advanced of Arcbimedes by the Ancients. The only difficulty they found was, to make the folar images of the mirrors coincide; but this is owing to the yet imperlection of their method of mounting, which may be eafily improved.

The dimenfions I have given in of the mirrors and frame were only gueffed at from view, for I have not meafur'd them; fo you muft not expect they will fquare or tally mathematically in the utmoft rignour. Nor indeed did I think it neceffary to co any more; for the dimenfions of themelves are purely arbitrary.
2. You know that the affair of Axchimedes fetting the Roman ficet on fire Extraf of a by means of burning-glaffes, has been look'd upon as a thing impoffible and romantic. Defcartes pofitively denied the fact, which had been believed for to many ages; and our modern philofophers, after many trials, and various reatonings, have been of the fame opinion. But M. de Buffor, being afked if it might be poffible to invent a Pbooinetir, or macbine for meafuring the intenfily of Light, hath difcovered by trial, that light was able to produce great effects in a focus at a great diftance, if one made ufe of a great numbers of dilks, which would refleet fo many imagres of the fun and fling them all into one place. He pur together there- Read April fore a fort of Polyedron, confifting of 168 mall mirrors, or flat pieces of 30.1747 . looking-glais, each 6 inches fquare; by means of which, with the faint rays ot the fun, in March, he fet on fire fome boards of beech wood at 150 feet diftance. By increafing the numbers of mirrors, he hopes to be able to do the fame goo feet off.

His machine has befides, the conveniency of burning downwards or horizontally, as one pleafes; and it burns either in it's greater focus, or in any nearer interval, which our commonly known burning-glaffes have not, their focus being fix'd and determined.

Perhaps this machine may afford a manner of meafuring either light, or the different degrees of heat of burning bodies. The difficulty is to find the method of marking the degrees, and of fixing a point of comparifon; for the point of kindling will not detcrmine it; becaufe that chiefly depends upon the greater or lefs degree of inflammability of different combuftible bodies*.
3. As what I read fome time fince to our Royal Academy upon the fub- Abfras from ject of my re-invention of Arcbimedes's burning Specula, cannot appear in our Memoirs before the year 1747, I think of publifhing by themfelves my obfervations upon thefe mirrors, as foon as I thall fatisfy myfelf upon certain particulars, by tome new experiments I m now prepar-

[^17]letier from the Marguis Ni colini, F, R.

196 Specula. No. in 489. p. 504. Oct and Nov. 1748. Read Ott: 2%. 1748 .

The Motion of Projectiles near the Earth's Surface confider'd, \&cc. go make. The fpeculum I have already conitrused, and which is but 6 feet broad and as many high, burns wood ae the diftance of 200 feet, it meltstin and lead at the diftance of above 120 feet, and filver at 50 . The theory which led me to this difcovery is founded upon two important remarks; the one, that the heat is not proportional to the quantity of light; and the other, that the rays do not come parallel from the fun. The firf of thofe, which appears to be a paradox, is neverthelcfs a truth of which one may eafily fatisfy one's felf, by reflecting that heat propagates itfelf even within bodies; and that when one heats at the fame time a large fuperficies, the firing is much quicker than when one only heats a Imall portion of the fame.
V. After fo much as has betn already faid upon the motion of projectiles in vacuo, it may feem needlefs to attempt any thing further on that head; neverthelefs, as a thorough knowledge in the art of Gumery is become more than ever neceffary, and as gentlemen employ'd in the practice of that art are (I am fenfible) too often deterr'd from applying themfelves to the theory, by the difficulties they imagine they fhall meet with in the conic fections, you will, I hope, pardon the liberty I have taken, in troubling you with my thoughts on a fubject, in which little or nothing new is to be expected befides the method.

When I firt drew up this paper (which was about two years ago) I did intend, had health permitted me to make the proper experiments, to have alfo attempted fomething with refpect to the refiftance of the atmofphere, whereof the effects are indeed too confidcrable to be intirely difregarded : but if the amplitude of the projection, anfwering to one given elevation, be firt determined by experiment (which our method fuppofes) the amplitudes in all other cafes, where the elevations and velocities do not very much differ from the firft, may be determined, by the proportions here laid down, to a fufficient degree of exactnefs. Becaufe, in all fuch cafes, the effects of the refiftance will be nearly as the amplitudes themfelves; and were they accurately fo, the proportions of the amplitudes, at different elevations, would be exactly the fame as in vacuo; which proportions I now proceed to determine.

Prob. I. Let two balls be projeeted with the fame celerity at different, but given clevations, 'tis propofed to determine the ratio of the times of their ftigbt, of their greateft altitudes, and of their borizontal amplitudes.

Fig. 44. Let P_{q}, Fig. 44. reprefent the plane of the horizon, $P E Q$ and peq the paths of the projectiles, defcribed in the fight; moreover let ${ }_{Q}{ }^{P} P T$ and $q p t$ be the given angles of elevation, and let $P Q$ and $p q$ be bifected in H and b; drawing $H E, 2 T$ be and $q t$, all perpendicular to $P q$: and making the fine of $\Omega P \tau=S$, it's co-fine $=c$, the fine $q p t=s$, it's co-fine $=\epsilon$, and radius $=r$.

Therefore,

The Motion of Projectiles near the Eartb's Surface confider'd, \&zc.
Therefore, fince the diftances defcended by heavy bodies (whether from a point at reft, or from the right lines in which they would move, if not acted upon by gravity) arc known to be as the fquares of the times, $2 T$ will be to $q t$, as the fquare of the time of defcribing PEQ(or of that wherein the ball would move uniformly over the fpace $P T$ with it's firit velocity at P) is to the fquare of the time of defcribing peq (or of that wherein the other ball would move uniformly thro' the length $p t$). But the celerities at P and p being equal, by hypothefis, the times in which the faid lines $P \mathcal{T}$ and $p t$ would be uniformly defrribed, are manifeftly, as the lines themefelves: whence the fquares of thofe lines muft, alfo, be as the fquares of the times, and, confequently, as the diftances defcended: that is, $P t^{2}: p t^{2}:: \mathcal{T} Q: t q$.

Now, by plane trigonometry $\tau \mathcal{Q}=\frac{S \times P \tau}{r}$ and $t q=\frac{s \times p t}{r}$; therefore $P \mathcal{T}^{2}: p^{2}\left(:: \frac{S \times P \tau}{r}: \frac{s \times p t}{r}\right):: S \times P \mathcal{T}: s \times p t$; whence, by dividing the antecedents by $P \tau$, and the confequents by $p t$, we have $P \mathcal{T}: p t:: S: s$; from which it appears, that the times of flight are directly as the fines of elevation.

Again, the times of defcribing $E Q$ and eq (which are the halves of the wholes) being alfo to one another as $S: s$, and the diftances $E H$, eb defcended in them, as the fquares of the times, it likewife follows, that $S^{2}: s^{2}:: E H: e b$; or that the greateft altitudes are as the fquares of the fines of elevation.

Moreover, becaule (by Trigonometry; $P \tau=\frac{r \times P Q}{C}$ and $p t=\frac{r \times p q}{c}$, and it has been already proved, that, $S: s:: P \tau: p t$, it follows, that $S: s:: \frac{r \times P Q}{C}: \frac{r \times p q}{c}$; whence, by multiplying the antecedents by $\frac{2 C}{r}$ and the confequents by $\frac{2 c}{r}$, it will be $\frac{2 S C}{r}: \frac{2 C S}{r}(:: 2 P Q: 2 p q)$ $:: P Q: p q$. But $\frac{2 S C}{r}$ is known to be the fine of double the angle whofe fine is S, and co-fine $C, \& c$. Therefore the horizontal amplitudes are to one another, as the fints of the double elevations.

Hence it follows, that the greatest amplitude poflible will be, when crooli. 1 . the clevation is a right angle, or 45° (becaufe the fine of 90° is the greateft of all others).

Therefore, if the greateft amplitude be given (from experiment) the Corc!. 2. amplitude anfwering to any propofed elevation, above, or below, 45°, may from hence be found: for it will be as the radius, to the line of double

1ros. II. The angle of elersation, and the greateft borizontal amplitude, being given, to find at what diffance the piece ought to be planted, to bit an oljeciz, whofe diftance, abore or below the plane of the borizon, is alfo given.

Fig. 45, 46. Let $A B$, Fig. 45, 46. be the plane of the horizon, $B C$ the perpendicular height or depreffion of the object, and $A B$ the required diftance: alfo let $B C$ be produced to meet the line of direction $A D$ in D, and let P be the place where the path of the projectile would meet the horizon; morcover, let P Q be perpendicular to $A P$, and $C N$ parallel to $A D$. Then, by the preceding problem, it will be as radius: the fine of $2 B A D::$ the given (or greatelt) amplitude : $\triangle I P$; which therefore, is known.

Moreover, the areas of fimilar triangles being as the fquares of their homologous fides, we have $A P \times P 2: A B \times B D:: A 2: A D^{2}$. But $A Q^{2}: A D:: A B \times B D:: Q P: D C$ (from principles already explained) therefore, by equality, $A P \times P Q: A B \times B D:: \AA P: D C$; and confequently $A P: A B:: B D: C D$; but (becaufe of the parallel lincs $C N$ and $A D$) $B D: C D:: A B: A N$; whence, again by equality, $A P: A B:: A B: A N$; therefore, by divifion, $A P: B P:: A B$: $B N$; and, confequently $A P \times B N=B P \times A B$.

Let $A P$ be now bifected in O; then $B P \times A B$ being $=A O:-$ $O B^{\circ}$ (in the firt cafe) and $=O B^{2}-10^{\circ}$ (in the fecond cafe), we flall! therefore

Hence, if the elevation, and the greateft amplitude, together with Corol. the diftance $A B$ of the object be given, the height or depreffion of the ball in the perpendicular $B C D$ will be known: for it is proved, that $A P: B P:: B A: B N$; whence $B N$ is known: but, as the radius to the tangent of $B N C(B A D)$: fo is $B N$ to $B C$.

The greateft borizontal amplitudes of the piece, togetber with the diftance $P_{\text {ros. }}$ IIT. and beight (or depreffion) of the object being gizen, to find the direction or angle of elevation.

Let BC, Fig. 47, 48. be the perpendicular height or depreffion of the Fig. 47, 48. object, $A B$ it's given horizontal diftance, and $\Lambda I I$ the required direction; alfo let PQ Fig. 49. be the greatelt amplitude (anfwering to 45° of Fig. 49. elevation); draw $A C$, in which produced (if need be) take $A G=P 2$; make $M G O$ perpendicular to $A G$, meeting $A B$ produced (if need be) in O; and from the centre O, with the interval $O A$, let a circle be defcribed, interfecting $A G$, produced in E, and the line of direction $A D$ in H; join E, H, and let $H I, A N$ and $2 R$, be perpendicular to $A E$, $A O$, and $P Q$ refpectively, and let $B C$, produced, meet $A H$ in D.

It will appear, from what has been faid above, that $A D^{2}: P R^{2}::$ $D C: R Q$; therefore $P R^{2}$ being $={ }_{2} P Q=2 A G^{2}=\frac{1}{2} A E$, and $R Q=P Q=\frac{1}{\circ} A E$ (by conftruction), we have $A D:: \frac{1}{2} A E:: D C$: $\frac{1}{2} A E$, and therefore $A D=A E \times D C$.

Now, the triangles $\triangle D C, \angle E H$, being equiangular (becaufe $A D C$ $=D A N=A E H$, and $D A C$ common to both) we likewife have $A D$: $D C:: A E: E H$, and confequently $A E \times D C=A D \times E H=A D^{2}(p e r$ above); whence $E H=A D$. Therefore, as the triangles $A D B$ and $E H I$ are equiangular, they are equal in all refpects; and $f_{n} H I=A B$: whence follows this eafy conftruction.

Having defcribed the circle $A E F$, as above directed, and drawn $M G$ confrution. perpendicular to $A E$, take $G *$ equal to $A B$, and thro' n, parallel to $A E$, draw $H b$, cutting the circle in H and b; join A, H, and A, b; then either of the directions $A H$ or $A b$, will anfwer the conditions of the problem. From this conftruction we have the following calculation, viz.

As $A B$ is to $B C$, fo is $A G$ to $O G$; which added to, or fuberacted from, $G n(A B)$ gives O_{n} : then, it will be, as $A G: O_{n}::$ the co-finc of $O A G$: co-fine of $H O n(=H A b)$ the difference of the two required elevations; whence the elevations themfelves are known. Q.E. I.

Hence, if the elevation of the piece, with the diffance and the height Cord. 1 (or depreffion) of the object be given, the greateft horizontal amplitude may be fotind: for it will be $A B: B C::$ radius: tang. of $B A C$; whence $C A D$ is alfo known.

Then, S. CAD : S. $A C D(A H E):: A D(H E): A E$.
And, $S . A D C$: radius : : $A B: A D$.

Fig. \boldsymbol{j}.

The Motion of Projectiles near the Eartb's Surface confider'd, \&c.
Thercfore, by compounding thefe proportions, we have S.CAD \times $S \angle D C:$ radius $\times S . A C D:: A B: A E$; which is equal to twice the required amplitude, by conftruction.

Morcover, if the elevation, and the greateft horizontal amplitude be given, the amplitude of the projection on any afcending or defcending plane $A E$, whofe inclination FAE is alfo given, may from hence be derived. For, S. AHE (ACD) : $S: E A I I(C A D):: A E$ (2PQ) $: l: I I(A D)$ and $S, A C D: S, A D C:: A D: A C$, whence, by compounding the two proportions, $S_{q^{r}} . S . A C D: S . C A D \times S . A D C:: 2 P Q$: $A C$; from which $A C$ is known.
Since it appears, that the triangles $A D B$ and $E H I$ are equal and alike in all refpeets, and therefore, the horizontal diftance $A B$, univeiffally, equal to the perpendicular $H I$, it is manifet, that, when $H I$ is the greatef poffible, $A B$ will alfo be the greateft pofible; in which circumitance $A C$ (if the angle $F A E$ be given) will likewife be the greateit pofible : and this, it is evident, munt be, when $H I$ coincides with $M G$, or when the angles $H E A$ and $H A E$ are equal, Fig. 50,51 at which time the point D coincides with H; becaufe $A D$ and $E H$ are always equal to each other. Therefore, fince, in this cale, HAE (HEA) is = NAH, it follows, that the amplitude, on any inclined plane $A E$, will be the greateft poffible, when the line of direction $A H$ biliets the angle made by the plane and zenith.
Hence the grcatelt amplitucte on any inclined plane may alfo be known; for the right-angled triangles $\angle O G$ and $H O B$, having $A O=$ $H O$ and the angle O common, are equal in all refpects; and therefore, as tang. of $A H G ; B A H$ the angle of elevation): tang. of $C H G(C A B$ the plane's inclination) :: $A G: G C$; whence $A C=A G \mp G C$ is alio known.

Hence, alfo, if the greateft amplitude on an inclin'd plane be given, the greareft horizontal amplitude may be determined: for, radius : S. $B A C:: A C: B C=C G=$ the difference of the given, and the required, amplitudes.

But if, inftead of the plane's inclination, the perpendicular height, or depreffion, of the object be given; then, $A C(A G \mp B C)$ being to $B C$, as radius to the line of $B A C$, and radius: co-tang. $B A C:: B C$: $A B$; the greateft diftance $A B$, at which the ball can poffibly hit the object, will from hence be given: which diftance (becaufe $A C=A G$ $\mp B C$, and $A B:=A C \mp C B \times A C-B C$) will allo be exprefled by $\sqrt{A G} \times A G+2 B C$. Hence the greateft horizontal amplitude of a ball, projected from a given height above the plane of the horizon is known: for ST, Fig. 5 I. may here be fuppofed to reprefent, the plane of the horizon, and $S A$ the given height; and then $S C$, being cqual to $A B$, is given from above $=\sqrt{A G \times A \overline{+2} B C}$

But,

But, if the horizontal diftance $A B$ be given, and it be required to Corol. 7 . find the greateft height the ball can poffibly reach in the perpendicular $B C D$; we fhall have $H G(A B): A G::$ radius : tang. of the elevation ($B A H$ or $A H G$); and radius : tang. $B A C\left(2 B A H \subset 90^{\circ}\right):$: $A B: B C$; which therefore is known. But (becaule $A C \pm B C=A G$, and $\overline{A C C B} \times \overline{A C-C B}=A B^{\prime}$) the fame will alfo be truly exhibited by $\frac{A G^{2} \text { cs } A B^{2}}{2 A G}$.

Laftly, let the height, or depreffion, of the object be given, toge- Corrol. 8 . ther with it's diftance $A B$, to determine the direction, and the leatt impetus poffible, to hit the object: then $A B: B C::$ radius : tang. $B A C$; whence the elevation $B \Lambda H$ is known; and as radius : tang. $A H G(B A H):: M G(A B): \Lambda G$; whence the impetus is alio known.
VI. 1. The ufe of rockets is, or may be, fo confiderable in determin- Objervations ing the polition of diftant places to each other, and in giving fignals on the beigbt for naval or military purpofes, that I thought is worth while to examine what height they ufally rife to, the better to determine the extent of the country, thro' which they can be feen. I therefore, at the exhibition of the late fire-works, defir'd a friend of mine, who I knew intended to be only a diftant fpectator, to ooferve the angle of elevation to which the greateft part of them rofe, and likewife the angle made by the rocket or rockets, which nould rife the highett of all. to which rockets aficend; by Mr Benj. Ro bins, F. R. S. N. 492. 133. Apr. Eic. 1749.

My friend was provided with all inftrument, whofe radius was 3^{8} inches ; and, to avoid all uncertainty in it's motion, it was fixed in an invariable pofition; and it's field, which took in ten degrees of altitude was divided by horizontal threads. The ftation my triend chofe was on the top of Dr Nibett's houfe in Kingfreet near Cbeapfsde, where he had a fair view of the upper part of the building erected in the Green Park. There he obferved that the fingle rockets which rofe the moft erect, were ufually elevated at their greateft height about $6^{\circ} \frac{1}{7}$ above his level; and that amongtt thefe there were 3 which rofe to $7^{\circ \frac{1}{7} \text {; and thar in the laft }}$ great flight of rockets, faid to be of 6000 , the creft of the arch, formed by their general figure, was elevated about 80 . From the care and dexterity of my friend, and the nature of the inftrument. I doubt not but thefe obfervations are true within a few minutes.

The diftance of this ftation from the building in the Green Park is 4000 yards, according to the laft great map of London: and hence it appears, that the cuftomary heigit, to which the fingle, or honorary rockets, as they are ftyled, alcended, was near 440 yards: that three of thefe rofe 526 yards; and that the greateft height of any of thole fired in the grand giranelole was about 615 yards: all reckon'd above the level of the place of obfervation, which I efteem to be near 25 yarus :agher than the Green Park, and little leis than 15 yards below the chetts wience the great flight of rockets was difcharged.

VOL. X. Part i.
Dd
It

Obfervaticns on the Height to which Rockets afcend, \&c.
It feems then there are rockets which rife 600 yards from the place whence they are difcharged: and this heing more than a third part of a mile, it follows, that if their light be fufficiently ftrong, and the air be not hazy, they may be feen in a level country at above 50 miles diftance.

The obfervations on the fingle rockets are fufficiently confonant to fome experiments I made inyfelf about a fortnight fince: for then I found that fiveral fingle pound rockets went to various heights between 450 and 500 yards, the altitude of the higheft being extremly near this lat number, and the time of their afcent ufually fort of $7^{\prime \prime}$.

But though from all thefe trials it fhould feem as if good rockets of all fizes had their heights limited between 400 and 600 yards; yet I am difpofed to believe, that they may be made to reach much greater diftances. This I in fome degree collect from the nature of their compofition, and the ufual imperfect manner of forming them.

Nor is this merely matter of feculation; for I lately faw a dozen of of four pound rockets fired ; the greateft part of which took up near : 4 " in their afcent, and were totally obfcured in a cloud near 9 or $10^{\prime \prime}$ of the time; fo that the moment of their burfting was only obfervable by a fudden glimmering through the clouds: and as thefe rockets, during the time they were vifible, were far from moving with a languid motion, I cannot but conceive, that the extraordinary time of their afcent mult have been attended by a very unufual rife.

An account of Jeme Experiments, made by Beni. Robins, $E / q ; F$. R.s. ilv. Samuel Da

Cofta, and fo-

 ecrai other Gicn:limen, in order so difico. our the tright to which Rockets may be made to af. crad, and to aHoke difance stair Light may be feen; by Mr john Ellicott, F. R. S. N. 406. p. 57^{8}. Nov. Ef. 1750. Read Dec.13. 1750
14. Mr Robins not having been able to obtain any certain account to what diftance any of the rockets mentioned in the preceding paper were actually feen, refolved to order fome rockets to be fired at an appointed time, and to defire fome of his friends to look out for them at feveral very diftant places.
The places tix'd upon for this purpofe, were Godmar/bam in Kent, about 50 Miles diftant from London; Beacon-Hill on Tiptery-Heath in Eflex, at about 40 miles; and Barkway, on the borders of Hereford/bire, about 38 miles from L.ondon.

Mr Robins accordingly order'd fome rockets to be made by a perfon many years employ'di in the Royal Laboratory at Woolsuich; to which fome gentlemen, who had been inform'd of his intentions, added fome others of their own making. Sept. 27,1749 . at 8 in the evening, was the time appointed for the firing of them; but, thro' the negligence of the engineer, they were not let off till above $\frac{1}{2}$ an hour after the time agreed upon. There were in all a dozen rockets fired from London Field at Hackney; and the heights were meafur'd by Mr Canton, Mr Robins being prefent, at the diftance of about 1200 yards from the polt from whence the rockets were fir'd. The greateft part of them did not rife to above 400 yards; one to about 500 , and one to 600 yards nearly.

By a letter I receiv'd the next day from the Rev. Dr Mafon, of Trin. Coll. Cambridge, who had undertaken to look out for them from Barkway on the borders of Hertfordfoire, I was informed, that, having waited upon
upon a hill near the town with fome of his friends till about half an hour paft the time appointed, without perceiving any rockets, as they were returning to the town, fome of the company feeing thro' the trees what they took to be a socket, they immediately haften'd back out of the clofes into the open fields, and plainly faw 4 rife, turn and fpread: he judged they rofe about I° above the horizon, and that their lights were ftrong enough to have been feen much farther.

From Efex I was inform'd, that the perfons on Tiptery-Heath faw 8 or 9 rockets very diftinctly, at about $\frac{1}{2}$ an hour paft 8; and likewife greatly to the eaft ward of thefe 5 or 6 more. The gentlemen from Godmarfloom in Kint having waited till above half an hour paft 8, without being able to difcern any rockets they fir'd half a dozen; which, from the bearings of the places were moft probably thofe fcen to the caftward by the perfons upon Tiptery-Heath; and if the fituations, as laid down in the conumon maps, are to be depended upon, at about 35 miles diftance.

The engineer being of opinion that he could make fome rockets, of the fame fize as the former, that fhould rife much higher, Mr Robins order'd him to make half a dozen. Thefe laft were fired O8t. 12. following, from the fame place, and in general they rote nearly to the fame heights with the foregoing; excepting one, which was obfierved to rife 690 yards. The evening prov'd very hazy, which render'd it impoffible for them to be feen to any confiderable diftance.

It being obferv'd in thefe trials, that the largeft of the rockets, whicls were about 2 inches and a half in diameter, rofe the higheft, Mr Robins intended to have made fome more experiments, in order to a farther difcovery what fiz'd rockets would rile higheft : but his engagements with the Eaf-India company preventing him, Mr Samuel Da Cofta, late of Decionfire-Square, a gentleman of an extraordinary genius in Mechanicks, and indefatigable in the application; Mr Banks, a gentleman who had for many years practis'd making rockets, and two other perfons, undertook the profecuting thele enquiries; and having made feveral experiments as well with regard to the compolition, as the length which rockets might be made to bear, in proportion to their diameters, and of differ-ent-fiz'd rockets from 1 , to 4 inches diameter, they intended this winter to have made trial of fome of a yet greater diameter, had not the death of Mr Da Coffa prevented it.

I fhall therefore beg leave to give fome account of the fuccefs which has hitherto attended their undertaking, fo far as they went: and as it has been.much beyond what was expected, I am in hopes this thort relation will not prove unacceptable.

Amongft fome rockets fired in the laft fpring, there were two made by Mr Da Coffa of about 3 inches diameter, which were oblerved to rife, the one to about 833 , the other 915 yards. At a fecond trial, made fome time after, there was one made by Mr Da Coffa, of 4 inches diameter, which rofe to $1: 90$ yards. The laft trial was made the latter end of April ${ }_{1750}$, where 28 rockets were fir'd in all, made by different perions, and of dif-
ferent fizes, from $1 \div$ to ${ }_{4}$ inches diameter; the moft remarkable of each fize were as follows; one of 1 ' inch rofe to 743 yards; one of 2 to 659 ; one of 2 ; to 880 ; another of the fame fize, which rofe to 1071 ; one of 3 to 1254 ; one of 3 : to 1109 ; and one of 4 inches; which, atter having rifen to near 700 yards, turned, and fell very near the ground before it went out. Thele were all made by Mr Da Coffa. Befides thefe, there was one of the rockets of 2 : inches in diameter, which rofe to 784 yarits, and another made by Mr Banks of the lame fize to 833 .

As the making of large rockets is not only very expenfive, but likewife more uncertain than thofe of a leffer lize ; fo from the laft experiments it is evident, that rockets from $2 \div$ to 3 inches diameter, are fufficient to anfwer all the purpofes they are intended for ; and I doubt not may be made to rife to an height, and to afford a light capable of being feen to confiderably greater diftances than thofe before-mention'd.

Before I conclude this account, it may not be improper to take notice, that, tho' the heights of the rockets are fet down to a fingle yard, it is not pretended the method made ufe of (tho' fufficient for all the purpofes of thefe experiments) is capable of determining the heights to fo great an exactnefs : for as they were meafur'd by only one obferver, it is evident that, if any of the rockets deviated from the perpendicular, fo as either to incline towards the place of obfervation, or to decline from it, the height would be given either greater or lefs than the truth; but as the the bafe ufon which they were meafur'd was 1190 yards, the greatelt error that can arife on this account will be but very inconfiderable. If we fhould fuppofe there might be an error of 30 or even 50 yards, which is very highly improbable, it muft then be allowed, that feveral of thefe rockets roie to 1000 yards, one to 1100 , and another to 1200 yards, or double to any of thole fired in the Green Park.

1 have been informed that the relation of this affair has appeared fo very extrodinary to fome gentlemen converfant in fuch matters, that they have mention'd it as their opinion, that there muft certainly have been fome miftake, either in placing the inftrument, taking the heights, or otherwife. In anfwer to which I would obferve, that, in all the experiments mentioned in this paper, the heights were all taken by the fame perfon, viz. Mr Yobn Canton, and that the laft trial was made in the prefence of feveral very worthy members of this Society. That the inftrument, being firft fixed to a proper angle was not alter'd during the whole time of trial ; and cherefore, if there had been any miftake in fixing it, that miftake would have varied the height of all the rockets as much as thofe of Mr DaCofta's; but it was thole of Mr DaCoffa's only, and that at 3 diffierent trials, which rofe to fuch extraordinary heights; and therefore I think we have fufficient reaion to conclude that their meafures were certainly taken very near the truth.

[^18]In this pit is fixed a tub GHKI without a bottom, having a hole I at blow fire $b y$ the lower part of the fide, and all round the tub is ramm'd with clay, except at the hole I.

In the middle of the upper end of tub is fixed a pipe $P Q R S$; ames Stirthe higher end of which are four holes pointing downwards, whereof N°. 475 . p. two are reprefented by S and R,
$S R T U$ is a funncl fixed on the top of the pipe, with a throat $X Z$ narrower than the bore of the pipe. In the upper end of the tub towards one fide is fixed a crooked pipe at $L . M$, tapering to the end at N. It is made of wood fo far as O, but from O to N of iron, the fire being fuppoled at N. $E F$ is the furface of a plain ftone, raifed up in the middle of the tub, directly under the pipe $P Q R S$,

The running water, being let in at the top of the funnel, falls thro' the pipe upon $E F$ the ftonc in the tub; it runs out at the hole I, but cannot get off till it rifes as high as A.

This raifes it in the tubalmolt up to the furface of the ftone, and it mult not rife ligher.

So much water mult run in at the top of the funnel, as will keep it always full, or nearly fo.

This height of water fqueczes it into the pipe with a great velocity; but, fince it paffes thro' the throat of the funnel, which is of a fmatler bore than the pipe, room is left all round the vein of water for the air to enter at the air-holes.

It no fooner enters but it mixes with the water, on the account of the rapidity of the motion; and both together make a white froth, and intirely fill the bore of the pipe. When this froth falls on the fone in the tub, it is dafhed into fmall particles, which difengages the air from the water. The air cannot get out at PQ , the end of the pipe, becaufe it is fill'd with the froth, which falls with a great force; neither can it get out at the hole I, becaufe the furface of the water is kept fo high above it; and for that reafon it rufhes out at N; and if the hole N be ftopped, the air will foon force all the water in the tub out at I, and then follow it.

The moft convenient way of regulating the blaft, is to bore a fmall thole in the Blaft-pipe; and, by the help of a pin in it, to let out what air there may be more than is wanted.

The dimenfions of fuch an engine fufficiently big to fmelt harder ore than any in lead-hills, are fet down at the Bottom.

Feet.
Height of the funnel $\ldots \ldots$
Iength of the pipe
Height of the tub
Diameter of the tub
Height of the ftone in the tub

2 This engine is likewife of admirable ufe to convey frefh air into the works; which faves the double drifts and fhafts, and cutting communications between them.

A finall one will do very well for a Black-fmith.

Tables of Spe. cific Gravities, extracted from various cutiors. acish jome obferviations upon the flame; in a letter to M. Folkes, E / f_{a} P.R.S. ty Rich. Davis, M. D. N°. 488. p. 416. June 1748. Prefonted Feb. 18. 1747.
VIII. The manifold applications which may be made, for the purpofes of Natural Philofophy, of the relations which bodies bear to each other, by their refpective fpecific gravities, engaged me fome years fince to collect all the experiments of this fort I could meet with in the courfe of my ftudies, and alfo to make feveral new ones of my own with the fame defign.

When my collection began to be fomewhat confiderable, I difpofed the feveral bodies in tables according to their fipecies, which I found to be the moft convenient method, as my tables were by this means capable of receiving additions in any part, without deftroying the form of the whole: and as they were thereby eafy and ready to be confulted, and well difpofed for the forming of immediate comparifons between the feveral bodies of the fame fpecies.

But having now no farther opportunitics of enlarging my collection, I hereby beg leave to recom:nend the profecution of my defign to others, as a fubject well deferving the attention of fome of the members of the Royal Society, to whom I therefore prefent thefe my tables: wifhing they may prove of fome ufe and fervice to the inquifitive and philofophical part of the world. As I perfuade myfelf they really will, when they fhall be further rectified by the omifion of the erroneous or uncertain experiments ; when they fhall be enlarged by the addition of fuch others, as may fill be found in good authors, or which yet remain unpublifhed in the clofets of the Curious : and efpecially if fome fuch gentlemen as have fkill, leifure, and opportunities, fhall pleafe to fupply their remaining defects, by the communication of their own obfervations, made upon thofe bodies, whofe fpecific gravities have not as yet been carefully recorded.

> Denique cur alias aliis praftare videmu's Pondere res rebus, nibilo majore figura? Nam, fol lantundem eft in lane glomere, quiantums Corporis in flumbo'ft tanturdem pendere par eft. Lucret.

\square

The Antients have left but few particulars concerning the different fpe- A fort accific gravities of bodies, tho' it is plain they were in the general fufficiently acquainted with them. It was by the knowledge of the various weights of gold and filver, that Arcbimedes is recorded to have detected the famous fraud committed in Hiero's crown, as Vitruvius has at large related in his Archisecture, 1. ix. c. 13. and it is from the fame great philofopher, that we have derived the demonftration of thofe hydroftatical rules, by which the proportions are beft to be known, of the feveral weights or denfities of different bodies, having the fame bulk or magnitude : as may be feen in his tract De infidentibus bumido, loft in the Greek original, but retrieved in great meafure, as it is faid, from an Arabic tranflation. It was publifhed in Latin, with a Commentary by Federicus Commandinus at Bonowia 1565,4 , and the fubftance of it by Dr Barrous in his Arcbimedes, printed likewife in $4^{\text {io }}$ at London 1675.

Pliny, in the xviii. book of his Natural Hifory, has fet down the proportional weights of fome forts of grain, among which he lays that barley is the lighteft. Levifimum ex bis bordeum, raro excedit, [in fingulos nimirum modios] xv liluras, et faba xxii. Ponderofius far magifque etiamnum sriticum. And a little further on, ex his generibus [frumenti fcilicet] que Romam invebuntur, levifimun eft Gallicum, atque è Cberfonefo adveetum: quippe non excedunt in modium vicenas libras, $\sqrt{\text { a }}$ quis granum ipfum ponderet. Adjicit Sardum Selibraj, Alexandrinum et trientes: boc et Siculi pondus. Beoticums totam libram addit: Africum et dodrantes. In Tranjpadanâ Italia fcio vicenas quinas libras farris modios pendere: circa Clufium ot fenas. And the fame author in his xxxiii. book, fpeaking of quickfilver, obfervesthat it is the heavieft of all fubftances, gold only excepted. Omnia ei innatant, preter aurum: id unum ad Je trabit. Which Vitruvius had alfo taken notice of, and had mentioned befides the weight of a known meafure of it, that of four Roman fextarii. Ee autem [gutte nempe argenti vivi qua inter fe congruunt et una confunduntur] cumn sint quatuor fextarioruin inenfure, cum expenduntur, inveeniuntur effe pondo centum. Cum in aliquo vafe oft confufum, fi fupra id lapidis centenarii pondus imponitur, natat in fummo: neque cum liquorem potejt onere fuo premere, nec elidere, nec difipare: centenario fublato, fi ibi auri fcrupulum imponatur, non natabit, jed ad imum per fe deprimetur. Ita non amplitudine ponderis, fed genere fingularum rerum gravitatem effe, non eft negandum. Archit. 1. vii. c. 8 .

Again, 2. Reemnius Fannius Palanzon, in his fragment De ponderibus et menfuris, has given us an obfervation, of the proportional gravities of water, oil, and honey.

Libra, ut memorant, beflem fextarius addet, Seu puros pendas latices, fou dona Lyei, Addunt Semifen libra labentis olivi, Selibramque forunt mellis fupereffe biliuri.

Tabies of Specific Gravities.

That is to fay, that the fextarius of either water or wine weighed 20 ounces, the fame nieafure of oil 18, and of honey 30. Their fpecific weights were thercfore in proportion as $1.0,0.9$ and 1.5 , exactiy agreeable to what Villalpandus determined about the beginning of the lait cc n cury: yet was this author himfelf fenfible, that theie were not to be look'd upon as very nice experiments.

> Hec tamen affenfu facili funt credita nobis.
> Namque nec errantes undis labentibus amnes,
> Nec niorifi puteis latices, aut fonte percini Manantes, par pondus babent : non denique vina, Que campi aut colles nuperve aut ante tulere, Quod tivi mechanica promptum eft depromere Mufa.

After which he proceeds to defcribe a good pretty inftrument for the ready finding of the different fpecific gravities of fluids, and fhews how thole of folids allo may be hydroftatically difcovered. And fo much thall fuffice for what I had to mention from the Antients relaring to this fubject : I now come to thofe who have written within theie latt hundred and fifi) years.

Francis Bacon, Lord Verulan, \&cc. in his Hijf. densi et rari, printed in vol, ii of his works in folio, Lond. ${ }^{17}+1$. p. 69. has given a table, which he calls, Tabula coitionis et expanfonis materia per Jpatia in tangibilibus (qua foilicet dotantur pondere) cum fupputatione rationum in corporibus dezerfis. This tract does not appear to have been publihed till atter his death, which happened in the year 1626 , but was probably written jeveral years before; and the experiments were even as he teils us made long before that. Hanc tabulam muttis abbinc annis confeci, atque ut memini, bona ufus diligentia. I therefore apprehend it to be the oldeft table of fpecific gravities now extant. The experiments therein mentioned were not made hydroftatically, but with a cube of an ounce weight of pure gold, as he fays, to which he caufed cubes of other materials to be made equal in fize: as he did alfo two hollow ones of filver, and of equal weights, the one to be weighed empty, and the other filled with fuch liquid as he wanted to examine. He was himfelf fenfible that his experiments of this fort were, notwithftanding his care, very defectve, pofit proculdubio tabula multo exaltior componi, videlicet tunn ex pluribus, tum ex ampliore menjura: id quod ad cxaEtias rationes plurimum facit, et omnino parandis eft, cuniz res fit ex fundamentalibus. From among thefe, notwithftanding their imperfection, as they appear to have been fome of the firlt experiments of the fore regularly digefted, and as they were befides made by fo great a man, I have extracted the fpecific gravities of the fixed metals, which 1 have inferted as examples in the following tables: after reducing them to the common form, upon the fuppofition that pure gold was, according to Gbetaldus, juft 19 times as heavy as water. And this I have rather chofen to do, than to make ufe of his Lordhip's own weight
of water given in the table, which in the manner he took it could not be very exact, and which befides would not have brought out the fpecitic gravity of pure gold more than 18 times as much; and that of the other metals in proportion. This table contains in all 78 articks.

There are alfo in the third volume of the fame edition of his works, p. 223. Certain experiments snade by the Lord Bacon about weight in air and water: Thefe are truly lijdroftatical but very imperfect, I have not therefore inferted any of them in the following collection.

Marinus Gbetaldus, a nobleman of Ragufa, publifhed in quario at Rome, in 1603 , his treatife entitled, Promotus Archimedes, Sen de variis corporum generibus gravitate et magnitudine comparatis, wherein he has given a comparifon between the fpecific gravities of water and eleven other different fubftances, from his own hydroftatical experiments made with care and exactnefs. Thefe I have inferted : expreffing the numbers as they ftand in his own book, but I have afterwards alfo for uniformity reduced them to the decimal form. I have befides at the end tranfcribed at large the two tables of this author, in which every one of the 12 forts of bodies he treats about is fucceffively compared with all the others, both in weight and magnitude.
F. Fob. Baptift Villalpandus, a Jefuit of Cordoue in Spain, in his Ap: paralus Urbis et Templi Hierofolymitani, printed in folio at Rome in 1604, exhibited a table of the proportional weights of the 7 metals and fome other fubftances, from his own experiments, made with great care as he tells us, by the means of 6 equal folicl cubes of the fixed metals, and a hollow cubical veffel 8 times as large, for the comparing mercury, honey, water, and oil with the fame. His numbers, which are inferted under his name in the following tables, were alfo again publifhed aferwards by Foh. Henr. Alfedius in his Encyclopadia univerfa, printed in 2 vols. in folio, at Herborn 1630, and by Hen. Van Etten, in his Matbematical Recreations; from whence they have been often tranfcribed into other books. Villalpandus's book, which is only the third volume of a work begun to be publifhed feveral years before, was itfelf printed fo foon after Gbetaldus's, that it is probable he either never faw that author, or not at leaft till after his own experiments were made.

Mr Edm. Gunter, in his Defcription and UJe of the Sector, printed after his death by Mr. Sam. Fofter, in 1626, having occafion to make mention of the fpecific weights of the feveral fixed metals, quoted Cibetaldus, and made ufe of his proportions, and fo did alfo Mr Will. Oughtred, in his Circles of Proportion, firft publithed in $4^{\text {to }} 1633$, with this only difterence, as to the form, that he changed Gbetaldus's unit into 210 , whereby he expreffed all his relations in whole numbers. It is likewife probable that D. Henrion took from the fame place the numbers he applied in his UJage da Compas de Proportion, printed at Paris in $163 \mathrm{I}, 8^{\text {vo. }}$. although he has not given them all with exactnefs, for the fake as it feems of uing fimpler vulgar fractions.

VOL. X. Part i.
E
F. Marinи:
F. Marinus Merfennus, a Frencb Minim, in his Cogitata Pbyjico-Matbematica, printed at Paris in $1644,4^{\text {to }}$, has given from the obfervations of his accurate friend Petrus Petitus, a table ot the fpecific gravities of the metals and fome other bodies, making gold roo, water $5^{\frac{3}{5}}$ and the rett in proportion. Thefe I have reduced to the common form, and inferted under his name in the following tables. The fame were afterwards made ufe of by F. Francis Milliet de Cboles, Jefuit, in his Curfus Mathematicus, Monficur Ozanam, Profefor Wolfius, and feveral others. I have not feen Petitus's own book, but it was entitled L'Ufage ou le mojen de pratiquer par une Regle toutes les Operations du Compas de Propur-vion-_nugmenties des Tables de la Pefanteur et Grandeur des Metaux, \&ce. had a privilege dated in 1625 . tho' it is faid not to have been printed till fome years after. The fame Father Mer fennus has alfo taken notice, in his general preface, of a table of 20 fpecific gravities, fome time before publifhed by M. Alcaume, which he there fets down, but which he alfo obfeves to be very incorrect. I have not therefore inferted any of them in this collection.

Mr Snsetbrwick, one of the earlieft members of the Royal Society, communicated to the fame in fuly 1670 , the weights of a cubic inch of feveral different fubftances ; faid to have been formerly taken by Mr Reynolds in the Tower of London. This gentleman was the fame who compoled leveral tables relating to the price of gold and filver, which were publifhed in a book entited The Secrets of the Goldfmith's Axt, at London 1676 in 8 m. Thefe weights are expreffed in decimals of an Averdupois pound, are carried to 8 places of figures, and feem to have been carcfully and accurately collected. I have therefore in the following tables reduced them to the common form, in order to give them, their proper authority with the reft. I am ignorant whether thefe weights were ever before printed or not, neither can I give any account, after what particular manner the experiments were made, from which they were taken. They were communicated to me from the regifter-books of the Royal Society; and I hall only obferve, that the abfolute weight here affigned of a cubic inch of conmmon water, does not differ more than a fmall fraction of a grain, from the weight of the fame afterwards determined by Mr Ward of Cbefter.

The Pbilojopbical Society, mecting at Oxford, directed feveral exprriments to be made hydroftatically by their members, concerning the fpccific gravities of various bodies; which being digefted into a table, were by Dr Mufgrave communicated to the Royal Society, March 21, 1684. foon after which they were printed in the $169^{\text {th }}$ number of the Pbilof. Tranf. Thefe experiments were, according to Dr Mufgrave, made by Mr Cafwell and Mr Walker; they are all originals, and citeemed fome of the moft accurate that are extant.

The honourable Robert Boyle, at the end of his Medicina bydroftatica, firft publifhed at London in $1690,8^{\circ 0}$. fubjoined a table of the fpecific gravities of feveral bodies, accurately taken from his own hydroftatical experiments.

Tables of Specific Gravities.

experiments. Befides which, there are alfo in the fame tract, and in other parts of his works, feveral experiments of this excellent author's, which he has given occafionally, together with the ufes refulting from them. To fuch of thefe in the following collection, as were taken from the table juft mentioned, I have barely annexed his name, but to fuch of the others as occurred, I have alfo added the volume, page, and columin, of the late folio edition of his works in 1744, where the fame are to be found. It may be noted, that in the firft edition of the Medicina bydrofatica, there were feveral errors of the prefs. Such of them as I could difcover by calculation, I have corrected in the following pages.

There is a table publifhed under the name of $\mathcal{F} . C$. in the $199^{\text {th }}$ number of the Pbilof. Tranf. An. 1693: and this is evidently a fupplement to that abovementioned of the Pbilofopbical Society meeting at Oxford. The experiments were, according to the initials 7 . C. macie by the fame curious perfon Mr fobn Cafwell, and are therefore of the fame eftimation as the others.
M. Homberg, of the R. Acad. of Sc. at Paris, read a memoir in 1699 , wherein he took notice of the expanfion of all fubftances by heat, and the contraction of the fame by cold: from whence it muft follow, that the feecific gravities of the fame bodies would conftantly be found lefs in the fummer and greater in the winter. And this he fhew'd from the experiments he had made upon feveral fluids, both in the fummer and the winter-feafons, by means of an inftrument he had contrived and called an Arcometer, being a large phial, to which he had adjutted a long and nender ftem, whereby he could to good exactnefs determine, when it was filled with equal bulks or quantities of the feveral fluids he propofed to examine. The refult of his trials with this inttrument he digetted into a fhort table, which was printed in the Memoirs of the Academy for the fame year 1699. This table 7. Cafpar Eifenfcbmid afterwards republifhed with feveral additions, in his tract De Ponderibus et Menfuris, printed at Strafourg in $1708,8^{\circ 0}$. changing it to a more convenient form for his purpole, by reducing the different fluids thercin named to the known bulk of a cubical Paris inch. So much of this table as I thought might be of fervice, I have here fubjoined to the others in the following collection, but l have alfo made an alteration in the form, the better to fit it for general ufe, by omitting the abfolute weights of the feveral bodies in fummer and winter, and placing inftead of them, after the name of each body a decimal number, exprefling the proportion of its weight in winter to its weight in fummer, fuppofed to be every-where reprefented by unity.

Sir If Newton, in his Optics, printed in $4^{\text {io }}$. at London 1704, gave a table of the fpecific gravities of feveral diapbanous bodies. The expcriments were made by him with a view chiehly to optical enquiries, and to enable him to compare their denfities with their feveral refractive powers : we may therefore be well affured, that they were made by the great

$$
\text { Ee } 2 \text { author }
$$ 22 articles.

Fobn Harris, D. D. in his Lexicon Tecbnicum, firt printed at L.ondon 1704, fol. republifhed at large the feveral tables of fpecific gravities of the Oxford Society and F. C. from the Pbilof. Tranf. and that of the Hon. Rob. Boyle from his Medicina bydrofatica, to which laft he alfo added fome experiments of his own, made as it feems with good accuracy. Thefe are here extracted, and placed under his name in the following tables.

Mr Gobn Ward of Cbefter, in his Young Matbematician's. Guide, fir ft printed, as I take it, in 1706, acquaints us, that he had himfelf for his own fatisfaction, made feveral experiments upon the different fpecific gravities of various bodies; and that he was of opinion, that he had obtained the proportion of the weight that one body bears to another of the fame bulk and magnitude, as nicely as the nature of fuch matter, as might be contracted or brought into a lefier body (wiz. either by drying, hammering, or otherwife) would admit of. And he has accordingly given us in the faid book the weight of a cubic inch of 24 different fubtances, both in Troy and Averdupois ounces and decimal parts of an ounce; which he further affures us required more charge, care, and trouble, to find out nicely, than he was at firt aware of. This table appears to have been well efteemed, and to have had the fanction of Mr Cotes's approbation, by his taking it, when reduced to the common form, into that collection which he drew up for his own hydroftatical lectures.

Roger Cotes, M. A. and Plumian Prof. Affron. and Exp. Pbilof. at Cambridge, firt giving about the year 1707 a Courfe of Hydroflatical and Pneumatical Experiments, in conjunction with Mr Whifton in that Univerfity, drew up, for the ufe of that courfe, a very accurate table of fpecific gravities, collecting from feveral places fuch experiments as he took to be moft exact, and the beft to be depended upon. And as the judgment of fo great a man cannot but give a general reputation to fuch experiments as he had fo felected, I have thought proper, in the following tables, to diftinguith all fuch by the addition of the letter C, after the names of fuch perfons from whom they firt appear to have been taken, adding alfo the name of Cotes at length, to fuch others as I have not met with elfewhere, and which I therefore take to have been tranfcribed from the memoranda of his own experiments. This table of Mr Cotes's ufed firft to be given in M. S. to thofe who attended his lectures; but it was afterwards printed in a fingle fhect, relating to a Courfe of Exferiments at Canbridge in 1720, and fince in Mr Cobes's Hydroftatical and Pneumatical Leetures, when they were publifhed at large in $8^{\circ 0}$ by his fucceffor Dr Smith, now the worthy mafter of Trinity College. In thefe printed lectures were inferted the gravities of human blood, its Serum, \&c. from Dr Yurin, inftead of thofe that had before been made ule of from Mr Boyle.

Mr Francis Hankfuee, now Clerk to the Royal Society, did, about the the year 1710, begin, in conjunction with Mr Wbifon, who had then newly left the Univerfiy, to give hydroftatical lectures, Eec. in London;
for the purpofe of which he reprinted in a thin volume in $4^{\circ 0}$, in which are the ichemes of his experiments, Mr Cotes's table of fpecific gravities abovementioned. To which he added, from tryals of his own, the weights of fteel, foff, hard, and temper'd, which are printed with his name in the following tables, as are alfo fome other experiments, which he has fince occafionaily made, and communicated to me. Mr Cotes's table, with the abovemention'd additions of Mr Haukboee, was afterwards again publifhed by Dr Sbaw, in his Abridg. of Mr Bolle's Pbilof. Works, at Lond. 1725, $4^{\text {º }}$. vol. ii. p. 345.

Fobn Freind, M. D. at the end of his Prelect. Cbem. printed at Lond. in $1709,8^{\text {ro }}$. has publifhed tome new tables of the fpecific gravities both of folid and fluid bodies, entirely taken from his own original experiments. And as thefe tables contain an account of a very ufeful fet of bodies, upon which few or no other experiments have been made: it is great pity that this truly learned and elegant writer was not more accurate in his tryals than he appears to have been. Many of his experiments having indeed been made in fo lax and improper a manner, and fo many crrors having been committed in them, that one cannot with fecurity depend upon thefe tables, tho' containing otherwife facts one would fo much defire to be truly informed about. I have however here inferted the feveral particulars of his two laft tables, which immediately concern fpecific gravities, after correcting fuch errors in calculation as I could certainly come at : and I hope that I hall be excufed for this free cenfure upon part of the works of a gentleman, who has fo well deferved of the learned world, and acquired fo juft a reputation in it.

Fames Furin, M. D. and feveral years Secretary of the Rogal Society, gave, in N${ }^{0}$. 361 of the Pbilof. Tranf. An. 1719, fome original and very accurate experiments made by himfelf, upon the fpecific gravity of human blood, at feveral times during the fix preceding years. Thefe were accompanied with a very curious Difcourfe, which has fince been tranflated by himfelf, into Latiz, and reprinted in his. Differt. Pbyffco Matb. Lond. 1732, $8^{v o}$.

This gentleman has alfo, in $\mathrm{N}^{\circ} .369$ of the fame Tranf. obliged us with fome very judicious and uifful remarks, relating to the causion to be ufed in examining the jpecific gravity of folids, by weigbing them in water; for want of attending to which, feveral forts of bodies, fuch as human calculi, the fubftance of all woods, ξ^{c} c. have appeared, from their pores and fimall cavities filled up with air, to be confiderably lighter than they really are.

7obn Woodward, M. D. and Profeffor of Phyfic in Grehank Colleze, had, as he acquaints us in feveral places oi his works, made a great number of experiments upon the fpecific weights, of mineral and other foffil bodies, but which being probably contained in thofe of his papers which he ordered to be fuppreffed at his death, are thereby loft to the world, to which they would without all doubt have been very acceptable. All I have been able to pick up are a very few mentioned in the

Catalogye of the Englifb Foffls in bis Collestion, publifhed fince his deceare, in $8 \cdots$. Lond. 1729.

Mr Gabric! Fabrenbsit, F. R. S. communicated, in $\mathrm{N}^{\circ} .383$. of the Pbilof. Tranf: a table of the Specific gravities of 28 feveral jubftances, from hydroftatical experiments of his own, made with great care and exactacis; to which he fubjoined fome obfervations upon the manner in which his trials were performed, together with a defcription of the inftruments in particular which he made ufe of to examine the gravities of fluids. To fome of his experiments which he thought required a greater nicety, he has affixed an afterifk in his table, fignifying fuch to have been adjufted to the temperature of the air, when his Thermometers itood at the height of 48 degrees. This gentleman, who is well known by the reputation of his Mercurial Thermometers, which he made with great curiofity, and which are now generally ufed, was in England in the year 1724.

Profeffor Peter vain Muffcberbroek, of Utrecht, publifhed in his Elementa Pbyfice at Leyden in $8^{\text {ro }}$. 1734. a large table of fpecific gravities, which he afterwards yet fomewhat further cularged in his Effai de Pbyfique in French, at Leyden 1739. $4^{\text {to }}$. This table contains almoft all the preceding ones, but without the names of the authors from whom they were collected. I have among thofe which follow inferted, under this author's name, fuch experiments as I had not before met with cliewhere: making ule of the Latin edition as the more correct, except in fuch articles which are only to be found in the French.

Mr Fobn Ellicott, F. R.S. having an opportunity in the year $1 / 45$, to examine the weight of fome Jarge diamonds, he accordingly, with the utmoft care, and with exquifite affay-fcales which very fenfibly turned with the 200th part of a grain, took the fipecific gravities of 14 of thofe diamonds, 4 of which came from the Brafils, and the other 10 from the Eaff-Indies. Thefe experiments he communicated to the Pref. of the Royal Society, who caufed them to be read at one of their meetings, and afterwards publifhed them in $\mathrm{N}^{\circ}, 476$. of the Pbilof. Tranf. Among thefe Brafilian diamonds, one was of the abfolute weight of $92,4^{2} 5$, another of 88,21 ; and among the Eaft-Ixdian ones, onc of 29,525 Troy grains. And as the fize of thefe ftones made them much fitter for thefe enquiries, than any others which had probably ever before been uled for the fame purpofe, fo the known accuracy of the author, the goodnels of his inftruments, and the confiftency of all his experiments, fufficiently fhew the fpecific gravities he has delivered in his paper, may entirely be depended upon.

The fame curious perfon alfo communicated the fpecific gravities of fine and ftandard gold, publified under his name in the following tables, and which were deduced from experiments he was fo kind as to make on purpofe at my requeft.

As I have juft had occafion to mention diamonds, it may poffibly not be foreign to the purpofe here to take fome notice of the diamond carat

Tables of Specific Gravities.

weight, ufed among Jewellers, which weight was originally the carat or 144th part of the Venetian ounce, equal to 3,2 Troy grains, but which is now, for want of an acknowledged ftandard, fomewhat degenerated from its firft weight. I have myfelf found it, upon a medium of feveral experiments, equal to 3,17 Troy grains; and I have the rather taken notice of this weight here, becaufe there happens to be a miltake about it, both in Dr Arbutbnot's and Mr Dodfon's tables, who have let down as it feems the number of diamond carats in a Troy ounce, inftead of the weight of the diamond carat itfelf. This carat is again divided into four of its own grains, and thofe into halves and quarters, commonly called the eighths and fixteenths of a carat: and thus the largct of the diamonds juit abovementioned, weighed, in the Jewellers phrafe, better than 29 carats and almoft half a grain.

Mr Fames Dodjon, in his book called The Calculator, printed in 8 vo. Lond. 1747, has inferted a ufeful table of fpecific gravities, in which he has by the firft initial letter of their names diftinguifhed the feveral authors he has quoted: and amongtt thefe are feveral new experiments marked with an L, which I am told were communicated from his own trials, by Mr Cbarles Labelye, engincer, and which concern particularly the weights of feveral forts of ftone and other materials ufed in building. Thefe I have alfo diftinguifhed by an L. as they ftand in Mr Dodjon's book.

Mr Geo. Grabam, F. R. S. made for me, at the requeft of a friend, fome accurate trials upon the weight of gold and filver, both when reported fine, and when reduced to the Englifh ftandard: all which I have inferted under his name in the following tables. Wherein I have befides reported, fome other fingle experiments, which I occafionally met with, from Fred. Slare, M. D. Jobn Keill of Oxford, M. D. Steph. Hales, D. D. and Edrward Bayley of Havant in Hamphire, M. D.

Richard Davies, M. D. I have laftly to this collection of experiments added fome of my own, which I endeavoured to make with as much accuracy, as the inftruments I was provided with would allow of. My hydroftatical balance was one conftructed feveral years fince by Mr Francis Haukgee, which I have conftantly found to turn fenfibly with half a grain: and the bodies upon which I made mott of my trials, were taken from a collection of the Materia Medica formerly made by Signor Vigani, and ftill preferved in the library of Queen's-Col!ege in Cambridge.

[^19]19.125
1°. of Queen Mary. 7. C. 19.100
Aurum. Fabrenbeit. 19.081
Id. Gbetaldus. Aurum purum. Bacon (ex hyp.) . . 19.000
A gold Coin of Alexander's. F. C. 18.893
Gold. Reynolds. 18.806
Aurum. Villalpandus. Petilus. . . . 18.750
Standard gold (by which is underftood gold of 22 carats, or
luch of which our guineas are intended to be coined).
\%. Ward. C.
An old facobus. I fuppofe the feeptered broad piece. 18.888
Harris.
A Meniz gold ducat. 7. C. $\quad 18.261$
Aureus Ludovicus. Mufchenbr. . iil 18.166
A five guinea piece of K. James II. 168\%, with an elephant. Grabam.
A Portugal piece of $3 l$. 12 S. 17 73^{1}, fuppofed to be nearly the fame as flandard. Graban. 17.854
Guineas, ten weighed together. Davies. 17.800
D^{3}. on a mean of 7 trials upon thofe of different teigns. Ellicot.
17.726

A piece of gold coin of the Commonwealth. Harris. . 17.625
Guineas, two new ones. Houkjuee. . . 17.414
A grain of Scotch gold, fuch as nature had made it. Boyle
V. 30.6.
Electrum, a Britif coin. F. C. . . . 12.071
§ QUICKSILVER. Mercurius crudus. Freind. . 14.117
Mercury, Spanifb. Boyle V. 10. b. Mercure fublimé 511
fois. Mufcbenb. 14.110
Quick filver. Oxford Soc. 14.019
D^{∞}. Ward. C. revived from the ore. Boyle. . . 14.000
Fine mercury. L. 13.943
Quickfilver, another parcel. Oxf. Soc. ${ }^{1} 3.593$
Mercure amalgamé avec de l'argent, affiné et fublimé 100 fois. Muficbenb.

- 13.580

Mercurius. Fahrenbeit. 13.575^{*}
Argentum vivum. Gbetaldus. $13^{4}, 13.571$
Mercure amalgamé avec de l'or affiné, et fublimé 100
fois; le méme menfé avec du plomb, enfuite converti
en poudre et revivifié, Mufch.
Coarre mercury. L. 13.512
Mercurius. Petitus. 13.406
Quickfilver. Reynolds. 13.147
万 LEAD. Reynolds. 11.856
Plumbum. Villalpand. 11.650
Id. Gbetaldus $11 \frac{1}{2}$. 11.500

Tubles of Specific Gravities.
Id. Bacom. : 11.459
Lead. Harris. 11.420
Hardeft lead. L. 11.35^{6}
Plumbun. Fabrenbeit. 11.350
I.cad. Oxford Soc. Ward. 11.345

Plumbum. Petitus.
11.343:

Lead. Harris. (an ordinary piece) . . . II.330
D. Cotes. . . . $11.3^{2} 5$

Plumbum Germanicum. Mufchenb. . . . 11.310
Caft lead. L. 11.260
© SILVER, fine. Ward. C. . 11.091
A medal of the Royal Socicty, reported fine filver. Grabam.
Argentum. Fabrenbeit. 10.481
Silver. Reynolds.
Argentum. Villalpandus. 10.400

Id. Ghetaldus. 10_{1}^{1}. 10.333

Id. Bacon. 10.331

Id. Petitus.
Sterling, or ftandard filver (that is, filver in oz. $2 \mathrm{~d}^{\mathrm{wt}}$. in the pound fine). A half crown of K. William's coin. Harris.
D°. fruck into money. L. 10.629

D ${ }^{\text {. 7. C. Ward. C. }}$ 10.535
D^{3}. caft. L.
A new crown-piece, 1746. Lima under the head. Graban.
10.520
10.284
o COPPER. Reynolds. . . 9.127
Cuprum. Villalpandus. . 9.100
Æs. Gbetaldus. Rofe copper. Ward. C. Fine copper. L. An old copper halfpenny, Cbarles Il's coin. Harris.
Copper, in half-pence. L. \quad. 8.915
Es; cuivre. Petitus. . . . 8.875
Cuprum. Bacon. 8.866
Copper. Oxf. Soc. . . 8.843
Cuprum Suecicum. Fabrenbeit. \quad - $\quad 8.834$
Id. Japonenfe. Fabrenbeit. . . . 8.799
Id. Suecicum. Mufchenbr. - . . 8.784
Common copper. L. . . 8.47^{8}
BRASS. An old brafs gold weight, marked xxxirf. Harris. . 8.83°
Aurichalcum. Bacon. . 8.747
A piece of hammered brais. Harris. . $\quad .8 .660$
Es, airin, calaminæ mixtum. Petitus. $\quad 8.43 .7$
Aurichalcum. Fabrenbeit. . . . 8.4^{12}
Brafs hammered. 7. C. Plate brafs. Ward. 8.349 VOL. X. Part i. Ef Wrought

Tablis of Specific Gravities.

Wrought brafs. . J.C. Caft brafs. L.		
Do. Cotcs. 8.000		
	Brafs hamme	7.950
D${ }^{\circ}$ catt. Revnolas. piece of cait brals. Harris. . . $\% .005$		
© IRON. Ferrum. Villalpandus. . 8.086		
Id. Gbetaldus. 8.000		
	Iron, forged. Reynolds.	7.906
Ferrum. Petitus. . . . 7.875		
Ic. Bacon. . . . 7.837		
	Spanifs bar iron. L.	7.827
Swedjh D ${ }^{\text {. L. }} 7.818$		
Ferrum. Fabrenbeit.Iron. Cotes.		
Do. of a key: 7. C. Common iron. Ward. . 7.643		
A piece of hammered iron, perhaps part iteel. Tharris. . 7.600		
Iron calt. Revolds. . . . D^{0}. . . 7.1220		
Softelt caft iron, or Dutch Plates. L. . . 6.960		
EEL. J.C. Ward. . . . 7.832		
	D°. Coies.	7.850
1) fpring temper. Hawkbee. . 7.800		7.809
D°. nealed foft. L. 7.792		
D. fott. Haukfuee. . . . 7.73^{8}		
	D. hardened. L.	7.696
IIN. Reynolds. \quad O . 7.617		
Stannum. Bacon. . . . 7.520		
Id. Villalpandus. Freind. . . 7.500		
Etain d'Angleterre. Mufcbenbr. . $7.47 \pm$		
	Stannum. Gbetaldus. $7 \frac{2}{3}$	7.400
Id. Provinciæ Indiæ Or Malaça. Fabren. . 7.364		
Block tin. Oxf. Soc. Ward. C., 7.321		
Stannum Anglicanum. Fabrenheit. . . 7.313		
Id. commune. Petitus. . . 7.312		
Block or grain tin. L. 7.156		

Notes and ob- As I thought the uleg that might be made of thefe tables, either in kreations. bufinefs or in philofophy, would beft be illuftrated by a few flort notes, I have therefore here occafionally inferted fuch obfervations as occurred to me, whilft I was revifing them for the prefs : and, as many of thefe related chiefly to the prefent defects of my tables, thofe I thought

Tables of Specific Gravities:

would probably be of fervice, to fuch as might hereafter take the trouble of improving or correcting them.

As the particulars contained in the tables were extracted from different books, at different times, and at firtt only intended for my own private ufe, I was not follicitous to preferve one uniform language, but generally fet down every experiment in my common place, in the words of the author I took it from: and as I have fince found, that by a tranfation I might fometimes happen not fo juftly to reprefent the body intended, I have upon the whole judged it beft, here alfo to tranfcribe them in the fame languages in which they were at firte delivered.
To make experiments of this fort, with a fufficient degree of accuracy, requires a pretty deal of care and pains: and, as in lich as I have made myfelt, I have found great conveniency in the ufe of decimal weights, preferably to thofe of the common form, I would alfo recommend the ufe of fuch to others, who hall pleare to employ themfelves in the like enquirics. Thofe I have provided for myfelf have a Troy ounce for their integer, and my leaft weight is the thoulandth part of that quantity, differing confequently from the half of a Troy grain only as $2+$ docs from 25 , which is inconfiderable fo far as thofe finall weights are concerned. My four fmalleft are refpeetively of $\mathrm{r}, 2,3$, and 4 of thofe thoufandth parts, and together make ten, or an unit of the next denomination, that of the 100th part of an ounce. I then liave four others, making $1,2,3$, and 4 100ths, and together the unit of the next denomination, or one tentix of an ounce, and to on. By thefe I fave the trouble of reducing the common weights to their loweft denomination in every experiment, and fometimes perhaps avoid making miftakes in that very trifing work.

Whenever two or more original writers nearly concur in their experiments upon any fubject, the gravity fo deduced may be well depended upon. But where they differ remarkably, it muft either be imputed to the unequal gravity of tine fubject itfelf, or to fome error in the trials, which may ealily happen in matters that clepend on the obfervation of fo many minute particulars. All thofe cafes that fo lenfibly differ would well deferve to be re-cxamined.

The firf table above, that of metals, as it is compofed of the moft perfect and uniform bodies in nature, feems capable of being adjufted with the greatert precifion, both with relation to the pure metals themfelves, and to the 1everal degrees of their mixtures one with another, if experiments in all thefe cafes were but made with a fufficient degree of accuracy.

Gold, in the experiments I have made myfelf, I could never find to come up to the weight affigned it in fome of the former tables, and particularly thofe I have made upon our own coin, and fome others have always remarkably fallen fort of the weight affigned to the ftandard in thofe fame tables. I have inferted that trial in which I found guineas so come out beft; and I may venture to affirm, that that experiment, is

Tables of Specific Gravitics.

particular, was made with as much accuracy as my inftrument was capable of, the pieces were all wafhed in foap and water, cleaned with a brufh, and the air-bubbles well freed, and the like. That experiment is befides abuncantly confirmed fince, by the exact trials lately made by Mr Graban and Mr Ellicot, which were performed with the greatelt care; and the fine gold alfo mentioned by the laft was chofen and prepared with the greateft curiofity.

It may be oblerved, that the gold medals of Q. Eliz. and Q. Mary, quoted by 7 . C. were, without doubt, the large fovereigns of thofe queens, which were of the old ftandard of England, or of gold appointcd to be 23 carats, 3 grains and a half fine : that the Mentz ducat, mentioned by the fame, it it was one of thole ad legem imperii, which are atways in their own mints affirmed to be fine, come out confiderably too light: and that the gold coin of the Commonwealth, and the piito!es of France, were like our prefent gold money of the goodnefs of 22 carats.

Mercury is placed in this table among the metals, by reafon of its near agreement with thofe bodies in its fpecific gravity; though it otherwife fo widely differs from them in moft of its properties.

Brais is confiderably condenfed by hammering; whether gold, filver, and the other metals are alfo condenfed in like manner, hardly appears yet to have been fufficiently tried.

Of the mixed metals, hardly any except brafs, appear to have had their fpecific gravities very carcfully afcertained: bell-metal, princes metal, however, and fome others, might deferve to be examined in that particular.

It might pofibly be queried alfo, whether feveral mixed metals do not either rarify or condenfe upon mixture, fo as thereby to acquire a more different fpecific gravity, than the natural daw of their compofition, at tirft feems to require.

It may laftly be obferved, that the fpecific gravities of all the known metals are fuch, as that none of them come up to 20 times the weight of common water, or fall fenfibly below 7 times the fame weight.
Tab. II. Of minurnals, femi mictals, cres, preparations, and reirchents of masccis, EO\%.

BISMUTH. 7.C
DC. Cores.
D°. or tynglafs. Boyle. 9,700
Tynglafs. Resnolds.
9,550
Marcafita alba. Fabrenbeit 2,95:
Mineral, Cornin, Shining like a marcafite. Boyle. $\quad 9,850$
9,060
Calx of lead. Boyle.
Spelter folder. 7. C.
8,940
Spelter. F. C.
Cinnabar common. Boyle.
8,362

Cinnabaris factitia. Mufchenbr. (if not a miftake for the laft experiment)

7,065
8,020

Cinnabar native, breaking in polifhed furfaces like Talc. Davies.

7,710
Do. Perfian, breaking rough. Davies. . $\quad 7,600$
D°. native. Boyle. $\quad 7,576$
Cinnabaris nativa. MuJchenbr. $\quad 7,300$
Cinnabar native, very fparkling. Boyle. $\quad 7,060$
D. native, from Guinea. Davies.

6,280
Cinnabar of antimony. Harris. 7,060
${ }^{1}{ }^{\circ}$. another piece. Harris. $\quad 7,043$
D ${ }^{\text {. }}$ Boyle.
Cinnabar antimonii. Freind. 6,666
Cinnabre d'antimoine. Muffchenb.
6,044
Lead ore, rich, from Cumberland. Bayle. $\quad 7,540$
D. Boyle. \quad 7,140

The reputed filver ore of Wales. 7.C. $\quad 7,464$
The metal thence extracted. F. C. 11.087
Regulus antimonii. Item Martis et Veneris. Freind. $\quad 7,500$
Id. Fabrenbeit. $\quad 6,622$
Id. Harris. $\quad 6,600$
Id. per fe. Davies. $\quad 4,500$
Silver ore, choice. Boyle. $\quad 7,000$
D°. another piece from Saxony. Boyle. $\quad 4,970$
Lithargyrus argenti. Freind. $\quad 6,666$
Lithargyrium argenti. Mufcbenbr. 6,044
Id. Auri. Freind. 6,316
Id. Auri. Muffcbenb.
Minera antimonii. Davies.
6,000
Cuprum calcinatum. Freind.
5,810
Glafs of antimony Newtor C - 5254
Vitrum antimonii. Freind. 5, 5,000
Id. per fe. Boyle. 4,760
Tin ore, choice. Boyle. $\quad 5,000$
D^{\top}. black, rich. Boyle. 4,180
New Englifh tin ore, Mr Hubert's. Boyle. $\quad 4,080$

Tutia. Mufchenb. 4,615
Lapis calaminaris. Freind. Lapis cærulcus Namurcenfis. Muffcbenb.

5,000
Id. Boyle. 4,920
Loaditone. Boyle V. 6.b. $\quad 4,930$
Magnes. Petitus. $\quad 4,875$
A good loaditone. Harris. $\quad 4,75^{\circ}$
Marcafites, one more fhining than ordinary. Boyle. $4,7^{80}$
A golden marcafite. $7 . C$. $\quad 4,58$.
Marcafites, from Stalbridge. Boyle. $\quad 4,500$
D°. Boyle.

Tables of Specific Gravities.

Antimonium Hungaricum. Muflcbenbr.
Antimony, good, and fuppofed to be Hungarian. Boyle. 4,070
I) ${ }^{3}$. crude, which feemed to be very good. Harris. 4, 4, 58

Antimunium crudum. Freind. A, 4,000
Id. Davies. 3,960
Black Sand, commonly ufed on writing. Boyle. V. 33.6. $\quad 4,600$
Crocus Metallorum. Mufibenb. motran $\quad 4,500$
Id. lireind. 4,444
Hematites. Muffchenbr. 4,360
Id. Royle. V. 6.a. 4, 150
Do. Englijf. Boyle.
Copper ore, rich. Boyle. 4,170

Copper-ftone. Bayle. 4,090
Emeri. Boyle. V. 26.6. and 70570 whin $\quad 4,000$
Manganefe. Boyle. Dx. 3,530
A blew flate with hining particles. F. C. 3,500
Iron ore, a piece burnt or roafted. Harvis. $\quad 3,333$
Ceruffa. Item Chalybs cum fulphure. Pp. Freind 3,15 §
tapis lazuli: f. C. 3, 3,054
ID. Bovle. V.6.6. 3,000

Gold orc. Boyle. V. 29.b. 2,910
D ${ }^{\circ}$. not rich, brought from the Eaft Indies. Boll 2, 2,652
Anothcr lump of the fame. Boyle. Aristy 2,634
A mineral ftone, yielding 1 part in 160 meral. $7 . C . \quad . \quad 1,650$
The metal thence extracted. F. C. 1 . 8,500
Pyrites homogenea. Fabrenbeit. 1 mumation mury 2,584
Black Lead. Boyle. V. 27 . a. .ane WI phamims lo en 1.860
Ess viride. Freind. Nimbmims mumiV 1,714
Plumbum uftum. Freind. .1 ${ }_{1}$ 1,666
The fecond table is impofed of fubjects no way ftrictly allied to cach other, cither by their gravicies, or their other effential properties; and perhaps they might better, on that account, have been divided into different tables.
The bodies themfelyes are chiefly of an uncertain and heterogeneous nature ; being fo far as appears compofed of different elements, and thofe alfo combined in various proportions, fuch as fulphur and arfenic, joined with ftone, metal, and the like: and from there feveral degrees of mixture it mult follow, that moft of thefe kinds of bodies, tho' to far fimilar as to be called by the fame nannes, yet muft neceffarily admit of a confiderable latitude in their fpecific gravities. Many uffull deductions may neverthelefs be drawn from thofe confiderations, relalating to the comparative goodnefs, ξ^{6}. of fuch bodies.

Cinnabar native, appears to be a compound of mercury and fulphur, with a portion of earthy or ftony matter; and that which is heavieft muft abound moft with the mercury. The different appearances which this body makes, would alfo give us a fufpicion that there are other varieties in its compofition, befides thofe juft taken notice of : fome forts of cinnabar, fuch as the IIungarian, breaking into polifhed planes and fquares like talc, whilt others like the Perfian of this table, break rough and with fhining granula or inicce; and that without any confiderable diifference in their gravities.

By the factitious cinnabar it may be determined, what proportion of mercury will fo incorporate with fulphur, as to make up an uniform body.

Antimony may in like manaer be confidered as a compofition of its regulus and tulpher.
The black fand ufed on writing is faid by Mr Rogle to be a rich iron ore : he alfo fays that emery, loadftone, and all fuc' ponderous ftones, contain fome Lind of metal, which he had himfelf feparated from them. IV. I20.a.

The great variety of ores of all kinds we!! deferve to be accurately examined, for the fake of the many conclufions that may be drawn from thence, concerning the natures of concrete bodies, and for many other purpofes in metallurgy. But I have as yet met with a very fmall number of experiments upon thefe fubftances. Dr Woodward has indeed mentioned a great many obfervations of this fort which he had made, and kept exact regifters of: but as they were probably among thofe paper which he ordered to be deftroy'd at his death we mult look upon them as now loft to the world.

The marcafites and pyrites are very uncertain and ftrange kinds of bodies, their gravities are often very great: a marcalite here taken from Fabrenbeit was found nearly to equal the heavieft mineral bifmuth itfelf; and yet it is very feldom that any metal or femimetal can be obtained in any quantity from thefe fubitances, all that is in them being ulually deftroyed, and carried away by their fulphur.

Black lead is alío a very odd kind of mineral, having all the appeaiance of a femimetal, and yet falling fhort cven of the weight of common earth.

The femimetals generally exceed in their fpecific gravities even the bafer metals themeives.

It may be obferved, that it appears by this table, that the fpecific gravities of ores, including the metallic flones, are ufually found to lie between 7 and 3 times the weight of water. Lead and filver ores are the heavieft, thofe of copper, tin, and iron being confiderably lighter. The gold ore we have an account of muft be fo poor as hardly to be worth taking any notice of: but we have in general too few of thefe experiments, to draw any certain conclufions from them.

GRANATE, Bohemian. Boyle.

Granate. F. C.

4,360 Tab. Mr.
3×978 Of Gcms,
Granati Chryjals.

Toblis of Specitic Gravities.

Granati minera. Boyle.A Picudo-Topazius, being a natural pellucid, brittle, hairyftone, of a yellow colour. Neecton. C.4,270Sapphires. Dasics.
A Sapphire very perfect, but rather pale. Hankbee.Glafs, blue in fticks from Mr Seale. Houkkbee. 3,885
D. whiteft, from Mr Seale. Haukbce 3,380
D^{0}. clear crytal. Cotes. 3,150
D°. blue plate, old. Haukfice. 3,102
D°. plate. L 2,942
1). old looking-glafs plate of a light colour. Haukjee. 2,888
D°. green. Freind.2, 115
D^{0}. green bottc. Haukbbee. 2,746
D°. of a bottle. Oxf. Soc. Ir. a blue pafte Haukfoce. 2,666
Do. conmmon green. Hazkliee. 2,620
Do. deep green old. Haukßee. 2,587
D°. vulgar. Newtcn. Ward. 2,580
Vitrum Vcnetum. Freind. 1,791
An oriertal cat's-eye, very perfect. Haukfbee. 3,703
A diamond, yellow, of a fine water, fomewhat paler than the joinquille. Haukfoee. 3,666
D^{0}. white of the fecond water. eau celefte. HaukJuce. 3,540
D°. Eaft Indian, the heavieft of many. Ellicot. 3,525
D^{0}. the lighteft of many. Ellicot. 3,512
D°. Brafilian, the heavieft of many. Ellicot. 3,52I
D. the lighteft of many. Ellicot. 3,501
D^{0}. the mean of all his experiments. Ellicot. 3,517
Do. Nocuton. C. 3,400
Diamond bort, of a bluifl black, with fome little adher-
ing foulnefs. Hauksbee.
A Jacinth of a fine colour, but fomewhat foul. Hauksbee. 3,495A Chryfolite. Hauksbee.3,360
Chryftal cubic, fuppofed to contain lead. Woodward.Chryftal from Caftleton in Derbyfhire having the doublerefraction. Hauksbee.
Chryftal of Inand. Newton. C. 2,724
Chryftallum difdiaclafticum. F. C. 2,704
Chryftallus de rupe. Fabrenbeit. 2,669
Chryftal rock. \%. C. Boyle III. 229. b. 2,659
D°. a large fhoot. Hauksbee.2,658
D°. of the rock. Newton. C. It. chryftal in the lead- mines near Workfworth. Woodward. 2,650
Do. Hauksbe.2,646
D°. pure pyramidal, fuppofed to contain tin. Wood- ward. 25 or 2.400
Chryftallus. Petitus, 2,287

As the mean gravity of chryftal appears, by the foregoing table, to be little more to that of water than as two and a half to one; it may well be fufpected, that the granate, pfeudo-topazius, fapphire, and fuch other gemms which greatly exceed chryftal in weight, do contain a confiderable portion of fome fort of metal in their compofition: as was obferved of thefe bodies by Dr Woodzoard, in his Method of Foffils, P. 24.

As to the white fapphire, which is reputed by Dr Woodward to be a fpecies of gemm intermediate between chryftals and the diamond in hardnefs, I have not yet obtained any good account of its fpecific gravity.

The weight of the diamond is afcertained in NJ. 476 of the Pbilof. Tranf. where it appears, that by experiments made with the greateft care by Mr Yobn Ellicot, F. R. S. with moft exact inftruments, and upon 14 different diamonds, fome of them very large, brought from different places, and having the greateft varietics of colour and flape poffible ; they were all found to agree in weight to a furprifing degree of accuracy, being all frmewhat above 3 ! times the weight of common water.

This indeed differs very fenfibly from what had been found in fome former experiments, but it is hardly probable that thofe had been made upon diamonds of fo large a fize as thefe : Mr Boyle who found their weight lefs than 3 times that of common water, has himfelf told us in the fame place, V. 83. 6. that the fone he made ufe of, only weighed about 8 grains. And tho' no doubt can be made of the exacterefs of Sir I. Newton's experiment, by which alfo the feecific weight of the diamond came out lefs than Mr Ellicot's, yct it may well be queftion'd whethcr Sir Ijaac had, at the time when he made his trials, itiner fo many or fo perfect and weighty fones, as a favourable opportunity offered to this and. X. Part i.

G g
laf to be the true fpecific weight of the diamond, the refractive power of the fame, in proportion to its denfity, fhould in $\mathrm{Sir} I$. Neseton's table be leffened from 14556 to 14071; which would ftill be greater than what is found in any other body; but is upon the whole more conformable to the general law of that table.

Sir I. Newton conjectured a diamond to be an unctuous fubitance coagulated, and found it to have its refractive power nearly in the fame proportion to its denfity as thofe of camphire, oil-olive, linfeed oil, ipirit of turpentine, and amber, which are fat fulphureous unctuous bodies: all which have their refractive powers 2 or 3 times greater in refpect to their denfities, than the refractive powers of orher fubftances in refpect of theirs. Yet muft it be allowed, that a diamond fuffers no change by heat in any degree, contrary to the known property of fulphurs; and as it is moft reafonable in our philofophy to treat fuch bodies as fimple, in which we are not able to produce any change or feparation of parts, we muft therefore on that account confider a diamond as a fimple body and of the chryftalline kind.

Glafs, which is a factitious concrete of fand and alkaline falt, is nearly found to affume the mean gravity of ftones and chryftals.

If there is no miftake in the gravity of what Dr Freind calls vitrum Venetum, it differs very remarkably from all other kinds of glafs.

I do not know whether the jafper and hyacinth fpurious of \mathcal{F}. C. are to be underftood as natural or artificial gemms.

Tah. IV. Sardachates. F. C.
Of Stenes and
Eartes. Lapis fcifilis caruleus. Mufcbenbr. (qu. if not the fame experi-
ment mentioned before pag. 222. a blew flate with fbining particles. F. C.)ment mentioned before pag. 222. a blew Лate with Jining parti-

Tables of Specific Gravities.

Corallium rubrum. Freind.
Corall. Y. C
D ${ }^{\text {. red. Boyle V. 7. a. }}$
D°. Boyle.
D°. white, a fine piece. Borle.
D^{3}. white, another picce. Boyle.
Emeril ftone, a folid piece. Hauksbee 2,766
Paving ftone. Reynolds. 2,708
D°, a hard fort from about Blaiden. Oxf. Soc.
2,460
A Whetfone, not fine, fuch as Curlers ufe. Harris.
2,740
Pellets, vulgarly called alleys, which boys play withal. Hauksb. 2,711
Englifh pebble. L.
Lapis Judaicus, Boyle.
Id. Freind.
2,696

Maidifone rubble. L. 2,666
Marbles, vulgarly fo called, which boys play withal. Haxksbee. 2,658
Morr ftone. L.
Agate. Boyle.
2,656
D°. German, for the lock of a gun, Hauksbee.
2,640
D°. Englifh. 7. C.
2,628
Lapis, Petitus.
Flint, black, from the Thames. Hauksbee.
2,512

Flint ftone. L.
A round pebble-ftone within a fint. Harris.
2,625

Eaft Indian blackifh. Item, an Englifh one.
Bogle III. 243. a. 2,600
D^{0}. Oxford Soc.
Corallachates. F. C.
Purbeck ftone. L.
Free-ftone. Reynolds.
Portland ftone. L. $\quad 2,570$
D^{3}. white for carving. L. $\quad 2,312$
Grammatias lapis. F. C. $\quad 2,515$
Onyx ftone. 7. C.
Slate Irifh. Boyle. Lapis hibernicus. Davies. 2,490
Wood perrified in lough Neagh. F. C. 2,341
Ofteocolla. Boyle. \quad 2,240
Heddington ftone. L. \quad 2,204
Allom Itone. Boyle.
Bolus Armena. Freind 2,137
Hatton ftone. L. 2,056
Burford ftone, an old dry piece. Oxford Soc. $\quad 2,049$
Heddington ftone, that of the foft lax kind. Oxford Soc. 2,029
Terra Lemnia. Freind. 2,000
Brick. Cotes.
D°. Oxford Soc.
A Gallypot. 7. C.
2,000
1,979

Alabatter. Ward. C. 1,874
Do. Oxford Soc. $\quad 1,872$
A fpotted factitious marble. F. C. An
Stone bottle. Oxford Soc. 1,777
A piece of a glafs (perhaps glazed) coffee-difh of a brown colour.
Harris.
Barrel clay. L. 1,712
Lapis de Goa. Davies. 1,710
Lapis ruffus Bremenlis. Muffibenb. \quad I,666
An iricle broken from a grotto (I fuppofe falactites.) Dr Slare,
in Hlarris.
Chalk, as found by Dr Slare. Harris. $\quad 1,079$
The mean gravity of fone appears to be to that of water as about $2 \frac{1}{5}$ to one, and many ftones of great hardncfs, fuch as the onyx, turquoife, agate, marble, fint, $\xi^{2} c$. do not much exceed that weight. It may therefore well be doubted whether fuch flones, whofe fpecific gravity comes up to near three times that of water, or even beyond it, owe their denfity to metalline additions; or whether they are really formed of a different fpecies of matter, as the diamond feems to be.

Coral by it's denfity appears to be a ftone, though in a vegetating ftate: or it may poffibly from fome late obfervations, be of an animal nature.

What is called Lapis Hibernicus, is a foft ftone containing vitriol.
We have not many obfervations upon earths: by thofe we have, it feems probable that they contain the fame kind of matter in a lax form, of which ftones are a more folid and denfer concretion.

Lapis de Goa is but a triffing compofition perhaps hardly worth retaining in the tables.

What fecies of body fhould Alabafter be accounsed? which with a frone-like hardnels, yet falls fo much below other ftones, or even earths in gravity.
Tab. V. SULPHUR. Petitus. 2,344D . a piece of roll. Hauksbce.
aind Bitumicens. Do. vive. Boyle. 2,010 2,000
1,980D). tranfparent, Perfian. Davies.
D°. German, very fine. Boyle.
Sulphur mineralis. Frcind. 1,875Brimftone, fuch as is commonly fold. F. C.
D. Cotes. 1,800
A fuhateum. Boyle. III. 243. a. 1,400
Scotch Coal. Boyle III. 24. 1,300
Coll Bo. III. 243. a.
Coll Bo. III. 243. a.
Coal, of Newcaftle. L. 1,270D. pit, of Staffordfhire. Oxford Soc.
1,240Jet. J. C.
1,238

Tables of Specific Gravities.

D. Davies.

1,160
D°. Davies.
1,020
Succinum citrinum. Davies.
Id. pingue. 7 . C.
1,110
Id. Havum (by 2 experiments). Davies. $\quad 1,080$
Id. pellucidum. 7. C. $\quad 1,065$
Id. album, item pingue. Daries.
Amber. Boyle. Nerwton. C.
Fine Gunpowder. Reynolds.

$$
20
$$

Sulpbur is in gravity very ncarly the fame as earth, fo that it's purity can hardly be afcertained by it's weight, unlefs the matter it is affociated with, is of a flony denfity.

The femidiaphanous Sulpbur is a beautiful kind which I have bat feldom feen: it is in lumps of the fize of a fmall bean.

Coal, the forts here taken notice of are confiderably lighter than Sulpbur: but there are many other kinds, and of different weights.

I take the Gagates or Fet to differ very little from the Cbannel Coal.
The different forts of Amber may be obferved not to differ confiderably in their feveral gravities.

Sulpburs feem to be the ligheft of all mineral bodies.

GUM Arabic. Freind.
D°. Necuton. C.
Opium. Freind.
Gum Tragacanth. Freind.
Myrrh. Freind.
Gum Guaiac. Freind.
Relina Scammonii. Freind.
Aloes. F. C. (qu. whether the refin or the wood.)
Afa fortida, a very fine fample. Hauksbee.
D. from Dr Fobn Keill's Introd. ad veram Pbyjacam.

Pitch. Oxford Soc. C.
Thus. Freind.
Camphire. Newton. C.
Bees-wax. Cotes.
Cera. Cbetaldus. (ad aquam ut 95 s $^{\text {s }}$ ad 100.)
Wax well freed from the honey. Davies.
Cera. Petitus.
Do. the fame lump 2. years after. Devies.
Balfamus de Tolu. Mufchenor.
Maftic. F.C. (qu. whether the gum or the wood.) 0,849
The bees wax in my own experiments was well freed from honcy, by the boiling it in water, which probably made it lighter than it was fet down in Mr Cotes's table: and the fecond experiment which I made

Tables of Specific Gravities.

two years after the firt, if the difference was not owing to the differ. ence of hear, is an inftance of what I take to be a pretty general truth, that bodies become more denfe and compact by reft, and that they would alfo be found heavier in the feale, in thofe cafes where they do not lofe weight by the evaporation of humidity.

The weights of vegetable gums nearly correfyond with thofe of the ligncous parts.
T'ab. VII. C O C O fhell. Boyle. 1,345
Of Woods, Bois de Gayac. Mufcbenbr. 1,337
Lignum Guaiacum. Freind. 1,333
Lignum vite. Oxf. Soc. 1,327Speckled wood of Virginia. Oxf. Soc.
Cortex Guaiaci. Freind. 1,313
Lignum nephriticum. Freind. 1,200Lignum afphateum. F. C. $^{\text {. }}$
Ebony. F. . C. Itcm Aloes. 7. C.1,179
Santalum rubrum. F. C. 1, 877
Id. album. 7. C.
Id. citrinum. f. C.1,128
Lignum Rhodium. 7. C.
Lignum Rhodium. 7. C.
Radix Chinæ. Freind.
1,125
Dry Mahogany. L.
Gallæ. Freind.Red-wood. Oxf. Soc. It. Box-wood. Oxf. Soc. Ward. C.1,041
0,809

$$
1,071
$$

$$
1,063
$$

$$
1,034
$$

Log-wood. Oxf. Soc.

$$
1,031
$$

Oak, dry, but of a very found clofe texture. Oxf. Soc.
0,913
D°. tried another time. Oxf. Soc.
0,932
D°. found dry. Ward.0,929D^{J}. dry. Cotes.
D ${ }^{\circ}$ dry, Englijb. L.Oak of the outfide fappy part, fell'd a year fince. Oxf. Soc.Do. Reynolds.Do. very dry, almoft worm-eaten. Oxf. Soc.
Dry Wainfcot. L.
Beech meanly dry. Oxf. Sor.0,927
0,9250,905
0,870
0,801
0,7530,747
Maftic (qu. if the wood or gum). 7. C. 0,854
Ah dry about the heart. Oxf. Soc. 0,849
0,845
D°. dry. Cotes.
D°. meanly dry, and of the outfide lax part of the tree.
Soc.
Elm dry. L. 0,7340,800
D°. Reynolds.D ${ }^{\circ}$. Oxf. Sor. C.
Rad. Gentianæ. Freind.Cortex Peruvianus. Freind.

Tables of Specific Gravities.
Crabtree meanly dry. Oxf. Soc.
Yew, of a knot or root 16 years old. Oxf. Soc.
0,765
Maple dry Oxf Soc C. 0,760
Maple dry. Oxf. Sor. C.
0,755
Plumtree dry. f. C.
0,663
Fir, dry yellow. L.
o,657
Dry white Deal. L.
Lignum Abietin. Freind.
0,569
0,555
Fir dry. Cotes.
D°. Oxf. Soc.
o,550
Walnut-tree dry. Oxf. Soc.
Cedar dry. Oxf. Soc.
Juniper-wood dry. f. C.
0,546
0,63I

Saffafras wood. F. C.
Cork. Cotes.
0,613
0,556
D°. F. C.
Dr Gurin has obferved in the Pbil. Tranf. $\mathrm{N}^{\circ} \cdot 369$. that the fubftance of all wood is fpecifically heavier than water, fo as to fink in it, after the air is extracted from the pores and air-veffels of the wood, by placing it in warm water under the receiver of an air-pump; or if an air-pump cannot be had, by letting the wood continue fome time in boiling water over a fire. The feveral weights therefore above given muft be looked upon as the weights of the concrete bodies, in the condition they were, before the air was either forcibly got out, or the water driven into the fmall hollows: and both thefe confiderations may have their ufe as notwithftanding that the fpecific weights of the folid particles are truly heavier than water, we fhall from the weights of the bodies as they are now compounded, be enabled to make fome judgment of their porofity, fo far as they may be penetrable by water or other fluids.

MANATI lapis. Boyle.
D°. another Boyle.
D°. a fragment of. Boyle
Do. 7. C another from Jamaica. Boyle.
Pearl, very fine feed oriental. Boyle V. i2 a.
D°. a large one, weighing 206 grains. Boy!e V. 7.b.
2,860 Tab. VIMI.
2,330 of Animal
2,290 parts.
2,270

Murex fhell. f. C.
Crabs-eyes artificial. Boyle.
2,750
D°. native. Bo\%le.
Os ovinum recens. Freind.
Oyfter fhell F. C.
Calculus humanus, juft voided, Davics.
$\mathrm{D}^{\text {² }}$. Boyle V. 7..
2,510
2,590
2,480
D°. Boyle.
x, 9 , 0
2,222
D°. Cotes.
2,092
D. Boyle V. 7. 6.

2,000
1,760
1,720
1,700
1,690
D.

Tablis of Specific Gravities.

1) ${ }^{\circ}$ 7. C.1,664
Do. Daries. 1650
2) Boyle. ${ }^{1} 470$
1). 7. C. 1,433
1). Davics. 1,330
D. \%. C. 1,240
Rhinoccros horn. Boyle. 1,990The sop part of one. 7. C.
Ebur. Freind
Ivory. Boyle.
1,9351,242
D. dry. Oxford Soc. C. 1,917 1,826
D. Ward.
Unicorn's horn, a piece. Boyle. 1,9101,823
Cornu Cervi. Freind.
Ox's horn, the top part of one. F.C. 1,875
Blade bone of an Ox. Y. C. 1,656A fone of the bezoar kind found with four others in the inteftines
of a mare. Edev. Bailey, M. D. of Havant in Hamp/bire.
Bezoar Itone. Boyle.
D. a large one. Daries.
D°. being the kernel of another. Bojle V. 8. a.
${ }^{5}$. a fine oriental one. Boyle.
D°. two weigh'd feparately. Davics.
D°. Cotes.
D°. Boyle.
Do. Boyle.
A fone from the gall-bladder Hales.
Blood human, the globules of it Jurin by calculation.D°. the Craffamentum of. Furin from experiments.D. Daries
$\mathrm{D}^{\text {}}$. from another experiment. Furin
Sanguinis humani cuticula alba Daries.
Human blood when grown cold fourin
The fame as running immediately from the vein. Jurin
The ferum of human blood. Jurin.D°. Daries.
Ichthyocolla. Freind.
A Hen's egg. Dacies.
Milk. 7.C. C.
Lac caprinum Muffibes br.
Lac Freind
Urine. 7. C C.
Id. Fireind.

Manati lapis is faid to be a fone, fourd in the head of the manatee, or fea-cow of the Weft-Indics. See Ray's Sjin. Acth. Anim. Quad. Ecc. I.ci:d. $1693.8^{\circ 0}$. Thefe fones and prarls are the leavieit of all the animal productions we are acquainted with.

Dr Tu:in has obfervad, Bhio. Tranf. N? 369. that, in examining frefh human calculi whinf they were fill impregnated with urine, he had met fuch as execeded the weight of fome forts of burnt earehen ware and aldaiter, and approached very near to that of brick, and the fofter fort of paving fone; which I have myfelf alfo found to be tiuc. Whereas thofe who have marie their experiments upon fuch calculi, as had moit probal!'y been a confiderable time taken out of the bladder, and had confequenty loft much of thacir weight, by the evaporation of the urine, with which they had at froft been faturated, have found thofe fones commonly to have teen but about one half part, and fome of them no more than a fourch part, heavies than an equal bulk of water. From whence it has been too hatily concluded, that thefi: fones have very improperly been called by that name, as not at all approaching to the fpecific gravity of even the lighteft real fiones that we have any account of.

The Calculus Humanus and Animal Bezoar approach nearly to cach other in their fpecific gravity.

Mr Boyle has tak notice of the great difference to be found between the gravity of the true and the factitious crabs-cyes. It is flrange that the factitious fhould be made of fuch materials as cin bring them fo near to the mean gravity of true fones: and this confideration may deferve the attention of thofe who may think that any particular dependiance is to be had upon the ufe of thefe bodies in medicine.
I) Jurin was the firf who carefully examined the fpecific gravities of the different parts which compofe human blond; and his experiments were performed with the greateit accuracy. It may be obferved, that the blood is, by an ealy analy/fs divided into ferumi and craffamentum; and the craffamentum again into the glutinous and the red globular parts, whofe fpecific gravities are the greateft. It had before thefe experiments been the general received opinion, that the globules of the blood were lighter than the ferum ; and this indeed feemed tofollow from Mr Boyle's experiments in his natural hiftory of buman blood; from which he deduced the fpecific gravity of the mafs itfelf, to be to that of water as 1040 to 1000, and that of the ferum alone to be to the fame as 1190 . And thefe numbers 10_{40} and 1190 had accordingly, till Dr furin re-examined the the affair, been conftantly taken to reprefent the true gravities of human blood and it's ferum refpectively. See Dr Jurin's Differtation in Pbil. Tranf. $\mathrm{N}^{\circ} \cdot 3^{61}$.

Milk is made by Dr Freind to fall more fhort of the gravity of water, than it is made to exceed the fame by \mathcal{F}. C. Ponibiy this difference might arife from the milk's being taken in one cafe warm from the cow, and in the other after it had food fome time.

VOL. X. Part i.

Hh
MERCURIUS

Tables of Specific Gravities.

Tab. IX. MERCURIUS dulcis bis fublim. Mufch.
Of Salts. \quad Mercurius dulcis. Freind.
12,353
Id. ter fublim. Mulfchenbr.
Id. tertio fublim. Item Panacea rubra. Freind.
9,892
Id. quater fublim. Muffisenbr. Item turpethum minerale. $\begin{aligned} & 8,235\end{aligned}$
Id. 4 to fublim. Item turpeth mineral. Freind. 7,810
Sublimat corrofiv. Muffcbenbr. 8,000
Id. Freind
6,045
Cinis clavellatus, fordibus faleque fuo neutro quodam (quod fere
femper magis vel minus in cinere illo reperitur) depurgatus. Fabrenbiti.

3,112
Sal illud neutrum. Fabrenbeit. $\quad 2,642$
Saccharum Saturni. Item fal nitri fix. Miffcbenbr. 2,745
Eadem. Fireind. 2,600
Magifterium Coralli. Item pulvis fympatheticus. Freind. 2,231
Tartarum vitriolatum. Muffchenbr. 2,298

> Id. Freind.

2,186
Sal mirabile Glauberi. Mufcbenbr. $\quad 2,246$
Id. Freind. 2, 3^{2}

Tartarum emeticum. Muffcbciabr. 2,2, 26
Id. Freind.
Sal Gemmæ. Nesuion. C.
2,077
Nitrum. Fabrenbeit.
2,143
Nitre. Newton. C.
Id. Freind.
Sal Guaiaci. Item Sal enixum. Item Sal prunellæ. Item S.
Polychreft. Mufchenbr.
2,150
1,900
1,671

Eadem omnia. Freind.
Sal maritimum. Fabrenbeit.
Cremor Tartari. Item Vitrioh. alb. Item Vitriol. rubefact. Item S. Vitriol. Mufchenbr.

2,148
2,030
2,125
Cremer Tarem Vitriol
1,900
Cremor Tar. Item Vitriol. alb. Freind. 1,796
Vitriol Englifh, a very fine piece. Boyle. $\quad 1,880$
D°. Dantzick. Newton. C. $\quad 1,715$
Alumen. Fabrenbeit. $1,73^{8}$
Alum. Newiton.
Sal chalybis. Freind. 1,714
Borax. 7. C.
1,733
D. Newton. C.

1,720
Vitriolum viride. Item Calcanth. rubefact. Item S. Vitriol. alb. Freind.
$\begin{array}{ll}\text { Saccharum albiff. Fabrenbeit. } & 1,671 \\ \text { 1,606: }\end{array}$
Mel. Villalpandus
1,500
Id. Gbetaldus x . Honey. Cotes.
Sal volatile Cornu Cervi. Nufchenbr.

Sal-Ammoniac. purum. Item Ens Martis femel fublimat.
Mufcbenb.
1,453
Eadem. Freind. 1,374
Ens Martis ter fublimat. Muffchenb. $\quad 1,269$
Id. Freind.
1,233
Moft of the experiments in the ninth table are taken from Dr Fireind, who weighed the falts in fpirits of wine, and regiftered the proportional gravity of the falts to the pinits. But the misfortune is, that the gravity of the fpirits of wine he made ufe of is not regiffered: fo that the experiments camot with certainty be reduced to the common ftandard of water. Ihe has delivered the gravity of Spirits of winc to be 0,818 , and that of fpirits of wine rectified to be 0,78 . I have fuppofed the falts to be weighed in the laft, as being the fitteft for the purpole: but which he really ufed can only be conjectured.

There appears indeed to be a way to difcover the weight of the fpirits of wine, in which Dr Freind weighed his falts: for he weighed 60 grains of mercu:y, both in water and in fpirits of wine, and the lofs of it's weight was refpectively $4 \frac{1}{7}$ grains and $2 \frac{2}{2}$. Now the gravities of thefe fluids muft be in the fame proportion, and this would give for the weight of the fpirits of wine 0,627 , which is much too little for the weight of his own rectified fpirits, tho' cven that is lefs than what is affigned by any other author. So that, upon the whole, nothing can really be concluded from this experiment; and it mut be allowed befides, that 60 grains of mercury take up too fmall a bulk in thefe fluids, to have their gravities determined with any exactnefs thercby.

As Prof. Mufchenbroke has given in his table the fpecific weights of many of the fame falts which are mentioned by Dr Freind, but which differ confiderably from the weights above fet down, as refulting from the Doctor's experiments, I have alfo tranfcribed the Profeffor's numbers from his own table. Thefe do not however appear to me to be derived from new or differing experiments, but from the very fame related by Dr Freind, only computed from the fuppofition of a heavier fort of fpirits of wine, whofe fpecific gravity is fuppofed to have been 0,823 . The gravity of the fublimate corrosive, fee down 8,000 , I take to be a miftake, made by the writing down it's comparative weight to that of the firits themfelves, inftead of the water to which it fhould have been referred.

It requires great care and attention to take the fpecific gravities of falts with fufficient accuracy. They diffolve in water, and in fome degree in all fluids that partake of the nature of water. If therefore fpirits of wine are made ufe of for this purpofe, they ought to be highly rectified, their own gravity accurately aicertained, and their degree of heat fhould be preferved uniform. For as this huid rarefies much fafter than water does, a fmall difference of heat would fenfibly effect the gravities of the falts to be determined by it. And perhaps fpirit of
turpentine were a more proper fuid to be employed on thefe occalions.

It is remarkable, that Tar!ar vitriolat. Sal gem. Sal mirabile, Sal maritimum, Nitre, \&c. being fales compofed of different acids and an alkaiine falt, fhould to far exceed in gravity the vitriolic falts, compofed of the molt heavy acid and a metallic earth. Is not this owing to it's forming lefs folid clryftals, and to it's containing large quantities of air conccaled in it's pores?

The great difference in the weight of the Nitre, in the feveral experiments of Fabreibeit, Newiton, and Freind, may poffibly be owing to the quantity of it's concealed air.

Tab. X. of MERCURY. Ward. C. (fee Tab. I. among the metals) 14,000 Flisids.

Oleum Vitrioli. Fabrenbeit. 1,8775*
Oil of Vitriol. Nerwton. C. $\quad \mathbf{1 , 7 0 0}$
Spiritus Nitri Hermeticus. Frcind. $\quad 1,760$
Id. Muffcbenb.
Lixivium cineris clavellati, fale quantum ficri potuit impregnatum. Fabrenbeit.
Id. alio tempore preparatum. Fabrenbeit.
Oil of tartar. Cotes. Ol. tartari per deliquium. Mufchenb. a,550
Spiritus Nitri, cum Ol. Vitrioli. Freind. 1,440
Id. Mufcbenb.
Spiritus Nitri communis. Item Bezoardicus. Freind. 1,410
Spirit of Nitre. Cotes. Item Sp. Nit. Bezoardicus. Mufcbcib.
Sp. Nitri. Fabrenbeit.
Sp. Nitri dulcis. Mufcbenb.
Aqua fortis melioris note. Fabrenbeit. $\quad 1,000$
Eadem, duplex. Freind.
Aqua fortis. Cotes.
Eadem, fimplex. Freind.
Solutio falis coinm. in aqua faturata. Davies.
Eadem, 1 in aquæ 2,7 part. ponderis. Davies.
Eadem, I in aqua 3 part. Davies.
Eadem, I in aque 3 part. Freind.
Eadem, 1 in aquæ 12 part. Davies.
Soap Lees the ftrongeft. Jurin.
D°. Capital. Jurin.
Spirit of Vitriol. Freind.
Spiritus Salis cum OI. Vitriol. Muffcbenb.
Idem, \&c.. Freind.
Spirit of falt. Cotes. Sp. Salis marini. Mufcbenb.
Sp. Salis communis. Freind.
Sp. Salis dulcis. Muffcbenb.
Id. Freind.

1,5713*
1,5634*

1,338

1,315
1,2935*

1,340
1,300
1,100
1,244
1,240
1,217
1,146
1,060
1,200
1,167
1,200
1,154
1,146
1,130
1,03?
0,95
0,890
Sp .

Sp. Salis Ammoniaci fuccinat. Item, cum ciner. clavellat.

Freind.
Sp. Salis Ammoniac. cum calce. Mufcienb.
1,120
Idem cum calce viva. Freind.
Sp . Cornu Cervi non rectific. Freind.
0,890
Sp. Scrici. Mufcbenb.
S_{p}. Urine. Coles.
Solutio Salis enixi, I in aque 5 part. Freind.
Olcum Sallafias. Muffenenb.
Decoctio Gentiane. Freind.
Sp. Tartari. Freind. Muffchenb.
Decoctio Biftorte. Freind.
Decoctio Sarze. It. Chinx. Freind.
Decoctio ari. It. Sp. Salis comm. Freind.
Oleum Cinnamomi. Muffchenb.
OI. Caryophyllorum. Mufficenb.
Beer-Vinegar. Oxf. Soc.
Acetum Vini. Mufcbenb.
Id. diftillatum. Mufchenb.
Acetum. Freind.
Sack. Oxf. Soc.
Sp. Ambræ. Muffchenb.
Sea-Water. Cotes.
D^{3}. fettled clear. Oxf. Soc. Ward.
College plain ale. Oxf. Soc.
Solutio Aluminis, I in aquæ 5,33 part. Item Solutio Sal. Amm. purif. I, et vitriol. alb. I in aque 5 part. Freind.
Laudanum liquidum Sydenhami. It. Panacea Opii. Freind.
Decoctio Cort. Peruv. Item, Granatorum. Freind.
Moil Cyder, not clear. Oxf. Soc.
Aqua fluviatilis. Mufchenb.
Tinctura Aloes cum aqua. Item, Decoctio Santali rubri Freind.

1,024
1,024
1,024
1,017
1,009
1,000
Rain water. Newton, Reynolds. Common water. Cotes. Common clear water. Ward. Pump water. Oxf. Soc. 7. C. Aqua. Gbetaldus. Aqua pluviatilis. Fabrenbeit, Muffcbenb. \& c.
Aqua vel vinum. Villalpandus.
r,000
1,000
Aqua putealis. Mufcbenb. $\quad 0,999$
Oleuin Foeniculi. Mufichenb. $\quad \mathbf{0 , 9 9 7}$
Oleum Anethi. Muffcbenb.
Aqua diftillata. Mufchenb.
0,994
Wine, Claret. Oxf. Soc.
0,993
D^{3}. red. Ward.
0,993
Vinum. Petitus.
Id. Gbetaldus. (ad aquam ut $98:$ ad 100)

0,992
0,984
-0,983
Vinum

Vinum Burgundicum. Mufebenb.
0,953
Oleum Sabinx. It. Hy fiopi. Mufchenb.
0,946
O1. Ambree. It. Pulegii. Mruffibenb. 0,978
O1. Menthæ. It. Cumini. Mufibenl. 0,975
Decoctio Sabinx. Freind. 0,960
Infufio Marrhubii. It. Menthre. It. Abfynth. Freind. 0,950
Ol. Nucis Mofchatre. Mufchenb. 0,9 .8
OI. Tanaceti. Muffchenb. 0,946
Ol. Origani. It. Carvi. Maffcbenb.
Elixir propr. cum Sale volat. Ir. Infufio Thicæ. Freind. 0,940
Ol. Spica. Mufchenb.
O1. Rorifmarini. Mufcbenb.
0,936
Linfeed Oil. Nervton. C. D°. Ward.
Spirits of wine proof, or Brandy. Ward.
Sp. of wine well rectified. Nowton. C.
Alcohol Vini. Fabrenbeit.
Id. magis dephlegmatum. Fabrenbeit.
Sp. Vini. Freind.
Id. rectific. lireind.
Efprit de Vin ctheré. Mufchenb.
Spiritus Croci. Freind.
Lamp Oil. Reynolds.
Olcurn. Gbetaldus. (ad aquam ut 91_{5}^{2} ad 200 .)
Oil Olive. Newton. C.
D ${ }^{0}$. Ward.
Sallad Oil. Reynolds.
Oleum. Villalpandus.
Id. Petitus.
Ol. Raparum. Fabrenbeit.
Id. It. Tinct. Chalyb. Mynficht. It. Tinct. Sulphur cum Sp. Terebinth. Freind. It. Huile de femences de navets. Mufcbenb.
Sp. Mellis. Mufchenb.
Sp. Salis Ammoniaci cum calce viva.
Oleum Aurantiorum. Mufchenb.
Spirit of turpentine. Newton. C.
$\begin{array}{ll}\text { Spirit of turpentine. Newton. C. } & \\ \text { Tinct. Caftorei. Item Sp. Vini camphorat. Freind. } & 0,874 \\ 0,870\end{array}$
Oil of turpentine. Boyle V. 22. a.
Ol. Terebinth. Freind.
OI. Cere. Mufchenb.
Tinctura Corallii. Freind.
Aqua cocta. Freind.
Air. Newton. C.
o, 853
0,895
0,890
0,888
0,870
0,864
0,793
0,83 r
0, 828
0,750
Aër Princip. Edit. 3. p. 512. Aër juxta fuperficiem terræ occupat quafi fatium 850 partibus majus quam aqua ejufdem ponderis.

The fame, by an experiment made by the late Mr Francis Haukbee, F. R. S. when the barometer flood at 29,7 inches. Sce Pbyfico Matbem. Exp. P. 74 .

As to the abfolute weight of water with which all the other bodies are compared in thefe tables, Mr Boyle tells us in his Medicina Hydroff. printed in the new edition of his works, V. 19.6. that he had found by his own experiments, that a cubic inch of clear water weighed 256 Trcy grains. And Mr Ward of Cbeffer, who afterwards purfued this affair with great accuracy, determined that a cubic inch of common clear water did weigh by his tryals 253.18 like troy grains, or 0.527458 decimals of the Tray Ounce, or 0.78697 of the ounce averdupois, agrecable to what Mr Reynolds had formerly delivered, who found the inch cubic of rain water to weigh by his experiments 0.579036 decimals of the fame averdupois ounce, differing from the other only 0.000339 parts.

But, as the accuracy of all the experiments in thefe tables depends upon the identity of the weight of common water, it may not be improper to afcertain that point by a note taken from Mr Boyle's NicdicinaIIjdrofatica, V. I8. b. where he exprefles himfelf in the following manner. "It fpecioully may, and probably will, be objected, that "t there may be a grcat difparity betwixt the liquors that are called, and "t that defervedly, coinmon water. And fome travellers tell us from the " prefs, that the water of a certain eaftern river, which if.I miftake not is "Ganges, is by a fifth part lighter than our water. But - having had " upon feveral occafions the opportunity as well as curiofity to examine "t the weight of divers waters, fome of them taken up in places very di" ftant from one another. I found the difference between their fpecific " gravities far lefs than almoft any body would expect. And if I be not " much deceived by my memory (which I mult have recourfe to, becaufe "I have not by me the notes I took of thofe trials) the difference be"tween waters, where one would expect a notable difparity, was but " about the thoufandth part (and fometimes perchance very far lefs) of " the weight of either. Nor did I find any difference confiderable in " reference to our queftion, between the weight of divers waters of dif"ferent kinds, as fpring-water, river-water, rain-water, and foow"water; though this laft was fomewhat lighter than any of the reft. "A And having had the curiofity to procure fome water brought into Eng"land, if I much mifremember not, from the river Ganges, itfelf; 1 "found it very little, if at all, lighter than fome of our common "waters."

The heavieft fluid we are acquainted with, next to Mercury, is Oil of Vitriol, or water impregnated with the vitriolic acid in the highef degree we can obtain it, being almoft double the weight of water.

The next is probably the faturated folution of the fix'd falt of wegetables: being a ponderous falt, and diffolving freely in water.

The next to this is frivit of nitre. Jpirit of falt is lighter, and in-

It is obfervable, that marine or comsoron folt and nithe cieser little in Eravity, contrary to the rature of their ficitils.

The iveral folutions of cominen falt, if accurately reparated, would fhew in what pronortion the gravities of fluids increafe, upon tile aldition of falt : and that fea water coes not contain one twenty-fourth part of fult.

Ihave omitted in this table the three animal fuids, milk, ferum of bloo!, and urine, as the fame may be feen before in the 8 th table, that of animal parts; but it may be noted in gencral, that the fpecific gravity of all chefe fluids is nearly the fame as that of fea water.

There are in Dr Freind's table feveral decoctions of plants, which I have inferted, altho' they are not I think of much ufe, nor greatly to be depended upon. Several of them are lighter than common water, in contradiction to Dr Yurie's obfervation, that liegetable parts are all heavier that water: But it is probable thefe experiments were made before the decoctions were reduced to the tempar of comnon sater.

What is meant by the aqua coefa of Dr Freind in his table, I cannot imagine; not having any idea of fuch a change by boiling or otherwife, as can deprive conmon water of a full fourth part of it's weight.

Since the denfity of the air is as the force by which it is compreffed, it follows that the weight of any portion of air mutt vary in the fame proportion with the weight of the whole atmofpbere: which in our climate is not lefs than $\frac{1}{!}$ of the whole weight, allowing the Barometer to vary from 28 to 31 inches

Again, by an experiment of the late Mr Hautluce's in his Pbys. Mechan. Exp. pag. 1yo. the denfity of the air varies one eighth part between the greateft degree of heat in fummer, and that of cold in the winter feafon. So that the air, in a hard froft, when the Mercury ftands at 3 r inches, is near a fifth part fpecifically heavier, than it is in a hot day when the Mercury ftands 28 inches.

Tab. XI. From Morf. Hombergatd Jolın Calpar Eifenfchmid, of the proportion of the $\sqrt{10}$ e. sific ewaigbts of certain fuids in the winter, to the sucights of the fame in the fummer Seafon.

Mercurius
Aqua pluvialis
Aqua fluviatilis
Aqua diftillata.
Spirit. Vitriol.
Lac bubulum
Aqua marina
Spir. Salis
Acetum
OI. Vitrioli
O1. Terebinth.
Aqua fortis
Ol. Tartari

1,0047.9
1,00809
1,00811
1,00815
1,01272
1,01316
1,01351
1,01467
1,01600
1,0213I
1.02141

1,02637
1,03013
Spir.

Spir. Nitri
The oils of olive and fweet almonds congealing with the cold, could not be examain'd by the Areometer in the winter leafon.

According to this table, the increafe of the fpecific weight of common water in the winter above it's weight in the fummer, is not more than about the one hundred and twenty-fourth part of the whole; which is little more than half of what Prof. Muficbenbroek has elfwhere accounted the fame, deforte qu' un pied cubique Kbenan d'cau, qui pefe environ 64 livres en Eté Se trouvera être en Hiver de prefque 65 liveres. Efai de Pbyfque, p. 424. but fure this difference is much too great.
Notwithftanding that all fluids are condenfed by cold, it is only till fuch time as they are ready to freeze; for upon the freczing they immediately expand again, fo as for the ice to be lighter feecifically than the fluid of which it is formed, and to fiwim in it: Muffbenbrock gives the fecific weight of ice to be to that of water commonly as 8 to 9 . La pefanteur de la glace of ordinairment a celle de leau, comme 8 a 9. P. 441. 1 and not acquainted with any other accurate experiments upon this fubject and it is hard to get ice in which there are not large bubbles of air included.

Tire Pbilof. Soc. at Oxford, sogether with their table of Specific Gravi4) already to often mentioned in the foregoing pages, communicated befides at the fame time, to the Roval Society, another table of a groller nature indeed, but which being printed in the fame Num. 169. of the pbilof. Tranf. and appearing to be of ufe for many purpofes: I have thought the lame not improper to be here alfo tranferibed.

The following bodies were poured gently into the veffel, and thofe in of the aveight the firft 12 experiments were weigh'd in feales turning with two ounces; of a chbic fort but the laft $;$ were weighed in fales turning with one ounce. The pounds and ounces here mentioned are averdupois weight.

1. Λ foot of Wheat (worth 6 s . a bufhel).
2. Wheat of the beft fort (worth $6 s+d$. a bufhel). Both forts of divers

were red Lammas Wheat of laft year.

3. The fame fort of Wheat meafured a fecond time.
4. White Oats of the laft year.

The beft fort of O ats were $2 d$. in a bufhel better than thefe.
5. Blue Peafe (of the latt year) and much worm-caten. bried in or
bried is: a

rendi of areil-

 facier 't () () 4. 8 sumber consave vase ar exale49126. White Penfe of the lait year hut one.
49127. Barley of the laft year (the beft fort fells for 1s. 6 d . in a quarter more than this).
49128. Nalt of of the laft year's Barley, made 2 months before. $30 \quad 4$
49129. Field Beans of the laft ycar but one.

508
10. Wheaten Meal (unfifted).
11. Rye Meal (unfifted).

VOL. X. Part
1 12. P(mp)

Tables of Specific Gravities.

Of the fame nature is alfo the following account of The difference of the weigbt of fome liquors upon the tun compared to rain water, from the ex-. periments made formerly by Mr Reynolds in the Tower of London, and communicated to the Royal Society, with his others before-mentioned, by Mr Smetbroick, July 7. 1670.

	Hufcadine wine was found heavier than rain water	It
Mu	2	
Milk	8	4
Slierry	5	3
Ale	5	2
Canary Wine	3	3
Small Beer	I	3
White wine was found lighter than rain water	1	2
Rhenifh wine	I	4
Claret	I	6
Sallet Oil	21	6

The proportion given by this author as the true one of the Averdupois pound to the Troy pound is, that 14 of the former are equal to 17 of the latter.

From whence the Averdupois pound would be found equal to 6994.285 and the ounce to 437.143 Troy grains; which is indeed a litele lefis than the fame have fince been determined by others ; for Mr Ward of Cbefer gives from a very nice experiment as he calls it, of his own, that one pound averdupois was equal to 14 ounces 11 penyweight and 15 T Troy grains, or to 6999 : and confequently the ounce averdupois to $437 \cdot 47$ of the fame grains. And feveral gentleman of the Roval Society who very carefuliy on 22 sipril 1743 . examined the original fandards of weights kept in the Cbamberlain's Office of his MAIESTY's Exchequer, found, upon the modium of the feveral trials which they made with thofe ftanchards, that the Poisid Averdupois was equal to 7000.14 , and the Cunce Iverdupais to 437. 51 Troy grains. Pbill. Tranf. No. 470.
I Inall conclude thefe papers with the two tables from Marinus Ghetal. dus mientioned in the beginning, which I here tranferibe, with an account of fome of their ufes, in his own words.

Ad comparandum inter fe duodecim corporum genera, gravitate, Es magnisudine Tabella.

Quarr, exempli gratia, quam habet rationem in gravitate plumbum ad aurum, Intelligatur plumbum, quoniam levius eit auro, gravitatem habere 1, et in linea plumbi, in prima columna nominata, fub titulo auri, quaratur auri gravitas, ea erit $\mathrm{I}_{\frac{1}{5}}^{5}$. Piumbum igitur ad aurum rationem habebit in gravitate ut 1 , ad $1 \frac{1}{2} \frac{5}{2}$. Si enim fumantur duo corpora magnitudine requalia, unum plumbeum alterum aureum, fit autem plumbei corporis gravitas 1 , aurei erit $1 \frac{15}{\frac{5}{5}}$; quare corpus plumbeum ad corpus aureum ejuidem magnitudinis rationem habebit in gravitate ut r ,

Tables of Specific Gravities.

ad 1^{13}. Comparantur autem inter fe genera diverfa gravitate, in corporibus magnitudine equalibus.

Rurfus, quero quam habet rationem in gravitate aqua ad argentum vivum. Intelligatur aqua, ut levior argento vivo gravitatem, habere 1, et in linea aque, fub ticulo argenti vivi, quæratur argenti vivi gravitas, ea erit $13 \frac{{ }^{*}}{r}$; aqua igitur ad argentum vivum rationem habebit in gravitate ut I, ad 13%.
Contra, quæro quomodo fe habent in magnitudine aurum et plumbum. Intelligatur aurum, quoniam gravius eft plumbo, magnitudinem habere 1 , at in linea plumbi, fub titulo auri, quaratur plumbi magnitudo ea crit $: 1 \frac{5}{5}$; aurum igitur ad plumbum fe habebit in magnitudine ut 1 , ad 1 is : fi enim fumantur duo corpora aque gravia, unum aureum, alterum plumbeum, fit autem corporis aurei magnitudo 1 , plumbei erit $1^{\prime \prime}$; quare corpus aureum ad corpus plumbeum ejufdem gravitatis fe habebit in magnitudine ut I , ad $\mathrm{I}^{\text {ts }}$. Comparantur autem inter fe genera diverfa magnitudine, in corporibus æque gravibus.

Qurro denique, quomodo fe habent in magnitudine ferrum, et aqua, ponatur ferrum, ut gravius aqua magnitudinem hahere 1, et in linea aque, fub titulo ferri, queratur aquæ magnitudo, ea erit 8 , ferrum igitur ad aquam fe habebit in magnitudine ut 1 , ad 8.

Altera，ad comparandum inter fe duodecim corporum genera，gravitate，at magnitudine，Tabella．

	Okum	Cera	$\mathrm{V}_{\text {Viumm }}$	${ }^{\text {A प42 }}$	Mel	${ }^{\text {sunn}}$	Ferrum	＊＊	Argen．	Plum．	Arg．viv	
Aurum	$4{ }^{4} 3$	58\％5	5	$5{ }_{5}^{5}$	77^{720}	$38 \frac{18}{68}$	42i ${ }^{\frac{2}{21}}$	472，	$54{ }^{32}$	$60 \cdot 1$	713	100
Arg．viv．	$6{ }^{3} 2$	7_{723}	7粦	723	10 12	$\stackrel{54+\frac{15}{2}}{ }$	58i，	66\％	76_{57}	84，	100	
Plunibum	78		888	$8{ }_{8}^{1 \frac{13}{23}}$	12，${ }^{2}$	6423	6923	788	8978	100		
$\overline{\text { Argent．}}$	8_{3}^{872}	93：14	$9{ }^{\frac{15}{4} 5}$	$9^{\frac{2}{12}}$	143	$7{ }^{2}+$	773	8774r	100			
Es．	10_{29}	10\％${ }_{\text {g }}^{3}$	$\frac{10_{2}^{2}{ }^{2}}{}$	12，	$16 \cdot$	$\frac{82}{}$	885	100				
Ferrum	4 $4^{\frac{1}{2}}$	15	12 274	12	$18 \frac{18}{8}$		100					
Stannum	12：3	12780	13n等	${ }^{13+19}$	19	100						
Mel	63 ${ }^{12} 3$		67	${ }^{68 \frac{82}{29}}$	100							
Aqua	91^{2}	95 ¢	93＇	100								
Vinum	93竞	$97{ }^{975}$	100									
Cera	96\％${ }^{2}$	100										
Oteum	100											

Quæro，exempli gratia，quenam fit ratio in gravitate，auri ad argen－ tum．Intelligatur aurum quoniam gravius eft argento，gravitatem ha－ bere 100，et in linea auri，fub titulo argenti，reperietur argenti gravitas 54^{22} ，aurum igitur ad argentum rationem habebit in gravitate ut 100， ad $54 \frac{22}{3}$ ．Si enim fumantur duo corpora，magnitudine æqualia，unum aureum alterum argenteum，fit autem aurei corporis gravitas 100 ，erit argentei magnitucififis, rationnem habebit in gravitate, ut too, ad 54%.

Quaro, quomodo fe liabe in gravitate aqlitiad vinum; quoniam aqua gravior eft vino, intelligatur ejus gravitas 100, et quoniam in linea aqure, fiub titulo vini, datur vini gravitis 9^{8};, aqua ad vinum fe habbbit in gravitate, ut 100, ad $98{ }^{\text {\% }}$.

Contra quæro quomodo fe habent in magnitudine argentum, ct aurum. Intelligatur argentum ut levius auro, magnitudinem habere 100, et in lincaauri, fub titulo argenti, quaratur auri magnitudo, ea crit 54 , argentcum igitur ad aurum fe habebit in magnitudine, ut 100, ad $54^{22^{2}}$. Si cnim dimantur duo corpora requa gravia, unum argentcum, alterum aurcum, fit autem argentei corporis magnitedo 100, erit aurei $54 \frac{1}{\gamma}$; quare corpus argenteum, ad corpus aureum ejufdem gravitatis, fe habebit in magnitudme, ut 100 , ad 54^{22}.

Quarro denique, quomodo fe habens in magnitudine aqua et argentum vivum. Quoniam aqua levior eft argento vivo, intelligatur ejus magnitudo 100, it in linca argenti vivi, fub tirulo aqua, quaratur argenti vivi magnitudo, et reperietur 7 , aqua igitur ad argentum vivum fe habrbit in magnitudine, ut 100 , ad $7 \frac{1}{1}$.

Airter frome IX. I muft needs account myfelf very happy, in that I partake fo Kobers South- conftant and frefh intelligence of the matters of the world; and that from well. $E / /$; en Mr Henry Uidenburg. conicrning fome extraor.linary F.cchos, lutreIs commanicated to the R. S. botbe Rav. Heary Miles, a theet of paper, an Account and a Difoourfe upon thofe experiments, D. D. Of F. and the manner of them.
R. S. No.
R. S. No. As. 219 . As for whifpering places, the beft I ever faw was that at Glouceffer: but May amd June in Italy, in the way to Naples, two days from Rome, I faw, in an inn, $17+6$, dated a rom with a quare vauit, where whifpering, you could cafily hear it Kingfale, Scpt. 19. 1661. Read June 5.1 .it fo active a hand, as that I know no example of greater exactnefs andi indultry any where than what is with you.
I am very much rejoiced at the happy advancement of learning in the Royal Society; and that the radiant influence of His Majefty is like to fmile upon it. And as to your query concerning founds and ecchows, I do remember, that the Duke of 'Iufcany * has made rare trials concerning the velocity in the motion of found; and I gave Mr Boyle, in almont at the oppolite corser, but not in the leaft manner at the fide corner that was nearer to you.

I faw another, in the way from Paris to Lyons, in the porch of a common inn, which had a round vault; but neither of thefe were comparable to that of Gloucefter; only the difference between thefe two laft was, that to this, holding your mouth to the fide of the wall, leveral could hear you on the other fude; the voice being more diffufed. But, to the former, it being a fquare room, and you whifpering in the corner, it was only audible in the oppofite corner ; and not to any diffance from thence, muly tive See sine Exp. of the Academy del Cinento. เว่าวร

A Defcription of a Water-Wheel.

as to diffinction of the words. And this virtue was common to each corner of the room, and not confined to one.

As to ecchoes, there is one at Brufels that anfwers 15 times: but when I was at Milan, I took a coach to go two miles from thence to a nobleman's palace, now not in great repair, and only a peafant or contadine living in one end of it. The building is of fome length in the front, and has two wings jetting forward; fo that it wants only one fide of an oblong figure. About 100 paces before the houfe, there runs a fmall brook, and that very flowly; over which you pafs from the houfe into the garden. We carried fome piftols with us; and, firing one of them, I heard 56 reiterations of the noife. The firft 20 were with fome diftinction ; but then, as the noife feemed to fly away, and anfwer at a great diftance, the repectition was fo doubled, as that you could hardly count them all; fecming as if the principal found was faluted in its pafage by reports on this and that fide at the fame time.

There were of our company that reckoned above 60 reitcrations when a louder piftol went off; and indeed it was a very grateful divertifement. But on the other fide the houfe, on the oppofite wing, it would not found; and only (to this advantage) in a certain chamber here two ftories high from the ground.

C H A P. V.

$H \Upsilon D R A U L I C K S$.
 flazil endeavour to explain in a manner to be underfond.
The axis of the fint mover is cut into the form of an hexangular prifin, of dimenfions fuitable to the force requir'd, as is reprefented by the letter A. Into this, feveral fets of holes are mortifed, as $B B B$. Thefe are intendied to receive different fets of fails made of iron plates, one whereof is reprefented in Fig. 54. all which fails are weathercd in the fanse manner as chofe defigned for windmills; only in thefe the Read Jan. g. extremity of their ends ftands parallel to the planes of each end of the axis, thofe ends I mean which are placed fartheft from the centre.

This hexangular axis, when employed, muft be placed garallel to the Fig. ;4. noving fircam, and may lic cven with its furface : but the engine will act water, as is eafy to comprehend. Fach fet of the fais belure delcribed contains fix in number, and are fo contrived as to be pat in and taken out at pleafure; whince it follows, that when a fingle fet of fails is inate wie of, the engine produceth a fingle effect, when two fecs a double, and loon, till the defired momentum is acquired, with the fanc quantity of running water, provided there be room to fix a fufficient number of fails.

It is farther to be obferved, that when this engine is placed with it's frils made and weathered as above directed, they will move with equal velocity, even fuppoling the current fould change it's courle, and come upon them in a quite contrary direction, as the cafe really happens in rivers where the tide ebbs and llows; where mott other engines yet invented are of little fervice.

About fix weeks ago I had the pleafure to fee a model of this engine tried. It was fixed in our river, in a place where the water moved only 27 teet in $20^{\prime \prime}$ in which time the first mover made fix revolutions. It's diameter was no more than two feet and two inches; yct it would have lifted 14 pounds two yards high in the above-mentioned time, had not a misfortune happend to it's cafe which made it not perform quite fo much.

It appeared to me fomewhat extraordinary, that the circumference of it's firlt mover (I mean any determined part thereof) paffed through a fipace of 42 feet in $20^{\prime \prime}$; which is nearly twice as faft as the motion of the wirter: and as the momentum will be in proportion to the number of the fets of fails that are employed, it's force is capable of being greatly auginented with the fame quantity of water: a thing not to be admitted without fufficient experiment, but what feems extremely plain in Theory, and what 1 am apt to think will aniwer when brought to P'ractice.

This engine, when once feen, requires little fkill for the conffruction of $i t$, is made at a fmall expence, and kept in repair with eafe.

Adefriptrion of - Clepryda, or WaterClaik ; by the Hicu. Charles Hamilton, $E_{/ q} ; \mathrm{N}^{\circ} \cdot 4^{7} 9$. p. 171. Mar. and Apr. 1746. Read April 24. $245 \cdot 6$ Fig 55. The Machime in ferpeative.
II. An open canal ee, is fupplied with a conftant and equal ftream by the fiphon d; and has at each end $f f$, open pipes, of exactly equal bores, which deliver the water that runsalong the canal e, alternately into the vefets $g 1, g 2$, in fuch a quantity as to raife the water from the mouth of the tantalus s, to the rop of the tantalus t, exactly in an hour. The canal e e, is equally poifed by the two pipes $f 1, f 2$, upon a ceritre r; the ends of the canal e, are raifed alternately, as the cups $z z$, are depreffed, to which they are connected by lines running over the pulleys $\% /$. The cups $z z$, are fixed at each end of the balance $m i m$, which moves up and and cown upon it's centure v^{*}.

[^20]n 1, n 2, The edges of two wheels or pulleys, moving difficrent ways alternately, and fo fitted to the cylinder o (by oblique teeth both in the cavity of the wheel, and upon the cylinder; which, when the wheel u moves one way [i.e. in the direction of the minute-hand], meet the teeth of the cylinder, and carry the cylinder with it ; and, when n moves the contrary way, nip over thofe of the cylinder, the teeth no more mecting, but rececing from each other; or it inay be done by catches or locks which require a longer defcription), one or other of thefe wheels, $n n$, continually moves o in the fame direction, with an equal and uninterupted motion: for the contrivance is fuch, that the inftant one ceafes to act, the other begiris, and fo on.

A finc chain goes twice round each wheel, having at one end a weight, x, always out of water, which equiponderates with y at the other end, when kept tloating at the furface of the water in the veffel g, which y mult always be. The two cups $z z$, one at each end of the balance $m m$, keep it in equilibrio, till one of them is forced down by the weight and impulfe of the water, which it receives from the tantalus $t i$: each of there cups $z z$, has Jikewife a tantalus of it's own $b b$, which enptics it after the water has done running form g, and leaves the two cups again in equilibrio; q is a drain to carry off the water.

Fig. 56. reprefents the dial-plate, with the hour and minute-hands, the Fig. 56. The weight and fioat belonging to $n 2$. The front of the tantalus in $g 2$, front of the marked $s t i$, of which s the mourh is 18 inches above the bottom of the v effel g, and 18 inches below the top of the tantalus t. i is the iffuingleg of the tantalus, which difcharges the water out of the veffel g into the cup z, as foon as it runs over the top t, till the water finks as low as s.

The cate u u inclofes the whole machine, except the ciftern Fig. 58. The that fupplies the fiphon d, which may be placed at any difiance from it, as is moit convenient, provided the iffuing $\operatorname{leg} d$, of the fiphon is plan of the Clepfydra ta lengthened out fo as to give a conftant ftream into the canal e. This cafe menfon. $u u$ fupports the axis of the cylinder o behind, and the dial-plate $p p$ before; in the centre of which curns the axis 0 , with the index k at it's extremity, being the minute-hand. The hours may be defcribed by two common wheels, as in ordinary clock-work. For cheap work, chains paffing round pulleys would do inttead of wheels with teeth.
'Ihe fhort leg of the fiphon d is placed in a ciftern, with it's mouth The motion of fomething below the moth of the watte-pipe ; which ciftern is fupplied the Clepfydra with a conttant ftream, rather more than runs out at the fiphon d; which overplus going off at the wafte-pipe, the water always remains at the is effected in the following fame height in the cittern, and yet always delivers a confant and equal How into the canale e; confequently, there is not the leaft intermifion. As the end of the canal c, fixed to the pipe $f 1$, is in the figure the loweft, the water runs all through the pipe $f 1$, into the veffel $g 1$, till it runs over the top of the tantalus t; when it immediately runs out at i into the cup z, at the end of the balance m, and forces it down, the balance m moving on it's centre v. When one fide of m is brought down, the Atring which comneets

VOL. X. Parti.
K k (which turns upon it's center r) higher than $f 2$; confequently, all the water which conftantly runs through the fiption d, inftantly runs chrough f_{2} into $g 2$, till the fame operation is performed in that veffel, and fo on alternately.
As the heighit the water rifes in g in an hour, viz. from s to δ, is equal to the circumference of η, the float y rifing that height along with the water, lets the weight x act upon the pulley n, which carries with it the cylinder o; and, giving a revolution, makes the index k décrribe an hour upon the dial-plate. This revolution is performed by the pulley $n 1$; the next is to be by $n 2$, whilft n_{1} goes back, as the water in $g 1$ runs out through the tantalus ; for y muft follow the water, as it's weight increafes out of water.

The axis o always keeps moving the fame way; the index k defcribes the minutes; the tantalus's mult be wider than the fiphon d, that the veffels $g g$ nay be fure to be empry as low as s, before the water returns to them.

CHAP. VI.

$$
G E O G R A P H \Upsilon \text { and } N A V I G A T I O N \text {. }
$$

Obfervations delermining the Longitudo of Kingtion in Jamaica, by Mr Ja. Short. F. R.
S. $\mathrm{N}^{\circ} .496$. p. 523 . Now E゚c. 1750. Read Nov. 1 1750.
I. Take this opportunity of laying before the Society, two obfervations proper for determining the difference of longitude between London and Kington, which came to my hands fome time fince. They were made by Alex. Macfarlane, Efq; of Kingfon, F: R.S. who is provided with a compleate apparatus of aftronomical inftruments, which he purchafed of Colin Campbell, Efq; As this gentleman is well verfed both in the Theory and Practice of Aftronomy; I think the following obfervations may be depended on for fixing the longitude of Kingfon; efpecially as we have the fame obfervations made at the houfe of Mr G. Grabam in Fleetffreet, Lond.

 22, 1743 .

Trarfat of

 Mercury over then below the horizon. the Sun, Odt. 25, 1743.The ingrefs of Mercury upon the fun could not be feen; the fun being
Excefluse difco Solis, or the latt exterior contact, at $3^{\text {hi }} 56^{\prime \prime} 43^{\prime \prime}$ a. m.

By the firt obfervation of the eclipfe of the moon, compared with the fame eclipfe obferved here, Kingfon is found to be $5^{\text {h. }} 6^{\prime} 2^{\prime \prime}$ to the weft of London.

- Sec Vo!. VIIL p. 172 and 202.

Difcoveries of the Ruffians on the Coaft of Afia.

And by the Tranfit of Mercury neglecting his parallax, King f on is found to be $5^{\prime \prime} 5^{\prime} 33^{\prime \prime}$.

This laft is the moft to be depended on for fetting the longitude of King fion; becaufe in all obfervations of an eclipfe of the moon, an error of a minute or two may be allowed, arifing from the indiftinctnefs of the penumbra.
II. As you are defirous to hear fomething more particular concerning the Ruffan expeditions to the North and North-Eaft of Afiz, I will here give you an account of all that has come to my knowledge relating to the lame. But as I fhould, on the one hand, be very glad that thefe obfervations might give any light concerning the paffage now fought through Hudfon's Bay, I fhould, on the other be very forry, if Mr Bebring's opinion, who believed that the new land he had difcovered was joined to Californit, fhould rather lead us to doubt of che fuccefs of that glorious undertaking. I wifh, however, that a happy experiment may foon inform us certainly of the truth. In the mean time you will not be forry to be acquainted with the reafons upon which Mr Bebring's fulpicions were founded, notwithftanding the objections you have been plealed to make, and to communieate to me upon that head.

Firf, This new land, which he fell in with at the diftance of 50 German miles from Kamfcbetka towards the eaft, was followed by him, and cualted for a great way, though I cannot fay how far: from whence alone it will appear, that an abatement muft be made in the diffance of 30°, or thereabouts, which you fuppofe to be between the laft known head-land of California towards the weft, and the farthent extrenity of this new difcovered land towards the eaft.

Secondly, Capt. Bebring having had the opportunity of obferving an eclipfe of the moon at Kamfchatka, conclucicd from the fame, that that place lay much farther off to the eaft, than is expreffed in any map; and

Extrat of a Mer firm Mr Leonard Euler, Prof: Matb and Member of ine Imp. Sar at Peterfargho. to the Rev. Mr Cha. Wetrein, Cibapiain and Sec. to bis R. Highnefs the Prince of Wales, ron-
wring tbe Dilicoveriee of the Ruflians on the N E. Coaft of Afia. No. 48 2. P. +21 . Jan. and Feb 1747. dated Berlin, Dec. Read Feb. 5. that, to reprefent it truly, it ought to be transferred into the other he- 1746.7 . mifphere, as it's longitude is more than 180 degrees [E. from the Ille of Ferro]. For this reafon Captain Bebring's new land will be confiderably approached to the laft known part of California, and will not indeed appear to be many degrees from it.

What we have therefore fill to hope is only, that in this unknown diftrict there may be found fome ftreight, by which the pacific fea may freely communicate with Hudfon's Bay; but if it fhall appear that there is no fuch paffage, it muft then be concluded, that whatever further progrefs may happen to be made through Itudfon's Bay, the opening at laft mult only be into the frozen fea, from whence there could be no pafting into the pacific ocean, but by the neighbourhood of Kamfcbatka; and this way would without doubt be too long, and too dangerous, to be mafter'd in the courfe of one fummer.

I very much doubt whether the Ruflians will ever publifh the particulars of their difcoveries, either fuch as have been made from Kamjchatka towards

Concerning the Dijfances betrecen Afia and America.

Anerica, or fuch as have been made upon the northern coaits of Afia. An:l indeed it is but very much in general that I know the fuccefs of this laft expedition. What I do was communicated to me by order of the Court, from the Collcge of Adniralty, for me to nate ufe of it in the Georraphy of Rufia, which I was at that time charged with.

They paffed along in fmall veffils, coafting between Nova Zembia and the Continent, at divers times, in the middle of fummer, when thofe waters are open. The firft expedition was from the river Oby; and at the approach of winter the veffels finelter'd themfelves by going up the fenifka; from whence the next fummer they returned to fea, in order to aidvance further eaftward; which they did to the mouth of the Lena, into which they again retired for the winter-feafon.

The third expedition was from this river, to the fartheft North Eaft cape of Afa. But here they loft feveral of their boats, and a great part of their crew, fo as to be difabled from proceding, and from making the whole tour, fo as to arrive at Kamfcbatka.

It was however thought, that a further attempt was then unneceffary, becaufe Captain Bebring had already gone round that cape, failing northward from Kamfchalka.

The Ruffians have rot attempted the paffage round Nora Zemibla; but as they have paffed between that land and the coalt of $A f a$, and as the Dutch did formerly difcover the northern coafts of Nova Zembla, we may now be well affured, that that country is really an illand.

A leterer from ArchurDobbs, E/s; of CarlleT)obbs in Ireland torle Riv MrCha Wettein, Cbap. and Se: to the Prince of Wi:les, concerning the difantes between Alia and America No 48 ; p. 47 s. Mar. E'. 1747. Rcad April of 1747.
III. I am extremely obliged to you for the trouble you have taken, in correfponding with Prof. Euler * upon the Ruflian difcoverics eaftward from Kamjcbatka, and communicating to me the accounts he had of Bebring's laft voyage, and of his difcovery of the lands N. E. of Japon; which the Prof. could only have inaccurately, not having feen any journal to fix the Lat. and Long, of the countries he then difcover'd: but fince Prof. Euler, fway'd by the opinion of Captain Bebring, feems ftill to believe that the latt land he difcover'd is joined to California, which country is now known to be part of the continent of America, and not an inland in which fact of it's being continuous to California I differ ftill in opinion from him) for, if that were a fact to be depended upon, I would candidly own, that there could be no paffage from the N. W. of Hiudjon's Bay to the weftern ocean of America, without failing near 70° of Long. the diflance of the N. E. cape of Ifra from the N. W. of Hudfon's Bay, in a parallel almoft as far N . as the polar circle, before the paffage can be made to the pacific ocean; which might therefore be very reafonably call'd an impracticable paffige, as it could not pofibly be made in one fummer, (if at ali) and fince Prof. Euler has been fo kind as to give me Capt. Bebring's reafons for fupporting his opinion, which are principally from the fmall diftance he fuppoled it was from the the coaft he difico-

[^21]vered, to the weftern American coaft at California (which he imagined was much nearer his N.: E.. cape of 1 fia than it is in fact); I muft therefore, in return to the Profeflor's goodnefs, in communicating to me all he has known in that difcovery, beg leave to give you this further trouble of communicating to the Profeffor my reaton for ftill diffenting from Bebring's opinion, that the land he difcovered laft was part of the continent of America, or continuous with California; and if he find the reafons for fupporting my opinion make it more probable, that there ftill may be a large opening betwixt thefe new-difoovered countries and California, I am fenfible it will give the ingenious and learned Profeffor great pleafure, to think we may yet hope for a paffage by Hudfon's Bay to the weftern American ocean, without being obftructed with ice after paffing Hudfon's Streigbt.

The Profeffor imagines 1 might have been led aftray, by not confidering, that the N. E. cape of Afia is much more eafterly than has been laid down in any former charts; which is now known accurately, by the eclipfe of the moon obferved by Captain Bebring at Kamfchatka.

I have an abftract of his Journal by me, upon his firft difcovery in 1728, and 1729, when he obferved that eclipfe, and the calculation of the long. from it; and ftand by his long. he has fixed; and ailow that his N. E. cape is in the other hemifphere; reckoning ealtward, either from Fero, as the firf meridian, or from London; which laft I fhall follow.

Bebring fixes his N. E. cape $126^{\circ} 7^{\prime}$ E. long. from Tobolki; and Tobolki is $86^{\circ} \mathrm{E}$. from Fero; fo the cape is $212^{\circ} 7^{\prime}$ E. of Fero, or about 194° E. from London - By Captain Middleton's obfervation of Jupiter's Satellite at Cburcbill river in Hudfon's Bay, that river is 95° W. from London; which, added to 194°, makes 289°; confequently the N. E. cape of Afra is 71° diftant from Cburchill, to complete 360°; which, in the lat. of 65°, computing 8 leagues to a degree of long. of which 20 make a degree of lat. the diftance betwixt that cape and IIudforis Bay would be 568 fuch leagues.

From the known long, of the N. cape of fapon in 40° lat. which is pretty exactly known, from the obfervations made by the Jefuits at Peking, and is about 150° E.. from Lindon, and from the beft computed long. of California in $40^{\circ} \mathrm{N}$. lat. it lies in 130° long. W. from London, making together 280°, leaves 80° for the diftance of Califormics from fapons; allowing 17 leagues to a degree of long. in $40^{\circ} \mathrm{N}$. lat. the diftance would bie abour 1360 leagues: by the fame calculation California mult be at lealt 7 or 800 fuch leagues from the N. E. cape of $A f i a$; fo that, in fo great a fpace there may be very great countries or inands *, without fuppofing the new difcovered country continuous to California,

[^22]By the account given to Prof. Euler, Bebring failed fouthwardly to the ines of Fapon, and from thence failed ealtwardly 50 German mules, about 250 Einglif miles; which makes about 80 leagues, of 20 to a degree. At that diftance trom Gapon he difcovered land, which he coafted N. W. Atill approaching towarcis the N. E. cape, without going afhore, until he came to the entrance of a great river; where lending his boats and men alhore, they never returned, being either loft, killed, or detained by the natives, which made his difcovery inçomplete; his Ship being ftranded, and he afterwards died in an uninhabited illand.

As no lat. nor long. are fixed by this account, I muft believe he failed from Kamfcbatka S. E. perhaps more foutherly than to 50° lat. ; and there found land N. E. from fapon; otherwile, by coatting it N. W. he could never approach the N. E. cape, which is, at leaft 40° long. E. of Japon; and if he made land so leagues E. of Japon, he muft have failed N. E. to make the N. E. cape. I have thereture reafon to believe this coaft was part of that he faw in his frit voyage, where he loft his anchor; and is the coaft Gaina difoovered, and the Dutch afterwards called the Company's Land, E. of the ftreights of Uzicez, which is at leaft 7 or 800 leagues W. of any known land of America, and above 1000 near the lat. of Yapon: fo that, if I fhould allow 700 leagues for countries or inands E. of his new-difcovered coaft, there might ftill be a paffage of 100 teagues for the fouthern or pacific ocean to communicate with Hudjon's Bay, and to caufe fuch great cides and currents, as are found on the N. W. of HiudJon's Bay; as allo a free paflage for the whales, which are feen in all the openings N. W. of that bay, and are caught there in numbers by the Ejkernaux favages: for, as thefe don't go in by Hudfon's Streigbt from our Allantic Ocean, it cannot be prefumed that they fhould go up by Japon towards the N. E. cape, and from thence go 70°, or above 560 leagues, to Hudjon's Bay, and be there in June, and, after ftaying until Sept. return again the fame way to the fouthern ocean, to pars the winter. - Now, as Bebring only coafted at a diftance, he could not poffibly know whether it was a continent, or great inand; the laft of which feems the moft probable: however, a few months now, if our fhips return fafe, will give us a certainty on one fide or the other; altho' I am fanguine enough to believe they have by this time failed thro' and difcovered this fo much wifhed for paflage.

Thefe, Sir, are the reafons I have ftill to expect fuccefs in the attempt I have promoted; and, if you think it may give any fatisfaction to I'rof. Euler, to know the reafons that fupport my belief of a practicable fafe paffage, be pleafed to communicate it to him, with my compliments for the trouble I have given him by you, and accept of my beft acknowledgments for your favours.
Iv. It is now fome time fince I received from M. de Line part of a A letrer from map of the world, found among the papers of the late Dr Kampfor. In F Anth. this map were feveral Cbinefe characters, forme well, fome ill written, which the late Prof. Bayer had attempted to decypher. - In my anGactii, Tof. to Dr Mortifwer to M. de L'ife, I informed him that it was by no mears a Cbinefe R.S. contain. work * ; that it could be of no fervice to a learned Europenn, fuch as he ing /cme ac. or you were ; and that Mr Bayer's explanations were full of fauits. I fuppofe that M. de L'ife has already writ you my thoughts concerning it from Peterfbourg. You have poffibly feen in feveral books, what the Cbrnefe know, and have fet down, concerning forcign countries: and there is no monument extant to prove, that before the arrival of the Jefuits in this country, they had charts or maps of the world, any way refembling that, which you found among Kempfer's writings.
It is now above 1600 years fince they tolerably well knew the northern and eaftern countries of India, and thofe which lie between Cbina and the Cafpian fea. On thefe different countries their hiftory affords feveral informations, which are not to be found in the Greek, Latin, or other hiftorians. They had fome, but very confufed, notions of the regions beyond the Caspian fea; fuch as Syria, Greece, Egypt, and fome parts of Europe. I do not fpeak of the times of Gentcbikan and his fucceffors; for then French by T. S. M. D. and the Cbinefe were made acquainted with Ruffia, Poland, Germany, Hungary, Greece, $\xi^{3} c$. from accounts given by their own contrymen who followed that prince, his fons, and grandfons: but the monuments that remain of this their knowledge are very confufed. As to the countries to the eatt of Cbina, there are proofs remaining in books, that, above 1700 years ago, the Cbinefe were well acquainted with the caftern part of Tartary as far as the fea, and the river Ameur, Corea, and Fapan. Their books fpeak alfo in general, and without fufficiently entering into particulars of many countries to the E . and to the N . of Fapan. With regard to the monuments of the Cape of Good Hope, which have been mentioned by fome, there are none in Cbina; and if there have been any, they are now loft. It was from the Europeans, that the Cbinefe have learnt the name and the fituation of the Cape [and you will foon fee a Differtation, whetein all this affair will be circumftantially treated].
V. My curiofity having latcly led me to perufe feveral books on the art A leter from of Navigation, I was fomewhat fuprized not to find in any one of them a clear explanation of that moft curious paper \dagger written by that excellent Mathematician Dr Halley; who, not intending to write for beginners, as himfelf confeffes, has drawn his conclufions in a manner, that feems to ftand in need of an explanation, for the generality of readers: and as the maritime people are not the $b=f$ açuainted with mathematical knowledge,

[^23]Mr John Robertion to the Pref. containing an explanation of the late Dr Haltey's demonfration of the Anaiog of the
Logarithmic Tangeses in the mestian
line, or funzo of it might have been expected, that fuch of the writers on Navigation with-

Dr Halloy, in this tract, feems to have had two chief points in view , firt, to prove that the divifions of the meridiain line in a Mercitor's chart, were analogous to the logarithmic Tangents of the balf-complements of the latitudes. And fecondly, To find a rale by which the tables of meridional parts might be compuied from Briggs's, or the common logaritbinic Tanyines. The former of theie the Doctor has clearly and elegantly proved: but he has given rather too tew fteps to fhew us clearly the inveftigation of the Jatter.

Indeed in many of the treatifes on Fiuxions, it is Thewn how to inveftigate a rule to find the meridional parts to any latitude: but, to underifand thofe methods, requires fome fkill in algebraical and Huxionary computations; neither of which are neceffary in this bufinefs, by keeping to the Doetor's principles, as will be evident from the following articles; fome of which are already well known; yet it was thought convenient to annex them to this dilicourfe.

A: icicle I. If tbe circumference of a circle be divided into any number of equal parts by

 as many radii, and a line be drawn from the circumference custing tbofe raciii, fo that their parts intercepted betweens this line and the centre be in a continued decreafing geometric progrefiun, bben will that interfecting line be a curve, called ibe proportional Spiral, and will interfect thofe radii at equal angles.This will be evident, by fuppofing the radii fo near to one another, that the intercepted parts of the fpiral may be taken as right lines: for then there will be a feries of fimilar triangles, each having an equal angle at the centre, and the fides about thofe angles proportional.

Articte II. The fame tbings fill fuppofid, the parts of the circumference of the circle, reckoned from any one point, may be taken as the logarithms of the ratio's between the correjponding rays of the fpiral.

For thofe rays are a feries of terms in a continued geometric progreffion; and the parts of the circumference from a feries of ternis in arithmetic progrefion. Now the terms of the arithmetic feries being taken as the exponents of the correfponding terms in the geometric feries, there will be the fame relation between each geometric term and it's correlative, as between numbers and their logarithms. And bence the proportional fpiral is alfo called the logarithmic fpiral.

> Article 11I. That proportional spiral, which interfects it's radii at angles of 45° produces logaritbms that are of Napier's kind.

For,

For, if the difference between the firft and fecond ternis in the geometric feries was indefinitely fmall, and the firf divifion of the circumference was of the farne magnitude; then may that part of the fpiral, intercepted between the firft and fecond radii, be taken as the diagonal of a quare, two of whofe fides are parts of thofe radii: therefore the fpiral which cuts it's rays at angles of 43°, has a kind of logartchuns belonging to it, fo related to their correfionding numbers, that the finall. oft variation between the firft and fecond terms in the geometric feries, is equal to the logarithm of the fecond term, a cypher being taken for the logarithm of the firit. But of this kind are the hyperbolical logarithms, or thofe firlt made by their inventor the Lord Napier: confequently the logarithnes to that fipiral which cuts it's rays at angles of 45°, are of the Napierian kind.

The Rbumb-lines on the globe are analogous to the logarithmic spiral. Asticic IV.
For every oblique rhumb cuts the meridian at equal angles: and it is a property in itereographic projections, that the lines therein inferlecting one another, form angles equal to thofe which they reprefent on the iphere. Therefore a projection of the fphere being made on the plane of the equator, the meridians will become the radii of the equator, and the rhumbs interfecting them at equal angles, will become the proportional fpiral.

Hence, the arcs of the equator, or the differences of long. reckoned from the fame merid. are as the logarithms of thofe parts of the corrcfponding meridians, intercepted between the centre and rhumb-line.

1 Sea Clart being conffrutted, wherein the meridians are parallel to one Article V. another, and the lengtbs of the degrees of latitude increafe in the fame proportion as the meridional difances decreafe on the globes, will confittute a Mercator's cbart; wherein, befides the pofitions of places baving the fame proportions to one another as on the globes, the rbumb lines will be reprefented by rigbt lines.

For none but right lines can cut at equal angles feveral parallel right lines.

The divifions of the meridian line on a Mercator's chart, are the faine as a Arsicie VI. table of the differences of long. anfwering to each minute, or fmall difference of lat. on the rbumb line making angles of 45° with the meridians.

For, in fuch a chart, the parallels of lat. are equal to the equator, and are at right angles to the meridians: and therefore a rhumb of 45° cuts the meridians and parallels of latitudes at equal angles; comfequently between the interfection of any meridian and parallel, and a shumb cutting them at 45°, there muft be equal parts of the meridian and parallel in-

VOL. X. Part i .
L!
tercepted :

258 An cxplanation of the Araiog' of the Tangents, EC. tercepted: now, on the equator, or parallels of lat. are reckoned all the fucceffive differences of longitudes, and on the meridians the fucceefive meridional differences of latitudes, or the divifions of the nautical merid.: therefore on the rhumb of 45°, the fucceffive diliferences of long. are equal to the correfponding divilions of the nautical merid.

Article VII. The tangents of the angles which different rbusnbs make with !be meridians, are dircetly proporsional to the differences of longitudes made on thofe rhumbs, when the meridional differences of latitudes are cqual; or, are reciprocally proportional to unequal meridional differences of latitudes on iboje rbumós, whon the differences of longitudes are equal.

For the meridional difference of lat. is to the diff. of long.; as radius is to the tangent of the angle of the courfe, or of the angle which the rhumb makes with the merid. therefore, when the meridional differences of latitudes are equal, the differences of longitudes are as the tangents of the courks: but, when the differences of longitudes are cqual, the meridional differences of latitudes are reciprocally as the tangents of the courfes.

Article VIII. The logaritbmic tangents of the balf-complements of the latitudes, are analogous to the lengthened degrees in the nautical merid. line, in a Mercators's cbart.

For, in the ftereographic projection of the fphere on the plane of the equator, the lacitudes of places are projected by the half-tangents of the complements of thofe latitudes, which half-tangents are the rays of a proportional fpiral: now, if a feries of fucceffive latitudes be taken on any rhumb, the correlponding diferences of longitudes will be logasithms to the rays of the fpiral, or to the tangents of the half-complements of thofe latitudes: therefore the differences of longitudes are as the logarithmic tangents of the hall-complements of the latitudes: but (Alrt. V1. the lengthened ciegrees on the nautical merid. are as the differences of longitudes on the rhumb of 45°; confequently the logarithmic tangents of the half-complements of latitudes are as the lengthened dcgrees on the nautical merid.

Eorcl. 1.
रV stign
When the angle between the rhumb line and the merid. is equal to 45°, then the longitudes of places on that rhumb are expreffed by logarithms of Napier's kind; whofe corre!panding numbers are natural tangents of the half-complements of the latitudes to arcs expreffed in parts of the radius.
Rorol. 2. Hence, to any two places on a rhumb of 45°, the difference of long. or the meridional diff. of lat. is equal to the diff. of the Napierian logarithmic tangents of the half-complements of the latitudes of thofe places, eftimated in parts of the radius.

An explanation of the Anulosy of the Tangents, Ecc.

As there may be an indefinite variety of rhumbs, and thercfore as Coroi. s many different kinds of logarithms, confequently every fpecies of logarithms has it's peculiar rhumb, diftinguifhable by the angle it makes with the merid. : therefore, among thefe there are two kinds, whereto the differences of longitudes are the differeaces of the logarithinic tangents of the haif-complements of latitudes, efiunated in minutes of a degree; one of them belonging to Napier's form of logarithmic tangents, and the other to Briggs's, or the common logarithmic tangents.

The common logarithmic tangents are a tcole of tise differcrees of longitudes, Article IX. to every minute of lat. on the rbuinb line making angles with the meridians of $51^{\circ} 38^{\prime} 9^{\prime \prime}$.

For, let z reprefent the merid. diff. of lat. between two places on the rhumb of 45°; or it's cqual, the difference between the logarithmic tangents of the half-complements of the latitudes of thofe places, eftimated either in parts of the radius, or in minutes of a degree. Then,

As the circumference in parts of the radius $=62831,853, \mathcal{E}^{\circ} \mathrm{c}$.
To the circumference in minutes of a degree $=21600$.
So is a meridional diff. of lat. in parts of the radius $=z$.
To a merid. diff. of lat. in minutes of a degree, $=0,34377468, \varepsilon^{2} c$. $\times z$.

Whofe correfponding rhumb is different from that which z belonged to; and the angle which this rhumb makes with the merid. will be found by the following analogy from art. 7 .

As the meridional diff. of lat. on one rhumb $=0,34377468,8^{\circ} c$. z.
To the merid. diff. of lat. on a rhumb of $45^{\circ},=z$.
So is the natural tangent of the rhumb of $45^{\circ},=10000$.
To the natural tangent of the other rhumb, $=29088,821, \mathrm{E}^{2} c$.
Which tangent antwers to $71^{\circ} \cdot 1^{\prime} 42^{\prime \prime}$; and this is the angle that the rhumb line nakes with the meridians, on which the differences of the logarithmic tangents of the half-complements of the latitudes, in Napier's form, are the true differences of longitudes eftimated in fexagefimal parts of a degrce.

Now Napicr's logarithms being to Briggs's as $2,30258, \mathrm{E}^{2} \mathrm{C}$. is to 1 .
 which is the tangent of $51^{\circ} 3^{8^{\prime}} 9^{\prime \prime}$; and in this angle are the meridiaris interfected by that rhumb, on which the differences of Briggs's logarithmic tangents of the half-complements of the lat. are the true differences of longitudes correfponding to thofe latitudes.

The diff. between Briggs's logaritbmic tangents of the half-complenents Article X . of the latitudes of any teco places, to the merid. Liff. of lat. in minuies. between thofe places, is in ibe confant ratio of $1263,3, \mathrm{E}^{2} \mathrm{c}$. 10 I ; or of 1 to 0,0007915704, E่:

For Briggs's logarithmic tangents arc as the differences of longitudes on the rhumb (A) of $51^{\circ} 38^{\prime} 9^{\prime \prime \prime}$; whofe natural tangent is $1263,3, \mathcal{B}^{\circ}$.
The nautical meridian is a fcale of longitudes on the rhumb (B) of 45° by Art. VI. whofe tangent being equal to the radius, may be expreffed by unity. And the differences of long. to cqual differences of latitudes on different rhumbs, being to each other as the tangents of the angles thofe rlumbs make with the meridians. Therefore,
As the tangent of $A\left(51^{\circ} 3^{8^{\prime}} 9^{\prime \prime}\right)=1,2633, \mathcal{E}^{\circ}$.
To the tangent of $B\left(45^{\circ}\right)=1,0000$;
So is the difficence of long. on A, or the diff. between the logarithmic
tangents of the half co-latitudes of two places
To the diff. of longitudes on B, or the merid. difference of latitudes of thofe places.
And hence arife the rules which are given in nautical works, for finding the meridional parts by a table of common logarithmic tangents.

This curious difcovery of Dr Halley's, joined to that excellent thought of his, of delineating the lines, fhewing the variation of the compals an the nautical chart, are fome of the very few ufeful additions made to the art of navigation within the laft 150 years: for if befide thefe, we except the labours of that ingenions artift Mr Richard Norwood, who improved the art by adding to it the mannes of failing in a current, and by finding the meafure of a degree on a great cicle, the Theory of Navigation will be found rearly in the fame flate in which it was left by that eminent mathematician Mr Edward Wrigbt; who, about the year 1600, publifhed the principles on which the true nautical art is founded; and thewed, what does not appear to have been known before, how to eftimate a fhip's true place at fea, as well in long. as in lat. by the ufe of a table of meridional parts, firt made by himfelf, and conftructed by the conftantial-- dition of the fecants, and which differs almoft infenfibly from fuch a table made on Dr Halley's principles, contained in the preceding articles.

I fhall conclude this difcourfe with an article, which attho' it be fomewhat foreign to the preceding fubject, yet, as it was difcover'd while I was contemplating fome part thereof, and perhaps is not exhibited in the fame view by others, it may not be improper to annex it in this place: which is to demonftrate this common logarithmic property, that the fluxion of a number divided by that number, is equal to the fluxion of the Napierian logaritbsz of tbat number.
Fig. 59.
Let $B E G$ be a logarithmic fpiral, cutting it's rays at angles of 45° : then, it $A E$ be taken as a number, $B C$ will be it's Napierian or hyperbolic logarithm.

Alfo, let $C D$ exprefs the fluxion of the $\operatorname{logarithm} B C$; and the correfponding fluxion of the number $A E$, will be reprefented by $F G$, or it's equal $F E$; as the angles $F E G$ and $F G E$ arc equal.

Now, $A C: C D:: A E:(E F \Rightarrow F G$.
Therefore $C D=\frac{F G}{A G} \times A B$.

11a XI Tol X. Part I Page 260.
Fig. 58

And if $A B$ be taken as the unit or term from whence the numbers begin:

Then $C D=\frac{F G}{A E}$. थ. E. D.
VI. $A A A A$ reprefent a trunk of timber, with a fquare hollow, through A machine the centre of which paffes the fquare piece of timber $B B$.
A groove on each fide, in which are placed the two pieces of iron $C C$; the foot of each refting on the pins $D D$, that pafs through the trunk; the upper part of the irons are hooked to an iron pin at E, which paf- vented by Mafes through the fquare piece $B B$; which piece is hollowed between H jor $W \mathrm{~m}$. and H, for the hooks of the irons $C C$ to pafs up and down.
When the weight F touches the ground, the two irons $C C$ fink the trunk to G, which unhooks them at E; whereupon they fall off, and leave to Georgia. the trunk at liberty to float or rife up again to the furface.

A machine of thefe dimenfions, loaded with an iron ball, F, of 12 pounds weight, being let down in water 100 fathoms deep, will go down to the bottom, and the trunk will return in $I^{\prime} 3^{\prime \prime}$.

Cook in the year 1738 , in a vojage N°. 479 . p. 146. Mar. and April, 1746. Prefented April 10. 174^{6}. Fig. 60.

CHAP. VII.

$$
M \cup S I C .
$$

I. N compliance with your requeft, I here fend you fome of my of the varithoughts on the various genera and Jpecies of the Greek Mufic. ous Genera What they were, and how far the doctrine of the Ancients in this refpect and Species is reconcileable with the true nature of mufical founds, are, you know, of Mufic aqueftions which have not a little perplexed the learned.

That mufical intervals are founded on certain ratio's or proportions fome obfervaexpreffible in numbers, is an old difcovery. Nobody is better acquainted tions concernwith thefe proportions than yourfelf; and I am not a little obliged to you for the light you have herein given me. It is well known, that all mufical ratio's may be analyfed into the prime numbers 2,3 , and 5 ; and that all intervals may be found from the vetave, fifth and third mefor; which re fpectively correfpond to thofe numbers. Thefe are the Muficians elements, from the various combinations of which all the agreeable variety of rclations of founds refult. This fyitem is fo well founded on experience, that we may look upon it as the fandard of truth. Every intervai that uccurs in Mufic R. S. is good or bad, as it approaches to, or deviates from, what it ought to be on thefe principles. The doctrine of fome of the Ancients feems different. Whoever looks into the numbers given us by Plolimy, will not only find the primes 2,3 , and 5 , but $7,11, \mathcal{E}_{6}$. introduced. Nay the priated suith abterationt. may be expreffed by fuperparticular ratio's. But thefe are juftly exploded conceits; and it feems not improbable, that the contradictions of different numerical hypothefes, even in the age of Mivfoxinus, and their inconfiftency with experience, might lead him to reject numbers altocyether. It is piry he did: had he made a proper ufe of them, we fhould have had a clearer infight into the Mufic of his times. However, what remains of the writings of this great Mufician, joined to my own obtervation and experience, has enabled me, I hope, to throw fome light upon the obfcure fubject of the ancient fpecies of Mufic.

By the manner in which Euclid and others find the notes of their fcale, it mult have been compofed of tones major, and limma's. Hence the feven intervals of one octave would be thus exprefied in numbirs, ?,

Some modern authors laave from this inferred the imperfection of the Greek Mufic. They alledge we here find the ditonus, or an interval equal to two tones major, expreffed by : $\frac{1}{6}$, intead of the true third incjor expreffed bys. As there can be no queftion of the beauty and elegance of the latter, the former therefore mult be out of tune, and out of tune by a whole comma, which is very fhocking to the ear. In like manner the trihemitone of the Ancients falls fhort of the third minor by a comna; which is alfo the deficiency of their hemitone or limma, from the true femitone major, fo effential to good melody. Thefe errors would make their fcale appear much out of tune to us. This I readily grant; and add, that it appeared out of tune to them ; fince they exprefsly tell us, that the intervals lefs than the diatefarcon or fourth, as allo the intervals between the fifth and octave, were diffonant and difagreeable to the ear. Their fcale, which has been called by fome the fola maxima, was not intended to form the voice to fing accurately, but was defigned to reprefent the fyftem of their modes and tones, and to give the true fourths and fifths of every key a compofer might choofe. Now if, inftead of tones major and limma's, we take the tones major and minor, with the femitone major, as the moderns contend we fhould, we fhall have a good feale indeed, but a fcale adapted only to the concinnous comftitution of one key; and whencver we proceed from that into another, we find fome fourth or fifth erroneous by a comma. This the Ancients did not admit of. If, to diminifh fuch errors, we introduce a temperature, we Thall have nothing in tune but the octave. We fee then the fcale of the Ancients was not deftitute of reafon; and that no good argument againtt the accuracy of their practice can from thence be formed.

It was ufual among the Greeks to confider a defcending as well as an afcending fale ; the former proceding from acute to grave, precifely by the fame intervals as the latter did from grave to acute. The firft found in each was the Prolambanomenos. The not diftinguilhing thefe two fcales has led leveral learned Moderns to fuppofe, that the Greeks, in fome centuries, took the Proflambanomenos to be the loweft note in their fyftem;
and, in orher centuries, to be the higheft. But the truth of the matter is, that the Proflambanomenos was the loweft, or higheft note, according as they confidered the alcending, or defcending fcale. The diftinction of thefe is conducive to the variety and perfection of melody ; but I never yet met with above one piece of Mufic, where the compofer appeared to have any intelligence of this kind. The compofition is about 150 , or more, ycars old, for four voices; and the words are, Vobis datum eft nofcere nyyferium regni Dei, ceteris autem in parabolis; ut videntes non videant, © audientes non intelligant. By the choice of the words, the author feems to allude to his having performed fomething not commonly underttood.
I fhall here give you an octave only of the arcending and defcending fcales of the diatonic genus of the Ancients, with the names for their feveral founds, as alfo the correfponding modera letters.

Afcending.
A

Proflambanomenos
Hypate Mypaton
Parhypate Hypaton
Lychanos Hypaton
Hypate Mefon
Parhypate Mcfon
Lychanos Mefon
Mefe

Defcending.

Wherc you fee tife fame Greek names ferve for the founds in the afcending and defcending fcales.
In the octave here given, four founds, viz. the Profambanomenos, Hypate Hiypaton, Hypate Mejon, and Mefe, were called Jabiles, from their remaining fixed throughout all the Genera and Species.

The other four founds being the Parbypate Hlypaton, L.ycbanos Hiypaton Parbypate Mefon, and the I Iycbanos Mefon, were callied mobiles, becaufe they varied according to the dificient fpecies and varieties of Mufic.
I come now to determine the queftion, what thefe different genera and fpecies were. You know, that by genus and fpecies was underttood a divifion of the diatefaron, containing 4 founds, into 3 intervals. The Greeks conftituted 3 genera, known by the names of enbarnozic, chromatic, and diatonic. The cbromatic was fubdividied into 3 fpecies, and the diulonic into 2 . The 3 cbromatic fpecies were che chromaticum molle, the fefquialterum, crom molle, and the ancenfum; to that they had fix fpecies in all. Some of thefe are in ufe ambong the Moderns, but others are as yet unknown in theory or practice.
I now proceed to define all thefe ljecies, by determining the intervals, of which they feverally confofted; begining by the diatonicum intenfam, as tire mott ealy and fanmisar.

Whe diatonicumi intenfu:n was compofed of two tones, and a femitone: but, to fpeak exactly, it confits of a fumitone major, a tone minor, and atone major. This is in daily practice ; and we find it accurately defined by Didyans in Ptolemy's Harmonics publifhed by Dr Wallis.

The next fpecies is the diatonicun molle, as yct undifoovered, as far as appears to me, by any modern author. It's component intervals are, the femitone major, an interval compoled of two femitones minor, and the complement of thefe two to the fourth, being an interval equal to a tunc major, and an cubarmonic diefis.
'The third fpecies is the chromaticum tonicum, it's component intervals are, a femitone major, fucceeded by another femitone major; and, lally, the complement of thefe two to the fourth, commonly called a fuperhuous tone.
The fourth fpecies is the cbromaticum Sefquialterum, which is conttituted by the progreffion of a femitone major, a femitone minor, and a third minor. This is mentioned by Ptolemy, as the cbromatic of Didymus. Examples among the Moderns are frequent.
The fifth fpecies is the chromaticum molle. It's intervals are two fubfequent femitones minor, and the complements of thefe two to the fourth; that is, an interval compounded of a third minor, and an enbarmonic diefis. This fpecies I never met with amung the Moderns.

The fixth and laft fpecies is the enbarmonic. Salinas and others have determined this accurately. It's intervals are, the femitone minor, the enbarizonica, diefis and the third major.

Examples of four of thefe fpecies may be found in modern practice. But I do not know of any Theorift who ever yet determined what the cbromaticum toniaum of the Ancients was: nor have any of them perccived the analogy between the cbrcmaticum fefquialterum and our modern obromatic. The enharmonic, fo much admired by the Ancients, has been little in ufe among our Muficians as yet. As to the diatonicum intenfum it is too obvious to be miftaken.

Arifoxenus and others often mention the tone as divided into 4 parts, and the femitone into 2 ; thereby making 10 divifions or diefes in the fourth. And this is true, if we confider thefe founds in one temfion; that is, either aicending or defcending: but, accurately fpeaking, when we confider all the diefes or divifions of the fourth, both afcending, and defcending, we thall find $13 ; 5$ to each tone, and 3 to the femitone major. But then it is to be obferved, that fome of thefe divifions will be lefs than the enbarmonic diefis: for, if we divide the femitone major into the femi-
tone minor, and enbarmonic dicfis: afcending, for inftance, $E, \notin E, F$, and then divide in like manner defcending, $F, F F, E$, we fhall have the femitone major divided into three parts thus, $E, \hbar F, \not, \notin E, F$; where the interval betwecn $t F$ and $\nVdash E$, is lefs than the enbarmonic diefis between E and $\frac{t}{2} F$ and between $\mathcal{\psi} E$ and F, is as eafily proved.

Now, if we fuppofe thefe fmall intervals equal, by increafing the leaft divifion, and diminifhing the true enharmonic diefs, we fhall then have a fourth divided into 13 equal parts; and, confequently, the octave divided into 3 fuch equal parts; which gives us the celebrated temperature of Huygens, the moit perfect of all.

From this it appears, that the divifion of the octave into 31 parts, was neceffarily implied in the doctrine of the Ancients. The firft of the Moderns who mentioned fuch a divifion was Don Vincentino, in his book intitled L'Antica Mufica ridotta alla moderna prattica, printed at Rome, 1555, folio. An initrument had been made according to his notion; which was condemned by Zarlino and Salinas, without fufficient reaton. But Mr Huygens, having more accurately examined the matter, found it to be the belt temperature that could be contrived. Though neither this great Mathematican, nor Zarling, Salinas, nor even Don Vincenting, feem to have had a diftinct notion all thefe 31 intervals, nor of their names, nor of their neceffity to the perfection of Mufic.

I muft obferve to you, that I received, fome time ago, a manufcripe from Filorence, where a Mulician of that city had rightly named thefe intervals of the octave. I found their names, you know, many years ago.

In. Ituygens's temperature the tones are all equal : but, in a true and accurate practice of finging, they are not fo. And I mult add, that the tone divided in every feccies muft be the tone minor; for the divifion of the tone major is harfh and incleganc. So that, in the divifion of the fourth, it is to be obferved, that in every fpecies, the tone major muft either be an undivided interval, or make part of one.

You may perhaps wonder how the foregoing doctrine can be found in the writings of the Ancients, fince the diftinction of tones into major and minor is no where mentioned in their writings. But it is to be obferved, that tho' the terms do not occur, yet the thing itfelf was not unknown to them. I own, they have not expreffed themfelves fully; yet, from the whole of their writings come to our hands, I think the doctrine before laid down may be well fupported. But, as it would require fome time to put this in a juft light, I mult defer it to another opportunity.
II. I think the inclofed paper is the effect of great ingerivity and A letter from much thought ; and as the fubject-matter of it may tend to give great improvement and pleafure to many, not only in our own cointry, but every-where, I hope my prefenting it may not be thought improper, that it may thereby be printed and publified to the world. Mr John Freke, F. R. S. Surgeon to Si Bartholo-

Of the various Genera and Species of Mufic, Ecc.

a paper of the It was invented and written by Mr Creed, a Clergyman, who was lare Rev Mr efteemed, by thofe who knew him, to be a man well acquainted with Creed. con- all kinds of mathematical knowledge. And was fent me by a gentleman cerning a ma clisine to wris, down extempore l'oluntaries, or otber pieces of Al l fic $\mathrm{N}^{\circ}, 483$. p. 445 . Mar. Erc. 1747 .
Read Mar.
12.1746-7. Muxime 1.

Maxim II. A demonfration of the poffibility of making a machine that foall write extempore V'oluntaries, or osber pieces of Mufic, as faft as any mafter foall be able 10 play ibem upon an organ, harpficord, Ejc. and tbat in a cbaratzer nure natural and intelligible, and more exprefive of all the ciarieties thofe infiruments are capable of exbibiting, than the charaiter now in use.
All the varietics thofe inftruments afford fall under thefe 3 heads : Firft, The various durations of founds, commonly called minims, crotcbets, \&ec. Secondly, The various durations of filence, commonly called refts. Tbirdly, The various degrees of acutenels or gravity in mufical founds, as A re, B mi, \&cc.
Strait lines, whofe lengths are geometrically proportion'd to the various durations of mufical lounds, will naturally and intelligibly requefent thofe durations. Ex: gr.

The firt (being 2 inches) reprefents a femibreve.
The fecond is 1 inch, and denotes a minim.
The third is half an inch, and fignifies a crotchet.
The fourth is a quarter, and aniwers to a quaver.
The fifth is an eighth, and ftands for a Semiquaver.
Maxim III. The quantity of the blank intervals, or diffontinuity of the lincs, will exactly reprefent the duration of filence or refts. Ex. gr.

Maxim IV. The different degrees of Mufical founds, as Gainut, A re, B ind, \&c. may be reprefented by the different fituations of thofe black lines upon Fig 61. the red ones or faint ones.
Probiem. To make a machine to write Mufic in the aforefaid cbaraifer, as faft as it can be play'd upon the organ or barpficord, to which the machine is fixed.

That a cylinder may be made by the application of a circulating, not Pofulatum. a vibrating, penduium, to move equally upon it's axis the quancicy of 1 inch in a fecond of time, which is about the duration of a minim in allegro's;

Suppofe the cylinder a to be fucin, and to move under the keys of an Fig 62. organ, as b, c, d, and nail points under the heads of the keys, it is manitelt, that if an organift play a minim upon c, that is, if he prefs down c for the fpace of a fecond, the mail will make a icratch upoa the cylinder of 1 inch in length, which is my mark for a minim.

Again, if he rett a croichet, that is, if he ceafe playing for the fpace of haif a fecond, the cylinder will have moved under the nails half an inch without any feratch; but if the organift next prefferh down d for the fpace of halt a fecond, the nail under d will make a feratch upon the cylinder half an inch long, which is my mark for a crotcbet. It will likewife be differenoly fituated from the feratch that was made by c, and confequently diftinguifhed from it as much as the notes now in ufe are from one another by their different fituation in the lines. (Vide Fig. 61.)

Thefe three inftances include all that can be performed upon an organ, E'c. (Maxim I.)
'Therefore it is already demonftrated, that whatever is play'd upon the organ during one revolution of the cylinder a (Fig. 62.) will be infcribed upon it in intelligible characters. - I proceed to fhew how this operation may be continued for a long time.

In Fig. 63. a a, b, c, d, are the fame as in Fig. 62. Let x be a long Fig. 63. fcroll of paper wound upon fuch a cylinder as z. Let eeee be the fame fcroll brought over the cylinder $a a$, to be wound upon the cylinder $y y$, as faft as the motion of a a (which is determined by a pendulum) will permit.

It is manifert, that whatever is play'd upon the organ during the winding up of $y y$ will be written on the feroll by the pencils $b, c, d, \xi^{3} c$.
All the graces in Mufic being only a fwitt fucceftion of founds of minute duration, will be expreffed by the pencils by fmall hatches geometrically proportion'd to thofe durations. Ex. gr.

A fingle Beat
A double Beat
A Shake
A Turn
A fingle Backfall
A double Backfall
A Sbaic and Turn

If a line commence exactly over or under the termination of another, it is an indication of a fur; as

So a fmall interval indicates the contrary; as

Flat or fharp notes are implied by their fituation on the red lines; the natural notes being always drawn between them, ciz. in the fpaces. (Vide Fig 61)

The fcroll may be prepared before-hand with red lines to fall under their refpective pencils. It is the fureft way to rule them after; though it is feafible or poffible to contrive that they may be ruled the fame inftant the Mufic is writing

The places of the bars may be noted by two fupernumerary pencils, with a communication to the hand or foot of a perfon beating time.

Grave Mufic from brifk, how from faft, Efc. will be better diftinguifhed by this machine, than in the ordinary way by the words Adag o, Allegro, Grave, Prefto, \& fc. for, by thefe words, we only know in general this muft be now or faft, but not to what degree, that being left to the imagination of the performer; but here I know exactly how many notes muft be play'd in a fecond of time; viz as many as are contain'd in : inch of the feroll per poffulatum.

Laftly, whereas, in the ordinary way of writing Mufic, you have either no character for graces, or fuch as do not denote the time and manner of their performance, here you have the the minuteft particles of found that compofe the moft tranfient graces mathematically delineated.
N. B. Though, to facilitate the demonfration, I fuppofe the pencils to be fixed under the heads of the keys, and confequently to require a very broad fcroll to pafs under them; yet I intend the pencils a more commodious fituation, viz. the motion of the keys to be communicated by fmall rods to them (which I know better how to do than to defcribe, the fcheme would be fo perplex'd). The pencils are to be macle of fteel, and ranged in clofe order like the teeth of a fmall comb, fo that a very narrow icroll will do. I can prepare the paper to receive a very black impreffion from the pencils at fo cheap a rate, that, at the expence of $6 d$. in paper, I can take in writing all the Mufic that the fwifteft hand frall be able to play in an hour.

\square

THE

Philofophical Tranfactions A BRID GED.

P A R T II.

CONTAININGTHE

Phyfiological P A P E R S.

C H A P. I.

PHYSIOLOGY, METEOROLOGY, PNEUMATICKS.
I. 1.
ver, are capable of kindling all fuch fluids as may be what is conotherwife kindled by actual flame. And this experiment fucceeds beft, when the Quinta effentia veget abilis is held in a fpoon under the crofs of a foord, whofe point is turned towards the electrifying glafs (Tab. II. Fig. 4.) * In like manner, the fame fpirits may eafily be fet on fire, by the fparks proceeding from an electrified tube of tin.

This experiment with the fparks coming from metals when made John Henry elcetric, was firft made by Dr Ludolpt, of Berlin; who, toward the
tained in a book concerning Electricity, juf publifsed as Leipfic, 1744. by John Henr
Winkler, Greek and Latin Profeflor tbers; beginning

An Abjract concerning Etcatricity.

from Are -9. beginning of the prefent ycar 1744, kindled, with the fparks excited 10 Are. 79. by the friction of a glafs tube, the etbereal spirits of Erobenius. This No. 474 P. 166. June, ह். 1744. Read Nov. was done at the opening of the Royal Acaderiny, and in the prefence of fome hundreds of perfons. This atcount was nut only related in the Bicrlin Gazerie, of the zoth of A ay laft; but has been fince confirmed by feveral letters, fent from Berlin to Leipfic, to Count Manteuffil, immectiately after the experiment.

Mr Marfcall, who now fudies here, alfo communicated to me a letter he had rectived from Berlin concerning the fame; and I have fince been alfo certified of it, b_{j} the account of feveral men of learning, that had feen the experiment at Berlin, and that have fince vifited me at this place. Laftly, Mir Reinbart, who came hither about laft Eafler, with Count Zaiski, Great Chancelior of Poland, told me, that the experiment was not difficult to be made; and that the liquor, called Quinta efientia zegetnbilis *, night very readily be kindled by the electrical fparks. I immediately fent for fome of that effence, and found the experiment fucceed to my wifh.

Red-hot iron fets no fpirits on fire, tho' held very near to thofe fpirits; but if that iron is made electric, its electric fparks very readily kindle all well-rectified fpirits.

The fparks that proceed from the body of a man, made elcetrical, kindle fpirits as quick as thofe from electrified metal, whether the body of the man is rendered electric immediately by the glafs rube, or by the intermediate tube of tin.

I made this experiment with fuccefs upon myfelf, before his Excellency Count Manteuffel, at his houfe, about the middle of laft May, in the prefence of Profefior Cbriftian Wolf, of Hall, and many others. Neither myfelf, nor any of the company, knew, at that time, that the electric fparks, from the body of a man, were capable of kindling fpirits; but, upon feeing the Quinta effentia vegetabilis kindled with extraordinary quicknefs, by the lparls proceeding from an iron tube that was rufty, one of the company itarted the quection, whether the fparks, from the body of a man, might not poffibly do the fame? Upon which I immediately ftept on to a frame, over which blue filken lines were extended: I took hold with one hand of the rufty iron tube, and held the fingers of the other over fome of the Quinta effentia; and the fparks from my fingers immediately fruck with fuch violence into the filver fpoon that held it, that the effence was in a moment fet all in a flame.

This experiment, fo unexpected, gave the greateft fatisfaction to all the company; and an account of it was publified in the Leipfic Gazette of the 2ift of May; where it was alfo mentioned, that divers other experiments, with the fparks of elcetrified metal, had already been made both at Dantzic, and at Berlin.
Dead fowls, pork, and veal, both raw and dreft, may be made electric by a tin tube, or by the hand of a man; infomuch that the fparks, pro-

[^24]ceeding from thofe feveral bodies, will alfo kindle the fame effence. If fuch fluid bodies, as are ufually kindled by flame, are not fine enough, they need only be warm'd a little in the fpoon: or the Spirits may be lighted a litele before, and blown out again, before they are brought to the electrical body.
In this manner I have kindled, with the electrical fparks, camphorated fpirits of wine, coloured with faffron, the common Effentia vegetabilis; and even Firench brandy, and corn-fpirits, only taking the precaution of warming thefe liquors a little before.

Even oil, pitch, and fealing-wax, may be lighted by the electric fparks, provided they are before heated to a degree that is next to kindling.
2. After Mr Du Fay lad difcovered by accident, that an electrified Of Elearical human body, if touched by another not electrified, would emit fparks that pricked pretty fharply, thefe experiments were repeated in the univerfity of Leipfic; and inttead of the glafs tube which Mr Gray and Mr Du Fay ufed, they applied a glafs ball, fuch as Mr Hawkfuee formerly ufed in his electrical experiments. On this occafion it was obferved, that clectrified todies, efpecially thofe of ammals and metals, emitted a fire fo ftrong, that not only fipirit of wine moderately warmed, which fucceeds very eaffly, but alio other inflammable bodies, fuch as gunpowder, pitch, brimftone, and fealing-wax, being firft well heated, may be fet on fire. I relate theie laft experiments on the credit of anocher; but the former I can affirm on my own experience whilt the glafs ball, thro' which an iron axle paffes, is turned fwiftly round, fire by Sam. Chriltian Hollman. Prof. Pul. Ord. Gotting. In a leser 10 Dr Mortimer, dated Gottingen, OE. $1:$ $1744 \cdot N \cdot 475$. p. 239. Jan. Bc. 1745 . Read Jan. there is put upon it as near as poffible an iron tube, made of iron phates tinned over, near an inch in diameter, and 3 or 4 feet long; and laid horizontally on lines of blue filk : and to keep the tube from doing any hurt to the glass ball as it turns round, I put into it's hollow extremity fome bundles of various forts of thread, fome plain, and others covered with gold or filver, the extremities of which whilit they touch the ball, amongt other pleafant phonomena, make the force in the iron tube much fronger. The other extremity of this tube is held by a man, who ftands upon a cake of pitch 2 or 3 inches thick, poured into a wooden veffel: and then the electrical torce is to diffuled thro' his whole body; that any part of it will attract and repel alternately leaf-gold and other light bodies, and if any part, either of the iron tube, or of the electrified perfon, is touched by another not electrified, it will emit fparks, that are extremely pungent. It will often happen alfo, that if the electrined perion ftanding on the pitch has a iword on, fparks will be emitted from the extremity of the Iheath, even of their own accord.

Let the ferfon who ftands on the pirch hold a gold or filver laced hat under his arm, and let another not clectrified touch the edging, and he will feel a fmart ftroke and pain in his arm. If a perton not electrified holds highly rectified fpiris of wine, moderately warned, in a
fyount

Of ELECTRICITY.

fyoon, and an electrificd perfon brings his finger, an iron key, or the point of a fword near the furface of the fpirit, it will immediately be intlamed. If an electrified perfon holds a fpoon with fpirit of wine in his hand, and one of the company puts his finger near it, the fame effect will follow. If 2,3 , or 4 , ftand upon pitch, and join their hands, or unite ly the mediation of a cord, iron tube, \&cc. the laft will perform the fame with the firft and fecond.

I do not mention other newly difcovered ploenomena, relating to the attraction and repulfion of the electrified body. I flall only add, that when the glais ball is turned round, a hand muft be ufed, that is dry, and not too hot; for nothing has yet been found equal to a human hand.

Aletser fiom the Rev.
Hen. Miles, D. D.F.RS. to Mr Hen. bisker.
F. R.S. of firing Phofphorus by Eleĉtricity. lbid p. 290 Read March 7.1744.5.
3. It came into my head laft night, to try whether the effuria of an excited glafs tube would not kindile Pbofphorus; and having been ufing my tube for the fake of a little excrcife, I took a fmall bit of about a $\frac{1}{4}$ of an inch long, which has lain by me thefe ten years; and having nothing at hand convenient for holding it, I roll'd it up in a imall piece of white paper; and applying it to the excited tube, it immediately took fire, emitting a confiderable quantity of flame and fmoke: after fome time I quenched it, by dipping it into water, which was ready for that purpofe; and taking it out again without ftaying any longer than to be fatisfied it was not on fire, I applied it as before, when it fuddenly took fire, as at firft : this I repcated in the fame manner for 6 or 7 times with the like effect; tho' the Pbofpborus could not be drained of the water, efpecially as the paper about it was wet.

The room in which 1 made the trial was not abfolutely dark, having a dull fire (tho' without any candle): the tube I wie is about 2 feet $\frac{1}{2}$ long, the diameter of the bore nearly one inch, the thicknefs about $\frac{1}{3}$ of an inch, hermetically fealed at one end (which fort are, by the way, moft convenient for rubbing) : the Pbofpborus was held generally about 5 inches from the tube; but once or twice bringing it nearer, I could perceive a continued ray of light from the tube to the Pbofpborus. Some occafions calling me away in the midft, I could not be nore accurate; but I would not omit to tell you one obfervation I made, upon pretty fmartly exciting the cube, that the corrufcations of light were larger, more fubftantial, and of a more regular form than I had ever obierved them before, this happened, not when the Pbojpborus was applied, but in the intervals. Whether any of the fumes of the Pbojpborus, which remained in the room, might contribute hereto, I cannot tell, tho' it is not very likely. 'Tho' I never made many trials with Pbofphorus, yet as I am not infenfible, that fome folid kinds of it will be inflamed by the mere action of the air upon it, when it is taken out of the water in which it is ufually kept; I was therefore minded to try whether the air would have that effect upon mine, and accordingly took it out of the water, with a forceps, and laid it down on a fhelf, fo as norhing touch'd it but the inftrument which held it, but I could not
perceive the leaft glimmering of light, tho' the place was fufficiently dark, after it had lain there for the fpace of half an hour, whici) I thought long enough to fatisfy me, that it was not kindled by the action of the air upon it in the above-mentioned experiment.

A reprelents the tube which I held in my right-hand, and excit d $F: z=z$ with my left, having on a glove, which I find more convenient for me in rubbing it. I fhould obferve, that my method then was in rub it fmartly for about half a fcore times up and down; and then giving it one brisk ftroke, beginning at the end from me, upon difcharging my hand quick from the tube, the corrufcations of light appear'd as mark'd α and β, both in fize and form : fome allowance may be thouglit reafonable to be made for one's juclgment in fuch a cafe, the motion being fo very fudden, and the plowomenon fo foon difappearing. But I intench to repeat the experiment whenever the temperature of the air thatl be favourable, which I don't find it to be this murning. 1 forgot th mention, that, during this trial, I found the effuvia troublefonte to my eyes to a great degree, occafioning a very fenfible fmarting pain, which did not go off for fome time; tho' I never defignedly brought the tube near my face. This was the firft time of ufing this tube.
4. §1. Hollow glafs balls, and veffels of glafs, which are rubbed New ohferinaby rotation and application of the hand, excite fuch an Electricity in tions on Elecmetals and perfons near them, that the electrical fparks, which are emitted on the approach of a body void of Electricity, burft out in a continual ftream.
tricity ; by Jo. Hen. Winkler, Gr. and Lat. Prof.

> Pub. Ord. and Reifor of she Usiverfits of Lcipfic. Ibid. p. 30\%. Pref. Mar. 21. 174+5.
§ 2. But if the glafs tubes and veffels are rubbed up and down, the fparks are emitted by intervals.
§3. For the more convenient rubbing of the tubes, I have caufed a The kinds of machine to be made after the following manner. Four columns are in- Flectricity ferted into a plank $a b c d$. On the tops $g b$ of the 2 middle ones e and f are ferewed little planks, the middle pare of which is hollowed, fo as to fit the convexity of the glafs tube. To thefe little planks others of the fame kind hollowed in like manner are ferewed. One of thefe columns with its little planks is reprefented in Fïg. 3. where $i k$ fhews the lower plank, im the upper one, and n o the ferews that faften them. Fig. 3. The cavities of the upper and lower plank are fo lined with buck-1kin and hair, as ciofely to embrace the glafs tube, which is to be drawn backwards and forwards. The extremitics of the rube $q q$ are armed Fig. 2. with brafs cafes, which are cemented to them.

To the cafes are annexed rings, to which are faftened hempen cords, one of which $q r$ is drawn thro a hole of the column $t u$, and the other $q \int$ over a pully x faftened to the column $y z$. Then the glafs tube, being drawn backwards and forwards by two perfons, abundantly communicates the E!ectricity excited therein to an iron tube α, β, placed in

VOL. X. I'art ii. N n nets

The mestod of increafing Electricity.
nets of filk. To the extremity of the iron tube a are tied filver threads, which touch the glafs tube between the two columns e g and $f b$.
§ 4. And tho' the fparks excited by the rotation of a glals ball How continually on the furfaces of metals; yet thofe which arite from glais veffels drawn to and fro are more vehemently purgent, provided that thefe veffels are of the fame magnitude with the balls, and the glafs is equally good.
§ 5. The electrical fparks alfo, which are raifed on the furfaces of metals by the drawing of glals tubes, exceed the fparks excited by the turining round of glats veliels.
§6. Glafs balls rubbed by the hand as they are turned round fhew more Electricity, than by the application of a leashern culhion.
§ 7 . In experiments made either by turning the ball, or drawing the cube, there is need of three perfons. But in ufing the Turncrs wheel there wants only one.
§ 8. I call that Electricity fimple, which is raifed by one glafs veffel, ball, or tube; double, which is raifed by 2 , triple by 3, quadruple by 4, and fo on.
§ 9. The Electricity, which I raifed by the attrition of 2 glafs balls, of the diameter of \pm a Paris foot, was fo great in water, fnow, and ice, that the electrical fparks llying from thele bodies have fet fire to pure fpirit of wine warmed.

In water the experiment is made 2 ways. For either the fpirit is applied in a fmall fpoon, and hanging from an electrified iron tube : or elfe a finger dipped in warm firit of wine is extended over water in a tin veffel, butat a certain diftance from the furface of the water. To the veffel, covered with a filken net, is added an iron wire, which reaches to the glafs ball, cube, or veffel, in the electrical machine. Snow and ice alfo are laid upon the filken net in the tin veffel.
§ 10. To make the Electricity fill greater, 2 machines are fo placed as to have each of them 2 balls, which communicate the Eleetricity to
Fig. 1. the fame iron cube. Over each machine is laid a filken net $a b$, to which the ison tube $c d$ is joined, which extends near the machine 2 iron arms, $b c$, of and $b d, g b$, to which filver threads are joined touching the balls in $i k l \mathrm{~m}$.

If inftead of balls I make ufe of glafs cups, which as they are turned round are rubbed by culhions; I add no filver threads to the iron arms, to touch the veffels. For I have found, that by adding thefe the Electricity is diminifhed. The Eicarici- § 11 . The machine with the glafs veffel, and a man that turns the
ty, zeten it glafs veffel with his foot after the manner of theTurners, reft upoh filken
reurns into
returns into
the boutí,
from which
if firfif procecdsd, is diminified.
Fig 5.
is diminijued.
nets large enough for the machine and the man to be at a confiderable diftance from the wooden fides, to which the nets are faftened.
\$12. When the glafs veffel as it turns is rubbed by the cufhion, not only the iron tube placed on the tube and neareft the veffel, but alfo the

Of ELECTRICITY.

manand the machine difcover a certain Electricity, by which light bodies under a glais ball, which another man holds in his hand, are varioully moved.
§ 13 . The fame happens, if a ball is made ufe of inftead of the veffel; and the perfon, who applies his hand as it turns, ftands with one fout on the machine, and the other on the filken net.
§ 14. But when things are thus conftituted, and the iron tube $a b$ is Fig. 10. placed on the filken net near the giafs veffel or ball, another tube $c d$ is added, and extended in fuch a manner as to touch the machine in e, the fparks, which before were excited, ceafe, and the attracting force is greatly diminifhed.
§ 15. The machine, by which Electricity may conveniently be excited E'earicity in vacuo, and propagated thro' a glafs bail into the air, and communi- in vacuo. cated to all forts of bodies, is reprefented in Fig. 6.

It confifts of a glafs veffel $a b c d$, to the bafes of which $a c$ and $b d^{\text {Fig }} 8$. are cemented brazen plates, to one of which $a c$ is annexed a wooden arm ef. In this wooden arm and another plate $b d$ are conical cavities, into which little axles may be put, which being in form of a fcrew are faftened into the fides of the metallic fupport gbiklm, which being furnifhed with a male forew $m n$, may be inferted into a female frew in the orb of the pneumatical machine. The male forew paffes thro' a hole of a bent elatic plate. To the foot of the fupport $l_{\mathrm{m}} \mathrm{m}$ a Fig 9 . plate $n o$ is ferewed, the upper part of which $p q$ being lined with buck- Fig $\%$ thin and hair approaches the glafs velfel.

Into the ball $a b c d$ is infixed a perforated metalline cylinder g, chro' Fig 6. the cavity of which a piece of catgut is paffed. This catgut is wound about the wooden arm of within the ball, and has a button which faftens it to a bent elatic plate perforated at the end $r \int t$. The catgut is let out of the bell thro' a hog's bladder open on both fides. One part of the bladder is bound about the metalline tube g, and tied with a piece of packthread; and the other u is ftrongly faftened between 2 knots made in the catgut. The bladder is wetted, fo that after it has been wiped on the inlide with a linen cloth, it may cafily be extended or contracted. On the outfide of the bladder appears a certain part of the catgut $u x$, by the drawing of which the glafs veffel may be agitated and rubbed under the bell.
§ 16. In a fquare iron veffel $\alpha \beta \gamma \delta$, which is placed either in a filken Fig. $6,7,8$. net extended over a hollow glafs veffel $a b c d$, Fig. 8. or upon refin, or Fealing wax, and has an iron ftile y s, annexed to it and extended toward the cufhion, are placed fmall bits of leat-gold. To a moveable metalline cylinder ζ r, which may be thruft thro' the middle of the neck of the bell, is annexed tranfuerfly an iron wire $n\{2,2$ or 3 lincs diftant from the pieces of leaf-gold, which leap towards it, as foon as the glafs veffel, on the air being drawn out of the bell, is agitated, and rubbed by the cufhion.

Of ELECTRICITY.

§ 17. In the other perforated fide of the bell λ, a fmall glafs tube is fixed, thro' which an iron wire, $\times \lambda$ \&, reaches to the middle of the glals veffel, an exceeding fmall fpace being between the veffel and the wire. The tube and the wire are fo ftrongly cemented with fealing-wax, that no air can penetrate. And that it may be all driven out, the moveable cylinder ζ_{r}, is covered with fuer, where it touches the nteck of the bell. On drawing the catgut $x u g$, the wire not only conceives Electricity from the agitation and attrition of the veffel, but alfo propagates it thro' the glafs tube ftopt with fealing-wax, and communicates it to bodies laid on filk, which touch the wire on the outfide in $\%$, fo that the metals emit electrical fparks in the dark, on the approach of bodies void of Electricity.
§ 18. Thus alfo Fleefricity excited without is communicated to the wire, and pervades thro' che fealed tube, and emits fire in the dark at the end of the wire within the bell, and attracts the leaf-gold on the iron veffel.
\$ 19. Between the 2 anterior columns $a b$ and $c d$, are fufpended glafs veffels or balls e and f, and an clattic plate $i k$ is put into the upper hole of the third pofterior column, and a wheel is acded to the fide. A cargut faftened to the elaftic plate in k is wound round the longer arms of the veffels, and faftencd to the moveable plank $b / m n$. Thus the glafs veffels may be turned round.
§ 20 . In order to turn a glafs veffel or ball, a cord $o p q r$ is brought sound the wheel, and the wooden puilies of the veffels or balls, and may be ftraitened or loofened by means of a fcrew applied to the hinder part of the machine.
§ 21 . The anterior columns are faftened by 2 braces, from which 2 perforated cylinders ftand out, in the hinder part of which a very fmall column is fixed, in which again two little cylinders covered with buckfkin with hair underneath is fattened: but in the fore part an inftrument in which filken threads are extended, to which an iron tube with 2 arms is faftened. This tube is held by perfons ftanding on filken nets to be electrified. Into this tube if a fword is put, which hangs by the hilt with a filken thread, the electrical fparks will be emitted from it's fhell,
Fig. 11. and kindle fpirit of wine in a fmall fpoon. So what I call an electrical ftar * is laid on a large filken net, and connected by means of an iron wire with the brachiated glass tube, annexed to a fmaller net near the veffels or balls. As foon as the glafs veffels in turning receive the friction of the cufhions, or hand, the rays of the ftar emit fhining ftreaks in the dark, and when the ftar is turned round, defcribe a lucid circle.
§ 22. When the veffels are turned round, filver threads, touching the veffels are joined to the arms of the iron tube. Thus a continued ftream of Electricity is obtained. But on the contrary the Electricity is diminifhed, if the extremities of the veffels, as they turn, have filver

[^25]

threarls added, which touch the veffels. In like manner if cufhions are applied inftead of the hand, the Etectricity decreafes.
5. A hollow globe of glafs, of 6 or 8 inches diameter, being fwiftly AbAraft of a turned round upon it's axis, by means of a large wheel, in the manner Mr Haukfoee formerly advifed; and being rendered as eleetrical as poffible by the application of a dry woollen cloth, or rather of a very dry hand; it, whilft in this fwift rotation, it be brought near the end of an iron bar, fuipended by ftrings of filk that are exceedingly well dried, fuch an electric power will be communicated to the iron, that upon touching the other end of it with one's finger, not only fparks of fire, in the ufual manner, will be emitted very brikkly, but even blood will be drawn from the finger; the fkin of which will be burft, and a wound appear as if made by a cauftic.
2. If highly rectified fpirit of wine heated in a fpoon, the ethercal fpirit of Frobenius, oil of turpentine, fulphur, pitch, or relin melted, be applied to the iron bar, inftead of one's finger, the fparks proceeding therefrom will fet it on fire inftantly.
3. A chair being fufpencled by ropes of filk, made perfectly dry, a man placed thertin is rendered fo much electrical by the motion of the above-mentioned globe, that, in the dark, a continual radiance, or corona of light, appears incircling his head, in the manner faints are painted.
4. If feveral fuch-like globes, or electric tubes, are brought near the man fufpended in the chair, the motions of the heart and arteries are very fenifbly increafed; and if a vein be opened under the operation, the blood that comes from it appears lucid like phofphorus, and runs out fafter than when the man is not electrify'd.
5. Water, in like manner, fpouting from an artificial fountain fufpended by filk lines, fcatters itfelf in luminous little drops; and a larger quantity of water is thrown out, in any given time, than when the fountain is not made clectric.
N. B. If 3,4 , or 5 globes be employed, the effect will be proportionably better: and M. L'Abbé Nollet has found, that globes or tubes made of glafs, coloured blue with zaffer, are preferable to others; for when the glafs is blue, the experiments fucceed in all weathers; whereas, in damp weather, the white glafs lofes much of it's electric power.
6. In the late edition of the works of the Hon. Mr Boyle, *is a letter Alsteter frome from Mr Clayton, dated Fune 23. 1684. at Fames city in Virginin; in the Reve which he gives Mr Boyle an account of a frange accident (as he calls it); Henry Miles, and adds, that he had incloted the very paper Colonel Digges gave him to bte Prel. of it, under his own hand and name, to atteft the truth; and that the containing fame was alfo afferted to him by Madam Digges, his lady, filter to the Obfiervations

Of ELECTRICITY.

from human wife of Major Sewall; and daughter of the Lord Ballimere, to whom this

Bodies, and from Prutes ; ruith fome
Remarks on F:lęricity.
Tbid p $4+1$. dated May 9.
1745. Read Jure 13 . $17+5$. accident happened.

This paper, very unhappily, came not to hand till after Mr Boyle's works were printed; and therefore could not be inferted with Mr Cldyton's letter: bert, having fince met with it, I prefent the following exact copy of it.
"Maryland, Anno 1683.
"There happened, about the month of November, to one Mrs Su"Saminab Sewall, wife to Major Nic. Sewall of the province abovefaid, "A ftrange flafhing of fparks (feem'd to be of fire) in all the wearing "apparel the pue on, and fo continued till Candlemas: and, in the "company of leveral, wiz. Captain Fobn Harris, Mr Edward Branes, "Captain Edward Poulfon, \&cc. the faid Sufamab did fend feveral of " her wearing apparel; and, when they wcre haken, it would fly out " in fparks, and make a noife much like unto bay-leaves when flung " into the fire; and one Spark litt on Major Sewall's thumb-nail, and " there continued at leaft a minute before it went out, without any " heat : all which happened in the company of

Wm. Digges,

* "My Lady Baltimore, her mother-in-law, for fome time before " the death of her fon Cacilius Calvert, had the like happened to her; "which has made Madam Seroall much troubled at what has happenced " to her."
"They caufed Mrs Sufanna Sewall one day to put on her fifter "Digges's petticoar, which they had tried beforehand, and would not " fparkle; but at night when Madam Sewall put it off, it would fparkle " as the reft of her own garments did."

The celebrated Bartbolin of Copenbagen, in his collection of anatomical hiftories that are unufual, \dagger which he intitles Mulier fplendens, gives us a parallel inftance in a noble lady of Verona in Italy, which, he fays, he had from an account of the phonomenon publifhed by Petrus à Caftro, a learned Phyfician of the fame place, in a fimall treatife intituled De Igne Lambente. There is this circumftance not mentioned in Mrs Sewall's cafe (tho' perhaps it would have happened, if trial had becn made, as well as in the cafe of the Italian lady); which I think not improper to mention, in Bartbolin's own words. \qquad " ut quo" tiens leviter linteo corpus tetigerit, fcintilla ex artubus copiofe profiliant, "cunetis domefficis confpicue, non jecus ac $\sqrt{2}$ e filice excuterentur." At the conclufion of this relation he refers us to a book of his, intituled, De Luce Animalium, for more inftances of thefe lucid effuria; and

- The additional lines are not in Colorel Digges's hand, but feem to be in Mr Ciagton's.
+ Cent. 113. Hift. $1 \times x$. |y Hit xur.

Of ELECTRICITY.

fays, he has there fhown the caufe of them at large; but, as I have not yet got a fight of that book, I can fay nothing further only, that in the fecond Cent. of the hiftories above-mentioned, * he afferts, that he has prov'd, in his book de Luce, \&c. that light is connatural or innate to all, as well vegetables as animals.

There is another author, Dr Simpfon, who publifhed a Philofophical Difcourfe of Fermentation, dedicated to the R. Soc. 1675. who takes notice of light proceeding from animals, on the frication or pectation (as he calls it) of them; and inftances in the combing a woman's head, the currying of a horfe, and the frication of a cat's back; the two laft of which are known to moft. I cannot tell whether it be material to add, that, according to this gentleman's hypothefis, he would affign the principles of fermentation, which he fuppofes to be Acidum छु Sulphur, as the caufe of thefe lucid effuvia in animals. His hypothefis I may not take upon mie to judge of; but I humbly apprehend, the properties of the effuvia in animal bodies are many of them common with thofe produced from glafs, $\xi^{2} c$.; fuch as their being lucid, their fnapping, and their not being excited without fome degree of friction, and, I prefume, I may add, Electricity; for I have, by repeated trials, found a cat's back to be ftrongly electrical when ftroak'd.
P.S. In the account of fome of the earlier electrical experiments made by Mr Gray t, we are informed, that he electrified feveral other bodies, befides animal fubftances, by drawing them between his thumb and fingers; in particular, linen of divers forts, paper, and fir-fhavings, which would not only be attracted to his hand, but attract all fmall bodies to them, as other electric bodies do. Now, notwithitanding this laft circumftance of their attracting, as well as being attracted, may it not be queftioned, whether, in this way of trial, it appears that they are electrical bodies, or Electrics per fe ? Is it not doubrful (fince his fingers muft be excited confiderably in this experiment) whether he did not communicate Electricity to them from his hand, rather than excite it in them? I have no doubt but that the principle is inherent in many other bodies befides animal, pofibly, in all bodies whatever ; but as it is allow'd, I fuppofe generally, that animals have a greater quantity of it refiding in them, than other fubftances, there feems room to admit the doubt I have mention'd, which I fubmit to the confideration of fuch as are curious in experiments of this kind.
7. The Society having heard, from fome of their correfpondents in Experimen/6 Germany !!, that what they call a vegetable quinteffence had beer, fired by Elet?ricity, I take this opportunity to acquaint you, that, on Firiday fions tending

[^26] to illuffrate the natare

Of ELECTRICITY.

axd properties evening lait, I fucceeded, after having been difappointed in many atof Eledricity; tempts, in fetting fpirits of wine on fire by that power.

32The preceding part of the week had been remarkably warm, and the air very dry; than which nothing is more neceffary towards the fuccelis of electrical trials: to thele I may add, that the wind was then cafterly, and inclining to freeze. I that evening ufed a glafs fphere, as well as a tube; but I always find myfelf capable of fending forth much more fire from the tube than from the fphere, probably trom not being fufficiently ufed to the laft.
I had before oblerv'd, that, altho' * non-electric bodies made electrical, lofe almoft all that Electricity, by coming either within or near the contact of non-lectrics not made clectrical. It happens otherwife with regard to Eleelrics per $\int e$, when excited by rubbing, patting, $\mathcal{E}^{2} c$.; becaufe from the rubbed tube I can fometimes procure five or fix flafhes from different parts; as though the tube of 2 feet long, inftead of $b:-$ ing one continucd cylinder, confifted of five or fix feparate fegments of cylinders, each of which gave out it's Electricity at a different explufion.

The knowledge of this theorem is of the uemoft confequence towards the fuccels of electrical experiments; inafmuch as you muft endeavour, by all poffible means, to collect the whole of this fire-at the fame time. l'rof. Hollman feems to have endeavour'd at this, and fucceeded, by having a tin tube; in one end of which he put a great many threads, whole extremities touch'd the fiphere when in motion, and each thread! collected a quantity of electrical fire, the whole of which center'd in the tin tube, and went off at the other extremity. Another thing to be obferved is to endeavour to make the fuafhes follow each other io faft, as that a fecond may be vifible before the firft is extinguifh'd. When you tranfinit the electrical fire along a fword, or other inftrument, whofe point is fharp, it often appears as a number of diffeminated fparks, like wet gunpowder or wild-fire: but if the inftrument has no point, you generally perceive a pure bright flame, like what is vulgarly call'd the biue ball, which gives the appearance of ftars to fired rockets.

The following is the method I made ufe of, and was happy enough to fucceed in. I fufpended a poker in filk lines; at the handle of which I hung feveral little bundles of white thread, the extremities of which were about a foot at right angles from the poker. Among thefe threads, which were all attracted by the rubbed tube, I excited the greateft electrical fire I was capable, whilft an affiftant, near the end of the poker, held in his hand a fpoon, in which were the warm fpirits. Thus the

[^27]thread communicated the Electricity to the poker, and the fpirit was fired at the other end. It muft be obferv'd in this experiment, that the fpoon with the fpirit muft not touch the poker ; if it does, the Electricity, without any flafhing, is communicated to the fpoon, and to the alfiftant in whofe hand it is held, and fo is loft in the floor.

By thefe means I fired feveral times not only the ethereal liquor or Pblogifon of Frobenius, and rectifed fpirit of wine, but even common proof fpirit. Thefe experiments, as I before nbierved, were made laft Firiday night, the air being perfectly dry. Suniday proved wet, and Morday fomewhat warm; fo that the air was full of vapour, wind S. W. and cloudy. Under thefe difadvantages, on Monday night I attempted again my experiments; they fucceeded, but with infinitely more labour than the preceding, becaufe of the unfitnefs of the evening for fuck trials.

I lately acquainted you, that I had bcen able to fire fpirit of wine, Aletter to the Pblogifon of Frobenius, and common proof firit, by the power of Royal SocieElectricity. Since which (till yefterday) we have had but one very dry ty, dated Apr. fine day; ciz. Monday'Apr.15. wind E. N. E.; when, about 4 in the afternoon, I got my apparatus ready, and fired the fipirit of wine four times from the poker as before, 3 times from the finger of a pertion electrified, ftanding upon a cake of wax, and once from the finger of a fecond perfon ftanding upon wax, communicating with the firft by means of a walking-cane held between their arms extended. The horizontal diffance in this cafe between the glafs tube and the fpirit was at leaft ten feet.

You all know, that there is the repulfive power of Electricity, as well as the attractive; inafmuch as you are able, when a feather, or fuchlike light fubftance, is replete with Electricity, to drive it about a room, which jway you pleafe. This repulfive power continues, until either the tube lofes it's excited force, or the feather attracts the moifture from the air, or comes near to fome non-electric fubflance; if fo, the feather is attracted by, and it's Electricity loit in, whatever non-electric it comes near. In electrified bodies, you fee a perpetual endeavour to get rid of their Electricity. This induced me to make the following experiment.

I placed a man upon a cake of wax, who held in one of his hands a fpoon with the warm fipits, and in the other a poker with the thread. I rubbed the tube amongtt the thread, and electrified him as before. I then ordered a perfon nut electrified to bring his finger near the midule of the fpoon; upon which, the llafh from the lpoon and fpirit was violent enougin to fire the firit. This experiment I then repeated three tincs.

In chis method, the perion by whofe finger the fipit of wine is filcd, feels the ftroke much nore violent, than when the electrical fire goes from him to the fpoon. This way, for the fake of diftinction, we will call the repuifive power of Electricity.

The late Dr Defaguliers has obferved, in his excellent Differtation concerning Electricity. "That there is a fort of capricioufnefs attending VOL. X. Part ii.

0 o 25, 1745 : Read April 25, 1745 .

Of ELECTRICITY.

- thefe experiments, or fomething unaccountable in their pbone-- mena, not to be reduced to any rule. For fometimes an experi-- ment, which has been made feveral times fucceffively, will all at - once fail.' Now 1 imagine, that the greatert part, if not the whole of this matter, depends upon the moilture or drynefs of the air; a fudden though night alteration in which, perhaps not fufficient to be obvious to our faculties, may be perceived by the very fubtle fire of Electricity. For,

If, I conceive, that the air itfelf (as has been obferved by Dr Defaguliers) is an electric per $\int e$, and of the vitreous kind; therefore it repels the Electricity arifing from the glats tube, and difpoles it to electrity whatever non-electrical bodies receive the effucia from the tube.

2dly, That water is a non-electric, and, of coniequence, a conductor of Electricity. This is exemplified by a jett of water buing attrakted by the tube, from either electrics per fe conducting I,lectricity, and nonelectrics more readily when wetted; but what is more to my prefent purpofe, is, that if you only blow through a dry glals tube, the moifture from your breath will caufe that tube to be a conductor of Electricity.

Thefe being premifed, in proportion as the air is replete with watery vapours, the Electricity arifing from the tube, inftead of being conducted, as propofed, is, by means of thefe vapours, communicated to the circumambient atmofphere, and diffipated as faft as excited.

This theory has been confirmed to me by divers experiments, but by none more remarkably than on the evening of the day 1 made thofe before-mention'd; when the vapours, which in the afternoon, by the fun's heat, and a brifk gale, were diffipated, and the air perfectly dry, defcended again in great plenty, upon the abfence of both, and in the evening was very damp. For between feven and eight o'clock, I attempted again the fame experiments in the fame manner, without being able to make any of them fucceed; though all thole mentioned in this paper, with others of lefs note, were made in lefs than half an hour's time.

I am the more particular in this, being willing to fave the labour of thole, who are defirous of making this kind of trials. For, although fome of the leffer experiments nay fucceed almoft at any time, yet I never could find, that the more remarkable ones would fucceed but in dry weather.
A lester to she In fome papers I lately did myfelf the honour to lay before you, I acRoyal Socie- quainted you of fome experiments in Electricity; particularly I took ty. Read Octob. 24. $17+5$.
rotice of having been able to fire fpirit of winc by what I called the repulfive power thereof; which I have not heard had been thought of by any of thofe Gerrian gentlemen, to whom the world is obliged for many furprifing dificoveries in this part of Natural Philofophy.
How far, ftrially fpeaking, the fpirit, in this operation, may be faid to be fired by the regulfive power of Electricity, ur how far that power, which

Of ELECTRICITY.

which repels light fubftances when fully impregnated with Electricity, fires the ipirit, may probably be the fubject of a future inquiry; bur, as I am unwilling to introduce more terms into any demonftration than what are abfolutely neceflary for the more ready conception thereof, and as inflammable fubftances may be fired by Electricity two different ways, let the following definitions at prefent fuffice of each of thefe methods.

But firf give me leave to premife, that no inflammable fubftances will take fire, when brought into or near the contact of electrics per fe cxcited to Electricity. This effect muft be produced by non-eleetrical fubftances impregnated with Electricity received from the exciting electrics per \sqrt{e}. But to return:
ift, I luppore that inflammable fubftances are fired by the attractive power of Electricity, when this effect arifes from their being brought near excited non-electrics.
$2 \mathrm{~d} f$, That inflammable fubitances are fired by the repulfive power of Electricity; when it happens, that the intiammable fubitances, being firft electrified themfelves, are fired by being brought near non-electrics not excited.

This matter will be better illuftrated by an example. Suppofe that either a man ftanding upon a cake of wax, or a lword fufpended in filk lines, are clectrified, and the fpirit, being brought near them, is fired, this is faid to be performed by the attractive power of Electricity. But if the man electrified, as before, hold's a fpoon in his hand containing the fpirit, or the fame fpoon and fpirit are placed upon the fword, and a perlon not electrified applics his finger near the fpoon, and the fpirit is fired from the flame arifing from the fpoon and Spirit upon fuch application, this I call being fired by the repullive power. Of the two mention'd kinds I generally find the repulfive power ftronget.

Since my laft communication, the fpirit has been fired both by the attractive and repulfive power thro' four perfons ftanding upon electrical cakes, each communicating with the other, either by the means of a walking-cane, a fword, or any other non-electric fubftance. It has likewife been fired from the handle of a fword held in the hand of a third perfon.

I have not only fired Frobenius's Pblogifon, rectified fpirit, and common proof fpirit, but alfo Sal volatile olecfum, fpirit of lavender, dulcified fpirit of Nitre, Prony-water, Daffy's elixir, Helvetius's ftyptic, and fome other mixtures where the fpirit has been very confiderably diluted; likewife diftilled vegetable oils, fuch as that of turpentine, lemon, orange-peels, and juniper; and even thofe of them which are fpecifically heavier than water, as oil of faffafras; alfo refinous fubftances, fuch as balfan Capivi, and turpentine; all which fend forth, when warmed, an inflammable vapour. But expreffed vegetable oils, as thofe of olives, linfeed, and almonds, as well as tallow, all whofe vapours are uninflammable, I have not been able yet to fire; but thefe 002

indeed

indeed will not fire on the application of lighted paper. Befides, if there laft would fire with lighted paper, unlefs their vapours were inflammable, I can fcarce conceive they would fire by Electricity; becaufe, in firing fpirits, $\mathcal{E}^{2} c$. I always perceive, that the Electricity fraps, before it comes in contact with their furfaces, and thercfore only fires their inflammable vapours.

As an excited non-cleatric emits almoit all its fire, if once touch'd by a non-electric not excited, I was defirous of being fatisfy'cd, whether or no the fire emitted would not be greater or lefs in proportion to the volume of the elcetrified body. In order to this, I procured an iron bar about 5 feet long, and near 170 pounds in weight; this I electrified lying on cakes of wax and refin, but obferved the flames arifing therefrom not more violent than thofe from a common poker. In making this experiment, being willing to try the repulfive force, it once happen'd, that whillt the bar was at one end clectrifying, a fpoon lay upon the other; and, upon an affiftant's pouring fome warm firit into the fyoon, the electrical flath from the fpoon fnapped, and fired the firt drop of the fpirit; which unexpectedly fired not only the whole jett as it was pouring, but kindled likewife the whole quantity in the pot, in which I ufually have it warm'd.

I find, in firing inflammable fubftances from the finger of a man ftanding upon wax, that, ceteris paribus, the fuccefs is more conftant, if the man, inftead of holding the thread (the ufe of which I communicated in a former paper) in his hand, the thread is fufpended at the end of an iron rod held in one hand, and he touches the fipirit with one of the fingers of the other.
If a man, ftanding upon the electrical cake with a difh or deep plate of water in one hand, and the iron rod with the thread in the other, is made electrical, and a perfon not electrified touches any part either of the plate or water, the flafhes of fire come out plentifully; and whereever you bring your finger very near, the water rifes up in a little cone, from the point of which the fire is produced, and your finger, though not in actual contact, is made wet. The fame experiment fucceeds through three or more people.

In firing inflammable fubftances, the Perfon who holds the fpoon in his hand to receive the electrical flames, when the finger of the electrified perfon is brought near thereto, not only feels a tingling in his hand, but even a night pain up to his elbow. This is moft perceptible in dry wather, when the Electricity is very powerful.

There is conliderable difficulty in firing electrics per fe, fucli as turpentine and balfan Capiri, by the repulfive power of Electricity; becaufe, in this cafe, thefe fubftances will not permit the Electricity to pafs through them : therefore, when you would have this experiment lucceed, the finger of the perfon who is to fire them, is to be applied as near to the edge as poffible of thefe fubftances when warmed in a fpoon, that the fiaffes from the fyoon (for thefe fubftances will emit nune) may

Of ELECTRICITY.

frap, where they are fpread the thinneft, and then fire their effluria. This experiment, as well as feveral others, ferves to confute that opinion, which has prevailed with many, that the Electricity floats only upon the furtaces of bodies.

If an electrical cake is dipp'd in water, it is thereby made a conductor of Electricity ; the water hanging about it tranfmitting the clectrical effluvia in fuch a manner, that a perfon Itanding thereon can by no means be electrified enough to attract the leaf-gold at the fmalleft diftance ; though the perfon ftanding upon the fame cake when dry, attracted a piece of fine thread hanging at the diftance of two feet from his finger. We muft here obferve, that the cake being of an unctuous fubftance, the water will no-where lie uniformly thereon, but adhere in Separate moleculd ; fo that, in this inftance, the Electricity jumps from one particle of water to another, till the whole is diffipated.

From the appearance of the threads, amonglt which I rub the tube, I can frequentiy judge, though the firit may be many feet diftant from them, whether or no it will fire; becaufe, when the perlons ftanding upon the wax are made electrical enough to fire the fpirit, the threads sepel cach other at their lower parts, where they are not confin'd to a confiderable diftance; and this diftance is in proportion as the threads are made electrical.

If two perfons ftand upon electrical cakes at about a yard's diftance from each other, one of which perfons, for the fake of diftinction, we will call A, the other B; if A, when electrified, touches B, A lofes almoft all his Eleetricity at that touch only, which is received by B, and ftopped by the electrical cake: if Λ is immediately eleetrified again to the lame degree as before, and touches B, the finapping is lefs upon the touch; and this frapping, upon electrifying A, grows lefs and lefs, till B, being impregnated with Eleetricity, though received at intervals, the fnapping will no longer be fenfible.

That glais will repel and not conduct the Electricity of glafs, has been mention'd by others, who have treated of this fubject; but the experiments to determime this matter muft be conducted with a great deal of caution; for, unlefs the glafs tube, intended to conduct the Electricity, be as warm as the external air, it will feem to prove the contrary, unlefs in very dry places and feafons. Thus I fometimes have brought a cold thougla dry glats tube near three foot long into a room where there has been a number of people; when, upon piacing the tube upon filk lines, and laying fome leat-filver upon a card at one end, and rubbing another glats tube at the other, the filver has, contrary to expectation, been thrown off as readily as from an iron rot. At firft I was furprized at this appearance; but then conjectur'd, that it muft arife from the coldnets of the glafs, condenling the tloating vapour of the room. In order then to obviate this, I warm'd the tube fufficiently, and this effeet was no longer produc'd, but the filver lay perfectly ftiil.

If a number of pieces of finely fpun glafs, cut to about an inch in length, little bits of fine wire of the fame length, of what metal you pleale, and fmall cork-balls, are cither put all together, or each by themdelves, into a dry pewter plate, or upon a piece of polifhed metal, they make, in the following manner, a very odd and furprifing appearance. Let a man, ftanding upon electrical cakes, hold this plare in his hand, with the bits of glass, wire, ξ_{0}. detached from each other, as much as conveniently may be; when he is electrified, let him caufe a perfon ftanding upon the ground to bring another plate, his hand, or any other non-electric, exacty over the piate, containing thefe bodies. When his hand, \mathcal{F}^{c}. is about 8 inches over them, let him bring it down gentJy : as it comes near, in proportion to the ftrength of the Eleetricity, he will obferve the bits of giafs firft raife themfelves upright; and then, if he brings his hand nearer, dart directly up, and ftick to it without fnapping. The bits of wire will fly up likewife, and as they come near the hand fnap aloud; you feel a fmart ftroke, and fee the fire arifing from them to the hand at every ftroke: each of thele, as foon as they have difcharged their fire, falls down again upon the plate. The cork-balls aifo tly up and ftrike your hand, but fall again directly. You have a conftant fucceffion of thefe appearances, as long as you continue to clectrify the man in whore hand the plate is held; but if you touch any part either of the man or plate, the picces of glars, which before were upon their ends, immediately fall down.

Some few years ago, Sir fames Lowther brought fome bladders fill'd with inflammable air, collected from his coal-mines, to the Royal Society. This air flamed, upon a lighted candle being brought near it. This inflammability has occafion'd many terrible accidents. Mr Maud, a worthy member of this Society, made at that time, by art, and fhew'd the Society, air exactly of the fame quality. I was defirous of knowing if this air would be kindled by electrical flafhes. I accordingly made fuch air, by putting an ounce of filings of iron, an ounce of oil of vitriol, and four ounces of water, into a Florence flafk; upon which an ebullition enfued, and the air, which arofe from thefe materials, not only fill'd three bladders, but alfo, upon the application of the finger of an electrified perfon, took flame, and burnt near the top and out of the neck of the flafk a confiderable time. When the flame is almoft out, fhake the flafk, and the flame revives. You muft, with your finger dipped in water, moiften the mouth of the flafk as faft as it is dried by the heat within, or the Electricity will not fire it : becaufe the Rafk, being an electric per $f e$, will not fnap at the application of the finger, without the glafs being firft made non-electric by wetting. It has fometimes happen'd, if the finger has been applied before the inflammable air has found a ready exit from the mouth of the flark, that the flafh has filled the flafk, and gone off with an explofion equal to the firing of a large piftol ; and fometimes indced it has burft the flafk. The fame effect is produced from fpirit of fea falt, as from oil of vitriol; but as the acid of fea-falt is much

Of ELECTRICITY.

lighter than that of vitriol, there is no neceffity to add the water in this experiment.

Thofe who are not much acquainted with Chemical Ihilofophy, may think it very extraordinary, that, from a mixture of cold fubftances, which, both conjunctly and feparately, are uninflammable, this very inflammable vapour flould be produced. In order to folve this, it may not be improper to premife, that iron is compounded of a fulphureous as well as a metallic part. This fulphur is fo fixed, that, after heating the iron red hot, and even metting it cver fo often, the fulphur will not be difengaged therefrom: but, upon the mixture of the vitriolic acid, and by the heat and ebullition which are almo!t inftantly produced, the metallic part is diffolved, and the fulphur, which betore was intimately connected therewith, being difengaged, bccomes volatile. This heat and ebullition continue, till the vitriolic acid is perfectly faturated with the metallic part of the iron; and the vapour, once fired, continues to flame, until, this faturation being perfected, no more of the fulphur flies off.

I have heretofore mentioned, how confiderably perfectly dry air conduces to the fuccefs of thefe experiments; but we have been lately informed, by an extract of a letter, that A bbé Nolet was of opinion, that they would fucceed in wet weather, provided the tubes were made of glafs tinged blue with zaffer. I have procured tubes of this fort, but, after giving them many candid trials, 1 cannot think them equal to their recommendation. I firlt tried one of them in a finart fhower of rain after a dry day, when the drops were large, and the fpirit fired 3 times in about 4 minutes: the fame effect fucceeded, under the fane circumftances, from the white one; but, after 3 or 4 hours raining, when the air was perfectly wet, I never could make it futcceed. And, to illuftrate this matter further, I have been able, when the weather has been very dry, with once rubbing my hand down this blue tube, and applying it to the end of an iron rod 6 feet long, to throw off feveral pieces of leaffilver lying upon a card at the other end of this rod; whereas I never have been able to throw it off by any means in very wet weather. Befides, I am of opinion, that, after the electrical fire is gone from the tube, the tube has no fhare in the conducting of it : my fentiments on that head I laid betore you in a former paper: for if the filk lines are werred, they diffure all the Electricity; and the fame effects happen, when the air is wet, be your glafs of what colour it will.

It may not be improper here to obferve, that zaffer, which is ufed by the Glars-Inakers and Enamellers, is made of cobalt or mundick calcined after the fubliming the flowers. This being reduced to a very fine powder, and mixt with twice or thrice it's own weight of finely powder'd Hints, is moiftened with water, and put up in barrels, in which it foon runs into an hard mafs, and is called zaffer.

A dry fponge hanging by a packthread at the end of an electrified fword, or from the hand of an cleetrified man, gives no figns of being made
made e'ectrical : if it is well foak'd in water, wherever it is touch'd, you both fee ard feel the electrical fparks. Not only fo, but, if it is fo full of water that it falls from the ponge, tholi drops in a dark room, receiv'd upon your hand, not only thafl and fnap, but you perceive a pricking pain. If you hold your hand, or any non-electrical fubftances, very near the water, which had cealed dropping when the fponge was not electrified, drops again upon it's being electrified, and the drops fall in proportion to the receiv'd Electricity, as though the fponge were gently fqueez'd between your fingers. I was defirous to know if I was able to electrify a drop of cold water, dropping from the fiponge, enough to fire the fuirit; but, after many unfuccefstul trials, I was forced to defift ; becauie the cold water dropping from the fponge not only cool'd the fpirit too much, but alfo render'c' it too weak : likewife every drop carrid with it great part of the Electricity from the fuenge.

I then confider'd, in what manner I could give a tenacity to the water fufficient to make the drops hang a confiderable time; and this I brought about by making a mucilage of the feeds of fleawort. A wet fponge then, fqueez'd hard, and fill'd with this cold mucilage, was held in the hand of an electrified man, when the drops, forced out by the Electricity, affifted by the tenacity of the liquor, hung fome inches from the fponge; and by a drop of this, I fired not only the fpirit of wine, but likewife the inflammable air before-mentioned, both with and withotit the explofiun. What an extraordinary effect is this, that a drop of cold water (for the feeds contribute nothing, but add confiftence to the water) Thould be the medium of fire and flame?

Camphire is a vegetable refin, and, of confequence, an electric per se . This fubftance, notwithftarding it's great inflammability, will not take fire from the finger of a man, or any other body elcctrified, tho' made very warm, and the vapours arife therefrom in great abundance; becaufe, neither electrics per Se excited, or electrified bodies, exert their force by fnapping upon electrics per. $\sqrt{2}$, though not excited. If you break camphire fmall, and warm it in a fpoon, it is not melted by heat like other refins; but, if that heat were continued, it would all prove volatile. To camphire thus warm'd, the finger of an electrificed man, a fiword, or fuch-like, will, in fnapping, exert it's force upon the fpoon, and the circumambient vapour of the camphire will be fired thereby, and light up the whole quantity expofed. The fame experiment fucceeds by the repulfive power of Electricity.

A poker, thoroughly ignited, put into fpirit of wine, or into the diftilled oil of vegetables, produces no flame in either. It indeed occafions the vapors to arife from the oil in great abundance; but if you electrify this heated poker, the electrical Hahes prefently kindle flame in cither. The experiment is the fame with camphire. Thefe experiments, as well as the following, fufficiently evince, that the clectrical fire is truly flame, and that extremely fubtil.

I have

OfELECTRICITY.

I have mane feveral trials in order to fire gunpowder alone, which I tried both warm and cold, whole and powder'd, but never could fuccced : and this arifes, in part, from it's vapours not being inflainmable, and in part from it's not being capable of being fir'd by flame; unlefs the fulphur in the compofition is nearly in the ftate of accenfion. This we fee, by putting gunpowder into a jpoon with rectified fpirit, which, when lighted, wiil not fire the powder, till, by the heat of the fipoon from the burning fipirit, the fulphur is almott meleed. Likewife, it you hold gunpowder ground very fine in a fyoon over a lighted candle, or any other flame, as foon as the fpoon is hot ciough to melt the fulphur, you fee a blue tlame, and inftantiy the powder flathes off. The fame effects are oblerved in the Pulvis fulminains, compofed of nitre, fulphur, and fixed alkaline falt. Befides, when the gunpowder is very dry, and ground very fine, it (as you pleafe to make the experiment) is either attracted or repelld d; fo that, in the firft cafe the end of your finger, when clectrified, hall be cover'd over with the powder, though held at fome diftance; and in the ocher, if you electrity the powder, it will fy off at the approach of any non-electrified fubftance, and fometimes even without it But I can, at pleafure, fire gunpowder, and even difcharge a mukket, by the power of Electricity, when the gunpowder has been ground with a little camphire, or with a few drops of fome inflammable chemical oil. This oil fomewhat moiftens the powder, and prevents it's Hying away: the gunpowder then being warn'd in a fpoon, the electrical flafhes fire the inflammable vapour, which fires the gunpowder: but the time between the vapour firing the powder is fo thort, that frequently they appear as the fame, and not fucceffive operations, wherein the gunpowder itfelf feems fired by the Electricity : and, indeed, the firft time this experiment fucceeded, the flafh was fo fudden and unexpected, that the hand of my alliftant, who touch'd the fpoon with his finger, was confiderably fcorch'd. So that there feems a fourth ingredient neceffary to make gunpowder readily take fire by flame; and that fuch a one as will heighten the inflammability of the fulphur.

In common cafes, the lighted match, or the little portion of red-hot glafs, which falls among the powder, and is the refult of the collifion from the flint and fteel, fires the charcoal and fulphur, and thefe the nitre. But if to thefe three ingredients you add a fourth, viz. a vegetable chemical oil, and gently warm this mixture, the oil, by the warmth, mixes intimately with the fulphur, lowers it's confiftence, and makes it readily take fire by flame.

In thefe operations, notwithitanding I always made ufe of the fineftfcented oils of Orange-peel, Lemons, and fuch-like, yet, upon the leaft warming the mixture, the rank fincll of balfam (i. e. of the ready folution of fulphur) was very oobvious.

[^28]
Of ELECTRICITY.

furtier Ex. periments ara Ohieniafiams, br the fame N. 47^{8}. p. 11. Jan. and - Feb. $17+\%$ Read Feb. 6. 17\%5-6.
8. * As water is a non-eleetric, and of confequence a conductor of Electricity, I had realon to b-lieve, that ice was endow'd with the fame properties. Upon makirg the experiment I found my corijectures not without foundation; for, upon electrifying a picce of ice, where-ever the ice was touch'd by a non-electric, it flathed and fnapped. A piece of ice alfo, held in the hand of an electrify'd man, as in the beforemensioned pruceffes, fired warm fuirit, chernical vegetable oils, camphire, and genpowder prepared as before. But here great care muft be taken, that by the warmth of the hand, or of the air in the room, the ice does not melt; if fo, every drop of water therefrom confiderably diminithes the received Electricity. In order to obviate this, I caufed iny affitant, while he was electrifying, to be continually wiping the ice dry upon a napkin hung to tae buttons of his coat; and this being electrified as well as the ice, prevented any lots of the force of the Ele Etricity. The experiment will fucceed likewife, if, inftead of the ice, you electrify the fpirit, ξ° c. and bring the ice not clectrified near them. I muft obferve, that ice is not fo ready a conductor of Electricity as water; fo that I very frequently have been dilappointed in endeavouring with is to fire inflammable fubftances, when it has been readily done by a fword, or the finger of a man.

In my firt paper I took notice of my having obferved two different appearances of the fire from electrified fubitances; viz. thofe large bright Hafhes, which may be procured from any part of electrified bodies, by bringing a non-eleetric unexcited near them, and with which we have fired all the inflammable fubitances mention'd in the courfe of thefe obfervations; and thofe, like the firing of wet gunpowder, which are only perceptible at the points or edges of excited non-electrics. Thefe laft alfo appear different in colour and form, according to the fubftances from which they proceed: for, from polifh'd bodies, as the point of a fword, a filver probe, the points of fciffors, and the edges of the fteel bar made magnetical by the ingenious Dr Knigbt, the electrical fire appears like a pencil of rays, agreeing in colour with the fire from Boyle's Pbofphorus; but from unpolifhed bodies, as the end of a pooker, a rufty nail, or fuch-like, the rays are much more red. The difference of colour here, I am of opinion, is owing rather to the different reflection of the electrical fire from the furface of the body, from which it is emitted, than to any difference in the fire itfelf. Thefe pencils of rays iffue fucceffively as long as the bodies, from which they proceed, are exciting; but they are longer and more brilliant, if you bring any non-electric not excited near them, though it muft not be clofe enough to make them fnap. If you hold your hand at about two or three inches diftance froin thefe points, you not only feel fucceffive blafts of wind from them, but hear alfo a crackling noife. Where there are feveral points, you obferve at the fame time feveral pencils of rays.

[^29]It appears, from experiments, that befides the feveral properties that Electricity is poffers'd of peculiar to itfelf, it has fome in common with magnetifin and light.

In common with Miagnetifm, Electricity counteracts, and in light fub-Pror. I. flances overcomes the force of gravity. Iike that extraordinary power likewife, it exerts it's force in vacmo as powerfully as in open air, and this force is extended to a confiderable ditance through various fubftances of different textures and denfities.

Gravity is the gencral endeavour and tendency of bodies towards the Corol. centre of the carth : this is over come by the magnet, with regard to iron, and by Electricity, with regard to light fubstances, both in it's attraction and repulfion; but I have never been able to difcern that vortical motion, by which this effect was faid to be brought about by the late Dr Defiguliers, and others, having no other conception of it's manner of aeting than as rays from a centre, which indeed is corfirmed by feveral experiments: one of which, very ealy to be tried, is, that if a fingle downy feed of cotton-grafs is dropped from a man's hand, and in it's fall comes within the attraction of the rubbed tube; the down of this feed, which before feemed to ftick together, feparates, and forms rays round the centre of the feed : or if you faften many of thefe feeds, with mucilage of gum-arabic, round a bit of fticis, the down of them when clectrified, which otherwife hangs from the ftick, is railed up, and forms a circular appearance round the itick. As thefe light bodies are directed in their motions only by the force imprefied upon them, and as their appearance is conftantly radiatim, fuch appearance by no means §quares with our idea of a yortex.

Some have imagined a polarity alfo, when they have obferved one end of an excited glafs tube repe! light fubftances, and the other attract them; but this is a deception, arifing from the whole length of the tube not being excited, but only fuch part of it as has been rubb'd; fo that as much of the tube as is held in the hand remains in an unexcited ftate, and permits light fubftances to lie ftill thereon, though forcibly repell'd at the other end. This attractive power of Electricity acts not only upon non-electrics, as leaf-gold, filver, thread, and fuch-like, but alio upon originally-elcetrics, as filk, dry feathers, little pieces of glafs, and refin : it attract all bodies, that are not of the fame ftandard of Electrity (if I may be allowed the expreffion), as the excited body from which it proceeds. I found no body, however denfe, whole pores are not pervious to Elećtricity, by a proper management, not eyen gold itfelf.

In common with light, Electricity pervades glass, but fuffers no refrac- Pror. II. tion therefrom; I having, from the moft exact obfervations, found it's direction to be in right lines, and that through glaffes of different forms, included one within the other, and large fpaces leít between each glafs.

Of ELECTRICITY.

This rectilineal direction is obfervable only as far as the Electrieity can penetrate through unexcited originally-electrics, and thofe perfectly dry; nor is it at all material, whecher chefe fubftances are tranfparent, as glafs; femidiaphanots, as porcelain, or thin cakes of white wax; or quite opaque, as thick woollen cloth, as well as woven filk of various colours; it is only neceflary that they be originally-electrics. But the cafe is widely different with regard to non-electrics; wherein the direction, given to the Electricity by the excited originally-electric, is alter'd, as loon as it touches the furface of a non-electric, and is propagated with a degree of fwifnefs fcarcely to be mealured in all poffible directions to impregnate the whole non-electric mals in contact with it, or nearly fo, however different in itfelf; and which munt of neceffity be terminated by an originally-electric, before the Electricity exerts the leaft attraction; and then this power is obferved firt at that part of the non-electric the molt remote from the originally-elcetric. Thus, for example, by an excited tube held over ir, leaf-gold will be attracteil through glafs, cloth, \mathcal{E}_{c}. held horizontally in the hand of a man ftanding upon the floor, and this attraction is exerted to a confiderable diffance. On the contrary, the rubbed tube will not attract leaf-gold, or other light bodies, however near, through filver, tin, the thinneft board, paper, or any other non-electric, held in the manner beforementioned. But if you rub the paper over with wax melted, and by that means introduce the originally-electric therein, you obferve the Eleetricity acts in right lines, and attracts powerfully. And here I mult beg leave to remind you, not only of the former corollary, but of fome of the former experiments alfo; by which it appears, that although, to make a non-electric exert any power, we mutt excite the whole mafs thercof, yet we can excite what part, and what only, of an originally-clectric we picafe. Thus we obferve, that leaf-gold, and the feed of cotton-grals (which grows upon boggs, and is a very proper fubject for thefe inquiries), are attracted under a glafs jar made warm *, and turned bottom upwards, upon which are placed books, and feveral other non-electrics; and that the motions of the light bodies underneath correfpond with the motions of the glafs tube held over them, the Electricity feeming inftantaneouny to pats through the books and the glafs. But this does not happen, till the Electricity has fully impregnated the non-electrics, which lie upon the glafs; which recefved Electricity is ftopped by the glafs; and then thefe non-electrics dart their power directly through the upper part of the glafs, after the manner of origi-

[^30]
OFELECTRICITY.

nally-electrics. But if the thinneft non-clectric, even the fineft paper, as I before mentioned, is held in the hand of a man at the fmalleft diftance over the leaf-gold, and the Electricity is not ftopped, not the leaft power will be exerted, and the gold will lie ftill. I muft here remark likewife, that this law of Electricity is fo conftant and regular, shat I have not found one deviation from it; fo that even the quickfilver, fopead thin, as it ufually is at the back of a plate of a looking-glafs, will prevent the paffing thro' of the electrical attraction, unlefs ftopped by an originally-electric This penetration of the electrical power through originally-electrics is much greater than has hitherto been imagined, and has caufed the want of fuccefs to great numbers of experiments. I have been at no fmall pains to determine, how far this power can penetrate through a dry originally-electric; and have found, by repeatcd trials, that etther in a cake of wax alone, or of wax and refin mixed, when the Electricity is very powerful, it has paffed, I fay, in Itrait lines through thefe cakes of the thicknefs of 2 inches and \dot{t}_{5}^{*}; buut I never could make it act through one of 2 inches and is; for in this it was perfectly ftopped. So that the cakes commonly made ufe of to ttop the Eleftricity, by being too thin, fuffer a confidcrable quantity of the eleetrical power to pervade them, and be loft in the floor. I make no doube if she electrical power could be more increafed, it would penetrate much further through thefe originally-electric bodies.

EleEtricity in common with light likewife, when it's forces are col-Prop. IIT. lected, and a proper circction given thereto, upon a proper object, produces fire and hame

The fire of Electricity (as I have before obferved) is extremeiv de- Corow licate; and fers on fire, as far as I have yet experienced, only inflammable vapours. Nor is this flame at all heightened, by being fojerinduced ujon an iron rod, reci-hot with coarfer culinary fire, as in a preceding experiment; nor diminifhed by being dircted upon cold water However I was deffrous of knowing, if this thame would be affected by a fill greater degree of cold; and in order to determine this, I made an artificial cold; by which the mercury, in a vcry nice 'Thermometer adjufted to Fabrenbeit's fcale, was cheprefied in about 4', from 15° above the freczing point to 30° below it; that is, the mercury fell 45°. From this cold mixture, when dectritied, the flafhes were as powerful, and the ftroke as fmart, as from the red-hot iron. I could have made the cold more intenfe, but the above was fufficient for my purpofe. This experiment feems to indicate, that the fire of Electricity is affected neither by the prefencel or ablence of other fire. For as red-hot iron, by Sir I Newion's feale of hear, is fixed at. 1.92 2°, and as the ratio between Sir-Jaag's degrees and Fabrenbeit's is as 34 to 180, it necellarity follows, that the difference of lieat between che hot iron and the cold mixture is 1949°; vanel néverthele's this vaft difference makes no aiteration in the appearance of the electricat tame. We find Jikewife, that as the fire arifing from the refraction of the rave: of light
by a Lens, and brought to a Focus, is obferved, firf, at fome fmall diftance from their furfaces, to fet on fire combuftible fubftances; the fame effect, as I have before obferv'd, is produced in like manner by electrical flame.

I may perhaps be thought ton minute in fome of the before-mentioned particulars; but, in inquiries abftrule as thefe are, where we have fo little à priori to direct us, the greateft attention mult be had to every circunftance, if we are truly defirous of inveftigating the laws of this furprifing power. For, as has been faid upon another occafion, by my ever honnured friend Martin Folkes, Eiq; our moft worthy Prefident," That Electricity feems to furnith an inexhauftible fund for " inquiry : and fure phenomena fo various, and fo wonderful, call arife " only from caufes very gencral and extenfive; and fuch as muft have " been defigned by the Almighty Author of nature for the produc"tion of very great effects, and fuch as are of great moment to the " Syftem of the univerle."
A Sequel 10 the Exprsi. morets ard Ohierections: in a lepier so she Royal Snciety from the fame N° 484 p. 704.
9. The favourable receprion wherewith you honour'd fome papers I Jaid before you fome rime fince, relating to Electricity, emboldens me to crouble you again upon the fame fubject: and I am the more encouraged fo to do, as the progrefs of our difcoveries therein, both here and abroad, has been fo rapid; that what, little more than a year ago, we conceived to be the re pias ultra of our inquiries, is now regarded as mere rudiments.

It were trefpafing too much upon you, to recount the great number of experiments I have made; for which reafon I fhall only take notice of fuch as are either in themielves ftriking, or tend to illuftrate fome propofition.
At the beginning of laft fummer I caufed a machine to be made for electrical purpofes; the wheel whereof was four feet in diameter. In the periphery of this wheel were cut four grnoves, correfponding with four globes of ten inches diameter, which were difpofed vertically at about 3 inches diftance from each other. One, two, or the whole number of thefe glabes might be ufed at pleafure. They were mounted upon fpindles of two inches diameter, and their mean motion round their axis was about 1100 times in a minute. As it is next to impoffible to have thefe globes blown and mounted perfectly true, I order'd the leather cufhions, with which they were rubb'd, to be ftuffed with an elaftic fubftance (curled hair) that the globes in their rotations might be as equally rubb'd as pofible. You might likewife caufe the globes to be rubb'd by the hands of your affiftants; but under a certain treatment (of 2which hereafter) the cufhions excite equally ftrong. The leather curhions were now and then rubb'd over with whiting. As a minute detail of the parts of this machine would take up too much of your time, I have herewith laid before you a draught thereof.

Of ELECTRICITY.

I lined one of thefe globes to a confiderable thicknefs, with a mix- $\$ 4$. ture of wax and refin, in order to obferve whether or no the Electricity would be the fooner or more frongely excited; but I found no difference in the power of this glube from the others, which were without this treatment.

The power of Electricity is increafed by the number and fize of the $\$ 5$. globes to a ceitain de ree; but by no means in proportion to their number and fize : therefure, as the bodies to be etectrified, will contain orily a certain quantity of Electricity, of which more largely hereafter; when that quantity is acquired, which is fooncft done by a number of globes, the furcharge is dilipated as fall as it is excited.

After the glubes had been a few times ufed, I found myfelf mafter of § 6. a much greater quantity of electrical power, with much iels labour to myfelf, than when I wied only tubes. I could attract ard repel light fubltances at a much greater diffance than before; fire firits of wine, camphire, and all other fubftances whofe vapours were inflanmable, with great cale, and at any diftance, with non-eleetrics placed upon origi-nally-tlectrics: I could fire them, I fay, at all times; though not equally eafy, when the weather was moitt.

I difcover'd with this machine, and communicated to feveral Mem- 8 . bers of this Scciety, feveral of the experiments faid to be fritt made by M . le Monnier at Praris, before the letter communicating them was received by our Prefident from thence.

1 order'd arother machine to be made for a friend of mine, which \& 8 . carried a globe of 16 inches diameter. I united the power of this large globe with that of 3 of the others before-mention'd, and found the fltokes from the excited non-electrics not increafed according to my expectation. In two experiments indeed, where the ciffipation of the whole power of thefe globes was vifible as faft as it was excited, the effect of this additional globe was very confiderable. The firit was, when two pewter plates were held, one in the hand of an electrified man, and the other by one ftanding upon the floor: when thefe plates were brought near each other, the flathes of perfectly pure und bright flame were fo large, and fucceeded cach other fo fatt, that, when the room was darken'd, I could diftinctly fee the faccs of 13 people who ftood round the room. The other was from a piece of large blunt wire hanging to the gun-barrel; from the end of which, when electrified, and any black * non-electric unexcited was brought near, though not near

[^31] e:onigh to canie a inap, a brunh of blue lambert flame, totally differenc lrom the former, was very confficuous when the room was clark, of mere than an isch long and an inch thick. I mention that what in beded acer the bottom of the wire thound be black, beciule then you fee this thame inore harp. Here the pholphoreal fimell might be perceived at a confiderabie diftance. If the Lack of your hand was brought fo near this wive as to occation a fon, and the fonaps ware received for fome. tiric, you would fect them like io many metteres upon your fkin, occafoning red fors, which have lalted 24 hours.
If, when a perton is electrifict, be brings his tand upon the cloaths of enc thitt is hot, tixy buth have a fenfacon exactly refembling that of many pins ruming into the fkim, which continues as long as the globes are in motion. This is moft perceptible wisen the cloaths are of thin woolken cluth or fik, animal fubtances; lefs fo, when of linen or cottor:, which are regetable.
is fome oil of turpontine is fet on fire in any y.flel held in the hand of an elcetrified man, the thick finoke that arikes therefrom receiv'd againt any non-electric of a large furface, held in the hand of a fecond man ftanding upon an electrical cake; this finoke, I fay, at a foot difo tance from the thame, will carry with it a fufficient quantity of Electricity for the fecond min to fire any inflammable vapour. The electrical ftrokes have been likewife perceptible upon the touching the fecond man, when the non-electric hedd in his hand has been in thedmoke of the oil of turpentize between 7 and 8 feet above the flame. Here we find the fnoke of an originaily electric a conductor of Electricity.

Likewile if burning firit of wine be fubftituted in the place of oil of turpentine, and if the end of an iron rod in the hand of the fecond man be held at the top of the flame, this fecond man will kindle other warm fpirits held near his finger. Here we find that flame conducts the Electricity, and does not perceptibly diminifh it's force.

Thefe two experiments demonftrate, that the opinion of thofe is erroDeous, who luppofe the electrical effucia to be of a fulphurcous nature; and that thefe themifelves are fet on fire at the fnapping obferv'd, when you bring non-electrics unexcited to thofe that are. If their opinions were true, the electrical ifflucia fhould be deftroyed by the flame in both the preceding experiments; the contrary of which is obferved.
I now proceedto take notice of that furprifing effect, that extraordinary accumulation of the electrical power in a phial of water, firft difcover'd by Profeffor Mufcbenbroek, a man born to penetrate into the deepeft myfteries of Philofophy: and I hope I fhall ftand excufed, if I enter into a minute detail of the circumftances relating thereto. The experiment is, that a phial of water is fufpended to a gun-barrel by a wire let down a few inches into the water through the cork; and this gun-barrel, fufpended in filk lines, is applied fo near an excited glafs globe, that fome metallic fringes inferted into the gun-barrel touch the globe in motion. Under thele circumftances a man grafps the phial with one hand, and touches
the gun-barrel with a fingcr of the other. Upon which he receives a violent flyock through both his arms, elpecially at his elbows and wrifts, and acrofs his breaft. This experiment fucceeds beft, cateris paribus,

1. When the air is dry.
2. When the phial containing the water is of the thinneft glafs.
3. When the outfide of the phial is perfectly dry.
4. In proportion to the number of points of non-electric contact. Thus if you hold the phial only with your thumb and finger the inap is fanall; larger when you apply another finger, and increatis in proportion to the grafp of your whole hand.
5. When the water in the phial is heated; which being then warmer than the circumambient air, may not occafion the condenfing the floating vapour therein upon the furface of the glafs.
From thefe confiderations it is to be obferv'd, that this effeet arifes $\$ 14$. from electrifying the non-electric water, included in the originally-electric glafs; to that whatever tends to make the outfide of the glals nonelectric by wetting it, as, a moift hand, damp air, or the watcr from the infide of the phial, defeats the experiment, by preventing the requifite accumulation of the electrical power.

That a gun-barrel is abfolutely neceflary to make this experiment fuc- $\$ 15$. ceed, is imaginary; a folid piece of metal of any form is equally ufeful. Nor have I yet found, that the ftroke is in proportion to the quantity of electrified matter; having obferved the ftroke from a fword as violent as that from a gun barrel with feveral excited iron bars * in contact with it.

I have tried the effect of increafing the quantity of water in glaffes $\$ 16$. of different fizes, as high as four gallons, without in the leaft increafing the ftroke. If + filings of iron are fubftituted in the room of water, the effect is confiderably leffen'd. If mercury, much the fame as water ; the ftroke is by no means increafed in proportion to their fpecific gravities, as might have been imagined \|.

The phial Thould not be lefs than can conveniently be grafped. I gene- $\$ 1 \%$ rally make ufe of thofe, which hold feven or eight ounces, and fill them about four fifths with water; and the ftroke from one of thefe, under the fame circumftances, is equally ftrong with that of a Florence flafk held in the hand, which I have fometimes made ufe of; though

[^32]> VOL. X. Part ii.
the
the glafs of this laft is equally thin with that of the phia!, and the quansity of water four times as much. That the froke thercfore is not as the quantity of water clectrified, is evident from this experiment. This fact does not depend upon my judgment alone, but likewife ufon the opinions of feveral learned Members of this Society, who have experienced the greater and lefs quantity of water.

If a dry twig of birch, or any other wood, be run through the cork inftead of the metallic wire, the ftroke is not greater than is ufually felt from the gun-barrel without the application of the water. The itroke is likewife leffen'd, if the phial is held in the hand with a glove on.

After the gun-barrel and phial have been furficiently excited, which is done in a few feconds, the furcharge is diffipated; fo that the continuing the motion of the machine ever fo long after the faturation is complete, does not increafe the electrical force.

The force of the ftroke from the electrified phial does not increafe in proportion to the dimenfions of the glafs, or the number of globes employed. I have been ftruck as forcibly with one phial from a globe of 7 inches diameter, as when I made ufe of, at the fame time, one of 16 inches, and 3 of ten. I have been lately informed, that at Hamburgh a fphere was employed for this purpofe a Flemilh ell in diameter, without the expected increafe of power.

When the phial is well electrified, and you apply your hand thereto, you fee the fire flathes from the outfide of the glafs wherever you touch it, and crackles in your hand.

The phial may be electrified by applying the wire therein to the globe in motion; after which, if it is grafped in one hand, and the wire touched with a finger of the other, the ftroke is as great as from the gun-barrel. If you only bring your finger near the end of the wire without touching it, you obferve the fame brufh of blue flame, as from the wire hanging to the gun-barrel, before taken notice of. This inftantly difappears upon touching the wire, though you do not receive a thock, unle's at the fame time you grafp the phial.

If you gralp the phial with your hand, and do not at the fame time touch the wire, the acquired Electricity of the water is not diminifhed. So that, unlefs by accident or otherwife the wire is touched, the electrified water will contain it's force many hours, may be conveyed feveral miles, and afterwards exert it's force upon touching the wire.

If, when the machine is in motion, the phial is hung upon the gunbarre!, no increale of the ftroke is perceived upon touching the gunbarrel with your finger, unlefs at the fame time the phial is taken it the hand.
If, when the gun-barrel and phial are excited, you grafp the phial with one hand, and touch the gun-barrel with a piece of any metal held in the ocher, the fhock is as great in your arms as though you touched tise gum-barrel with your linger; but not the leaft floock is feit, if, initead of inetal, you touch the gun-barrel with a piece of dry wood.

I have

OF ELECTRICITY.

I have felt a very great flroke, when I hung two phials to the gan - $\$ 20$. barrel, and, grafping them hoth, brought my forchead near it. The fhock then was fo violent, that Ifeem'd ftum'd, as though ftruck on the head with a great ftick, and I have never fince chofen to repeat this experiment. I'his increafe of the electrical force was owing to the additional phial, whereby the points of non-eleciric contact were augmented.

Likewife if a perfon placed upon originally eledrics, grafs two $\$ 27$. phials, as before-mentioned, and a fecond perfon, flanding upon the floor, touches any part of his body, a very flight ftroke only is perceived. But if the fecond perfon, while the globes are in motion, places one of his fingers upon the hand, or any part of the naked body of the firt, and at the fame time touches the gun-barrel with his other hand; both feel a hook equal to that juft now mention'd, but more tolcrable, becaufe not felt in the head, in the arms only, and acrofs the breatt. In this experiment, it is not necellary that the outfide of the glaffes held in the hands floould be dry, as in the former experiments; becaufe whatever by the moifture is commmicated to the man, is ftopped by the originally-electrics upon which he is placed. If, inftead of his hand, you gently touch the firt perfon's cloaths, ycu only perceive a fmall itroke upon your finger; but if you prefs his cloaths clofe to his body, you frequently perceive a double ftroke; the one, dight from his cloaths; the fecond, a violent hook from his body.

Upon thewing fome experiments to Dr Beris, to prove my affertion § 28. that the ftroke was, cateris paribus, as the points of contact of nonelectrics to the glas, that ingenious Gentleman has vesy clearly demonftrated it likewife by the following experiment: he wrapped up two large rounch-bellied phials in very thin lead fo clofe as to touch the glafes every-where, except their necks. Thefe were filled with water, and cork'd, with a ftaple of fimall wire running through each cork into the water. A piece of ftrong wire about 5 inches long, with an eye at each end, was provided, and at cach end of this hung one of the phials of water by the fmall ftaple ruming through the cork. A fmall wire loop then was faften'd into the lead at the bottom of each phial, and into the fe loops was inferted a piece of ftrong wire like the former. If then thefe phials were hung acrofs the gun-barrel and electrified, and a perfon fanding upon the fioor touched the bottom wire with one hand, and the gunbarrel with the other, he received a moft violent frock through both his arms, and acrofs his breaft.

Thefe phials may be concealed, and the fhock be more univerfal, in 929 . the following manner: the phials may be placed in a corner of the room, and any thing laid over them, fo as not to touch the upper wires; then a very fine wire muft be fufpended to the gun-barrel, and fatten'd to the upper ftrong wire. A fecond piece of fmall wire, of a fulficient lengeth to reach from the phials almoft under the gun-barrel, muft be fartened to the lower ftrong wire, and this may be conceal'd under a foor-

Of ELECTRICITY.

cioch. The phials then are electrified; and if a perfon, placing his foot upon the floor-cloth over the wire which comes from the bottom of the phials, touches the gun-barrel, he receives a moft terrible fhock. The firft time I experienced it, was when the phials were fully electrified, and both my feet were placed upon the wire. Upon receiving the ftroke from the gun-barrel upon my finger, it feemed to me, ufed as I am to thefe trials, as though my arm were ftruck off at my fhoulder, elbow, and wrift; and both my legs, at the knees, and behind near the ankles. So that, to try the effects of this experiment, you muft be careful of not electrifying the phials too much. If a dozen or more of thefe phials, or one very large bottle, were cover'd over with thin lead in the above manner, and ftrongly electrified, and this Electricity were difcharged by a man at once in the manner here mention'd, I fhould dread the confequences.

We muft obferve, that this fhock is not felt, unlefs the wire, coming from the bottoms of the bottles, is touched; and then not, if the floes are dry, and of confequence originally-electric. In this experiment we fee the effects of the increafe of the points of contact; and it feems the more furprifing to thofe who are not acquainted with the caule, when the wire is concealed under a floor-cloth, that the moving of their feet only one inch, fhould occafion them, all other circumitances apparently the fame, to feel a violent fhock, or none at all. A thick carpet, inftead of a foor-cloth, is liable to prevent the fuccefs of this experiment, for the fame reafon as dry fhoes. 'This experiment may aptly cnough be called, the fpringing an electrical mine.

If, in the former experiment, the lower fmall wire is faften'd to an iron rod; and if, when the phials are ever fo frongly excited, that rod is held in the hand of a man ftanding upon the floor, and with it he touches the gun-barrel, he perceives no mock, for seafons prefently to be affigned. But if he takes this iron rod in one hand, and touches the gun-barrel with the other, he then is violently ftruck. We muft here oblerve, that the violence of the ftroke is always felt in our bodies, in proportion to the loudnets of the explofion, and the quantity of fire feen. Therefore, as hoth the fe are equally perceptible, whether the Electricity pafies only thro' the iron, as in the firft of thefe infances, or thro' our Lodies equaliy with the iron, as in the ficond; we conclude, that in both there is the fame degree of electrical force. By the firtt of thefe methods you are capable of making others fenfible of the electrical force, without feeling it yourfelf. This experiment, as well as the laft, will admit of infinite variation.

If a man, flanding upon an electrical cake, takes the phial fufpended to the gun-barrel in his hand, by thefe means he acquires fome electrical power; for if, under thefe circumftances, he touches the gun-barrel, he only receives a flight ftroke. If then, without having had any communication with unexcited non-electrics, he touches the gun barrel again, the g:obes being yet in motion, he receives no flroke at all.

Of ELECTRICITY.

If to the gun-barrel an egg, either raw or boiled, is fufpended by a $\$ 33$. piece of wire, and a perfon, grafping the electrified phial in one hand, brings the palm of his other near the bottom of the egg; at that inftant he receives a fmart ftroke, and his hand feems full of a more red fire than is ufually obferved. In this experiment the ftroke is more confined to the hand without hocking the arms, than when you touch the gun-barrel itfelf; it more reiembles a ftroke over the hand with a ferula.

If any number of people ftand upon originally-electrics, and commu- $\$ 34$. nicate with each other by any non-elętric medium, efpecially metal, they are by thefe means all equally electrified; and if a perfon ftanding upon the foor, and holding the phial of water hanging to the gunbarrel in his hand, touches the perfon furtheft from the gun-barrel, the whole number receives a fhock equal to any one touching the gun-barrel fingly.

If a number of perfons, how great foever, ftand upon the ground, $\{35$. communicating with each other as before, the firft of which gralps the phial, and the laft touches the gun-barrel, the whole number receive a ihock like the former. This, we are inform'd, M. le Monnier at P'aris communicated through a line of men, and other non-electrics, mealuring mine hundred toiles.

Several experiments fhew, that the electrical force always deferibes a $\$ 36$. circuit; e. g. if a man holds the electrified phial in one hand, and touches the gun-barrel with the other, he feels the fhock in no orher parts of his body than in his arms, and acrols his breaft. So that here we fee the eleetrical power darts reetilfivizo curfu between the gun-barrel and phial. This is more particularly demonftrated by the following experiment, in which, though the two lines of perfons nay be of any length, we only fpecify, that each confifts of 4, for the fake of perfpicuity.

Of one line, let A touch the gun-barrel, ftanding upon wax, and $\$ 37$. communicate with $B C D$ likewife ftanding upon wax. Of the other Fig. 18. line, let I take the electrified phial in his hand, and join with 2, 3, and 4, all ftanding upon the floor. If, under thefe circumftances, the firft line is clectrificd, and 4 touches 1 , all eight are ftruck through. If 4 touches C, D, though electrified, feels nothing, and the remaining feven are ftruck; to that here D is left out of the circuit. If 4 touches B, only fix feel the hock, and C and D feel nothing; and thus you may proceed to A, who mult always ntceffarily feel, if either himfelf or any of his line is touched. If, when both lines are as before-mentioned, D touches 3,4 is left out of the circuit, and the remaining feven feel the ftroke. If C touches 2, the circuit confifts of five, $D, 3$, and 4 being, though under the lame circumitances, left out: always obferving, however thefe circuits are diversified, that A, who touches the gus-barrel, and 1, who holds the phial, are certain to feel the ftroke.

This experiment may be reverfed, the lines being as before, in the fol- 188 . lowing manner, wherein likewife this circuit is always obfervable. Let A touch

Of ELECTRICITY.

touch the gun-barrel as before, and D hold the wire of the elcetrificed phia! in his finger. Let 4 grafp the phial, and 1 touch B; then A feels nothing, being lefe out of the circuit, and the other fiven are fruck. Ii + touches C, then A and B feel nothing, the circuit confifting of the remaining in:- But is is to je obferyect, as in the former experiment, that is Wiro gralps the phial, and D, who holds the wire, muft of necerticy be alvays in the circuit. I have been the more particular in this matter, as it demonftrates the courfe of the electrical power to be in the moft direet manner between the gun-barrel and the cleetrified phial.

Likewife, if a perfon, ttanding upon an originally-clectric, touches the gun-barrel with his right hand, a piece of wire being placed round his lelt leg, and a fecond perfon, ftanding likewife upon the wax, taikes hold of the extremity of this wire; then let another perfon, ftanding upon the floor, and grafping the electrified phial, touch any part of the fecond perfon's body. Upon this touch, the fecond perfon is fhook as ufual; but the firt feels the ftroke only in his left leg and right arm, the neareft courfe of the electrical power.

If any number of perfons communicate by pieces of wire, and if, any olte of them brings together the ends of the two pieces of wire in his hands, upon the gun-barrel's being touch'd, he will perceive no ftroke. But if the ends of the wires are but $a \div$ of an inch alunder, he will be fhaken in both his arms; becaufe then his body will become part of the circuit.
It, when any number of perfons join hands, or communicate by any metallic medium ftanding on the floor, one grafps the phial, and joins with the reft; upon the gun-barrel's being touch'd by the lalt perfon of the line, the whole number are fruck, and he who grati)s the phial, as forcibly as the reff. But if two phials are empluyed, and he grafps them both, with a picce of wire of fufficient length held between his fingers, which wire touches both phials, and it's end is taken hold of by the fecond perfon of the line; if then the laft perion touches the excited gun-barrcl, all in the line are violently ftruck, except the perfon who grafps the phials; but he feels little or nothing of the ftroke.

The ftruke is very violent, when a wire is put round the naked head, or under the peruke, and the perfon grafping the phial touches the gun-barrel with the ends of the wire, or it he holds the wire between his teeth.
If a perfon, ftanding on the electrical cakes with gold or filver lace upon his coat, takes hold of the gun-barrel, and another perfon grafping the elcctrified phial touches the bottom of the lace, the perfon clearified, if he holds down his head, feels the blow under his chin. The lace in this inftance has the fame effects as a piece of metal; at the end of which, if placed in the fame manner, you would neceffarily feel the ftroke.

I now proceed to fhew, by what fteps, in my inquiries into the nature of Electricity, I difcover'd that the glafs tubes and globes had not the electrical

Of ELECTRICITY.

electrical power in themfelves, but only ferved as the firlt movers and determiners of that power.

Several months fince, I obferv'd that, by rubbing a glafs tube, while 45°. ftanding upon a cake of wax, in order, as I expected, to prevent any of the electrical power from difcharging itfelf through me into the floor; contrary to my expectation, that power was fo much leffen'd, that no finapping was to be obferv'd upon another's touching any part of my bociy. But if a perfon not electrified held his hand near the tube whilft it was rubbing, the fnapping was very fenfible. This I fhew'd to feveral Members of the Royal Society, and others, who did me the honour to vifit me. Afterwards I met with an experiment of the fame kind, in a treatile publim'd by Profefor Bofe, intitled, Kecherches fur la caule et fur la ceritable thecrie de l'Elestricite, which that ingenious genteman fays, had given him great trouble by it's oddnefs. The experiment is, that, if the electrical machine is placed upon originally-electrics, the man who rubs the globes with his hands, even under the fe apparently favourable circumftances, gives no ligh of being electrified, when touched by an unexcited non-electric. But if abother perion, ftanding upon the floor, does but touch the globe in motion with the end of one of his fingers, or any other noi- electric, the perlon rubbing is inftantly electrified, and that very ftrongly. The folicion of this phemomenon, feemingly contrary to the already difcover'd laws of :lectricity, had terribly tormented him ; but however he has given us the foliowing, which he modefty calls a plaufible fubterfuge rather than a folution; viz. that a power cannot act at the fame time with all it's vigour, when one part of it is already employed; as a horie, who already draws an hundred pounds, cannot draw an additional weight as freely as if he had not been loated at all. 'That the hand excites the virtue already in the fiphere; therefore if the lame power impregnates the man, there remains none for the globe. That the virtue of the globe then cannot be communicated at the fame time to the man, by whom it is created. That he, who gives it, cannot receive it himfelf. From thefe, and fuch-like confiderations, it appears to him, that the man upon the ground, who hokls his fingers to the globe in motion, inftead of his diminithing it's electrical force, throws that force back again oves the man, who excited it. That the finger in this cafe feems to operate as an electric per fe, and drives back the electrical power.

I have feen an account of * Mr sillament, lately printed at the Hagre; ? 46. wherein he takes notice of this phencmenon. He tells us, that as part of the clectrical power of the globe paifes of by the framee, upon which the globes are mounted, into the Hoor, and difipated thereby; be conceived, that if the machine, and the man who rubb'd the लllbe, were placed upon pitch, to prevent this difipation, the fire of Electricity woukl be more ftrong. But the confequence is extremely odd and unexpeeted; for the conerary happens; and the electrical jovere is consiGerably diminifhed, and fometimes there is even none at all.

[^33]I tried this experiment feveral times with my machine, and the man, who turns the wheel thereof, mounted upon the electrical cakes. If the air was dry, and the machine placed at fome diftance from non-electrical fubfances, as the fides of the room, ciairs, and fuch-like; after one or two fmall fnaps, the gun-barrel, fupported by filk lines, and hanging in contact with the globe's, woukd, tho' the machine were in motion a confiderable tine, attract no light fubtances, nor emit any fire. This induced me to conceive, that the electrical power was not inherent in the glais, but came from the floor of the room; and if the fact were 50 , the gun-barrel fhould fnap upon my touching any part of the machine. The confequence fully anfwer'd my conjectures; for while I ftood upon the floor, the globes itill in motion, I put one hand upon the frame of the machine, and touched the gun-barrel with one of the fingers of my other. Upon this, fire iffued, and the fnapping continued as long as I hold my hand upon the machine, but cealed upon taking it off. This at once proved to ine, that the electrical fire paffed from the foor thro' my body to the machine. I then order'd the man to put one of his feet from the wax upon the floor; which, as foon as he complied with, caufed the Electricity to fnap at the gun-barrel, and this cealed upon his replacing his foot. Here I found, that the electrical power came through the man; and that, in thefe inftances, cither myfelf, or the man who touched the floor with his foot, was to be regarded as an additional part of the machine communicating with the floor. Thefe confiderations led me to make the following experiments.

If my conjectures were well founded, and if the electrical power, the man and the machine being placed upon originally-electrics, went through my body to the machine, a fine wire, held in my hand at a few inches diftance, ought to be attracted by any part of the machine. This fucceeded accordingly, but the attraction Jafted a very fimall fpace of time, and the wire again hung perpendicularly from my finger, though the globes continued in motion. This induced me to believe, that the gunbarrel, and the other non-clectrics fufpended in contact with the globes, would only contain a certain quantity of the electrical xether; and if this were the cafe, the attraction of the wire to the machine would be continual, if the electrical power found again a communication with the Hoor, as the wire was the only canal of communication between the foor and the machine. Whereupon I placed one of my fingers upon the gun-barrel, and held a wire near the machine with my other hand, and found, that as long as my finger continued upon the gun-barrel, the wire was attracted, but no longer.

Here we find, that one caufe of the electrical attraction is the current of the electrical ather fetting to the machine through the wire; and this current is fopped from two caules; one, when there is no difcharge thereof from the gun-barrel, the accumulation being complete; the other, when other currents are opened, that is, when the machine is touched in other parts.

Of ELECTRICITY.

In thefe, and the fubfequent experiments, I always fuppofe the air $\$ 50$. very dry; for if it is not, and the filk lines, which fupport the nonelectrics, are wetted thereby, the electrical power will be dificharged along them, and the wire will be conftantly attracted, as I have frequently on purpofe experienced ; and this difcharge is in proportion as the lines are more or lefs wetted.

If a man fands upon the machinc placed upon originally-electrics, $\$ \mathrm{~s}$. and the gun-barrel with the other non-electrics are fufpended as ufual in contact with the globes, no Electricity is obierved in that man : but if a wire, hanging to the wainfoot of the room, touches the gun-barrel, or a man ftanding upon the floor applies his finger thereto, the man upon the machine emits fire copioully; and cither himfelf, or the man who turns the whecl of the machine, fires inflammable fubftances. But this effect is no longer obfervable, when the wire, $\mathcal{E}^{\xi} c$. are removed from touching the gun-barrel. So that, in this experiment, the ufual courfe of the Electricity is inverted; and that power, which, in molt other inftances, is brought by the wood-work of the machine to the globes, and by them difcharged upon the gun-barrel, is now brought by the wire to the gun-barrel, and from this the globes throw it all over, not ouly the machine, but any non electric in contact with it, if the Electricity is fopped. In this experiment, if an iron rod, flanding upon the floor, is inclined againtt the loops of the filk lines which fupport the gun-barrel, in fuch a manner as not to touch the gun-barrel, the electrical fire, which pafies from the iron rod to the gun-barrel, inftead of being fupplied conftantly, comes in by fnapping to long as any unexcited non-electric communicates with the machine, but ceafes upon it's being removed : and if the air is very dry, and none of the Electricity conducted down the filk lines, the finapping from the iron rod to the gun-barrel will frequently correfpond to the rouching of the wooden machine with your fingers, and fop upon your taking them off. And this experiment will look much like magic, even to thofe who are acquainted with the operations of Electricity; for if the perfon who turns the wheel of the machine, and ftands upon the cakes, be properly inftructed : upon your bidding the gun-barrel fnap, he only purs the toe of his fhoe upon the floor, and it fnaps immediately, and continues fnapping as long as he keeps it there; but if you order it to ceafe fnapping, he almoft imperceptibly replaces his foot upon the cakes, and it ceafes. This may be repeated as often and as long as you pleafe.

Many experiments demonftrate, that if the Elcetricity is not ftopt, no \& $i z$. fign of ir's prefence, either by fire or attraction, is obfervable in the non-electric bodies fuffended to the globes: that is, although ever fo great a quantity be determined by the globes over thete bodies, the Electricity paffes off from them pleno rizo to the floor, from whence it came: but if the Electricity is ftopt, it is then accumulated upon thefe non-electrics; but this can be donc only to a certain degree, as is manifeft from a former experiment. And if, when this power is accumulat-

VOL. X. Part ii.
ed, a man fanding upon the floor touches now-and-then the non-electrics with his finger, the Electricity, which is here accumulated, finaps, and the fire is always obfervable. But this fnapping is not, when the electrical power paffes off continually, as from a piece of blunt wire hung to the fufpended gun-barrel, and the hand of a man brought near it without touching; whereby the elefrical power becomes vifible, like a fine blue cone of flame, with it's point towards the wire. When the hand is placed at a proper diftance, the blaft, like that of cold air, is therefrom very manifef. If you do not determine the Electricity by theie means to a point, the diffipation of it is general, and from all parts of the excited non-eleetric ; but if you do, by bringing your hand near the wire as before-mentioned, you fee the manner of it's being difcharged into the floor, and fo into the earth. Thefe facts being fo, if my conceptions are true, that the glafs globes circulate the electrical fire, which they receive from their friction againft the cufhions, or the hand of a man, and which is contantly fupplied to thefe laft from the floor; the ingrefs of the electrical fre, if the machine, $\mathcal{E i}^{2}$. are placed upon electrics per \mathcal{f}, ought to be vifible, as well as the egrefs under the fame circumftances; and this is demonftrated by experiment. For if, while any unexcited non-electrics touch the gun-barrel, the globes being in motion, you bring your finger, or a piece of wire near any part of the wood-work of the naachine, but more efpecially the iron axis of the wheel; you obferve the brufh of blue flame fet in from it to the wood-work. We always obferve, in this experiment, that the lambent flame from the end of the wire paffes diverging into the machine, and this continues fo long as the gun-barrel is touch'd. So that here the office of the globes exactly tallies with that of the heart in animals; which, as long as the quantity of blood is fupplied, propels it into the arteries, and there als over the fyttem; or that of the puinp in hydroftatics. In the fame manner, by the attrition of glats tubes, the electrical power is brought from the body of the man who rubs the tube; and he is conftantly taking in. a fupply from the floor.

What I here call the electrical xther, is that atmofphere which furrounds both excited originally-eketrics, and excited non-clectrics. That this is extended to a confiderable diftance, appears, from a fine thread, or piece of cotton-grafs feed, being attracted at fome diftance from them, as fir as which, it is prefumed, this atmofphere extends. Here indeed it is only perccived by it's effects upon thefe light fubitances : but at the brulh of flame from the end of the wire before-mention'd, from fome bran lying upon a Hat picce of metal in contact with excited nonclectrics, your hand being held over it, and in many other cxperiments, it becomes manifeft to your feeling as a blaft of cold wind. You feel it likewife in a lefs degree, when a glafs tube is well excited, and brought near your tace. If no unexcited non-electric is near, this atmofphere feems to be determined equally over all the excited non-electrics in contief with the machine; bur it a non-clectric unexcited is tronght near,

Of ELECTRICITY.

the greatef part of it is determin'd that way; and hereby the attrac. tion at any other part of thefe excited non-eleetrics is confiderably diminifhed. Hence the caufe of the repulfion of IElectricity, which does not operate, until the electrical ather is fufficiently accumulated. This electrical repulfion is ftrongeft in thole parts of the excited non-electrics, where unexcited non-electrics are brought near them; for by thele the electrical blaft, which otherewife is general, is particularly determined to the floor.

Before I proceed further, I muft beg leave to explain what I call the $\$ 54$. accumulation of Electricity. To put a fimilar cafe : as we take it for granted, that there is always a determinate quantity of atmofiphere furrounding the terraqueous glohe, we conceive, when we fee the mercury in the barometer very low, that there then is a defs accumulated column of this atmofphere impending over us, than when we fee the mercury high. In like manner, when we oblerve that the electrified gun-barrel ateracts or repels only very light fubftances at a very fimall ciftance, or that the fnap and tire theretrom are fcarcely perceptible; we conceive then a much lefs quantity of electrical atmofphere lurrounding the gun-barrel. This power being more or lefs, we call the greater or lefs degree of the accumulation of Electricity. This is only attainable to a certain point, if you electrify ever fo long; atter which, unlefs, otherwife directed, the diffipation thereof is general. The phial of water of Mufchenbroek feems capable of a greater degree of accumulation of Elećtricity, than any thing we are at prefent acquainted with : and we fee, when, by holding the wire thereof to the globe in motion, the accumulation being complete, that the furcharge runs off from the point of the wire, as a brufh of blue flame. A method has been difoover'd here by Mr Canton, by which the quantity of accumulated Electricity may be meafured to great exactnefs. The manner of meatiring is this: when the phal is fufficiently elcetrified by applying the wire thereof to the glafs globe, and which is known by the appearance of the brufh of flame at the end of the wire, as before-mention'd; hang a nender piece of wire to the fufpended gun-barrel for this purpore detached from the globes. Upon your applying the wire of the electrified phial to that hanging to the gun-barrel, you perceive a fmall frap; this you difcharge by touching the gun-barrel with your finger, which likewife fnaps: and thus alternately electrifying and difcharging, you procced until the whole Electricity of the water is diffipated; winch fometimes is not done, under 100 difcharges. If you do not difcharge the Electricity every time, the fnaps from the wire of the electrified phial to the gun-barrel are fcarcely perceptible. In proportion to the number of ftrokes, you eftimate the quancity of the acquired Electricity of the water. That you could, by ftopping the Eleftricity, excite non-electrics; and, by accunsulating their power, make them exert more force than originally-cleetrics would at any point of time, was that capital difcovery of the late Mr Gray; and is to be regarded as the bafis, upon which all the prefent improvements

Of ELECTRICITY.

of our knowledge in Electricity are founded; and till which difcovery, alchough fome of the effects of Electricity were obferved abovs two thoufand years ago *, Jittle progress was made.

The electrical æther is much more fubtil than common air, and paffes to a certain depth through all known bodies. It paffes moft readily through metals, water, and all fluids, except refinous ones; then animal bodies dead or alive, in proportion as they are more or lefs wet; then ftones, wood, and earths. It paffes to a certain thick. nefs only thro' refins, dry animal fubftances, wax, and glats. For this reafon bodies are called electrics per fi, or non-electrics; not only for their rubbing the Electricity from other bodies, bue likewife as they permit more or lefs of the electrical xether to pafs through them. This zether has not only the property with air of moving light fubltances; but it feems to have another, and that is elafticity.
That this fluid is more fubtil than common air, is more particularly demonftrated by it's pafing through feveral glaffes at the fame time; through any one of which, though ever to thin, air cannot pals. It likewife paffes, as I have mention'd before, through all known bodies, except originally-electrics, and even through thefe to a certain degree. It's elafticity is proved by it's extending itlelf round excited electrics; and excited non-electrics, to a confiderable diffance ; as well as by it's increafing the motion of fluids. This is demonftrated by the experiment with a fmall glafs fiphon, where the elafticity of the electrical æther overcomes the attraction of cohefion: I have frequently obferved this experiment docs not operate, unlefs the greateft part, if not the whole electrical blaft, is determined to the floor through the water, by bringing fome unexcited non-electric near the long leg of the fiphon + . The ftream through this flender tube is moft complete, when the non-electric is brought near, fo as when the room is fomewhat darkened, the ftream of water appears as a ftream of blue flame, much like that from the blunt wire. This ftream is itopped, either by touching any part of the non-electrics in contact with the globes; by placing the machine and the man who turns the wheel upon electrics per $\int e$, ty which the current of the electrical ather from the floor to the machine is prevented; or by removing the non-electric from the leg of the fiphon, by which the diffipation of the electrical æether from the excited non-electric becomes

[^34]
Of ELECTRICITY.

general. So that we find, that although we can repel light bodies from many parts of excited non-electrics at the fame time ; the whole force of the electrical current is neceffary, to drive off fo ponderous a fluid as water. May we likewife not inter the elafticity of electrical æther, from the ingrefs of the blue flame from the end of a blunt wire held near the axis of the wheel, or any part of the wood-work of the machine, after the revolutions of the globes are ceafed? Certainly we fee an influx of electrical fire to all bodies, until their determined quantity is refored. Is not the elafticity of this ather deducible likewife from the violent fhack we feel in our hodies in the experiments with water?

There feems to be a quanticy of this æether in all bodies. Hence the $\$ 57$. reafon why, though the machine is placed upon electrics per fe, a fnap or two, as I mention'd before, is obferv'd upon touching the gun-barrel, when the machine has been fome time in motion: but after thefe no more is perceiv'd, if the filk lines are very dry, and the electrical fupporters of the machine are of a requifite thicknefs. As foon as any non-eletcric unexcited touches the machine, this lofs is immediately reftored. As the eloctrical xether, as has been fpecified, is an claftic fluid, wherever there is an accumulation thercof, there is an endeavour by the neareft unexcited non-electric to reftore the equilibrium. The reftoring of this equilizrizon I take to be the caufe of the attraction of excited glafs tubes and globes, as well as that of excited non-electrics; for bere the blaft of clectrical æether conftantly fets in from the neareft unexcited non-electrics towards thofe excited, and carries with it whatever light bodies lie in it's courfe. This fetting in of the current of electrical æther towards excited non-electrics is likewife very perceptible to your feeling as a blaft of cold wind; if when you are electrified, you hold your hand over a plate with fome bran in it, by which blaft the bran is carried againft your hand. Thefe light fubftances are again repell'd by the blaft from the excited bodies, as foon as they come in contact, and fometimes before. The fuccefions of thefe alternate attractions and repulfions are extremely quick, fo that fonsetimes your cye can hardly keep pace with them. And if you put a glafs globe of about an inch in diameter very light and finely blown into a plate of metal, and hang another plate over it ; clectrify the upper one, and bring the other under ir, and you will find the ftrokes from the alternate attractions and repulfions * almoft too quick for your ear. I have feen a German, who travelled with a imall electrifying machine, who, by a procefs of this fort, made two finall bells ring. One of the bells was fufpended to an electrified wire, which was conducted without touching along the fudes of the room; at about an inch diftance, detached from this wire, a listle canpur was hung by a filk line; at an equal diftance from this laft was

[^35]hung another little bell, which communicated with the fides of the room. As foon as the machine was in motion, the electrified bell attracted the clapper, which immediately by the repulfive blaft was blown of to the unexcited bell. By the time the fecond bell was Aruck, the former ateracted again; and this jingling of the two bells continued not only during the motion of the machine, but feveral feconds after it was ftopped. This was occafioned by the fimall volume of the clapper being able to convey away only a fmall quantity of the electrical rether at each ftroke; by which it was fome time before the equilibrium was reftored.

To demonftrate likewife, that the reitoring this equilibrium is not imaginary, I fhall mention an experiment of Mr Wilfon, who has taken great pains in thefe inquiries. Take two plates of any metal, very clean and dry, whofe furfaces are nearly equal; hang one of them to any excited non-electric, and bring under it upon the other a whole leaf of filver. When, which you find upon application, the filver leaf is attracted, lower the botrom plate; if it is too low, you will obferve the leaf filver jump up and down; if too high, it will only be attracted in part, and thereby diffipate the electrical power. But if you get it at the proper diftance, which will very eafily be found upon trial, she filver will be perfectly fufpended at right angles with their planes, like the trapezium of the Geometers, and touch neither of the plates; it will be extended likewife to it's utmoft dimenfions. You frequently obferve, both at the top and bottom of the filver, the electrical fire. The fame effect is produced, if you reverfe the experiment, by electrifying. the bottom plate, and fufpending the other over it. Now I conceive, that the fpace occupied by this leaf of filver, is that where the equilibrium of the electrical ather is refored; for if you take away the under plate, thro' which from the floor the flux of this zether is furnifhed, or if that plate be placed upon an electric per fe, by which this flux is prevented likewife, the filver leaf is blown away.
No body can be fufpended in equilibrio but from the joint action of two different direttions of power : So here, the blaft of electrical zether from the excited plate blows the filver towards the plate unexcited. This laft, in it's turn, by the blaft of electrica! sther from the floor fetting through it, drives the filver towards the plate electrified. We find from hence likewife, that the draught of electrical zether from the floor, is always in proportion to the quantity thrown by the globes over the gun-barrel; or the eouilibrium by which the filver is fulpended, could not te maintained. I once founch, that a gentleman, at that time an invalid, whofe fhoes were perfectly dry, and of confequence originallyciectrics, and who was employed to hold the non-clectric plate through which the æether was to come from the floor; this gentleman, Ifay, did not furnifh a fufficient quantity, becaufe of the drynefs of his fhoes, to maintain the equilibrium; and the filver was blown away. But upon employing another to this office, whofe fhoes were more wet, the rether cane readily through him, and the filver was fufpended. I have likewife

Of ELECTRICITY.

likewife found a wooden pole, very dry, not conduct this æther faft enough to keep the filver fulpended. It may be imagined, that it is poffible for the filver to be fufpended, without fuppoling a flux of the electrical æther from the neareft unexcited non-electric, as well as from the excited one; that is, by the fimple electrical attraction. But to obviate this, it muft be remembered, that the electrified gun-barrel both attracts and repels light fubttances at the fame time. Can this attraction and repulfion be conceived without the operation of the clectrical æther both to and from the gun-barrel at the fame time? Does not this point out an afflux as well as an efflux? Are not the electrical repulfions as Atrong at lcaft as the attractions? Do not we fee light bodies, either between excited originally-electrics, or excited non-eleetrics, and unexcited non-electrics, dart like a ball between two rackets of equal force? It may be faid perhaps,
x. That the fufpended filver may only ferve as a canal of communication, which difcharges the Electricity from the excited non-electric to the un-excited one; and that when an originally-electric is placed between the lower plate in this experiment and the floor of the room, that then the filver is attracted only, until the lower plate is faturated with Electricity, and no longer. This is as much as faying that this effect arifes from Electricity, without mentioning in what manner.
2. That this effect is produced by the electrical attraction, which gives the filver a direction towards the excited non-electric, but that it is kept down near the unexcited une by the force of gravity. Was this the caufe, the action of gravity would operate as much thro' originallyelectrics as through non-electrics.

But I am able to prove the aflux experimentally, as well as the efflux, $\$ 60$. in the following manner. When the filver lies ftill, though the motion of the globes is continued, between the two plates, one fufpended to the gun-barrel, and the other placed upon an electrical cake, a perfon ftanding upon the floor needs only bring a fmall glafs fiphon in a veffel of water, and apply the long leg thereot near the plate placed upon the wax ; for upon this the filver is immediately fufpended; and the water, which before only dropped, now runs in a full ftream, and appears luminous*. Does not, in this cafe, the current of the water point out the direction of the current of electrical zether?

When the machine, $\xi^{\circ} c$, are placed upon originally-electrics, if a; $6:$ man, ftanding likewife upon an originally-elcetric, touches the gun-barrel while the globes are in motion, he will rective a fiap or two ; after which, though the motion of the globe is continued, he will perceive

[^36]
Of ELECTRICITY.

no more fire from the gun-barrel. While in this pofture, if he touches the wood-work of the machine with one hand, and applies a finger of his other near the gun-barrel, at that inftant he receives the electrical Atrokes. Thefe continue as long as he touches the machine, but ceafe upon his removing his hand therefrom. Here we fee a circulation of part of this man's clectrical fire, which operates in the following manner. Linft; The man, by applying one of his hands to the machine, becomes a part thereof; and, by the motion of the globes, part of the electrical fire, inherent in his body, is driven upon the gun-barrel; but it is initantaneouny reftored to him again, upon his touching the gunbarrel with his other hand. Thus he continues communicating the fire with one hand, and laving it reftored to him with the other, as long as he pleaies. It, inftead of touching the machine or gun-barrel, he holds his finger near either or both of them, you fee the tire go out, and return back, as in a former experinuent.

It may be perhaps imagined, if one man touches the machine, himfelf and the machine both being placed upon the wax, and if another, Atanding upon the floor, conftantly, or by turns, touches the gun-barrel, that by thefe means the man upon the originally-clectrics might be divefted of all his electrical fire, by conftantly continuing the motion of the globes, as he receives then no fupply from the floor. But the contrary proves true; and, atter a conliderable time, the ftrokes from the gun-barrel are as flrong as at hirf. But here we muft obferve, that the gun-barrel fufpended will not contain probably at one time $\frac{1}{1000}$ part of the whole quantity of this man's electrical fire: therefore I conceive, that, as foon as this man has parted with any portion of his neceffary, his determined quantity, to the gun-bastel by the motion of the globes, he has it reftored to him upon any unexcited non-electric's touching the gunbarrel, by having the ulual courle of the Electricity * inverted.

We fee, from many experiments, that dry wood does not conduet Electricity fo well as that which is wet; and that the man fanding upon the floor, who rubs the globes, excites the Electricity itronger than the cufhions. Ihis I had reaton to conceive was owing not to any other difference, than that of his being more moif, and, of confequence, more readily conducting the Electricicy from the foor. Thercfore I order'd my machine, and even the cufhions to be made dampl, by caufing wet cloths tio be placed upon feveral parts thereof; and found then, that the Electricity was equally flrong, as when the globe was rubbed by the hand.
> §6t. It remains now, that I endeavour to lay before you a folution why our bodies are fo thocked in the experiments with the electrificd water; the difficulty thereof I confefs feemed unfurmountable, until I had made the following difcoveries.
> 1. That the Electricity always defcribed a circuit between the elcetrified water and the gun-barrel.

*For a further account of this matter, fee Art. \&8. § 7.
2. That

of ELECTRICITY.

2. 'T"Iat the electrical fire came from the floor of the room.
3. That it would not pafs from the floor quick enough for the perfon to be thaken, if his Choes were dry.
4. That the force was increafed in proportion to the points of contal: of non-electrics with the glafs containing the water.

Then the folution of this phenomenon became more ealy, which I take the liberty to offer.

1. I have endeavoured to prove by experiment that a quancity of Electricity is furnifh'd from the neareft unexcited non-electrice, fequal to that accumulated in excited originally-electrics and excited non-eleetrics.
2. This being fo, when the phial of water hedd in one hand of a man is highly electritied, and he touches the gun-barrel with a finger of his other; upon the explofion which arifes herefrom, this man inttantaneoully parts with as much of the fire from his body, as was accumulated in the water and gun-barrcl; and he feels the effects in both arms, from the fire of his body rufhing through one arm to the gun-barrel, and from tile other to the phial. For the fame realoris, if, in the experiment with the clectrical * mine, a man places his right foot upon the lower fmall wire, and touches the gun-barrel with his left arm, the electrical force is only felt in that leg and arm.
3. As much fire as this man then parted with, is inftantancouny replaced from the foor of the room, and that with a violence equal to the manner in which he loft it.
4. But this Aux of electrical wether, either from the floor to the man, or from the man to the water, is prevented for reafons fufficiently obvious, if the glafs containing the water be thick; if the points of nonelectric contact are few; if the man is placed upon originally-electrics; or (which is the fame thing) if the foles of his choes are dry.
5. As we find that the Electricity paffes at leaft equally quick through denfe mediums, which are non-electrics, as through thole which are more lax and fpongy; may we not therefore conclude, that the caufe why we feel moft pain at the joints of our arms, and in the tendons of our heels + , arifes from the texture in the tendons and tendinous ligaments of thofe parts?

From a duc confideration of the phenomena before us, I take the li- $\$ 6$. berty of propofing the following queries:

1. Whether or no the effects we obferve, in bodies being drawn to and driven from cither excited originally-electrics, or excited non-electrics, are to be attributed to the flux of electrical sether?

[^37]2. Whether or no, that, which from it's being firft difcover'd in amber, we call Electricity, electrical zether, electrical power, $\mathfrak{E}^{2} c$. is any other than elementary fire?
3. Whether or no this fire does not appear in different forms, according to it's different modifications? Does it not, when diffufed under a large furface, appear to affect us as air? When brought towards a point, does it not become vifible, as lambent flame? When nearer ftill, does it not explode, and become the object alfo of our feeling as well as of our hearing? Altho' it does not affect our fkin with the fenfation of heat; does it not, by it's lighting up inflammabie fubftances, fhew itfelf to be truly fire?
4. Whether or no this fire is not connected intimately with all bodies at all times, though leaft of all, probably, with pure dry air? Have we not found and feparated it from water, flame, even that interie one of oil of turpentine, lmoke, red-hot iron, and from a mixture 30 degrecs colder than the freezing point?
5. Have we not proved it's fubtility, from it's pafling through all known bodies?
6. May we not infer it's elafticity likewife from it's explofions, from it's increafing the motion of fluids, as well as from it's effect in the concuffion of our bodies, when we difcharge it after we have accumulated it in water ?
7. May not the electrical machine, from it's ufes, be denominated a fire-pump, with equal propriety as the inftrument of Otto Guerick and Mr Boyle, that of the air?
8. Does not the power we are now mafters of, of feeing the feparation of fire from bodies by motion *, and of feeing it reftored to them again, and even after that motion has ceafed, caufe us rather to incline to the opinions of Hombcrg (a), Lemery the younger (b),

[^38]
Of ELECTRICITY.

s'Gravejand (c), and Bocrbaave (d), who heid fire to be an original, a diftinct principle, formed by the Creator himfelf, than to thofe of our illuftrious countrymen, Bacon (e), Boyle (f), and Newton (g), who conceived it to be mechanically producible from other bodies?
9. Muft we not be very cautious, how we conneet the elementary fire, which we fee iffue from a man, with the vital Hame and caliduriz innatum of the Ancients; when we find, that as much of this fire is producible from a dead animal as a living one, if both are equally replete with fluids?
10. Whether or no it is not highly probable, that by increafing the number and fize of the phials of water in a certain manner, you might not inftantly kill even large animals by the electrical ftrokes (b).

I cannot conclude thefe papers, without congratulating that excellent $\$ 65$. Philofopher and learned Member of this Society the Abbé Nollet of Paris. This gentleman, almoft two years fince, in a letter to Profeffor Bofe (an extract of which this laft publifhed with a work (i) of his own) without the knowledge of feveral experiments fince difcover'd; at leaft none of his difcoveries have yet fallen into my hands, did declare his opinion, (k) that the Electricity did not only procecd from the electrified bodies, but from all others about them to a certain dif. tance; (l) that the Electricity, as well from bodies electrified, as from

(c) s'Graverfand Philofoph. Nequton Infieutiones, cap. 1. Ignis in corpora omnia quan-

 tumvis denfa \& dura penetrat --Corporibus fefe jungit--ignem ad certam dillan:iam a corporibus attrahi-nulla novimus, quar ignem non continent-non ignis aque facile corpora omnia intrat - corporibus contentus in his a corporibus circomambientibus re-tinetur.-Mo:u celerrimo ignem affici poffe.(d) Boerhaavii Elementa Chem. de igne, p 187 . \& feq - Ipre ignis-femper praiens exiftit in omni loco-imo vero in omai corpore, etiam rarislimo, vel folidifitimo, xqqualites diltributus hæret.-Haud ergo potui detegere, quod in rerum natura fit vel ullum fpatium fine igne.

1bid. p. 283. Huc ufque conabar-tradere ea, que verifima addifcere potui de natura illius ignis, quem clementalem appellant philofophi. Illum feilicet, ita confiderando, prout creatus ipre in serum (natura) exiftet feorfum, extra reliqua omnia creata, quaxcunque demum fint, corpora.
(e) Vide tractatum De forme calidi.
(f) Mechanica! Jrigin of Heat and Cold, fet. 2.
(g) Sce Queries at the end of his Oprics.
(b) Monf be Monnier at Paris ki!led birds by thefe: and with me, a linnet and a rat, much more than half grown (the darged 1 was then able to procure) have been fruck dead.
(i) Recherches fur ha Caufa, et fur ie veritabie Tijeorie de TElefficist. Wittembe:gue. 1745.
(k) Voyez Nollet dans les Recterches, E゙t du M. Bofe, pag. xlp.-La matićre elcetrique vient non feulemeat du corps éece?rifé, mais aułif de sous ceux qui font autour de lui, jufques à une certaine dilitance.
lhid. p. xlix.-Si vous pouvez vous convaincre comme moi, que la matiére qui va au corps éectrique vient primitivement de rnus le corps environnans, de l'air même, vous aurez bien plus de facilité à expliquer tous les autres efférs.
(1) Ibid. p xlvi. La matićre electrique, tant celle qui fort du corps élcetrifé, que celle qui vient des environs à ce mème corfs, fe meut plus facilement danis les corps denfe que dans l'air mêne.
thofe which were not, paffed more readily through denfe mediums than air; (in) that the Electricity is prefent in all bodies; (n) that this matter always tends to an equilibrium, and endeavours to occupy thofe fpaces in bodies, which have not their neceffary quantity: all which affertions may now be proved by experiments.

Extralls of tswo letters from the Rev IIen Miles. D.D. $F R S$ 1o Mir bien. Baker, F.R.S. concerning tbecffais of a

You fee, Gentlemen, by my afferting, that what we have hitherto calledelectrical effuria, do not proceed from the glafs, or other electrics per Se, I differ from Cabeus, Digly, Gaffendus, Brown, Des Cartes, and very great names of the laft as well as the prefent age. My differing from them would be prefumption indeed, were I not induced thereto, by obiervations drawn from a feries of experiments carefully conducted, to which many of you have been witneffes, and to whom I may therefore appeal, for taking what may feem fo extraordinary a ftep. I have conftantly had in view that excellent maxim of Sir I. Nereton laid down in his Optics, that, " as in Mathematics, fo in Natural Philofophy, the " inveftigation of difficule chings by the method of analyfis ought ever "to precede the method of compofition. This analyfis confifts in mak" ing experiments and obfervations, and in drawing general conclufions "from them by induction, and admitting of no objections againft the " conclufions, but fuch as are taken from experiments, or other certain " truths. For hypothefes are not to be regarded in Experimental Phi" lofophy. And although the arguing from experiments and obferva" tions by induction be no demonftration of general conclufions; yet it is "the beft way of arguing which the nature of things adnnits of, and " may be look'd upon as fo much the ftronger, by how much the in"duction is more general. - By this way of analyfis we may proceed " from compounds to ingredients, and from motions to the forces pro"ducing them ; and, in general, from effects to their caufes, and from "particular caufes to more general ones, till the argument ends in the " moft general." I am declirous, that what is contain'd in thefe papers, you will be pleafed to regard rather as the rude outlines of a fyftem, than as a fyftem itfelf; which, I am in hopes, men of better heads and more leifure will profecute : and if hereafter, from being poffeffed of more oblervations than we at prefent are mafters of, any opinions in thefe papers fhall be found crroneous, I at all times fhall be willing readily to ictract them.
10. Being determined on making fome experiments in Electricity with other bodies befides glafs, a little before the Holidays I procured a ftick of the beft black fealing-wax, of about an inch in thicknefs, and of a convenient length; and exciting it with white-brow'n paper, or clean dry flannel (I know not which is beft) I made the following trials.
1 attempted to kindle common lamp-fpirits, both by attraction and repulfion, the clectrified perion Itanding on a cake of bees-wax, and fuc-

[^39]
of EI, ECTRICITY.

ceeded. - I made trial, at the fame time, with my glafs tube, and, I cancofblack think, kindled the firits more cafily. Perhaps, from fome circumftan-fealing-wax, ces hereafter to be mentioned, this may, coeteris paribus, be generally brim a canc of expected.

I was then minded to repeat that experiment of the late ingenious and periments. N^{N}. induftrious Dr Dejoguliers, and others; by which it appears, that when +78. p. 27. any light body is put into a flate of repulfion by vitreous Electricity, it is in a ftate of attraction in refpect of rcfinous Electricity, and fo contra. This I found conftantly to hold good. I made this trial with a down- lan 15.174^{8} leather, which was tied to the end of a penduious thread, which thread 1745.6 . was tied to a filk line, fafteried herizontally to the oppofite fides of the room, and alfo with a finall piece of writang paper, of about the fame dimenfions as the feather. Here I found the feather would retain the effuria (whether of the cube or cane) about five or fix minutes longer than the paper would; that is, the feather remained to much longer in a ftate of repulfion The cime in which the paper was in a flate of repultion, after many trials, I fourd to be about 20^{\prime}, more or lefs; at about which time the paper wouk: inderd fomewhat fanfly decline the tube, $8 c$. but in a monent would be attracted by thein; and if I ftaid longer, I could not perceive any repulfive force remaining.
lought to tell you, that when 1 had, by deveral trials, found out about what time the effluvia woui be quit: diffipated, I forbore making any trials till then, left that, by irringing the tube or cane near the body of trial, I might communicate fresh offereia, and perpetuate the fate of repulfion longer than it would otherwife have been; fo that, in the laft trials I made, I never came near with the tube, $छ^{\circ}$ c. till full 20^{\prime} after the body of trial was put into a fat of repulfion. I obferved not any material difference of time betwect: the diflipation of the effucia of the glafs tube, and thofe of the wax cane, when the fame bociy of trial was made ufe of for both: if the re was any aifierence, I think the vitreous $\mathrm{CP} / \mathrm{u}-$ via were the moft lafting.

I made another trial with the cane and tube in a dark room; being led to it from a fufpicion I had, that the efine: ia from the wax cane were groffer, and more in quantity, than thoie from the glafs tube; and, upon exciting both as quick as I could in fuccefien, if tounci the luminous efflevia, when I brought iny furefinger near the wax, to proceed in a much greater quantity to the cane trom the tip of my inger, than they didon the fame trial with the cube of glats. And 1 ieveral times obferved a fmall globular fpot of fire to appear firlt on my finger, from which iffued regular ftreams in form of a comet's tail.

When I made uie of the glais tube, as the quantity was defs, fo the fparks were finer, lefs in thicknefs and in leigth, but much tore active; rior did they proceed fo regularly towards the tube, nor make fo regular an appearance (being feldom, if ever, altogether regular, as the others); frequently breaking in pieces, as if by collifion, or not altogether unlike the iparks from a brand in a wood fire, which has lain long without being

Extraty of the fecond letter dared Jan. 22. $17+5 \cdot 6$

Of ELECTRICITY.

being ftirred. Another difference I remarked was, that the refinous effluvia were more deeply coloured than the vitreous.
2. Whether it be not probable, that the refinous effuvia are more unctuous or fulphureous than the vitreous; and becaufe not fo active and nitrous, lefs apt to kindle inflammable fpirits, as I think I found them to be?

I intreat I may not be confidered as pretending, in the above trials, to cfrablifh laws, but, as plainly relating matters of fact. i'erhaps future trials may not confirm thefe.

I think it not is circumftance too impertinent to be mentioned, that the trials rehating to repulfion were made in a fmall room, and near 2 fire ; the air precty moif.

I am dubious whether I did not exprefs myfelf in a manner liable to be mifunderftood, when 1 faid to this purpofe, that I would not be underfood to eftablifg lawis by the fore-mentioned experiments, but only to relate facts; and tbat future experinents might not confirm theje. I did not intend this fhould extend to that experiment, which proves the different nature of vitroous and refinolis effluvia; which I prefume, may be confidered as invariable inherent properties; fo that bodies, put into a thate of repulfion by the one, will be attractcd by the other, $\xi^{\circ} c$. But the other pbrenomena, as depending on changeable circumftances, the temperature of the air, the degree in which the electric bodies may chance to be excited, the quantity of efluria, and perhaps others to us unknown; the other phernomena (I fay) ciepending on fuch like circumftances may be variable.

I beg leave to inform you, that I have been making trial with a ftick of fulphur of the commonfort, which I made of a convenient fize, by cafting it into a coffin of paper, the infide being of writing paper: this, being excited, attracted the bunch of threads with great power, and kindled common fpirits as quick as everI knewit done. This was after night, and I law not what the day-light afterwards difcovered, that the infide round of paper adhered to the fulphur, and it had made it's way thro' the paper, which conccaled the colour of the paper, and it's adherence, till next day; however it performed as above. - This was broken, by an attempt to ftrip the paper off the ftick by a too officious perfon, without my knowledge. - I then caft anothor with the fame fulphur, and an addition of frefh, melted together in a wooden mould, which came out fmooth and well; but was perfuaded, againf my own judgment, to put a gun-rammer into the middle of the mould, to ftrengthen it; which ttick anfwer'd that end; but, as I fear'd it wouki turn out, the fulphur tho' of a great thicknefs round the faid gun-fick, could by no means be excited to any tolerable degree. I therefore made a third, as the firft, which has the paper on it as before, but it performs exceeding well : having fuffered mylelf to be electrified with it, upon the approach of a perfon's finger to mine, 1 had by far the moft painful fenfation I ever

Of ELECTRICITY.

yet felt in any of thefe experiments. - I believe a glafs tube might be bett of all for a mould (but mine are of too fmall a bore), if one could be affured it would not break.
II. I ain under no doubs, but that experiments with fulphur are ca- Extrats of pable of being improved, and hope fhortly to make it appear. I amt two letters foth to venture my glafs tubses of Hint for a mould, but intend to pro-from the fame, cure one of common glafs; having lately had the misfortune of loling my beit, in lo odd a manner, that I believe you will excufe me if I trotible you with the account.
mexperi-
I had been ufing it but a little time in the evening; and, before I laid P it up, having by me a round ruler finall enough to go into the bore, when it was covered witia a roll or two of brown paper, it came into my head to excire it, by rubbing it a little on the infide with tire faid ruler and paper ; but not finding any effect of it, after a few minutes trial, not to much as to attract the malleft thread, I laid it in my window in my ftudy on a parcel of papers and pamphlets, where it ufed to be put; and next morning, as we were at breakfaft, I heard a frap, and, on turning my head, found about two inches of my tube broke off very regularly. Upon this I took it, and placed it againft a cupboard-door, erect, in a pocket of lather, that had been mailed up againft the door for fuch a purpofe. The upper end was tied to two thongs of leather, but not tight, only to prevent it's ftiring: thus it continucd fafe till I went to bed; but, in the morning, upon opening the faid door, I was furprifed to find my tube in thivers, except about three inches, as if it had been broke with a fmart biow of a hammer. The cupboard is over the fire-place and fo near it, that I think it impoffible it fhould ever have been quite cold; and the wintiow where it was firft put is fo near the fire, and it's being laisl on the feat of the window, a foot below the fafh, it could not be much affected with the air from thence. - The weather was frofty, but the cube from firit to laft never out of the room; and I am fure never had any blow.

The itick of brimftone I laft made, with which I kindled lamp-fpirits fo readily, as I informed you belore, was fet up in the forementioned cupboard in an ercet pofture, has loft all it's electric virtue, and cannot be made to attract a down-feather, or a fine thread. -This I know not how to account for, uniefs it be, that the expoling it to the air, by it's not being wrapped up in any thing, may have deprived it of it's power: for, if I mifremember not, Stipben Gray ufed to keep his fulphur conic bodies, caft in wine-glafs, in a box, and wrape up in flannel; however I Thall attempt to recover it arin....The cupboard is fmall, and never cold.- My ftick of wax kept in my def., not wrapt, wi!l attract a thread at any time, without rubbing at all.

Lait night, having feveral gentiemen with mee, who wcre defirous of feeing the fet fire to iome fpirits of wine, I was willing to try whether I could nut kindle the fame withan icicle; bur, not being able to get one, I attempted it with a thick piece of ice, and immediately flicceeded, in

Of ELECTRICITY.

prefence of 7 or 8 perfons; and I think the fparks of fre from the ice, when the finger of a non-electric perfon was brought nigh it, were as large and as powerful as any I cver faw; fo that I am fatisticd the power of them is no ways diminimed by the coldnefs of the ice: and I doubt not, but that, if the ice be kept from melting and dropping into the fpirite, ice will kindle them as readily as any other fubftance: the fpirits were fuch as we uie for the twa-kettle lamy, and far from being of the berf fort.

One circumftance more I will mention, and releafe you. .-. By accident one of the gentlemen approaching the electrified perion with his hand near his fhoulder, the fiic gentleman felt a very pungent ftroke on his flefh, thro' his coat and wailtcoat, which were both cloti. This was repeated fuveral times, and in every one's opinion (on whom trial was made) the repulfive firoke was as fimart as it is wont to be on the end of the finger, when nothing intervenes; and the fenfation continued as long. I know not whether this has been before taken notice of; if it has, your gooiners will excufe my impertinence
Extraf of the Since miy former, I made an other trial, and fucceeded with all. the fecond leter. eafe imaginable; the fpirits kindling the very moment of my approaching them with the lump of ice, which was an inch and thick. After this I took a clamp of iron, fuch as is ufed for heating box-irons for finocihing linen-cloths; and having heated the fame red-hot applied it to the fpirit, as I ftood on the cake of wax electrified, holding the fame in a pair of torigs.

I did not, I confefs, expect much from this trial; and the event was, that I could not kindle the fpirits, during the time the rechefs continued in the clamp; but, as foon as that difappeared, and it began to look blackifh, the fpirits were kindled as ufual.

1 fhall not draw any conclufion from a fingle trial ; perhaps fome reafons might be affigned, why the red-hot iron did not kindle the fipirits, provided one were fure this would always be the cafe; and if the experiment were repeated with the fame conlequence a good many times, one would venture to fay, that the heat of the iron contributed no power of inflaming to the effluvia.

My tube I have ufed of late is not made of the fine fint-glafs, but fuch as common wine glaffes are made of.

I have got me a tube made of common green glais : this is exceeding light, in comparifon with others; and may be excited with double the time and pain required for the others, but yet not without warming it at the fire; though this feems powerful cnough to attract the bunch of threads, yet I am not able to kindle any fpirits with it.

I have made thefe trials, that I might be able to determine which kind of glais afforded the greatef quantity of effluvio, or at leaft the ftrongeft, as near as might be; which may not be altogether unufeful to be known.
12. Mr "Allamand incloled fome mercury in a tube clofe-ftopp'd; Part of a lesand, when he afterwards rubb'd this tube, it gave a great deal more light fer from Mr than when the fame had no mercury in it.

When this tube has been rulbh'd, after raifing fucceffively it's cxtremi ries, that the mercury mirht How from one end to the other, one fecs a . Folkes, light ferpenting all along the tube; that is to fay, the mercury, as it runs along, is all luminous.

Mr l'Allamand then made the mercury run in the fame manner along the tube without rubbing it, and it ftill gave fome light, but much leis than before. This latt experiment perfuaded him, that the friction of the mercury againt the glals might clectrify that glafs, in the like manner as the rubbing of the hand. And he has been confirmed in the fame notion by another experiment: He brought fome down near to the tube, and then made the mercury run from one end to the other; and the down was attracted, as the mercury in it's motion palfed by it. this great while, is not io properly a phofpborus, as the effect of the mercury electrifying the tube of the barometer.

Mr l'Allamand has put mercury into exhaufted tubes, and, when thefe are rubb'd, they give much more light than before; there then come out from them on all fides rays of very lively light. I have alfo feen at Leyden, at Mr Muffcbenbroeck's the mechanift's, an exhaulted globe of glafs, which, when rubbed with the hand, feemed all filled with a very bright fire.

Several perfons have obferved, that when they had been electrified, their pulfes beat a little fafter than before. I have even myfelf felt, atter having been electrified a pretty while together, a fenfation all over my body: but within thefe few weeks, fome perions have felt very fharp pains upon their being electrified.

There is an experiment that Mr i' Mllamand has tried; he electrified a tin tube, by means of a glals globe; he then took in his left hand a glafs full of water, in which was dipped the end of a wire; the other end of this wire touched the eleetrified tin tube: He then touched, with a finger of his right hand, the electrified tube, and drew a fpark from it, when at the fame-inftant he felt a moft vioient thock all over his body. The pain has not been always equally fhath, but he fays, that the firf time he loft the ufe of his breath for fome moments; and he then felt to intenie a pain all along his right arm, that he at firt apprehended ill confequences from it; tho' it foon after went off without inconvenience.

It is to be remarked, that in this experiment he ftood fimply upon the floor, and not upon the cakes of refin. It docs not fucceed with all glaffes; and tho' he has tried feveral, he has had perfect fuccefs with none but thofe of Bobemia. He has tried Englifh glafies without any effect. That glais with which it beft fucceeded was a beer-glais.

Mr Mufchenbroeck the profeffor has repeated his experiment, holding n his hand a hollow bowl exceeding thin, fall of water; and he fays he VOL. X. Part ịi.

T t
experienced
wha'e th:
Part of a les. ser from sbe Rov. Dr Miles, FR.S. to 2 2t Hen. Baker, F. R.S concerving eleqticical fire Tbid P. 7^{8}. Dated Feb. 15. $1745-6$. Rend Feb. 20 $17+5.6$.

Of ELECTRICITY.

experienced a inoft tervibie pain. He fays, the glass muft not be at all wet on the outfide.
13. You query, whether that fubtil fire which kindles warm'd fpirit of wine, be refident in the body from which it evidently iffues, and be kindled occafionally? or, whether it comes from the excited rube pervading inftantancoully the body it is applied to? or, laftly, whether there are cercain principles in the air, which are thus agitated into an extemporaneous lightning? Thefequeries are certainly very comprehenfive and importane; I wifin I were able to return you fomewhat more fatisfactory than fuppofitions.

I incline to think the electrical and Juminous effluria to be the fame, and not diftinct fubftances. Mr Haskfluee feems to diftinguifh them, intimating, that no luminous matter would be communicated from an excited cylinder of wax to his finger, when brought near to the cylinder, though it attracted light bodies; but it is to be obfervect, that this cylinder of wax was only a coat of wax, of about half an inch thick, on a wooden cylinder of four inches diameter: now I have always found my ftick of wax, which confifts of noching elle, to emic luminous effuvia: very plentifully, and rather in a greater degree than the glafs tube.

If we conclude with the Englifh philofophers, that fire is mechanically producible from other bodies, by collifion, attrition, $\xi^{\circ} c$. or, according. to Sir I. Necoton, by putting the fulphureous particles of bodies into a very ftrong vibratory motion; by which means they become hot and lucid, i. e. affect us with ideas of light and heat; on this fuppofition may we not conclude, that the action on the glafs tube, when it is rubbed, by putting she parts of it into fuch a vibration, and, conlequently, agitating violently the fulphureous particles therein, may heat and kindle them? And may it not alfo be fuppofed, that when the air is in a due ftate, nitrous or o-1 ther particles in the air may contribute to the kindling them? or, perhaps, rather that fubril, active, elaftic. fubftance, which Sir I. Nowiton fuppofes to be the caufe of the refraction, ε_{0} c. of light, and which communicates heat to bodies, and is univerfally diffufed? Thefe effiuvia, being thus agitated and conveyed by a non-electric body intervening, in a due quantiry, to the vapour of the warmed fpirit, may be fuppofed to kindle them, without exciting any originally-rclident fire in the body immediately communicaring with them; the luminous effuria from the finger, or ice, Ecc. when brought near the inflammable body, being, as far as we can perceive, of the very fame kind with thofe which proceed from the tube; or there is nothing appearing in them which may lead us to fufpect they are not the very lame, tho' in a greater quantity than what can come from tie part of the sube you approach with the end of your finger.

If we conclude with fome of the foreign philofophers, Boerhaave, Homberg, Icmery, s'Grazefand, Sic. that fire is equally diffifeil throughout she univerte by the Creator, pervading the intertices of all bodies, and that there is no ure mectanicaliy produced de nowo then, may we not conclude,

Of ELECTRICITY.

clude, that whereas, by attrition of the glafs tube, there is prodiuced a a very quick and ftrong vibration of its parts, which muft neceffarily affect the fire contain'd in the vacuities, by compreflion and relaxation; fo that, as Boerbacee expreffes it, there mult be, in the bodies thus agitated, and in the fire contained in its pores, an exceedurg great motion excited, and, together hercwith, the furrounding fire from both thefe caufes, muft be 'agitated, and so much the more violently, the nearer it is; may we not conclude, that its force will be hereby fufficiently increafed to kindle the fpirit to which it is convey'd?
on In this, as in the former hypothefis, I would not exclude the elattic anateria fubtilis from being fuppofed the having an influence ont the effluria. Whichlocver of the two bypotbefes we embrace, you may perceive, that I incline to think, that the kindling fire rather proceeds from the excited tube, I am very fenfible I am in a great meature groping in the dark; but hope future experiments will calt a dight on this obicure fubjeet.

- i4. It this afternoon, on reflecting afrefh on Monfieur i' Allamand's experiment, refolved to make the following trial, tio' I was in no doubt what the iffie would be: I took my tin tube, which has two arins to it, ditectly oppofite one to another; and at that diffance from one end of the tube, which is equal to the longth of one of the arms, as you may T 10 inidaperceive by the figure in the margin (not ro trouble you

دimony with the ufe it was made for, at prefent): this I lutbort plended by a lilk line from the ceiling of the room, letting it hang down of a length eonvenient for my purpofe. I then took a clina baton, holding berter than a quart, and, having nearly filled the fame with water, Iftood on the wax cake, with this bafon of water in my hand, 10 near the pendulotis tube, that I could apply the bafon to it with convenieice: then, having futfered myfelf to be electrified, I held the bafon fo under the tube, that-the lower end dipped an ineth more or lefs in the watert: upen this, a petion approzched one end of whe of the aruns with the pirit of wine in a jpoon, and it was immediately kindled with veherrence; and at the fame time I received on one of my fingers that held the bafon a pungent ftroke; and that ftroke was given the very inftane of time the frap was at the fpoon; or any other object that was appliect. The wind was then S: and hard rain, as moft part of the day; s and yer, if one were difpofed to indulge imagination, the effuvia feemed to act more ftrongly than is ufual. I think there can be no coubt, but that water is as goud a medlum of communication to the efflvia, as any fubject whatever; fors that all thofe which came to the fipirit were conveyed to the tube by the water, I am cerain; fince the tube dipped in the centre, and was then motionlers; fo that it nevel carie fo near the bafon as

T, 2 , the tube: \%, σ, the arms. At $:$ the bafon of water was held.

1 ifter from the fame, concerning the F. kisricity of water. lbid p.g. Dated Feb. 20. $17+5-6$. ReadFeb. 27. 1745-5.

Of ELECTRICITY.

A letter from ——10Mr John Ellicot, F.R.S. of nuerighing the Arength of C . It:2rical eflluvia. $\mathrm{N}^{\circ} .479$ p. 96 Mar. and Apr. 1746. Read Mar. 6. :-45-6.
13. As you were the ouly perfon who ever fhewed me any electrical experiments, and have been fo kind, according to your wonted candour, to affift me frecly upon this and all other like occalions; I think it proper to give you this firft account of what I have thought of towards gaining a far. ther inilght into the nature, power, and laws of Electricity.
Fron the time I faw thofe experiments at your houfe about 3 years ago, I had litele or no opportunity of making any myfelf, until within this month; when, having got fome good utenfils, I repeated, or imitated moft of the trials I had heard of, with fuccefs. And particularly having heard, that Mr Gray gave an account of balls caufed to move round one another by means of electrical effluvia, I was very defirous of feeing fo delightful a fight. And though 1 was difappuinted in my expectation of a circular motion, yet I found it eafy to make two balls act upon each other, in a very entertaining manner, for a long time; and that with fuch a conftancy and regularity, as to the effect, that I apprehend one may thence deduce a gauge or ftandard, whereby to meafure electrical powers, and compare the quantities and ftrength of the virtue infufed into, or remaining in, non-electrical bodies after given times, $\mathcal{E} c$.

This, together with a great defire to be able to eftimate and compare the effects of experiments with fome certainty, and to do fomething more than amufe my felf and friends with the feveral furprifing phenomenia which thofe experiments produce, led me, about io days ago, to think of a method, which, for aught 1 know, is quite new, and feems to promite fair to afford much new lighe: it is to try or weigh the ftrength of the electrical effluvia, virtue, or power, by caufing it to act upon a balance.

I found, the firft day, that this method anfwered even beyond my expectation; fo that feveral non-electrical balls placed fucceffively underneath one of the fcales, and then imbued with electrical virtue the common way, would prefently caufe that fcale to defcend $2,3,4$, or 5 inches, and feem to cleave, for 10 or more feconds of time, to the fevesal bodies fo placed underneath, fome having much greater effect than others. Whence it appeared, that there was a fufficient latitude for comparing very different forces, if any fuch there were. At the next and only opportunity I have had fince (my apparalus being made more conmodious), Iufed hat inftead of globular bodiess and then I found the effects far more confiderable; fome of them, whofe upper furface was ateut 3 inches fquare, having attracted and beld down one fcale, when there weere about 200 grains weight in the other.

Though I am sempted to communicate fome things, which I have already obierved by this mgans, with much delight, I referve them at prefent for a farther exansination; defising in the mean time, that you witt communicate or divulge thas in fuch manner as you think proper (only concealing my name, that othors, who may have an inclination, may purfue and improve the hint. And, for the eale of fuch, 1 inuft add, that the strings of that fale which is to be acted on, mutt be long, and non-electrical, and, I think, thick; that there may be a really paffage

Of ELECTRICITY.

for the electrical virtue to run off as faft as it is reccived. Inftead of a brafs fcale-pan, I ufed a flat piece of cork, filed very finooth and even, efpecially on the under furface. The other feale needs no alteration, provided the ftrings be made of filk, as ufual, and fhort enough to keep that fcale out of the reach of the electric virtue, which is to act upon the former. If the beam were three or four feet long, the itrings of both fcales might be of a length, which would make it def's troubletome to put in and takie ous weights.

I mounted the attracting bodies upon finall taper fticks, about $2 ;$ feet, whofe thicker ends had a foot which ftood upon 2 cakes of bees-wax full 10 inches thick in all.

I forbear to delcribe the pretty little fimple inftrument you furnifhed me with at my firtt fetting out; I leave that to yourfelf; only, as it has no name, I take the liberty to call it an eleEtrical ncedle. Every body, who delights in fuch matters, will shank you for it, if it were only for the amutement it will furnifh for fo ma: y hours, after being but once well leafoned, or tinctured with electrical effuc:ia.

But, I think, this liete infrument, and the balance together, cannot fail of informing us farther concerniag the properties of Electricity: fuch as, how far it agrees and difagrees with magnetifm; whether it paffes through the fiebitance, or on y along the furface of bodies; whether it: proceeds in any, and what parcicular direction, or has any particular tendency; in what particular bodies the moft of it may be collected and retained: and how long; how far the fygure, fize, denfity, or colour of bodies may be concerned; winether, as thefe effluvia may be felt, heard and feen, they may like wile be weighed; and many other matters, which will occur to the diligent obferver.
16. On my making ule of one of my boxes filled with pitch, wax, Eic. for the perfon to be electrified to fand upon, after ufing it a little while fuccefstully, I got the man who affifted to wipe the furlace of the pitch foc with a try clen cloth lufucting, miles, D. D. frood in, fome dampnefs might lodge thereon. This being done, for my fatisfaction I fet up the box on one lade, and held a thread of trial at a proper diftance, and found it to attract and repel the fame: but, on fet ting it down, and ftanding upon it, by no intans could it be made appear that I was eleetrified, or any other perfon who ftood thereon after. wards. I thereupon took another box of the faine fort, but made ufe of it without wiping it, and it performed well. This I have not yet repeated, but intend to do it.

In a pint-bottle of flint-glafs I have fome fmall picces of brafo. leaf, and the bottie hernetically fealed. Upontrying whother the excited tube would much affeet she faid Jeaf, I was at firt dilfppointed in my expectations; for tho' the tube was fo well excited, as that, upon bringing it near the byitie, ftrong and loud fnaps were given, there was hardly any fenfible motion in the brafsteaf, till I thought of warming the boithe at the fire; and then there was a confiderable one tho' not what 1 expected before I

Of ELECTRTCITY.

made any trialal But Ifuppot the bottle to be toothick ; for, on tirying a common fafk, which we fealed sn the fire, the teff which inad put in was very frongly both attractert ahe repelled a great-many times, 0 vish One odd circumatance I wiff:why, and detain you no longer Upon my lifting ulsthe lube hatily by chance, I obferved the leat to be pewerlully attrated by the filessot, che bottle or Hank next to the tuber this put met on trying purpoity what the effect would be, if, when a perion held eitier in his hand fideways, fo as the neck was parallel with the horizongl took thexcied nube, and moved ie upand down towards
 as I could, without hazarding my Itriking againftit; upon which the Braddeaf was'as finccelively hutrattelland repelled, or feemed tofollow the motion of the cube, or was affected; as it would have been if I had beat the air upon it, tho in a very inferior degre, ias you will fuppofer and thus it would bu'y if the tube was held at a greater diftance; and in the llath, I ciarried my hand fo as that the tube deferibed a circle about it, at the diftance of 6 or 7 inches, the: whole of the leaf would te put itho a conitant, regular gyration, which would hold as long as I could well comeinue the mution. This feemed to me ftrange, that if I brought the tube near, and renoved the fane flowly, no motion fefpecially in the butrle, was obberved, or what was next to none; and yet that this fudden motion of the tube fhould produce fuch an effuct; but I think it may be thus accounted for: while the tube is held near the bottle, \mathcal{E}^{2} c. for any rime, the leaf-brals is kept in a ftate of repulfion; and there: fore, under that confinement in the botlle, is motionlefs; but on my fiudden withdrawing the tube, the fode of the glafs oppofite the leaf ferves as an attractive to it, while the fide on which it fay repels it ; and thus, by the motion of the rube mentioned, there is a comant fucceffion of attraction and repelfion.

The liciord iv lesert, duted Apr, 16 .nt. 1746.

It may be hardly worth while to tell yot, that I fred common fpirit of wihe, at the dittance of 25 feet, the cflucia being conveyed by 9 perfons and 2 laths of deal, tyed together thus: the perfon to be electrified inmediately ftanding on a cake of wax, and holdnig one end of the lath, another perion ftanding about the middle of the diftance on another cake, and fupporting the lath, and a thitd perfon at the firther end, who held the other end of the lath, and firel the fipirit; and fometimes hek the fyoon, while a fourth perfon fired then by repulfion In this experiment, inftead of common thread, I ufed filver and gold twift, or what, I think, the ladies call plate ; and I have reafon to think this-much better than the former.
St ant fofartpom being of Abbe Nollet's minat, that Think no Fort of ghafs is proof againtt the effects of a moilt air. I conclude this from Nr-Wat fon's experiments and niy own.- I toid yotsbefore where I kept my tube; and I can affure you, I fintas great adifierence as can well be in the fame tube, betwcen what गt is sine day and the next, even when I have feen no great reafon to expect, from any denfle change in the 20im

Of ELECTRICITY.

sir, it fhould be fo. WBut whence arifes that we call moifnels in the air? I have many times knowi, that the wind being N. and N. E. and tho? it has rained all day jniceffarity, the air has been as dry (fo far as I could juidge from natural hygrometers, and frommy tube) as in a fair day; and than fome fair days, drier, by the fame indications.

I begin to think, that, by earcfullopatice, the glafs tube may be broughe to be a good hygrometer for the air. I wifh the theory of the air were more difiganiliy and accuratey confidered: certainly it has been neglected; fo Mr Lecke thought, a littie before he died; and faid, the imperfect difcourfe of Mr Boyle's, whith was printed atter his deceafe, was the beft account twe had. And: what has been done fince?

I was going to tell you (for I write in a hurry, that I may not lofe the conveyance which offers; that I believe cufhions, the cafe haircioth, and the fuffing of horle-hair, may be made to anfwer inftead of wax-cakes. I have one net 3 inches taick in the middle, even when it is not comprofled, which will do well.
17. When I heard of Me Muychenbrocck's experiment "I tried the fame; but I found great convultions by it in my body. It put my blood into great agitation; fo that I was affaid of ais ardent fever; and was obliged to ufe refrigerating medicines. Ifelt a heavinefs in my head, as if I had a thone lying upon it. It gave me wwice a bleeding at my nole, to which I am not inclined. My wife, who had only received the electrical flafh twice, found herieff to weak after it, that fhe could hardly walk. A week after, fhe recuived only once the electrical flafh; a few minutes after it the bled at the nefe.

I read in the news-papers from Berlin, that they had tried thefe electrical flafhes upon a bird, and had made it fuffer great pain thereby. I did nee repeat this experiment ; for I think it wrong to give fuch pain to living creatures. I therefore take, inftead of men or brutes, a piece of metal, and I put it upon a ftand under the electrical pipe, which pipe propagates the Electricity. To this metal is faftened an iron chain, which goes about the bottle with water, in which the brafs wire is put, which wire is fattened to the electrical pipe.

When then the Eleftification is made, the fparks that fy from the pipe upon the metal are fo large and fo ftrolg, that they can be feen (even in the day time) anc heard at the diftance of 50 yards. They reprefent a bam like lightning, of a clean and compact line of fies; and they give a found that rightens the people that hear it.
18. While fo many gentlemen are labouting to find out the ufes of Electricity, it has been my fortune to difonver one, at leant, of the inconvetiencies attending that property in glafs. And as it is fuch whereby van numbers, very likely, have been, and nay hereafer be, greatly prejucjece, I defire you will mention what follows to the Royai Society; to the enid tiat it may be publimed, if they think proper, for the benefit of others, and particularly of thofe who ufe the fea.

[^40]Compars, and Having lately had occafion to comparetogether two compafies of a dif- ferent make, the one having a bare ncedte, as ulual, and the other a chart, in the manner shat mariners compalfes are commonly made, I happened to wipe off with my finger fome dutt, which lay upon the glafs of the former; and thereby put the needle, which was before at reft, into a violent diforderly motion, partly horizontal, and parciy vertical, or dipping. After feveral repecitions of the fame thing, Ifound that the glafs, by io dight a touch, was at that time excited to Electricity, fo far as to diffurb the needle extremely.

The fume glats being rubbed a very little more with a finger, a bit of munin, or of paper, would attract either end of the needle, to as so hold it to the giafs, for feveral minutes, far out of the due direction, according to what part of the glats was molt excited.

And when the needle has for fome time adhered to the glafs, and afterwards dropt loofe, and made vibrations, thote vibrations would not be biffected, as ufual, by that point where the needle thould relt, but either be made all on one fide, or be very unequally divided, by means of fome remains of electrical virtue in that part of the glafs which had attracted the needie; until at length, after 15 minutes or more, all the Electricity being evaporated, the magnetical power rook place.

The cure for this inconvenience, is to moilten the furface of the glafs: evena wet finger will do it immediately and effectually.

Ineed not fuggett, that the fame quantity of friction will not at all times have the fame effect upon thefe glafles, any more than is will upon the electrical tubes; but take the liberty to hint, that I have reafon to believe that glais does, at lome times, become in fome degree attractive without any triction at all; and may poffibly be excited by great concuffions in the air, fuch as thunder, or the ditcharge of great ordnance, E6. and, if fo, may thereby difturb the compars.

I mult however obferve, that the mariners compars is much lefs diangerounly moved by wiping or exciting the glafs than the other; by reafon that the excited part of the glafs attracts that part af the chart which lies nearelt, juft underneath, without giving it io much verticity, as it does to the other fort of compafs with a bare needle. And farther that the deeper, or the farther diftant the needle hangs below the glafs, the defs diffurbance it is likely to receive, by wiping, rubbing or otherwise exciting the cover.

I hall make no farther reflections upon thefe facts than to obferve. firt, that all the minute, irregular, reciprocating variations which have been obferved in the directions of dipping and horizontal needles, as mentioned in fome of the Tranfallions, nay probably have been caufed by the glafes which covered the inftruments made ufe of : and, fecondly, that the flat pieces of glafs, often placed under the feales of an eflaybalance, are likewife very capable of attracting, and making even the lighter fcale preponderate, where the whole matter weighed is fo very fimall. I have not tried this laft, but do renember, that Mr Ellicot, a

Of ELECTRICITY.

Member of your Society, did fome years ago fufpect, if not find it certain, that fuch pieces of glafs did difturb his balance, and had given him a valt deal of trouble, upon a fuppofition, that the beam itfelf weas defective.
19. It feems to me that a glafs ball, which has of entimes been employed for violent diftillations, and other chyinical operations, does fend forth the Ellectricity incomparably more ftrong than any other glafs, which never fince it's making had been expofed to a violent fire. As I am the firft that has mentioned this notable circumftance, be pleafed to let me have the honour of this improvement in the Philot. Tranf.
on the Eleerricity of glass, that has bern expofed to frong fires. No. 492. P. 18̊. Apr. ©̛c. March ${ }^{\prime}, 1,174^{8.9 .}$ Read April 6. 1749.
20. The electrifying glafs ufed by M. le Monnier is an oblong fphe- Ext-att of a roid, whofe diameter from pole to pole is 4 or 5 inches longer than that at the equator, which is about 12 inches. Each of thefe poles is terminated in a ftem, or portion of a hollow cylinder, about 3 inches in length, and one in diameter, firally emboffed on the outfide into a large malc. ferew : to each of thefe male ferews is adapted a female ferew of wood, clofed at one extremity with a picce of fteel, excavated in the center, to receive the fteel pivots upon which the electrifying glafs turns. Thefe female ferews of wood are fo formed at their open extremity, that they grafp and cover as inuch at the poles, as nearly renders what appears of the glafs fpheroid a perfect fphere : this with a defign, that the wood may fix the more effectually, and embrace the electrifying gials. From the exterior furface of one of thefe wooden female ferews, a circular ledge rifes, and projects to the height of about 2 inches; the ambitus of which ledge is excavated, to reccive the cord that turns the electrifying glafs. This is what they ule bere inftead of our tubes, and with Itrer from Nir Turbervilleiveedhan so M. Folkes.
Eiq; PR.S. furprifing effects, fuch as greatly furpafs what you have yet feen in Eingland. The electrifying fpheroid is turned by means of a wheel about ${ }_{4}$ feet in diameter, with the fame motion, and exactly in the fame manner, as the fpindle is turned round by the fpinning-wheel: allowing a due proportion to the frame, upon which the glafs lipheroid is mounted, that it may anfiwer to the wheel chat turns it. The fides of this frame, which ftand perpendicular to the horizon, are near as ftrong and as large every way, as the pofts of an ordinary clofet-door; and, with the ledges that join them at top and bottom, form a rectangular parallelogram. The front of this frame is provided with filken loops, conveniently difpofed in feveral places, to bring to, and fix at a contact with the electrifying glafs, wires, threads, packthread, or whatever clfe is to be clectrified. Into one fide of this frame, at about half it's height, the pivot that receives one of the poles of the glafs fpheroid is fixed; the other pivot, on the oppofite fide, is a round long bar of iron, ficrewed into and paffing through the poft, in order to fix, or give liberty of removing the

[^41]electrifying glafs. This bar of iron, for the conveniency of turning it, has another in the nature of a leaver, which paffes through it's extremity at righe angles with it. The whole machine is mounted upon a floor of boards, wheel, frame, glafs, E6c. and employs two men, the one to turn the wheel, the other to fit behind the glafs fpheroid, and apply the concave of each hand to it's lower convex furface; for it is by this friction that the Electricity is excited.

When the electrifying glats has been fome little time in motion, the perion who defires to be electrified, applies the extremities of the nails of one hand, and ftands not upon cakes of wax, as in England, but within the area of a fquare drawer or box about five incbes cieep, and filled with five parts pitch, four of refin, and one of bees-wax: I will not call it a compofition, for they are not mixed, but difpofed in the following manner; the pisch is placed next to the lides of the box, and rifes almoft to a level with them, the refin in the middle is level with the pitch, and the wax forms a thin furtace, covering both to a level with the box it felf; however, I fuppole this to be in itfelt very indifferent, and that any one body of the electrics per fe would antwer equally.

The perfon electrified by this machine not only emits fire from all parts of his body, upon the touch of another, with more vigour, and in a much more fenfible manner, than when electrified by a common tube; but fires alfo fyirits of wine with fuch eafe, that when the fpirits have been once but fimply fet on fire by a match or paper lighted, and the flame has been inftantly blown out, they will, with that fmall degree of heat they have aequired, take fire upon his touch 10 or 20 times fucceflively, without failing once.

I am told here, that they have frequently attempted in vain to fire fpirits with a conmon tube of glafs; fo that I believe the ufe of the tube has been more improved in Englend than in any other place: but it is a downight tlavery, and in it's effects many degrees inferior to this machine. I fhould have thought, as this to much exceeds in ftrength the common tube, that many glafs fpheroids, acting at once upon the fame body, would have confiderably increafed the effect; but M. de Buffon tells me, that M. le Monnier had found, upon trial, that they anfwered not his expectations; fo that it might feem there is a ne plus ultra in the intenfity of Electricity, as well as in the heat, which is communicated to boiling water.

If the perion electrified holds a fword in one hand, the chamber being diarkened, a continual hame iffies out at the point, in fmell and colour refembling the fumes of phofpborcus, and near as ftrong as that of an eriameller's lamp: with this differeoce, that when any other of the company applies a hand, even to the very point, where the concentred rays begin to diverge, it burns not, nor is any otherwife fenfible to the feeling, than as a continual blatt of wind.
This is performed with a fquare bar of iron, about 4 feet in length, and $\frac{1}{2}$ an inch in thicknefs; to one extremity of which is adapted, by

Of ELECTRICITY.

the help of a ferew, another piece of iron beat flat, like the end of one of the legs of a pair of tongs. This flat piece of iron being fcrewed in, the bar is placed parallei to the horizon upon a wooden ftand, and the ftand within the area of the drawer or box, upon the pitch, refin, and bees-wax, as above. The extremity of the bar, oppofite to that, which carries the flat piece of iron, is covered with 3 or 4 lolds of linen, to prevent any damage that might happen to the glafs tpheroid, in hitting againft it by accident, while it revolves round it's axis; and the fame extremity is moreover, for further fecurity, placed at the diftance of about \div of an inch from the glats itfelf, the effect being the fame in every refpect, as if in contact. The operator then orders the bar to be electrified by repeated revolutions of the glais fpheroid, as above; and places one finger upon the middle of the bar, to prevent the communication of the Eilectricity from one end to the other, till he has covered the fat piece of iron with as much faw-duft as it will carry. Some other of the company, in the mean while, takes up, on the point of a knife likewife, a quantity of faw-duft, and holds it under the flat piece of iron, at about an inch diftance. The effect is, that when the operator takes off his finger, the fpheroid ftill continuing to revolve, the faw-duft above is all repelled and blown off, and that under attracted upwards. If, initead of faw-duft, you place upon the flat piece of iron a fmall fquare tin box filled with water, or any other veflel made of a matter non-electric por fe, particularly metalline, and endeavour to draw off the water by a capillary fiphon: the water, in that cafe, will fall drop by drop, as ufually; but the inftant the bar is electrified, it will run in one continual ftream; which, if the chamber be darkened, will alfo appear luminous. This play of the water may again be ftopped at pleafure, by the application of one finger to the bar, as above. It the flat piece of iron be unficrewed and removed, the Electricity runs out at the extremity of the bar, to the eyes, in the appearance of a blueifh flame; to the fimell, like fumes of phosphorus; and, to the feeling, like a blatt of wind; as in the experiment of the fword.

The moft fuiprifing of all, is that of Mr Mufchenbroeck, improved by Exp. IV. M. le Monnier. A mufquet-barrel open at both ends, is fufpended pasallel to the horizon, by filken threads within reach: and at the breech end, about 3 inches from the extremity, is hung, by a ring of iron worked into the barrel itfelf, a fmall iron chain about: a foot is length. A glafs phial, refembling in fize and fhape a common vinegar-crewet, is then prepared, full of water and well corked, with an iron wire running through the cork almoft to the bottom, and emerging fome two or three inches above it, out of the top of the phial. The head of this wire is bent, to catch in the loweft link of the chain; and is there to be fufpended, when it has been clectrified. From the mouth of the barrel, which is pointed in a line parallel to the equatorial plane of the revolving fpheroid, comes a long iron wire, inferted inio the barrel itfelf, as far as $\frac{1}{3}$ of it's length, and thence proceceding till it touckes the glafs fipheroid; to a contact with

Of ELECTRICITY.

which it is determined by one of the filken loops I mentioned above in the defcription of the apparatus. Every thing being thus difpofed, the gunbarrel is to be clectrified by repeated revolutions of the glais fpheroid; which is to be in a continual contact with the long wire that proceeds from it. The phial is, at the fame time, to be electrified by the operator, who takes hold of the body of the bottle, and applies to the electrifying fpheroid the bent extremity of that wire, which palfes from near the bottom of the phial through the cork, as I defcribed above. The operator muft take care not to touch the wire itfelf, while he endeavours to electrify the phial; otherwife he would be in the cafe of one, who fhould aim to clectrify himfelf, without ftanding upon fome one of the bodies, that are electrics per \int e. When the phial is fufficiently electrified, which will be done in 8 or so revolutions of the fpheroic; for I would not have any one be too free in beftowing fuch an efficacy upon it by too long an applieation, as might perhaps, occafion his receiving a more violent thock than he would be willing to feel, particularly if the glafs fpheroid has been any time in action, and is much heated thereby; the phial is then, I fay, to be fufpended by the iron chain, the glafs fpheroid continuing ftill to revolve about it's axis, and to electrify the gun-barrel: the perfon then who has courage enough to fuffer the experiment, for fo I muft exprefs myfelf, grafps the bottom of the electrified phial with one hand, and with the other touches the gun-barrel. At that inftant, a great part of the nervous fyften receives a fhock fo violent, that it would force the ftrongeft man to quit his hold, and turn him halt-round.

I remember, among others of us, that tried the experimenr, was a boy of about 14: I arked him, what he thought of it; he told me, that he imagined, the inftant he touched the gun-barrel, his arms had been broke Ihort off at the elbows, and that he had been cut into two parts juft below the breatt ; another of the company, with a fort of pun, termed it being broken upon the wheel. In effect, fo far the boy was in the right, that the fhock in the arms feems to extend no farther than the elbows, and that of the body no lower than the brealt, without affecting however in the leaft the head, or feeming to reach beyond the outward expanfion of the nerves: yet is it not to be cermed a pain; for there is not the leaft fenfe of that fort in it, but a mere fudden convulfionary motion, or rather a fhock, which furprifes much, and is indeed an uneafy, though not a painful fenlation.

In this experiment, it is very remarkable, how greatly the force of the communicated Electricity is augmented, by the application of the electrified phial: but the moft furprifing circumftance attending the ufe thereof, and which, I believe, is, among all the boties that are fufceptible of Eleetricity, peculiar to this alone, is, that it lofes not entirely it's efficacy under feveral minutes; and I am told, that in a froft it will retain it for 3^{6} hours together.
M. de Buffon, who informed me that M. le Monnier was the firft who difcovered this parcicular, has alfo affured me, that this fame gentleman had frequently-
frequently eiectrified the phial at hume, and brought it in his hand through many ftreets from the college of Harcourt, to his apartments in the king's garden, without any very fenfible diminution of it's efficacy. The ufe of the electrified phial may be diverfified many ways: among others, are fuch as follow.

When the phial has been fufficiently electrificd as above, the whole Exp. V. company join hands; the operator at one extremity of the line grafps the botrom of the electrified phial, and the perfon at the other extremity touches the wire, which rifes above the cork. At that inftant, the whole company receives a fhock, relembling that in the experiment of the gunbarrel, but not fo itrong; for it feems not at all to extend beyond the elbows.

This is the experiment, which abbé Nollel performed upon 180 of the guards, before the king, who were all fo fenfible of it at the fame inftant of time, that the furprize cauled them all to foring up at once; as it will indeed force any perfon to do that fubjects himfelf to the trial; though the convulfionary motion itfelf, as I obferved before, reaches not beyond the elbows: but the greater or leffer effect depends entirely upon the longer or fhorter application of the phial to the clectrifying fperoid; and I am credibly informed, that when due precautions have not been taken in this particular, fome perfons have received fuch violent fhocks, as have benumbed, and impaired, to a certain degree, the ufe of their arms for a day or two, before they perfectly recovered themfelves. I can affure you, however, from my own experience, that, with the precautions I have already taken notice of, there is no manner of danger, though at the fame time a fufficient efficacy may be communicated to the phial, to gratify any one's curiofity: and in this particular I have been the more prolix, left any bad confequence fhould happen to the unexperienced.

Another experiment witia the electrinies? phial confits, firft, in placing Exp. VI. a wire fixed in a pedeftal, erect in a baton of water, the head of which wire is bent, and rifes forne 3 or 4 inches above the level of the water; and then, in touching the furface of the water with one hand, and the Itanding wire witis the wire of the electrified phial, which is grafped by the other hand, as in the preceding experiments. The effect of this is much more violent than that of the laft experiment, and I think, exceeds even the fhock of the gun-barrel; fo that here the utmoft precaution muft be ured, not to electrity the phial too much.

I obferved particularly upon the trial of this, that the operator, who appeared to be very expert, and quite familiarized with every former effect, gewed however fome apprehenfion, and was unwilling to lead the way, as he had done in all the otherexperiments.

If the electrified phial is held in the hand, and the chamber is darkened, Exy. VII. the wire inferted in it is perceived to emic a itream of fire at it's extremity without any difcontinuance; but if it is fuffended by a falken thread, the tiery eruption inftantly ceafes.

This,

Of ELECTRICITY.

This, as a perfon would be apt to imagine, gives fome infight into the reafon of it's retenfion of Eleetricity; the ambient glats and filken thread being in the number of the electrics per fe, which have a power of determining to, and confining in, any other kind of body, a communicated Electricity, though they are not fufceptible of it themelves Yct, as the Freneb oblerve very well, there are fomany of what they term bizarreries, or unaccountable plienomena, in the courle of electrical experiments, that a mar. can fearce affert an!y thing, in confequence of any experiment, which is not contradicted by fome unexpected occurrence in another: at leatt, this is my prefent thought of the matter; and I am the more confident in advancing it, fince that I have learnt.your friend M. de Buffon is of the fame opinion, for whole jusigment I have the greateft deference. I remember he told me one day, when I had the honour of waiting upon him, that he thought the whole fubject of ElcCtricity, though illuftrated with fogreat a varicty of experiments, very far from being yet fufficiently ripe for the eftablifhment of a courfe of laws, or indeed of any certain one, fixed and detcrnined in ail it's circumftances. An inftance of this, among others that are or may be found out, will appear in the following experiment.
Exp. VIII. If the non-electrified phial is placed upon a glats falver, it acquires from the revolution of the fpheroid no Electrieity, though it's wire is in contact with it all the time; unlefs the finger of fome one in the company is approached very near to the phial itfelf: but, in that cafe, it receives it vifibly from the finger; infomuch that, if the chamber is darkened, you will fee the electrical fire ftreaming out of the tinger, and entering into the water, through the body of the glats phial, which is thereby immediately impregnated with it; and this, though the hand fhould be placed even under the glafs falver itfelf.

Here we dee an example, where an clectric per fo is fo far from terminating or excluding the power of Electricity, that it is even made a mediem of communication in circumftances where the wire, which is a nonclectric per fe, refufes to perform it's expeeted office. When I lpeak of the power of Electricity in this cafe, I would not be underftood of the power of attracting light bodies, which is well known to be fcarce fenfibly interrupted by a glafs mediun, as appears in the common experiment of an electrified tube, acting upon leat-gold, in a cryftal bottle: though even this, if duly confidered, might create fome difficulty; but I would only be underftood of that communicated virtue, which renders non-electrics per fe electrical. In one word, the lingularity of this experiment is, that, by the addition of the ghafs falver, the wite and the water, both of them non-clectries per \int e, fhould not be in the lealt affected without the approach of the biand, and foould then receive the electrical fire from is through a glafs medium; notwithftanding they are in the very fame circun:tances, that a man is in, or any other non- electric per $\int e$, placed upon a cake of wax and in contact with the electrifying fpheroid. Now, that in this experiment the glarfs falvor has a confiderable effect, is very clear. For, if the phial is placed upon the table, or upon a ftand, withour the dilver,

Of ELECTRICITY.

Salver, a few revolutions of the fpheroid will with eafe communicate a ftrong Electricity to it; particularly if any onc touches the table or ftand it is placed upon: and to know whether any degree of Electricity has been communicated or not, the phial is to be brought to the teft of any of the preceding experiments.
If the electrilied phial is placed upon a table, and any light body is Exp. IX. fufpended by a filver thread, within the diftance of about 2 inches from the phial, what I law was a fmall brals bell of a lap-dog's collar, the phial will ateract that light body to it with force, if anyof the company touch the wire of the phial ; but if the phai itfelf is touched, it will repel it with a force equal to its attraction in the former cafe.

This experiment conifts in the commuaication of the electrical fre from Exp. X. the glafs fpheroid to many perfons at once as in England, from a tube; with this only difference, that the company do not here join hands, but are united to cach other by taking holi of iron chains, whech furprifingly increafe the force of che communicated likectricity: for it is to be obferved, that, whenever the communication is carried on by a metallic mediun, the effects are much the more fenfible.

This experiment is no. othe: than what has been frequently tried in Exp. XI. England, the attraction of leaf-gole by a hollow wooden globe, to which Electricity is communicated, by a pac ataread of a very great length fufpending it ; after it has been conducted over filken threads croffing the chamber at feveral diftances, in a fort of firal, conffifing of as many turns as the place will admit.

I had almoft forgot to take notice of two particulars, which were the confequences of fome of the preceding experiments, and may in fome meafure ferve to illuftrate them: the one regards the communication of Electricity; the other, it's furpriling force.

It the grand convent of the Cirrtbufans here in Paris, the whole community formed a line of 900 tolits, by means ol iron wires of a proportionable length, between every 2 ; and, coilequently, far excecding the line of the 180 of the guards abov:-mantioned. The effect was, that, when the two extremities of this iong ine met in contact with the electrified phial, the whoie company, at the fame inftant of time, gave a fudden fpring, and all equally felt the thoci, that was the confequence of the experiment.

The other phanomenon was the refult of a late experiment of abbe Noiist's. He fixed, at the two extremities of a brafs ruler, two fmall birds, a fparrow and a chaffinch: this ruler had a biandle or pedeftal fattencd to the middle of it, for the convenienee of holling it. When both the gunbarrel and the phial had been fufficiently electrified, as in the $4^{\text {th }}$ experiment, he applied the head of the farrow to the fufpended phial, and the head of the chaffinch to the barrel. The confequence, upon the firft trial; iwas, that they were both inftantaneoully ftruck lifelefs, as it were, and motionlefs, for a time only, and they recovered fome few minutes after: but, upon a fecond trial, the fparrow was ftruck de:ch, and, upon exami-

Of ELECTRICITY.

nation, found livid without, as if killed with a flath of lightning, moft of the blood-veftels within the body being burft by the fhock. The chaffinch revived, as before.

Extralt of a memoir concerning the communication of Electric:ty ; read at the pubitic mereing of the R. Acal. of Sciences at Paris, Nov. 12. 1746 by A. :c Monni er the jounger, M. D of teas Acade-: my, and FR.S. sommunicated oby sbe sustbor to the Pre. of the R.S. ibid P. 290. Read Dec. 11. $17+6$.
21. The author of this memoir propofis therein to examine thefe 3 queftions; that is to fay, how is this electric virtue to be communicated to fuch bodies as have it not, and which are not capable of acquiring it by bare friction only ? How is the electric matter propagated? And, laftly, in what proportion is it diftributed ?

As to the firft, the author obferves, that this electric virtue is no other way to be communicated, but by the near approach of a body already actually poffefed of the fame: That the rule laid down by M. du Fay, that bodies never receive Electricity by communication, unlefs they are fupported by bodies elearic in tbeir cwn nature, does not always take place, and that it is fubject to great exceptions. For, firf, in the Lefden experiment, the phial filled with water is Itrongly electrified by communication, even when carried in the hand, which is not a body clectric by nature. Secondly, all bodies that are electrified by means of a phial of water fitted to a wire, and which has already received a great degree of vistue by communication; all fuch bodies, I fay, placed in any curve line, connecting the exterior wire, and that part of the bottle which is below the furface of the water, acquire Electricity, without being placed upon refin, filk, glafs, or the like.

Thus one may give a viclent concuffion in both the arms to 200 men all at once, who holding each other by the hand, fo form the curve juft mentioned, when the firlt bolrls the bottle, and the laft touches the wire with the end of his finger; and this, whether thele perfons actually touch each other's hands, or whether they are connected by iron chains, that either dip in water, or drag upon the ground; whether they are all mounted on cakes of refin, or whether they only ftand on the floor; in all which cafes the experiment equally fucceeds.

Electricity has in this manner been carried through a wire of the length of 2000 toites, that is to fay, of about a Paris league, or near 2 Einglifh miles $\frac{1}{1}$, tho' part of the wire dragged upon wet grafs, went over charmil hedges or palifades, and over ground newly ploughed up.

Thirdly, she water of the bafon in the TBuilleries, whofe furface is about an acre, has been electrified in the following manner: there was ftretched round half the circumference of the baton an iron chain, which was intirely out of the water : the two extremities of this chain anfwered to thufe of one of the diameters of the octogon : an obferver, placed at one of thefe cxtremities, held the chain with his left hand, and dipped his right at the fame time into the water of the baton; whilft another obferver, at the oppofite fide of the bafon, held the other end of the chain in his right hand, and a phial well electrified in his left : he then cauled the wire of his phial to touch an iron rod, fixed upright in a piece of cork that floatcd near the edge of the bafon; at that inftant both obfervers felt a violent fhock in both their arms. This fame fact
was again confirmed, by experiments made upon two bafons at the fame time, that it might appear diftinctly, that the electrical effuria did reatly pals aloing the fuperficies of the water.

Fourthly, it has been confirmed, by repeated comparifons, that a bar of iron placed in the above-mentioned curve, does not at all acquire more Electricity, when it is fufpended in filken lines, than when it is held in the bare hand. Whence it appears, that, in this cafe, the contiguous non-electric bodies do neither partake of, nor abiorb in any way, the Electricity that has been communicated.

Befides many ftrong exceptions to the rule laid down by M. $d u$ Fay, the author addis another yet ftronger, and indeed directly contrary to that rule ; which is, that the fame phial of water, fitted with it's wire, receives either no virtue at all, or at leaft none that is fenfible, fo long as it is either placed upon a ftand of glafs that is very dry, or that it is fufpended by a filken thread, whillt it's wire refts upon the globe; and that, to make it receive the virtue, the part of the phial which is below the furface of the water, muft communicate with fome body that is not electric ; as is evident, when it is touched, whilft it refts on the ftand of glafs, with the finger, for it then inftantly becomes electric: and the fame will alfo happen when it is touched with a peice of metal; but not when it is touched with a tube of glafs that is dry.

The electrical refts produce here upon the bottle an effect fo contrary to M. du Fay's rule, that, if one places a phial, perfectly well electrified, and which throws out the pencil of fire copioutly, upon a dry ftand of glafs, or upon a line of filk; it's light immeetrately goes out, and it's Fleetricity is as it were laid to neep. One may then fecurely approach the finger to it's wire, and there will come no electrical fparks from it. The author has even drawn out of it entirely both the wire and the cork, and has kept it half an hour in his pocket, without deftroying the Electricity. But one mult only, in this cafe, touch the wire, and not the phial itfelf; for in touching the two at the fame time, one recturns to the Leyden experiment; but when one touches the phial only, the Eiectricity revives in the wire, and the pencil of fire difplays ittelf again, provided one has not ftaid too long: but if the wire only is touched, the body of the bottle becomes ftrongly electric, and draws to it, from a confiderable diftance, any light fubitances.

This laft cafe gives room to an experiment that tooks at firf like magic : there was hung up a little tinkling bell by a filver wire, at the height of 8 or 9 feet, and there was placed upon a glais ftand well dried, a phial newly electrified; the centre of the bell, and that of the phial, were nearly in the fame horizontal line; but the bell was between 6 and 7 inches from the furface of the phial. Every thing being in this ftate, the bell remained quite ftill, if the ftand was very dry; but the inftant one either approached a finger, or any other non-electric body, to the wire of the phial, the bell leaped to it : and one might

$$
\text { VOI.. X. Part ii. } \quad \text { X } \times \quad \text { beigi: }
$$

begin again, and repeat the experiment 20 times together, without having any occafion to new-electrify the phial.

With regard to the propagation of Electricity, the velocity with which the electrical matter is conveyed, has been found too great to be yet determined with any exactnels.

The author made an experiment with an iron wire of 950 toifes in length, and he was not able to obferve, that there paffed to much as a quarter of a fecond of time, between the wires receiving the Electricity at one end, and his feeling the foock in both his arms at the other; which infers a velocity at leaft 30 times as great as that with which founds are propagated.
In teeking what might be the force which mot forward the electric matter, with fo much rapidity, through the length of the wire, he at firt thought it might be performed by the explofion of the fpark of fire, which is perceived when the electrified phial is brought into contact with the wire conducting the electric matter; but the following experiment foon convinced him he was mittaken.

He difpofed horizontally a wire folded in two, upon lines of filk; the whole length of this wire was of 1319 fect, and the two parallel halves were at the diftance from each other of about fix feet: the Electricity was then communicated by means of a phial, and it preferved itfelf in the wire for feveral minutes, by reafon of the filken lines upon which the fame was fupported : a finger was then brought to one of it's extremities to take away the virtue; and in the fame inftant it ceafed allo at the other extremity of the wire: fo that, in this cafe, the matter in queftion returned to the finger, that is to fay, marched backward, with the fanme velocity with which it was before fhot forwards: the electric matter therefore now came towards the explofive fpark, for chis fyark appeared upon the finger as foon as it approached the end of the wire to take away it's Electricity, and therefore it is not this lpark which fhoots torward the electric matter with fo great a velocity.

The Jaft part of the memoir concerns the proportion in which the electric natter is communicated to bodies of the fame nature. And here the author firf eftablifhes, that it is not communicated to homogeneous bodies, in proportion to their maffes or quantities of matter, but rather in proportion to their furfaces. Yet all bodies having equal furfaces do not receive equal quantities of Electricity : thofe receive the moft, whofe turfaces are extended the moft in length. Thus a fquare fheet of lead receives a much lers quantity of Electricity, than a ftrip of the fame metal with a furface equal to that of the fquare fheet : infomuch that the only way to increafe in any body it's faculty of receiving the clectric virtue, is continually to increnfe it's length.
22. The world is much obliged to M. le Vonnier for the many difcoveries he has made of the power of Electricity; though the reafon of my troubling you with this paper at this time, is mv differing with that
gentleman

Of ELECTRICITY.

gentieman in the conclufions which he deduces from feveral of the ex-as relaten 10 periments contained in his memoir.

One of the queltions propofed to be examined is, "in what manner " the eleetric virtue is to be communicated to fuch bodies as yet have "6 it not, and which are not capable of acquiring it by bare friction tries, by Wian "only?" M. le Monnier obferves hereupon, "That no other manner " is known, by which the electric virtue may be communicated, befikes "the near approach of a body actually poffeffed of the fame: that the "rule laid down by M. du Fay, that bodies never receive Eletfricity by "communication, unlefs they are fupported by bodies eleEBric in their awin " nature, does not always take place; and that it is liable to great excep"t tions: for, firt, in the Leyden experiment, the phial filled with water " is ftrongly electrified by communication, cven when carried in the " hand, which is not a body electric by nature."

To this I anfiver, that M. du Fay's rule is confirmed by all che experiments yet made public, and even by that of Leyden quoted by our author, or what is ufually called that of Profeffor Muffchendroeck. For, in this experiment, is not the non-clectric water contained in and fupported by the glafs phial, which is electric in it's own nature? It's b:ing carried in the hand is no more than it's being placed on any other non-electric body, and therefore is no proof againtt the general pofition. It is well known, that if the phial is made non-electric by wetting it's outfide, fo as not to leave fome inches perfectly dry, between it's mouth and that part which is wetted, the water and phial part with the F.lectricity as fatt as they receive it, unlefs it is ftopped by another eiectric per fe. But of this I treated at large, in a paper I lately did mytelf the honour to communicate.

Secondly, our author mentions, " that all bodies, which are eleetri" fied by means of a phial of water fitted to a wire, and which has al" ready received a great deal of virtue by communication; all bodies, " he fays, placed in any curve line, connocting the exterior wire and "that part of the bottle, which is below the furface of the water, ac"quire Electricity without being placed upon refin, filk, glafs, or the " hike: that thus a violent concuffion may be given to 200 men all at " once; who holding each ocher by the hand fo form the curve juft " mentioned, when the firft holds the bottle, and the laft touches the " wire with the end of his finger; and this equally, whether they are " all mounted upon cakes of refin, or ftand upon the floor: that the "Electricity has in this manner been carried through a wire of the " length of 2000 toifes, or near 2% Englifh miles; part of which wire "dragged upon wet grafs, went over hedges, palifado's, and over land " newly ploughed up."

The experiments in the fecond argument do no ways invalidate M. du Fay's rule; for the fuccefs of them depends upon keeping whateret forms the curve line mentioned iby our aurhor, whether it confilts of men or wire, in a non-clectric flate: and if whatever forms this curve
line acquires any degree of Electricity more than it's original quantity, which it is well known may be done, by being placed upon originally electrics, the effect of the hook is proportionably leffened. Thus if a man, ftanding upon clectrics per $\int e$, applies his hand to the phial of water, fufpended by a wire to the electrified gun-barrel as ufiual, this perfon will acquire Electricity, which wili be fufficiently perceptible in him, by his attracting light fubftances held near his body, or by his firing inflammable ones, when properly prefented to him; it, I fay, a perfon thus electrified, by applying one of his hands to the phial, touches the clectrified gun-barrel with a finger of his other, let the phiai be ever fo ftrongly electrified, he feels but a fight ftroke; and this ttroke is greater or lefs, in proportion to the difference of the accumulation of Electricity in the body of the man, and that of the water in the phial. Thus we know from experiment, that though a confiderable quantity of the Electricity, in impregnating the phial of water therewith, pervaules the glafs, yet the lofs thereof this way is not equal to what comes in by the wire: therefore we will, for the fake of a more ealy method of explanation, fuppofe, that the phial, when electrified in the moft perfect manner, contains a quantity of Electricity equal to 10; that the man's body, by ftanding upon wax, and touching the phial with one of his hands during it's Electrification, contains a quantity equal to 7 : upon his touching the gunbarrel with a finger of his other hand, he will receive a fmall ftroke only equal to 3, the difference of the Electricity of the water and that of his body: and if he touches the gun-barrel again without removing his foot from the originally electric, the ftroke will be fcarcely perceptible, on account of his body being nearly of the fame degrec of Electricity with the water in the phial. So that here we fee that the violence of the flock, to be felt by whatever furms the curve line, depends upon it's being, in the moft perfect manner, free from any degree of Electricity more than the original quantity, which is contrary to the opinion of our author.

Thirdly, M. Nionnier tells us, "That the water of the bafon of the "Thuilleries, whole furface is about an acre, has been electrified in the "f following manner:
"There was ftretched round half the circumference of the bafon an " iron chain, \&cc."

The water of the bafon in this experiment was no more electrified than the wire which dragged along the ground, $\varepsilon \varepsilon^{\circ} c$. was in the former. When I was firft informed, without being acquainted how, that an acre of water had been electrified, I was amazed, and told the gentleman who acquainted me therewith, that if my idea of Electricity was in the leaft true, fuch an effect could not be produced, without electrifing the whole terraqueous globe from a larger mafs of matter. And indeed, when I heard M. Ie Monnier's paper read I eafily faw the deception: fo that, inftead of electrifying the whole quantity of water contained in the bafon,

Of ELECTRICITY.

the Eleftricity paffed only through fo much of it as formed a line between the iron rod faftened in the floating cork, and the hand of that obferver which was dipped in the water.

Thefe experiments ftill more and more eftablifh the account I lately laid before you of the Electricity's always deferibing the Morteft circuit between the electrified water and the gun-barrel; or (which is the fame thing) the wire of the electrified phial. And this operation refpects neither fluids or folids, as fuch, but only as they are non-electric matter. Thus this circuit, iir the preceding experiment between the phial and the wire, confifted of the two obfetvers, the iron chain, the line of water, and the iron rod in the floating cork.

Fourthly, N. le Monnier mentions, "That it has been confirmed, by "repeated comparifons, that a bar of iron, placed in the above-men" tioned curve, does not at all acçuire more Electricity when it is fuf"pended in filken lines, than when it is held in the bare hand: whence " it appears to him, that, in this cafe, the contiguous non electric bodies "do neither partake of, nor abiorb in any way, the Electricity which has "been cominunicated."

The curve line befure-mentioned, let it confift of whatever non-electrics it will, unlefs the whole thereof be properly fupported, the communicated Electricity cannot be accumulated: fo that the fufpending one part thereof in filk lines cannot be fuppofed to produce any effect.

This gentleman further obferves, "That the phial of water fitted to "it's wire does not receive the leaft degree of Electricity, if it's wire, fuf"pended by a filk line, is applied to the globe in motion, or if that phial "is placed upon a dry giafs itand." This M. le Monnier takes to be directly contrary to M. da Fiy's rule; cfpecially as the phial cannot be replete with Electricity, unlefs, while it is exciting, fome non-electric body touches the phial below the water.

That the phial of water receives no degree of electricity in this cafe, is not ftrictly true: it receives as much as any other mafs of matter of the fame bulk would, under the fame circumftances. For we find, that we cannot highly electrify the water, unlefs the Electricity from the globe be directed through the water and phial to the non-electric in contact ; in which paffage a great quantity therroof is accumulated, by it's not pervading the glafs to faft as it is furnified by the wire; and therefore we find, that when the water will contain no more, the furcharge runs off by the wire: fo that this experiment, no more than thofe which precede, contradicts M. $d x$ Fay's opinion; the thinnefs of the glats permitting it, not wholly, but partially, to fop the Electricity. This matter is explained further under experiment the firf.

I differ from this ingenious author with reluetance, inafmuch as I greatty honour him, not only for his cilicoveries upen the fubject of Electricity, but alio for the pleafure and irrprovement I rectived in my reading this learned and curious obfervations in Natural Hinory, made in the fouthern parts of France, where he accompanied M. Cafliai de thoury in

Of ELECTRICITY.

meafuring a degree of the meridiun. Thefe obfervations ane publifhed with M. Cafini's book: but as the reverfe of feverat of the opinions delivered in his mernoir is experimantally found to be true, and as the difcovery of trueh, and carefully leparating it from deception, fhould be clie only aim of our philotophizing I take the liberty of laying before you my opinion thercou.

23: Having an oparator at Briffol with a good electrifying machine, I was delirous to electrite a trec, and therefore fent him the tollowing for that purpofe; lourus sinus, leucoiume majus ficre pleno forruginteo, and Paechas cisrina Cretica. Theke were bur cholen with any delign; their being the leaft plants I had, was the only reafon.
I promifed myfeff the pleafure of feeing their leaves erected when electrifed, but was difappointed, (whether it's being the dormant feafon of the year for all plants, might not be fome hindrance, I cannot determine;; neither did the leaves tlag on their being touched. However, I was agreeably recompenfed by a ftream of fine purple blue coloured light, much refembling an amethyf, that iffued from the extremity of each. jeaf upwards, of an inch in lengti, when the finger, or any other nonelectric, approached near it. Ihis colour I attribute to the watry particles in the cirth, having often obferved the very fame colour iffuing from the long leg of a fyphon. On putting my finger on the gun-barrel to ftop the Electricity, the leaves of each tree had a trembling motion, which remained for fome little time, and immediately ceafed on withdrawing my finger from the barrel, and admitting the Electricity. This conftantly happened, as I put my finger on or off the barrel.

The faccbas plant has a very long hoary leaf, and bears it's bloffom on a very fmall, ilender, and almoft naked ftem, rifing near a foot above the body of the plant. This ftem had a motion given it, when any nonelectric was brought within about two inches of it's fummit, much like the vibration of the pendulum of a clock; which vibrating motion was parallel with the breech of the gun, quite contrary to the lame kind of motion I had before obferved in a needle, hanging perpendicularly by a thread at the end of a gun; the needle always vibrating in the direction of the gun. The motion of the plant and needle always continued as long as the glats globe was excited.

I was alfo defirous to be fatisfied, whether Eleetricity could be propagated without mutual contact, by fulpending another gun in filk cords, about 2 inches from contact, and the Flectricity was near as ftrong in the fecond gun as in the firlt. At the diftance of between 3 and 4 inches, it was much abated, and fo it gradually diminifhed, as the diffance increafed to near 6 inches, where it would fearce attract a thiead of trial.

I prevailed ois a man to be let blood, and rhen placed him on a cake of pitch, but could not be fenfible of any increafe of velocity in his blood, by being electrized, as has been afferted.
an I had almoff forgot to mention, that the frokes I received from the electrified garden-pots were more violent and painful to my fingers than from any other body I ever experienced.

Mr Baker, fince his receiving the above account, has had an opportunity of electrifying a myrtle-tree, of between 2 and 3 feet in height, growing in a pot at the feat of the Duke of Montague at Ditton; in prefence of his Grace, of the Prefident of the Koyal Society, and feveral other curious gentlemen; who found, that whenever the hand, or other non-electric body, was brought near the leaves, Atreams of fine purple fire iffued therefrom, together with a confiderably culd air; and that the leaves would be attracted at fome diftance, and move vigorounly towards a non-elerric body.

24 Since I have read the Tranfattion * with refpect to the fparkling Extrati of a 1ady, who could communicate a kind of electrical fire to her garments, I can give you an inftance nearly like it, of a dady who was furprized at fuch an appearance from a thannel petticoat, which fhe happened to thake in the dark. But at laft, we found that new flannel, atter fome time wearing, would acquire this property; but that it loft it by being wapted.
25. I fancy at laft this fparkling of the flannel, and fuch-like bodies, will be found to be quite electrical: and it is poffible, I conceive, that the acid fteams of the fulphur, burnt under the extended flannel in the time of bleaching, may unite themfelves with the oil (with which hair, as welt as horns, are found by analyfis to be replete), and form an animal fulphur, which, upon frietion, vibration, or any nimble agitation of thefe hairs, may become luminous.

And that fomething like this may be in the cafe, feems not improbable; fince it hath been obferved, that this appearance hath happened moft conficuous in frofty weather; in which feafon there is generally not only a greater purity of the air, and abfence of moifture, but all hairy and horny fubftances (and hairs, you know, are but fmall horns) are moreelaftic, and confequently fufceptible of, and capable of exciting, the ftrongett vibrations. $17+8$. And, on the contraty, the lixivial falts ufed in wafthing may deftroy the fulphurcous acid, and difciarge the oil; whence the bairs will become more flexible and limber, and be rendered leis fit for exciting the clectrical fire. And the fante may happen when flannel is much worn, and by that means filled with the alcaline effluvia's, which go off from moft of the higher order of) animals by tranfipirtion; which may difiolve the animal fulphur, weaken the fpring of the liairs, and forender the phanomenon more difficult.

It fhould have been mentioned, that the fannel had been worn but few Tiep friond iofdays; and that it was immediately upon thaking the under-coat from chiat

[^42][^43]Part of two letarar from the fame, concerring the parkking of Flanncl. and ${ }^{t b e \text { Hair of }}$ Animals in tbe dark. $\mathrm{N}^{\circ}{ }_{4} 88$. p. 394. June

$$
174^{8}
$$

Of ELECTRICITY.

which was worli above it, that the fparks were emitted; and that their appearance was in a broad ftreak almoft contiguous, attendect with a cracl:ling or fnapping, like what may be obferved on moving the finger nimbily along over the prime conductor, when excited in the clectrifying machine; of which the lady was able to form a comparifon, having afterwards feen fome experiments of that fort.

This appearance returned at the fame time, and on the fame occafion, 2 or 3 nights after, but more languid, till it was quite luft.

A hady, who was informed of this, leflened the furprize. (which had been thought almott ominous) by afforing, that fhe had feen the fame phanomenon of ten in new flannel, but never in any that had been long worn or wafhed: and that the flannel being rendered damp with fea-watur, and afterwards dried, would heighten the flafining, which the imputed to the. fulphur ufed in bleaching. However that be, I thall only obferve, that thete farklings had the crackling criterion of electrical fire; and that hair and wool, as well as filk, are clectrics per fe, and unctuous and fulphureous bodies more electric than others of the fame denfity.

Dr Wall hath obliged the public with a curious differtation on a fimilar fubject, which I guets would be particularly entertaining while you are on this fpeculation.

Bartbolin fuppofes unctuous effuria to have a great thare in thefe appearances: his words are chefe, which I chufe to quote; the book * De Luce Inimalium being not very common: "Imo quod admirationem "excedit, collectæ oleaginofi effuvii reliquix, longo interjecto tent"pore, in fcintillas refolvuntur: fi enim falcias vel tanias ferico textas, " fed ufu detritas, leviter excutiamus, igniculi fufcitantur fcintilla;" -and quotes a paffage out of Gefner De Herbis Lucentibus, to confirm his opinion.

The fame writer tells us, that Theodore Beza was to be feen in the dark, " ob fulgorem externum circa oculorum orbes;" _ but whether this light procerded from the ball of the cyes, or hairs of the brows or lids, he does not mention. - Nor does that learned author fo exact in fome other circumftances, in other examples of this fort, as could be wihhed. However, I think what he fays of the Duke of Mantua deferves aremark. - "Quicquid fit, pro vero habendum eft quod de Carolo *Gonzaga Mantur duce conitans fama tulit, levi per totam cutem facta *s fricticne Hagrantes Species exire folitas." __ But here alfo it were to be wifhed he had let us know whether this great man, of a moft illuftrious family, had not fome particular hairy or fcaly texture or covering to his Noin.

By this, I guefs, you are excited to know how this author, who lived about 100 years paft, folves thele appearances, of which he had profeffedly written. Take it in his own words. -

- Tbo. Barrbolinus De Luce Hominum \& Brutorum, lib. iii. Hafniar s659, 8°.

Of ELECTRICITY.

"Arijoteles (1. i. m. cx.) docebat--quod omais natura ejus fit ef"fentiæ procreatrix, qualis ipfa eft-enimvero funt ad confervationem " fpeciei omnis, ejufdem fingulæ particulæ, vim fe diffundendi obtinue"runt, \& fpargendi, per individua multiplicata, ita ne lux primæva \& "naturalis, fingulari numinis confilio, clementorum mixtioni addita, " mole minor intercidat, \& extinguatur cum feeciei non revocando cafu, " eo modo confervari debuit, quo ferventur omnia, per infitam nature "potentiam fui generativam, छc."
26. In a book which I publithed laft ycar in the German tongue, when I was fpeaking of Mufchenbroeck's experiment, and defcribing the increafe of it in glafs veffels, I made mention of a machine which made feveral fparks to appear and crackle, but did not at that time give any figure of it. This elecirical pyrorganon, as I call it, is reprefented in fig. 14. Through the middle of a metalline ring $a b$, filled with pitch, is fixed the little metalline cylinder $c d$. The diameter of the ring is a Paris inch and 4 lines. The cylinder appears on both fides at the diftance of an inch. The diameter of the cylinder muft not be lefs, for fear the Electricity communicated to the cylinder fhould be diminifhed by touching the metalline ring. To this ring is foldered a metalline fork, at which the cochleated ngle is let into a wooden cylinder ef, the Jower extremity of which f, is fo formed, that pafing through a fiffure of any plank, it may be faftened by a frrew. Such a metalline cylinder, with a cochleared fyle fixed into the pitch with which the ring is filled, I call, for brevity, an elearrical cylinder. The eleartrical procrganon is compored of 4 fuch cylin- lig if ders. The cylinders are lo placed, as to have a fufticient fpace between them to collect the clectrical fparks. When I would excite them, I place the pyrorganon near fome piece of metal $a b$, fufpended on filken threads and faftence, leaving tac neceffary fpace between the metal and the cylinder c. To the laft cylinder $f g$, I fatten at g a wire b, reaching to a inetalline veffel i, full of water. When thefe things are fo difpofed, as foon as the oblong metal $a b$ is electrified, the electrical fiparks flafh out in the 4 fpaces, and fhine in proportion, as the glat's balls communicate more or lefs Electricity, by rotalion or friction

Since the publication of the book above-mentioned, I have conftructed 2 electrical, pyrorgana, one of which has the form of a winged wheel, and the other with it's fparks gives the figure of Cbarles's Wain.

The conftruction of the winged wheel is as follows: into a hollow orb Fig 16. or wheel of wood $d d d d$, are fixed 6 wooden wings $c d$. The diameter of the whole whed with it's nave, is 13 inches, and that of the nave 6 inches. The wings $c d$, which are 10 inches long, have fifiures, in which 3 electrical cylinders may be moved to and fro', and faftnened. Near the faftening, at the wings in the orb $d d d d$, are made angular holes, in each of which another electrical cylinder is placed. Thus in the winged wheel appear 6 rows, each confifting of 4 electrical cylinders, keeping the diftances between them which aie moft convenient for exciting the electrical fork's. In the extremity c of each wheel is fuftened a meralline inftrument $g f$, confifting of 3 parts, the cxtremes of which are joined to the middle g in a right angle.
Now that thefe metalline inftruments may be rightly applied, in the pofterior fide of the wing at the end c, for 1 call that the anterior, in which the electrical cylinders fparkle, a metalline button bcing faftened, leaves fome fpace between iffelf and the pofterior fide of the wing. The middle of the button is furnifhed with a ferew g. In the above-mentiond fpace is inferted the fhorter part of the metalline inftrument. The other extremity b, is ncar the fourth cylinder; but is fo far diffant from it, as is neceffary for the electrical flath to be excited between that part of the inftrument and the cylinder. Hence the other fhorter pare may be moved at will, and fattened under the button. To the buttons is applied, and wound about the pofterior parts of the wings, a wire $i k$, to which, when the eleefrical fiparks are to be excited, in the place x, another metal y is added, which reaches to a metalline veffel s, filled with water. The Electricity, as foon as it is communicated to the firtt cylinder, paffes to all the reft.
Hence it is neceffary, in order to excite the fparks, that the metalline inftruments $g f$ fhould always remain free from Ele9tricity, which is done by the metal y, joined to the wire $i k$, that conduets the Electricity to the water. For between 2 bodies endued equailly with Electricity, no Sparks appear. But the Elefricity is communicated to the firt cylinder by the metalline hammer a, faftened to the metalline axis $b c$, which may be turned in the round holes of 2 wooden columns $d e$, by the handlef. The apparatus of this hammer is fhewn in fig. 17.

Fig. 16.
The columns d e reft upon the piece of wood $m n$, which has a fty'e fixed into the lid g, which covers the glafs veffel b, faftened to it with pitch. This glafs veffel, therefore, is neceffary, that the EleCtricity given to the metalline axis $b c$, may be preferved by means of fome wire hung to it.

The bottom of the glafs reffel b is joined with pitch to the wood, to which a fyle is added, which may be inferted into a longer hole of the column $i k$, fo as to be faftened by a fcrew l, after the glafs veffel has acquired it's due height, which is when the axis $b c$ is in the middle of the nave of the wheel $d d d d$. The electrical cylinders are to be placed in the orb and rings $c d$, in fuch a manner, that the hammer may have a fufficient diftance from the firft electric cylinder to which it approaches, and the cylinders from each other, to excite the cylindrical fparks.
In the fquare bafe $m n \circ p$, fig. 16. on which ftands the column $i k$, is a fifure, in which, when the hammer a appears fufficiently through the nave of the wheel $d d d d$, the column $i k$ is faftened by a fcrew. The metalline fork is applied to the wheel $d d d d$, and fixed into the wooden column $q r$, which is faftened in like manner in the fiffure of the fquare bare m nop. The metalline axis $b c$, protended through the nave of the wheel, is 21 inches high above the fquare bafe : when therefore, on the axis $b 6$, having acquired the Electricity, the hammer approaches to any
firf clectrical cylinder, 5 fyarks appear in a ftrait row almoit at the fame time.
On turning the axis $b c$, thofe rows of fparks appear in a circle. The fparks are fo bright as to be feen by day-light at the diftance of 100 feet. The man who turrs the axis by it's liandle, ought to fand upon a fubftance that dors not propagate Electricity, for fea: of diffipating and lofing the Electricity.
Fig. 15. reprcients the eiectrical 7 ftars, or Cbarles's Wain: in the table Fig. is. $a b c d$, which may be elcevated or depreffed in the filfure of the column of, 9 elcectrical cylinders may be fo placed, that 7 fparks may appear in the fame order in which thofe y itars appear in a clear night. A wire b, which receives the Electricity, is added to the metalline cylinder when thefe fparks are to be fhewn. In the extremities of the third and fourth, the bent wire is faftened, that the Electricity may reach to the fifth and the reft of the cyliuders. To the ninth cylinder is applied a wire k, reaching to the water in the metalline vefiel l, that the Electricity, being diffributed through all the cylinders, may be propagated as far as is neceflary into a fubfance which docs not preferve it.
There obfervations, though extending nofarther than to delight the eye, I have ventured to offer to your illufrious Society, who have difcovered a wonderful power of nature to be concealed in fuch entertainnents.
27. In the paper I did myfelf the honour fome time fince to commu- A sollecion of nicate to the Rojal Society, I took notice, that, among the many other the clearical furprifing properties of Electricity, none was more remarkable, than that the electrical power, accumulated in any non-electric matecr con- commmicated tained in a glafs phial, deffribed upon it's explofion a circuit through ciety by Wm any line of fubftances non-clectrical in a confiderable degree; if one end thereof was in contact with the external furface of this phial, and the other end upon the explofion touchad cither the electrified gun-barrel, to which the phial in charging was ufually connected, or the iron hook always fitted therein. This circuit, where the non clectric fubitances, which happen to be betwcen the outfide of the phial and it's hook, conduct Electricity equally well, is always defribed in the fhorteft manner poffible; but if they conduct differently, this circuit is always formed Watfon, F. R. S. read at jeveral metings bc-
tureen Oat.
27. 1747 .and

Jan 21. .fol through the beft conductor, how great foever it's length is, rather than through one which conducts not fo well, though of much lefs extent.
It has been found, that in proportion as bodies are fufceptible of having Electricity excired in them by friction, in that proportion they are lefs fit to conduct it to other bodies; in confequence whereof, of all the fubftances we are acquainted with, metals conduct beft the electrical powers; for which reafon the circuit before fpoken of is formed through them the moft readily. Water likewife is an admirable conductor; for the electrical power makes no difference between folids and fluids as fuch, but only as they are non-electric matter.
In order to give an idea of what is undertood by this circuit, we will mention an example or two, from which all the other may naturally be

Of ELECTRICITY.

deduced. If a perfon ftands upon a dry wooden floor with a coated phial ever fo high'y charged in one of his hands, and if another perton, without touching the firlt, Itands but fix inches from him, and touches the iron hook of the phial, neither of them are fhocked; becaufe the floor between them, tho' the diftance is fo hort, will not cunduct the Electricity fufficiently quick. But if thefe two perfons tread upon a piece of wire laid between them, they each of them feel the efectrical commotion in that arm, whicil touches the phial and hook, and in that foot which treads upon the wire; the wire here conducting the Electricity quick enough, which the dry Hoor would not. The circuit is here formcd by the coated phial, it's hook, fo much of the bodies of thefe two perfons as formed a curve line between the wire, the phial, and hook, and the wire between thefe perfons. If thefe perfons fand upon, or touch with any part of their bodies any non-electrics, which readily conduct Electricity, the circuit is completed, and the effeet is the fame: and this is occafioned by the fhort fpace of time, in which the loaded thial is difcharged, when any matter of what kind foever readily conducting Electricity happens to be between the coated phial and it's hook, and is fo connected as to communicate with both upon the difcharge of the phial.
M. le Monnier the younger at Paris, in an account tranfmitted to the Royal Society, takes rotice of his feeling the ftroke of the electrified phial along the water of two of the bafons of the Tbuilleries (the furface of one of which is about an acre) by means of an iron chain which lay upon the ground, and was ftretched round half their circumference.

Upon thefe confiderations it was conjectured, as no circuit had as yet been found large enough fo to diffipate the electrical power as not to make it perceptible, that if the non-electrical conductors were proverly difpofed, an obferver might be made fenfible of the electrical commotion quite acrofs the river Tbames, by the communication of no other medium than the water of that river. But as perhaps, in what relates to Electricity lefs than in any other part of natural Philofophy, we fhould draw conclufions but from the facts themfelves, it was determined to make the experiment.

The making this experiment drew on many others, and as the gentlemen concerned flatter themfelves that they were made with fome degree of attertion and accuracy, they thought it not improper to lay a detail of all the operations relating thereto, before the Royal Society.

In order to try whether or no the electrical commetion would be perceptible acrofs the Thames, it was abfolutely neceffary that a line of nonelectric matter, equal in length to the breadth of the river fhould be laid over it fo as to touch the water thereof in no part of it's length; and the bridge at Weftminfter was thought the moft proper for that purpofe, where the water from fhore to fhore was fomewhat more than 400 yards.

Accordingly on Tuefday Fuly 14, 1747. to fee the fuccer's and affift in making the experiment, there met M. Folkes, Eff; Pr. R. S. the R. Hon. the E. Stanbope, Rick. Grabam, Efq; Nich. Mann, Efq; and myfelf,
myfelf, with proper perfons to execute what was required of them in the various parts of thefe experiments.

A line of wire was laid along the bridge, not only through it's whole Jength, but likewife turning at the abutments, reached down the fone fteps on each lide of the river low enough for an oblerver to dip into the water an iron rod held in his hand. One of the company then ftood upon the fteps of the $W_{\text {eftminfler thore holding this wire in his left }}$ hand, and in iron rod touching the water in his right: on the fteps facing the former upon the Surry More, another of the company took hold of the wire with his right hand, and grafped with his left a large phial almoft filled with filings of iron coated with fheet-lead, and highly electrified by a glafs globe properly difpofed in a neighbouring houíe. A third obferver ftanding near the fecond dipped an iron rod held in his left hand into the water, and touching the iron hook of the charged phial with a finger of his right hand, the Electricity fnapped, and it's commotion was fele by all the three obfervers, but much more by thofe upon the Surry Thore. I he third obferver here was no otherwife neceffary, than that the river being fu!l, the iron was not long enough to be fixed in the mud upon the thore, and therefore was in want of fome fupport. The experiment was repeated feveral times, and the electrical commotion felt acrofs the river; but the gentlemen prefent being much molefted in their operations by a great concourfe of people, who many times broke the conducting wire, and otherwife greatly incommoded them, and the evening growing too dark for the ubfervers on different fides of the water to fee tach other, they were prevented from diverfifying the experiments, as was intended, and only confidered thefe trials as a ftill further encouragement for them to profecute the inquiry at a more favourable opportunity.

Early therefore on Saturday morning July i8, there met upon Weft-minfter-Bridge the Pref. the R. Hon. the Lord Cbarles Cavendifh, Ricb. Grabam, Etq; Dr Bevis, and myfelf, with proper affiftants, At the preceding meeting, the electrical machine's being placed at fome diftance from the water being found inconvenient, the following alteration was made in the difpofition of the apparatus.

A room up two pair of ftairs in a commodious houfe neareft the bridge on the Surry fhore was provided, in which was placed the electrical machine with the gun-barrel fufpended in filk lines. From this room on account of it's height, the fignals on both fides of the river were eafily obfervable. The coated phial before-mentioned with it's iron hook was placed upon the feat of the window of this room, and communicated with the gun-barrel by the means of a piece of iron wire. One extremity of another wire was likewile fixed into the bottom of the leaden coating of the phial, whofe other extremity reached therefrom over the bridge to the fteps upon the Weftminfler fhore, the body of the wire being placed as much as poffible upon the parapet of the bridge. One or more obfervers took tach other by the hand, the firlt of which mult ne-
ceffarily take the wire in his left hand, and the laft, upon the proper fignal given, cither dip his right hand into the water, or (which makes the pofture more agreeable) a rod of metal held therein. Another wire having no communication with any of the former, was let down from the before-mentioned room, and down the fteps upon the Sutry fhore : one exeremity of this wire was held in the hand of an obferver itanding upon theie fteps, who dipped an iron rod held in lis ocher hand into the water : to the other extremity of this wire was faftened a fhort iron rod, with which, when the electrified phial was fufficiently charged, and the fignal given, the gun-barrel was to be touched.

The gentlemen, by this difpofition of the apparatus, propofed to examine principally thefe 3 queitions: firft, whether or no the obfervers Itanding on each fide of the river would perceive the eleetrical commotion, each putting an iron rod into the water? Secondly, whether or no the obfervers on both fides of the river would feel the electrical commotion, when the obferver itanding upon the Weftminfter thore removed the iron rod held in his hand out of the water? Thirdly, whether or no the electrical power was perceptible to the obfervers on both fides of the river, if the obferver upon the Wefiminfter fhore dipped his hand into a pail of water, which had no communication with the water of the Tbames.

It was determined firft, upon proper fignals, to difcharge the electrified phial in the manner before-mentioned, the obfervers on each fide of the river holding the iron rods in the water, and this experiment was to be repeated 3 times. This was attempted accordingly; and although the obferver on the Surry fhore was each time fmartly ftruck, the Prefident, who oblerved with the utmoft attention upon the Weftiminfer fhure, gave the fignal that he felt nothing. The company was furprifed at this want of luccefs in the experiment; but, upon examining the wire, which was laid over the bridge, it was found to have been broken by fome accident, after it had paffed over about \div part of the bridge. The wire being refitted, it was agreed to make the fame experiment fix times more: this was done accordingly, and the clectrical commotion was felt each time by the obfervers on both fides of the water, but much fmarter by thofe on the Surry fide. It was then thought proper to repeat this experiment 3 times more upon the fignal's being given: but, in making the firft of thefe, the obferver in the room with the machine, difcharged the electrified phial, before the obferver upon the Surry hore had dipped his iron rod into the water, and therefore no effeet was perceived by the obferver on the oppofite fhore. The electrified phial therefore was again difcharged 3 other times, and the commotion felt by the obfervers on both fides of the river.

To examine the fecond queftion, no other alteration was neceffary in the whole apparatus, than that the obferver upon the Weftminffer fhore fhould not dip either his hand, or the iron rod held therein in the laft experiments, into the water of the river. The electrified phial then was difcharged

Of ELECTRICITY.

difcharged 3 times withour it's effects being in the Icaft perceived by the obfervers upon the W eflninffer fhore; thote indeed on that of Surry felt the thock as before.
In examining the third queftion, "the apparatus was in all other refpects the lame as in the laft; except that the obferver upon the Weftminfer fhore had a pail of water placed upon a wooden table, which ftood upon the ftone fteps, and into which he was to put his right hand upon the fignal's being given. This was accordingly done, and the electrified phial being difcharged 3 times, the electrical commotion was felt as before by the obferver upon the Surry fhore; but not in the Ieaft by him on the Weftminfter fide, who held his hand in the pail of water.

In all thefe experiments, except in one before-mentioned, where the iron rod was not in the water, it was found, that whether the obfervers on the Weftrininfter fhore, upon the difcharge of the electrified phial, did or did not feel it's effects, they were always perceived not only in the arms of thofe upon the Surry fhore, who formed a line between the extremity of the wire there, and the water of the river; but by any other perfon, who ftanding upon the ftone fteps, even where they were not wet, touched the wire with his hand. They were likewife felt by a perfon upon the Wefminffer fhore, flanding upon the wet ftone fteps, who did not form part of the line between the extremity of the conducting wire and the water, otherwife than by touching the wire with his fingers.

As was before-mentioned, the obfervers upon the Weffiminfer fhore did not feel the effects of the difcharged phial near fo ftrong as thore on that of Surry in the firft fett of thefe experiments. When a line was there formed by the joining hands of two or more perfons, the firt of which, on account of the fituation, held the conducting wire in his left hand, and the laft touched the water with an iron rod held in his right, the effects were moft fenfible in the left arm of him who held the wire: they were indeed manifeftly felt by them all; but this feeling was not great enough to be called a fhock, but, as was very properly expreffed by one of the company, it refembled the pulfation of a large artery.

From the examination of the firf and fecond queftions it appeared, that the obfervers upon the Wefminfter fhore were not fenfible of the effects of the Electricity, unlefs their bodies defcribed part of the circuit before fpoken of; and this circuit here confifted of part of the gunbarrel of the electrifying machine, the wire going from this gun-barrel to the iron hook, the phial itfelf, the tail wire of this coated phial which reached theretrom acrofs the bridge and down the fteps on the W eff minfer fhore, the line of obfervers between this wire and the iron rod which dipped in the water there, this iron rod, a fuppofed line of water drawn quite acrofs the Tbames, the obfervers with their iron rod on the Sury flore, the iron wire going from the right hand of the laft of thefe up into the roorn where the electrifying machine was placed, and the fhost iron rod to which one extremity of this wire was joined, and with which,

Of ELECTRICITY.

in making the explofion, the gun-barrel was tcuched. The length of this circuit, through which the Electricity was propagated was at leaft 800 yards, more than 400 yards of which was formed by the ftream of the river.

From the examinntion of the third queftion it appeared, that the electrical commotion would not be felt from the obferver dipping his hand in water only, unlefs that water was fo difpofed as to become part of the circuit; and this experiment was made, left the contrary might be furmifed.

Ine obfervers upon the W efominfer fhore not feeling the electrical commotion equally ftrong with thofe of Surry, was jurged to proceed from other chules befides that of diftance. For it muft be confidered, that the concucting wire was almoft thoughout it's whole length laid upon l'ortland fone ftanding in water. This ftone, being in a great degree non-electric, is of itlelf a conductor of Electricity: and this ftone ftanding in water, no more of the Electricity was tranfmitted to the obfervers on the Weftminfter fhore than that proportion, wherein iron is more nonelectric, and, confequently, a better conductor of Elećtricity than fone. 'Ihis was made more manifeft, from obferving, that whether the conducting wire upon the bridge was broke or no, and, confequently, whether the obfervers upon the Weftminfter fhore felt the electrical commotion or no, not only the obfervers upon the Surry fhore, who with theil wire formed part of the line, fitt the fhock in their arms; but thofe perfons who only food upon the ftone iteps there, and touched the wire with their fingers, felt the clectical commotion in the arm of that hand which touched the wire, and down their legs. From whence, and from the perion befure fpoken of feeling the electrical commotion ftanding upon the wet ftone fteps of the Weftminffer fhore, though not forming part of the line, but only touching the wire with his fingers, it was concluded, chat, befides the Jarge circuit before fjoken of, there were furmed feveral other fubordinate circuits between the fame feeps of the Surry fhore, and the bridge by means of the water ; whereby that part of the electrical powar, fele by the obfervers upon the Surry fide of the river, and not by chofe on the Weftminfer fide, was difcharged.

Dr Beris having obferved, and which was likewife tried here, that however well an elećtrified phial was charged, it's iron hook would not fire the vapours of warm fpirit of wine held in a fpoon and applicd thereto, if the perfon who held the phial, and he who held the fpoon cid not take each other by the hand, or have fome other non-electrical communication between them, it was therefore thought proper to try the effects of Eilectricity upon fome warm fpirit of wine through the large circuit beforementioned. Accordingly the obfervers being placed as before both upon the W^{\prime} efmimfer and Surry hnores, noother alteration was made in the beforementioned apparatus, than that the wire which conneeted the gun-barrel with the iron hook of the coated phial being laid afide, the coated phial itfelf was charged at the gun-barrel, and then brought in the hands of
an obferver near the warm fpirits in the fpoon, which was placed upon the fhort iron rod before-mentioned, which was connected with the wire which went to the obfervers upon the Surry fhore. Upon prefenting properly the iron hook of the charged phial to the warm firit, it was inftantly fired, and the electrical commotion fele by the obfervers on both fides of the river.

It was then thought proper to try the effects of the charged phial upon the warm finitit, when the wire was divided which was laid over the bridge: upon prefenting the iron hook to the fpirit, a fufficient fnap was given to the fyoon to fire the fpirit, but nothing fo fmart as in the former experiment, where the large circuit was completed.

It was then tried, what the effect would be upon the fpirit, if the charged phial was divefted of it's long wire which lay over the bridge, and was only held in the hand of an obferver; whilf the fpoon with warm fpirit was placed in contact of the iron rod before-mentioned, to which the wire was connected, which went to the obfervers upon the Surry Thore; and the fpirit was fired with much the fame degree of fmartnefs as in the laft experiment.

In thefe and all the fubfequent operations, wires were made ufe of to conduet the Electricity preferable to chains, as it before by great numbers of experiments had been fully proved, that whatever difference there was in the bulk of the conductor, that is to fay, whecher it were a fmall wire, or a thick iron bar, the electrical ftrokes communicated thercby were equally ftrong: and it had been further obferved, befides the difficulty of procuring chains of a requifite length for the prefent purpoles, that the ftroke at the gun barrel, when the Electricity was conducted by a chain, was cateris paribus, not fo Atrong, as when that power was conducted by a wire. This was occilioned by the junctures of the links of the chain not being fufficiently clofe, which caufed the Electricity in it's paffage to fnap and flafh at the junctures, where there was the leaft feparation; and thefe leffer fnappings in the whole length of the chain leffened the great one of the gun-barrel.
Encouraged by the fuccefs of thefe trials, the gentlemen were defirous of continuing their enquiries, and of knowing whether or no the electrical commotions were perceptible at a ftill greater diftance. The New River near Stoke-Newington was thought moft convenient for that purpofe; as at the bottom of that town, the twinings of the river are fo circumftanced, that from a place which we will call A to another B, the diftance by land is about 800 feet, but the courfe of the river is near 2000. From A to another place, which we will call C, in a right line is 2800 feet, but the courfe of the water is near 8000 feet.

Accordingly, on Friday Fuly 24, 1747, there met at Stoke- Newington the Pref. of the R. Soc. the R. Hon, the Lord Cb. Cavendifs, the Rev. Mr Birch, Fames Burrow, Efq; Peter Daval, Efq; Mr. George Grabaim, Wm Yones, Efq; Fames Lever, Efq; Mr Necuconibe, Cbarles Stanbope, Efq; Mr Trembley, and myfclf, who were of the Royal Society, and Dr

VOL. X. Part ii.
Z 2
Bedis.

Of ELECTRICITY.

Bevis. To this gentleman the company were much obliged, not only for: his great readinets in affifting in all the operations, but likewile for the ufe of his electrifying machine, which from it's fize was conveniently portable. This machine was now placed in a ruom up one pair of ftairs in a houfe near A, and the fignals from thence might eafiiy be perceived by the obfervers both at B and C.

It was propofed, firft to try the electrical commotion by the fame obfervers as at W efiniminfer.bridge, from A to B, the diftance as before-mentioned being about 800 feet by land, and 2000 by water, in order, if poffible, to determine the difference of the ftrength of the Electricity felt there, and at the ftone bridge at Weftminfler; the difference of the length of the 2 circuits being about 400 feet in favour of that of the Now River.

To make the experiment, an iron wire was faftened to the coating of the glafs phial before-mentioned, and conducted from one of the wincows of the room over the New River without couching the water; and from thence to B, laying in it's whole length upon the grals in the meaduws, except where it palfed over a hedge. At B, when the explofion was to be made, one or more obfervers were to take the extremity of this wire in one hand, and touch the water of the river as before with an iron rod held in the other. Another wire was let down from the other window of the room; one extremity of which was joined to the Thort iron rod mentioned in the former experiments, the other was held in the hand of an ouferver at A, whofe other hand held an iron rod dipped into the river.

It was abfolutely neceffary that thefe wires fhould touch each orher in no part of their length, otherwife the before-mentioned circuit would upun the explofion be completed from their firft contact.

When every thing was thus difpofed, and the fignals given, the charged phial was exploded 8 times, and the electrical commotion cvery time imartly felt by the obfervers both at A and B. Whether the line of obfervers at B confifted of onc or more, they were always itsuck, and that more fharply than at Wefminfer-bridge, under the fame circumfances. One of the obfervers, taking the wire in his hand, without having any communication either with any of the other gentlemen or the water of the river, felt the fhock in his feet.

It was then thought proper to make right explofions without any other alteration in the apparatus than that the obfervers at B, flouid Itand in the meadow at fome diftance from the water, withour having any communication therewith other than that furnifhed by the ground. This was accordingly done, and the ftroke felt little if at all leis than thole laft mentioned. But the electrical ftrokes being feit fmartly at the diftance of at leaft 20 feet from the water, occafioned a very perplexing difficulty, as it was impomble by this experiment to determine with any certainty, whether or no the electrical circuit was formed throughout the windings of the river, or much fhorter by the ground of the meadows. The experiment plainly thewed, that the meadow-greund with she grafs thereon conducted

Of ELECTRICITY.

conducted the Electricity better than fone; as it mutt be remembered, that the obfervers upon the fone fteps upon the Weftminfer thore felt not in the leaft degree the electrical commotion, when their iron rod was n:ot in the water, and themfelves ftood upon the dry ftone fteps. But this effect was fuppofed to be owing to the mealow-ground here being encompaffed on two fides by the New River, and on the other by a wet ditch, by both which it was generally well moiltened. To folve sherefore this difficulty, a feries of experiments were executed, of which hereafter.

The gentlemen then determined to examine whether the electrical commotions were perceptible from A to C; a diftance not lefs than 2800 teet by tand, and near 8000 by water.

To execute this, to the former wire, which was already conducted to B, another was added, which there croficd the river without touching the water; and reached almoft to C, where the firt of a line of gentlemen held, as before, the wire in one hand, and the latt dipped the iron into the water. The wire from the machine to A was as before. Upon the fignal's being given, the charged phial was exploded ro times, and it's effects plainly thougi but faintly perceived each time by fome or other of the obfervers, but never by them all. The electrical commotion was always felt by that obferver who held the extremity of the wire, but never by him who held the iron rod in the water. It was in one experiment fett by the obferver who held the wire, not felt by the next, who held the hand of the former, and yet plainly perceived by the third, who joined the fecond. Thole who did not themfelves feel the electrical commotion here, did as at B fee the involuntry motions of thofe who did. The obfervers at A felt the fhocks in the fame degree, whether the other obfervers were ftationed at B or C.

This experiment further demonftrates the diftance to which the clectrical power may be conveyed: but the fame difficulty occurs here as in the laft; to wit, whether the circuit was completed by the ground, or by the water of the river?

Thefe fame operations, which hhewed at how great a diftance the electrical commotion was perceptible, folved likewife 3 queftions of a fubordinate nature.

Firt, Whether or no, cateris paribus, any difference occurred in the fuccefs of the experiment, if the long wire, inftead of being joined to the coating of the phial, was faftened to the fhort iron rod, which, upon touching the gun-barrel, occafioned the explofion; and if the fhort wire, which only went to the obferver at A, a diftance from the machine not more than 30 feet, was joined to the coating of the phial? Upon trial no difference * was found.

[^44]
Of ELECTRICITY.

Sccond!y, Whether or no, ceteris paribus, any difference in the electrical commotion would be perceived, when that power paffes through the arms of two obfervers, whofe bodies made part of the circuit, fanding in the room near the electrifying machine; one of which takes the extremity of the wire that goes to the obferver at A in one hand, and touches the gun-barrel with the fhort iron rod held in his other hand? The other obferver takes the extremity of the wire which goes to B or C in one hand, and touches the coating of the charged phial with his other. In feveral trials, where each of thefe obfervers trequently changed ita* tions, no difference in point of frength was obferved in the clectrical commot:on.
Thirdly, Whether or no thefe two obfervers laft-mertiened received the fhock at the fame time? They were feen to be both convulied in the fame inftant.

Fuly 28. 1747, there met again at the fame place, to proceed furthes in thefe enquiries, the Prefidims, the R. Hon the I.ord Cbl Carendifh, the Iev. Mr Birch, Sir Francis Deffevod, Raronet, Peter Daeal, Efq; Mr Ellicost, Mr George Grabam, Richaid Grabam, Eiq; Mr Robins, Mr Sbort, Dr Willrabam, and myfelf, who were of the Royal Society, and Dr Beris.

The electrical commotion was firf tried from A to B before-mentioned, the iron wire in it's whole length being fupported, without any where touching the ground, by dry fticks placed at proper intervals of about 3 feet in height. The obfervers both at A and B ftood upon ori-ginallj-clectrics, and, upon the fignal, dipped their iron rods into the water. Upon difcharging the phial, which was feveral times done, they were both very much fhocked, much more fo than when the conducting wires lay upon the ground, and the obfervers ftood thercon, as in the former experiments. The fame experiment was tried with the obferver at A, inftead of the iron rod, dipping a narrow nab of Portland itoase into the water about 3 : feet in length; when the fhock was felt, but not fo fevere as through the iron rod. This demonftrated, as was before luggefted, why the electrical commotion was not felt ftronger by the obfervers upon the wettern fhore of the Weftminfter-bridge; viz. that Portlond fone ftanding in water will conduct Electricity very confiderably.

The gentlemen then tried what would be the effect, if the obferver at B food upon a cake of wax, holding the wire as before, and touched the ground of the meadow with his iron rod at leaft 150 feet from the water; and if the oblerver ufually placed near the river at A, had his wire carried 150 feet over the river, as the former, ftood upon an originallyelcetric, and touched the ground with his iron rod. Upen the explofion of the charged phial, which was feveral times done, both the obfervers were fmartly fruck : this demonitrated, that in thefe inflances the moift ground of the meacows made part of the circuit. The obfervers were diftant from each other about 500 feet.

The obfervers then, ftationed as in the laft experiment, ftood upon the wax cakes as before, without touching the ground with the iron rods, or any part of their bodies, and the charged phial was exploded 4 times. Thefe were not at all felt by the obferver next to B, and without the greateft attention, would not have been perceived by him next to A, and then only in fome of the trials, the feeling of the Electricity was like that of a finall pulfe between the finger and thumb of that hand which held the wire. The !oaded phial was again difcharged 4 times more, without any other alteration in the difpofition of the apparatus, than that the obferver next to B ftood upon the ground; when the electrical commotion was perceived by that obferver, though not fo Sharp as when the other obferver at the fame tine ftood upon the ground. The obferver next to A felt the tingling between his finger and thumb, as before.

The gentemen were defirous of trying the electrical commotion at a ftill greater diftance than any of the former, through the water, and wherc, at the fame time by altering the difpofition of the apparatus, it might be tried, whether or no that power would be perceptible through the dry ground only at a confiderable diftance. Higbbury-barn beyond Ifington was thought a convenient place for this purpofe, as it was fituated upon a hill ntarly in a line, and almoft equidiftant from 2 ftations upon the New River, fomewhat more than a mile afunder by land, though following the courfe of that river, their diftance from each other was 2 miles. The hill between thefe ftations was of a gravelly foil; which, from the late continuance of het weather without rain, was dry, full of cracks, and confequently was as proper to determine whether or no the Electricity would be conducted by dry ground to any great diftance, as could be defired. This hitherto had not been attempted; the meadows in the inflances before quoted conducting the Electricity, was fuppofed to be owing to the moifture of the ground. The ftreets of Londion, when very dry, had been found to conduct it ftrongly about 40 yards, and the dry road at Neceington about the fame diftance. Accordingly, on Wednefday, Aug. 5, 1747, there met at Higbbury-barn the R. Hon. the L.ord Ch. Caveidifh, the Rev. Mr Birch, Mr George Grabam, Rich. Grabam, Efq; N. Mann, Efq; Mr Sbort, DanielWray, Efg; and myfelf, who were of the Royal Sosiety, and Ir Becis.

The electrifying machine being placed up one pair of the ftairs in the houfe at Higbbury-barn, a wire from the coated phial was conducted upon dry fticks as before, to that ftation by the fide of the Nero River, which was to the northward of the houfe. The length of this wire was 3 furlongs and 6 chains, or 2376 feet. Another wire faftened to the iron bar, with which, in making the explofion, the gun-barrel was touched, was conducted in like manner to the ftation upon the New River to the fouthward of the houfe. The length of this wire was 4 furlongs 5 chains and 2 poles, or 3003 feet. The length of both wires, exclufive of their wurnings round the fticks, was I mile, i chain, and 2 poles, or 5379 feet.

Of ELECTRICITY.

For the more conveniently defcribing the experiments made here, we will call the ftation to the northward D, and the other E.

At this diftance the gentemen propofed to try, firft, whether or no the electrical commotion was perceptible, if both the obfervers at D and E, fupported by originally-electrics, touched the conducting wire with one hand, and the water of the New River with an iron rod held in the other? Secondly, whether or no that commotion was perceptible, if the obferver at E, being in all refpects as before, the obferver at D, ftanding upon wax, took his rod out of the water? Thirdly, whether or no that commotion was perceptible to both obfervers, if the obferver at D was placed upo: wax, and touched the ground with his iron rod in a dry gravelly field at leaft 300 yards from tie water?

As from the fituation of the ground, trees, \mathcal{E}^{c}. neither of the ftations could be feen by each other, or by the obferver at the electritying machine, it was agreed to difcharge a gun as a fignal to get ready, and to do the fame, as near as might be, halt a minute before each explofion.

In the fe experiments, as well as the former, the coated phial was each time charged as ligh as it could be ; fo that if the dfference of the fhock to the obfervers was confiderable, it was owing to other caufes more than to the phial's being differently electrified.

To try the firft propofition, 8 explofions were made with the obfervers at D and E, touching the water, and ftanding upon wax, with their iron rods in the water. The firlt 2 of thefe were fele but weakly by the obferver at D; but in the other 6 he was ftrongly fhocked. The obferver at E felt nothing of the firt 6 explofions; when, upon examination, the wire was found broken by fome accident; but this obferver was ftrongly fhocked by the 2 laft. The obferver at D being fhocked in 4 of thefe explofions, while in thele + the obferver at E felt nothing, was owing to the circuits being formed by the ground between the oblerver at D and the broken wire. Upon account of the wire's being broken, the gentlemen tried 3 more explofions, when the obfervers at both ftations felt the electrical thock.

To try the fecond propofition, 4 explofions were made with the obferver at D, ftanding upon an originally-clectric, and taking his iron rod out of the water, the obferver at E as before. In each of thefe the obferver at D fele a finall pulfation between his finger and thumb of that hand which held the wire. The obferver at E felt each of thefe as ftrong as before. This being different from the obfervations made in the experiments of the laft trials at our former ftations A and B, and many others; where B in the fame circuinftances with E here felt the electrical commotion only in a llight degree, was owing, as we were afterwards informed, to the impertinent curiofity of the fervants of the gentlemen, and other voluntary obfervers, who, by touching the wire which went from the coated phial to the obferver at D, felt the fhock in their arms and ankles, and formed fubordinate circuits to E. The preventing thefe people from touching the wires, was impoffible; as great part of them could be feen neither

Of ELECTRICITY.

neither by the obfervers at the flations, nor by thofe at the houfe, and their being more than a mile long.

The 4 other explofions were made without any other alteration in the apparatus, than than that the obferver at D itood upon the ground about 4 yards from the water without any communication therewith. The obferver at E felt the fhocks in his arms as before; but the obferver at D flanding upon the ground was fhocked in the elbow and wrift of that arm which held the wire, and in both his ankles.

To try the third propofition, 8 explofions were made with the obferver at D ftanding upon an originally-electric with his rod in the water of the river as before; but the obferver at E was placed in a dry gravelly field about 300 yards nearer the machine than his laft ftation, and about 100 yardsdiltant from the river. He there ftood upon the wax, holding the conducting wire in one hand, and touched the ground with an iron rod held in the other. The fhock was each time felt by the obferver at D, but fenfibly weaker than in the former trials; but the obferver at E felt them all equally ftrong with the former; the 4 firft in his arms, when he ftood upon the wax, and touched the ground with his iron rod; the other 4 in his arm and ankles, when he ftood upon the ground without the iron rod.

In fome of thefe experiments, the obfervers at D felt a tingling as foon as they laid hoki of the conducting wire. This was conjectured to be owing to the Electricity, which conftantly ruas off while the coated phial is filling, and preferably by the wire, as the beft conductor.

From the feverity of the fhock, the gentlemen, in fome of thefe trials, did not choofe to have the Electricity pafs through their bodies: bur, as it was neceflary for them to be fenfible of the different degrees of the electrical commotions, they bound the conducting wire round one of their thuinbs, and touched the iron rod with the fore-finger of the fame hand; when the elestrical commotion was felt only in fo much of the finger and thumb of that hand, as completed the circuit.

By the experiments of this day, the gentlemen. were fatisfied, that the dry gravelly ground conducted the Eleetricity as ftrongly as water; which thotigh otnerwife at firft conjectured, they now found not to be neceflary to convey that power to great diftances; as well as that, from difference of diftance only, the torce of the electrical commotion was: very little if at all impaired. They were convinced of the truth of thes firft of thefe facts, not only from both obfervers feeling the electrical commotion in the 8 laft experiments, when the oblerver at E was at fuch a diftance from the, water, but alfo from the obferver at D feeling the fhock fo ftrong in 4 of the firft 6 explofions, when the conducting wire to E being broke at about soo yards diftance from the houfe, that cbferver felt nothing.

In this laft inftance the circuit was formed from the phiai by the obferver at D and his wire, a line of ground which reached from the ftation at D to the broken wire that lay upon the ground, and fo much of this wire as reached to the fhort iron rod, which touched the gun-barrel in making

Of ELECTRICITY.

making the explofions. This induced the gentlemen to conclude (as from many experiments it was manifeft, that when the intervening fubftances conduct Electricity equally well, the circuit was performed in the fhoreft manner poffible), that when the obfervers holding their iron rods iin the river at D and E were both fhocked, the Eilectricity was not conreyed by the water of the river, being two miles in length, but by land, where the diffance was only one mile; in which fpace rhat power muft neceffarily pafs over the New River twice, through feveral gravel-pits, and a large stubble-field. So that, admitting the Electricity ciid not follow the track of the river, the circuit from D to E was at leaft 2 miles ; riz. fomewhat more than one mile of wire, which conducted the Electricity from the houfe to the fations, and another mile of ground, the fhortef diftance between thofe ftations. The fame inference was now drawn with regard to the experiments at A, B, and C, in the New River before recited; viz. that as in all of them the diftance between the obfervers was much greater by water than by lanc!, the Electricity paffed by land from one obferver to the other, and not by water.
From the fhocks which the gentlemen reccived in their bodies, when the electrical fower was conducted upon dry fticks, they were of opinion, that from difference of diftance fimply confidered, as far as they had yet experienced, the force thereof was very little if at all impairect. When they ftood upon originally-etectrics, and toushed the water or ground with an iron rod, the electrical commotion was always felt in their arms and wrifts: when they ftood upon the ground, and touched either the water or ground with their iron rods, they felt the fhock in their clbows, wrifts, and ankles: when they ftood upon the ground without the rod, the Mock was always in the eibow and wrift of that hand, which held the conducting wire, and in both ankles. The obfervers here being fenfible of the electrical commotion in diffirent parts of their bodies, was owing in the firft inftance to the whole of it's paffing (becaule the obferver ftood upon wax) through their arms, and through the iron rod: in the fecond, when they ftood upon the ground, the Electricity paffed both through their legs, and through the iron: in the tiiird, when they ftood upon the ground without either wax or rod, the Electricity directed it's way through one arm, and through both legs to complete the circuit.

The gentlemen were defirous of clofing the prefent inquiry, by examining not on'y whether or no the electrical conmotions were perceptible at double the diftance of the laft experiments in ground perfectly dry, and where no water was near ; but alfo, if poffible, to diftinguifh the refpective velocities of Electricity and found. To execute this required the whole fagacity and address of the gentlemen concerned; for they had met with very great difficulties in the laft day's operations, where the wire was conducted but little more than a mile; all which could not

Of ELECTRICITY.

but be greatly augmented by doubling that diftance; becaufe it was neceflary, that the houfe, wherein the electrifying machine was placed, fhould be vifible at leaft at one of the ftations; and that the fpace between that houfe and the fations, through which the wire was conducted, fhould be very little interfected by hedges, roads, or foot-paths; neither fhould the wire in this fpace be fubject to be difturbed by the horfes or cattle, which were grazing; nor ought it to touch in it's paftige the trees or any other vegetables, which at this feafon of the year were eve-ry-where luxuriant. To find a place within a convenient diftance of London with thefe requifites was not very eafy; but at laft, Sbooters-Hill was pitched upon, as the moft convenient.

As only one fhower of rain had fallen during the preceding 5 weeks, the ground could not but be very dry; and as no water was near, if the electrical commotion was felt by the obfervers at the ftations, it might be fately concluded, that water had no fhare in conducting it.

Aug. 14. 1747. there met at Sbooters. Hill for this purpofe, the Rev. Mr Birch, the Rev. Mr Profeffor Bradley, Peter Daval, Efq; Mr G. Grabam, R. Grabam, Efq; Mr Nourfe, George Lewis Scott, Efq; Mr Sbort, Cbarles Stanbope, Eff; and mylelf, who were of the Royal Society, and Dr Bevis.

It was here determined (as the gentlemen were fatisfied from many of the former trials, that if, when the coated phial was difcharged, the obfervers at the ftations ftood upon originally-electrics, and touched neither water nor ground with iron rods, or any part of their bodies, the electrical commotion would be fcarcely perceptable) to make twelve explofions of the coated phial, with an obferver placed at the 7 mile ftone, and another at the 9 mile ftone, both ftanding upon wax, and touching the ground with an iron rod. This number of explofions was thought more neceffary, as the obfervers at thefe ftations were not only to examine whether or no the Electricity would be propagated to fo great a diftance; but if it were, the obferver at the 7 mile-ftone was by a fecond watch to take notice of the time lapfed between feeling the electrical commotion, and hearing the report of a gun fired near the machine, as clofe as might be to the inftant of making the explofion: and therefore, to examine this matter with the requilite exactnefs, this number of explofions fhould be made.

To execute this, the electrifying machine was placed up one pair of ftairs in a houfe upon the weft fide of Sbooters-Hill; and a wire from the thort iron rod, with which the gun-barrel was touched in making the explofions was conducted upon dry fticks as before into a field near the feven mile-ftone. The length of this wire, exclufive of it's turnings round the flicks, was a mile, a quarter, and 8 poles, or 6732 feet. In great part of this fpace it was found very difficult to fuppore the wire, on account of our fearcely being able to fix the fticks in the ftrong gravel there almoft without any cover of foil; nor could the wire in fome places

V O I.. X. Part if.
A 23
be

Of ELECTRICITY.

be prevented from touching the brambles and bufhes, nor in one field the ripe barley.

Another wire was likewife conducted upon fticks from the coated plial to the nine mile-ftone. In cluis fpace, the foil being a ftrong clay, the wire was very well fecured, and in it's whole length did not touch the buthes. The length of this wire was 3868 feet. nits much as the place, where the obfervers were ftationed in a corn-field, was nearer the machine than the 7 mile-ftone, fo much were the other obfervers placed beyond the 9 mile-ftonc, that their diftance from each other might be 2 miles. The 40 feet of wire in thefe 2 mealures exceeding 2 miles, was what connected the fhort iron rod before-mentioned, and the coated phial, with their refpective conducting wires.

The obfervers being placed at their refpective ftations, the obferver at the machine proceeded in making the explofions of the coated phial ; he having before placed an affitant exactly in his view before the window of the houfe, who, upon the word of command, was to difcharge a mufket. As foon as ever the flafh was feen to come from the mouth of the gun, the obferver difcharged the clectrified phial. When 8 explofions had been made, a fervant was fent from the gentlemen at the 7 mile-ftone giving an account of the wire's being broken, and the fticks thrown down by a man riding through them; that thewbervers there had felt nothing; and defirect, as by this time the wire was replaced, that we fhould begin again. This was complied with, and 12 other explofions made without further moleftation.

Not only the firft 8, but eleven of the laft 12 very ftrongly Shocked the obfervers at the 9 mile-ftone: at the twelfth explofion the obferver on purpofe ftood upon the wax without touching the ground with his iron rod, or any part of his body; and only felt a night tingling in his funger and thumb that held the wire. In another of thefe experiments, as the gentlemen bere were fatisfied in their own perfons of the ftrength of the electrical commotion, they indulged 2 country-fellows, who were by-ftanders, with feeling one: thefe 2 with 4 of the gentlemen formed achain, the firtt of them taking hold of the extremity of the wire with une of his hands. They all ftood upon the ground, and made no ute of the iron rod. Upon the explofion they were all fo ftrongly fhocked in cheir arms and ankles, that the countrymen could by no means be presailed upon to try the experiment again. Why, in the firf eight explofions, the obfervers here were fonfibie of the electrical commotion, when the obfervers at the other ftation felt nothing, was explained in the former experiments. The obfervers at this liation, from their fituation under the hill, and from what wind there was being againft it, never heard the report of the gun.

Though the obfervers near the 7 mile-ftone from the breaking of their wire, were not fenfible of the 8 firlt explofions of the charged phial, they felt the other 12. This demonftrated to the fatisfaction of the gendemen concerned, that the circuit here formed by the Electricity was 4

OF ELECTRICIT Y.

miles; riz. 2 miles of wire, and 2 miles of ground; the fpace between the extremities of that wire. A diftance without trial tho great to be credited!! How much further the electrical commorion will be perceptible, future obfervations can only determine.

The eicetrical commotion by the obiervers near the 7 mile-ftone was but tlightly felt; not could it be otherwife expected, the wire in many parts of it's length touching, as was before-mentioned, the moift \mathbf{v} egetables; which, in as many places as they were touched, formed fubordinate circuits. We find, in all other inftances, that the whole quantity of Electricity, accumulated in the coated phial, is fele equally through the whole circuit, when every part thereof is in a great degree nonclectric; fo here the whole quantity, or nearly fo *, determined that way, was felt by the obfervers at the 9 mile-ftone whilf thofe at the other ftation felt fo much of their quantity only, as did not go through the vegetables; that is, that proportion only in which iron is a greater non-electric than the vegetables.

Tho' the electrical commotions, fele by the obfervers near the 7 mile-ftone, were not ftrong; they were equally conclufive in fhewing the difference between the refpective velocities of Electricity and found.

The face chrough which found is propagated in a given time, has been very differently eftimated by the authors, who have written concerning this fubject. Roberval gives it at the rate of 560 feet in a fecond; Gafindus, at 1473; Merfenne at 1474 ; Du Hamel, in the Hift. of the Acad. Sc. Par. at 1172 ; the Acad. del Cimento, at 1185 ; Boyle at 1200; Roberts at 1300; Walker at 1338 ; Sir I. Neruson at 968 ; Dr Derbam, in whofe meafure Mr Flamftead and Dr_{r} Halley acquefced, at, 1142. But by the accounts fince publifhed by M. Cajlimi de Tbury in the Memoirs of the R. Acad. of Sciences at Paris for the year 1738. where cannon were fired at various as well as great diftances, under great variety of weather, wind, and other circumftances, and where the meafures of the different places had been fettled with the utmoft exactnefs, found was propagated at a medium at the rate only of 1038 Frencls feet in a fecond. The French foot exceeds the Englifh by feven lines and a half, or is as 107 to 114: and confequently 1038 French feet are equal to 1106 Englifb feet. The difference therefore of the meafures of Dr Derbam and M. Caffini is 34 French 36 Englifh feet in a fecond t. According to this laft meafure, the velocity of found, when the \|f wind is ftill, is fertled at the rate of a mile, or 5280 Englifh feet in $4^{\prime \prime} \frac{2}{1 c o}$

- The author of this paper, from a great varicty of experiments, is of opinion; that in this and the like cifpofitions of the apparatus, the electrical power, accumulated in the matter contained in the coated phial, is direded upon the explofion thereof towards both obfervers at the fance infant.
+ M. Caffni diz Thury afterwards meafured the velocity of found at Aiguemortes in Larguedor, and found the obicrvations there from thofe made about Paris vary only half a soife in a fecond Sce Mem. de Γ Sicad. Royale des Scicnces, pour Fannie 1739, p 126.
Di) De Derham found, that when fou:d was carried againtt the wind, not only it's diftance but it's velociry wasleffened ; and in M. Cafimi's Memoir, there is : n experiment, ${ }^{*}$ where found being carried agninit the wind, which then blew very ftrong, was retarded near \div of the ufual time in it's progrefs.

Of ELECTRICITY.

To return to our purpofe; the length of the conducting wire from the machine to the obfervers near the 7 mile-ftone, was (as has been beforementioned) a mile, a quarter, and 8 poles, or 6732 feet : the length of that to the 9 mile-ftone, 3868 feet. The firft of thefe meafures only was made ute of in the prefint operations concerning the velucity of Electricity. In 12 difcharges of the coated phial, which were felt by Mr G. Crabam, Mr Sbort, and Cb. Stanbope, Efq; the obfervers near the 7 mile-ftone, and who, by a fecond watch of Mr Graban's, meafured the time between feeling the electrical commotion, and hearing the report of the gun, with the utmoft attention and exactnet's; the time, I fay, between feeling the electrical commotion, and hearing the report of the gun, was, at a medium, $5^{\prime \prime}$, or $5^{\prime \prime} \frac{235}{1 / c o s}$. And as the gun was diffant from thefe obfervers 6732 feet, it follows, from the experiments which have been made on the velocity of found, that the real inftant of the difcharge of the gun preceded that of the obfervers hearing it's report, at this time when the ftrength of the wind was not fo great as to enter into the computation, $6^{\prime \prime} \frac{007}{1200}$; or preceded the inftant when the electrical commotion was felt only $\mathrm{O}^{\prime \prime} \frac{10}{\omega \mathrm{cx}}$. But this inftant was, from the nature of the experiment, neceffarily prior to that of the electrical explofion, which was not made 'till the fire of the gun was actually feen; and therefore the time between the making of that explofion, and it's being aćtually felt by the obferver, which muft have been lefs than $o^{\prime \prime} \frac{10}{100}$, was really fo finall, as not to fall under any certain obfervation, when it is to be diftinguifhed from that, which muft of neceffity be loft, between the firing of the gun, and the electrical explofion itfelf.

In all the experiments, where the circuit was formed to any confiderable length, though the coated phial was very well charged, the fnap at the gun-barrel, upon the explofion, was not near fo loud as when the circuit is formed in a room; fo that a by-ftander, though verfed in thefe operations, from feeing the flath, and hearing the report, would imagine the froke at the ends of the conducting wire to be very flight; the contrary whereof, when the wire has been properly conducted, has always happened.

From a review of thefe experiments, the following obfervations may be deduced.
I. That, in all the preceding operations, when the wires have been properly conducted, the electrical commotions from the charged phial have been very confiderable only, when the obfervers at the extremities of the wire have touched fome fubftance readily conducting Electricity with fome part of their bodies.
II. That the electrical commotion is always felt moft fenfibly in thofe parts of the bodies of the obfervers, which are between the conducting wires, and the neareft and the moft non-electric fubftance; or in other words, fo much of their bodies, as comes within the electrical circuit.

Of ELECTRICITY.

III. That, upon thefe confiderations, we infer, that the electrical power is conducted between thefe obfervers by any non-electric fubftances, which happen to be fituated between them, and contribute to form the electrical circuit.
IV. That the electrical commotion has been perceptible to 2 or more obfervers at confiderable diftances from each other, even as far as 2 miles.
V. That when the obfervers have been fhocked at the end of 2 . miles of wire, we infer, that the electrical circuit is 4 miles; viz. 2 miles of wire, and the fpace of 2 miles of the non-electric matter between the obfervers, whether it be water, earth, or both.
VI. That the electrical commotion is equally ftrong, whether it is conducted by water or dry ground.
VII. That if the wires between the electrifying machine and the obfervers are conducted upon dry fticks, or other fubftances non-electric in a. night degree only, the effects of the elertitical power are much greater than when the wires in their progrefs touch the ground, moilt vegetables, or other fubitances in a great degree non-electric..
VIII. That by comparing the refpective velocities of Electricity and found, that of Electricity, in any of the diftances yet experienced, is nearly inftantaneous.
I fhall conclude this paper with obferving, that it was thought convenient to lay a detail of all the operations relating to thefe experiments before the Society; in confequence of which the gentlemen may make themfelves judges, how far the deductions here recited are warrantable from the experiments.

* The gentlemen concerned were defirous, if poffible, of afcertaining the abfolute velocity of Electricity at a certain diftance; becaufe, although laft year, in meafuring the refpective velocities of Electricity and found, the time of its progrels was found to be very little, yet we were defirous of knowing, fmall as that time was, whether it was meafurable; and I had thought of a method for this purpofe.

Accordingly, Auguft 5.1748. there met at Sbooters-Hill for this purpofe, the Prell of the R. Soc. the Rev. Mr Birch, the Rev. Mr Profeffor Bradley, James Burrow, Efq; Mr Ellicot, Mr G. Grabam, Rich. Grabam, Efq; the Rev. Mr Lavorie, Cbarles Stanbope, Efq; and myfelf, who were of the Royal Society, Dr Bevis, and Mr Grijcbove, a member of the R. Aiad. of Sciences at Berlin.

It was agreed to make the electrical circuit of 2 miles, in the middle of which an obferver was to take in each hand one of the extremities of a wire, which was a mile in lengeth. Thefe wires were to be fo difpofed,

[^45]that this obferver being placed upon the floor of the roon near the elect trifying machine, the other obfervers inight be able in the fame view to fee the explofion of the charged phial, and the obferver holding the wires, and might take notice of the time lapfed between the zilfeharging the phial, and the convulfive motions of the arms of the oblerver in confequence thereof; inalmuch as this time would thew the velocity of Electricity, through a fpace equal to the length of the wire between the coated phial and this obferver.

The electrifying machine was placed in the fanue houfe as it was laft year. We then found ourlelves greatly embarrafied by the wire's being conducted by the fide of the road, which we were compelled to, on account of the fpace neceffary for the meafuring of found: but fo great a diftance from the machine was not now wanted, though the circuit through the wire was intended to be at leaft 2 miles. We hat difcovered by our former experiments, that the only caution now neceffary was, that the wires conducted upon dry fticks fhould not touch the ground, each other, or any non-electric in a conliderable degree in any part of their length: if they did not touch each other, the returns of the wire, be they ever fo frequent, imported litele, as the wire had been found to conduct Electricity to much better than the fticks. It was therefore thought proper to place thele fticks in a bield 50 yards diffant from the machine. The length of this field being 11 chains, or 726 teet, 8 recurns of the wire from the top to the bottom of the ficld maile fomewhat more than a mile, and 16 recurns more than 2 miles, the quantity of wire intended for the Electricity to pals through to make the experiment.

We had found laft year, that, upon difcharging the elcetrified phial, if two obfervers made their bodies part of the circuit, one of which grafped the leaden coating of the phial in one hand, and held in his other one excremity of the conducting wire; and if the other obferver held the other extremity of the conducting wire in one hand, and took in his other the fhort iron rod with which the explofion was made; upon this explofion, I fay, they were both thocked in the fame inftant, which was that of the explofion of the phial. If thercfore an obferver, making his body part of the circuit, was fhocked in the inftant of the explofion of the charged phial in the middle of the wire, no doube would remain of the velocity of Electricity being inftantancous through the length of that whole wire. But if, on the contrary, the time between making the cxplofion, and feeing the convulfions in the arms of the obferver holding the conducting wires, was great enough to be meafured, we then fhould be able to afcertain it's velocity to the diftance equal to half the quantity of wire employed only, let the manner of the Eleetricity's difcharging itfelf be what it would.

It has been a queftion with fome, who have confidered this fubject, whether the Electricity, in compleating the circuit from the matter contained in the glafs, paffed, either by the wire in the mouth to the coating of the glals, the contrary way by the coating to the wire in the mouth,

Of ELECTRICITY.

mouth, or otherwife directed itfelf both ways at once? That the Electricity mult pafs off one of thefe 3 ways was certain, as the explofion would not be complete, unlefs in the inftant thereof fome matter very non-electric communicated between the wire in the mouth, and the coating of the glafs. Unlefs therefore the obferver was placed in the centre of the condueting wires, it might be objected, that the experiment was not made with the exactnefs neceffary; breaufe any perfon, who was of opinion that the Electricity directed iffelf from the mouth of the glafs to the coating, might object, if the wire from the Short iron rod to the obferver was only half the length of that between the obferver and the coating of the glafs, that the Electricity in the time found, paffed only through the fhort wire, and eice verfa. But if, as it was here thought proper, the obferver was placed in the centre of the conducting wire, let the direction of the Elecेtricity be what it would, no difference could happen in the refult of the: experiments, if made with the neceffary caution; becaule, if the cffects in the midulle and both ends of the wires were inftantaneous, the conclufion therefrom would be very obvious.

To make the experiment, the fame phial fillect with filings of iron, and coated with flecet-icad, which was ufed laft year, was placed in the window of the room near the machine, and was connected to the prime conductor by a piece of wires Flo the coating of shis phial a wire was faftened, which, being conducted upon dry fticks to the before-mencioned field, was carried in like manner to the bottom, and being con--ducted thus from the buttom of the field to the top, and from the top to the bottom 7 other times, returned again into the room, and was held in one hand of an obferver near the machine. From the other tiand of tipis obferver, another wire of the faune length with the former wastconducted in the fame manner, and returned into the room, and was fattened to the iron rod with which the explofion was made. The whole length of thefe wires, allowing 10 yards for their turns round the fticks, amounted to $2 \frac{1}{4}$ miles and 6 chains, or 12276 fect. nwath
bas As the night preceding thefe experiments had been very rainy, care was taken, by filk lines properly difpofed, thatithe wires in their paffage from the winklow of the houre might not touch the wood thereof; telt, from the moifture of this wood, the electrical circuit might be fhortened.
When whl parts of the apprecitus were property difpofed, feveral explofions of the charged phial were made; and it was invariably feen, that the obferyer holding in each hand one of the extremities of thefe wires, was convulied in both his arms in the inftant of making the explofions.
Inftead of one, 4 inen were then placed, hooding each other by the hand near the machine, the firt of which held in his right hand one exrremity of the wire, and the daft man the other in his left. They were all feen convulfed in the inftant of the explofion. Every one who felt it, complained of the feverity of the fhock.

Of ELECTRICITY.

It was then defired by one of the gentlemen concerned, that an explofion fhould be made with the obferver holding only one of the wires. This was cione accordingly ; but the oblerver fels nothing, the phial difcharging ittelf in a different inanner to what it did before, on account of the circuit's not being completed.

It was then tried, whether an obferver would be fhocked upon the difcharge of the phial, if the 2 wires at their extremities flightly touched each other, whilft an oblerver at the fame time held one of thete about a foot from their ends in each of his hands? Upon trial he felt nothing, though the phial exploded very quick, becaufe the iron wire conducted the Electricity better than the body of the obferver.

It was then tried, whether or no, as the ground was wet, if the explofion was made with the obferver holding the extremity of each wire ftanding upon the ground near the window of the houfe, any difference would arile in the fuccels of the experiment? No difference was found, the obferver being fhocked in the inftant of the explofion as before, in both his arms, and acrols his breaft.

Upon theic confiderations we were fully fatisfied, that through the whole length of this wire, being, as I mentioned before, 12276 feet, the velocity of Electricity was inftantancous.

As it was found laft year, we obferved again, that although the electrical commotions were very fevere to thofe who held the wires, the report of the explofion at the prime conductor was little, in comparifon of that which is heard when the circuic is fhort. From whence it was conjectured, that the very loud report, in the experiment of Leyden, is contined to a very fhort circuir.
Fig. 18. A, The prime conductor. $B B$, the filk lines. C, the coated phial. D, it's hook communicating with the prime conductor. $E E$, the wire reaching from the coating of the phial to the left hand of the obferver, being more than a mile in length. F, the place of the obferver. a luppofed line, drawn upon the explofion through his body and arms. $G G$, another wire, of the length of $E E$, which goes from the right hand of the obferver to $H . \quad H$, the fhort iron rod to make the explofion.
28. The laft paper contained fome accounts of what had been done

Some fursher inquiries inco tbe nature and properties of Eleatricity by the fame. Thid n 93.
Read jan. 21. 1747-8.
\& II. by fome gentiemen of the Society, in order to examine, not only to what diftance the electrical power was perceptible, but alfo to inveftigate, as near as might be, the refpective velocities of Electricity and found: Electricity indeed is the fubject of the prefent paper, yet, as it relates to phenomena thereof different from thofe mentioned in the former, I thought proper to eparate them.

I took notice, in my fequel to the experiments relating to Electricity *, of an obfervation of the ingenious Profefior Bofe of Wittemberg, viz. 'that if the eleetrifying machine is placed upon originally-clectrics,

- Ars. 9.

- the man who rubs the globe with his hands, even under there appa-- rently favourable circumitances, gives no fign of being clectrifed when - touched by an unexcited non-electric. But if another perfon, ftanding - upon the hoor, does but touch the globe in motion with the end of one - of his fingers, or any other non-electric, the perfon rubbing is inftantly - elictrifec, and that very ftrongly.? This experiment, almoft a ycar fince, Dr Bevis carried further, by placing whatever non-electric touched the globe as a conduetor, whether it were a man or a gun-barrel, upon orgimatly-eletirics. If then, either the man who rubbed the globe, or he who ony hetw his finger near the equator thereof, were touched by any perion ftanding upon the foor, a fnapping from cithicr of them, I fay, was perceptible upon that touch

As in my fequel I had afferted, and by many experiments therein had; IIf. endeavoured to evince, that, contrary to the received opinion, the Electricity was not derived from glals, the air, or other electrics per fe, I was defired to confider how far this experiment did not prove the reverfe of that affertion; inafmuch as neither the man who rubbed the globe, or he who touched it with his finger, from their being here both fupported by originally-clectrics, could receive any fupply from the Hoor; and yet both of them fnapped upon the touch of a perfon not fupported by electrics for \int e. Many experiments had proved that the Electricity was not derived from the glafs; and cherefore it was conctuded, by Dr Eecis, and feveral cthers to whom this gentleman mewed the experiment, that the Electricity here was communicated to the perion rubling from the air, by means cither of the furpended gun-baircl, or of the man who touched the globe.

I was by no means fatisfied with this conclufion, as being directly con- § IV. trary to numberiefs facts. From a careful confideration therefore of the experiment itfelf, from comparing it's effects with thofe of feveral others, and, in general, from furveying all the propertics of Electricity we are hitherto acquainted with, I gave the following as my opinion.

1. That what we call Electricity is the effect of a very fubtile and elaftic fluid, diffufed throughout all bodies in contact with the terraqueous globe (thofe fubfances hitherto termed Electrics per fe probably excepted), and every-where, in it's natural ftate of the dame degree of denfity.
2. That this fuid manifefts itfelf oniy, when bodies capable of receiving more thereof than their natural quantity are properly difpofed for that purpofe; and that then, by certain known coperations, it's effects fhew themfelves by attracting and repeting light fubfances, by'a fnapping noife, fparks of fire, \mathcal{E}^{2}. directed towards other bodies, having only their natural quantity, or, at leafl, a quantity lefs than thofe bodies from which thefe fnappings, Eic. proceed.
3. That no frapping is obferved in bringing any two bedies near cach other, in which the llectricity is of the fame denfity, but only in thofe bodies in which the denfity of this fluid is unequal.

[^46]4. That this fnapping is greater or lefs, in proportion to the different denfities of the Electricity in bodies brought near each other, and by which fnapping each of them becomes of the fame ftandard.
5. That glafs, and other bodies, which we call Elećtrics per fe, have ti:e property of taking this fluid from one borly, and conveying it to another, and that in a quantity fufficient to be obvious to all our finfes.
6. That, in the experiment in queftion, the reafon why no fnapping is oblived by a perfon upon the floor touching him who rubs the globe uith his hands ftanding upon wax, without at the fame time fome other nun-electric lupported by originally-electrics, or otherwife being in contact with the globe, is owing to whatever part of this man's natural quantity of Electricity, taken from himfelf by the globe in mution, being reftored to him again by the globe in it's revolutions ; there not being any other non-electric near enough to communicate the Electricity to; and that therefore, in this fituation, the Electricity of this man fuffers no diminution of it's denfity.
7. That the fact is otherwife, when every thing elfe being as before, either a gun-barrel fufpended in filk lines, or a man fupported by wax, or fuch like, is placed near the globe in motion; becaufe then, whatever part of the Electricity of the perfon rubbing is taken from him, is communicated either to the other man or to the gun-barrel, thefe, from their fituation, being the firft non-electrics, to which the Electricity taken from the perlon rubbing can be communicated.
8. That, under thefe circumftances, as much Electricity as is taken from the perfon rubbing, is given to the other; by which means the Electricity of the firft man is more rare than it naturally was, and that of the laft inore denfe.
9. That the Electricity in either of thefe perfons is in a very different ftate of denfity from what it naturally was, or from that of any perfon flanding upon the earth; this laft being in a middle ftate between the two other perfons; that is, he has not his Electricity fo rare as the man rubbing the globe, nor fo denfe as that of him fupported by electrics per \int e, and touching the equator of the globe.
10. That therefore the fame effect, a fnapping, is obferved, upon bringing any non-electric near either of thefe perfons, from very different caufes: for it is apprehended, that, by bringing the non-clectric near him, whofe Electricity is more rare, this fmapping reftores to him what he had loft; and that, by bringing it near him, whofe Electricity is more denfe, it takes off his furcharge, by which means their original quantity is reftored to each.
\& V. This folution of this phanomenon, without allowing any part of the Electricity of either of thefe two perfons to be furnifhed by the circumambient air, was fatisfactory, not only to the gentleman who propofed it, but to many of the Royal Society, excellent judges of this matter,
matter, to whom I fhowed the experiment: and this the more fo , as it is to be obferved, that if, under the beforc-mentioned circumftances, the perfon rubbing the globe was touched by him who held his finger to the globe, the fnapping was nuch greater than it either of them touched a perfon ftanding upos the floor; as the denfity of the Electricity between thefe two perfons was fo much more different than that of either of them to him on the floor: whereas did their Electricity proceed from the air, from their being both electrifed they ought not to frap at all from their touching each other; or, admitting they did touch each other, they both of them, upon a fuppofition that they did receive their Electricity alike from the air, Thould manifeft the accumulation thereof, and friap upon the touch of a man ftanding upon the floor, the contrary of which invariably happens.

At this time I am the more particular concerning the folution of this §V. fingular appearance, as Mr Collinfon, has received a paper concerning Electricity from an ingenious gentleman, Mr Franklin, a friend of his in Penfylvania. This paper, dated Fune 1. 1747, I very lately perufed, by favour of our moft worthy Prefident. Among other curious remarks there is a like folution of this fact; for though this gentleman's experiment was made with a tube inftead of a globe, the difference is noways material. As this experiment was made, and the folution thereof given, upon the other fide of the Aclantic Ocean before this gentleman could poffibly be acquainted with our having obferved the fame fact here, and as he feems very converfant in this part of Natural Philofophy, I take the liberty of laying before you his own words.
' 1. A perfon ftanding on wax, and rubbing a tube, and another perfon - on wax drawing the fire; they will borh of them, provided they do - not ftand fo as to touch one another, appear to be electrifed to a perfon

- ftanding on the floor; that is, he will perceive a fpark on approach-- ing each of them with his knuckle.
- 2 . But if the perfons on wax touch one another during the exciting - of the tube, neither of them will appear to be electrifed.
- 3. If they touch one another after the exciting the tube and draw-- ing the fire as aforefaid, there will be a ftronger fpark betwcen them,
- than was between either of them and the perfon on the floor.
'4. After fuch a ftrong fpark neither of them difcover any Electri-- city.
- Thefe appearances we attempt to account for thus :
- We fuppofe, as aforefaid, that electrical fire is a common element, of
- which every one of thefe three perfons has his equal fhare before
- any operation is begun with the tube. A, who ftands upon wax,
' and rubs the tube, collects the electrical fire from himfelf into the
- glais; and his communication with the common fock bcing cut off
- by the wax, his body is not again immediately fupplied. B, who Bbb2
- ftands upon wax likewife, paffing his knuckle along near the tube,
- receives the fire which was collected by the glafs from A; and t is
- communication with the common ftock being cut off, he retains the
- additional quantity received. To C' ftanding on the floor, both ap-
- pear to be elecrifed: For he, having only the middle quantity of
- electrical fire, receives a fpark upon approaching B, who has an over
- quantity, bur gives onte to A, who has an under quantity. If A and
- B approach to touch each other, the fpark is ftronger; becaufe the - difference between them is greater. After fuch touch, there is no
- fpark between either of the in and C, bicaufe the electrical fire in
- all is recluced to the originai equality. If they touch while electri-
- fing, the equality is never deilroyed, the fire only circulating. Fience
- have arifen lome new terms among us. We fay, B. (and bodies
- alike circuniftanced) is electrifed pofitively; A, negatively; or,
- rather, B is electriled plus, A, minus. And we daily in our cxperi-
- ments electrife plas or minus, as we think proper. To clectrife plas
- or minus, no more-needs be known than this; that the parts of the
- tube or fuhere that are rubbed, do in the inftant of the friction at-
- tract the electrical fire, and therefore take it from the thing rubbing.
- The fame parts immediately, as the friction upon them ceafes, are
- difpofed to give the fire, they have received, to any body that has
- Lefs. Thus you may circulate it, as Mr Watfon has fhewn *; you
- may alio accumulate or fubftract it upon or from any body, as you
- connect that body with the rubber, or with the receiver, the com-
' munication with the common flock being cut off.'
The folution of this gentleman, in relation to this phenomenon, fo exactly correfponds with that which 1 offered very early laft fpring, that I could not help communicating it.
5 VII. In Sect. 5 I. and 62 . of my feguel, from not having confidered this experiment in a ftatical view, and from not then imagining the velocity of Electricity fo great as we fince have lound it, I concluded, that the inapping obferved, if a perfon flanding upon the floor touched the man ftanding upon wax, who turned the wheel of the electrifying imachine placed likewife upon wax, to be owing to the inverfion of the ufual courfe of the Electricity; as that finapping was only conftant, when the gun-barrel fulpended in filk lines was touched by non-elcetrics. As from divers experiments I had found that Electricity was not furnifhed by dry air, by many more that it could not come down clean filk lines; and as, from his inapping, the man upon the wax argued the preferce of Electricity, I conceived that this could happen no other way, than that the rubbing of the globe by a cufinion or the hand of a man, gave it a fitnefs to take off the Electricity, furnifhed by the forpended gunbarrel from the non-electric upon the floor, and lodge it upon the machine, and upon the man who curned the wheel thereof. But the exple-

[^47]
Of ELECTRICITY.

riment of circulating the electrical fire *, where the brufh of blue flame from a blunt wire properly difiofed, can always be feen to pafs diverging into the machine, though not fo, when brought near the gun-barrel under the moft favourable circumftunces; as weil as the experiment be-fore-mentioned brought to fhew that the Electricity came from the air, have induced me to change my opinion; and inftead of the courfe of the Electricity being inverted, the phanomena arofe, as far as I am capable of judging, from the man who turned the wheel of the electrifying machine having fefs than his original quantity of Electricity, and the gun bareel from having more: to thefe add, that the perfon, who touched thefe white ftanding upon the fioor, had a quantity different from each of thefe, that is, his natural quantity.
I beg leave to correct alio what I mentioned in my fequel, in relation § Vill. to my fuggefting, that, in the explofion of the charged phial through the body of a man, or other non-electrics, as much Electricity as was taken from his body, was immediately replaced by the floor of the room upon which he ftood: I having fince found, that the charged phial wculd explode with equal violence, if the hook of the wire, which is ufually run through the conk of the phial, was bent in fuch a manner as to come near the coating of the phial, without any other non-electric being near, from which fuch quantity could be fupplied.
I I take notice of thef, inalmuch as, notwithfanding the very great \& IX. progrefs that has been made in our improvements in this part of Natural Philofophy within thefe few years, pofterity will regard us only as in our noviciare ; and therefore it behoves us, as often as we can be juttified therein by experiment, to corrcet any conclufions we may have drawn, if others yet more probable prefent themfelves.

Haid down and confidered largely in my fequel, that the ftroke from \& X. the phial, in the experiment of Leyden, was not in proportion to the quantity of matter contained in the glafs, but was increafed by the quantity of matter in the glafs, and the number of points of non-electrical contact on the outfide of tire glats. This fact I have purfued further, and increaied thereby the electrical explofion to an aftonifhing degree. To this end I procured 3 cyindrical phials blown very thin, about 17 inches in height and 4 in diancter: after thefe were coated within an inch of their neeks with fneet-lead, I put into each 50 pounds of kaden thot. I chofe this form for the glaffes, that the matter therein contained might be expofed under as large a furface, as could conveniently be obtaitied. Thefe glaffes were placed near each other in a convenient part of my roon, and did communicate with each other by means of a fmall iron rod lying upon ail their mouths, and touching pieces of frong wire ftuck intu the thot contained in them : by this managernent one of thete could not be electrifed without commuaicating with the reft. The leaden coatings of thefe glaffes were alfo connected together by fimall wires, all which centered in one tail wire; fo that, when the matter contained in

[^48]thefe 3 glaffes was replete with Electricity, which was done by a wire from the gun-barrel faftened to the iron rod lying upon their mouths, the whole quantity of Electricity here accumulated might be difcharged at once by touching the gun-barrel with an iron rod faftened to the tail wire. When the glaffes are fufficiently electrifed, if the room is dark, you will fee brufhes of blue flame from feveral parts of the conducting wire; and thefe indicate the proper time of making the explofion. Thefe glaffes, from the thinnefs of their fides, and from the weight of their leaden fhot, are very liable to burft; and if one of them happens to have the leaft crack in any part of it's furface, which is under the lead, none of them can be electrifed; all the Electricity pafing off by that crack. The electrical explofion from 2 or 3 of thele glaffes is not double or treble to that from one of them; but the explofion from three is much louder than that from two, that from two much louder than that from one.

The experiment juft mentioned induced me to imagine, that the explofion from thefe phials was owing to the great quantity of non-electric matter contained in them: and whilfe I was conlidering of fome certain method of affuring myfelf whether the fact were fo, Dr Bevis informed me, that he had found the clectrical explofion to be as great, as when he had accumulated the Eilectricity in a half pint phial of water, by the following method. He covered a thin plate of glafs, of about a foot fquare on both fides, with leaf-filver; this he made to adhere to the glafs with very thin pafte. A margin of an inch was lefs on both fides; otherwife, upon electrifying this plate, the Electricity would be prevented from being accumulated upon one of it's furfaces, by being propagated from the filver on one fide to that of the other. When the glafs plate was thus prepared, if it was placed upon a table in fuch a manner, that when fully electrifed by a wire or fuch-like from the prime conductor, a perfon touched the under furface with a finger of one of his hands, and brought one of the fingers of his other near the upper furface thereof, or near the prime conductor, he was fhocked in both his arms and acrofs his breaft. The fame effect happened, if, when this plate was clectrified in the before-mentioned manner, a perfon holding it in his hand by the margin, and without touching the filver, prelented it, even fome time after it had been taken from the prime conductor, to another perfon who touched the under furface with his finger, and held it there till he touched the upper furface with a finger of his other hand.

This experiment was fufficiently convincing, that the greatnefs of the electrical explofion, in my former trials, was not owing folely to the great quantity of non-electric matter contained in the glafes; as the explofion from the glais plate filvered was occafioned by about fix grains of filver, upon which the Electricity was accumulated; more efpecially as this explofion was equal, if not fupcrior, to that from half a pint of water contained in a thin glafs as ufual, uider the moft favourable circumitances.

Of ELECTRICITY.

As each of the furfaces of the glafs plate juft mentioned meafured $6_{4} \$$ XIII. fquare inches, I was defirous of purfuing this inquiry further; and accordingly procured a cylindrical glafs jar blown very thin, of 16 inclies in height, and 18 inches in circumference. This I cauled to be covered both within and without with leaf-filver, to within an inch of it's top. This glafs with it's margin made very clean (upon which the fuccefs of the experiment confiderably depends) was fully electrifed by the means of a piece of chain, let down to the bottom of the jar, by a wire from the prime conductor; and the explofion made by it's being placed upon a plate of metal, to which was faftened a wire connected to an iron roct, and this rod was brought near fome gilded leather lying upon the prime conductor. This explofion was equal to that from the 3 glaftes beforementioned, containing 150 pounds of leaden fhot; though here the weight of the filver lining the internal furface of the glafs, upon which the Electricity was accumulated, did not exceed 30 grains. So much of the internal furface of this jar, as was covered with filver, amounted, as the furfaces of cylinders are as their length multiplied by their periphery, and allowing 36 fquare inches for the bottom, to 306 fquare inches. If this explofion was made in a dark room, the corufcations within the jar, at the inftant of the explofion, were extremely brilliant.

When this jar is fully electrifed, if, inftead of making it explode, you only bring the fhort iron rod, with which the explofion is ufually made, near a piece of gilded leather lying upon the prime conductor, though not near enough to make the glafs explode at once, you hear the Electricity, accumulated within the jar, efcape with a noife very like that of a fmall heated iron bar quenching in water.

The great explofion from the jar before-mentioned, when fo little \& XIV. non-electric matter was included therein, has caufed me to be of opinion, that the effect of what we call the experiment of Leyden is greatly increafed, if not principally owing, not fo much to the quantity of non-electrical matter contained in the glafs, as to the number of points of non-electrical contact * within the glafs and the

[^49]
Of ELECTRICITY.

denfity * of the matter corftituting thofe points, providect this matter be in it's own nature a ready conductor of Electricity. For this reafon it is prefumed, that io much of the lead contained in the fhor in the beforementioned experiment, only concurred to make the electrical explofion, as tonched the internal furface of the glais : as a great part of this furface was without contact, occafioned by fuch of the fhot as prefented themfelves thereto, touching, from their fipherical figure, only in one point, there confequently remained without contact comparatively great fpaces between each fort. This defect was obviated by the univerfal contact of the filver, and thereby was occafioned the greater explofion.

The following experiment has fome relation to the preceding. If a phial of warm water, without being coated with fliect-lead, or other non-clectrical matter, is electrifed by conrecting it to the prime conductor; and a ring of fmall wire, in lieu of the ufual coating, is put round this phial, the wire being continued of a fufficient length to touch the prime conductor; upon difcharging the phial, you have a fight explofion, and a flafh of fire feems at that inftant to fill the glats. But if this experiment is made in a very dark room, and with great attention, this flafh in the phial will not then feem to proceed from the whole quantity of water contained thercin; but, as far as the fuddenneds of the explefion will pernit the cye to follow it, will be feen to occupy only the internal furface of the phial.

I ordered another glafs jar as large as poffible to be blown, fo that the glafs thereof might be very thin; and after many attempts of the glaismakers ${ }^{-1}$ procured one, the height of which was 22 inches, the periphery 4^{11}. This was covered within and without, leaving a margin of an inch at top, with leaf-brafs. As nuch of the internal furface as was covered amounted to 1129 fquare inches. But the difficulty I met with in procuring this glafs, was fuficiently recompenfed by the great increate of the explofion therefrom, when fully electrifed, and difcharged in the fame manner as the glafs jar before-mentioned. The report was vafty fouder; all the attendant phenemona greatiy exceeded any thing of this kind I was before acquainted with. As the quantity of metal within this jar did not exceed 2 drams, this experiment gives further weight to my opinion before-mentioned \S i4. in relation to the manner of increafing the cffects of the experiment of Lejden; and from what the pbenemona of that furprifing experiment principally proceed; viz. not from the volume of the prime conductor, nor from the quantity of non-electrical matter contained in the glafs, but from the number of poines of non-electrical contact both within and withoutfide of the glafs, and from the denfity tof the matter conftituting thofe points.

[^50]It muft be obferved, that, catcris paribus, the electrical explofion is \& XVII. greater from hot water included in glaifes than from cold; and from thefe glafs jars warmed than when they are cold.

The explofions from chelarge glafics juft mentioned fully electrifed, as \& XVIII. well as from friall oncs under the fame circumfances, will not be confiderable, unlefs the circuit, frequently mentioned in my writings ufon this fubject, be completed; that is, winlels fome matt.r, non-elcetric in a confiderable degree, and in contuct, with the coatings of the phials, is brought into contact, or nearly fo, with fuch non-electrics as communicate with the matter contained in the phials themfelves" When indeed the circuit can be completed, the explofion from the large glaffes is prodigious; the whole quantity of Electricity therein accumuiated, or nearly fo, being difcharged in an inftant. But the fact is otherwife, if the circuit is not completed, and the iron rod in the mouth of one of thefe phials is touched by a non-electric (the hand of a man, for inftance) not in contact with the tail wire: for then there will be no explofion, no fhock; but the perfon, approaching his finger near the iron rod, will fee a fucceffion of fmall fparks, more intenfely red than that large one feen, when the phials exploce at once; and the perion making the experiment, will feel a very pungent pain, but confined to that finger which touches the iron rod. This fucceffion of fparks continues, until the Electricity accumulated in the phials is nearly exhaufted. So that the explofion from any given quantity of Electricity, accumulated as be-fore-mentioned, is greater or lefs in proportion to the time expended in, making that explofion: in like manner as a given quantity of grained gunpowder rammed hard in a piftol, is almoft inftantaneourly fired, and that with a great report; when the fame quantity of gennpowder rubbed fine, and rammed hard, takes a confiderable time in burning as a fquib, and makes no explofion.

The caufes why the charged phial will not explode quick, without \& XIN. the Electricity therein deferibing a circuit through lubftances non-clectric in a great degree, may be very difficult to be affigned. It is fufficient for us in the prefent inquiry to be affured of it's being a certain, an invariable law : and in order to prove, that the Flectricity, upon the explofion, paffes with it's whole force through the circuit of non-eleetrics, contrary to what has been fuggefted, I made the following experiment.

I procured 2 fmaill fquare iron bars, of about ${ }_{4}$ inches long: an inch $\$ \mathrm{XX}$. at each end of thefe I caufed to be bent at right angles. Thele iron bars were fupported in fuch manner (by fubtances whether originally-electric, or not, was no ways material) that each of their ends came within about π^{2} of an inch of fome warm fpirit of wine, or effence of lemons, in 4 fpoons placed upon a table. I then fufpended a common coated phial filled with filings of iron to the gun-barrel, the tail wire of which reached to a table at a few feet diftance, and was placed under a brafs weight which fupported the landle of the firt of the fpoons: over this fyoon, at the diftance juft mentioned, I placed one of the fquare iron bars, and

C c
6.

Of ELECTRICITY.

at it's other end was placed another fponn : this fecond fpoon touched the handle of the third, which was placed under one end of the other §quare bar, whofe other end came near to the fpirit in the fourth fpoon, the handle of which lay upon a weight; and under this was placed a wire connected to the fhort iron rod, with which the explofion was made, when the coated phial was charged. When the phial was well charged, if the fpirit of wine fent forth vapours, and the fquare iron bars were at a proper diftance from it; upon making the explofion at the gun-barrel the Electricity fnapped between the fipirit and the iron bars, and the fipitit was fet on fire at the fame inftant in all the fpoons. It fometimes happened, that fome of them only were fired. If the iron bars were too near the fpirit, it was not fired, though the circuit was completed; becaufe then no electrical flame fnapped between the rods and jpirit; that effect happening only, when the parts of the non-electrics defcribing the circuit are not in immediate contact; on the other hand, if the fpace left between the bars and fpirit was too great, the circuit could not be compleated, and there would be no explofion.
\& XXI. This experiment will feem more furprifing in the following manner. When the apparatus is difpofed of as before, the tail wire from the coated phial, before it reaches to the table, is faftened to an iron rod ftanding in a pail of water: another iron rod is likewife placed in the fame pail of water, and a wire from this laft reaches under the weight, which fupports the firf of the before-mentioned fpoons. From beneath the weight which fupports the handle of the fourth fpoon, a wire reaches to an iron rod ftanding in a fecond pail of water, in which is placed alfo another iron rod, to which is faftened another wire connected with the fhort iron rod, which is employed to make the explofion. When, with this difpofition of the apparatus, the charged phial is caufed to explode, the fpirit or effence of lemons in fome or all of the fpoons is fet on fire ; to accomplifh which, the Electricity muft neceflarily pafs through one of the pails of water, and polfibly through both. But here it mult be underftood, that the pails of water ftand upon a dry wooden, floor; for if they ftand upon one that is wet, or upon the ground, the circuit will be, for reafons frequently mentioned in the courfe of thefe inquiries, completed between the two pails, where the non-electric matter is continuous, and be prevented from paffing by the fooons where it is not lo; and this will defeat the fuccefs of the experiment. The numier of fuoons in the manner b.fore-mentioned, and their diftance from each orther, may be varied as far as is thought neceffary. The circuit may likewife be directed through any number of men, provided that each of them holds in one of his hands a fpoonful of warm fpirit, and brings one of the fingers of his other hand at the proper diftance to the foirit held in the hand of the perfon next him : by thefe means the explofion of the charged phial will fet on fire the fpirit in feveral of the fpoons at the fame time, provided the parfons employed hold their blands fufficiently fteady.

Of ELECTRICITY.

This experiment exhibits new and unexpected phenomena : in all the $\{$ xxu. experiments to kindle inflammable fubftances by Electricity hitherto attempted both here and abroad, either the fpiritor the non-electric, wherewith it was intended to be fet on fire, were placed upon originally-electrics. But here, on the contrary, although both one and the other are placed upon non-electrics, we fee the fame effect produced. Nor is the electrical power leffened, by exciting feveral different quantities of flame; in doing which, it paffes fo quick as to prevent the pofiibility, in 反everal fpoonfuls of firit, fired by the fame operation, of determining which of them was on lire firft : And though we know from it's effeets, that the Electricity gots through the whole circuit of non-electrics with it's whole vigour, it's progre's is fo quick as not to affect, by attracting or otherwife, light fubitances difpofed very near the non-electrics, through which it muft neceflarily pals.

I would here recommend to thofe gentlemen of the Roval Society, who \& XXIII laft fummer meafured the refpective velocities of Electricity and Sound, a procefs of this fort to be executed at a proper time; whereby they would be able to a very great nicety to alcertain the abfolute velocity of Electricity. For it may be contrived, that a man may be placed in the fame room with the electrifying machine, taking hold of a wire in each of his hands : thefe wires may be fo managed, that by means of the electrical circuit, the man holding them may be made fenfitle of the electrical commotion, even under the eye of an obferver at the machine; though before the Electricity can arrive at the perfon holding the wires, it will be obliged to pafs through whatever large fpace fhall be thought convenient for the obfervation. The time then fpent between the explofion of the charged phial, and the perfon holding the wires feeling the electrical commotion, will give the abfolute velocity of Electricity to great exactnefs *.

As my inquiries upon the fubject of Electricity have always tended as \& XXIV. much as pofible to the analyfis thereof, I have often obferved, that if, when the electrifying machine ftands upon the floor, the globes thereof are rubbed with their cufhions, or with hands covered with originallyelectries of a fufficient thicknefs, and perfectly dry, no Electricity will be perceptible upon the touch of a gun-barrel fufpended in fiik lines, and touching the globe in motion, or upon the touch of any other fubftances fupported by electrics per fe; or, in other words, there will be no accumulation of Electricity. The only originally-electrics fit for this experiment (as all unctuous fubftances, as wax, refin, and fuch-like, though electrics per $\int e$, by fticking to the outfide of the glafs render it unfit to excite Electricity from other bodies) are to be obtained from the animal kingdom: and of thefe only fuch as do not partake, from their manufacture or otherwife, of any non-electric fubftances. Thofe of this fort,

[^51]
Of ELECTRICITY.

which I have tried, and always with the fame fuecefs, when perfectly dry, have been filk (woven or not), velvet, hair-cloth, woollen-clort, and the dry firis of rabbets dreffed in their fur; and the event has becis the fame, whether thefe fubftances have been rubbed under a greater or a lefs degree of friction: and fcarce any Electricity has been perceptible, when thofe parts of thefe fubftances, which immediately are in contact with the globes, have been rubbed over with dry chalk, a non-electric fubftance. But the fucce!'s is different, when thefe originally-electric fubftances have lain in damp places, or have been held over the fteam of warm water; becaufe then the water imbibed by thele fubftances, ferves as a canal of communication to the Electricity between the hands or cumions and the globes in the fame manner, as the air, replete with vapours in damp weather, prevents the accumulation of Electricity in any confiderable degree, by conducting it as faft as excited to the neareft non-electrics. On the contrary, moft fubftances of the vegetable kingdom, whofe form makes them fit for this treatment, though made as dry as poffible, furninh Electricity, though in different quantities. I have tried hemp, linnen-cloth of various kinds, paper both of linnen and hemp, cotton in the wool, fuftian, cotton-velvet, and many others of this clafs. I have covered at one time the cufhion, with which I rubbed a globe, with eight lamina of Theet-lead, and have excited Electricity from that metal : and however improper a deal-board may feem for the purpofe of rubbing a globe, I have more than once accumulated Electricity from that, though it's fubftance has the appearance of being much lefs fit than every one of the originally-electrics I mentioned before.
5 XXV. To the doctrine here laid down it may be objected, that leather is an animal fubftance, which, though perfectly dry, excites Electricity the ftrongeft of all the fubftances hitherto difcovered ; that dry leather ought to be conlidered as an originally-eleetric; and therefore, according to the rule before-mentioned, fhould not furnith, from rubbing the globe therewith, any Electricity at all. To this I anfwer, that though the dry Pins of animals are electrics per fe, dry leather is far from being to; and this is owing to the vaft quantities of reftringent vegetable fubftances imbibed by the fkins throughout their whole contexture in the operation of tanning in fome fpecies of leather, and of faline fubftances, fuch as alum, in others; both which fubftances are non-electric, and of thefe leather very confiderably partakes: for by thefe the hides and thins of animals (and any mufcle of their bodies is liable to the fame treatment, which otherwife are as putrefcent as any part of their bodics foever, are made to latt through many ages, and be fublervient to many valuable purpofes of life. The fame conclufion muft be drawn concerning hats, which, tho made of the hair of animals, furnifh Elecericity, though but in a fmall degree : and this is occafioned by the mucilaginous and gummy fubftances made ufe of by the Hatmakers, to give their manutacture a fuitable ftiffnefs.

Of ELECTRICITY.

From what I have advanced \$ XI. XII. XIII. XIV. XV. XVII. it § XXVI. may poffibly be conjectured, that the electrical effuvia occupy only the furfaces of bodies electrifed; as we there found, that a very fmall quantity of matter, diftributed under a very large furface, would occafion a greater accumulation of Electricity, than a very much more confiderable quantity of matter under a lefs. But that the Electricity occupies the whole maffes of bodies electrifed, and paffes through their conftituent parts, is clearly demonitrated by the following experiments.

When I firt engaged in thefe inquirics, to affurc myfelf of this fact, $\$$ XxVII. I enveloped an iron rod about 3 feet in length with a mixture of wax and refin, leaving free from this mixture only one inch at each end. This iron was warmed, when thus litted, that the whole of it's furface, where it was interided, might be covered. This rod, when electrifed at one of it's ends, fnapped as Arongly at the other, as though it was without the wax and refin. Ihis could not have happened from the Electricity's pafing along the furface of the iron rod, becaufe there it was prevented by the origimally-electrics, and confequently muft of neceffity pafs throtigh it.

A phial of watcr, in the experiment of Leyden, can be electrifed, and $\$ \mathrm{XXViHi}$. may be caufid to explode, though the wire, touching the water in the phial in making that experiment, be run through a wax ftopple, exactly fitted to the meuth of the phial.

I caufed a glals tube, open at each end, and about 2 feet $\frac{1}{2}$ long, to be f XXIX. capped with brafs cemented to the enc's of the tube. In the centre of each of thofe caps was fuftened a fiencer brafs rod; and thefe were difpofed to in the tube as to come within half an inch of each other. When the tube was properly fufpended in filk lines with one of it's extremities near a glafs globe in motion, the brafs work at both ends fnapped equally ftrong. is the Electricity could not pafs along the furface of this tube warmed and wiped clean, this effect could not have happened, unlefs the Electricity pervaded the fubftance of the brafs caps. Upon touching the brafs at the end of the tube moft remote from the electrifying machine, the fraps from one of the brafs rods within the tube to the other were feen to correlpond with the fnaps without. More experiments of this kind might be added, but thefe, I prefume, are fufficient to fhew, that the Electricity occurpies the whole Inaffes of non-electric bodies electrifed. That the Electricity paffes through originallyelectrics to a certain thicknels I took notice of in a paper I did myfelf the honour to communicate in Feb. $17+5$.

I Thall forbear at prefent to lay before you a feries of experiments in 5 XXX. vaciso; from the comparifon of which, with the experiments in open air it appears, that our atmofpliere, when dry, is the agent, whereby, with the affitance of other electrics per \int e, we are enabled to accumulate Electricity in and upon non clectrics; that is, to communicate to them a gresier quantity of Electricity than they naturally have : from hence ailo we falli fee, that, upon the removal of the air, the Electricity per-

[^52]
Of ELECTRICITY.

vades the vacuum to a confiderable diftance, and manifetts it's effects upon any non-electries, which terminate that zacuuns: and by thefe means that originaliy-electric bodis, even in their moft perfect ftate, put on the appearance of non-electrics, by becoming the conductors of Electricity. But the fe matters may poffibly be the fubject of a future communication.

Part of a let. ber /rim abb: Noillet, of the R. Acad. of S. at Yaris, aEdF.K.S 10 M. Folke, E / q; Pref. concerning Electrieity.
T.anflated frome tbe French, by T. Stack, M D.F.R.S. N° 486. P . 187 Feb an. Mar. 1748 ReadPeb. 11 . 1747.8.
29. For feveral years paft Electricity has been my chief occupation. Laft fummer I read ${ }_{3}$ Memoirs at our weekly meetings, which contained many farticulars on this fubject : but as theie wcre matters of mere curiofity, and of no real ufe, they almoft tired out my patience. I now fend you fome experiments, which I made during the vacation, which feem to promife at leaft the being of fome fervice; but of this you will be the beit juuge. I will deferibe them in the fame order as I made them, and to which I was not led by mere accident. You know, that when a veffel full of liquor, which runs out through a pipe, is electrified, the eleEtrified jet or Aream is thrown farther than ufuai, and is diverged into feveral divergent rays, much in the fame manner as the water poured out from a watering pot. Every body at firt fight will judge, that the Itream is accelerated, and that the electrificd veffil will foon be empty. I was unwilling to rely on the firft appearances, and thercfore refolved to afcertain the fact, by meafuring the time, and the quantity of the liquor running out. And in order to know if the acceleration, fuppofing there was any, was uniform, during the whole time of the running out, I made ufe of veffels of different capacities, terminating in pipes of different bores, from 3 lines diameter to the fmalleft capillaries: and I give you in grofs the refult of upwards of 100 experiments, as it is not fo caly a tafk to draw a fafe conclufion, as may at firft be imagined.

1. The electrified ftream, though it divides, and carries the liquid farther, is neither accelerated nor retarded fenfibly, when the pipe, through which it iffues, is not lefs than a lime in diameter.
2. Under this diameter, if the tube is wide enough to let the liquid run in a continued ftrearn; the Electricity accelerates it a little, but lefs than a perion would believe, if he judged by the number of jets that are formed, and by the diftance to which it fhoots.
3. If the tube is a capillary one, from which the water ought naturally to flow, but only drop by drop, the electrified jet not only becomes continued and divided into feveral, but is alfo confiderably accelerated; and the fmaller the capillary tube is, the greater in proportion is this acceleration.
4. And fo great is the effect of the electrical virtue, that it drives the liquid out of a very fmall capillary tube, through which it had not before the force to pafs, and enables it to run out in cafes, where there would not otherwile have been any difcharge.

Thefe laft facts have ferved as a bafis to my inquiries. I confidered all organized bodies as affemblages of capillary tubes, filled with a fluid that tends to run through them, and often to iffice out of them. In confoquence of this idea, I imagined, that the electrical virtue might pofiibly communicate fome motion to the fap of vegetables, and alio augment the infenfible perfiriation of animals. I began, by fome experiments, the refult of which confirmed my notions. I electrified, for 4 or 5 hours together, fruits, green plants, and fponges dipped in water, which I had carefully weightd; and I found, that, after this experiment, all thefe bodies were remarkably lighter than others of the fame kind, weighed with them, both before and aiter the experiment, and kept in the fame place and temper. I alfo electrififed liquors of all forts in open veffels; and I remarked, that the electrification augmented their evaporation, in fome more, in others lefs, acco:ding to their difficent natures. Wherefore I took 2 garden pots, filled with the fame earth, and fowed with the fame feeds; I kept them conftantly in the fame place, and took the fame care of them, except that one of the two was electrified for 15 days running, for 2 or 3 , and fometimes 4 hours a day. This pot always fhewed it's fieds raifed two or three days fooner than the other, a greater number of fhouts, and thofe longer, in a given time : which makes me believe, that the electrical virtue helps to open and difplay the germs and facilitates the growth of plants. I advance this, how ver only as a conjecture, which deferves further confirmation : as the feafon was atready too far advanced, to allow me to make as many experiments as I could have wifhed : but here are yet other fatts, of which I have a greater certainty, and which are not lefs interefting.
I chofe feveral pairs of animals of different kinds, cats, pigeons, chaffinches, fyarrows, ξ_{c}. I put them all into feparate wooden cagrs, and then wiighed them. I electrified one of each pair for 5 or 6 hours together: then I weighed them again. The cat was commmon! 65 or 70 grains lighter than the other; the pigeon from 35 to 3^{8} grains; the chaffinch and fparrow 6 or 7 grains: and in order to have nothing to charge upon the differcnce thi:t might arife from the temperament of the individual, I again repeated the lame experiments, by eleetrifying that animal of cach pair, which had not been electrified b-fore ; and notwithfranding fome fimall varieties which happened, the electrified animal was conitantly lighter than the other in propoition.
Electricity therefore incriafes the infienfible p.rfpiration of animals: but in what proportion? In the ratio of their bulks, or in that of their furfacis? Neither of tie one or the other, ftrictly fpeaking, but in a ratio much more approaching to the latter than to the former. So that there is no room to apprehend that a human perfon electrified would lofe near a 50 th part of his weight, as it appeared to me that it happened to one fort of bird; nor the 140 th part, as to the pigeon, Esc. All that I have becm sitherto able to learn upon this head, is, that a young minn or woman, from 20 to 30 , being electrified during 5 hours, loft feveral

of ELECTRICITY.

cunces of their weight, more than they were wont to lofe, when they were not electrificd. Thefe laft experiments are difficult to purfue with exactnefs; becaufe the cloathing, which cannot ftrictly be compar-: ed to the hair or feathers of anmais, retains a good fhare of the perfpired matter, and hinders one from forming a good judgment of the whole effect of the electrical virtue.

This forced clectric peripiration is very naturally accounted for, if we confider, that the electrical matter pervades the interior parts of bodies, and that it vifibly darts from within outward: for it is very plain, that thefe electrical emanations mutt carry with them whatever they find in the finall veffels, thro' which they are feen, or at leaft are known, to iffuc.

This explanation will, in my opinion, occur to every one, who has feen the principal pbenomena of Electricity. But how fhall we account for all the following effects? All thofe animals, whofe peripiration is increafed upon their being electrified, all thofe feeds, which fioot and grow quicker; all thofe liquors, which evaporate; all that acceleration of liquids tlowing thro' tubes; all thofe particulars, I fay, happen in the lame marner, when, inftead of electrifying thofe bodies themelves, they are only held near clectrical bodies of a pretty large bulk. The notion which I have, for thefe 3 years paft, formed of Electricity, rot only affords ine an explication of this, as fimple as the former, but I venture to fay, it was this fame notion, that led me to the experiments, and made me even lorefee their fuccefs.

I am not only fatisfied of the exiftence of an effuent electric matter, which all the world allows, and which thews itfelt 1000 ways; but many convincing reafons have allo affured me, that there is, round every electrified body, an affluent matter, which comes to it not only from the ambient air, but likewife from all the other bodies, whether folid or fluid; that are round about, and within a certain diftance of it. If thefe furrounding todies are of a fimple nature, as a ftone, a piece of iron, \mathcal{E}°. nothing iffies from them but pure electrical matter : but if they are animals, plants, or fruirs, or, in a word, any organized bodies, or fuch, in the pores of which there is any fubftance capable of giving way to the impulfes of the electric matter; this matter will, in iffuing torth with the great rapidity, which it is known to have, carry along with it whatever it finds moveable enough to be difplaced by it; and by fo much will the weight of the body be diminifhed; the fame effect being here produced by the affluent matter, as is produced on eiectrified bodies by the effluent. It you will pleale to reail over my effay, what I advance will be better underftood. The increafe or dimirution of perfpiration is not a matter of indifference to the animal œeconomy : this new method of increafing it at will may poffibly prove of ufe; it is neither inconvenient nor dangerous; and neither I myfolf, nor any body elle of thofe on whom I made my experiments, fufiered even the leaft inconveniency from it. One feels neither motion nor heat differing from that of the natural ftate. Nor
did the animals give any figns of uneafinefs, while they were elctrifying: a littie wearinefs, and a better appetite, were the only effects we ever perceived.

As to the facility of app!ying this method, 'tis well known that the electrical virtue is eafily tranlmitted a good way off by chains, $\delta^{\circ} c$. ; and one may eafily imagine, that an eafy chair; or even a bed, furpended or furported in a proper manner, will put the mott infirm pertons in a fituation to be very commodiouny electrified. But as there is no neceffity to electrify them actualiy, it will become cafier ftill; for nothing more will be requifite, than to place near them-a bafkes of old iron rendered electrical. The commonetit degree of lagacity will fuffice to put this method in practice, whenever it is found to be ufeful.

I hall oblerve further, that, when I electrity an animal, I render his perfipiration more copious; and this effect is univerlal thro' every part of it. When I only place it near an electrified body, it perfpires as much. But is it's whole body equally fenfible of this effect? I mean, what exhales in confequence of the Electricity, docs it iffue from every part of his furface? I believe it does not; and that for thefe reatons:

If it be the electrical matter of the fkin that drives out the matter of perfpiration, by rufhing towards the elsetrificd body; it is matural to think. that this effect takes place only in the part out of which the electrical matter ifiues: thus the perfpiration, which is, eleetrically forced out, ought to iffuc from thofe parts only, which are the moit directly applied toward the electrical body. Ire us confirm this by experiments.

To an electrified body I apply a veffel full of liquor, which iffues drop by drop thro' fevcral litele tubes placed in different parts of it's circumference: thefe drops become continued ftreams, andiare aceelerated, as if the veffel had been electrified: but shis efiect is obfervable on that fide only which faces the electrified body.

I moiften a thick fponge with water, and cut it in two: I weigh thefe two halves feparately; I join them again, and place the whole near a large electrified body, fo as to make one half of the fponge face the body disectly, and the other the contrary way. After an electrification of 5 or 6 hours, that half, which taced the electric body, was found to be Jighter than the other, $\mathcal{E}^{2} c$.

Wherefore I think I have good grounds to believe, that a man, who prefents a fhoulder, or one fide of his head, to a large electrified body, perfpires more thro' that part than thro' any other. Add to this, that lince thefe animals, which I caufed to perfpire in this taft manner, and which had but one fide of their bodies expoled to the Electricity, Iof as much of their weight, as the others which were throughly electrified; it follows, that they peripired as plentifully thro' the expofed part, as the others thro' the whole bociy. Whence we may infer, that, of the two methods, which I propofe for augmenting infenfible perfipiration, the latter is the moft powerful, and moft proper to remove obftructions from the pores, or to fcour them of any noxious humours which they may happen to contain.
-VOL. X. Part ii.
D d d
30. The

Of ELECTRICITX.

An Eflay 10 . wards difcovering the Laws of Electricity, by Mr John Ellicort, F.R.S. in a leterice M. Folkes, E / q; Pr.R.S.
Phid. p 195. Read Feb.
2う. 154i-8.
30. The Abbé Nolet *, takes notice, that he was led to his inquiries, from the acceleration which (he tound from a great number of experiments) was given to the motion of fluids thro' capillary tubes, upon their being electrified. As I tormerly made feveral experiments on this fubject, I fhall fubmit it to your confideration, whether the following oblervations on thofe experiments may deferve the notice of this illuftrious Society. In which I have principally endeavoured to prove, that the acceleration of the motion of fluids thro' capillary tubes or fyphons, is not barely owing to their being electrified, but that, in all cales whatfoever, there are fome other dircumftances neceffary, in order to produce this effect. And I doubt not but to make this fully appear, by fhewing, that water, being electrified, may either be made to run in a conftant ltream thro' a capillary tube or fyphon, or only to drop, as if it had not been electrified at all: and likewife, that the water may be made to run from the fame fyphon in a conftant ftream, without being made electrical, but ceafe to sun, and only drop, the moment it becomes clectrical. Under the one or other of thefe caies, I fhall have an opportunity of taking notice of the feveral varieties oblervable in thefe experiments; all of which I thall endeavour to account for from the foltowing general principles.

1. That the feveral electrical plenomena are produced by means of offlivia.
2. That the particles compofing thefe effiuvia ftrongly repel each other.
3. That the faid particles are ftrongly attracted by moft if not all other bodies whatfoever.
That the electrical pbenoment are produced by means of effrevia, is in general acknowledged by all the authors who have written upon Electricity, however they may differ in opinion with regard to the bodies in which they are contained. The properties I have mentioned of thefe effuria may be cafily deduced from moft of the treatifes lately publifhed on this fubject. But to leave no room for any objuction, I would beg Jeave to obferve, that the exiftence of thete effiwia is proved by all thote experiments in which a ftream of light is feen to iffue from the electrified body; particularly thofe ftreams which are feen to iffue in diverging rays from the end of the original conductor, when made of metal, and reduced to a point; from their being felt to ftrike againt the hand like a blaft of wind, when it is brought tiear the fream, and from that offenlive fmell which generally accompanies thefe experiments, and which is always more perceptible, the more ffrongly the fphere is excited.

That the particles compofing thefe effiuvia repel each other, appears from thofe experiments, in which 2 bodies, how different foever they miny be in kind, repel each other when they are fufficiently impregnated with thefe effinvia. As a feather, by the excited tube; the feveral fibres

[^53]
Of ELECTRICITY.

of the fame feather, or two cork balls, which will be forad frongly to repel each other, fo long as they retain any confiderable quantity of there effiwvie. Which property will always decrealie, as the quantity they contain diminithes.

That thefe effluvia are ftrongly attracted by moft if not all other bodies, is fo evident from almoft all the electricat experiments, as to make any particular examples of it needlefs here; efpecialiy as I Thall have uccafion to take notice of the ftrong attraction between the eleetricad effuvia and water, in accounting for thele expcriments. And the firft, I would take notice of, I thall now proceed to ftate as follows.

If a veffel of water is hung to the prime conductor, having a fy phon Exp. I. in it of fo fmall a bore that the water will be difcharged from it only in drops, on the water's becoming electrical by means of the machine, it will immediately run in a ftream, and continue to do fo, till the water is all difcharged, provided the fphere is continued in mution.

That water does not run in a conftant ftream, but only inclrops, from a fyphon of a fmall bore, is cloubslefs owing to the faune caule by which it is fuftained above the level in capillary tubes. If therffore water is made to run in aftream barely by it's being impregnated with the electrical effluria, it fhould follow, that if one or more capillary ubbes be placed in a veffel of water, that which is fuftained in them would either fink down to a level with the reft of the water, on it's being made electrical, or at leaft that it would not continue at the fame height as before ; but it the experiment is made, the water will be found to continue exactly at the tame height, whether it is electrified or not.

Again, if the bare electrifying the waser was the caufe of it's running in a tream, it would continue to run in the fame manner, fo long as the water continued electrical, which it will not do: for, on ftopping the motion of the machine, the ftream will immediately ceafe, and the water will only drop from the fyphon, notwithftanding it's being ftrongly impregnated with the electrical effuria. To account then for the water's being made to run in a ftream in this experiment, I would obferve, that fo long as the machine is in motion, there is a conftant fucceffion of the electric effluvia excited, and which vifibly run off from the end of the prime conductor in a ftream, and as they are in like manner carried off from all bodies hung to it, thofe effluvia which run off from the end of the fyphon, being ftrongly attracted by the water, carry fo much of it along with them, as to make it run in a conftant ftream.

That the attraction between the water and electric effluvia is fufficient to produce this effect, might be proved by a variety of experiments; but I Chall only obferve, that to this attraction it is owing that filk lines and glafs tubes (which, from their imbibing fo very fnalla quantity of thefe effluvia, are generally madie ufe of as fupports in many of the electrical experiments) on only being wetted become ftrong conductors: and that if an excited tube is held over a veffel of water, the water is found to imbibe a very confiderable ouantity of this electric matter; and, on

D d d 2
the approach of a finger, or any other non-elettric body, the water will be perceived to rife towards it ; and if the finger is brought fo near the furface as to draw off the effluvia, they will carry feveral particles of the water along with them towards the finger, in a direction directly contrary to that of gravity; and therefore may well be fuppofed, when acting in the fance direction, to have an influence fufficient to produce a fream, as in the experiment.
And that this current of the electric effuria is the true caufe why the water runs in a fream from the end of the fyphon, is farther evident, in that whatever tends to increafe or diminifh the current of the effuvia, produces the fame effect upron the water. I have already obferved, that when the efluvid are tlrongly excited, they will be feen to pass off from the end of the prime conductor in luminous rays; and the fanie may be oblerved with refpect to thofe which pafs with the water from the end of the fyphon; but if any non-electric body is brought under the fyphon, as, by it's attraction, the current of the eflucia will be increafed, fo thefe luminous rays will likewife extend to a greater length. Again, if the motion of the machine is ftopped, the current of the electric efflusia will thereby be ftopped, and the water will immediately ceafe to run in a fream, notwithftanding it's being ftrongly impregnated with the electrical effucia.

And that the water is Atrongly impregnated will not only appear from the drops being fooner divided into imall particles than they would be if they had not been electrified, but from thofe particles being feparated to a greater diftance from each other, by the repulfive property of the electric effuvia; and if any of the water is received into a dry glafs veffel, on the approach of a finger towards it's furface, there will be feen a fark to iffue from it in the fanie manner as from water electrified by an excited tube; or if any non-electrical body is brought under the fyphon, by whofe attraction the efluvia may be drawn off, the water will immediately be found to accompany it in a ftream.
R.ap. I1. If the veffel of water with thic fyphon in it is fulpended by any nonelectric body over another ftrongly electrified, the water will immediately run from the fyphon in a ftrean; but if fupported by a piece of filk, or any other electrical body, the water will immediately ceafe running, and only be difcharged in drops. Thefe pheromena may, from what has been already faid under the former experiment, be eafily accounted for.

That the water is made to run in a ftream, is plainly owing to the mutual attraction between the electrifed body and the water; which attraction will continue, fo long as the veffel which contains the water, by bxing lupported by a non-eleetric, is prevented from retaining any of the ctectrical fflucia; thefe efluvia being drawn off by the non-clectric body, to which the viffll is fufpended: but, on the contrary, when the veffel is furpended by an original-electric, the offuvia, not being attracted thercoy, will be prevented from running off, and the water will foon be
found to have imbibed a quantity of them, fufficient, hy their repelling property, to greatly weaken, or wholly to deftroy, the former attraction, when the water will ceafe to run in a ftream, and only drop, as if it had not been held near any clectrifed body. M. L'Abbé Nolet has endeavoured to account for the former part of this experiment, by fuppofing there is, what he calls, both an affluent and an effluent electric matter; but he takes no notice of the latter part, which is not cafily folved upon his fuppofition. But if what I have obferved on thefe experiments is fatistactory, I apprehend I have accounted for the feveral phanomena on much more folid principles, and that thereby any lefs certain hypothefis is rendered ufelcils.

I iutended to have taken fome notice of the different acceleration of the fluids thro' tubes of different bores; but as this acceleration will always vary with the current of the electrical effluvia, unlefs fome method could be found out to render this current uniform throughout the whole feries of experiments, the profecution of this inquiry will be rendered extremely difficult, and the refult will at beft be very uncertain.

When the foregoing curious letter was read at the meeting of the Royal Socicty on Thurday 25 Fib. 1747. I acquainted the gentlemen prefent, that the fame ingenious author had communicated to me a paper feveral months before, in which he had more fully and particularly delivered his thoughts on the furprizing pbaricmena of Electricity, and as feveral perfons expreffed their defire of feeing that paper, I requefted of him either a copy, or an abftract of the fame; in compliance with which he, fome days after, gave me the two following papers, containing the fubitance of what he had before fiewn me; and I immediately put them into the hands of Dr Mortimer, one of the Secretaries of the Society, who read them at the two meetings of the Society, on the feveral days noted at the head of thote papers.

M. Folkes.

31. The grcat difference I obferved in the fentiments of thofe ingenious gentlemen who have favoured us with their difcoveries in Electricity, made me very defirous of finding out fome general principles, by means of which I might be able to form a judgment of the feveral hypothefes whereby they have endeavoured to account for the principal phanomina oblervable in thofe experiments. In order to this I took a general furvey of all the more remarkable experiments, and out of them made choice of fuch as I judged were nioft proper for my purpofe; and from thefe 1 deduced the general principles hereafeer mentioned. The advantage I promifed myfelf from this method was, that the plainer and more fimple the experiments were, which I made choice of, the lefs liable I fould be to miftake in any conclufions drawn from them; and that every freft experiment, I could account for by them, would be an additionat proof in their favour; and if my attempt in explaining the followifg expiri-

Of ELECTRICITY.

ments from thofe principles floould prove fatisfactory, the truth of them would be thereby fo fully confirmed, that we might fafely sely on them in forming a judigment of any of the difcoveries already made; and (how general foever they may feem to be) I doubt not but they will be found of fervice in profecuting our future inquirics on this fubject.

The experiments from which I deduced thele principles were thefe which follow.
If a glais tube is rubbed by a very dry hand, and a finger is brought near any part of it, a fpark of tire will feem to iffue from it, and ftrike againtt the finger; and if the finger is carried at a like diftance from the end of the tube cowards the hand in which it is held, a number of fparks at a fmall diftance from each other will be feen coming from it, and a fnapping noife will be heard. The tube is then faid to be excited, or to be clectrical ; and at fome times, when it is Atrongly excited, \{parks will iffue from the tube in ftreams, not only while it is rubbing, but will continue to dart out from it for a confiderable cime after the rubbing has ceafed, and a very itrong offenfive imell will be perceived.

If the tube, when thus excited, is held over fome pieces of leaf-gold, or any light bodies wharfoever, they will be attracted towards it; and the more ftrongly the tube is excited, the greater diftance they will be attracted from; and when they come near the tube (tho' without touching it) they will be repelled from it, and continue to be fo, unlefs touched by fome other body, when they will be attracted by the tube as before: but if the tube is but weakly excited, they will be attracted quite to the tube, to which they will fometimes adhere, without being repelled from it.
Exp. III.
If a ball (of cork fuppofe for lightnefs) be hung by a filk line, and the excited tube is applied to it, it will not only be attracted, but will have an attractive quality communicated to it from the tube; and if any light bodies are brought near the ball, they will be attracted by it.
Exp.IV.
As the tube, when Atrongly excited, will not only attract, but afterwards repel any light bodies brought near it, in like manner the corkball will be endued with the fame property; to that a fmaller ball will firft he attracted towards it, and then repelledfrom it, the fame as the leaf-gold in Exp. 2. and on touching any other body it will be again attracted; and this may be repeated feveral times, provided the fmaller ball is much Ief's than the larger one, tho' the effcet will conttantly grow weaker and weaker, as every time the leffer ball is attracted, it carries off with it fome of the electric virtue, and is likewife endued with the fame properties as the larger ball.

Mr (jray, Mr Dufay, and others, have obferved, that this electrical quality is not only to be excited in glat's, but in moft folid bodies capable of friction (metals excepted); tho' in fome it will be fearcely fenfibie, and that it is found to be ftrongeft in wax, refins, gums, and glafs: and as glafs is the eafieft procured of a proper form, it has generally been wred in making thefe experiments. It has been further obferved, that thofe

Of ELECTRICITY.

thore bodies in which the eleetrical quality is capable of being excited, the ftrongeft by friction will receive the leaft quantity of it from any other excited body, and therefore are properly made ufe of to fupport any body defigned to receive the electrical virtue. The cruth of this will fufficiently appear from the following experiment.

Hang up two lines, one of filk, and the other of thread; that of thread Exp. V. will be attracted by the tube at a much greater diftance than the filk. Again; faften to each ftring a feather, or other light body; if the tube is brought to the feather faftened to the filk, it will be firft attracted, and afterwards repelled; and from the virtue communicated to it from the tube, the feveral fibres of the feather will ftrongly repel each other. But when the tube is brought to the feather faftened to the thread, the feather will be ftrongly atcracted, and continue to be fo, without ever being repelled, the virtue paffing off by the thread it is hung to. If a glais ball is hung to the filk line, it will be but weakly attracted by the tube; but one of cork or metal much ftronger.

Let a rod of iron be fuftained by filk lines, and by means of a glafs Exp. Vi. Sphere (which can be more regularly and conftantly excited than a tube) be made electrical ; it will be found to have all the properties of the excited tube mentioned in Exp. I. A ftream of light will come from the end of it, if it is pointed; it will attract, repel and communicate this virtue to any other non-electric body: on the approach of a nonelectric, a fark of fire, with a fnap attending it, will come from it; which fpark will be greater or lefs, as the bodies approaching it have more or lefs of the electrical quality refiding in them; and there will likewife be the fame offenfive fmell as was oblerved of the tube.

From thefe experiments, which I think contain the principal phenomena of Electricity, may juftly be drawn the following conclufions.

1. That thefe remarkable phenomena are produced by means of effuvia; which, in exciting the electrical body, are put into motion, and feparated from it.
2. That the particles compofing thefe efluvia ftrongly repel each other.
3. That there is a mutual attraction betwcen thefe particles, and all other bodies whatfoever.
That there are effuria emitted from the tube when rubbed, and which furround it as an atmofphere, is evident, from that offenfive fmell arifing from them, from that fenfation on the hands or face, when the tube is brought near either of them, and from thofe fparks of light, on a ftill nearer approach of the finger to it.

That the particles of thefe effluvia repel each other, is proved by the cork-balls (Exp.4). and the fibres of the feather (Exp. 5). repelling each other, when impregnated with them ; and by the leaf-gold (in Exp. 2): being repelled by the tube, and not returning to it again, until, by coming near, or touching, fome non-clectric body, the effuvia are: drawn off from it.

From this property it is, that thefe effluvia expand themelves with fo great a velocity whenever they are feparated from the electric body; and as they are likewife capable of b:ing greatly condenfed, niay we not from hence juftly conclude they are elaftic?

That there is a mutual attraction between thefe effireio and moft other bodies, appears from their collecting from the tube fuch quantities thereof, as to endue them with the fanse propertics with the tube itfelf, as was proved by the $3 d, 4 t h$, and 5 th but nore particularly by the $6 t h$ Expcriment.

Thefe principles being admitted, it will follow, that the greater Difference there is in the quantity of eleetrical eflucia in any two bodies, the ftronger will be their attraction. For, if the effiuria in cach are cqual, inftead of attracting, they will repel each other; and in proportion as the quantity of electric matter is drawn from one of the bodics, will the attraction between them increafe, and confequently be ftrongeft, when any one of them has all the electrical matter drawn from it.

The particles of thefe effucia are fo exceeding fimall, as cufily to pervade the pores of glafs, as is evident, in that a feather, or any light bollies inclofed in a glafs ball hernuctically fealect, will be put in motion on the excited tube being brought near the outfide of it; and it has been gencrally thought that they pais through the pores of the denfett bodics; and there are leveral experiments which rencier this fuppofition not improbable; tho' I muft acknowledge I have not yet inet with any one that 1 think is quite conclufive.

1 hall now proceed to hew, how, from thefe principles, the phenomeria of fome of the more remarkable experiments of Electricity may be accounted for.

Let a roci of iron, pointed at one end, be fufpended on filk lines, as in Exp the 6th, and by the fphere be made electrical. When the rod is ftrongly electrified, a ftream of light in diverging rays will be feen to iffue from it's point; and if any non-electric body is held a few inches from the point, the light will become vifible to a greater diftance, and if the non-electric body is likewife pointed, a light will feem to iffite from that in diverging rays in the fame manner as from the electrified rod. But if the non-electrical body is flat, and held at the fame diftance from the rod as the pointed one was, no light will be feen to come from it.

The principal pbanomena to be accounted for in this experiment are; why a light is only feen at the point of the rod, and not through the whole length of it? Why this light is vifible to a greater length, when the point is approached by a non-electric? And, why a light is feen to iffue from the non-electric when it is pointed, and not when it is flat.

Upon which I obferve, that whenever the fphere is excited, the electrical efluvia are thereby put into motion, and made to form an atmofphere round about it, from whence, by their repulfive property, they endeavour to expand themfelves on all fides equally; but being ftrongly attracted by the iron, a great part of them are drawn offalong the rod, about whofe

Of ELECTRICITY.

whofe furfacethey likewife form an amofphere, which will be denfer or rater, in proportion as the attraction of the rod is greater or lefs; and as the repulfivenpower of thefe effluvia will always increafe in proportion with their denfity, it wili follow, that whenever the fphere is fo ftrongly excited, that the effluvia furrounding it are denfer than thofe furrounding the sod, they will, by their repulfive property, drive the effluvia off trom the end of it in a fream, and that with a very great velocity; as is evident, from their flriking againt the hand like a blaft of wind when brought near the end of the rod: and as this velocity is partly owing to the attraction of the rod, fo this attraction continuing quite to the end of it, the velocity of the particles will there be greateft ; and as they approach towards the point, they will be brought nearcs together, and therefore become denfer there than in any other part of the rod; and therefore if the light is owing to the denfity and velocity of the effluvia, it will be vifible at the point, and no-where elfe.

And that the light is thus produced, will appear, in that whatever increafes or diminihes either the velocity or denfity of the particles will increafe or diminifh the light. For, let the motion of the wheel which turns the Sphere be ftopped, the current of the cffluria will likewife be fopped, and the rays of light will no longer be feen to iffue from the point, and yet the whole rod will continue to be electrical; but, on putting the fphere again into motion, the efluvia will become vifible as before, and will increate, as the fphere is more ftrongly excited. Again, the light will be vifible to a greater or lefs diftance, as the point is more or lefs acute; and as this light is always brighteft next the point and grows fainter, as the rays diverge, this is platnly owing to the different denfity of the rays at equal diffances; for, when the point is more acute, the rays will diverge lefs, and therefore will be denfer to a greater diftance than when it is lefs acute.

When a non-clectric, whofe end is flat, is brought within a few inches of the point of the electrified rod, the electric ftream will be attracted by it, and the rays made to diverge lefs than before; and the effect will be the fame as if the point was more acute; viz. a continuation of the light to a greater diftance, and which will be farther increafed by the additional velocity the particles will acquire from the ateraction of the non-electric. What will follow on a nearer approaclr of the nonelectric to the rod, will be confidered under the next experiment.

If the non-electric is pointed and held in the fame place as the former, a light will appear from it the fame as from the electrical body: for, as the points of the two rods are the parts which approach neareft each orher, the attraction there will be ftrongeft : the rays therefore, which diverged from the electrical rod, will be attracted by, and made to converge towards, the point of the non electrical rod, and will confequently be nearly of the fame denfity at the one as the other, and the velocity being accelerated by the additional autraction, the rays wi!! become luminous at the point of the non-electric, the fane as' at the point.

[^54]
[^0]: *The Inveftigation of chis, and the Fluxion in the following Example, are both given in my Erays.

[^1]: - Note, When an arc is terminated in the fecoud, third, of fourth quadrant, fome of the figns (+ and -) of the serms in the preceding theorems, will, by the known rules, become contrary to what they now are.

[^2]: - See Vol. vi. Part I. Chap, iii. Scet. 5 .

 VOL. X. Part i.
 F
 refpective

[^3]: - Vid. Tab. Ludovic. Edit. Parif. 1727. P. 48, in ufu Tabiáarum.

[^4]: - Prolegnm. Hift. Ccelert. p 133, E feg.

[^5]: * If this cquation be increafed and diminithed in a dircit yafio of the moos:'s horizonal paralasx, it will become more exact. And 1 think, if it were always dinininged by $\frac{1}{4}$ or jerhaps $\frac{1}{2}$ part, it would agree bettes with obfervations.

[^6]: * My sables corrested as in my former letier ; which is always to be underfood of the tailes mentioned in this.

[^7]:

[^8]: P * See Vol. VI. p. 16 -. where Mr Eames has by miftake omitted in the margin the name of Dr Haller, who was author of the paper.
 'The table here mentioned was not Dr Brook Tayler's; but Sir 1. Acreten's.

[^9]: - Dr Bradlly determined the diam. of $\$$ to be $10^{\prime \prime \prime} 45^{-\prime \prime}$, by a microm applied to the Ïugeriun teleff. of above 120 foot long. See Vol. VIII. f. 254.

[^10]: - See Vol VI. p. 253.

[^11]: * Hecelius's far arn. 1660 R. afc. $2^{\circ} 24^{\prime} 39^{\prime \prime}$ diR. from the pole $12^{0}+2^{\prime} 17^{\prime \prime}$.
 + Star A in Fijy. D of la Caille, Mim. Acad. 1740 .
 \|f Star I in Fig. D of ta Caille, Mem. Aind. 1742.

[^12]: - In the preceding paper.

[^13]: * See Vol. VIII. p. 217.

[^14]: - Lectures de Porchitia refitatieca, 16:8.

[^15]: * Fib. 1696.

[^16]: - Mar. 1696.
 $+A p r .10 g 6$.
 \| Mar. $16 g 6$.

[^17]: *Mr Maupcrrusis, in a letter to tiue Prefident, dated at Potzaiam, Way 20. 1747. fays, that his friend Buffor has secovered the burning-glafes of Arbibimedes; that with i6s plane glafics, each 6 inches fquare, he has melted a filver phate, at the ditance of 60 beet, and fired fitch'd boards a: 150 . Fiach forishlum is moveable, fo as, by the help of 3 ferews, to be fet to a proper inclination for directing the rays towards any given point.

[^18]: Fig. 5.
 VII. $A B C D$ is a pit dug in the ground, whofe furface is higher at D Defiription of than on the other fide at A_{0}. The bottom $B C$ is ftrongly ramm'd with * Mackine to clay, upon which are laid thin fawen deals.

[^19]: - GOLD, fine. Ward, C. A medal efteemed to be near fine gold. F. C. . . $\quad 19.640$ Tab. I. of
 Or d'effai, ou de coupelle. Muffchenbr. 19.238
 Fine gold hammered. Ellicot. 19.207
 D°. an inget, fo accounted, and again refined with antimony. Ellicot.
 19.184
 D°. the ingot itfelf juft mentioned. Ellict. 19.161

 A medal of the Royal Society, reported fine gold. Grabamis. 19.158

[^20]: *The letters of reference anfwer to Fig. 55, 56, and 57. fore being feen in one, that do not come in fight in the uthers.

[^21]: - See the preceding article.

[^22]: - The Japonefe, in sheir mape of the World printed in Fafon, have laid down in this tery iract two iflands as large as Ireiund, with cite names to anem, as appears in that map bought by D_{5} Kimpfer in Gapon in 1686 ; now in Sir Hans Sloane's Mulcum. C. M.

[^23]: * Doubtlefs it is the work of an European, who was giving fome notion of Gengraphy to a Chineje or Yepange: or. jeerhaps. that of a Chinefe or Fapanele from memory of what he had lieare from Europeans, or of the map which he might have foen with them.
 t see Vol. I. Chap. vii. §. ${ }^{8} 8$.

[^24]: * i. e. 'pirit of Winc fo high'y rectified, as, being pour'd upon gunporuder, and then being fet ou fire, will at laft dafh the gunpowder. C. M.

[^25]: - See sic AEa Gormanica, or Literary Memoirs of Germany, Vol. II. p. 123.

[^26]: * Hilt. X!t.

[^27]: - I call Electrics per fe. or originally Elearies, thofe bodies, in which an attractive power towards light fubitances is ealily excire 1 by friclion; fuch as glafs, amber, fulphur, fealing-wax, and moft dry pares of animals, as filk, hair, and luch like. I call NonEiccirics, or condutiors of Electricity, thofe bodies in which the above property is not at all. or very fightry, perceprible : fuch as wood, arimals living or dead, metals, and veget.able fubitances. See Gray, Du Fay, Defiguliers, Wheler, in the Philof. Tranf.

[^28]: V O L. X. Part ii.
 P p
 8: * As

[^29]: - This Paper is reprinted, with fome miflakes, in N^{0}. 484. p. 695, 80 fig.

[^30]: - Thave conflantly obferved, that the ciedrical attraction throogh glafs is much more powerful when the glafs is made warm, chantwhen cold. Thiseffect may proceod from 2 twoford cause : firt, warm gelafy does ingt candenfe the water from the sir, which makes the glafs, as has been before demonftrated, a conductor of Electricity: fecmidly, as heat enlarges the dimenfions of all known bodies, and; confequently, caufes their confitucnt parts to recede from each other, the eleftrical effiwzia, pafing in firait lines, find, probab!y, a more ready paffage through their pores.

[^31]: - In the courfe of thefe obfervations, whenever I mention either o-iginally-eiectrics or non electrics, I always underitand the whole genus of each Thus when I merition a man placed upon originally-clectrics, 1 am indifierent whether he is fufpended einher in lines of dry filk, hair, or wool ; or (which is much more conveniedt) if he fands upon giafs, wax, refin, pitch, fulphur, fic. or upon different mixtures of thefe, if of a fufficient thicknefs. As we are now maflers of a greater eleetrical power than berefofore, I have found the Eleciricity pervade, sho' in very lmall quancity, originatly-eieftrics of above four inches diameses.

[^32]: - If of fix men touching each other, and ftanding upon originally-cleetrics, one touches the gun barrel, the whoie are eiectrified; all chefe then muft be confider'd, as to much excited non-clectric matter. From the aggregate of all the fe, not more fire is vifible upon the touch than from either of them fingly.
 + For a further account of the filings of iron, made ufe of in this experiment, fee Arc. 28. \$ 14^{*} "

 In this experiment, and in others, wherein we aflert, that the floke is not increafed in proportion to the quarsity of electrified matter; it muft always be undetllood, thas the excited non clectrics themfeives are couched, without being contained in originally. electrics, as water in the glafs; for otherwife (as will hereafter be fpecified) the effects of different quantities of matter will be very different.

[^33]: 1. Bibliosbezuc Britannique pour les mois de Janvier, Fctier, co Mars, 1747.
[^34]: - Theopbrofies, who lived above 300 years before the date of the Chriftian .Era, takes notice of amber and the Lyncurium, attracting not only ftraws, and Mhavings of wood, but alfo thin pieces of copper and iron. See Theopbrafus wepi Tif $\lambda i i_{0}$.

 late Edit. by 7 . Hill.
 + There is one inllance, where the water will iun of in a full Aream without bringing a non electric unexcited near the long leg of the fiphon; and that is, by fufpending a phial of water, as ufual to the gun-barrel by a wire, and by letting a glats fiphon through the cosk into the water. Whern this phial is fufficiently elecritied, the water therein runs off in a full fream, though no non-electric uncxcited is near; Lecaufe then the current of water throagh the fiphon is the on!y way. by wnich the Kurcharge of the Eledricity can be diffipared.

[^35]: - The following is an argument of the velocity likewife, with which thefe little ginhe: are attradted and repelled. If they are let foll from the height of fix fect or more lpor. a wooden fivor, or a plate of metal, they are rarty broke; bus by she atrsactions and repultions of them between the plates, though at the dittance only of : of an inch, they are frecuently beat in pieces.

[^36]: - This experiment is more elegant, if the epper plate, attme:ing the filver, is fufpended high enough for a perfon tanding upon an originaily-electric, conveniently to bring ine other plate under it with ore hand, and to hold a pewter plate in the other. If the uriginally electric is fufficiently thick, the filver wifl not be fufpended; bus if the giafs Siphon in a fonall veffel of water is brought very mear the fewter plate, the water suns into the flate, and the filver is immediately fufpenied.

[^37]: - See more of this in Art. 28.
 + This pain in the heels is felt only in tic experiment with the electrical mine; and it is nos percepsible only when you touch the lower finall wire wisth your foos, but likewife if you thand upon son electrics, which souch this wire. It has been flrumgty felt by a perfon ftanding upon a pedettal of Pordand fone near sen inches in height, and upon one of menal more than swo feet. I am of opinion, shat no mafs of mecal, of dimenfions however great, would in the leaft prevent the progrets of the electrical power from the water in the phials to the body of the mans.

[^38]: * The fetting in of the fire to the glafs tubes and globes has always, in thefe experimients, been vifible both from the hands and cufhions, by which they were rubbed. But 26, till now, this frre was confidered as coming from the glafs, that, obferved upon the hands and cuftions, was always believed to be fo much loft by running down the infruments of frittion into the floor. I endeavoured to prevent this lofs, by flanding upon originally-clectrice; and found, to my great furprize, that fo far from increafing the clectrical power, by fopping what 1 conjectured was fo much lofs, I could excite then no Electricity at all in the tube and globes. This difappointment, which, I afterwards found, had oscurred to Meff. Boje and Allamand, was the foundation of nyy difcovering the fource of the Elettricity, and the manner of it's ingrefs to the machine.
 (a) Hombery du fouphre prineipe. Mem. de l'Acad. Ravale aes Sciences, 1705. I. matiére de la lumiére ell la plus petite de toutes matiéres fenlibles-elle palfe librement au travers et par les pores de tous les corps, que nous connoifions - Que tout l'univers eft rempli de la matiére de la lumiére- - ’ai mieux donnè à notre fouphre principe le nom de matiére de la lumiére. que celle du feu, quoique ce foit proprement la méme chofe.
 (b) Lemery le fils. Mem. de l'Acad. 1;og. p. 527. La maviére de feu doit être regardée. comme un fuide d'une certaine nature, et qui a des proprietez particulieres, qui le diflinguent de sout nutre fluicle. Pag 8. - Qu'une matićre beaucoup plus fubtile et plus agitee, qui remplit tous les vuides de l'univers, et ne trouve point les pores fi étroits, gui the lui daifent un libre paffige, coule inceffamment daas les iieux où elle eft enfermée, e: entretient fon nouvemen:.

[^39]: (m) Mid p. xivia.
 (ii) La méme. Cetic matéén tend à P'equiibre, et s'emprefle de remplir les efpaces, qui ic trouven: veides des parties de fon efpece.

[^40]: - Tair with the gun barrel fufpended as the fron bar. Sec above, Are. 5.

[^41]: O L. X. part is.
 U 1
 electrifying

[^42]: - Art. 6.

[^43]: ler, diated Newport, June 1. 174^{8}

[^44]: *No difference is obferved when the elearical circuit is propagated through fubflances which readily conduet Eleatricity; if they conduat it in a lefs degree, the eleetrical commotion is moll perceptible to the obferver, who holds the wire, which comes from the charged phial.

[^45]: * Thefe experiments to meafure the abfolute velocity of Elcetricity were made whila this paper was at the prefs; but as they had fo near a relation to the experiments made the preceding year, it was thought proper to infers thers here.

[^46]: VOL. X. Part ii.
 Bbb
 4. That

[^47]: - Sice Art 9. 164.

[^48]: * Art. 9. $\$ 65$.

[^49]: - Bodies having the power of rendily conducting Eleatricity feems to depend very little upon their Specific gravity fimply confuiered: metals, for inflance, and water, are in a g:car degree non-clectrics, and confequently conduct Electricity the beft of any fubftances, that have yet fallen under our notice ; whereas the calces of metals, though very denfe bodices, and very greatly more fo than water, prevent in a great degree the quick propagation of the eletrrical pewer So that a phial coated within and without with cerufe, i. e. the ralx of lead, and clectrifed, did not, upon the application as ufual of one hand to the external furface thereof, and touching the prime conductor with the other, occafion any thock, or make any explofion more than the fimple froke from the prime conductor. The fame obfervation holds good with regard to red lead, litharge, and lunar caultic or the calx of filver, none of which fnap, when electrifed. For the fame reafon, filings of ison, which are sufty, i.e. have their furfaces converted into a calx, are much lefs proper to be put in glafles to make the experiment of Leryden, than thofe that are not ; inafmuch as thefe latt caufe a much lowder explofion than the firt. The making ufe of sufty filings of iron was the occafion of my mentioning in my fequel $\$ 16$, that the froke from theie was lefs than that from water; the contrary of which 1 afterwards found true, when filing: of iron not rufly were fubfituted.

[^50]: - I here:ofore, tonk notice, how much the effect of this experiment depended upon the quantity of non ele?ric cortatt upon the ourfide of the glafs.
 \dagger Though the denfily of the matter conitisuti g theie poinis proceeds from their numbes in a mathematical fenfe, yet in a popular one I take the liberty to dititinguifh them.

[^51]: - This has been fince fut in execcution. See the preceding Art.

[^52]: atotif vades.

[^53]: - See the preccciing Article.

[^54]: VOL. X. Part ii.
 Eet
 of

