(3^{89})

But if we allow the Place of the fix'd Star to be as by the Caroline Tables, the Place of 7apiter will come out $\approx 13^{\circ} 32^{\prime} 09^{\prime \prime}$.

Having thus the Place and Latitude of the Planet, we fhall thence endeavour to derive the Inclination of Jupiter's Orbit to the Plain of the Earth's Orbit.

For finding of which the mutual Diftances of Fupiler and the Earth, together with the Place of the Sun, are required ; which we may fafely take from any approved Tables. I generally ufe the Caroline Tables, which I liave found to be more accurate and more eafy than any others. From thefe 1 have taken at $8^{\text {b }} \quad 16^{\prime}$ after Noon,

```
The true Place of the Sun ————r \(10^{\circ} 40^{\prime} 18^{\prime \prime}\)
```

His Diffance from the Earth ${ }^{10003^{4}}$
The Diftance of Jupiter from the Sun - 544921
——from the Earth ——444952
Now in the annexed Figure let S be the Sun, T the Earth, $\%$ the Planet, SE a Radius of the Ecliptick continued to the Orbit of flupiler, and the Angle ψ T S the Latitude of the Planet feen from the Earch $1^{\circ} 35^{\prime} 40^{\frac{1}{*}}$.

In the Triangle $\psi S T$, having given the Angle $\# T S$ the Complement of the obferved Latitude to a Circle, $¥ S$ and ψT the Diftances of the Planct from the Sun and the Earth, being found above, the Angle ψ SE will be had, the Latitude or Inclination of the Planet as feen from the Sun, $1^{\circ} 18^{\prime} 7^{\prime \prime}$.

The Geocentrick Place of Fiepiter was $\bumpeq 13^{\circ} 35,33^{n}$ Therefore from the given Diftances of fupiter and the Earth from the Sun, the Heliocentrick Place of the Planet will be found $\approx 13^{\circ} 3^{\prime} 33^{\prime \prime}$; from whence feverally fubtracting thofe Places of the Node, which have been affumed by the Authors mention'd in the following Table, the Arguments of Latitude here annexed will come out. Whence it may be obferved, that none of them makes \mathcal{F}_{4} piter more advanced from his Limit than $6^{\circ} 29^{\prime} 59^{\prime \prime}$, or lefs than $3^{\circ} 58^{\prime} 59^{\prime \prime}$: Which how great foever the Difference may feem, in inveftigating the greateft Inclination of the Orbit, camnot produce a greater Error than 23 Seconds.

Aubbors.	Places of Ω	Strouments of Lasitude.
		3. 0."
Kepler.	$\begin{array}{lllll}3 & 6 & 33 & 37\end{array}$	$\begin{array}{llll}3 & 6 & 29 & 5^{6}\end{array}$
Street.	$\begin{array}{lllll}3 & 6 & 33 & 47\end{array}$	$3 \begin{array}{llll}3 & 6 & 29 & 46\end{array}$
Wing.	$\begin{array}{lllll}3 & 7 & 11 & 39\end{array}$	$\begin{array}{lllll}3 & 5 & 21 & 54\end{array}$
Ricciolus.	$\begin{array}{llll}3 & 7 & 18 & 00\end{array}$	$\begin{array}{lllll}3 & 5 & 45 & 33\end{array}$
Caffini.	$\begin{array}{llll}3 & 8 & 4500\end{array}$	$\begin{array}{lllll}3 & 4 & 18 & 33\end{array}$
Bullialdus.	$\begin{array}{lllll}3 & 9 & 4 & 34\end{array}$	3 3 58

That Place of the Node which Mr. Coffiwi has made choice of, though it feems a litcle more advanced than it ought, $y=t$ for divers other Reafons 1 like it beft. Tharefare in the Triangle of A Ω, taking Ω A the Argument of Lacitude $94^{\circ} 18^{\prime} 33^{\prime \prime}$, and 4 A the Inclination $1^{\circ} 18^{\prime} 7^{\prime \prime}$; the Angle of the Inclination
clination of the Plain of Fupiter's Orbit to the Ecliptick will be found I is $20^{\prime \prime}$, which Kepler makes $1^{\circ} 19^{\prime} 0^{\prime \prime}$, Street $1^{\circ} 20^{\prime}$, Bullialdus and Wing $I^{\circ} 21^{\circ}$ $4^{8^{\prime \prime}}$; all of them fomething greater than it fhould be.

And that the Inclination is fo much, at leaft not greater than this, not only the Obfervations of laft Night, but alfo thofe of the Months February, March, and May of laft Year, prevail with me to believe. Yet in the mean time I muft acknowledge, that it may be proved to be greater, that is, $1^{\circ} 20^{\prime} 20^{\prime \prime}$,

Almag. Nov.
las. 1 p. 710.

The Conjunctions of Sstura and lupiter, An. 1682, and :683 a: Green ". ich; by Mir. Flam. fteed, D. 149. t. 244 . from that Tranfit of Fupiter near the Sth of 叹, May 29 and 30 An. 1649, ob. ferved at St. Fulian, at Bologna and Majorca, by thofe very learned Men Ricciohes and Mutus. Which feems to infinuate to us, that fince the Inclinations of the Orbits are efteem'd as invariable by ail, there muft be fome Error in thofe Latitudes afligned by Tycho to fome of thefe fix'd Stars. And this will hinder us from exactly determining the Quantity of this Inclination, till thofe Latitudes are duly refored. Yet this I dare affirm, becaufe thofe Latitudes of the fix'd Stars are allo found to be immutable; that the Angle of the greateft Inclination of the Plain of Fupiter's Orbit to the Ecliptick, is lefs than $26^{\prime \prime} 40^{\prime \prime}$; or than the Latitude of the $9^{\text {th }}$ Star of m of the Fourth Magnitude, which by Tycho is call'd the laft of the Four in the left Wing of Virgo. Whenever therefore this is given correct, the Inclination aforefaid will be known alfo.
LXXXVI. Examining our antient Ephemerides I do not find that three Coxjunctions of Scturn and Fubiter have ever happened in one Year's Space, fince they were firft in ufe to this prefent. Thofe of Moletius calculated from the Alphonfine Tables indeed make three in the Space of eight Months betwixt Auguf ${ }_{15} 5_{3}$, and April 1564 , inclufive; but the Ephemerides of Statius calculated from the Prubenick, make only one, on the 26 of Auguft, of which Funcinus gives us the following Obfervation in the Preface to his Aftronomical Tables, An. 1563 . Aug. 24. $14^{\prime \prime} 3^{\prime}$ p.m. On the Northern Side Fupiter in a manner cover'd Saturn, who was on the Southern Side; now each of thefe Stars was found to be at the end of the 28th Degree of Cancer. Riccioli hence concludes, that the Planet $\&$ covered fome part of Saturn at this Time. But without Reafon, for the Words quafi cooperiebat intimate not that the one did corporally cover the other, but rather that there was fome fimall Interval betwixt them. The Caroline Tables make the vifible Latitude of Saturn now, $11^{\prime} 45^{\prime \prime}$, of Yupiter $20^{\prime} 10^{\prime \prime}$, both North; the Conjunction being fome few Days paft: bat becaufe their Latitudes alter nowly, we may hence conclude the Difference $8^{\prime} 25^{\prime \prime}$, to have been nearly their Diftance at that Time. Thefe Tables being grounded on the Tycbonick Obfervations, made within lefs than 40 Years after, and Thewing the Latitudes of the Planets well at this Time near 100 Years later, we may conclude to have anfwer'd them as well then; and if we confider how fmall a Space the Diftance of $8 \frac{x}{2}$ Minutes appears to the naked Eye in the Heavens, efpecially betwixt two fuch bright Planets as Saturn and Jupiter are, that the Caroline Diftance agrees very well with the Words of Funetinus, and that Riccioli was miftaken.

Their next Conjunction according to Maginus's Epbemerides founded on the Pruterick Numbers, was April 29, 1583. in 21 Deg. of \not, the Sun being
then in ${ }_{17}$ Deg. of 8 , fo that that Planet's Rifing before him in Signs of fhort Afcenfion and with South Latitude, this Congrefs could not be obferved by the Noble Tycbo who was mindful of it, as appears by this Note in Page 55 of his Hifforia Caeleftis. May 30. before Noon. As foon as ever we faw Saturn after the Conjunction, thefe Diftances between fupiter and Saturn were taken by a Radius;

I^{b}	47^{\prime}	3°	24^{\prime}
I	50	3	24

The fame Epbomerides hew the next Conjunction of Saturn and Fuipiter 1603, December 14 at Noon in $9^{\circ} 36^{\prime}$ of f; but the ingenious Kepler and our Sir Cbr. Heydon found it by Obfervation 7 Days fooner, or the Day of the fame Month in the Morning, in near 8 Degrees of f, the Planets being but then newly emerged from the Rays of the Sun.

The Epbemerides of the Learned Kepler, calculated from his own Rudolpbine Tables, make the next Conjundion 1623, berwixt the 7 th and 8th of 7 uly in $6^{\circ} 46^{\prime}$, of 8 , the Planet of Salurn being then only 4 Minutes to the North of Fupiter; but this firft Conjunction in the Fiery. Trigon happening under the Sun's Beams was not obfervable.
By the fame Tables, and Epbemerides of Eicbjtade calculated from them, thefe Planets met again in the 25° of \nRightarrow, betwixt the 15 and 16 of February 1643 , with a Degree Difference of Latitude.

By the joint Confent of Eichfade's and our Wing's Ephemerides, the fame Planets were in Comjunction again 1663 , on the 10 of October at Noon in 13° 30^{\prime} of 7 , with one Degree of Difference of Latitude; this Conjunction was obfervable after Sun-fet in our Latitude, but I hear not that any one obferved it.

In every one of thefe Years there happened only one Conjunction of the two Superiors, nor is it poffible that there hould be more, except the Helioccentrical Conjunction fall near the Oppofition of the Sun; for then there may be three, two Direct, and one Retrograde, as has been within the Space of 7 Months, betwixt OEZober and May laft inclufive, of which the true Times are determined from the following Obfervations.

An. 1682.			
OET. \quad d.	$\left\|\begin{array}{ll} 17 & 51 \\ 17 & 54 \end{array}\right\|$	Betwixt the Centers of Sat. and $\mathcal{F u p}$.	0 \prime $\prime \prime$ 0 34 54 0 34 48
12	$\left\|\begin{array}{rr} 13 & 49 \\ 13 & 54 \\ 14 & 3 \end{array}\right\|$	Betwixt their Centers Betwixt their next Limbs \qquad \qquad rep.	[0crr $\begin{array}{ccc}0 & 16 & 2 \\ 0 & 16 & 4 \\ 0 & 15 & 22\end{array}$

OEI. 17.

The Diflances betwixt the Plonets were meafured with the Mitrometer and 16 Foot Glafs, from the Fixt Stars with the Sextant : thofe of the 12th by my Afliftant, the reft myfelf.

On the 22 Day, the Planet Fupiter was in Confequence of Satarn fomething lefs diftant from him than he had been obferved on the 5 th Day near the fame Hour. Hence the middle Time, betwixt thefe Obfervations is pointed out for the Time of their true Conjundion ; but to determine it more accurately, I fhall examine the Obfervations made with the Sextant on the feventeenth Day, which being neareft the Time are moft proper for this Purpofe.

The correct Longitude of the Heel of Cafor now $\leftrightarrows 0^{\circ} 50^{\prime} 42^{\prime \prime}$, its Latitude $51^{\prime} 40^{\prime \prime}$, South. The Latitude of Saturn by the Caroline Tables $96^{\prime} 20^{\prime \prime}$, of Jupiter $4 I^{\prime} 30^{\prime \prime}$, both North.

By the affumed Latitude of Saturn $56^{\prime \prime} 20^{\prime \prime}$, and his Diftance from the Heel of Caftor obferved and corrested $48^{\circ} 32^{\prime} 30^{\prime \prime}$, I found their Difference of Longitude $48^{\circ} 30^{\prime} 37^{\prime \prime}$; therefore Saturn in $\Omega 19^{\circ} 21^{\prime} 19^{\prime \prime}$.

By the Latitude of Jupiter affumed $4 \mathrm{I}^{\prime} 30^{\prime \prime \prime}$, and his Diftance from the Star $48^{\circ} 45^{\prime} 20^{\prime \prime}$, their Difference of Longitude $48^{\circ} 43^{\prime} 56^{\prime \prime}$, and Yupiter's Place in $\Omega, 19^{\circ} 34^{\prime} 39^{\prime \prime}$.

Hence Jupiter's Place in confequence of Saturn's $13^{\prime} 20^{\prime \prime}$, with which and the Diftance of their Centers obferved the fame Night $20^{\prime \prime} 12^{\prime \prime}$, I find the true Difference of their Latitudes $15^{\prime} 20^{\prime \prime}$; but half a Minute different from what I affumed it on the Authority of the Tables.

The apparent Motion of Fupiter from the 14 to the 18 Day of OEFober by an Epbemeris exactly calculated and made agreeable to thefe Obfervations, is $2^{\prime} 9^{\prime} 16^{\prime \prime}$, of Saturn $15^{\prime} 01^{\prime \prime}$, both direct: hence the Motion of Fupiter from, Saturn in tour Days is $14^{\prime} 15^{\prime \prime}$. I lay therefore as 4 Days Motion, or 14^{\prime}
$15^{\prime \prime}$, is to ${ }_{4}$ Days, or 96 Hours ; fo is $13^{\prime} 20^{\prime \prime}$ (which Fupiter is paft the Conjung dion of Salurn) to 90 Hours or 3 Days 18 Hours; the Time interlapfed fince the Conjundion; which taken from the 17 Day 15 Hours, the Time of my Obfervation, gives the true Time of the Conjuniction of the two Planets on the 13 Day, one and twenty Hours after Noon, or according to the common Account, the 14 Day, at 9 a Clock in the Morning.
At which Time Saturn is with Yupiter in $\Omega 19^{\circ} 07^{\prime \frac{1}{5}}$, with $15 \frac{1}{3}$ more Northern Latitude.
The-Acta Eruditorum Lipfenfra, p. 366. make this Conjunction to have happened the fame Day in the fame Longitude with the Eleventb Star of Leo; whofe Place they fate in $\Omega 19^{\circ} 04^{\prime}$ Lat. $0^{\prime} 16^{\prime \prime} \mathrm{N}$. with 14 Minutes Difference of Latitudes betwixt the two Planets. But their Obfervation feems to have been made only by the Judgment of the bare Eye without an Inftrument, which confider'd, I wonder not that it differs at all, but rather that the Difference is fo fmall from this Determination.
On the 19 of fanuary following, viewing then the Planets both Retrograde with the 16 Foot Glafs, I found them approached within a meafurable Diftance of each other.

[^0](394)

From Obfervations formerly made, I have determined the true Places and Latitudes, to this prefent Time, of,

The Heel of Cafior 5051 10 Lat. $05_{1} 40$ South. Bright * in the Lion's Head, E- $\Omega 161527 \quad 94107$ North. Lion's Heart - - \quad 25 $2445 \quad 02620$ North.

And from the above recited Meafures, the true Diftances of the Planets from there Stars, January the 26 th at $9^{\text {h }} 40^{\prime \prime} p . m$. as follows,
Saturn from the Heel of Cafor
Jupiter from the fame
Saturn from the Lion's Heart

Whence I collect the true Places at this Time.
$\begin{array}{lllllllllllll}\text { Of Saturn } & \Omega & 16 & 57 & 10 & \text { Lat. } 1 & 13 & 10\end{array}$
Of Jupiter Ω I 17 On 10 Lat. 1 or 30
Difference of Long. - $10 \quad 00$ of Lat. 1140

(395)

The Retrograde Motion of Fupitar from Saturn in 4 Days, betwixt the Twentyfixth and thirtieth of this Month, by my correct Epbemeris is $12^{\prime \prime} 15^{\prime \prime}$. I fay therefore as $12^{\prime} 15^{\prime \prime}$, is to 4 Days or 96 Hours; fo is $10^{\prime} 00^{\prime \prime}$ (the Difference of the Planets prefent Longitudes) to 78 Hours, or three Days fix Hours; which therefore added to the Time of that Obfervation fan. $26^{d} 9^{62}$, gives the true Time of the Conjunction Jan. $29^{d} 16^{\text {b }}$, or according to the common Account Fan. 3° at $4^{\text {n }}$ in the Morning. At which Time both the Planets are in $\Omega_{16^{\circ}} 51^{\prime \prime} \frac{1}{5}$, with $11^{\prime \frac{1}{2}}$ Difference of Latitude or Diftance from each other; which is further confirmed by the meafured Diftances of the Planets on the 3 oth at Night before recited.

On the 26 th Day at $9^{h} 40^{\prime}$ the Sun's true Place was by my Tables in $=17^{\circ}$ $2 I^{\prime} \frac{2}{2}$, fo that he was now about $\frac{1}{3}$ of a Degree paft their Oppofition.
Towards the latter end of the following April, the Planet fupiter began to approach Saturn again, both being now direct; the 28 at Night with the 16 Foot Glafs and Micrometer I meafured the Diftances.

(396)

From there Obfervations I fate the Diftances of the Plenets from the fixed Stars M^{\prime} May $7^{\text {th }}$ at $9^{\mathrm{h}} 5^{\prime} p . m$, as follows.

7upiter from the fame Saturn from E in the Lion's Head \qquad \qquad URy 7. 10.8 Fupiter from the fame \qquad " $\quad 13$ 19, "		

 of Fupiter $\Omega 1426$ 37. Lat. 0 O 56 43. Norlb. Difference of Longitude 1 4. Lat. o 163.

The Difference of Latitudes fomething exceeds the Diftance meafured with the Micrometer, by reafon that the Wind then thaking the Sextont permitted us not to be fo exact as ufually; but the Difference, being lefs than half a Minute, 1 efteem inconfiderable.

The Diurnal Motion of Fupiter from Saturn was now $3^{\prime} 15^{\prime \prime}$. It holds therefore, as $3^{\prime} 15^{\prime \prime}$ (one day's Motion,) is to one Day or 24 Hours; fo $1^{\prime} 4^{\prime \prime}$ (the Diftance of \mathcal{F} (upiter from the σ with Saturn) to 8 Hours, the Interval betwixt the Obfervation and following Conjunction, which was therefore $1 \eta^{\mathrm{h}}$ after Noon, or according to the vulgar reckoning, May 8. at 5 a Clock in the Morning: At which Time the true Place of the Planet is $\Omega 14^{\circ} 28^{\prime \frac{3}{4}}$, the Difference of their Latitudes, $15^{\prime} 40^{\prime \prime}$. Saturn being fo much more Northerly than $7 u p i t e r$.

In all beft efteemed Afronomical Tables extant, the Mean Motions of the Planet Saturn are too fwitt, of \mathcal{F} upiter too flow confiderably : Hence it came to pals that they made the Direft Conjunetions fome Days later, the Retrograde earlier than they were found by Obfervation.

A: Dantrick; by M. Hevelius. m.143. p. 18. . 6 ภ. 25 :. p. 326 .
2. Ociob. 26. New Style, at $I^{\text {h }} 40^{\text {人 }}$ in the Morning, I happen'd to take the Situation of Jupiter and Saturn with my Tube and Micrometer, as well as I could wifh. At the fame time a certain confpicuous fix'd Star, (which is worth obferving) was very near the faid Planets. Fupiter then offer'd himfelf to me with three of his Companions; and perhaps the fourth was prefent, but becaufe of the little Clouds was not to be feen. Saturn was diftant from Fupiter 16^{\prime} 44"; Fupiter was diftant from the Star (in the right Shoulder of Ω, if I am not miftaken, $27^{\prime} 55^{\prime \prime}$; and again Saturn was diftant from the Star $38^{\prime} 1^{\prime \prime}$. This Star was now according to our Catalogue in $19^{\circ} 2^{\prime} 9^{\prime \prime}$ of Ω, with Northern Latitude $0^{\circ} 20^{\prime} 45^{\prime \prime}$. On OEFO6. 30. at 5^{h} in the Morning, the Diftance of Saturn and Jupiter was $25^{\prime} 5^{\prime \prime}$; whence we may furely conclude, that the Conjunction was celebrated feveral Days fooner than Nov. 3. when the Ephemerides and the Calculation exhibit it.

This the following Obfervations will ftill farther evince. For if the Conjunction was near, the Diftance of Fupiter and Saturn would daily decreafe; whereas it continually increafed. On the firft Day of November at two in the Morning, by help of our Micrometer the aforefaid Diftance was found to be $31^{\prime} 35^{\prime \prime}$: And Nov. 2. I found the fame Diftance to be $35^{\prime} 21^{\prime \prime}$. On Nov. 3 . at One in the Morning, I found it now $39^{\prime} 9^{\prime \prime}$. And Nov. 4. the Sky being very clear, the fame Diftance was ftill greater.

As to the other Conjunction, which according to the Writers of Ephemerides ought to happen by the Retrogreffions of thefe Planets on the 26 Day of Fanuery of the current Year 1683 ; I fhall here add fome of the principal Obfervations.

Ar. 1683	$\left\|\begin{array}{l} \text { Time cor- } \\ \text { recz. by Alt. } \\ \text { inEvening } \end{array}\right\|$		Obfervations.		Difunces.
	h.				- "
Feb. 1	640	Dift. of Sat. and	fup. was found to be	3300	- 355
Feb. 2	$930 \quad 0$	Again, Ec.		2900	- 223
Feb. 3	9000	Again, $\mathrm{E}^{\text {c }}$ c.		2500	- 190
Feb. 4	10000	Again, $\mathrm{E}^{2} \mathrm{c}$.		2300	- 1729
Fcb. 5	830 o	Again, $\mathrm{E}^{2} \mathrm{c}$.		2100	- 1559
Feb. 6	$75^{1} 0$	Again, Erc.		1850	- 146
Fcb. 7	$\begin{array}{lllll}8 & 17 & 19\end{array}$	Again, $छ^{\circ} \mathrm{C}$.		1700	- 1255
Feb. 8	610 l	Again, Ėc.	-	1600	0

Feb. 9. in the Evening, at $9^{h} 0^{\prime} 8^{\prime \prime}$, I perceived the Planets in my Tube through the thick opening Clouds, and purfuing them with my Eye, I percefved the Conjunction had been celebrated the Night before between the 8 and 9 of February. For the faid Diftance now appear'd fomething larger: As alfo happen'd Feb. II in the Evening at $9^{b} 0^{\prime} 0^{\prime \prime}$. For the Diftance between Saturn and fupiter was 2000, that is, $0^{\circ} 15^{\prime} 12^{\prime \prime}$ in the Micrometer, which on the 8 Day of February was found only $0^{\circ} 12^{\prime} 0^{\prime \prime}$.

Befides, that the Conjunction was now paft moft furely appeared from hence, that each Planet was no longer in a right Line with the Belly of Urfa Major, as it was on the $8^{\text {th }}$ of February, and likewife that Saturn was no longer in a right Angle to the Orbit of Jupiter's Satellites.

Now that this may become ftill more evident, I thall here add fome Obfervations, which were continued on the following Days.

From the Continuation of thefe Obfervations it is abundantly manifeft, that fince the Planets from day to day recede farther from one another, the Conjunction itfelf happen'd really between the 8 and 9 of February.

Laftly, for the Sake of the Lovers of Aftronomy, I fhall here add what I have obferved concerning their third Conjunction in the Month of May.

An. 1683.

From which Obfervations it now appears to every one, that fince the Diftance of Saturn and Fupiter continually decreafed from day to day to May the 18 th, and from this Day again increafed, the Conjunction of thefe Planets happen'd on that fame Day ; and indeed, (as appears from the Obfervations of the 15 and 20 of Mayy_{2}) at the Hour of 10 in the Forenoon: Which according to the Compilers of the Ephemerides, ought to have come on not before the 26. So that this third and laft great Conjunction of this Year has alfo much eluded the Tables, as having happen'd above 8 whole Days fooner than they predicted

Befides, it appears from hence, that this laft Conjunction was celebrated on May 18 at 10 in the Evening, becaufe Saturn at that time was no longer at right Angles to the Orbit of 7upiter's Satellites; and further, (as may be feen from the Obfervations of the following days, that from the 18 of May to the 28, the Diftance of Saturn and Fupiter went on continually increafing; as far as I could determine that Diftance by my Micrometer.

Laftly, it is alfo to be noted, that on the 21 of May in the Evening, when among other Obfervations I alfo obtain'd with my Sextant the Diftance of each
each of the Planets from the upper Star in the anterior right Foot of the great Bear, and the aforefaid Star was then almoft in the fame right Line with each of the Planets; fo that it is eafy for an Aftronomer to judge, whether the Obfervations obtain'd with my new Sextant agree with thofe taken by the Mi crometer. By the Sextant the Diftance of Fupiter from the faid Star was 32° $38^{\prime} 40^{\prime \prime}$, and of Saturn $32^{\circ} 19^{\prime} 45^{\prime \prime}$. So that the true Diftance of each Planet was $18^{\prime} 55^{\prime \prime}$. But the fame Diftance found by the Micrometer the fame Day, that is, May 21, was $20^{\prime} 9^{\prime \prime}$; fo that it was $1^{\prime} 14^{\prime \prime}$ lefs than that obtain'd by the Sextant; yet I would not have you think, my Friend, that I err'd either with this or that Inftrument; by no means. For Saturn and Jupiter were not exactly in the fame Line with the faid Star, as may appear to any one either from the Globe, or by Calculation. Hence it neceffarily follows, that the Diftance derived by the Sextant fhould be fomething lefs.
LXXXVII. Riccioli in the Second Part of the firt Tome of his Almageft, The men conhas given us a Table of all the mean Conjunctions of the two Superiors from jungiins of Saithe Creation till the Year of Cbrift 1358, but very coarfe and incorrect. I tern ;yd Mr. have therefore made a new one for 43 Revolutions, which are completed in Flamiteed.
 rected by very late Obfervations. This being the Period of the greateft Conjunctions, after which Space of Time they return to the fame Place of the Zodiack within $\frac{3}{5}$ of a Degree.

The ordinary Conjunezions happen once in twenty Years, or more precifely in 19 Fulian Years, and 312 Days; in which Time Saturn's mean Motion is $8{ }^{2}$ $2^{\circ} 48^{\prime} \frac{1}{2}$, 7 upiter's the fame above one Kevolution.

Thefe are commonly term'd the Leffer of the Great Conjunetions, which continue in Signs of the fame Triplicity for 10 Revolutions to each other, or 198 Years: each Conjunction according to the mean Motions being $8^{\circ} 2^{\circ} 48^{\prime \frac{1}{3}}$ removed from the preceding; fo that if any Conjunction was made upon the firft of r, the next following fhall be in $2^{\circ} 48^{\prime}$ of 7 , and all the following for 198 Years hall fall in r, Ω and 7 , Signs of the fame Triplicity.

But the II Conjunctions after, fhall happen in the firt Degree of ix, and the
 thefe the firft are called by our Aftrologers the Greater Conjunctions.

But the Greateft is, when after 43 ConjunEtioiss completed in 853 Years, 235 Days, the mean Conjunctions, having been made in all the Signs, return to that Point of the Ecliptick from whence they began : though I muft confefs, had I been to name them, I would have called thofe the greateft which happen in the Signs, so and Ω, becaufe then the Planets rife higheft, and are longeft vifible in our Horizon; as alfo being near their North Nodes, they approach neareft, and if they have any extraordinary Influence (which Naboyd thinks either they have not, or if they have, we underftand not) it muft according to their Axioms be ftrongeft.

Thofe which happen in vo and m I fhould call the Greater or Middle, becaufe the Planets being then near their South Nodes, may approach each

(400)

other again very nearly, tho they rife not high in our Horizom, being in Sollthern Signs; the reft might be accounted the I.ffer or Ordinary.

The Mean Conjunstion of Saturn and Fupiter this Year 1683 , was on the $14{ }^{\text {th }}$ Day of Fanuary old Stile, at 12 Hours after Noon, in the Meridian of London; at which Time the mean Motions of both the Planets were $4^{3} 11^{\circ} 45^{\circ}$. This may be the Radix of the following Table.

Table of the man Comiunstions of Soturn and Fupiter.					
	Intervals.		Intervals.		
$\begin{aligned} & \text { Revolu- } \\ & \text { tions } \\ & \text { complete } \end{aligned}$	Time.	Motion.	$\left.\begin{gathered} \text { Revolu- } \\ \text { tions } \\ \text { complete } \end{gathered} \right\rvert\,$	Time.	Totion.
4	$\begin{array}{ll} y_{1} & d . \\ 19 & 312 \end{array}$	\bigcirc	$\begin{array}{r} 23 \\ 24 \\ 25 \\ 26 \end{array}$	$\begin{array}{ccc}\text { y. } & \text { d. } \\ 456 & 219\end{array}$	$\begin{array}{lll}1 & \cdot & \\ 6 & 4 & 31\end{array}$
	$39{ }^{3} \quad 258$			476 4765	[10 $\begin{array}{rrrr}2 & 7 & 19 \\ 10 & 10 & 8\end{array}$
	$59 \quad 204$			496 111 516 57	
	$\begin{array}{ll}79 & 150\end{array}$	811113			61256
			$\begin{array}{r} 27 \\ 28 \\ 29 \\ 30 \end{array}$	$\frac{536}{}$	
	11942	$\left.\begin{array}{lll} 4 & 14 & 1 \\ 0 & 16 & 50 \end{array} \right\rvert\,$		$\begin{array}{rr}536 & 3 \\ 555 & 3^{15}\end{array}$	2
	$13^{8} \quad 353$	$\begin{array}{llll} 0 & 16 & 50 \\ 8 & 19 & 38 \end{array}$		575 5	2121
8	$15^{8} \quad 299$	$\begin{array}{lll} 8 & 19 & 38 \\ 4 & 22 & 26 \end{array}$		$595 \quad 207$	2249
9	$178 \quad 245$	- 2515	31	615153	102657
10	$1{ }^{198} \begin{array}{ll}191\end{array}$	828	- 32	635 9	62945
II	$\begin{array}{lll}218 & 137\end{array}$	$500{ }^{1}$	33	$655 \quad 45$	$\begin{array}{lll}3 & 2 & 34\end{array}$
12	23^{8}	4	34	$674 \quad 356$	$11 \quad 522$
13	$258 \quad 29$	9		694302	7810
14	$\begin{array}{lll}277 & 340\end{array}$	$\begin{array}{llll}5 & 9 & 16\end{array}$		714	31059
15	297286	$1 \begin{array}{llll}12 & 4\end{array}$	37	734194	$11 \begin{array}{llll}11 & 13 & 47\end{array}$
16	$317 \quad 232$	91453	38	$754 \quad 140$	71635
17	337 178	51741	39		31924
18	357 124	$120 \quad 29$		$794 \quad 32$	$1 \begin{array}{ll}1 & 2212\end{array}$
19	$377 \quad 70$	92318	4	813	72500
20	$397 \quad 16$	$526 \quad 6$	42	833	32749
21	$416 \quad 327$	12854	43	853	0037
22	$436 \quad 273$	10			

(401)

By this Table to find the Time of any mean Conjunction, paft or future, nearfft to any Place of the Zodiack; for Times paft, fubtract the Longitude of the given Place from the Longitude of the Radix $4^{\prime} 11^{\circ} 45^{\prime}$, the Refidue feek in the laft Column of the Table; if you find not the precife Number take the hext to it, againft this you have in the fecond Column the Years and Days, in the firt the Number of Conjunctions part fince any was made in that Place ; fubrract the Years and Days from 168 . Fan. 14. and the Motion from $4^{\circ} 11^{\circ}$ 15', fo have you the true Time of the meen Conjundiion, and Longitudes of the Planets then.
But for Times to come fubtract the Redix from the given Place, feek the Refidue as before in the laft Column; if you find it not; take that you find neareft it; againft which, as before, you have in the fecond Column, the Years and Days; in the firt, the Revolutions future: for Example,
If it were required to know when the laft Conjundtion happen'd in the firft Deg. of $=$, Subtracting $z=$ or Ten Signs from $4^{4} 11^{\circ} 15^{\prime}$, the Refidue is 6^{5} $11^{\circ} 15^{\prime}$, which feeking 1 cannot find in the third Column of the Table, but I find $6^{\circ} 12^{\circ} 5^{\circ}$, which is not two Degrees more, and againtt them 516 Years 57 Days, and in the firt Column 26, for the Number of Conimenctions interlapfed. Subtracting 516 Years 57 Days from 1683. Fan. 14.' there remains 1166 Years, 322 Days; which thews me that the Conjunction was in the Year 1166. Nov. 18. and fubtracting the Motion $6^{\circ} 12^{\circ} 56^{\prime}$, from $4^{\circ} 11^{\circ} 45^{\prime}$, it points me to the Place in $9^{\circ} 28^{\circ} 49^{\prime}$.

Or if the Time of the firt Conjunntion in \approx to come were demanded, I fubtratt the Radix $4^{\circ} 11^{\circ} 45^{\prime}$, from $6 \operatorname{signs}$, the Refidue $1^{\circ} 17^{\circ} 15^{\prime \prime}$, I feek in the Table but find it not, I take therefore the next to it $1^{\circ} 20^{\circ} 29^{\prime}$, againft which flands 357 Years, 124 Days, thefe added to 1683 . Fan. 14, give me the Year 2040, and 13^{8} Days, May 18, for the Time of this Conjuncrion, and adding the $1^{\circ} 20^{\circ} 29^{\prime}$, to the Radix $4^{\circ} 11^{\circ} 45^{\prime}$, it makes $6^{\circ} 22^{\circ} 14^{\prime}$, for the true mean Longitude of this Conjunction.
From the mean Conjunction the apparent may be found by the Help of a Planetary Inftrument, or the ufual Aftronomical Tables.
LXXXVIII. I. S. Camp.nni affirms, that he hath remarked in the Belts of Theshatrouss of Fupiter, the Sbadows of his Saiellites, and followed them, and at length feen itites sperf suatelthem emerge out of his $D i / k$.

Some of thefe Predietions have been verified, not only at Rame, and in other Places of Italy, but alfo at Paris by M. Auzout, and in Holland by M. Hurgens; particularly Sep. 26, 1665 . at half an Hour after Seven a Clock, ane of thefe Sbadows was feen both in France and in Holland.
Vol. I.

(402)

Thefe Spots have this Peculiar, which diftinguifheth them from all others, that they are found precifely in that Place of Fupiter, where fome Satellite is feen by the $S:!n$; that they go from the Oriental Limb to the Occidental of the Difk of Jupiter, with a Motion always equal to that of the Satellite; that in refipect to us they precede the Satellite, before the Oppofition of fupiler to the Sun, and follow him after the Oppofition; that the further \mathcal{F} upiter is diftant from the Oppofition, the greater is the apparent Diftance of the fame Satellice; that at divers Times of the Year, this Diftance changeth in proportion of the annual Parallax of the Satellite, according as he is differently feen by the Sun, and by the Earth; and that at one and the fame Time of the Year, when divers Satellites happen to be between Jupiter and the Sun, the Spots correfpondent to them are diftant from them in proportion of the Semidiameters of the Circles of the fame Satellites.

By Dr. Hook. n. 34 p. 245. Iis. 139 .
3. An. 1666. Jon. 26. about $3^{\text {h }} 15^{\prime}$ in the Morning, I perceived (with a 60 Foot Glafs) near the Middle of the Zone d, a very round Spot, like that reprefented at g, which was not to be perceived about half an Hour before; ard I obferv'd it in about 10^{\prime} Time to be gotten almoft to d, keeping equal Diftance from the Satellite b, which moved allo weftwardly, and was joined
 Spot was nothing elfe, fave the Shadow of the Satellite $h_{\text {, }}$ eclipfing a Part of the Face of Fupilcr. The other three Satellites in the Time of the Eclipfe were weftwards of the Body of \mathcal{F} upiter.

The Elongations of Jupirer's Satellizes; by Mír. Flamfteed n. 82. p. 4:36, 4337. \%. 94. p.6033. 13. 96. p. 6094°
LXXXIX. 1. 'Tis now above two Years fince the learned R. Townley Efq; communicated to me the greateft Digreffions, which he had obferved, of fupiter's Satellites from the Center of $\begin{aligned} & \text { fupiter, as alfo the mean Motion of every }\end{aligned}$ one, and the Epochs of thofe Motions, deduced from his Obfervations made at his Seat at Townley. Afterwards I obtain'd from him your Ephemerides, 0 moft learned Cafini, of the Medicean Stars, for the Year 1668 ; from which having found, that not only the Motions, but the Epochs of Motion, as alfo the greateft Elongations determin'd by you, were fomething different from thole of Mr. Towinliy; I thought it might be worth while to make fome Obfervations as Opportunity fhould prefent, being earneftly defired by him fo to do. Therefore in the Month of March of the Year 167 , Julian Style, with a Micrometer and a Tube of ${ }_{14}$ Fect, with as much Care as I was able, I made the following firft Experiments, repeating my Obfervations every Night for greater Certainty.

An. 1672 . Mar. $19^{\mathrm{d}} 7^{\mathrm{h}} 11^{\prime}$. The remoter Limb of 'fupiter was diftant from
the fourch Satellite 27.8. The remoter Limb from the fame fourth Satellite
28. 8 . The fame Diftance
$1601^{*}=9^{\prime}-34^{\prime \prime}$

By feveral Obfervations the Diameter of Yupiter was found 128. Thesefore its Semidiameter was 64 ; by which the obferved Diftances being divided,

403)

there will arife the apparent Diftances of the Satellite from the remoter Limb of Jupiter in his Semidiameters.
d. fd.

Then the Motion of which from Fupiter, and the Diftances from the Center, according to your Numbers were thus.

1 Therefore in the firft Obfervation the Satellite was diftant from his extream Tlongation only $4^{\prime \prime}$; in the fecond 23^{\prime}; in the third 26^{\prime}; fexagenary Scruples of the Semidiameter. Thercfore if we add thefe to the obferved Elongations in a due manner, the greateft Digreffions of this fouth Satellite from the Center of Fupiter will be by the firf Obfervation 24 Semidiameters, 5^{\prime}; by the fecond 24 Semidiámeters, 14^{\prime}; by the third 24 Semidiametors, 24^{\prime}; which you fix at only ${ }_{2} 3$ Semidiameters, and Mr. Towntey at 24 Semidiameters, 72^{\prime}.

Of thefe three Elongations I juidge the two latter to be the more accurate, becaufe for their Determination I had very commodious Obfervations, which I perform'd with all poffible care. Afterwards 1 found the former among feveral Notes which I had taken on the 1 gth Night, which I cannot affirm was made with the fame Exactnefs. However I admitted the Obfervations, as not fo far difagreeing with the reft, but that it may ferve to confirm them; as alfo to hew, very little if at all lefs, that the Elongation of this Satellite from Fupiter was to the Left Hand rather than to the Right.

Yet in my Obfervation I felt the Motion of the Air and Wind, which by thaking and agitating the Tube, (hanging in the open Air at an upright Pole, by means of a Rope and Pulley,) made the Obfervation difficult; and often was the Occafion, that I might take the Diftances too narrow. Therefore I refolved to forbear from making many fuch Obfervations, which require the utmoft Care and Precifion, till I have fitted up a more convenient. Place for performing them, which at laft I have provided. I have took care to have a Wooden Machine, like a Thort Ladder, fitted into my Window, upon which my Tube being layed, may be turned about all ways, nor can be agitated this way or that by the Winds, except they are very violent, as it was in the open Air. Laying my Tube upon this, the 4 th in the Evening, An. 1683: I apply'd my felf to making Obfervations with the greateft Diligence, nor without Succefs. For the Sky being exceeding clear, I faw all the 1our Satelites thro' a Tube confifting of convex Lens's, and meafured their Dittances from the remoter Limb of fupiter, as follows.

4272 272. The Altitude of Jupiter taken with a Quadrant near two Foot long $24^{\circ}-00^{\prime}$ Therefore the apparent Hour at Derby was $8^{\mathrm{h}} 26^{\circ}$ after Noon. And then the fourth Satellite appear'd below the Line drawn on both Sides through the outmoft Satellites; but, if I miftake not, hardly a whole Semidiameter.

The Diameter of \mathcal{F} upiter was found 133 , by Obfervations feveral Times repeated. Therefore the Semidiameter was $66 \frac{1}{2}$, which being taken from the obferved Diftances, the Intervals between the Centers of Fupiter and of the Satelites will become, that of the firft 360 , of the fecond 569 , of the third 921 , of the fourth 205 ; which being divided by $66 \frac{1}{2}$, there will arife the vifible Elongations from the Center of fupiter in his Semidiameters. fd.
\(\left|\begin{array}{l|rr}1 \& 5 \& 25

2 \& 8 \& 33

3 \& The Motions of the Satellites from \& fu u-

4 \& 5 \& 51

4 \& 3 \& 5\end{array}\right|\)| piter, and the apparent Diftances, ac- |
| :--- |
| cording to your Tables accommoda- |
| ted to Derby, were |

$\left|\begin{array}{r|rrr|rr}1 & 9 & 4 & 5 & 4 & 59 \\ 2 & 2 & 22 & 47 & 7 & 57 \\ 3 & 2 & 20 & 26 & 12 & 48 \\ 4 & 4 & 23 & 49 & 2 & 29\end{array}\right|$

Therefore the firft Satellite was deficient only I^{\prime}, the fecond 3^{\prime}, the third 12, fexagenary Scruples of the Semidiameter, from the utmoft Elongation; if therefore we add thefe to what were obferved, the extream Digreffions will become

It being forefeen that a convenient Opportunity would be offer'd Apr. if. in the Evening, and as 1 concluded that thefe Diftances were not to be deduced from an Experiment or two, I refolved with my felf to make a farther Inquiry, by Obfervations that might then be had. When I firft began thefe, the Sky near Jupiter was fo cover'd with thin Clouds, that fometimes I could perceive the Satellites but obfcurely. Yet I took their Diftances from the remoter Limb of Jupiter, as the Air would give me Leave, which were as follows.

At the Hour $7^{\frac{1}{2}}$ afser Noon 3947 Again 932
2628 - 614
1 405. Afterwards when the Heaven became as clear as I could wifh, I obferved more accurately
$\begin{array}{ll}3 & 947 \\ 2 & 622\end{array}$
1405
4. 942. Again 957°. The Altitude of fupiler was $24^{\circ} 0^{\circ}$ Therefore the apparent Hour was $7^{n} 5^{\circ}$.

(405)

The fourth Satellite appear'd a little above the Line drawn through the firt and fecond; the third below that Line, but fometimes I thought it was in it. The Diameter of fupiter was taken at 132, and therefore his Semidiameter is 66; which taken from the obferved Diftances, gives the Interval between the Center of $\mathcal{F u p i t e r}$ and of the firft 339, of the fecond 556 , of the third 88_{1}, of the fourth 891 ; which being feverally divided by 66, the apparent Elongations of the Center of $\mathcal{F u p i t e r}$ come out in the fame Semidiameters, of the firtt 5 Semidiameters, 8^{\prime}; of the fecond 8 Semidiameters, 2^{\prime}; of the third ${ }_{13}$ Semidiameters, $2 \mathrm{I}^{\prime}$; of the fourth ${ }_{13}$ Semidiameters, 30^{\prime}.

The Mean Motions of the Satellites from the Pleni-mediceans, with their	1	8	0		1 cd	
	1	1	35	4	50	
2	2	10	59	7	34	
3	2	12	2	12	22	
4	10	25	8	13	15	Diftances from the Center of Fupiter, according to your Numbers were as is fet down in this Table. Whence it is to be feen, that the firft was diftant from its greateft Elongation 10^{\prime} Scruples of the Semidiameter, the fecond 26^{\prime}, the third 38^{\prime}. Which therefore if we add to the obferved Elongations, the greateft Digreffions to be deduced from hence will become

Of the firft
the fecond
the third

$$
\left|\begin{array}{ll}
5 & 18 \\
8 & 51
\end{array}\right|
$$

ced from the Obfervations of the fourth Night.
Now at each Time the inmoft Satellite appear'd to the Left Hand from Fupiter, and the fecond and third to the Right Hand. But Apr. 15. in the Evening I forefaw that the third would appear on the Left Hand in its greateft Elongation, on which Phrenomenon therefore I thought it worth while to attend, that I might be fatisfied, whether the greateft Elongation from the Center of Jupiter, of the fame Satellite, were the fame on either Hand. The Sky was clear for Obfervation that Night, fo that about the Hour of $7 \frac{1}{2}$ I obferved according to my Wifh, that the Diftance of the third was 955 , and the Diameter of ${ }^{\prime}$ upiter 131. Therefore his Semidiameter was $56 \frac{1}{2}$, which being fubducted from the obferved Diftance, made the Interval between the Center of Fupiter and the Satellite to be 889 ; which being divided by the fame vifible Semidiameter, gives the Elongation of the Satellite from the Center of Jupiter in his Semidiameters 13 Semidiameters, 35°. The Mean Motion of the Satellite was $3^{3} 4^{\circ} 9^{\prime}$. The true Place of Fupiter $\approx 10^{\circ} 27^{\prime}$. Therefore the Planet was diftant from the Pleni-medicean $9^{\circ} 3^{\circ} 42^{\prime}$, and from the greateft Elongation only 3 Scruples. Now if we add thefe to the obferved Digreffion 13 Semidiameters, 35^{\prime}; we fhall have the greateft Digreffion this Time to the LeftHand ${ }_{13}$ Semidiameters, 38'. This is lefs by the third part of a Semidiameter than that on the Right Hand, as we have found by Obfervations twice repeated and agreeing together. This feems to infinuate, that there is fome Excentricity of the Center of the Orbit of this Planet from the Center of fupiter.
2. The Little Circle in the Middle reprefents the Planet fupiter, the four Concentrick Circles, the proper Orbits of his four Satellites, duly proportion-

(2406)

An Trifyem:en: for firiding the Dipances of Jupiter's Satellites from bis Axis; ty Mr. Flamiteed. no 178. p. 1262 Dec. An. 1685 Fig. ${ }^{1} \frac{1}{7} 2$.
ed to the Breadth of his Body ; the Diftances betwixt the parallel Lines interfecting them, being each equal to one of his Semidiameters.

The 4 divided Circles next without thefe, are diftinguifhed into fo many Parts as there are Days and Hours in each Satellite's Revolution; the innermolt of them ferving for the firfor or innermof Satellite; that next it, for the 2^{d}; that next without this for the 3^{d}; and outermoft for the $4^{\text {th }}$; above which is a finall divided Arch of is Degrees.

By this to find the Ditances of the Sateliztes from \#'s: Axis to a propofed Time.

1. Find the Parallex of Gupiter's Orb to the Time propofed, and note whether it be to be added or fubtracted.

2 Extend the Thread froni the Center of the Infrument over the Parallax numbred in the fmall Arch; it cuts off in the four civided Circles, fo many Hours as each Satellite fpends in paffing from the Axis of the Shadow to the Axis of 4 viewed from our Earth; thefe I call the dimple Sarallastick Intervals, which if the Parallax was to be added, are alfo Additional, it to be fubtracted, Subductive.
3. To thefe parallarick Intervals add the Times of half the Duration of the Eclipse of each Satellite, which for the ift may be aflumed $1^{\text {h }} 10^{\prime}$; for the 2d. $1^{4} 30^{\prime}$, (greater Exactriefs being needlefs ;) but for the $3 d$ and $4^{t h}$ when Eclipfed, (their Immerfon into the Shadow and Emerfoon from it being commonly given in the Catelogues) take half the Difference of thefe Times at the next Ecliple to the Tine propofed for half the Duration, and add them to the fimple perallaitick Intervals, to have you thein augmented. But as often as the 4 th Satellite is not Eclipfed, (which is two Years in every fix), its Interval needs no Atigmentation.
4. Find in the Tables the Times of the Eclipges of each Satellite next preceding the Time propofed, and when the 4 th is not eclipfed, of its paffing the Axis of the Shadow; to which if the parallactick Intervals augmented were Additional, add them to, if Subductive, fubtract them from, each the Time of its proper Satellite's Eclipfe; fo have you very near the apparent Times when each Satellite laft paft over the Axis of ψ viewed from our Larth.
15. Subtract each of the Times thus got from the Time propofed, the Remainders are the Intervals of the Motion of each Satellite from H's Axis.
6. Extend the Thread from the Center, over each of thefe Intervals of Motion numbred feverally in the divided Circles, belonging each to its proper Satellite; where it cuts the proper Orbil of that Satellive, whofe Interval was numbred in its peculiar Circle, it fhews amongft the Parallels how many Semidiameters of 4 that Satellite is diftant from him, and on which fide of him 'tis pofited.

Note further, that the Thread as it lay extended over the Parallax of the Orb numbred in the fmall Arch, where it cut the feveral proper Orbits of each Satellite, fhewed amongt the Parallels, how many Semidiameters of 4 the Center of the Shadow was diftant from the Center of μ, viewed from our Earth:

(407)

Earth: And that if the Parallax of the Orb were Additional, the Shadow lies on the Right-hand from 4, if Subductive, on the Left.

To explain thefe Precepts, I Thall give two brief Examples. Let it be then propofed to know, how far each Satellite appears diftant from 4 on the 26 th of Dec. this prefent Year 1685 , at $6^{b} 52^{\prime} p . m$. when the Tbird Satellite falls into the Shadow; alfo on 'ful. 16.1686. at $10^{\text {h }} 00^{\prime} \mathrm{p} . m$. when there is no Eclipse.

An. 1685. December $26^{d} 16^{\text {h }} 5^{\prime} \mathrm{p}$. m. the Parallax of the Orb is $9^{\circ} 20^{\prime}$ Ad- Fig. 143. ditional; Therefore

Again, An. 1686. Gul. 16, $1 a^{11} p . m$. the Parallaw of the Orb is $10^{\circ} 46$ Subductive. Hence

And the Satellites ftand at the two propofed Times as in the two Figures.
In drawing of which, though I have confidered their Latitudes from the Line of their utmoft Elongations paffing thro' Fupiter's Center; yet I give no Rules for determining it, the Contrivances and Directions neceffary on that Account, being too many and troublefome to be inferted here: my defign is only to fhew the ingenious Obferver, how to find at what Diftance from \& each Satellite appears, that fo he may not miftake one for another when he is to obferve any of their Eclipfes.

Felipfes and Plases of the Satellites of Jupiter obfereed at Paris;
 by0.892

XC. 1. An. 1688. The French Afronomers have made thefe Obfervations by a 14 Foot Telefcope.

Ociob. 7. $10^{\mathrm{h}} 3^{2}$ p.m. The Firft Satellite (called Pallas) entred upon the Face of Jupiter.

OEzob. 8. 8^{h} I 1 '. The Second Satellite (called Funo) went out behind Fupiter.
OZzob. 9. $8^{\mathrm{h}} 54^{\prime}$. The Second Satellite went out from the Face of Fupier.
OEFob. 16. $10^{\text {h }} 4^{\prime}$. The Second Satellite entered upon the Face of Fupiter.
Octob. 22. $10^{\text {h }} 41^{\prime} 33^{\prime \prime \prime}$. The Firft Satellite entred into the Shadow of Fupiter.

Nor. 12. $10^{\text {h }} 40^{\prime}$. The Second Satellite entred into the Shadow of 'fupiter.
Nav. 20. $2^{\text {h }} 38^{\prime} 30^{\prime \prime \prime}$. After Midnight, the Ibird Satellite (called Tbemis) entred into the Shadow of Fupiter.
2. An. 1671 , Sept. 7 . New Style, in the Morning. It had been agreed on A d Dantrick ; ty by Mr. Cul/ini at Paris, and Mr. Picard at Uraniburg, to obferve the Occultation of the firt Satellite of fupiter; wherefore I alfo thought proper to attend M. Hevelius. \%. diligently to the fame Phænomenon. Therefore at $4^{h} 27^{\prime}$ as foon as $\mathcal{F u p i t e r}$ appeared, I tound that all his Satellites were prefent alio, three to the left Hand, and one to the Right. The two which were neareft him to the left feemed to be not far from his Limb, as alfo that on the right, which was the leaft of them all. All four appear'd diftinctly almoft to $5^{\mathrm{b}} 7^{\prime}$, tho' now the Heavens began to grow blue. At $5^{\text {b }} 12^{\prime}$, beyond my Expectation that nearer Satellite on the left Hand (in refpect of my Tube, which exhibits Objects in an inverted Order,) feem'd to me intirely to vanifh, the three others remaining, though that on the right Hand alfo feem'd to approach nearer and nearer to Fuipiter. Whether indeed that was the very Moment of the Immerfion of that Satellite, I dare not certainly affirm; however that Occultation did not happen later. But I can readily grant that it might happen perhaps about a Minute fooner, or thereabouts.

By the Watcb in the Morn.	Obfervations.	$\begin{aligned} & \text { Diftances } \\ & \text { and Alli- } \\ & \text { tudes. } \end{aligned}$	The Time correEted.
h.			h. ${ }^{\text {a }}$
$43^{6} 25$	7upiter was firft feen		4320
$\begin{array}{llll}5 & 7 & 25 \\ 5 & 16\end{array}$	The Altitude of Procyon	3443	$\begin{array}{llll}5 & 2 & 7\end{array}$
${ }_{5}^{5} 11635$	The firft, of Fupiter's Satellites difappeared		5120
56	The Altitude of Procyon	3639 ol	52327

3. An. $167 \frac{\frac{1}{2}}{2}$. Feb. 17. $7^{\text {h }} 25^{\prime}$ Afternoon, the Altitude of Fupiter was $15^{\circ}-46$ Derbvan 54.: But at $8^{h} 59^{\prime}$, Afternoon, or perhaps one Minute fooner, the firtt Sa- Mr. Flamilted. bellite on the right Hand of Yupiter fell into his Shadow, and as he vanifh'd his Diftance from the Limb was fo fmall, that I could not form a Judgment how much it was.

March $19^{1} 6^{\mathrm{h}} 45^{\circ}$. The Altitule of $\mathfrak{F u p i t e r}$ was $29^{\circ} 35^{\circ}$. The firft Satellite ib. 4237. approach'd to the Limb of Fupiter, to which it was joyn'd at $7^{\text {b }} 5 \mathrm{I}^{\prime}$.
 $25^{\circ} 0^{\prime}$. The firf Sutellite appeared to be about $\frac{1}{6}$ of his Diameter from his Limb, being about to difappear behind him.

(410)

fit $8^{h} 6^{\prime}$ The Altitude of Fupiter was $29^{\circ}: 20^{\prime}$. He enter'd Yupiter, his height being $27^{\circ} 26^{\prime}$; for certainly he could not be feen.
At Paris; by M. 4. Fuly 6. New Style, 1675 . before Midnight, the Hour being $11^{\text {h }}$ and $16^{\prime \prime}$ Cafinini. n. $1: 7$ precifely. Yuppiter's fecond Satellite began to emerge out of the Shadow of this p. 389. Planet, which had obfcur'd him.
Ph. col. n. 1. \quad 5. An. 1679. Fwir. 5.ft. n. $3^{\text {n }}$ m. I difcovered 3 Satellites of fupiter: The
 Firft was diftant Weftward of the Limb of \mathcal{F} upiter, a litcle lefs than a Diameter; the Second was diftant, on the Eaft-fide, a little more than a Diameter, The Third was more Eaftward than the Second, by fomewhat lefs than a Diameter of fupiter.

The Equation of Lighs; ty 3 . Romer.
』. $1_{3} 6$. p. S $_{93}$.
Fig. 145.
June, An. 1677.
XCI. 1. Let A be the Sun, B Fupiter, C the Firf Satellite of Fupiter, which enters into the Sbadow of Yupiter, to come out of it at D; and let EFGHLK be the Earth placed at divers Diftances from Fupiter.

Now fuppofe the Earth, being in L towards the 2^{d} Quadrature of Fupiter, hath feen the Firf Satellite at the Time of its Emerfiom, or iffuing out of the Shadow, in D; and that about $42 \frac{1}{2}$ Hours after (viz. after one Revolution of this Satellite) the Earth being in K , doth fee it returned in D ; it is manifeft, that if the Light require time to traverfe the Internal $L K$, the Satellite will be feen returned later in D, than it would have been if the Earth had remained in L; fo that the Revolution of this Satellite being thus obferved by the Emerfions, will be retarded by fo much time as the Light fhall have taken in pafing from L to K ; and that on the contrary, in the other Quadrature FG, where the Earth by approaching goes to meet the light, the Revolutions of the Emerefo ons will appear to be fhortened by fo much, as thofe of the Eimerfions had appeared to be lengthened.

The Theory of Jupiter's Sa-
rellies ; by M. tellites; by M. Cafini.
ก. 1213. p. 68 r . Sept. An. 1676 M. Caffini's Tables, for the
Eclipfes of the Eclipfes of of Jupiter, A briagerd, and Refiuced to the Meridian of London; by Mr. Edm. Halley.
ก. 21.p. 238. Nov. AD. 1694.

This new Equation of the Motion of Light, which hath been eftabliffed by the Royal Academy, and in the Ofervatory for the fpace of 8 Years, was confirmed by the Emerfion of the Firft Satellite obferv'd at Paris 1676. Nov. 9. $5^{\mathrm{b}} 35^{\prime} 45^{\prime \prime}$, at Night, 10^{\prime} later than it was expected by deducing it from thoie that had been obferved in the Month of Auguff, when the Earth was much nearer to $\mathcal{F u p i t e r : ~}$
XCII. r. M. Caffini, having formed a new Hypothefis for the Satellites of Fupiler, different from that of Galileo, thinks that the Plane of their Orbs is inclined to the Plane of the Ecliptick: He fettles their Nodes with the Orbs of Fupiter towards the 13° of Leo and Aquarius: and finds that the Obliquity of their Circles to the Orbit of Jupiter is almoft double to the Obliquily of this - Orbit to the Ecliptick.
2. M. Cafini, in the laft Treatife of a Book, entitul'd, Recuil d'Obfervations faites en Plufieurs Voyages, \&cc. has employed his Skill, to make eafy the Calculation of the Eclipfes of the Firft Satellite of Jupiter, which is otherwife operofe even to the fkilful. The Tables have for Principles, that this Satcllite revolves to the Sun in $1^{\text {d }} 18^{\mathrm{h}} 28^{\prime} 36^{\prime \prime}$, fo precifely, that in 100 Years the Difference is not fenfible: That in the Time of the Revolution of Fupiter to his Aphelion, which he fuppofes in $4332^{\text {d }} 14^{\mathrm{h}} 52^{\prime} 48^{\prime \prime}$, this Satel-

(411)

lite makes exactly 2448 Months ar Revolutions to the Sun, and dividing the Orbit of fupiter into 2448 parts, he has in a large Table of Equation fhewn what is the Inequality of the Motion of Jupiter in each Revolution reduced to time ; affuming, Thirdly, the greateft Equation of 'Jupiter $5^{\circ} 32^{\prime} 40^{\prime \prime \prime}$, whence the hourly Motion of the Satellite from 'fupiter being $8^{\circ} 28 \frac{\frac{1}{2}^{\prime}}{}{ }^{3}$, it follows that the greateft Inequality (fupiter paffing the Signs of Cancer and Capricorn) amounts to $39^{\prime} 8^{\prime \prime}$ of Time, to be added in Cancer, fubtracted in Capricorn. Lafly, as to the Epocka, or beginning of this Series of Revolutions, he has determined the Apbelion of Yupiter about $1 \frac{1}{2}$ Degree forwarder than Aftronomia Carolina, and above two Degrees more than the Rudolphine Tables, viz. precifely in 9° of Libra, in the beginning of this Century; which perhaps he finds the proper Motion of Jupiter about the Sun at this Time to require: and the Number of Revolutions, fince Fupiter was laft in Peribelio, is here ftiled Num. I.

A fecond Inequality is that which depends on the Diftance of the Sun from Fupitcr, which he fays Mr. Romer did moft ingeniounly explain by the Hypothefis of the Motion of Light; to which yet Caljiwi by his manner of Calculus feems not to affent, tho' it be hard to imagine how the Earth's Pofition in refpect of Fupiter fhould any way affeet thie Motion of the Satellites. This Inequality he makes to amount to two Degrees in the Satellite's Motion, or 14^{\prime} $10^{\prime \prime}$ of Time; wherein he fuppofes "the Eclipfes to happen fo much fooner when Fupiter oppofes the Sun, than when he is in Conjunction with him. The Diftribution of this Inequality he makes whiolly to depend on the Angle at the Sung between the Earth and Fupiter, withoutiany Regard to the Excentricity of $7 u$ piter, (who is fometimes $\frac{1}{2}$ a Semidiameter of the Eartb's Orb farther from the Sun than at other times) which would occafion a much greater Difference than the Inequality of Jupiter and the Eartb's Motion; both of which are accounted for in thefe Tables with great Skill and Addrefs. But what is moff ftrange, he affirms that the fame Inequality of two Degrees in the Motion, is likewife found in the other Satellites, requiring a much greater Time; as above two Hours in the $4^{\text {th }}$ Satellite: which if it appeared by Obfervation would overchrow M. Romer's Hypothefis entirely. Yet I doubt hot herein to make it demonftratively plain, that the Hypothefis of the Progreflive Motion of Light is $\nu_{i d .}$ Sup. §. found in all the other Satellites of Fupiter to be neceffary, and that it is the fame xcl. in all; there being nothing near fo great an Annual Inequality as M. Caffini fuppofes in their Motions, by his Table, p. g. and his Pracepta Calculi. The Method however ufed to compnte this, is very curious; for having found that
 Revolutions of the Satelite of Fupiter, the Number of Revolutions fince 'Fupiter was laft in Oppofition to the Sun is what he calls $N u m$. II. in which the Inequality of the Earts's Motion is aHowed for in the Months, and that of $7 u-$ piter's Orb by a Table of the Equation of Num. II. andounting in all to $3 \frac{1}{2}$ Revolutions of the Satellite to fupiter. This in the Tables following I have thought fit to leave out, Shewing how to find it by the hetp of the former Equation of Num. I. The Numbers are in effect the fame with M. Cafini's, only reduced to our Style and Meridian, and the form of them abridged, and, it's hopued, amended.

Epochs of the Revolutions of the firft Satellite to the Sbadoro of Jupiter, under the Meridian of London.

Epocbs.

(413)
 Epocbs of the Revolutions of the firft Satellite to the Shadows of Jupiter, under the Meridian of London.

(414)

A Tabte of the Rcvolutions of the firf Satellite of Jupiter in a Year.

(415)

A Table of the Rerolutions of the firft Satellite of Fupiter in a 1 1ex.

May.	N. I.	N.II.	Fuly.	I. 1	N. II.
d. h.			h. d.		
- 81244^{8}	68	686	$7 \quad 5481$	103	102
$2 \begin{array}{lllll}2 & 2 & 53 & 24\end{array}$	69	696	$3 \quad 342410$	104	1035
3212200	70	706	42030010	105	104
	71	716	$61433^{1} 3610$	106	1054
$\begin{array}{lllll}7 & 10 & 19 & 12\end{array}$	72	725	8 8 900012	107	1065
9 9 44748	73	735	$10 \quad 3284810$	108	1073
10231024	74	745	$\begin{array}{lllllllll}11 & 31 & 57 & 24 \\ 1\end{array}$	109	1083
	75	755	131626001	110	1093
	76	764	$15 \begin{array}{llllll} \\ 15 & 10 & 54 & 36\end{array}$	III	1102
			$17 \quad 5 \quad 2312$	112	III
$\begin{array}{llll}16 & 6 & 42 & 12\end{array}$	77	774	18235148 I	II3	1122
18 1 10104^{8}	78	784	$l_{20}^{20} 181820241$	114	$1{ }_{1} 31$
$\begin{array}{lllll}19 & 19 & 39 & 24\end{array}$	79	793	$\begin{array}{llllll}22 & 12 & 490011\end{array}$	115	$\mathrm{II}_{4} 1$
2 I 148000	80	80	$\begin{array}{llllllll}24 & 7 & 17 & 36\end{array}$	116	1151
	81	813			
$\begin{array}{llllll}25 & 3 & 5 & 12\end{array}$	82	823		117	1160
$\begin{array}{lllllll}26 & 21 & 33 & 48 \\ 8\end{array}$	83	833	$27 \quad 201448$ I	118	1170
28816	84	842	29) $1443 \quad 241$	119	1180
30103100	85	852	$\left\lvert\, \begin{array}{lllll}3 \mathrm{I} & 9 & 12 & 00\end{array}\right.$	120	1190
7une.			Auguf.		
45936	86	861	$0 \quad 912001$	120	o
	87	871	2.34036	121	1199
$4{ }_{4}^{4} \begin{array}{llllll}7 & 56 & 48\end{array}$	88	880	$\begin{array}{llllll}3 & 22 & 9 & 12\end{array}$	122	120
6122524	89	890		123	1219
			711 624	4	
$8 \quad 65400$	90	900	$9 \quad 53500$		123
$\begin{array}{lllll}10 & 1 & 22 & 36\end{array}$	91	909	$1 \begin{array}{lllll}1 & 0 & 3 & 36\end{array}$	126	124
11 19 51 13 12	9^{2}	919		127	125
$\begin{array}{llllll}13 & 18 & 19 & 4^{8}\end{array}$	93	$9^{2} 9$		128	126
$\begin{array}{llllll}15 & 8 & 48 & 24\end{array}$	94	938	$16 \quad 72924$	129	
$\begin{array}{lllllll}17 & 3 & 17 & 00\end{array}$	95	948	18 I 580001	130	128
18214536	96	957	192026361	131	129
$\begin{array}{llllll}20 & 16 & 14 & 12\end{array}$	97	967	211455121	132	130
104248	9^{8}	977	$23 \quad 9 \begin{array}{lll} & 23 & 48\end{array}$	133	131
$24 \quad 51124$	99	986	$\begin{array}{llllll}5 & 3 & 52 & 24\end{array}$	134	132
$25 \quad 234000$	100	996	26222100	135	1336
	101	1006	$\begin{array}{llllll}28 & 16 & 49 & 36\end{array}$	13^{6}	134
				137	1356
$291237{ }^{12}$	102	1015			

ATable of the Revolutions of the firft Satellite of Jupiter in a Year.

September.		N. II.	November. ${ }^{N}$	N.I.	N. 11.
d. h. $\text { I } \quad 54648$	138	$13^{6} 6$	$\begin{array}{cccc} \text { d. h. } & \prime \prime \\ \text { o } & 9 & 59 & 12 \end{array}$	172	1707
300015	139	1376		173	1718
$\begin{array}{llllllllll}4 & 18 & 44 & 00\end{array}$	140	1386		174	$17{ }^{17} 28$
$\begin{array}{lllll}6 & 13 & 12 & 36\end{array}$	14^{1}	139	51725001	175	1738
$8 \quad 74112$	142	1406		17	1748
$10 \quad 20948$	143	141	962212	77	759
112003824	${ }^{1} 44$	142	It 00504811	178	
$1315 \quad 700$	145	1435		179	1779
$15 \quad 935 \quad 36$	146	1445		180	1788 180
				181	
12	147	145	$18 \quad 2 \begin{array}{ll}15 \\ 12\end{array}$	2	1810
$18 \quad 2232 \begin{array}{lll}18\end{array}$	148	$14^{6} 5$		183	1820
$\begin{array}{lllll}20 & 17 & 1 & 24\end{array}$	149	1475		18	1830
22 II 3000	150	148	23101100	18.	1840
$24 \quad 5 \begin{array}{llll}58 & 36\end{array}$	151	149	$\begin{array}{lllll}25 & 4 & 39 & 36\end{array}$	188	1
$\begin{array}{llllll}26 & 00 & 27 & 12\end{array}$	15^{2}	150		187	186
$27 \begin{array}{lllll}18 & 55 & 48\end{array}$	153	151		18	1872
29 13 24 24	154	152		18	18
Ociober.					
75300	155	1535	$12 \quad 5241$	189	1882
$3{ }^{3}$	156	1545	2634001		1892
4205012	157	1555	$4 \begin{array}{llllllll}4 & 1 & 2 & 36\end{array}$	191	190
$\begin{array}{llllll}6 & 15 & 18 & 48\end{array}$	158	1565		19^{2}	1913
	159	1575	$7{ }_{7} 1359481$	193	1923
1041600	160	1585	$\begin{array}{lllll}9 & 8 & 28 & 24\end{array}$		4
$\begin{array}{llllll}11 & 22 & 44 & 36\end{array}$	161	159	II 2 5700 1 1	195	1944
	162	160	$\begin{array}{llllllllll}12 & 21 & 25 & 36\end{array}$	196	195
$1 \begin{array}{lllllll}15 & 11 & 41 & 48\end{array}$	163	161	$14 \begin{array}{llllllll}15 & 54 & 12 & 1\end{array}$	197	196
$\begin{array}{lllll}17 & 6 & 10 & 24\end{array}$	64	1626	1610 22 48	198	197
19003900	165	163	IS $45^{1} 24$	99	1986
$\mathrm{lllll}_{20} 19197631$	166	1646	192320002	200	199
$\begin{array}{lllllll}22 & 13 & 36 & 12\end{array}$	167	1656	$\begin{array}{lllllllll}21 & 17 & 48 & 36\end{array}$	201	20
$\begin{array}{llll} \\ 24 & 8 & 4 & 48\end{array}$	168	1666		2	20
$\begin{array}{lllll}26 & 2 & 33 & 24\end{array}$	169	167	$25 \quad 6 \quad 4548$	203	2028
$2721 \quad 2001$	170	1687	$27 \quad 1 \begin{array}{llllll} \\ 27 & 14 & 24\end{array}$	204	2039
$\begin{array}{llllll}29 & 15 & 30 & 3617\end{array}$	171	1697	2819.4300	25	2049
31 9	172	1707	$30141136 \mid$		2060

A Table of the finf Equation of the Conjunctions of the fing Satellite with Jupiter，

		$1{ }^{1}+0.00$		$\operatorname{SO}_{0}^{N} \mathrm{O}_{0}^{N}{ }_{0}^{N}$	Nobry		H0009	$\cdots+\omega$	0	2
				$\begin{aligned} & \text { NNNNO } \\ & \text { NWHET } \\ & \text { NON } \end{aligned}$		$\begin{aligned} & N H N M \\ & N N N N N \end{aligned}$	ôon on a	$G+\omega N m$ ～iN oorm		＊
			00000	कのळのo	00000	Gunung		$\begin{aligned} & \text { to } \\ & 0 \end{aligned}$	＋	？
$\underset{\omega}{\omega}$			$\omega_{\sim} \omega_{\infty} \omega_{\infty}$ 	$\omega_{\infty} \omega_{\infty} \omega_{\infty}{ }_{0}{ }_{0}$ 	$\omega_{0} \omega_{0} \omega \omega_{0} \omega$ \checkmark 告	$\omega_{\infty} \omega_{\infty} \omega_{\infty} \omega_{\infty}{ }_{\infty}^{\omega}$	び		$\begin{gathered} \omega \\ \mathrm{N} \end{gathered}$	180
	$\begin{aligned} & \text { NAM } \\ & \text { NOOO } \\ & 000 \end{aligned}$		$\begin{aligned} & \text { KEOB } \\ & \text { No } \\ & 0 \end{aligned}$	으웅	$\begin{aligned} & 100 \\ & \text { No } \\ & 0 \end{aligned}$	101000 000000		$\infty \infty \infty \infty$ $80+0$	$\stackrel{\infty}{\sim}$	？
	OMNW	rav ∞ o －vw on	$\begin{aligned} & 00 \bar{N} \omega \\ & \sim N A N \end{aligned}$		冎たNN N N N さw Nơnc	TNNNNNON	NNNONON	$\omega_{0} \omega_{M} W_{N}^{W} \underset{N}{W}$ 	$\begin{gathered} \omega \\ \omega \\ N \\ \sim \end{gathered}$	等

A Table of the Jecond Equation of the Conjunctions of the firf Satellite with Jupiter．

CNSNG	＋	N－TM	べज़	べ	ovar	A ω N	0	N
$\begin{aligned} & N H H M \\ & \rightarrow G \pm 0 \end{aligned}$	$W^{N} \mathrm{NE}=$	$\begin{array}{r} -000 \\ \text { जg w } \\ \hline \end{array}$	$\begin{aligned} & 0000 \\ & \text { AW WN N } \\ & \hline N \end{aligned}$	0000 NOMA	0000 $\text { "- } 0, A$	0000 $\omega \mathrm{N}=0$		$\begin{aligned} & \text { से } \\ & \text { 20 } \\ & 0 \end{aligned}$
जkut ${ }^{\text {and }}$	WGज大		＋$+\begin{gathered}\text {＋} \\ \end{gathered}$	toww	पफ心	${ }_{N}^{\omega}=0$	m	II＇N
yano \％two	a acrer A row	coren NHEW	$+A+A$ $+\omega N 0$	$\omega \omega \omega \omega$ $\underset{\sim}{c} \omega_{v}^{w}$	$\vec{v} \operatorname{cic}_{\infty}+\infty$	$\omega_{0}^{\omega}{ }_{0}^{\omega} \underset{\sim}{N}$		－${ }^{-3}$
¢＇心0000	cy 0 cy	Vuaw	Ny－0	gुण ${ }^{\text {gu }}$	acor	ठजुजvy	a	IIN
NHM	F＝ N゙心 NG\％	5050 ＋WNH ${ }^{5}+$	Lowo $\omega+\ldots$			$\pm \omega \omega_{i} N$		\％
N二50	$\begin{aligned} & 00 \\ & 00 \\ & 0 \\ & 0 \end{aligned}$		80600	206 0	¢00 00	∞ ∞ \cdots y	${ }_{+}^{\infty}$	IIN
$\begin{aligned} & \text { FAFA } \\ & 0.01000 \end{aligned}$	$\begin{aligned} & \text { IAFA } \\ & \text { verw } \end{aligned}$	wwww gencm gram		$\begin{aligned} & \text { సै } \omega \omega \\ & \text { N゙ } \end{aligned}$	LNNN ¢心N ¢心N	NへべN	N 0 0	${ }^{\text {R }}$

A Table of baif ithe Moree of the firft Satellite in the Sbadow of Jupiter:

Hhh_{2}
From

From the fe Tables, to any given Year, Month and Day, zo find the next Eclipfe of the Firyt Satellite of jupiter, proceed thus.

1. In the Table of the Epochae find the Year of our Lord, and fet down the Day, Hours, Minutes and Seconds, with Nim. I. and Num. II. thereto annex'd; and in the Table of Revolutions, feek the Month, and Day of the Month, with the Hours and Minutes, and Num. I. and Num. II. affix'd, and add them together; and the refpective Sums fhall fhew the mean Time of the middle of the Ecliple fought, with Num. I. and Num. II. required. But it muf be obferved, that in Yon. and Feb. in the Leap Mear, one Day is to be added to the Day thus found.
2. If Nuiz2 I. be found lefs than 1224 , with Num, I. or if greater than 2448, fubtracting 2448 , therefrom, with the Refidue enter the Table, and you will have the firf Æquation to be added to the mean Time before found. But if Num. I. be lefs than 2448 , but greater than 1224 , fubtract it from 2448, and entring the fame Table with the Remainder, you fhall have the firt Fequation to be fubtracted from the mean Time. Then divide the Minutes of the faid firft Fquation by II, or rather ${ }^{34}$, and the 2 uote fhall be the Æquation of Num. II. (anfwering to the Eccentrick Motion of fupiter) to be added thereto when the fifft Fequation fubtracts, and e contra fubtracted when that adds.
3. If Num. II. thus requated exceed 225,4 fubtract 225,4 therefrom; and if the Remainder or Num. II, be lefs than $\mathbf{I I}_{3}$, with the faid Remainder or Number; or if greater than 113, with the Complement thereof to 225,4 , feek in the Iable the fecond Æquation; which being added to the Time before found, gives the true Time of the middle of the Eclipfe.
4. With Num. I. feek the half Continuance of the Total Eclipfe, which is to be added for the Emerfion, when the xquated Num. II. is lefs than 113, or if more than 225,4 , it be lefs than 33^{8}. But if it exceed 113 , or 338, then is the Semimora to be fubtracted for the Immerfion.
5. Laftly, With the Sun's true Place take out the Æquation of Natural

Vid. Sup. § XXII. 5 . which added or fubtracted according to the Title, gives the Time of the Immerfion or Emerfion fought.

Now how few Figures ferve for this Computation, will beft appear by an Example.

An. 1677. 17. $8^{\text {h }} 9^{\prime} 40^{\prime \prime}$ at Greenwich, Mr. Flamfteed obferved the firf Sa tellite to begin to emerge; that is $8^{\text {b }} 9^{\prime} 26^{\prime \prime}$; at London.

An Immerfion of this Satellite being computed after the fame manner according to thefe Tables, ought to have happened, An. 1683. Nov. 30. $16^{\text {h }} 52^{\prime} 7^{\prime \prime}$; but I obferv'd it at $16^{\text {h }} 48^{\prime} 40^{\prime \prime}$, fo that the Error was, $-3^{\prime} 2^{\prime} 7^{\prime \prime}$.
Again, M. Cafini obferved an Emerfion at Paris, An. $1693, \mathcal{F} a n .14^{\text {d }} 10^{\text {h }}$ $40^{\prime} 28^{\prime \prime}$; that is, at London $10^{b} 30^{\prime} 48^{\prime \prime}$, which thefe Tables give at 10^{b} $30^{\prime} 39^{\prime \prime}$; and therefore the Error was no more than $+9^{\prime \prime}$.

After this manner I have compared thefe Tables with many good and certain Obfervations, and farce ever find them err above 3 or 4 Minutes of Time; which Errors are exceeding fmall in comparifon of the fhort Time that the Satellites have been difcover'd.
In the Conftruction of the Table, which fhews the half Continuance of there Eclipfes, the Semidiameter of the Shadow of Fupiter is made by Cafini juft 10 Deg. and that of the Satellite 30^{\prime}; and the Satellite's afcending Node being fuppofed in 15° of Aquarius, at the end of this Century (that is $55^{\circ} 20^{\prime}$ before the Peribelion of 7 fupiter) it will thence follow, that Num. I. being 116, or 2102 , Fupiter paffes the Nodes of the Satellite's Orb, and confequently thefe Eclipfes are Central, and of the greateft Duration. But Num. I. being 215 , or 1481 , the Satellite paffes the Shadow with the greateft Obliquity, viz. $2^{\circ} 55^{\prime}$ from the Center; whence the Semimora becomes of all the fhorteft.
3. The Tables of the other three Satellites not being fo perfect or exact of the other 3 as thofe of the firit are here given in another Form. The Periods of $\overline{z t e l}$.lites their Revolutions to 'fupiter's Shade are as follow.

Whence the Table of the Firft Equation of the Firft Satellite, or M. Cafisis's larger Table, may by an eafy Reduction ferve the other three; the Equation of the $2 d$ being $2-\frac{1}{2} \frac{1}{3}$ or twice the Minutes with half fo many Seconds as there are Minutes in the Equation of the Firff, and the greatef Equation thereof $\mathrm{I}^{\mathrm{h}} 18^{\prime} 35^{\prime \prime}$.- 帅quation of the $3 d$ is $4 \frac{1}{2^{2}}$ times greater than that of the Firft, and when greateft amounteth to $2^{\mathrm{h}^{\mathrm{h}}} 29^{\prime}$. And the Æquation of the $4 / b$ being $9 \mathrm{~T}^{7} 5$ times that of the Firft, is had by fubtracting $\frac{1}{2}$ and $\frac{1}{3}$ from 10 times the 历quation of the Firft, whence the greateft becomes $6^{\prime} 10^{\prime} 28^{\prime \prime}$; fo that Num. I. and Num. II. as here collected for the Firft, may indifferently ferve all the reft.

2T Romer's cEquation of Light Defended Ibid. p. 254. rid. Sup.
4. As to the Second Equation of the other Satellites, M. Cafizi has, by his Pracepta Calculi (as is betore mentioned) fuppofed the Minutes thereof to be increafed in the fame Proportion, as intead of $14^{\prime} 10^{\prime \prime}$ in the Firfl to be $28^{\prime} 27^{\prime \prime}$ in the Second, $57^{\prime} 2^{\prime \prime} 2^{\prime \prime}$ in the Tbird, and no lefs than $2^{\text {b }} 14^{\prime \prime} 7^{\prime \prime}$ in the Fourib; whereas if this Second Inequality did proceed from the fucceffive Propagation of Light, this Æquation ought to be the fame in all of them, which M. Caffni fays, was wanting to be Mhewn, to perfect M. Romer's Demonitration: wherefore he has rejected it as ill founded. But there is a good Caufe to believe, that his Motive thereto is what he has thought not proper to difcover. And the following Obfervations do fufficiently fupply the Defect complained of in the making out of that Hypothefis.

Av. 1676, Oct. ft. n. 6 $10^{\prime \prime} 37^{\prime \prime}$, App. but $5^{\text {h }} 59^{\prime} 37^{\prime \prime}$, Equal Time; M. Calfini at Paris obferved the Emerfion of the 3 S Satellite from 'fupiter's Shadow. And again Nov. 14. following $6^{\mathrm{h}} 20^{\prime} 55^{\prime \prime}$. App. Time, but $6^{\mathrm{t}} 5^{\prime} 55^{\prime \prime}$, Eq. Time, he obferved the like Emerfion of the fame Satellite. The obferved Interval of Time between thefe Emerfrons was $43^{{ }^{\circ}} 0^{\text {b }} 6^{\prime \prime} 18^{\prime \prime \prime}$, which is $8^{\prime} 22^{\prime \prime}$ more than 6 Mean Revolutions of this Satellite, of which $4^{\prime} 27^{\prime \prime}$ arife from the Difference of the Firft Equation, and the greater Continuance of the Latter Eclipfe; fo that the other 4 Minutes is all that is left to anfwer for the Difference of the 2d Equations and Nums. II. in that Time increafing from 48 to 7^{2}, gives $4^{\prime} 3^{6^{\prime \prime}}$ for the Difference of the $2 d$ Equations of the Firft Satellite. So that here the $2 d$ Requation of the Third is found rather lefs than that of the Firff; but the Difference is fo fmall that it may rather be attributed to the Uncertainty of Obfervation: Whereas according to M. Caffori's Method of Calculating, inftead of four Minutes it ought to be $18^{\prime} 38^{\prime \prime \prime}$, and the Interval of thefe two Emerforrs $43^{d} 0^{h} 21^{\prime}$, exceeding the Time obferved by a whole Quarter of an Hour ; which that curious Obferver could not be deceived in.

The like appears yet more evidently in the Fourth Satellite. By the Obfervations of Mr. Flainfleed at Greenevich, An. 1682. Sept. 24. 17 $47^{\text {h }}$, T. disp. but $17^{\text {b }} 3^{2}$, T. Eq. the Fiunith Satellite was feen newly come out of the

(423)

Shadow; fo that about $1 \overline{7}^{\mathrm{h}} 30^{\prime}$, T. Eq. the firt beginning of Emerfion was conjectured; and after 5 Revolutions, viz. Decemb. $17^{d} 11^{h} 16^{\prime}$ or $11^{\text {b }} 18^{\prime}$, T. Eq. he again obferved the firft Appearance of the Satellite beginning to Emorge, that is, after an Interval of $83^{\circ} 17^{\circ} 48^{\prime}$; whereas this Satellite makes five mean Revolutions in 83^{d} 18 $8^{\mathrm{h}} \cdot 25^{\frac{1}{2}}$. Here we have $37^{\frac{1}{2}}$ to be accounted for by the feveral Inequalities. Of this $2 \mathbf{I}^{\prime}$ is due to the firf Æquations, which is reduced to 19^{\prime} by the Greater Continuance of the latter Eclipfe, $\mathcal{F} u$ piter then approaching to his Defcending Node: So that there remains only $18^{\prime} \frac{1}{2}$ for the Difference of the 2^{d} 玉quations, whilft the Earth approached Fupiter, by more than the Radius of its own Orb : and the Difference of the 2^{d} 历quations of the Firf Satellite, being according to Calini $8^{\prime} 30^{\prime \prime}$, the faid Difference in the Fourth ought to be $I^{\mathrm{h}} 20^{\prime \frac{1}{2}}$, inftead of $18^{\prime \frac{1}{3}}$; whence the Interval of thefe two Emerfions would be, according to his Precepts, but $83^{\text {d }}$ $16^{b} 46^{\prime}$, inftead of $83^{d} 17^{b} 48^{\prime}$ obferved. And whereas $18_{2}^{\prime \prime}$, may feem too great a Difference; it muft be noted, firf, that M. Romer had ftated the whole $2^{\text {d }}$ Iquation $22^{\prime} 00^{\prime \prime}$, which M. Ca $\sqrt{3} n i$ has diminifhed to $14^{\prime} 10^{\prime \prime \prime}$; fo that inftead of $8^{\prime \frac{1}{2}}$. M. Romar allows I^{\prime}; and fecondly, that in the firft of thefe Obfervations, being about half an Hour before Sun rife, the Brightnefs of the Morning might weli hinder the feeing of this fmalleft and noweft $S a-$ tellite, till fuch time as a good part thereof was Emerged.
XCIII. Having a great defire to obferve the Body of Mars, whilit A - The phafes ans cronyca? and Retrograde (having formerly with a Glafs about 12 Foot long, Mars about his obferv'd fome kind of Spots in the Phafe of it) tho' it was not in the Peri-Axis; ;yy $D_{r o}$ belium of its Orb, but nearer its $\Lambda_{\text {p }}$ petium; yet 1 found that the Face of it, Hook. when near its oppofition to the Sun (with a Charge, the 36 Foot Glafs. I_{n}. It. p. . . 239. made ufe of, would well bear) appeared very near as big, as that of the Moon Mar. Ans 1666. to the naked Eye.
But fuch had been the ill Difpofition of the Air for feveral Nights, that from more than 20 Obfervations of it, which I had made fince its being $R t-$ trograde, I could find notining of Satisfaction, tho' I often imagined I faw Spots; yet the inflective Veins of the Air (it I may fo call thofe parts, which being inierfpers'd up and down in it, have a greater or lefs Refractive Power than the Air next adjoining, with which they are nis'd) did make it fo confufed and giaring, that I could not conclude upon atay thing.

On the 3^{d} of Mar. $0^{b} 30^{\prime}, 166^{s}$, in the Morning, tho the Air was ftill bad enough, yet I could fee now and then the Body of Mars, which I defrribed by the Scheme B, as exactly reprefenting what I faw thro' the Glafs, as I could.

An. 1 666_{5}^{5}, Mar. 10. $0^{\text {b }} 20^{\circ}$, in the Morning, finding the Air very bad, I made ufe of a very fhallow Eye-Glafs, as finding nothing diftinct with the greater Charge ; and faw the Appearance of it as in C, which I imagined

Fig. 145

Fig. 147. might be the Reprefentation of the former Spots by a leffer Charge. About 3 of the Clock the fame Morning, the Air being very bad (tho' to appearance exceeding clear, and caufing all the Stars to twinkle, and the minute Stars to

Fig. 148.
appear very thick the Body feemed like D ; which I ftill fuppofed to be the Reprefentation of the fame Spots 'thro' a more confured and glaring Air.
But obferving Mar. 21. I was furprized to find the 'Air (tho' not fo clear, as to the appearance of fmall Stars) fo exceeding traniparent, and the Face of Mars fo very well defined, and round and diftinct, that I could manifefly fee

Fig. 149.

Fig 150

Fig. 15s.

Fig. 152.
Fig. 153.

The Parallax of Mars; by Mr. Fiamfteed. n. 89. p. 5118. л. 96. p. 6100.

Piaces of Mars Obf:rved at Darby; by Mr. Hlamiteed. л. 86. P. $5<39$. it of the Shape in E, about half an Hour after 9 at Night. The Triangular Spot on the Right-fide (as it was inverted by the Telefcope) according to the appearances, thro' which all the preceding Figures are drawn, appeared very black and difinct, and the other towards the left more dim; but both of them fufficiently plain and defined. About a Quarter before 12 of the Clock the fame Night, I obferved it again with the fame Glafs, and found the Appearance exactly, as in F; which I imagined to fhew me a Motion of the former Triangular Spot.

Mar. 22. about half an Hour after 8 at Night, finding the fame Spots in the fame pofture (as in G) I concluded that the preceding Obfervation was only the Appearrance of the fame Spots at another Height and Thicknefs of the Air; and thought myfelf confirmed in this Opinion, by finding them in much the fame Polture, Mar. 23. about half an Hour after 9 (as in H) tho' the Air was nothing fo good as before.

Mar. 28. about 3 of the Clock, the Air being light (in Weight) tho' moift and a little hazy, I plainly faw it to have the Form reprefented in I; which is not reconcileable with the other Appearances, unlefs we allow a Turbinated Motion of Mars upon its Center: Which, if fuch there be, from the Obfervations made Mar. 21, 22, and 23. we may guefs it to be once or twice in about 24 Hours, unlefs it may have fome kind of Librating Motion; which feems not fo likely.
XCIV. An. 1672 . Sept. I meafured with a Micrometer and a Tube of 14 feet, the Diftance of Mars from two fixt Stars the fame Night. Whence I learn'd that his Acronic and Perigean Parallax is never greater than 25 fecond Scruples. Whence it follows, that at moft the Sun's is $10^{\prime \prime}$, and his diftance is 21000 of the Earth's Semidiameters.
XCV. 1. An. 1672. May 14 in the Morning. The Planet Mars paffed near the Star called that at the Buttocks of Aquarius, whofe Latitude is $2^{\circ} 0^{\prime}$ $0^{\prime \prime}$. Its Place at that Time according to me was $24^{\circ} 12^{\prime} 9^{\prime \prime} \stackrel{m}{m}$; according to Street $24^{\circ} 9^{\prime} 0^{\prime \prime}$. From whence I obferved

The true Altitude of $\}$ the fixt Star being $\} 940$

1112
1200

2. An. 1683. May $3^{\text {d }} \cdot 9^{\text {h }}$ 12 $^{\text {d }}$. Mars celebrated a Conjunction with the laft $A t$ Danrzick;
 \approx, and its Latitude $\mathrm{x}^{\circ} 48^{\prime} 33^{\prime \prime}$ North; fo that at the Time of the Conjunction Mars pafs'd hardly more than $40^{\prime \prime}$ below the faid Star.
XCVI. I. M. Burattini hath fignified from Poland, that he hath obferved Spots in venus; Inequalities in Venus as in the Moon.
2. I have at laft difcovered towards the Middle of the Body of Venus ${ }^{\text {n. 10.p. p. } 173 .}$ part clearer than the reft, by which one may judge of the Motion, or the Venus by M. Reft of this Planet.

The firft time I faw it, was Octob. 14. 1666. $5^{\text {h }} 45^{\prime}$, p. m. and then this ${ }^{n}$. $35 \cdot p .687^{\circ}$ bright part was very near the Center, on the North-fide. And at the fame time I'obferv'd Weftward two obfcure Spots, fomewhat oblong; but I could not then fee that refplendent part long enough to conclude any thing from thence, nor was I able to fee any thing well of thofe parts till April 28. 1667. on which Day a quarter of an Hour before Sun-rifing, I faw again a bright part, fituated near the Section, and diftant from the Southern Horn a little more than $\frac{x}{\ddagger}$ of its Diameter. And near the Eaftern Ring I faw a dark and fomewhat oblong Spot, which was nearer to the Northern than the Southern Horn. At the Rifing of the Sun, I perceived, that this bright part was then no more fo near the Southern Horn, but diftant from it $\frac{1}{3}$ of its Diameter. This gave me great Satisfaction. But I was furprized at the fame time to find, that the fame Motion, which was made from South to North in the inferior part, of the Disk, was on the contrary made from North to South in the Superior part whence the Determination of the Motion may be better taken: For we have no Example of the like Motion, except it be that of the Libration of the Moon.

The next Day, at the Rifing of the Sun, the faid bright part was not far from the Section, and diftant from the Southern Horn $\frac{1}{f}$ of the Diameter. When the Sun was 4 Degrees high, the fame was fituated near the Section, remote from the Southern Horn $\frac{2}{5}$ of the Diameter. The Sirit being high 6° ro', it feemed to have paffed the Center, and that the Section of the Difk did cut the fame. The Sun being 7° high, it appeared yet more advanced Northward, together with two obfcure Spots feated between the Section and the Circumference, and equally diftant from one another, and from each Horn on both Sides, And the Sky being very clear, I obferved the Motion of the bright part for $1 \frac{1 \mathrm{~s}}{\mathrm{~s}}$. which then feemed to be exactly made fronz South to North without auy fenfible Inclination Eaftward or Weftward. Mean Yol. I.
time I perceived in the Motion of the dark Spots fo great a Variation, that it cannot be afcribed to any Reafon in Opticks.

May 10 and 13. Before S:in-Rifing, I faw ftill the bright part near the Center Northward.

Lafly, Frue 5 and 6. Before the Rifing of the Sum, I faw the fame bee tween the Northern Horn and the Center of this Planet, and I noted the fame irregular Variation in the obfcure Spots. But when Venus began to be farther removed from the Earth, it was more difficult to obferve the Pbenomena.

It is very disicult to determine any thing of the Motion of thefespots: Yet this I can Hay (fuppofing that this bright part of Venus, which I have obfervid, efpecailly this Xear 1667 , hath always been the fame) that in lefs than one Day it abrolves its Motion, whether of Revolution or Libration, fo as in near 23 Hours it returns to the fame Situation in this Planet, which yet happens not without fome Irregularity.

Puriseferive rus, eef dro date Dantzick; by
M. Hevclills. 2. 154 P. 419.
XCVII. An. 1683. Aly. 4. at almoft 2^{h} in the Afternoon. Venus was XCVIII.

Mercury obferved in the Sun, 1690. at Nuremberg; by M. Jo. Phil. Wurrzelbaur. n. 192. p. 483.

Time by the Clock.	Objervations.	Time by Calculation
$\begin{array}{lll} \text { h. } & & 111 \\ 6 & 32 & 00 \\ 9 & 00 & 00 \\ 9 & 4 & 30 \end{array}$	OETOb. 30. Afternoon, An. 1690. Os Pegafi culminates \quad \qquad Andromedn's Head culminates \qquad \qquad fupiter culminates \qquad \qquad	h. 6.2845 $8 \cdot 5^{2} 17$
$8 \quad 3000$	OEFOb. 3 1. Morning. The Sun emerged out of the Clouds; above his Difk, in the Table of Obfervation, at the Diftance of more than half a Digit from the Vertical to the right Hand, (tho' really to the left,) Mercury appear'd going out of his Limb.	
$\left\|\begin{array}{rrr} 8 & 3 & 00 \\ & & \\ 8 & 49 & 00 \\ 8 & 59 & 45 \\ 9 & 7 & 10 \\ 9 & 50 & 00 \\ 11 & 1 & 30 \end{array}\right\|$	After Mercury had adhered a Minute of Time to the undulating Limb of the Sun, he went out at 14° from the Zenith towards the North. The Altitude of the Sun	h. $\prime \prime$ $\prime \prime$ 8 38 38 8 47 48 8 56 24 9 38 7 10 56 32

The Ratio of the Diameters of the Sun, and of the Nucleus of Mercury, while he continued in the lucid Difk of the Sun, as far as could be guefs'd through the Air that was pretty thick, was as 1000 to $8 \frac{1}{2}$. After he had arrived
rived at the Limb of the Sun, and had adhered almoft a Minute to the undulating Limb, and had recovered his genuine Roundnefs; (for he had aflumed as it were an Elliptical Form before, from the Light of the Sun's Difk, the proportion was as 1000 to $12 \frac{1}{\frac{1}{3}}$.
XCIX. An. 1697. Nov. 3. New Style; at $7^{\text {h }} 25^{\prime}$. After the Sun had e-Merory ot merged out of the Clouds, directing my Telefcope to him, the Difference of frrved in the the right Afcenfion of the Center of Mercury to the Weft, and the Center of sum. Nove, 3 , in: the Sun, was obferved by the Clock -- $0^{\circ} 11^{\prime} 52^{\prime \prime}$
The Difference of the Declination of Mercury to the South was 0 $\quad 6 \quad 20$
At $8^{\mathrm{h}} 3^{\prime}$. The Difference of Right Afcenfion of the Centers of $\}$
Mercury to the Weft and of the Sun was, Hours $\} 01530$
The Difference of Declination was, Degrees _- 0442
At $8^{\text {b }} 8^{\prime} 3^{8^{\prime \prime}}$. The preceding Limb of Mercury arrived at the preceding Limb of the Sun.
*At $8^{4} 10^{\prime}$ '24". Mercury wholly emerged out of the Sua's Difk, being obferved with a Telefcope of 18 Feet.
From thefe Obfervations compared together, as far as can be collected from fo fhort an Intetval, I found by Trigonometry that Mercury came to the Middle of his Path in the Sun's Difk at $6^{b^{1}} 11^{\prime} 18^{\prime \prime}$ in the Afternoon.

And that the Afcending Node of Mercury was in $814^{\circ} 42^{\prime}$. fill more advanced than by the Obfervations of the Year 1677.

Alfo I found by comparifon of the laft Obfervations, that the Inclination of Mercury's Orbit to the Ecliptick was $6^{\circ} 23^{\prime}$; which however, becaufe of the fhort Interval of thefe Obfervations, I dare not prefer to that which I derived from the Cbinefe Obfervations of the Reverend Father Fontendy, which were diftant by a much greater Interval. This was $6^{\circ} 4^{\circ}$. which approaches nearer to the Rudolphine Tables.
C. It has been long ago difcover'd, not only from the Principles of true themate enn Aftronomy, but upon the Credit of the beft Obfervers, that the Planets Mir-jangion of the cury and Venus fometimes enter the Difk of the Sum, and are feen within his witherur the sunes; bright Orb to pars along like blackifh Spots. But by what Law and on what iy Mr. Fallery.
 our View, has not yet (I think) been duly determin'd by our modern Aftronomers. Sure I am, that about this Matter I have feen nothing yet in Print. Therefore I thought it might not be unacceptable, if I feriouly apply'd myfelf to this Inquiry; and I truft that in this Differtation I fhall fully unfold the whole Affair, which is perplexed enough, and undertood but by few.

It is fufficiently manifeft, that thefe Phates of thefe Planets always happen when they are retrograde and in their Conjunctions with the Sun; that is, when the Sun is fo near their Nodes, that the Latitude of the Planet in Conjunction with the Sun, may not exceed the Sun's Semidiameter. Now that I may the more cafily inveftigate the Linnits and Conditions of thefe Conjunctions, and as the Elements of Calculation for each of thefe Planets are very diferent, I fhall manage them feparately; and firft I will begin with Mercury.

We are well affured, that the Afcending Node of this Planet, according to the lateft and beft Obfervations, is about 15 Degrees in Taurus, or rather at $0^{\circ} 15^{\circ} 44^{\prime}$ from the firf Star in Aries, in the prefent Age. And that the Defcending or Oppofite Node is at $6^{3} 15^{\circ} 44^{\prime}$ from the firft Star of Aries. And the Angle in which the Plain of Mercury's Orbit is inclined to the Ecliptic, is pretty well determin'd by Kepler to be $6^{\circ} 54^{\prime}$. Now by the moft approved Hypothefes it appears, that when Mercury is in his Afcending Node his diftance from the Suin is $313^{6} 5$ of fuch Parts, as the mean Diftance of the Sun from the Earth is 100000 . But when he is in his other Node, his Diftance then meafured in the fame Parts is 45308 . But the Sun when oppofite to the Afcending Node, is diftant from the Earth in Conjunction to the fame 98955 of the fame Parts; but at the other Node the fame Diftance is 101007 . And therefore Mercury in Conjunction with the Sun at the Afcending Node is difo tant from the Eartb 67591 Parts, and at the Defcending Node 55699 Parts. As thefe differ very widely, the Conjunctions made at different Nodes mult be confidered feparately; and for brevity fake we fhall give the Elements of Cal culation in a Synoptical Manner.

Mercury being Retrograde is in central Conjunction with the Sun, at the Afcending Node, in the Montt of October; and from the aforefaid Hypothefes we 乃all bave,

The Sun's I.ongitude from the firft Star of Aries - 6154400
The Longitude of Mercury feen from the Sun ——O $\quad 154400$
Mercury's Diftance from the Sun
Mercury's Diftance from the Earth

The Angle of the Inclination of Mercury's Orbit - $\quad 65400$
Six Hours Motions of Mercury feen from the Sun - $\quad 0 \quad 13^{2} 5^{8}$
The Sun's Motion in the fame fix Hours - - - 0 I 5
Hence Mercury's Motion from the Sun in fix Hours - o I 1553
And his Motion in 6 Hours from the Sun feen from the Earth O 03512
And the Angle of Mercury's Path feen within the Sun with the
Ecliptic

- 81500

Hence Mercury's Motion in 6 Hours in his vifible Orbit _o 03540
Then Mercury's Motion in a Sidereal Year beyond 4 Revolutions $1{ }_{2} 24458$
Therefore in 13 Years - - 11214644
Therefore wanting to 54 intire Revolutions \quad O $\quad 8 \quad 1316$ d. h.

Which Space Mercury paffes over in
In which time the Sun's Place is advanced, and the Situation of the Conjunction in the Node is as much diftant from the Conjunction of the Eartb
Now that Arch view'd from the Earlb is
Whence from the given Angle of the Path feen $8^{\circ} 15^{\prime}$: the Bafe may be found, or the Diflance from the vifible Conjunction

Which Arch is paffed over by Mercury according to the given horary Motion in
But 13 fidereal Years exceed fo many Gulian with three Intercalations by
Therefore Mercury returns to the Sun after ${ }_{3} 3$ Fulian Years, and
d. h. moreover
Or with four Intercalations, if the foregoing Year be the third from the Biffextile
But from the Arch $5^{\prime}{ }^{\prime} 10^{\prime \prime}$. and the given Angle, the Perpendicular, or the neareft Diftance of the Conjunction from the Sun, is - - - - - -
Therefore the Conjunction confpicuous within the Sun after 13 Years proceeds more Northerly $8^{\prime} 3^{\prime \prime}$.

By a like Reafoning in 46 Sidereal Years the Conjunetion moves
$\begin{array}{llll}11 & 28 & 36 & 8\end{array}$ Therefore to 191 intire Revolutions are wanting

In which the Sun advances - — - O 0204 I
This Arch view'd from the Earth becomes
And the Bafe belonging to it is
But the Time in which Mercury defribes the Bafe is - -
But 46 Sidereal Years exceed fo many fulian Years, with 11 Intercalations, by - - -
And Mercury returns to the Sun after 46 Fulian Years, and moreover
Or with 12 Intercalations, as it happens when the foregoing Year in the fecond or third from the Bilfextile

- 936

That is in Time
h. ? 30 But the Perpendicular, by which Mercury advances Northerly,

Now the moft accurate Period of Mercury to the Sun is finifh'd in 263 Sidereal Years, and moreover

13000

But thefe Sidereal Years exceed fo many Julian, with 66 Intercalations, by
Whence after 26_{3} Fulian Years Mercury returns to the Sun, but later by - _ - _ -

> d.

Now if the foregoing Year is biflextile, let there be added - I 113130 Then after this Interval he goes more to the North by - 00010

Now the other more extenfive Periods are very eafily derived from thefe already found, and are of 6 or 7 Years.

That which is compleated in 7 Years depreffes Mer cuyy $22^{\prime} 47^{\prime \prime}$, towards - the South, and comes fooner by 7 whole Days, excepting 9 Minutes, if there are two Intercalations. But with one Intercalation, that is when the foregoing Year is Bifextile, 6 Days are to be fubtracted, adding only 9 Minutes as before.

But that Vagabond Planet is feldom again to be found in the Sun's Difk after 6 Years; for having this Period, he paffes $30^{\prime} 50^{\prime \prime}$ more to the North: And this later by $9^{d} 17^{\text {b }} 25^{\prime}$, if the foregoing Year be the fecond or third from the Biffextile, otherwife $8^{d} 17^{\text {b }} 25^{\prime}$. are to be added.

Iil like manner if the Conjunction bappen at the Defcending Node, in the Month of April.

The Sun's Longitude from the firft Star of Aries _- 0×4400
The Longitude of Mercury feen from the Sun -_ 6154400 The Diftance of the Planet from the Sun as before - 45308 His Diftance from the Eartb
The Motion of Mercury feen from the Sun, in fix Hours
The Sun's Motion in the fame Time -_ O $\quad 4321$
The Motion of Mercury from the Sun $\quad 0 \quad 0 \quad 28 \quad 5^{2}$
Hence the Angle of the Path of Mercury feen within the Sun's
Difk made with the Ecliptic becomes - - $\quad 0101800$
But his Motion feen from the Earth, in fix Hours is 00235^{2}
Whence if we follow the Method of the foregoing Calculation, it is found that after 13 Years, and moreover $3^{d} 7^{\text {h }} 37^{\prime}$. Mercury will return to his Conjunction with the Sun. And if the foregoing Year be the third from the Biffextile, then only $2^{d} 7^{\text {h }} 37^{\prime}$. are to be added, then Mercury will be found to move $16^{\prime} 55^{\prime \prime}$ more to the South.

But after 4^{6} Years, with 12 Intercalations muft be acded $0^{d} 7^{\text {h }} 14^{\prime}$. and there will be had Mercury in Conjunction with the Sun in a more Southern Path by $2^{\prime} 23^{\prime \prime}$. But if the foregoing Year be Biffestile, or the firt from it, there muft be added $1^{d} 7^{\text {b }} 14^{\prime}$, that the Conjunction may be had accurately. In like manner after 263 Years, in which Mercury will decline towards the South o' $22^{\prime \prime}$, there muft be added $\mathrm{I}^{\text {d }} 11^{\text {h }} 49^{\prime}$ or $11^{\text {h }} 49^{\prime}$. according to the Rule prefribed in the former Cafe.

But in 6 or 7 Years, becaufe of the Vicinity of the Earth and the Planet, and therefore becaufe of the Arches enlarged at this Node, he does not retirn to the Sun fo as to appear within his Dilk. But after 33 Years he paffes the Sun at a more northerly Path of $14^{\prime} 2^{\prime \prime}$. And the Moment of Conjunction will be had by fubtracting $3^{\text {d }} 0^{\text {b }} 25^{\prime}$, from the time of the former, if it be in the third Year from the Biffextile. Otherwife only $2^{\text {d }} 0^{\text {h }} 23^{\prime}$ muft be fubtracted.

Thefe being found it will be eafy to continue the Calculation for all thefe Conjunctions of Mercury with the Sum, and that with the greateft certainty, and without any doubr whether or no all that are poffible are included. By Addition alone the Moments of the Comjunctions will be obtain'd, and the Diftances of the Planet from the Center of the Sun; whence alio by help of

(431)

the Table the Durations of thefe Eclipfes, as they may be called, may be taken out, fo that nothing may be wanting to compleat this Affair.

As to the Epochs, they may be found with more fafety by the Induftry of Obfervers, than derived by any fubtile Calculation. Therefore in the firft Cafe we have made choice of that motable Tranfit of Mercury, which I myfelf made a moft compleat Obfervation of, in the Ihand of St. Helena, Odxob. 28. Ain. 1677, Old Style, and whofe Middle I determined from the Beginning and End, to be in the faid Inand at $0^{\text {h }} 4^{\prime}$ Afternoon, but at London $\mathrm{C}^{\text {h }} 28^{\prime}$ Afternoon. Now the Path which the Planet feem'd to obferve, was $4^{\prime} 40^{\prime \prime}$ more northerly thai the Sun's Centdr. In the other Cafe, that is, when Mercury is in Conjunction with the Sun in the Month of April, I have thought fit to take the Epoch from the learned Hevelius's Treatife of Mercury feen in the Sun, $p .7^{2}, 75$, which is, that sipnil 23. An. 1662 , Otd Style, at $6^{b} 8^{\prime}$ Afternoon at Dantzick, that is, at $4^{\mathrm{h}} 5^{22^{\prime}}$ at London, Mercury appeared very near the Center of the Sun, as being in the Middle of his Tranfit, and at the fame Time was diftant from that Center $4^{\prime} 2^{\prime \prime} 7^{\prime \prime}$ to the North. Hence by the foregoing Precepts it will be a Work of but little Trouble, to exhibit in order all the vifible Conjunctions of Mercury with the Sun at the fame Time. And for an Example that any one may imitate hereafter, here are all the Phenomena of this kind, that have ever appeared this prefent Age fince the Invention of the Telefcope, or that will appear to Pofterity in the Age following.

A Series of the Moments at wobich Mercury is Seen in Conjunition with the Sun, and witbin bis Dik, for the prefent and the next Age, with the Difances of the fame Planet from the Sun's Center.

In $A P R \quad 1 \quad L$.

rears	Times of the Conjuntion.		Difances from the Sun's Center.		
	d. h .				
1628	25	15	9	35	S.
1661	23	52	4	27	N.
1674	$26 \quad 12$	29	12	28	S.
1707	$24 \quad 12$	6	1	34	N.
1720	$26 \quad 19$	43^{*}	15	21	
1740	2111	43	15	36	N.
I753	$24 \quad 19$	20*	1	19	
1786	$22 \quad 18$	57^{*}			N
1	26	34		12	

$$
\text { In } O C C T O A B E R .
$$

| Years | Times of the Con-
 junction. | Diftances
 tbe
 ter. Sun's |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | drom- | |

Thofe Tranfits which have the Mark *, are but partly vifible at London; but thofe which are marked **, are totally vifible.

Now it is to be obferved, that at the Afcending Node of Mercury in the Month of OEtober, the Diameter of the Sun takes up $32^{\prime} 34^{\prime \prime}$, and therefore the greateft Duration of a Central Tranfit is $5^{\mathrm{L}} 29^{\prime}$. But in the Month of April the Diameter of the Sun is $31^{\prime} 54^{\prime \prime}$, whence by reafon of the flower Motion of the Planet, there arifes the greateft Duration 8 h I^{\prime}. Now if Mercury approaches obliquely, thefe Durations become fhorter on account of the Diftance from the Center of the Sun. And that the Calculation may be made more perfect, I have added the following Tables, in which are exhibited the half Durations of thefe Eclipfes, to every Minute of the Diftance feen from the Center of the Sun. Thefe added to or fubtracted from the Moment of Conjunction found by the foregoing Table mark out the Beginning and End of the whole Phenomenon.

OCTOBER.

$\begin{array}{\|c} 4 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	T'be balf duration
,	h. '
0	$244 \frac{8}{2}$
1	244
2	243
3	$24^{1 \frac{1}{2}}$
4	$239 \frac{1}{2}$
5	$236 \frac{1}{2}$
6	233
7	$288 \frac{1}{2}$
	223
9	217
10	210
II	2 I
12	151
13	I 39
14	I 24
15	14
$15^{\frac{1}{2}}$	- 50
16	- 30

APR1L.

Thefe Numbers truly reprefent all the Obfervations hitherto made, nor have I any reafon to doubt of the future, fince of all the Planets Mercury being neareft the Sun, approaches fo near to his Center, that it is leaft difturb'd by the Intervention of other Centers; nor is it fenfibly affected by thofe Deviations which arife from the Syftem of the reft, to which the fuperior Planets, and efpecially Saturn, is much expofed.

I have purpofely omitted the Parallaxes as very fmall, and which being different in different Places, ought not to be admitted in a general Calculation. And likewife becaufe it is not yet certain how much they are, but rather may be very fafely derived from fuch Obfervations. Neither have I taken any Account of Mercury's Diameter, becaufe being incredibly fmall, he feems to adhere to the Sun's Limb only a very few Minutes. From a moft accurate Obfervation I have found, that hardly two Minutes were over whilft he wholly came out of the Sun, OEFO6. 28. 1677. whence I concluded his Diameter to be Vol. I. K k k
0^{\prime} II"
$0^{\prime} I^{\prime \prime}$; and according to the ratio of the Diftances from the Earth, at the other Node it was almoft $\sigma^{\prime} 13^{\prime \prime \frac{1}{2}}$. Therefore then $3 \frac{\pi}{2}$ Minutes of Time were fpent, whilft the whole Planet directly pafs'd through the Limb of the Surr. But when he paffes obliquely, he continues fomething longer, according as the Secants of the Angles of Incidence are encreafed. Alfo there is hardly any need that we fhould niake any Eftimate of the Equations of Time; becaufe a great many Days they continue conftant, and as it were invariable on both fides in each Month.

Of the vifable Conjunction of Venus suith the Sun.

Tho' Venus is the moft beautiful of all the Stars, yet like the reft of her Sex, fhe does not care to appear in fight without her borrowed Ornaments, and her affumed Splendor. For the confined Laws of Motion envy this Spectacle to the-Mortals of a whole Age, like the Secular Games of the Ancients; tho' it be far the moft noble among all thofe that Aftronomy can pretend to fhow. Now it fhall be declared hereafter, that by this one Obfervation alone, the Diftance of the Sun from the Earth may be determined with the greateft Certainty, which hitherto has been included within wide Limits, becaufe of the Parallax which is otherwife infenfible. But as to the Periods, they cannot be defcribed fo accurately as thofe of Mercury, fince Venus has been obferved within the Sun's Difk but once fince the Beginning of the World, and that by our Horrox. Take here the Sum of the Calculation, the Motions being corrected, as far as was poffible by the rude Obfervations of the Ancients.

The Longitude of the A cending Node of Venus from the firt Star of Aries - Therefore the Sun is in Conjunction with it in the oppofite Point, that is, for forme Ages about the End of November The Diftance of Venus from the Sun in Parts - 71997 The Diftance of Venus from the Earth - ${ }_{2} 643^{8}$ The Inclination of the Orbit of V enus to the Ecliptic $0 \quad 3230$ The Motion of Venus in 8 Sidereal Years, above 13 Revolutions 0 I $3028 \frac{\pi}{2}$ The Motion of Venus in 235 Sidereal Years, above 38 I Revolutions
The Motion of Venus in 243 Sidereal Years, above 395 Revolutions

From thefe Principles a Calculation being made, according to the Method explain'd in Mercury, the Intervals of Times and Diftances will come out as follows.

After 18 Years Venus returns to the Sun, taking away $2^{d} 10^{d} 52^{\frac{1}{2}}$; from the Moment of the foregoing Tranfit; and the Planet proceeds in a Path which is $24^{\prime} 41^{\prime \prime}$. more to the South than the former.

After 235 Years adding 2 ${ }^{d}$. $10^{\circ} 9^{\prime}$, Venus may again enter the Sun, but in a
more northern Path by $11^{\prime} 33^{\prime \prime}$. But if the foregoing Year is Bifextile, $3^{d} 10^{\text {d }} 9^{\circ}$ mut be added.

After 243 Years Venus may alfo pals the Sun, only taking away $0^{\text {h}} 43^{\prime}$ from the Time of the former; but procceeds more foutherly by $13^{\prime} 8^{\prime \prime}$. Now if the foregoing Year be Biffextile, add $23^{\mathrm{h}} 17^{\prime}$.

And in all thee Appulfes of Venus to the Sun, in the Month of November, the Angle of her Path with the Ecliptic is $9^{\circ} 5^{\prime}$, and her Horary Motion within the Sun is $4^{\prime} 7^{\prime \prime}$. And fince the Semidiameter of the Sun is $16^{\prime} 21^{\prime \prime}$, the greateft Duration of the Tranfit of the Center of Venus comes out $\eta^{\text {h }} 5^{6^{\prime \prime}}$.

Then let the Sun and Venus be in Conjunction at the Defending Node in the Month of May; and by the fame Numbers the fame Intervals may be commuted. After 8 Years let there be taken away $2^{d} 6^{n} 55^{\prime}$. And Venus will make her Tranfit in a more northern Path by $19^{\prime \prime} 58^{\prime \prime}$.

After 235 Years add $2^{d} 8^{h} 18^{\prime}$, or if the foregoing Year be Biflextile $3^{d} 8^{\text {h }} 18^{\prime}$, and you will have Venus more to the South by $9^{\prime}{ }^{\prime \prime} 1^{\prime \prime}$.

Laftly after 243 Years add od $\mathrm{i}^{\mathrm{h}} 23^{\prime}$, or if the foregoing Year be Biffextile, $1^{\text {d }} \mathbf{1}^{\text {h }} 23^{\prime}$, and Venus will be found again in Conjunction with the Sun, but in a more northerly Path by $10^{\prime} 37^{\prime \prime}$.

In every Tranfit within the Sun at this Node, the Angle of Venus's Path with the Ecliptic is $8^{\circ} 28^{\prime}$, and her Horary Motion is $4^{\prime} 0^{\prime \prime}$ and the Semidiameter of the Sun fubtending $15^{\prime} 51^{\prime \prime}$, the greateft Duration of the central Tranfit comes out alfo $7^{n} 5^{6}$ exactly the fame as at the other Node.

As to the Epochs, from that only Ingress which Horrox obferved, the Sun being then jut ready to feet, it is concluded, that Venus was in Conjunction with the Sun at London in the Year 1639, Nov: $24^{\mathrm{d}} 6^{\mathrm{h}} 37^{\prime}$, and that the declined towards the South $8^{\prime} 30^{\prime \prime}$. But in the Month of May no Mortal has feen her as yet within the Sun. But from my Numbers, which I judge to be not very different from the Heavens, it appears that Venus for the next Tine will enter the Sun An. $1_{7} 6 \mathrm{r} . \mathrm{May}^{2} 5^{\text {d }} 17^{\mathrm{n}} 55^{\prime}$, that being the Middle of the Eclipse, and then will be diftant from his Center $4^{\prime} 1^{\prime \prime \prime}$, towards the South. Hence and from the foregoing Revolutions all the Phenomena of this kind will be eafily exhibited for a whole Millennium, as I have computed them in the following Table.

As for the Durations of thefe Eclipfes of Venus, they may be computed after the fame Manner as thofe of Mercury in refpect of the Center. But fince Venus's Diameter is pretty large, and fince the Parallaxes alfo may bring a very notable Difference as to Time, a particular Calculation muft neceffarily be made for every Place.

Now the Diameter of Venus is fo great, that while fhe adheres to the Sun's Limb almoft 20 Minutes of Time will be elapfed, that is, when the applies directly to the Sun. But when fhe is incident obliquely, fhe continues longer in the Limb. Now that Diameter, according to Horrox's Obfervation. takes up I' $\mathbf{1 8}^{\prime \prime}$, when the is in Conjunction with the Sun at the Afcending Node, and $1^{\prime} 12^{\prime \prime}$ at the other Node. Now the chief ufe of thefe Conjunctions is accurately to determine the Sun's Diftance from the Earth, or his Parallax, which Aftronomers have in vain attempted to find by various other Methods; for the Minutenefs of the Angles required eafily elude the niceft Inftruments. But in obferving the Ingrefs of Venus into the Sun, and her Egrefs'from the fame, the Space of Time between the Moments of the internal Contacts, obferved to a Second of Time, that is, to $\frac{1}{10}$ of a Second or $4^{\prime \prime \prime}$ of an Arch, may be obtain'd by the Affiftance of a moderate Telefcope and a Pendulum Clock, that is confiftent with itfelf exactly for 6 or 8 Hours. Now from two fuch Obfervations rightly made in proper Places, the Diftance of the Sun within a five hundredth Part may be certainly concluded, as I fhall fhew at another Opportunity.
Pig. 154, 1550
Left any thing fhould feem obfcure to a Reader not much verfed in Afronomical Matters, I have delineated Schemes for the Tranfit of each Planet, by which I have endeavour'd to reprefent every thing to view.

The Motion of the Comet, A. 1664. Prediacd;by M. Auzout. n. x. P. 3 . n. 2. P. 18 .
CI. 1. M. Auzout, after he had feen the Comet (which was firft obferved in Holland Decemb. 2 1664.) 4 or 5 times, made the Epbemerides of its Motion upon an Hypothefis that it moveth juftly enough in the Plane of a great Circle, which
which inclineth to the Equinocrical about 30°, and to the Ecliptick 49° or $49^{\circ \frac{1}{2} \text {, }}$, cutting the Equator at about $45^{\circ} \frac{1}{2}$, and the Ecliptick at 28° of Aries or a little more.

He takes notice, that more Comets enter into our Syftem by the Sign of Libra n. 2. p. 1g. $_{\text {g. }}$. and about Spica Virginis than by all the other parts of the Heavens: For, both the prefent Comet and many others regiftred in Hifory have entered that way, and confequently pafs'd out of it by the Sign of Aries; by which alfo many have entered.
2. Till the 6 lb of Fe h. this Comet always advanced: But after that Day, I oberved; by found that it returned in augmenting always its Latitude. 1 left it Mar. 8. at the 18. of the Horn of Aries, almoft in the fame Latitude; and I am apt to believe it will be Eclipjed this Evening.

I hall only add, that on Feb. 13. we were furprized, to fee the Comel again much brighter than ordinary, and with a confiderable Train. Some did believe that it approached again to us. But having beheld it with a Telefcope, I foon faid, that it was joined with two fmall Stars, whereof one was pretty bright, and that this Conjunction gave the Comet that Brightnefs. Hence it was, that I affur'd my Friends here, that we hould no more fee it fo bright.
M. Auzout alfo ftrongly conceives, that this Comet could not be F_{e} b. 18 n. 6. p. yo7s f. n. where M. Hevelius, in his Prodromus Comoticus, hath placed it, viz. in prima Arietis; unlefs it be faid that it vifited that Star of Aries on the $18^{\text {th }}$, and returned thence the $19^{\text {th }}$, into its ordinary Courfe: For, according to his, and his feveral Correfpondents Obfervations, the Comet on Feb. I7. was diftant from that Firft Star of Aries at leaft $1^{\circ} 17$; and on Feb. 19. (He having miffed, as well as his other Friends, the Obfervation on Feb. 18.) was advanced in its way 12^{\prime} or 13^{\prime}, but yet diftant from the faid Star fome Minutes above a whole Degree, and confequently far from having then paffed it. After which time M. Auzout affirms to have feen it as well as feveral others, for many Days, and that until Mar. 17. obferving, that about Feb. 26 or 27, when the Comet was neareft to the often mentioned Firft of Aries, it approached not nearer than 50^{\prime}.
3. Some Eminent Englifh Afronomers, who have attentively obferved the Pofi- Ty fome Englino tion of this Comet, do jointly conclude, that whatever that Appearance was, which was feen near the Firf Star of Aries by M. Hevelius (the Truth of whofe Relation concerning the fame they do in no wife queftion) the faid Comet did not come near that Star in the left Ear of Aries, where the faid M. Hevelius fuppofes it to have paffed, but took its Courfe near the Brigbt Stor in its Left Horn, according to Bayer's Tables.
4. I have eafily found the Principle of M. Auzout's Epbemerides: and 'tis Tbo Principle of this, that this Comet moves about a Centre, in a ftraight Line drawn from the M, Auzou't H_{H}, Earth thro' the Greal Dog, in fo great a Circle, that that Portion which is defcribed, is exceeding fmall in refpect of the whole Circumference thereof, and hardly diftinguifhable by us from a ftraight Line.
Concerning the Nerw Comet you mention, I obferv'd it Feb. 11, about the 24° of Aries, with a Northern Latitude of $24^{\circ} 40^{\prime}$.

(43^{8})

The Motion of the Comet A. 1665. predified by M. Aveout, a. 3. p. 36 .
CII. I. M. Aluzout, after 3 or 4 Objervations, hath publifhed another Es phemerides concerning the Motion of the Comet, which he firt began to obferve Apr. 2. 166 . He affirms that the Line defcribed by this Star refembles hitlierto a great Circle, as it is found in all other Comets in the midft of their Courfe. He finds the faid Circle inclined to the Ecliptick about $26^{\circ} \cdot 30^{\prime}$. and the Nodes where it cuts it, towards the beginning of Gemini and Sagittary: that it declines from the 届quator about 26°, and cuts it towards the 11°; and confequently that its greateft Latitude hath been towards Pifces, and its greatef Declination towards the 25° of the Fqualor. He puts it in its Perigee about 15° of Pifces, a little more Wefterly than Marchab, or the Wing of Pesajus.
Oberved; by M. 2. He obferves in General, that this fecond Comet is contrary to the precedent Auzour.ib. p. 37 almoft in all Particulars: Seeing that the former moved very fivift, this pretty now; that againft the Order of the Signs from Eaft to Weft, this, following them, from Weft to Eaft; that, from South to North, this, from North to South, as far as it hath been hitherto, that we hear of, obferved: that, on the fide oppofite to the Sun, this on the fame fide; that having been in its Perigee at the Time of its Oppofition, this having been there, out of the time of its Conjunction. He taketh alfo notice, that this Comet differs in Brightnefs from the other, as well in its Body, which is far more vivid and diftinct, as in its Train, whofe Splendor is much greater, fince it may be feen even with great Telefcopes, which were ufelefs in the former by reafon of its Dimnefs.

A comet. An. CIII. 1. Ann. 1668. Mar. $10^{d} 1^{\text {th }}$ of the following night (after the Italian 1668.at Bono-way of counting) I obferved a Path of Light extended from the Wbale thro' nia; by M. Caf. fini. n. 35 .
p. 683.
and Colour, as alfo becaufe that the Direction of it was to the part oppofite to the Sun, like other Comets. By its extreme Point it reached to that Star in Eridanus, which is called the 14 by Bayerus: But it iffued out of the Horizontal Clouds, fo that I thought the Head of the Comet was either veiled by them, or hid under the Horizon. Mar if. there was feen a Brightnefs in the Whale, amongft the thin Clouds, at leaft for half an Hour, which was very like the Splendor of Venus, likewife veiled with thin Clouds.

Mar. 12. When the Great Dog was in the Mid-beaven, the fame Tail appeared again. It paffed thro' the Star in Eridanus, which Bayerus calls the 15, and left to the Southward the \mathbf{r}_{4}, where it did terminate Mar. 10. Being by the Imagination drawn out to about 3°, and further, it tended to that Southern Star which precedes the Ear of Lepus. It was therefore more Northerly than the Day before Yefterday, and more Eafterly. We were doubtful whether its Head was hid by the Clouds or under the Horizon. But the Line from Fupiter to the Extremity of the faid Tail in the Clouds was perpendicular to that Tail; fo that it was in the Wbale, and the apparent part of the Train reached out in Length about 32°.
2. Mar 5. A. n. The Comet was firt difcovered: but for as much as it fet few hours after the Sun, there could hitherto be taken no confiderable Obfervations of it. The Body thereof is not feen, becaufe it remains hid in
the Horizon. Its Train is of a ftupendious Length, extended in Appearance over almoft the 4th part of the vifible Heaven, from Weft to Eaft; its apparent Breadth is of a good Palm, and its Splendour very great, but it lafts but a few Hours.

At St, Salvador Mar 5. (f. n.) at 7 a Clock at Night, F. Eftancel began to I_{n} Brafi; by fee this Comet a little above the Horizon from Weft to E.S.E. The beginning ${ }_{\text {Effancelo }}^{P}$, ${ }^{\text {Vilene }}$ of its Tail was a little under the two lucid Stars, the 15 and $16^{\text {th }}$ of the p. gr. Wbale's Back, over which it then paffed, its Point being as 'twere at the 8 and $9^{\text {th }}$ which are at the bottom of the Wbale's Belly; and thus the whole Length thereof was about 23°. The Globe or Head of it was fo fmall and thin, that very few could difcern it with the naked Eye.

Mar. 7. The former Brightnefs was fomewhat lefs, and become fo thin, that the Eye could eafily fee the Stars that were behind it, which by Conjecture were the 14 and $20^{\text {th }}$.

The Tail was always directly oppofite to the Sun; and when it appear'd the firft Time almoft Horizontal, it was feen in the form of a Pillar, the Head ftanding a little under, and on the fide of the Star of the Wbale, which is in the Lat. of $15^{\circ} 46^{\prime}$. and the Long. of $12^{\circ} 42^{\prime}$. of Aries. And the Point did Shave the $14^{\text {in }}$ North of the three that are in the Belly, in the Lat. of 20°. 30^{\prime}. and Long. of $15^{\circ} 57^{\prime}$. of Aries.

This Comet was at firft very fplendid, and caft itfelf with that Vividnefs upon the Sea, that the Rays thereof were reverberated unto the Shoar, where the Obfervers ftood. But this Brightnefs lafted only for three Days, after which it did confiderably decay. But that which feemed fomewhat ftrange was, that having loft fo much of its Light, yet its Bulk was not diminifhed, but continued rather increafing until the Comet difappear'd. It pafs'd more fwiftly than Venus, whence he infers that it was under Venus: yet the Anticipation was not fo great, that it could be believ'd to be under the Moon, as he would have it.
4. P. Pietro Sufarte, Rector of Macao, in the Eaft-Indies, well verfed in Matters ${ }_{P}^{I_{n}}$. $\begin{gathered}\text { Africa; by } \\ \text { biero } \\ \text { Su- }\end{gathered}$ Afronomical, writes to have feen the fame all along the Coaft of Bona Speranza. farte. itio.
CIV. There hath been feen here a New Comet from the 2 d of Mar . Jt. n. A Conect An,
 an half long. It is now (Mar. 9.) about the Stars in the Rigbt Arm of Andromedo O Revelius. n. 8 s. on her Shoulder Blade. As far as I can collect from one or two Obfer- P. 4017. vations, it tends towards the Lucida of Andromeda's Girdle, and that with a direct diurnal Motion of about 2 Degrees in its Courfe.

The 6 th of Marcb in the Evening $7^{h} 40^{\prime \prime}$ it was in $7^{\circ} r$. and in 35° of Northern Latitude; as I guefs'd by the hafty Infpection of a Globe.

Mar. 7 . in the Morning $3^{\mathrm{b}} 30^{\prime}$, its Longitude was about $8^{\circ} \mathrm{r}$. with a fomewhat leffer Latitude than before: in the Evening of the fame Day it's Longitude was $10^{\circ} r$. and Lat. 34° ferè.
Mar. 8. In the Morning 4^{b}, the Long. was $12^{\circ} r$. and the Lat. 33° Which yet I would not have taken precifely, becaufe I cannot yet reduce my Obfervations to a Calculns.
2. Mr. Ifaac Neroton about the 16 of March. f. V. faw a dull Star SouthWeft of Perjeus, which he now takes to have been that Comet. It was very very fmall, and had not any vifible \mathcal{I} ail, which made him regard it no further.
3. The Matbernaticians of La Flefche perceived him from the 16 of March,

Ait Paris by M.

 Caffini. n. 8 s , p. 4018.n. 82. p. 4042 . f. 3 . and gave us here at Paris the firft notice of it. Thofe of the College of Clermont being advertifed of it, faw him the 25 of the fame Month.Mar. $26.7^{\text {h }} 30^{\prime}$ in theEvening, M. Caffrni faw him between the Head of Medura and the Pleiades; without a Telefcope he appeared no otherwife than a Star of the $3^{\text {d }}$ Magnitude; his Head feen with a Telefcope of 17 Foot, appear'd almoft round; but it was well defined, and diftinguifh'd from the Miftivefs, which formed a kind of Cbevelure, wherewith it was encompaffed; and even the middle was a little confufed, and feemed to have Inequalities, as are feen in Clouds.

The Tail was almoft imperceptible ; yet by the Telefcope it was feen turned oppofite to the Sun, and it appeared of the Lengti of two Diameters of the Head or thereabout : For it was not eafy to meafure it precifely, becaufe being thinner according as it was farther from the Head, its Extremity was infenfibly loft, And fo the whole Comet, Head, Tail, and Cbevelure, taken all together, took up no more than 3 or 4 Minutes of a Degree. At $7^{\mathrm{h}} 48^{\prime}$, he was in a ftraight Line with the Lucida in the Head of Medufa, and with the moft Occidental one of the Pleiades, and above the two cleareft Stars of the Soutbern Foot of Perfeus; fo that a ftraight Line drawn thro' thefe two Stars, did almoft touch the Southern Extremity of his Cbevelure. This Place of the Comet, transferred upon the Map of the fix'd Stars, fell precifely enough upon $23^{\circ} 25^{\prime}$ of Taurus, in 15° Northern Latitude.

With a Telefcope 3 Foot, we faw near the Comet two fmall Stars diftant one Diameter of the Sun from one another, which Stars are not in the Catalogues. The Comet was in a Straight Line, drawn from one of thofe two Stars to the other percifely at $9^{h} 15^{\prime}$. but a little nigher to that which was Weftward: But $9^{h} 33^{\prime}$, he was equally diftant from them both. It was taken notice of, that from $8^{\text {h }} 5^{\prime}$ till $10^{\text {h }} 26^{\prime}$, He made, in refpect of thefe two Stars, an oblique Motion fenfible enough, going from North to South in the fame time that he advanced from Weft to Eait.

Mar. 28. $7^{\mathrm{h}} 4^{2}$. in the Evening, the Comet was diftant from the lefs bright Star of the Soutbern Foot of Perfeus, no more than about 24^{\prime} Weftward. He had almoft the fame Latitude with this Star ; fo that he was precifely enough at $26^{\circ} 8^{\prime} 8$, and in the Lat. $12^{\circ} 8^{\prime}$. At $8^{h} 14^{\prime}$ we took, as well as we could, the Diflance of the Comet to the Star in the Eye of Taurus, called Aldebaren, $19^{\circ} 3^{8^{\prime}}$. and $8^{\mathrm{h}} 29^{\prime}$. The Diftance of the Comet to the Star called Cappelin, was found to be of $22^{\circ} 32^{\prime}$.

Niar. 30. $9^{\text {in }} 35^{\prime}$, at Night, the Comet, feen without a Telefcope, appeared no otherwife than a Star of the fourth Magnitude: thro' the Telefcope he exceeded even thofe of the Firft; but he was very dark, and in what manner foever we look'd upon him, we could obferve almoft no Tail at all of him. Iie had panfed one Degree and an half beneath the Lucida of the Sousbern Foot

(44r)

of Perfeus; fo that this Star was exactly in the midft of the Comet and the little Star of the Leg of Perfeus, marked n by Bayerus, which then we faw not but by a Telefcope. A ftraight Line drawn from one of thefe Stars to the other, did almoft touch the Soutbern Limb of the Comet, which being transferred upon the Map of the Fix'd Stars, fell upon $28^{\circ} 45^{\prime}$ of Taurus, in the Northern Latit. of $9^{\circ} 5^{6^{\prime}}$. At $9^{\text {h }} 45^{\prime}$, the Weftern Limb of the Comet touched a ftraight Line, drawn thro' this lefs bright Star of Perfeus's Soutbern Foot, and thro' the moft Northern of the Head of Taurus; but that he was already got fomewhat nearer to the Latter.

Mar. 31. $8^{\text {h }}$ in the Evening, the Comet was in a direet Line with the Lucida in the Foot of Perfeus, and with the moft Northern in the Head of Taurus; but he was more than twice as much remoter from the firft than the other, and being transferred upon the Map of the Fix'd Stars, he was found at 15^{\prime} from Gemini, in the Latit. of $8^{\circ} 49^{\prime}$. During the whole time that we could obferve him this Night (which was till 1o a Clock) he quitted not this ftraight Line, which was almoft parallel to the Horizon: notwithftanding that his own particular motion fhould raife him a little above it; as the Parallax, on the contrary, fhould fink him beneath it in approaching to the Horizon. It may be, there was a compenfation made of thefe two contrary Motions: poffibly alfo the Effect of both was not fenfible.

April. 1. The Comet could not be feen without a Telefcope, becaufe the Moon, being very near it, hid him from our fight. But with a Telefcope only of one Foot we difcerned him eafily enough, and found that he had paffed 45^{\prime} beyond the moft Northern Star of the Head of Taurus, and that he muft have touch'd it by his Southern Limb; as alfo that he was diftant $1^{\circ} 43^{\prime}$, from the Star that was neareft to that toward the South; which is equally bright, yet not marked by Bayerus. This place being transferred upon the Map of the Fix'd Stars, we found that he was at $1^{\circ} 30^{\prime}$ of Gemini, in the Northern Latit. of $7^{\circ} 44^{\circ}$.

April. 2. $8^{\text {a }}$ in Even. M. Cafini, having oblerved the Comet with a Telefcope of one Foot, which difcovered 5°, found that he was two Deg. and half diftant from the moft Northern Star of Taurus; and one Deg. from the Star of the Ear marked Φ by Bayerus, and by Tycho called Sequentis Laleris Borei.

Two Lines drawn from the moft Northern Star of Taurus, one to the Comet, the other to the Star that is wanting in Bayerus, made a Right Angle; and the Diftance of the Comet to this Angle, was double to that which is between thefe two Stars. This place transferred upon the Map of the Fix'd Stars fell on $2^{\circ} 48^{\prime}$ of Gemini, in the Northern Latit. of $6^{\circ} 40^{\prime}$.

April 3. $9^{\text {h }}$, we faw him with the one Foot Telefcope. He had paffed over the upper Star of the Ear of Taurus, and he made with this Star the Bafis of an Ifofceles Triangle, on the Top whereof was the inferior Star of the Ear. The two Sides of this Triangle were two times and an half bigger than the Bafis; fo that the Comet was 4° of Gemini, in the Northern Latit. of $5^{\circ} 38^{\prime}$.
Apr. 5. 8^{h} at Even, the Comel had paffed the Northern Ear of Taurus, and was equally diftant from the Upper Star of the Northern Ear and from that which was on the Front of Taunus. He was alfo as diftant from the Inferior

(442)

Star of the Ear of Taurus, as this Star is from the next Weftward, by Tycho called Inferior pracedentis Lateris Quadrilateri; and a ftraight Line, drawn thro the Comet and the upper Star of the Ear, made an almoft Right Angle with another Line, drawn from the Comet to the Inferior of the two Stars, that are above the Eye of Taurus. This Place being carried over to the Map of the Fix'd Stars, the Comet was found at $6^{\circ} 18^{\prime}$ of Gemini, in the Northern Latit. of $3^{\circ} 41^{\prime}$. He was fo confufed this Night, that even with the 17 Foot Telefcope we could not exactly diftinguifh the Head from the Cbevelure which environed him. The whole appeared a little bigger than the Difk of fupiter, feen by the fame Telefcope.

Apr. 6. 8^{h} at Even, a ftraight Line drawn from the Comet to the Star that is in the Front of Taurus, made a Right Angle with another ftraight Line drawn from this fame Star to the Inferior of the two that are above the Eye: and the Diftance of this latter Star to that of the Front of Taurus was twice the Diftance of the fame Star of the Front of Taurus to the Comet. This Place being transferred upon the Map of the Fix'd Sters, the Comet was found at $7^{\circ} 25^{\prime}$ of Gemini, in the Northern Latit, of $2^{\circ} 45^{\prime}$. At $9^{\text {h }} 6^{\prime}$ we faw on the fide of the Comet a Star fufficiently clear, which was not farther diftant from him than a little more than the Diameter of the Comet, and that was at the fame Height of the Horizon.

Apr. 7. 9^{h} in the Evening, the Comet was equally diftant from the Inferior Star of the Nortbern Ear of Taurus, and from the Superior of the Root of the Northern Horn. He was alfo as far diftant from this latter Star, as this Star is from that of the Front. This Place being carried over to the Map of the Fix'd Stars, fell on $8^{\circ} 30^{\prime}$ of Gemini, in the Northern Latit. of $1^{\circ} 56^{\prime}$.

All the Places of the Comet, that we have obferved till now, fall into a Line little differing from an Arch of a great Circle, which cuts the Ecliptick in 10° 45^{\prime} of Gemini, and which confequently hath its greateft Latitude in $10^{\circ} 45^{\prime}$ of Pifces; which Latitude is between 39° and 40° Northward. The fame Circle cuts the Equator at 101 degrees of the Vernal Section Eaftward; and jts greateft Declination from the Equator Northward is of $38^{\circ \frac{1}{2}}$.

Having chofen two of our Firft Obfervations (becaufe the latter are not fo proper for this Purpofe) and having taken a Mean between the firft Obfervations of the Matbematicians of La Flesclee, we found, by our Metbod explained in the Theory of the Comet of 1665 , that this Comet had been in his Perigee the 12 of March at 8 a Clock in the Morning: that in that time, which is that of his greateft apparent Celerity, he made about $2^{\circ} 32^{\prime}$ a day in the great Circle of his apparent Motion, and $\frac{444}{5000}$ of his Perigee Diftance in the Line of his Equal Motion: that he was in his greateft Declination the IItib and 12 th of March; and that at that time, he paffed thro' the Inferior Meridian at about two a Clock after Midnight.

If we have rightly determined his, Perigee, and that the Hypotbefs of the Fiquality of his Motion be juft for that time, he hath been vifible fince the Widdle of February, at which time he was as far diftant from his Perigee by Approaching to the Earth, as he is at prefent by Receding from it. He muft then have been at the extremity of the Soutbern Wing of the Siwan, and arrived

(443)

at the Soutbern Foot of Pegafus on the 23 of Febr. of the fame bignefs that he was feen to be of, Mar. 28. He muft have arrived at the Stars of the Nortbern Arm of Andromeda, Mar. 9. at thofe of her Girdle, 12. when he was in his Perigee, and in his greateft Declination; to her Soutbern Leg, Mar. I5. between her Soutbern Leg and the Triangle, Mar. is. very near as he was obferved at La Flefibe; and under the Head of Miduja, Mar. 25. The Days enfuing he muft have arrived at the Places marked in our Firf Obfervations: But in the laft he hath been fwifter than this Hypotbefis will bear. To reprefent thefe latter Obfervations, the Line of the Motion ought to have been made Curve, as we did for the end of the Apparent Motion of the Comet 1665. with this difference, that inftead of that Line's being Convex in regard of the Earth, becaufe the Miotion was Retrograde, this was to be Concave towards the Earth, becaufe that the Motion of this Comet is Direct.

It's a Thing worth obferving, that this Comet keeps his Courfe almoft like that of the 2 Comet of 1665 , and another of 1577, obferved by Tycho. For they have paffed thro' almott the fame Conffellations; tho' this be more inclined Northward, and cut the Ecliptick 5 or 6 Degrees more forward than that of x 665 . So that it feems that in this Place of the Heavens there is, as 'twere, a Zodiack for Comets.
CV. x. Mr. Romer firft took notice of the new Comet, Apr. 28. New Style, A c.met, An1677. and I being prefently inform'd of this appearance, at $4^{\mathrm{h}} 6^{\prime} 31^{\prime \prime}$, after ${ }_{b y}^{677 . a t} \mathbf{C a f i n i n i}$ Midnight we took its Altitude $12^{\circ} 22^{\prime} 10^{\prime \prime}$. I judged it to be in a Vertical de-n.135. p. 368. clining from the Eaft towards the North about 33°. On the 29 in the Morning it was feen by Mr. Picard for a Moment through the Clouds at $3^{\text {h }} 9^{\prime} 31^{\prime \prime}$ after Midnight in the Altitude of $4^{\circ} 39^{\prime}$.

On May 2^{d} in the Morning, the Right Afcenfion of the Midheaven by the fixt Stars being 267°. the Altitude of the Comet was $4^{\circ} 5^{\prime}$. The Diftance of the Vertical from the North towards the Eaft was about $42^{\circ} 8^{\prime}$. On the fourth Day in the Morning at $3^{h} 30^{\prime}$. after Midnight, the Altitude of the Comet was $5^{\circ} 33^{\prime}$. The Azimuth Diftance from the North to the Eaft was about $42^{\circ} 32^{\prime}$.

On the fifth Day at $3^{\text {h }} 3^{\prime}$. The Altitude of the Comet was $5^{\circ} 10^{\prime}$. The Azimuth Diftance from North to Eaft was about 44° 10'.

By thefe Obfervations the Comet at firft was in the Triangle, afterwards near the Head of Medufa, and thew that it proceeded according to the Series of the Signs, by a Line that was very near and almoft parallel to that, which was defcribed by the Comet in the Year 1590, in the Month of February. The bignefs of its Head feen through the Telelcope was almoft equal to the Dilk of Fupiter, or fomething lefs. Nor did it appear perfectly round, but of an Oval Figure, the longer Diameter being parallel to the Horizon; which feem'd to be owing to the Horizontal Refraction.

Its Capillitium feen through the Telefcope was fomething wide, and nearly Parabolical ; but to the naked Eye it feemd narrow, and was a little inflected towards the Weft.
2. A Comet has appear'd lately, which was fivft obferved here at Dentzick, At Dantzick; Apr. 27. in the Morning. On the $29^{\text {th }}$ it arofe, or sather appear'd to fight, hy m. Hevelius at $1^{\text {D }} 52^{\prime}$ at North-Eaft and by North. It had no large Head, yet it was

L 112 bright
bright enough, confifting of one fining Nucleus, like that which was fee An. 1665 . It ftretch'd out a Tail pretty luminous, with Rays divaricating upwards, of almoft two Degrees. The Line of Direction of the Tail being continued, proceeded between Alamac the bright foot of Andromeda, and her Girdle, and divided the Distance of there Stars as it were into two equal Parts. It was at that time above the Head of Aries, in the Triangle between the Apex and the Northern Star in its Bale, that is, in 5° of Taurus, and in 12° North Latitude. At this time it was diftant from the Sun only 5° according to Longitude, but in its own great Circle 20°. Since then this Comet was fo near the Sun, it could not Thew its 'Tail any longer, tho' in my Opinion it had one much lunger, nay, I think in a few Days it will hew it much fhorter.

Apr. 30. it was found in 9° of Taurus, with 18° of North Latitude, and almolt as far from the Sun, being in 12° of Z. It fpread its Tail again two Degrees or more, to the Northern Star in the Bafe of the Triangle, which Star might plainly be feen by good Tubes at the Point of the Tail.

May 1. at $2^{\text {b }} 32^{\prime}$. in the Morning it was found in 11° of Taurus with North Latitude 18° almoft in Conjunction with the Sun, and being diftant almoft as many Degrees from the Sun. Its Tail was fill bright, but fomething fhorter, tho' wider, which it ftretched out to the bright Foot of Andromeda.

From Apr. 29. when firft I obferved it, to this Day May 1. it compleated nearly $5^{\circ} 30^{\prime}$, by its own proper Motion.

As far as I can collect from there Oblervations, it moves with a direct Moton to the left Foot of Perseus, above Taurus, to the Feet of Gemini, if it will continue long enough. The Defcending Node is about 20° of Gemini, (but this is only a rude Conjecture,) and thus it will pals the Ecliptic in that Place, and then will become Southward, with an Inclination of its Orbit of almoft 27°.

May 2. in the Evening, at $8^{\text {b }} 45^{\prime}$ altho' no Stars fined out in that Part of the Heavens, and there was an intenfe Twilight, yet I prefently found the Comet with my Optical Tube. A little after I found him with $3^{\circ} 30^{\prime}$ of Altitude. His Tail on account of the Twilight was very thin, which he ftretched out between each Knee of Caflopea, but nearer to the left. It fat that Evening at North-north-weft.

On May 3. in the Morning, the Comet arofe at N. N. E. at $\mathbf{I}^{\text {b }} 23^{\prime}$, tho' the Tail was difcovered by us fomething fooner at $1^{\mathrm{h}} 18^{\prime}$. It was at 14° in \varnothing, almoft in Conjunction with the Sun, having 17° of Latitude, and almost the fame Diftance from the Sun. This day it fhew'd its Tail much longer and better defined, and very bright, of near 2 or 3 Degrees. Thus it was found by myself and other quick-fighted Spectators with the naked Eye, at $3^{\text {b }} 34^{\prime}$, and with the Telefcope at $3^{b} 40^{\prime}$, at the height of $11^{\circ} 30^{\prime}$; 10 that the Sun at that time was depreffed only 6° below the Horizon; nay, we had feen it longer, if forme litte Clouds had not intervened. His daily Motion feem'd to decreafe, is far as I could judge by Conjecture without any Calculation. For between 29) and 30 of April $_{1}$ it was near $2^{\circ} 45^{\prime}$, between Apr. 30 and May I. it was 2°. 15^{\prime}, between 1 and 2 of May it was $1^{\circ} 55^{\prime}$, between 2 and 3 May it was 1° 40^{\prime}. But the Obfervations themfelves and the Calculation will hew this plainer. On May 4. in the Evening, the Air being very pure, at $8^{\text {b }} 53^{\prime}$ the Comet
was again difcover'd, but was a little obfcurer than the foregoing Days, and its Tail was fhorter. On May 5 in the Morning at $1^{\text {h }} 41^{\prime}$, projecting its Tail towards the right Knee of Calfipea, it was in 17° of 8 , with 16° of North Latitude, and at the fame Diftance from the Sun. Its proper Motion from the $3^{\text {d }}$ to the $5^{\text {th }}$ of May was almoft $2^{\circ} 40^{\prime}$, the Latitude decreafing, that is, from the Beginning almoft to 3°, fo as from the 29 of April. The proper Motion of the Comet from May 5 . was almoft 12°. On May 6, in the Morning its Place was in 180 of 8 , with North Latitude $15^{\circ} 30^{\circ}$. The Sun being then in 17° of 8 . The daily Motion was about 50^{\prime}. As to its Head, it feem'd thinner and weaker than the Tail, becaufe the Sun was diftant not above $16 \frac{1}{2}$ Degrees. On May 6 , in the Evening it was feen with the Optic Tube at 8^{k} 35°. with its Tail fill fhorter and more dilute ; but as it was in a lower Situation, and an intenfe Twilight, it could not at all be perceived by the naked Eye.

On May 7. it was firft perceived at $2^{\text {h }} 22^{\prime}$, at the Altitude of 3°, fo that it feem'd to be very thin. It was at that time in 19° of y. Its proper Motion decreafed more and more, as far as could be known without Calculation. On May 8. from one in the Morning it was carefully fought for with the naked Eye, but did not appear. Yet it was found with a 12 foot Telefcope, having a Tail ftill, but a very fhort one, extended a little from the Vertical Circle to the left.Hand. As far as I could guefs it was in 20° of 8 , at the Diftance of 15° from the Sun, which was then in 19° of γ. At this time it was nearly in a right Line with the right Shoulder of Perfeus, and Algol of Medufa. The Diameier of the Coniet compared with that of Jupiter hardly came up to half. As to the reft, it was ftill confpicuous enough by help of the Tube, fo that at $3^{\text {b }} 45^{\circ}$. I could fee it diftinctly, at the Altitude almoft of 9°, whence we may collect, that the Arch of Vifion was then hardly 5°. For then the Sun was hardly 5° below the Horizon, at what time all the Stars except Fupiter were vanifhed. On May 8 in the Evening, the Comet was no longer to be difcovered, either with the naked Eye, or with any Telefcope.
3. The firft certain notice I had of this Comet was on April 21. The 22 At Greenwich; of Apr. at about 2 a Clock after the Midnight following, I faw the Tail iteed, ibl raifed almoft perpendicular to the Horizon; foon after the Head appeared thro' a thin Vapour, from which the Tail pointed, as near as I could guefs, upon the * in the Knee of Caffopeia, its Length being about 6 Deg. and Breadth at the Top of about 7 or 8 Min . Viewing the Head with a Telefcope of 16 Foot, I found it was not perfectly round, but indented, and not near one Min. Diameter. Afterwards I haftened to meafure its Diftances from feveral fixed Stars; which were as follow.

At $4^{\text {h }} 21^{\prime} \frac{1}{2} p$. m. the height of the Comet was about $5^{\circ \frac{2}{2}}$, therefore the Diftance of the Head of the Comet from Algol corrected by Refraction, $8^{\circ} 19^{\prime}$. from Mirach - 1937
And admitting with Hervelius the Place of Mirach now in $\gamma .21^{\circ} 40^{\prime} 34^{\prime \prime}$ with North Latitude $25^{\circ} 57^{\prime}$, its Diftance from Algol will be $23^{\circ} 42^{\prime} 40^{\prime \prime}$, and the Place of the Head of the Comet in $814^{\circ} 48^{\prime} \frac{1}{6}$, with North Latitude $17^{\circ} 8^{\prime}$.
At $3^{\text {h }} 28^{\prime}$, I fate the correct Diftance of the Comet's. Head from Capella $31^{\circ} 00^{\prime}$; from Alamech $11^{\circ} 40^{\prime}$; and therefore its true Place in $814^{\circ} 05^{\prime \frac{1}{2}}$, with North Latitude $17^{\circ} 6^{\prime} 25^{\prime \prime}$: agreeing very well with the Place derived from the former Diftances from two other and different Stars.

The Tail was not, it feems, directly oppofite to the Sun: for the Sun's Place was now $813^{\circ} 7^{\prime}$; but the Comet being in $14^{\circ} 47^{\prime}$ of the fame Sign, that is $1^{\circ} 40^{\prime}$ in the Confequence of the Sun, the Tail ought, if it had been exactly oppofite to the Sun, to have lain in Confequence of the Head; but the Knee of Caflopeia is now in $8,13^{\circ} 24^{\prime}$, in Antecedence of the Comet, whofe Tail lay not therefore in Confequence, but in Antecedence of the Line paffing thro' its Head and the Sun, at about an Angle of 10°.

Next Night, being that following the 23 of April, about ${ }^{3}$ of an Hour after two, its Tail appeared much fhorter than laft Morning: At $2^{\text {h }} 51^{\prime}$, its Head was from Mirach $2 i^{\circ} 9^{\prime}$. Hence, and from a Courfe of Obfervation of it fent me by an ingenions Friend, I found its Motion was direet, and its Latitude decreafing.

A Comet, An. 1682. at Dant zick; by M. Hevelius. Ph. Col.n. 3. P. 65.
A Comet, An. 1682. at Dant zick; hy M. Hevelius.
m. 193. P. 16.
CVI. I obferved the late Comet firft in the Morning before Sun-rifing, from the 2^{d} to the $4^{\text {t1 }}$ of December, $A n$. 1680 . Then in the Evening, from December 24. to the Vernal Equinox. In the Morning it was in \leadsto and m, with Southern Latitude. In the Evening in $v . \approx \pm, x, \gamma$, and 8 , with Northern Latitude.
CVII. I have obtain'd many Diftances from the fixt Stars, as alfo Meridian Altitudes, of the late Comet. It would be too long to mention them all, nor have I time to fubmit them to a ftrict Calculation. It may fuffice to fay at this time, that this Comet was firft feen here at Dentzick on Aug. 25. New Style, 1682. And that from Aug. 26. to Sepi. 7. it was duly obferved by me. But
what was its Path, what its Velocity, what was the Angle that its Orbit made with the Ecliptic, may appear from the following Table. But this I would have you know, that it was not compofed by any accurate Calculation, but drawn from a confideration of the Globe, by a loofer way of reafoning.

		Longitude of the Comet.	Latitude of the Comet.	Motion in its ozon Orbit.	Daily Motion fomething mor exacily.
Aug. 26			- ${ }^{1}$		
	-	,	2 I 0 North.		
Aug. 27 Aug. 28		500	2330 North.	10 O nearly	
Aug. 29	Even.				
Aug. 30	330 Morn .	18	2520 North.	1320	
Aug. 30	9 - Even.	2200	2540 North	330	$\begin{array}{ll}5 & 46\end{array}$
Autg. 31	330 Morn .	2430 析	26 0 North	220	$5 \quad 50$
Sept. $\begin{aligned} & \text { S } \\ & \text { Sept. } \\ & \text { I }\end{aligned}$	330 Morn.	10 - M	26 o Nearly	545	
	9 O Even.	6 o nearly m	2540 North.	4	5
Sept.	30 Even.	20 o nearly ${ }^{\text {m }}$	2430 North		$\begin{array}{ll} 5 & 43 \\ 5 & 40 \end{array}$
	ven.				
Sept.	- Even.				
Sept.	9 - Even.	50 -	2030 North.	15	500
Sept.	8 o Even.	12			$\begin{array}{ll} 4 & 30 \\ 4 & 00 \end{array}$
Sept.	830 Even.	1530 ¢	1715 North.	33°	
$\mid \text { Spt. } 10 \mid$	8 o Even.	1830	1545 North.	3 o nearly	
	Even.				240
Sept. 11	8 o Even.	23	14 o North.	50	
Sept. 13	730 Even.	25 -	13.30 North.	20	

So as by its own Motion in its own Orbit from Aug. 26. to Sept. 13. it has moved $83^{\circ} 27^{\prime}$. And in the Ecliptic $91^{\circ} 30^{\prime}$. But its Northern Latitude has increafed to 26°, and again has decreafed to $12^{\circ} 30^{\prime}$.

Obferve, that its Northern Node is in $24^{\circ} 8$, and its Southern Node in 24° w2. But its Limits were in $24^{\circ} \Omega$ and ${ }^{2}$. The Angle of the Orbil and the E cliptic was nearly 26°. But whether for its whole Duration it was intirely confiftent with its Nodes, or whether it varied and how much, will appear by the Calculation.

For its whole Continuance the Head was fomething brighter and greater than that of the Year 1681. But on the contrary it had much a fhorter Tail. In the Head, by means of a long Telefcope, we could obferve but one Nucleus, and that always of an Oval and Gibbous Figure; except that on Sept. 8. efpecially, a very bright Ray proceeded from the Nucleus, which was partly crook-
ed, and paffed into the Tail. This deferyes notice, for as I remember I have not feen the like appearance in any orher Comet.

Befides it may be obferved, that fometimes it directed its Tail pretty exact-

Fig 156

A C.nmer. An. 1683. at Dant zick; ty M. Hevelins.
2. $15+$ P. 415 ly in Oppofition to the Sun, as Aug. 30. in the Morning. But often with a notable Deviation, as is common in moft Comets. Alfo its Coma had not always the fame length. At firft the Tail feem'd to have a length of 12°, atterwards fometimes horter, and fometimes longer as far as 15° or 16°. But towards the End it diminifhed continually.
CVIII. A11. 1683. Ful. 30. at $\mathrm{ul}^{\mathrm{b}} 30^{\circ}$. In our new Conftellation the Tyger or Lynx, I perceived a Comet here at Dantzick; ftretching out its Tail, which was not very long, upwards between the Polar S:ar and Caffiopeia, with fome Inclination. It made a right Line with the uppermof Star of the Head of suriga and the right Sboulder of Perfous; as alfo with the Belly of the greater Bear and the right Sboulder of Auriga; as alfo with the middle Star of the Tail and of the Side of the great Bear. Then taking a Tube of io Feet, I confidered this Phenomenon. The Head indeed was pretty large, but the Matter was not very denfe. So that in this there appear'd no bright Nucleus, nor diftinct Corpurcles, as are generally found in moft others. At near 12^{b} its Altitude was 19° 57.
Huly 31 . in the Evening, that is, at $12^{h} 30^{\prime}$, when its Altitude was $21^{\circ} 28^{\prime}$ it made a right Line with the Foot of Auriga and Capella, The Tail was very dilute and thinner than Yefterday, but fomething longer.
Aug. 4. in the Morning, at that time it was fo far removed from the right Sboulder of Auriga, as the faid Sboulder is diftant from the Head of the Kid. But the left Leg of Porrgeus, Capello, and the Comet, feem'd to be in a right Line.
Aug. 16. in the Evening, at near $x I^{n}$. the Comet was within four little Stars, one of which was at the upper Part of the Cemeet in Conjunction with it, at the Diftance of only I^{\prime}, fo near it was to the Limb. At which time I meafured the Diameter of the Comet with my Micrometer, and found it $6^{\prime} 5^{\prime \prime}$.
Aug. 20. in the Evening, it extended its very fhort and thin Coma between Capella and the Head of the Kid.
On the 20 of Aug. in the Evening it was very near to each Kid, fo that it made almoft an Equilateral Triangle with them, the Sides of which almoft equal'd the Diftance of the Kids, which is about 47°. Befides the Comet made an Equilateral Triangle with Capella and the Star at the bottom of the right Foot of Pirfeus, the Bafe of which was the Diftance of the fame fixt Stars.

Aug. 24. in the Evening, it was between Capella and the Pleiades, fo that it feem'd at the fame Diftance from each. Then Capella, the Comiet, and the Pleiades; alfo Almanac, the Head of Medufa, and the Ccmet; alfo the right Sboulder of Auriga, the Comet, and the Star that follows the left Foot of Perfeus; nearly made a right Line. Yet in this laft Conftitution, the Comet feem'd to go rather below the right Line.
Aug. 25. in the Evening; it almoft made a right Line with Capella and the Head of the Kid.

(449)

Aug. 29, at $1^{\text {h }} 5^{\prime}$. in the Morning, it was accompany'd with many very minute and bright fixt Stars, that is, the Subiefiian Stars; and was diftant from the Weftern Point of the Pleiades not above 42^{\prime} \qquad
The fame Day in the Evening, it was found much more advanced, contrary to the Series of the Signs; that is, almoft 4° in the Space of 24 Hours.

Aug. 30. in the Evening, the Comet was diftant not above $32^{\prime} 41^{\prime \prime}$, from a certain very confpicuous little Star, and conflituted a right Line with Mufca, and that in the Bafe of the Triangle, and then alfo with the foremoft in the Foot, and that in the Knee of Perleus.

Sept. 2. in the Morning, the Comet was between the Pleiades and the Knot of the Line, making a right Line with $M u f c a$ and the bright Star in the Wbale's faw, and with the loweft in the Hauncb of the Bull and the farw a Triangle almoft equicrural, the Vertex of which is the aforefaid Fare. Alfo it made a right Line with the two in the Front of the Wbale; alfo it was as far diftant nearly from that towards the Weft, as they were from one another.

This Day I again meafured very diligently with a Micrometer the Diametei of the Comet's Head, being $9^{\prime} 7^{\prime \prime}$. Aug. 16. with the fame Micrometer I found it only $6^{\prime} 5^{\prime \prime}$, fo that it had notably increafed in the Space of 17 Days. It might be faid the Reafon is, becaufe in the laft Obfervation it was much nearer the Eartb. But therefore it ought to fhew its Head much clearer and brighter, efpecially if it were a permanent Body, as fome affert, which finifhing its Courfe in a certain Time comes again into our View. But on the contrary its Head is much more dull and rare at laft, fo that we might very diftinctly perceive the Matter of its Head to be gradually diffolved. And this agrees nuch better with our Hypothefis.

Sept. 4. in the Morning the Comet feem'd to be in a right Line with the Star in the Weftern Front of the Wbale, and the bright Star of Aries. Alfo with that in the Moutb and Faw of the Whale. Befides it made almeft an Equilateral Triangle with that in the Moutb and at the Cbeek of the Whale. Laftly, it fell out as I could wifh, that to the South at $3^{\text {b }} 40^{\prime}$ in the Morning nearly, with a molt exact Quadrant I obtain'd its Meridian Altitude, which was $38^{\circ} 15^{\prime}$.

D.0f tbe Mont bi.	Longituder	Latitude.	Diurval Morion.	Dectination.	Rigbrajcen.
	0 - 2	- ,	-.		
7uly $\quad 30$	$7 \quad 0 \quad 5$	29 15 N		;130 N	1000
31	$6 \begin{array}{llll}6 & 25 & 5\end{array}$	290 N	- 42		
Aug. 1	$545 \quad 5$	2845 N	- 44		
	5 5 0 5 512	2830 N	- 46		
	$4 \begin{array}{llll}4 & 10 & 5 & 2\end{array}$	2815 N	- 48		
4	3205	28 o N	- 50	5 I 40 N	$9^{6} 0$
Aug. 5	2205	2745 N	- 52		
	12050	2730 N	- 54		
7	- 2052	27 l	- 56		
8	2920 II	27 O N	- 5^{8}		
Aug. 9	28.20 I	26.40 N	10		
-10 10	2720 II	$26 \quad 20 \mathrm{~N}$	2		
1 I	2620 II	25.55 N	4		
12	$25 \quad 20$ II 2	2530 N	16		
Aug. 13	$24 \quad 20$ II 2		18		
14	2320 II 2	2430 N	10		
15	2220 III	240 N	12		
16	2 I 10 II	2320 N	14	46 o N	770
Aug. 17	$1920 \quad \text { II }$	$2230 \mathrm{~N}$			
18	1740 II 2	2130 N	$1 \quad 25$	44 o N	
19	16 O Ir	2030 N	$\text { I } \quad 35$		
20	1420 II 1	1915 N	$\text { I. } 45$	$4 \mathrm{I} \quad 0 \mathrm{~N}$	6930
Aug. 21	1220 II 18	18 o N	I 55		
22	1020 II 16	$16 \quad 45 \mathrm{~N}$	$2 \quad 5$		
23	820 II 1	1530 N	$2 \quad 15$		
24	620 III	1415 N	$2 \quad 25$	$25 \quad 0$	6040
Aug. 25	350 II	122450 N			
	I 11	II O N	255		
27	$\left\lvert\, \begin{array}{lll} 28 & 15 & \gamma \end{array}\right.$	9 o N	310		
28	2515 ช	630 N	$3 \quad 25$	2430 N	510
Aug. 29	2215 8	$4 \quad 0 \quad N$	340	2130 N	$48 \quad 30$
	1855 ช	I 30 N	355	1800 N	4540
31	1625 ช	10 S	4		
Sept. 1	1215 ช	I 30 S	420		
Sept.	955 ૪	6 ○ S	440	1030 N	400
	625 ૪	940 S	$5 \quad 5$		
	4235 ช	1120 S	$5 \quad 30$	I 30 N	34 o

From hence it may very clearly be feen, that this Comet moved conftantly againft the Order of the Signs; fo that in the Ecliplick it went 63° 55 , but in itsown Orbit $74^{\circ} 35^{\prime}$, under an Angle of its Orbit and the Ecliptic of almoft 39°, but of its Orbit with the Equalor of 56°. Its Latitude at firft was 29° 15^{\prime} North, and at laft $11^{\circ} 20^{\prime}$ South. So that it varied its Latitude almoft 41°.

This I fhall take notice of as to its Head, that at firf its Diameter was much lefs than afterwards ; but on the contrary, that at firft it was far brighter than towards the End. But it exhibited no diftinct and fulgent Nuclei, as I have feen in moft, but a confufed Mafs of Matter, much thinner towards the End. This Comet, fince it was feen moftly without a Tail, may truly be reckoned among Hairy Stars, or thofe that have Beards like Goats; for it extended upwards its very fhort and dilute Briftes only to Aug. 18. which afterwards quite difappear'd.
CIX. A new Comet was lately feen in the Heavens, by the fharp Eye of A Coment, As
 but fmall but appear'd regular in its Orbit, of a thin Light, and as an obfcure ${ }^{\text {n. }}$. $69 . \mathrm{p}, \mathrm{g} 2 \mathrm{~m}$. Star, But it was more luminous through the Telefcope.

June 30. New Style. An. 1684. the Comet was firt feen by me in 9 Degrees of Libra, with fome Minutes; the Latitude of the fame was 8 Degrees North, with fome Minutes.

$\begin{aligned} & 18 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	Longitudi of the Comet.	Northern Latitude.	$\begin{gathered} 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 6 \end{gathered}$	Longitude of the Comet.	Nortbern Latitude.
1	11 18 ¢	$13 \quad 12$	10	24.42 2	$39 \quad 40$
2	1316 ¢	$17 \quad 57$	II	$2544 \sim$	$40 \quad 49$
3	145^{8} ¢	$22 \quad 12$	12	263^{8} に	41.58
4	$1645 \approx$	$25 \quad 40$	13	$27.23 \approx$	$43 \quad 5$
	1830 二	$28 \quad 50$	14	$2832 \sim$	44
6	$1950 \sim$	$31 \quad 34$	15	2949 ^	$45 \quad 12$
8	217%	3354	16	oo 50 m	$46 \quad 20$
8	2220 ¢	36	17	28 m	$47 \quad 40$
	233^{2} ¢	3800			

The four laft Obfervations require fome better Calculation, for perhaps an Error of fome Minutes may have crept in. The Obfervation of the firft of July is very exact, for the Comet appear'd in the Telefcope along with that Star in Virgo which by Bayer is mark'd Ω, and fell under the Girdle of the firft Northern Part. The fureft Obfervation of all is that of the fixth Day, when Ay Etirus was feen through the Tube together with the Comet. Alfo on the $14^{\text {tim }}$
the Comet and the Star χ in Bootes's Hunting Pole, under his Sboulder, were feen at one View.

A Comer. An. 1686. at Leipfick; ly M. Kirk. n. 186. p. 256 .
CX. Sept S. It. v. A. 1686. $4^{\text {n }}$ mane, about Day-break, M. Kirk found this Comet in the Conftellation of Leo, to the Right-hand of the Lucids in Lumbis Ω (as it is conceived, for the Latin Copy is defeetive in this place) and refembling that Star in Colour and Magnitude, with a thin and fhort Tail extended upright. Over the Comet in the fame Vertical was the Star of 5Ω of Bayer, or 21 Tychoii, diffant thereffom, by the Micrometer, exactly a Degree; and a Line drawn from the Lucida in Lumbis Ω to the Comet, paffed much about half a degree to the Right-hand of the 6 Leonis. The Diftance of the Comet from Regulus taken by a Radius was about 17°. The next Morning Sept: 9. at $3^{\text {h }} 5^{8}$, the Ditance thereof from $\theta \Omega$ was found by the Micrometer $2^{\circ} 23^{\prime \frac{1}{2}}$, and at $4^{\mathrm{h}} 40^{\prime}$, again $2^{\circ} 25^{\prime \frac{3}{4}}$. To verify the Times, the Altitude of the Lucida in Lumbis Ω was obferved $11^{\circ} 10^{\prime}$, at $4^{\text {ht }} 8^{\prime}$ manè. A Right Line

aA , owes h

 drawn by the Comet, and the faid θ Leonis towards β Leonis, or the Lucida Colli, left that Star a little to the Right-Hand.This Comet was feen by a Countryman, who firft gave Notice thereof, from the 6 th to the 12 th of Sept.

The Refult of thefe Obfervations is, that the Comet was direct in Motion, that it mov'd about $1 \frac{1}{2}$ Degree per Diem, and that it feemed rather to decreafe in Latitude. On the $7^{\text {th }}$ of Sept. it was about 24^{\prime} diftant from θ Leonis, but its bearing therefrom is not fet down.

This Star, $\forall \Omega$, was then in $9^{\circ} 2^{\prime}$ of im, with North Lat. $9^{\circ} 41^{\prime \prime} \frac{1}{2}$. Whence at the time of the firft Obfervation it may be concluded, that the Comet was in $9^{\circ} 55^{\prime}$ of 2 , with North Lat. $9^{\circ} 15^{\circ}$. And at the $2^{\text {a }}$ Obfervation, the Longitude of the Comet will be found about $11^{\circ} 20^{\prime}$ of x, with much the fame North Latitude as before. -
CXI. Feb. F9. New Style, An.c1699. in the Royal Obfervatory at Paris, a
A Comet. An. 369요 at Paris; by M. Caffini. n. 250 . p. 79 . fmall Comet began to be feen, which was like a nebulous Star of the third Magnitude. It refembled that which was obferved in September 1698.

Its Situation was among the unform'd Stars of the fixth Magnitude, near the Arctic Polar Circle, above the Head of Auriga, almoft at an equal Diftance between the Weftern Elbow of Percous and the Head of the great Bear. Tycho afcribes them to the unform'd Stars about the leffer Bear. As we continued our Obfervations, it feem'd by its own Motion to direct its way towards. Capella, with a fmall Deviation from its Circle of Declination. Its Velocity was fuch, that in the Space of one Day it defcribed about 7 Degrees of a great Circle, by which Motion in lefs than 4 Days it might come to the Pole, and be joyn'd to the Polar Star.
At $6^{\text {h }}$ after Midnight we compared the Comet with a Star of the $6^{\text {tb }}$ Magnitude, which Tycbo calls the fecond of thofe which are in a right Line with the Poie. In its Paffage through the Horary Circle it preceded this Star by 15° $53^{\prime \prime}$, by which the Difference of right Afcenfion will be given $4^{\circ} 43^{\prime}$. But it was more to the North than this Star by 8'. whence fuppofing Tycho's Longitude and Latitude of this Star, to this Time, the Comet is referr'd to $15^{\circ} 51^{\prime}$. of Gemini, with North Latitude $37^{\circ} 25^{\prime}$.

This

(453)

This Comet moves to the oppofite Parts of the Heavens in refpect of thofe to which the Comet of the foregoing Year tended; whereas it was almoft at the fame Diftance from the Pole, as this Comet of ours when it was firft feen; nor very diftant from the fame Place.

But the Comet of the Month of September proceeded in the fame way as the Comet of the Year ${ }^{6} 652$. purfued among the Stars, as it was obferved by us at Bologna. On which Occafion we diftinctly defcribed that way by the fame Stars as our Comet held, An. 1698 . in Letters addrefs'd to the Moft Serene Fren. Ef Duke of Modena. That Comet pafs'd in the Month of December from the Southern Parts of the Heaven through the Conftellations of the Hare, Orion, and the Bull, where it cut the Ecliptic with an Inclination of 76°, and through Perfeus and Cafsicpeia, where it ceas'd to be feen in the Month of Fanuary, An. 1653. This began to be feen in the beginning of the Month of Soptember, in the fame Part of Cafliopeia where the other ceafed to be feen, and thence proceeding through the Shoulders and the Arms of Cepleus, where it had the greateft Latitude from the Ecliptic of 76° it pafs'd through the Dragon and the Swon, through the Lion's Skin in Hercules, through Opbiucus, to the Conftellation of Scorpio, which it kept in our laft Obfervations from the 24 to the 28 of September. Now from thefe Obfervations we collected, that this Comet had its Perigee Sept. 7 . in the Evening, with the greateft apparent Velocity of nearly 10° in the Space of one Day.
CXII. Papers of lefs General UJe Omitted.

Cygnus.n.27.
 Hevelius; together with the Names of the Stars in that Conftellation by Tycho Mr. Morrox's and of thofe added by bimiself.
2. Mr. Flamfeed having perufed Mr. Street's Difcourfe, and confidered the $\begin{gathered}\text { n. 110. . . . } 116.19 .0\end{gathered}$ Contrivance of his Moon-Wi fer, affures, that for theMotion of Longitude 'tis the very fame, and for the Motion of Latitude not much better than Mr. Horrox's.

But Mr. Flamfeed hath thought of another Contrivance, that will fhew the Moon's true Place to a Minute.
3. I. The more Notable Calefial Appearances calculated, by Mr. FlamAceed, for the Year 1670.
2. The fame for the Year 1671.
3. The fame for the Year 1672 .
4. The fame for the Year 1673.
5. The fame for the Year 1674 .

Califial Phe: nomena calturaid ted.
n. 55.p. 1099.
n. 66. p. 2029.

ת. 77. p. 2297.
д. 79. p. 306 I .
7. 86. p. 5040.
n. 89. p. 5iti.
4. I. The Eclipfes of the Satellites of Jupiter vifible at Uraniburg the laft four Months of the $Y_{e a r}$ 1671. calculated by M. Cafini.
n. 99.9. 6162. Satelisite Ectipifes.
2. The Eclipfes of the Satellites of Fupiter vifible at the Obfervatory at Green-
4. The fame for the Year 1685.
5. The fame together with the Parallaxes of fupiter's Orb and his Geocenno 177. $\mathrm{p}_{0} 1215$. trick Places, for the Year 1686.
6. The fame for the Year 1687.
7. The Satellites Eclipfes calculated by Mr. Halley, for the Year 1688.
8. I. An Account of the Ephemerides of the Comet, A. 1665 . calculated Comets, n. n. 1. P. 30
a. 184. p. 196
n. 2. p. 17, , 8. by M. Auzout ; and the Principle of his Hypotbefis difcovered by M. Carfini.

Phil. Col.
त. I. p. 44.
D. 90. P. $5^{1 g 0 .}$
N. 184. p. 213.
D. 24 I. p. 240 .
n. 66. p. 2028.
7. 99. p. 6171.
n. 109.p. 215.
n. 1II, p. 243.
43.175.p. 1162.
13.p. 1164 .
7. 111 . P. 244.
s. 175. p. 1176 6. of
9. Excerpta ex Literis Ill. \& Clariff. Virorum ad Nob. Ampliff. \& Confuln. 150. p. 308. tiff. D. Fo. Hevelium Conf. Gedanenfens perfcriptis, Judicia de Rebus Aftronomicis, ejufdemque Scriptis, exhibentia; Studio ac Operâ Foa. Erici Olboffii Secretarii Gedani 1683 . in $4^{i 0}$.
10. A Defcription of the Heliofiop, and fome other Inftruments, made by a. 118, p. 4s0. R. Hook, R. S. S. Lond. 1675 . in 4 to.
11. The Sphere of M. Manilius made an Englifh Poem, with Annotations, and an Aftronomzical Appendix; by Ed. Sberburn, Efq; Lond. 1675. in Fol.
n. 101. p. 233.
7. 204. P. $9^{\prime} 3$.
3.43. p. 858. nalium Tychonis Brabe, Dani, Augufte Vindelic. Ann. 1666. in Fol.
a. 102, p. 27. * ${ }^{2} 9$. which are purchafed, and carefully preferved by M. Hevelius.
15.76tulit Plato Tiburtinus. Noriberga 1537; \& Bononice 1645. The Arabick Copy of thofe Obfervations does not appear, whereby that Tranflation might be examined: But Mr. Halley, by calculating Tables from the Principles there delivered, hath here difcovered and correEied above 30 confiderable Fiaulis in a few Pages.
13. Hiforria caleftis; ex Libris \& Commentariis MS. Obfervationum Vicen-
14. All the Manuscripts of the famous Kepler, (both publifhed and uapublijbed)
15. Feremia Horroccii Angli Opera Pothuma : una cum Guil. Crabtrai Ob-n.8., p. sors. fervationibus Coeleftibus, nec non 70 . Flamffeedii de Temporis TEquatione Diatriba, numerifque Lunaribus ad Novum Lune Syftema Horroccii. Lond. 1672. in 4 to.
16. Afronomia Reformata. Auctore Yoan. Bapt. Riccioli S. Y. Stepbano de An-n. 22.p. 394gelis, conceiving the Arguments of this Author, againft the Motion of the n. ${ }^{\text {36.p. }}$. 693 . Earth, to be none of the ftrongeft, taketh Occafion to let the world fee that they are not more efteem'd in Italy, than in other places: Manfredi, in behalf of Riccioli, endeavours to anfwer the Objections of Angeli, and this latter replies to Manfredi's Anfwer. The Subftance of which Conitroverf/y is here given by Mr. Fa. Gregory; with fome Remarks and Explications of his own upon it.
17. An Âttempt to prove the Motion of the Earth from Obfervations, made ${ }^{n \text { n. 10r.p. } 12 .}$ by R. Hook, F. R.S. Lond, 1674. in $4^{\text {to. The Method of this Undertaking is } n \text {. Tos.p. . } 90.1}$ approved and commended by M. Cbr. Huygens, and M. Cafini.
18. Nicolai Mercatoris Holfati, è Soc. Regia, Infitutionum Afronomicarum ${ }^{\text {n. 125. p. .6.6. }}$ Libri duo. Lond. 1676. in Oitavo.
19. Annales Coeli \& Temporum perpetui, five Myfteria Afronomo-Cbrono- n. To4.e.74. logica à Seculo abfcondita nunc per Dei Gratiam deteecta \& evidenter afferta, Libris tribus. Kiloni. This Book is Preparing by Dr. Wafmutb:
20. A Catalogue of Fixed Stars with their Longitudes, Latitudes, and Mag. m. 3. p. . 145 . nitudes, according to the Obfervatiou of Uleg Beig. Oxford 1666.
21. Catalogus Stellerum Auferalium, five Supplementum Catalogi Tycbonici; n. 14. 1. p. 032. exhibens Longitudines \& Latitudines Stellarum Fixarum, quæ prope Polum Anterciicum fita, in Horizonte Uraniburgico, Tycboni inconfpicux fuere. Authore Edm. Halleio, è Col. Reg. Oxon. in $4^{\text {to. }}$
22. Congietture Pbjfico Afronomiche della Natura del Univerfo; da Pietro M. n. 6s.p. 2012. Cavina, in Faenza 1669. in 4 to.
23. Profe de Sigzori Academici di Bologna, in Bologna 1672. in 4 to. S. Mon-7, 89, 2. 5125. tanari's Difcourfe concerning the admirable Cbanges and other Novelties obferved in the Heavens.
24. Ifmaelis Bullialdi ad Aftronomos Monita duo. Primum de Stella nova,'que n. 21.p. 38 8r. in Collo Ceti ante An. aliquot vifa eft. Alterum de Nebulofa in Andromede Cinguli parte Borea, ante Biennium iterum orta. Approv'd by M. Hevelius.
n. 25. .2.4.40.
25. Three Letters of 7o. Dominicus Cafinus, concerning his Hypotbefis of $n .84 p .500$. the Sun's Motion, and his Doctrine of Refractions. At Bononia, in 410.
26. Refractio Solis Inoccidui, in Septentrionalibus Oris circa Solftitium 7.233 P . P 73. Æftivum, An. 1695. aliquot Obfervationibus Afroncmicis detecta. Holmic, in 4to. Tranflated iuto Englijh. Lond. in $8 v o$.
27. Tabularum Afronomicarum Paris prior; de Motibus Solis \& Lunc necnon n. 19. p. p. 43 . de Pofitione Fixarum, ex ipfis Obfervationibus deductis: Authore Pb. de la Hire. Paris 1687 . in $4^{\text {to }}$. Some Animadverfons on it are bere inferted.
28. 1. The Reyal Almanack for the Year 1675 : by N. Stevenfon. in 12°. n. 108. p. 192.
2. - For the Year 1676.
n. 120. p. 490 .
3. - For the Year 1677.
n. 130 . p. 774 .
29. Ephemeris, ad Annum 1686, exactifime fupputata. Lond. in $8 v 0$.
n. 179 P. p. 35
30. The Celeftial World difcovered, or Conjectures concerning the Inhabitants, $n, 256$. p. 337. Plants, and Productions, of the Worlds in the Planets. Written in Latin by M. Cbr. Huygens. in 8vo.

(456)

25. 1.p. 2.n.45.
P. 900.n. 4 . p. 69.

1b. p. 74.
78. 35. p. 688.
8.44.p.89z.
n. 214. P. 256. publifh'd at Paris in the Recueil d' Obfervations faites en plusieurs Voyages pour parfeetioner l'Aftronomie © la Geographie, being not printed with the ufualCare of the Imprimerie Royale, Mr. Halley here amends fome of the Errata.
r. 14. P. 242.
3. 35 . p. 687 .
2. 134. p. 853.
n. 6. p. 104.
\%. 17.p. 301. cum Mantif, Prodnomi Canatici obrervationes omues Prioris Comet
 ex iifque genuinum Motumaccuratè deductum, cum Notis \& Animadverfionibus, exhibens.
37. 7o. Hivelii Cometagraphia. Dan'zick, in Fol.
38. Stanilai de Lubienietz Theatrum Cometicum. Amfelod. 1668. in Fol.
39. Del Movimento della Cometa, apparfail mefe di Decembri 1664. da Pietro Maria Mutoli, in Pifa, in $4^{t o}$.
40. Erafmi Bartbolini de Cometis, An. 166_{4} छ?. 1665 . Opufculum ; ex Obfervationibus Hafnie, habitis adornatum. Hafnia, in $4^{t o}$.
7. 139 . p. 980.
41. Fob. Wallifii, De Cometarum Diftantiis inveftigandis. Lond. 1678.
42. Lectures and Collections made by R. Hook, Sec. of the R. S. Lond. 1678 in $4 t 0$.
43. Obfervat. of the Come: of 1680 and 168 I . made at the Col. of Clermont;

Ph.Col. n. 4 . p. To6.
16. p. 13.4 . by P. F. de Fontenay è S. F. Profeff. of Matbematicks, Paris 168 i.
44. A Treatife concerning the late Comet, publifhed at Turin, 168 r . by Donato Roffecti, S.T.D. Canon of Leghorn. and Tutor in Matbematicks to the Duke of Savoy.
16. p. 116. 45. An Explication of the Comet which appenred at the End of 1680 , and in the Beginning of 168 I , upon the Obfervations of D. Antbelme, Carthufian of Dijon. At Dijoin, 1681 . in one fingle Sheet.
Pb. Coit. no 7 .
p. 996 .

1b. p. 159 .
A. 349 . P. 272. 168 I ; by a Laver of Altronomy).
47. A new Introduction, flewing how the Motions of the Comets may be reduced to fome certain and Geometrical Rules, that their Appearance may be predicted: in High Dutch; by 7a. Bernouly, at Bazil. An. 168 I.
48. Foamnis Facobi Zimmermanni Cometo-foppia. Or, three Afronomical Relations concerning the Comets that have been feen in the Years 1680, 1681, 1682. Stutgard, 1652 . in 4 to.

CHAP.

C H A P V.

Mechanicks. Acousticks.
 F an Agent as A produces an Effect as E; an Agent as The Genral 2 A , will produce the Effect $2 \mathrm{E}, 3 \mathrm{~A}$ as 3 E, \&cc. all other ${ }_{\text {Lamm of }}$ D. Wotion things being like. And univerfally, $m A$ will produce the ${ }_{n .43}{ }^{\text {by }}$ Dr. . Wallitie. $864 .:$ Effect $m \mathrm{E}$, whatever ratio m be the Exponent of.
2. Therefore if a Force as V move the Weight P, the Force $m \mathrm{~V}$ will move $m \mathrm{P}$, other things alike: Suppofe the fame Space in the fame Time, that is, with the fame Velocity.
3. Alfo if in the Time T it move it the Length L ; in the Time $n \mathrm{~T}$ it will move it the Length $n \mathrm{~L}$.
4. Therefore if the Force V, in the Time T, move the Weight P, the Length L ; the Force $m \mathrm{~V}$, in the Time $n \mathrm{~T}$; will move the Weight $m \mathrm{P}$, the Length $n \mathrm{~L}$. And therefore as VT, (the Product of the Forces and Time, to PL, (the Product of the Weight and Length,) fo is $m n \mathrm{VT}$, to $m n \mathrm{PI}$.
5. Becaufe the Degrees of Velocity are proportional to the Lengths perform'd in the fame Time; or, (which comes to the fame, are reciprocally proportional to the Times fpent in performing the fame Length; it will be $\frac{\mathrm{L}}{\mathrm{T}}: \mathrm{C}:: \frac{m \mathrm{~L}}{n \mathrm{~T}} \cdot{ }_{n}^{m} \mathrm{C}$. That is, the Degrees of Velocity are in a ratio compounded of the Direct Ratio of the Lengths, and a Reciprocal Ratio of the Times.
6. Therefore becaufe V T. PL ::mnV T,$m n \mathrm{PL}$; it will be $\mathrm{V} \cdot \frac{\mathrm{PL}}{\mathrm{T}}::$ $m \mathrm{~V} \cdot \frac{m n \mathrm{PL}}{n \mathrm{~T}}$. That is, V. PC::mV:mPC=mP×C=PxmC.
7. That is, if the Force V is able to move the Weight P with the Velocity C ; the Force $m \mathrm{~V}$ will move either the fame Weight P with the Velocity $m \mathrm{C}$; or with the fame Velocity will move the Weight $m \mathrm{P}$; or laftly, any Weight with fuch Velocity, that the Product of the Weight and Velocity may be m PC.
8. And on this depends the Reafon of the Conftution of all Machines for facilitating Motions: So that in whatever ratio the Weight is increafed, the Velocity muft be diminifh'd in the fame. So that the Product of the Velocity and Weight, that is to be moved with the fame Force, may always be the fame. That is, $\mathrm{V}: \mathrm{PC}:: \mathrm{V}: m \mathrm{P} \times \frac{1}{m} \mathrm{C}=\mathrm{PC}$. 3. Vol. I.

$$
\mathrm{N}_{\mathrm{n}} \mathrm{n}
$$

9. If the Weight P, moving with the Velocity C, by means of the Force V , frikes directly againft the Weight $m \mathrm{P}$, which is at reft, and is no ways hindred; each will be carry'd by the Velocity $\frac{1}{1+m}$ C. For becaufe of the fame Force, which is apply'd to the moving of a greater Body; the Velocity of the increafed Body muft be diminifhed in the fame ratio. That is, $\mathrm{V}: \mathrm{PC}:: \mathrm{V}$: $\frac{1+m}{1} \mathrm{P} \times \frac{1}{1+m} \mathrm{C}=\mathrm{PC}$. Therefore the Shock of one, (by which is meant the Product of the Weight and Velocity;) will become $\frac{1}{1+m} P C$, and of the other $\frac{1}{1+m} m$ PC.
10. If againft the Body P, moving with the Velocity C, (by means of the Force V,) another Body follows it the fame way with greater Velocity, and Itrikes directly againft it; fuppofe the Boay $m \mathrm{P}$, with the Velocity $n \mathrm{C}$; (and therefore moved by the Force $m n \mathrm{~V}$;) both will be carry'd with the Velocity $\frac{1+m n}{1+m} \mathrm{C}$. For it is $\mathrm{V}: \mathrm{PC}:: m n \mathrm{~V}: m n \mathrm{PC}:: \mathrm{V}+m n \mathrm{~V}\left(\frac{1+m n}{x} \mathrm{~V}\right): \frac{1+m n}{1}$ $\mathrm{PC}=\frac{1+m}{1} \mathrm{P} \times \frac{1+m n}{1+m} \mathrm{C}$. Therefore the Shock of the preceding will be $\frac{1+m n}{1+m}$ PC , and that of the fubfequent will be $\frac{1+m n}{1+m} \mathrm{PC}$.
11. If Bodies moving contrary ways meet and ftrike each other directly, fuppofe the Body P moves to the right Hand with the Velocity C by means of the Force V ; and the Body $m \mathrm{P}$ moves to the left Hand with the Velocity $n \mathrm{C}$, and therefore by the Force $m n \mathrm{~V}$; the Velocity, Shock, and Direction of each may be determined. The Body that moves to the right Hand would communicate to the other, if it were at reft, the Velocity $\frac{1}{1+m} \mathrm{C}$, and therefore the Impetus $\frac{1}{1+m} m \mathrm{PC}$ to the right Hand, and would retain to itfelf this fame Velocity, and confequently the Impetus $\frac{1}{1+m} m \mathrm{PC}$ to the right Hand, by Sect. 9. And the Body moving to the left Hand (by a like reafoning) would communicate to the other, if at reft, the Velocity $\frac{m n}{1+m} \mathrm{C}$, and therefore the Impetus $\frac{m n}{1+m} \mathrm{PC}$ to the left; and would retain to itfelf this fame Velocity, and therefore the Impetus $\frac{m n}{I+m} m \mathrm{PC}$ to the left. Now fince the Motion is on each fide, the Impetus of the Body that before moved to the right Hand will now be the Aggregate of $\frac{1}{1+m} \mathrm{PC}$ to the right Hand, and $\frac{m n}{1+m} \mathrm{PC}$ to the left Hand; and therefore will really be to the right Hand or left, accord-
iing as this or that is the biggeft, with that Impetus which is the Difference of the two. That is, (making the Sign + to fignifie to the right Hand, and to the left Hand, the Impetus will be $+\frac{1}{1+m} \mathrm{PC}-\frac{m n}{1+m} \mathrm{PC}=\frac{1-n n n}{1+m} \mathrm{PC}$; and the Velocity $\frac{1-m n}{1+m} \mathrm{C}$; and therefore to the right Hand or left, according as I or $m n$ hall be greater. And in like manner the Impetus of that Body that before moved to the left Hand will be $+\frac{1}{1+m} m \mathrm{PC}-\frac{m n}{1+m} m \mathrm{PC}=\frac{1-m n}{1+m}$ $m \mathrm{PC}$, and its Velocity $\frac{1-m n}{1+m} \mathrm{C}$; and therefore to the right Hand or left, according as I or $m n$ is the greater.
12. But if the Bodies do not move directly the fame way, nor directly contrary ways, but ftrike one another obliquely; the foregoing Calculation is to be accommodated to the Degree of Obliquity. Now the Impetus of a Body ffriking obliquely, is to the Impetus that would be produced if they ftruck directly, other things being alike, in the ratio of Radius to the Secant of the Angle of Obliquity. Which is allo to be underftood, when the the Body falls not perpendicularly but obliquely on the Surface of the Body that is ftruck, as well as when the Ways of their Motion crofs one another obliquely. This Confideration rightly apply'd to the foregoing Calculation, will determine what will be the Velocity, Impetus, and Direction. of Bodies that impinge thus obliquely. That is, with what Impetus, with what Velocity, and towards what Parts thofe Bodies will reflect from each other, which impinge in this manner. The Reafon is the fame of the Gravitation of heavy Bodies that defcend obliquely, to the Gravitation of thofe which defcend perpendicularly.
13. If the Bodies fo impinging are fuppofed to be not abfolutely hard, (which we have conceived hitherto,) but yielding to the Stroke, yet fo as to be able to reftore themfelves by their Elaftic Force; it may hence happen that thofe Bodies fhall rebound from one another which ctherwife would go together; (and indeed mote or lefs, according as this Power of Reftitution is greater or lefs;) that is, if the Impetus proceeding from the Reftitutive Force is greater than the Progreffive.

In Motions that are continually accelerated or retarded, that is to be efteemed the Impetus for every Moment, which belongs to the Degree of Velocity then acquired. But when the Motion is along a Curve, that is to be reputed the Direction in every Point of the Motion, which is the Direction of the Tangent in that Place. And whenever the Motion is accelerated or retarded, and alfo along a Curve, as in the Vibrations of a Pendulum ; the Impetus is to be eftimated for every Point, both according to the Degree of Acceleration, and the Obliquity of the Tangent in that Place.

2. The Law of Nature in the Collifion of Bodies.

The proper and moft natural Velocities of Bodies are reciprocally proportional to thofe Bodies.

[^1]Therefore the Bodies R, S, having their proper Velocities, alfo after Collifion retain thofe proper Velocities,

And the Bodies R, S, having improper Velocities, by Impulfe are reftored to Equilibrium. That is, as much as R exceeds, and S is deficient from their proper Velocity before Impulie, fo much by the Impulfe is taken from R, and is added to S : And contrarywife.

Wherefore the Collifion of Bodies having their proper Velocities is equivalent to a Balance ofcillating upon two Centers, which on each fide are equally diftant fron the Center of Gravity. Now the Beam of the Balance is produced as there is occafion.

Therefore there are three Cafes of equal Bodies moving improperly. But of unequal Bodies moving improperly, (whether contrary ways or the fame way) there are in all ten Caies, five of which arife by Converfion.

R , S , are equal Bodies, or R is the greater Body, and S the leffer. a is the Center of Gravity, or the Handle of the Balance; Z is the Sum of the Velocities of both Bodies.
\{ReZVeloc. $\} R$ g given before) (So \}Veloc $\{S$? given before? $\{S$ e $\{$ of Body $\{S$ \{ Impulie. for $\{R$ o $\}$ of Body $\{R\}$ Impulfe $\}$ \{oR $\}$ Veloc. ? R \{required af- $\}$ or $\{$ S $\}$ Veloc. $\{\mathrm{S}$ \}required after \{0S $\}$ of Body 3 S \{ter Impulfe.) (eR\} of Body $\{R\}$ Impulfe. $\}$
The Rule. $\mathrm{Re}_{e}, \mathrm{~S}_{e}$, make $0 \mathrm{R}, \mathrm{oS}: \mathrm{R}_{\mathrm{o}}, \mathrm{S}_{\mathrm{o}}$, make e S, e R.
TRead the Syllables (tho' disjoyn'd) $\mathrm{R} e, S e, \circ \mathrm{R}, 0 \mathrm{~S}$; or $\mathrm{R} 0, \mathrm{~S} 0, e \mathrm{~S}, e \mathrm{R}$, in the Line of every Cafe; and of thefe that which is written in the Scheme in the Hebrew manner, fhews a Motion contrary to the Motion which the Latin way of writing of each Syllable denotes. A Syllable conjoyn'd fignifies the Reft of the Body.

Calcul. $\left.\begin{aligned} & \mathrm{R}+\mathrm{S}: \mathrm{S}:: \mathrm{Z}: \mathrm{R} a \\ & \mathrm{R}+\mathrm{S}: \mathrm{R}:: \mathrm{Z}: \mathrm{S} a\end{aligned}{ }_{2}^{\mathrm{R}} \mathrm{S} a \pm \mathrm{S}-2 \mathrm{R} a=0 \mathrm{R} \right\rvert\, \begin{array}{r}\mathrm{S} a-2 \mathrm{~S} a=\mathrm{S} \\ 2 \mathrm{R} a+\mathrm{S}, \\ \mathrm{R} 0=e \mathrm{R} .\end{array}$
Nature obferves the Rules of Specious Addition and Subtraction.

By M. Huygens. n $46 . p .927$.
Apr. An. 1669 .
3. The Rules concerning the Motion of Bodies, after their mutual Impulfe.

1. If a hard Body ftrikes another equal hard Body at reft, after the Contact that will be at reft, and the Body at reft will acquire the fame Velocity as was in the ftriking Body.
2. But if the other equal Body move alfo, and in the fame right Line, after Contact they will both continue to move, but with Velocities mutualiy interchanged.
3. A Body ever fo great will be moved by a Body ever fo little, that ftrikes againft it with any Velocity.
4. The General Rule for determining the Motion which hard Bodies acquire by their direct meeting is this following.

Hig. 15^{8}
Let the Bodies be A and B, of which A is moved with the Velocity AD; and let B meet it, or let it move the fame way with the Velocity BD, or laftly let it be at reft, that is, in this cafe let the point D fall in B . Let the Line A B be divided in C, (which is the Center of Gravity of the Bodies A, B,
and let CE be taken equal to CD. I fay, EA will be the Velocity of the Body A after meeting, and EB of the Body B , and each will proceed in that way as is fhewn by the order of the Points E A, E B. Now if the Point E falls in A or B, the Bodies A or B will be reduced to reft.
5. The Quantity of Motion of two Bodies may be increafed or diminifhed by Conflict: But there aiways remains the fame Quantity the fame way, taking from thence the Quantity of contrary Motion.
6. The Sum of the Products made by the Bulk of every hard Body drawn into the Square of its Velocity, is the fame both before and after the Conflict.
7. A hard Body at reft receives more Motion from another hard Body, whether greater or lefs, by the Interpofition of fome third Body which is of an intermediate Quantity, than if it had been ftruck by it immediately. And if that interpofed Body dhould be a mean Proportional between the two others, it will act the moft forcibly of all againft the Body at reft.

In all thefe Conclufions the Author fuppofes the Bodies to be of the fame Matter, as he acknowledges himfelf; or he intends, that their Bulk may be eftimated by their Weight.

But he adds, that he has obferved a certain wonderful Law of Nature, which he affirms that he can demonftrate in Spherical Bodies, and which leems to him to be general in all other Bodies whether hard or foft, or whether they ftrike directly or obliquely; that is, that the common Center of Gravity of two, three, or any Number of Bodies, is always equally promoted the fame way, in the fame right Line, both before and after the Yercuffion.
4. For fome Months laft pass'd, feveral Members of the Royal Socicty, at some Hyarizal their publick Meetings, had infifted very earneftly, that that important Sub. Paydures relating ject of the Laws of Motion Phould at laft undergo a ftrict Examination, ha- by hir Oipenving formerly been propofed to the Society, bur not yet difcufs'd as it de-burg. Ib d.p.g25. ferved to be. It then feem'd proper to that Hlluftrious Society to determine, that which ever of their Members feem'd fitteft for this Inquiry, into the Niature of Motion, fhould be defired to produce their Thoughts and Difcoveries about it, and likewife to collect what had been done in this matter by other excellent Men, as Galileus, Des Cartes, Honoratus Faber, Foacbimus Jungius, Peter Borellus, and others. Chiefly with this View, that thus confulting and comparing the Opinions of all, a Theory might thence be eftablifhed in the Philofophical World, which might agree as much as poffible with Obfervations and Experiments, which Thould be often repeated with due Care and Fidelity.

This their Defire being made known, feveral of the Members of the faid Society comply'd with it, as Cbriftian Huygens, Fobn Wallis, and Cbriftopber Wren; who undertook to compleat as foon as might be thofe Hypothefes ath Rules of Motion, in digefting of which they had been employed for fome time. Hence it was that thofe three great Mathematicians, in the Space of a few Weeks, comunicated their Theories neatly abridged, and as it were by ftrife, defiring the Sentiments of the Royal Society upon the fame. Firft of all Dr. Wallis tranfmitted his Principles concerning the Eftimation of Motion, by a Letter dated Nor. 15. 1688, which was deliver'd and read the 26 of the
fame Montl. He was foon fucceeded by Sir Cbrifopber Wren, who on the 17 th of the Month following exhibited to the Society the Laws of Nature concerning the Collifion of Bodies. Thefe the Society ordered to be printed, having firt obtained the Confent of the Authors, for the more commodious Communication and ampler Difcuffion of this Subject.

Whilft thefe Things were doing with us, on the $4^{\text {th }}$ of Gimuary following, Englifb Stile, the Poft brought us Letters from Mr. Hurgens, written on the $5^{\text {th }}$ day of the fame Month, but New Stile, containing the four firft Rules concerning the Motion of Bodies arifing from mutual Impulfe, together with theit Demonftrations. Ihad at hand a Copy of Wren's Theory, which I fent the fame Day to Mr. Huygens by Way of Retaliation, the Poft then favouring. I forbore to open Mr. Huygens's Letters, fufpecting fomething of this Nature to be included in them becaufe of their Bulk, and becaufe of his Promife, till I had an Opportunity of laying them before the moft noble and worthy Prefident of the Royal Society, the Lord Vifcount Brounker. Which being done, and the Rules of each being compared by the faid Society, there prefently appeared a wonderful Agreement between them; which produced in us a great Defire of committing both their Writings to the Prefs. On Mr. Hurgens's Side nothing was wanting but his Confent, without which we did not think it fair to print his Difcoveries, efpecially as he had not given them then compleat. However we took care to regifter his Paper in the publick Acts of the Royal Society, and to return our folemn Thanks to the Author on Fan. II. for his agreeable Communication; afterwards adding (on Feb. 4.) our earneft Wifhes, that he would caufe his Theory to be printed either at Paris, (which he might eafily do in the Journal des Scavans, as it is called,) or fuffer us to print it here at London in the Philofophical Tranfactions. Which Letters being fent to Mr. Huygens, we foon afterwards received an Anfwer from him, acknowledging the Receipt of Sir Cbriftopber Wren's Paper on this Subject, but mentioning nothing about the Publication of his own Paper, either at Paris or London.

Hence I conclude it is very plain, that Mr. Huggens has been wanting to himfelf, in not haftning the Publication; and by his Delay has given occalion, that Mr. Wren having by his Sagacity difcovered both the Theories, juftly claims a right to the Glory due to this Difcovery. Since it is beyond all doubt, that neither of the Gentlemen knew what was done by the other, before their Writings appeared together; but each by his own Ingenuity produced thefe beautiful Originals.

Indeed Mr. Huygens, when he was at London fome Years ago, folved thefe Cafes of Motion which were then propofed to him. A fure Argument that he had even then found out the Rules, by the Fividence of which he performed this Matter. But he will not affirm, that he difclofed any Thing of his Theory at that Time to any of the Englifh. Nay, he muft confefs, that though he was folicited by fome of them to make this Communication, yet he could never be prevail'd on to do it till very lately.
II. Let all the Lines $a b, b c, c d, d e, \& c c$. be all equal to one another, and $b_{1}, c_{2}, d_{3}, e 4, f 5, \& x c$. increafe equally as the Numbers $1,3,5,7,9, \& c$.

I fay that any heavy Body falling in this Line from any Point of it, will The Symbronifm reach the Bottom in the fame Space of Time, as it would reach it if it fhould of mide $\mathrm{V}_{\text {Vibrations }}$ fall from any other Point of the fame.
For if you fuppofe $a=a b=b c=c d, \& c$. and $b=b .1$, and $x=$ any Num- Arated $b_{y} P_{c r-}$ ber of either; then if $x a$ is put for $a f$, then $x \times b$ mutt reprefent $f \delta$, and therc- $n .94+0.6032$. fore the Time of Defcent will neceffariiy be $\frac{x \times b}{x \times a a}$ or $\frac{b}{a a}$. And the fame obtains ${ }^{\text {May }}$ Fig. 159. in all Cafes. Therefore, $\&<c$.

I fay moreover that this Curve is a Cycloid, which is eafily demonftrated from the Conftruction, and from what is now fhewn. For this Curve $a b c a$ of z is equal to the double of the laft of the right Lines, that is $2 \approx \omega$, and $a w$ is equal to the Semicircumference of the Circle whofe Diameter is $z \omega$; and in general the Triangle $\gamma \succ I I$ repretents the right Line $z \omega$; and the Square
 fents the right Line $a \omega$; and the Parts of one the Parts of the other refpectively. As if $\gamma \leadsto$ 见 reprefents $f \delta$, then will $\gamma \triangleq \Omega$ た reprefent $a \delta$, and $\gamma \approx m \sigma$ will reprefent a f. But I have no time to purfue this farther.

Laftly I fay, that a Ball fufpended by a String of a due Length, and vibrating between two Cycloids, will move in a Cycloid. Wherefore fuch Vibrations will be Synchronous. Q. E. D.
III. r Prob. To determine the Curve-line connecting two given Points which A Probem comare at different Diftances from the Horizon, and not in the fame Vertical Line, cerning the Line upon which a Body moving by its own Gravity, and beginning to move from the upper Point, fhall defcend to the lower Point in the fhorteft time. be drawn between thofe Points, from one to the other, to make choice of that, p. 384. Jan. according to which if a Plate be bent having the form of a Tube or a Canal, fo that a Ball being laid upon it, and fuffer'd to defcend freely, it may perform its Paffage from one Point to the other in the fhorteft Time poffible.
2. Yefterday I received copies of two Problems, propofed by that moft solv'd; by acute Mathematician Mr. Fobn Bernoull, printed at Groningen, Cal. Fan. 1697 . ibia. Of the firt of which this is the Solution.

From a given Point A let there be drawn an indefinite right Line $A P C Z_{\text {Fig. } 160,}$ parallel to the Horizon, and upon the fame right Line let there be defcribed any Cycloid A QB, meeting a right Line drawn through the other given Point B in the Point Q, as alfo another Cycloid $A B C$, whofe Bafe and Altitude may be to the Bafe and Altitude of the former as AB to AQ refpectively. Then this laft Cycloid will pafs through the Point B, and will be that Curve-line, in which a Body falling by the Force of Gravity will arrive fooneft from the Point A to the Point B. Q. E. I.
3. Let AP be an Horizontal Line, P the Point from whence the heavy Bo- The Demenforody defcends through the Curve-line required A DE, C and D two Points infi- tion , by Niri. nitely near, through which the Body will fall, CD a right Line connecting the R . sauls. n. 246. two Points, DC and sC, DF and SG, FS and GC or sH, Moments of An. 1698 . the Abfcifs of the Curve and of the Ordinate refpectively. Take $\mathrm{Dr}=\mathrm{D} s$, Fis. 16 L. and $t \mathrm{C}=\mathrm{BC}$.

Becaure in the little nafcent Lines the Time is direetly as the Way defcribed and the Velocity inverfely, (that is, in this Cafe as the Square-root of the AI. titude of the falling Body,) by Hypothefis it will be $\frac{D s}{\sqrt{Q D}}+\frac{S C}{\sqrt{Q F}}=$ the leaft Time. And becaufe the Velocity in the Points of the fame Altitude S and B along the Curve $\mathrm{D} s \mathrm{C}$ and the right Line DBC is the fame, the Time along D C, which evidently is the leaft, will be as $\frac{B D}{\sqrt{ } Q D}+\frac{B C}{\sqrt{Q F}}$. Therefore let thefe Times be equal, and then $\frac{D s}{\sqrt{ } D}+\frac{s C}{\sqrt{Q F}}=\frac{D B}{\sqrt{Q D}}+\frac{B C}{\sqrt{Q F}}$, that is, $\frac{\mathrm{DB}-\mathrm{D} s}{\sqrt{Q D}}=\frac{s-\mathrm{BC}}{\sqrt{Q F}}$, or $\frac{\mathrm{Br}}{\sqrt{Q D}}=\frac{t s}{\sqrt{Q H}}$.

But the Evanefcent Triangles $\mathrm{B} r s, \mathrm{~B} t s$, are equiangular to the Triangles $\mathrm{D} s \mathrm{~F}, \mathrm{H} s \mathrm{C}$; therefore $\frac{\mathrm{B} s}{\mathrm{D} s}=\frac{\mathrm{Br}}{s \mathrm{~F}}$, and $\frac{t s}{\mathrm{Hs}}=\frac{\mathrm{B} s}{s t}$. Let thefe two Ratios of E quality be compounded, and then $\frac{\mathrm{Br}}{\mathrm{D} s \times \mathrm{Hs}}=\frac{t s}{s \mathrm{~F} \times s i}$. And ex aquo $\frac{\mathrm{dQD}}{s \mathrm{~F} \times s t}=$ $\frac{\checkmark \mathrm{QF}}{\mathrm{Ds} s \mathrm{H} s}$. Now becaufe any of the Elements may be fuppofed to flow equably, Iet us fuppofe $\mathrm{D} s=s \mathrm{C}$, and the moft fimple Expreffion of the Curve becomes $\frac{\downarrow Q D}{s F}=\frac{\downarrow Q F}{D s}$ every where. That is, in the Point of Flexure the Curve will always be in a Ratio compounded of the Velocity directly, and of the Moment of the Ordinate reciprocally. Let \dot{x}, \dot{y}, and \dot{z} be the Fluxions of the Ablcifs, the Ordinate, and of the Curve refpectively, then $\frac{x_{2}}{y}$ is conftant as above. Therefore $\frac{x^{\frac{1}{2}}}{\dot{y}}=1$; but we fuppofed $\dot{z}(=\sqrt{\dot{x} \dot{x}+\dot{y} \dot{y}})$ to be conftant. Therefore that this may be conftant Unity, and may obtain its due Dimenfions, will be $\frac{x^{\frac{1}{2}}}{y}=\frac{a \frac{x}{2}}{\sqrt{x \dot{x}+y \dot{y}}}$; and after Reduction $\dot{y}=\frac{x^{\frac{1}{2}} \dot{x}}{\sqrt{a-x}}$, which is a known Exprefion of the Cycloid PDE. Q.E.D.

How much the Def.cnt is Nucker in the Cycioid than in - firaight Lize byn. 225 . p. 4.24. Feb. An. 1697.
IV. Theorem. In the Gycloid AV D, whofe Bafe A D is parallel to the Hosizon, and Vertex V is downwards; if from A be any how drawn the right Line A B meeting the Cycloid in B, from whence let there be drawn the right Line BC perpendicular to the Curve of the Cycloid in B, to which from A let there be drawn the Perpendicular A C. I fay that the Time in which a Body at reft falling from A by the force of its Gravity defcribes the right Line $A B$, is to the Time in which it paffes along the Curve AVB, as the right Line A B to the right Line AC.

Through B draw BL parallel to the Axis of the Cycloid V E, and B K parallel to the Bare $A D$, meeting the Axis in G, and a Circle defribed upon the Diameter

(465)

Diameter EV in F and H, and laftly meeting the Cycloid in K. Draw the right Line EF, which from the Nature of the Cycloid will be parallel to the right Line BC. Whence B M is equal to EF, and EM to BF, which becaufe of the Cycloid is equal to the Arch V F. Therefore A M is equal to the Arch EHVF.

By Prop. 25. Part II. of Huygens's Horologium Ofcillatorium, the Time in which a Body falling from reft defcribes AV, is to the Time of the Fall along EV, as the Semicircumference is to the Diameter; and by the laft Propofition of the fame, the Time in which a Body defcribes VB, after having defcribed AV, (which is equal to the Time in which a Body defcribes KV, after having defcribed AK, is to the Time of the Fall along AV, as the Arch VF is to the Semicircumference; and therefore to the Time of the Fall along EV, as FV to the Diameter. Wherefore the Time in which a Body defcribes the Curve AVB is to the Time of the Fall along EV, as the Arch EHV F to the Diameter EV. But the Time of the Fall along EV is to the Time of the Fall along LB, or E G, as EVV is to EF. Therefore ex equo, the Time in which a Body defcribes AV B is to the Time of the Fall along L B, as the Arch EHVF to the Subtenfe E F; that is, as the right Line A M to MB. Again, the Time of the Fall along L B is to the Time of the Fall along A B, as L B to A B. Therefore the Ratio of the Time in which the Body defcribes AVB to the Time in which it defcribes AB, is compofed of the Ratio of AM to MB, and of the Ratio of $L B$ to $B A$; and therefore is equal to the Ratio of $\mathbf{A M} \times \mathrm{L}$ B to $\mathrm{MB} \times \mathrm{BA}$. But $\mathrm{A} M \times \mathrm{LB}$ is equal to $M B \times A C$, becaufe each is equal to the double of the Triangle A BM. Therefore the Time in which a Body falling from reft defcribes the Curve of the Cycloid AV B, is to the Time in which it defcribes the right Line $A B$, as $M B \times A C$ is to $M B \times B A$, that is as $A C$ to $A B$. 2.E.D. And the Demonftration proceeds in the fame Manner, if the Point \mathbf{B} be betwsen \mathbf{A} and V.

V. 1. The upper Plate of the Watch is A B: The Circular Balance-Wbeel

 C D, of which the Arbor is EF: The Spring turned Spirally, GH M, faftned to the Arbor of the Balance-Wbeel in M, and to the piece that is faft to the Watch-Plate, in G, all the Spires or Windings of the Spring being free without touching any thing. NOPQ is the Cock, in which one of the Pivots of the Balance-Wheel turns; R S, is one of the Indented-Wheels of the Watcb having a Balancing Motion, which the Balance-Wbeel gives to it. And this Wheel R S, catches in the Pinion T, which holds on the Arbor of the Balance, of which by this means the Motion is entertained as much as is neceffary. Thefe Watcbes are exact for the Pocket, and when made greater, will be ufeful to find the Longitudes both by Sea and Land.2. The Principle I thought upon fome Years ago for making exact Porta- By Dr. Gothe ble Watches, is altogether different from that of M. Huygens: his depending Guil. Leibnitz, upon a phyfical Obiervation, but mine upon a mere mechanical Reflection; n. Apr. An. 1675 . 18 . which hath not been taken notice of for want of the Art of Combination, the ufe of which is far more general than that of Algebra. For, having confidered Vol. I.

Ooo with

Enact Portatle Watches; by M. Huygens. n. 112. 9.272 . Fig. 163. Mar. An. 1675.
with my felf, that a Spring being bent to the fame Degree, will always unbend itfelf in the fame Time, provided it find the fame freedom of unbending it felf fuddenly; I inferred from thence, that there might be imployed two fuch one of which fhould play, whilft the Firft Mover of the Waich did bend the other again.

Thefe Thoughts I have executed in the following manner: Let A B be one of the Watch-Plates, C and M , two indented Barrels wherein the fimall Springs are inclofed. The Teeth of the Barrels catch thofe of the Pinions d d, which carry the Balances e e ; and other Teeth of the faid Barrels are catched by thofe of the interrupted Wheel F G. Now let us imagine, that this Wheel FG, being moved towards HF, by the force of the Firft Mover of the Watch, and turning the Barrel C, bends the Spring inclofed in it, and ftops with the Barrel as foon as it hath bent this Spring. This piece which ferves to flop, is eafy, and hath not been thought neceffary to be marked here, to avoid embarraffing the Figure. But whilft one indented part of the interrupted Wheel F G, viz. F, turns the Barrel C, the empty part, oppofed thereunto, which is G, anfivers to the other Barrel M, and gives Liberty to the Spring, it inclofeth, to unbend itfelf. Thus whilft the Movement of the Watcb bends the fmall Spring of the Barrel C, in the fame Time the fmall Spring of the other Barrel M, unbends of itfelf: I fay, in the fame Time, except the Spring C, fhall have done bending a little fooner than the Spring M fhall have unbent itfelf: So that the Spring C, being bent, and the Wheel F G ftopped; bath of them ftay in this Pofture, till the Spring M, when it thall be quite unbent, doth, at the end of its Motion, touch a Piece which delivers it. And then the Spring C unbends of itfelf in its turn ; the Teeth of the interrupted Wheel, which continiues its Motion the fame way as before, fince 'tis delivered, not being any more able to hinder it thereform, becaufe the Barrel C, doth now meet with the empty part H , of the faid Wheel. But before it hath done with unbending it felf, the indented part L , being oppofite to the empty part H , that turns the Barrel M , bends its Spring again, and having done fo, ftops with it ; whilft the Spring C, making an end of unbending itfelf, delivers them by a reciprocal good Office, and renders to the Spring M, the fame Services which it had received from it, with an Expectation of receiving the like again.

Which being well confidered, 'tis manifef, That the fame Alternative Motions will continue always: That the Periods, taken from the very Moment of that one Spring begins to unbend, untilthe Moment it once unbends itfelf again, will always be of equal Duration, tho' the two fmall Springs be not equally ftrong: That the Balance of fuch a Watch will be double, and may be charged more or lefs, and receive delay, by advancing or recoiling along the two Arms two equal Weights, Counter-balancing one another, that fo the Change of the Situation may not at all prejudice the Equality of the Watcb. For the reft, we may in this kind of Watches fpare the Fufee, and confequently the String or Chain. 'Tis alfo eafy to judge, that fuch Watches as thefe may be of a Size fufficiently fmall; that they will make no more Noife than ordinary Watches; that they will be as exact as Pendulums, and ceafe not to go whilft they are Winding up. And tho the Motion of the Watch Wheels
may be altered by many Accidents, yet the Periods of the fmall Springs will not be concerned in all or any of them, provided the Motion of the Watch Wheels have always more Strength than it needs to bend them again; which is in our Power.

The Objections that have been made againft this Contrivance, if employed for finding Longitudes, are thefe; that toffing of Ships would fhake the Springs as well as other pieces; that Ruft would fpoil them, fince the faltinh Humidity of the Sea in remote Voyages, fpares not the very Needles of Compaffes tho' inclofed in Boxes ; that the Changes of Seafons and Climates will fenfibly alter the Springs, efpecially the great Heats or Rains within the Tropicks, which at length will fomewhat intemper the Steet ; as is confirmed by the Experiments of the illuftrious Academy of Florence, fhewing how eafily that Heat and Cold do change fender Springs: Befides that, the Air more or lefs condenfed will alfo more or lefs refift the Motion of the Balance. To which may be added, that Springs by working are weakened: and laftly, That there will be always fome little Frittion, that will make the feveral pieces go more or lefs eafily, and that even in length of time they will wear out.

But I anfwer, That all thefe Defects, that proceed from the Imperfection of the Matter, may be furmounted by a general Remedy, without Examining them here in particular: And that is, That for executing it in great, we make ufe of maffy Springs, as are thofe of Crofs-Bows, we being Mafters of them, not wanting Force or Place in a Ship, to govern a great Weight that may ferve to bend them continually again. Now thefe mafly Springs that may be fo great, and their Reftitution fo fpeedy, by augmenting their Number, that all the above-named Defects will have no confiderable Proportion to this Strength, and the Aggregate of their Repetitions will not be fenfible till after a very long time. And 'tis eafy to Demonftrate, That by augmenting the bignefs of the Engine, and the force of the mafly Springs, we may make the Error as fmall as we will, provided we pafs not the bounds of Conveniency, and content our felves with Exactnefs fufficient for their chief End, viz. For finding the Longitudes.
VI. The Circle, F G H, being placed upon a Plane inclined A B, is di- Aclict Arcenvided into two unequal Parts by the Line GI. To reftore to the lefs Sec- dent spon ann; ture its Aquilibrium, there is faftened to the Extremity of the Radius D F, abyM.de Gennes. Weight F, which is fufficiently heavy to recover what the leffer Secture ${ }^{\text {n. 140. P. . } 1006 \text {. }}$ Fig. 165. lofes by its Situation. That a Wheel or Clock may thus ftand not only in July and 1678 . Equilibrium, but alfo afcend upward, there is placed in the middle of the Clock a Drum, which inclofes the Spring of the Pendulum; upon which Drum is faftened the Radius DF. For thus the Spring being mounted, enforces the Drum to turn, and fo to raife the Weight, which it cannot raife without its becoming more heavy, in regard that coming to the Point E, it is farther from the Center, than when it was in F, and thus all the Wheel curns on that Side as the Spring gives way.

1 Cloct De. fcerdent en a Plane Indinedt by MFr. Manrise Wheeler. n. 161.2, 647. My Аа. 1684
VII. Altho the Marquis of Worcefter is faid to have contrived a Watcb that fhould Move upon a Declivity, and M. de Gennes has given fome Account of a Clock Afcondens on a Plane inclined; yet neither of them, nor any like them, was ever feen by me, and for ought I could ever learn, the Reajon of their Morions remains to this Hour as great a Secret, as if they had never been. I fhall therefore give an Account of a Movencht, which I have defign'd to meafure Time after a peculiar Manner.
Fis 166.

1. The exteriour Structure of it is a circular Body of $3 \frac{1}{2}$ Inches Diameter, confifting of two Plates meafured by the fame Radrus, and fixed in a paralled Pofition to each other by the Hoop b, the breadth of which is about an Inch. This Hoop and the two Plates form the Cafe of the Movinlint; of which, that which appears in the Front, is towards the Verge thereof infcribed with a Horary Gircle, the Divifions whereof anfwer the Hours of a natural Diy. The deep Shades within this Circle are intended to reprefent a Concave, of near half a Inch deep; and the Prominence g, in the middle of this Concave, is a Hemifphere of Brafs or Silver, riding loony on a Pin, which lies hid, and is the Axis of the Movement. The upper half of this Hemifphere is hollow, but the nether filled with Lead; and the fmall Gentleman that fits thereon, does with an erected Finger perform the Office of an: Index.
Fis. 169. But this being only for Ornament, you may fubftitute in the room cherenf any other Index, provided the Axis whereon it is fupportad, move fieely in the Hole II, and the lower part thereof HL, fo far preponderate it 1 IP , as always to keep it Pendulous, with its Point to the Vertical Hotr:
2. For the manner of its Motion, as far forth as it appears outwardly; it is thus: SE reprefents a Board or Shelf, of a ftraight and even Surface, about 6 Foot long, and fo thick as not to be apt to caft with change of Weather; nor to grow camber under a fmall Weight ; on this is the Movement placed, and here to perform its Courfe ; and therefore I call it the Stage of the Movement. This Slage is raifed at the end S, about so Deg. above the Horizon or Line of Level HE; but this Angle of its Declivity DEH, is variable. The two Plates which form the Cafe of the Morement, ate to be extant all round without the Hoop $b, \frac{\div}{1}$ of an Inch, and the Edges of them lightly indented; that while the Movement defcends upon the Stage, it may turn only, and not nide. The Movement being placed as high as it may, near the point S, fhall move downward towards E, with that flowtefs, as to finith one entire Revolution in 24 hours; and while it does fo, the Divifions on the Horary Circle (or Dial-Plate) fucceffively Culminating over the Point of the Index (which is always to keep the fame Polition) will fhew the Hours of the Day and Night. And when by feveral repeated Revolutions, it has meafured the length of its Stage, it is to be replaced at S, as before; which may be done in lefs than half the time you are Winding up a Watch; and if the Stage be 6 Foot long, no oftener than once in a whole Wcek.
3. The way of Adjufting she Motion to the exact Meafure of an Hour, and Reetifying its Errors, is thus: viz. By the turning a Skrew inferted at S, the Slage may be elevated or deprefs'd, and accordingly the Movement will go Fafter or Slower: Fafter, if raifed up, and Slower, if let down; and

and by making the Horary Circle moveable, and Inferting feveral fmall Boffes or Buttons, here and there upon the Verge thereof, it may with an eafy touch of the Finger be moved to the right and left as there fhall be Occafion, till the jutt Time be brought to the Point of the Sufpended Index.

The Reafon of this Movement may be thus explained: 1. Let the Circle LODN, reprefent any Circular Body, whofe Centers both of Gravity and Magnitude are cuincident at M. Let this Cireular Body be placed upon fome Level Plane GG; and then it is evident that the Angle of its Cuntact with that Plane at c, will alfo be the Point of its Libration, and confequendy it muft reft there: Becaufe the Moment and Impediment are equal.
2. Let DE reprefent a Defcending Plane, making an Angle of Contact with this Circular Body at b : and here 'tis manifeft it cannot reft : becaufe the Line of Direction ra, which (while it infifted upon a Level) divided the Circular Body by the Centers of Magnitude and Gravity into parts Fiquiponderate, is now removed to L D; which Line LD falling without, or beffde, the Center M, evidently deftroys the Æquipoife of its Parts, and therefore muft leave ir to tumble down towards E. For here the Moment is greater than the Impediment. The Reafon therefore of its Defcent now being the Over-balance of the Parts LN D, to the remaining Section LD O, it muft neceffarily follow,
3. That if fome Weight equal to the Excels of LND, above LOD, were affix'd to the Limb of the Quadrant O as at P : then the Circular Body would reft as quietly at b, as it did before at a. The Suppofition cannot be denied, and the confequence is unavoidable, becaufe LDO $+\mathrm{P}=\mathrm{LND}$, the Impediment is equal to the Moment.

Let thenthe Numbers, 1, 2, 3, 4, reprefent a Train of Wheel-work, wherein there is no material difference from what is found in a common Watch; only the numbers of the'Teeth on the Wheels and Pinions are to be fo calculated, that the Motion of the Whole Train may correfpond to the affigned Revolution of the Body of the Movement which is to be once in 24 Hours: It would be expedient alfo, That a Spiral Spring were applied to its Balance, as in later Moveminots, is ufual; but of a Fufoe here's no need, for the Turns of the lody of the Movernent as it defcends upon the Stage, anfwer all the Intentions of a String or Chain; and the Contranitence of the Weight P, to the Excefs of LED, above LQD, ferves inftead of a Perpetual Spring; and the Mociement wants only a Perpetral Defoent, to make its Motiont io. And whereas the great Wheel in ordinary Movements, is placed as near the euge of the Framing Plate f r, as it may be; here it muft (with its Axis or Arbor M) poffets the Center of the Mosement : Becaufe this Wheel is to carry the Weight of Power P, by the Vefis M P, and that Weight P mult always keep an Equidiftance from the Center of the Movemem; that while the Budy thereof (i.e. of the Movenent) performs its Revolutions; the faid Weight P, and the great Wheel (to which it is affixed) may, without any confiderable Viariation, continue in, or ncar the fame Poftion, wherein they now are. Now fuppofe this Weight P , with its Vefif M P , to be taken quite out of the Movennchit, and the Body of the Movimemi to be placed on a Horizontal Plane HH1, its Hoint of Contact in that Plane is T ; where it fhould, but cannot, reft; becaufe
becaufe the Weight of that part of the Train, marked with the Numbers, $2,3,4$, removes the Center of Gravity from M ; and therefore on the oppofite Part of the Movement as about C Q, the lnfide of the Hoop, which forms the Cafe, is to be loaded with a thin Lining of Lead, which may bea Counterpoife to that part of the Train; that fo, the whole Body of the Movement, together with all its Furniture, within and without (excepting only P, with its Veizis) may, on that Horizontal Hane, or while it rides upon its own Axis, refe indifferently in any Point. This reducing of the Novement to an Equilibration of all its Parts in the Center M, muft be performed Tentando, i.e. by Rafping the Lead at C O, as much and in fuch Places as is needful; which, to an Artificer of Ordinary Sagacity, will not be at all difficult.

The Center of Gravity being thus reduced to M , replace the Weight P ,

Fig. 1700
Fig. 168. by the Hole H, on the Arbor of the Central-Wheel M. Then let the Body of the Muvernent be placed on the Declivity DE, and fuppofing P+LQD $=$ LDE, then the Body muit needs reft there : But becaufe the Weight P, is not now fix'd to any part of the Quadrant Q D, but hangs upon the Train of Wheel-work $\mathrm{I}, 2,3,4$, it evidently follows, That if the Power thereof be fuperior to the Refiftance of the Train, then the whole Body of the Movement muft needs defcend, towards E. By this you fee there are two Offices affigned to the Weight or Power P. The Firft is, to be a Counterpoife to the excefs of the Weight of LED, above LQD.

The Second is, that it be of force fufficient to put the Train into a Motion fo adjufted, as may exactly comport with the time affigned for the Revolution of the whole Body. So that if there be any Difficulty remaining, it confifts in fuch an exact Stating of the Weight and Power of P , that it may adequately ferve both thefe Intentions. Now how eafy this is, will be manifeft from there Propofitions following.

1. That whatever the intrinfick Weight of P fhall be, as fuppofe it 4 Ounces Troy; yet the Power of that Weight will be augmented or diminifhed according to the different Degrees of its Elevation in the Quadrant TQ. Thus confidering P M, as a Veciis, its Hypomocblium is M, the Point where it exerts its Power on the Train, is at V; I fay then, whatever Power it has upon the Point V, in its prefent Elevation of 45 Deg. it will acquire a greater by being raifed to $50,55, \mathcal{E}^{2}$. and the greateft of all in 90 Deg. at Q : And on the contrary, let it fink to $40^{\circ}, 35^{\circ}, \mathcal{E}^{\circ} c$. its Power upon the Point V, will ftill be diminifhed, infomuch that in T, it will be utterly extinguifh'd. And therefore if P be of a competent Weight (i. e. not utterly too light) to move the Train at all, it will certainly move it in fome Degree of Elevation or other in the Quadrant QT.
2. If the Weight P be confidered as to its Office of being a Counterpoile to the Body of the Movement ; as I need not to prove, that it will perform this no lefs, while it hangs by upon the Vectis M P, than if it were faft riveted in the fame place to the Cale of the Movement: fo, in what Point of the Quadrant foever it will move the Train, it may be alfo a Counterpoife to the Body of the Movement. For,
3. At what Point foever of the Circle LETQ, the Line of Declivity DE, makes an Angle of Contact; on the fame Point will the Diameter S D fall at Right Angles with D E.
4. The Line of Direction LD, will ever fall upon the Point of Contact D, making an Angle with the Diameter, as SDL.
5. The Angle S D L, will be always equal to DE H, i.e. As great as is the Fig. 166. Elevation of the Line of Declivity DE, above the Horizontal EH; fo great will the Angle of Diftance be between the Diameter SD, and the Line of Direction L D.
6. The greater the Angle of Declivity is, the lefs will be the Section L QD; and fo on the contrary, the lefs that Angle is, the greater the Section. And therefore,
7. The Excefs of the Weight of LED, above LOD, muft be alfo greater, by Raifing up the Stage with the Skrew at S; and that Excefs lefs by Skrewing it down.
8. The Lighter that part of the Body is, which is reprefented by the Section LQD, the more Heavy ought the Counterpoife P, to be ; and that either in its own Intrinfick Weight, (in Ounces and Parts of Ounces) or elfe in its Potential Weight, by being raifed higher in the Quadrant QT.
9. The Skrewing up the Stage, of the Movement at S, will raife the Counterpoife higher in the Quadrant QT, by Prop.3. and therefore potentially heavier. And from hence appears (I take it moft clearly) both the Reafon of the due Adjuitment of the Motion of the Train to the exact Meafure of an Hour, and what Weight is to be affigned to P , that moves it; and that we are not confined to Scruples and Grains, but are, allowed fuch a confiderable Latitude, as it is not eafy to err therein:

Having therefore fet the Stage (by the help of the arched Skrew) at the Elevation of above 10 Deg. place the Movement thereon, and try what Weight, hanging at the end of the Vectis M P P will ftir the Train; mean while holding the Movement with the Hand in fuch a Pofition, as the Veflis may make an Angle of about 30 Deg. with the Perpendicular M T: then let the Movement loofe, to undulate upon the Stage; and when the Vibration ceafes, obferve to what Degree of the Quadiant the Vectis Points, and at the fante time mind the Pulfes of the Balance. If at this Obfervation, the Weight lies low, (as for inftance, between 25 and 35 Deg. of the Quadrant) and the Beats of the Balance are gueffed to be not much different from their due time, the Weight P, is well enough proportioned. But if it chance to be much heavier than is abfolutely needful, that Excefs will be moderated by Skrewing down the Stage; and if it be not abfolutely too light, its Defect will be compenfated, by Skrewing the Stage higher. Therefore of thefe two Extremes, choofe the former ; for the fewer Degrees that P arifes in the Quadrant, beyond what is abfolutely neceflary, it will (for Reafons very obvious) be fo much the better.
VIII. Des Cartes his Notion, I muft needs confefs to be to me incomprehenfible, while he will have the Particles of his Celeffial Matter, by being

(472)

down into their Places thofe Terreftrial Bodies they find above them: This is, as near as I can gather, the Scope of the 20, 21, 22, and 23 Seetions of the laft Book of his Principia Pbiloophia; yet neither he nor any of his Followers can fhew, how a Body fufpended in Likero Ethere, fhall be carried downwards by a continual Impulfe tending upwards, and acting upon all its Parts equally: And befides, the Obfcurity wherewith he expreffes himfelf, particularly, Seet. 23, does fufficiently argue, according to his own Rules, the Confufed Idea he had of the thing he wrote.

Others, and among them, Dr. Voflus, afferts the Caufe of the Defcent of Heavy Bodies, to be the Diurnal Rotation of the Earth upon its Axis, without confidering, that according to the Doctrine of Motion fortified with Demonftration, all Bodies moved in Circulo, would recede from the Center of their Motion; whereby the contrary to Gravity would follow, and all loofe Bodies would be calt into the Air in a Tangent to the Parallel of Latitude, without the Intervention of fome other Principle to keep them faft, fuch as is that of Gravity. Befides the Effect of this Principle is throughout the whole Surface of the Globe found nearly equal, and certain Experiment feems to argue it rather lefs near the Equinoctial, than towards the Poles; which could not be by any means, if the Diurnal Rotation of the Eartb upon its Axis were the Caufe of Gravity; for where the Motion was fwifteft, the Effect would be moft confiderable.

Others affign the Prefure of the Aimofphere to be the Caufe of this Tendency towards the Center of the Eartb; but unhappily they have miftaken the Caufe for the Effect, it being from undoubted Principles plain, that the Atmofphere has no other Preffure, but what it derives from its Gravity; and that the Weight of the upper Parts of the Air, preffing on the lower Parts thereof, do fo far bend the Springs of that Elaftick Body, as to give it a Force equal to the Weight that compreffed it, having of itfelf no Force at all: And fuppofing it had, it will be very hard to explain the Modus, how that Preffure fhould occafion the Defcent of a Body circumfcribed by it, and preffed equally above and below, without fome other Force to Draw or Thruf it downwards. But to demonftrate the contrary of this Opinion, an Experiment was long fince fhewn before the Royal Society; whereby it appeared, that the Atmofphere was fo far from being the Caufe of Gravity, that the Effects thereof were much more vigorous where the Preffure of the Atmofphere was taken off; for a long Glafs-Receiver, having a light Down-Feather included, being Evacuated of Air, the Feather, which in the Air would hardly fink, did in Vacuo defcend with nearly the fame Velocity as if it had been a Stone.

Somethink to illuftrate this Defcent of Heary Bodies, by comparing it with the Virtue of the Loadfone; but fetting afide the Difference there is in the manner of their Attractions, the Loadfone drawing only in and about its Poles, and the Earth near equally in all Parts of its Surface, this Comparifon avails ne more than to explain Ignotum per aquè Ignotum.

Others affign a certain Sympatbetical Attraction between the Earth and its Parts, whereby they have, as it were, a Defire to be united, to be the Caufe we enquire after: but this is fo far from explaining the Modus, that

(473)

it is little more, than to tell us in other terms, that Heary Bodies defcend, becaufe they defcend.

But tho' the Efficient Caufe of Gravity be fo obfcure, yet the Final Caufe thereof is clear enough; for it is by this fingle Principle that the Earth and all the Celeftial Bodies are kept from Diffolution: the leaft of their Particles not being fuffered to recede far from their Surfaces, without being immediately brought down again by Virtue of this Natural Tendency, which, for their Prefervation, the Infinite Wifdom of their Creator has ordained to be towards each of their Centers; nor can the Globes of the Sun and Planets otherwife be deftroyed, but by taking from them this power of keeping their Parts united.

The Affections or Properties of Gravity, and its manner of acting upon 7he Propertios of Bodies Falling, have been in a great meafure difcovered, and moft of them Gravity. Li.i. made out by Mathematical Demonftration in this our Century, by the accurate Diligence of Galilaus, Torricellius, Huygenius, and others; and now lately, by our worthy Countryman Mr. If. Newton. Which Properties I fhall here enumerate.

1. The firft Property is, That by this Principle of Gravitation, all Bodies do defcend towards a Point, which either is, or elfe is very near to the Center of Magnitude of the Earth and Sea, about which the Sea forms itfelf exactly into a Spherical Surface, and the Prominences of the Land, confidering the Bulk of the whole, differ but infenfibly therefrom.
2. That this Point, or Center of Gravitation, is fix'd within the Earth, or at leaft has been fo, ever fince we have any Authentick Hiftory: For a Confequence of its Change, tho' never fo little, would be the over-flowing of the Low-lands on that fide of the Globe towards which it approached, and the leaving new Inands bare on the oppofite fide, from which it receded; but for this Two Thoufand Years it appears, that the Low Inands of the Mediterranean Sea (near to which the Antientef Writers lived) have continued much at the fame Height above the Water, as they now are found; and no Inundations or Receffes of the Sea arguing any fuch Change, are recorded in Hiftory, excepting the Univerfal Deluge, which can no better way be accounted for, than by titppoing this Center of Gravitation removed for a time, towards the Middle of the then Inhabited Parts of the World; and a Change of its place, but the two thoufandth Part of the Radius of this Globe, were fufficient to bury the Tops of the Higheit Hills under Water.
3. That in all Parts of the Surface of the Earth, or rather in all Points equidiftant from its Center, the Force of Gravity is nearly Equal; fo that the length of the Pendulum vibrating Seconds of Time, is found in all Parts of the World to be very near the fame. 'Tis true, at St. Helena, in the Latitude of 16 Deg. South, I found that the Pendulum of my Clock, which vibrated Seconds, needed to be made fhorter than it had been in England, by a very fenfible Space (but which at that time I neglected to obferve accurately) before it would keep Time; and fince, the like Obfervations have been made by the French Obfervers near the Equinoctial: yet I dare not affirm, that in mine it proceeded from any other Caufe, than the great Height of my Place of

(474)

Obfervation above the Surface of the Sea, whereby the Gravity being diminifhed, the Length of the Pendulum, vibrating Seconds, is proportionably Mortned.
4. That Gravity does equally affect all Bodies, withaut regard either to their Matter, Bulk, or Figure; fo that the Impediment of the Medium being removed, the moft compact and moft loofe, the greateft and fmalleft Bodies, would defcend the fame Spaces in equal Times; the Truth whereof will appear from the Experiment I before cited. In thefe two laft Particulars, is fhewn, the great Difference between Gravity and Magnetifm, the one affecting only Iron, and that towards its Poles, the other all Bodies alike in every part. As a Corollary, from hence it will follow, That there is no fuch thing as Pofftive Levity, thofe things that appear Light, being only comparatively fo; and whereas feveral things rife and fwim in Fluids: 'tis becaufe, Bulk for Bulk, they are not fo heavy as thofe Fluids; nor is there any Reafon why Cork, for inftance, fhould be faid to be Ligbt becaufe it fivims on Water, any more than Iron, becaufe it /rvines on Mercury.
5. That this Poweer Increafes as you Defcend to, and Decreafes as you Afcend from the Center, and that in the Proportion of the Squares of the Diftances therefrom Reciprocally, fo as at a double Diftance to have but a quarter of the Force: This Property is the Principle on which Mr. Nerwton has made out all the Phænomena of the Celeftial Motions, fo eafily and naturally, that its Truth is paft difpute. Befices that, it is highly rational, that the Attractive or Gravitating Power fhould exert itfelf more vigorounly in a fmall Sphere, and weaker in a greater, in proportion as it is contracted or expanded; and if fo, feeing that the Surfaces of Spheres are as the Squares of their Radii, this Power at feveral Diftances will be as the Squares of thofe Diftances Reciprocally; and then its whole Action upon each Spherical Surface, be it great or fmall, will be always equal. And this is evidently the Rule of Gravitation towards the Centers of the Sun, Jupiter, Saturn, and the Earth, and thence reafonably inferred, to be the general Principle obferved by Nature in all the reft of the Celeftial Bodies.

Thefe are the principal Affections of Gravity, from which the Rules of the Foll of Bodies, and the Motion of Projects, are Mathematically deducible. Mr. If. Newton hath thewed how to define the Spaces of the Defcent of a Body, let fall from any given Height, down to the Center, fuppofing the Gravitation to increafe, as in the Fifth Property; but confidering the Smallnel's of Height, to which any Project can be made to afcend, and over how little an Arch of the Globe it can be caft by any of our Engines, we may well enough fuppofe the Gravity Equal throughout, and the Defcents of Projects in Parallel Lines, which, in Truth, are towards the Center; the Difference being fo fmall as by no means to be difcovered in Practice.

Propostions con- Prop. I.] The Velocities of falling Bodies, are Proportionate to the Times fram cruing the De- the Beginning of their Falls.
Jcent of Nasy
Bodiss, and the This follows, for that the Action of Gravity being continual, in every fpace Mation of Pro- of Time, the falling Body receives a new Impulfe, equal to what it had be-
jecti lbid. P. 9.

(475)

fore, in the fame Space of Time, received from the fame Power: For inftance, in the Firft Second of Time, the falling Body has acquired a Velocity, which in That Time would carry it to a certain Diftance, fuppofe 32 Foot, and were there no new Force, would defcend at that Rate with an Equable Motion; but in the next Second of Time, the fame Pcrusr of Gravity continually Acting thereon, fuperadds a New Velocity equal to the former; fo that at the end of two Seconds, the Velocity is double to what it was at the end of the firft; and after the fame manner may it be proved to be Triple, at the end of the Third Second, and fo on. Wherefore the Velocities of Falling Bodies, are proportionate to the Times of their Falls. Q. E. D.

Prop. II.] The Spaces defcribed by the Fall of a Body, are as the Squares of the Times from the Beginning of the Fall.

Demonfration.] Let A B reprefent the Time of the Fall of a Body, BC, Fig. 177. perpendicular to A B, the Velocity acquired at the End of the Fall, and draw the Line AC; then divide the Line AB, reprefenting the Time, into as many equal Parts as you pleafe, as $b, b, b, b, छ^{\circ} c$. and through thefe Points draw the Lines, $b c, b c, b c, b c, \mathcal{E}^{\prime} c$. parallel to BC; 'tis manifeft that the feveral Lines, bc, reprefent the feveral Velocities of the Falling Body, in fuch parts of the Time, as $A b$, is of $A B$, by the Former Propofition. It is evident likewife that the Area, ABC, is the Sum of all the Lines $b c$, being taken according to the Metbod of Indivifibles infinitely many; fo that the Area ABC, reprefents the Sum of all the Velocities between none and BC, fuppofed infinitely many; which Sum is the Space defcended in the Time reprefented by A B. And by the fame Reafon, the Areas A bc, will reprefent the Spaces defcended in the Times A b; fo then the Spaces defcended in the Times A B, Ab, are as the Areas of the Triangle, ABC, Abc, which by the $20 t b$ of the $16 t b$ of Euclid are as the Squares of their Homologous sides A B, A b, that is to fay, of the Times: Wherefore the Defcents of Falling Bodies, are as the Squares of the Times of their Fall. Q. E. D.

Prop. III.] The Velocity which a falling Body acquires in any Space of Time, is double to that, wererewith it would bave moved the Space defcended by an Equable Motion, in the fame Time.

Demonfration.] Draw the Line E C parallel to AB , and AE parallel to BC , and compleat the Parallelogram ABCE; it is evident that the Area thereof may reprefent the Space, a Body moved Equably with the Velocity BC, would deforibe in the Time AB; and the Triangle A BC, reprefents the Space deforibed by the Fall of a Body, in the fame Time AB, by the Second Propoftion. Now the Triangle ABC, is Half of the Parollelograin ABCE; and confequently the Space defcribed by the Fall, is Half what would have been defcribed by an Equable Motion with the Velocity BC, in the fame Time: wherefore the Velocity BC, at the End of the Fall, is Double to that Velocity, which in the Time A B, would have defcribed the Space fallen, reprefented by the Triangle ABC , with an Equable Motion. Q.E.D.

Prov. IV.] All Bodies on or near the Surface of the Earth, in their Fall, defcend Jo, as at the End of the Firft Secont of Time, they bave defcribed 16 Feet, one Inch, London Meafure, and acquired the Velocity of 32 Feet, two Incbes, in a Second.

This is made out from the 25 tb Prop. Par. 2. Porol. Ofcill. Hugen. wherein he demonftrates the Time of the leaft Vibrations of a Pendulum, to be to the Time of the Fall of a Body, from the Height of Half the Length of the Pendulum, as the Circumference of a Circle to its Diameter: whence, as a Corollary, it follows, That as the Square of the Diameter to the Square of the Circumference, fo half the Length of the Pendulum vibrating Seconds, to the Space defcribed by the Fall of a Body in a fecond of Time : and the Length of the Pendulum vibrating Seconds, being found 39,125 , or $\frac{1}{3}$ Inches, the Defcent in a Second will be found, by the aforefaid Analogy, 16 Foot and one Inch: and by the Third Propofition, the Velocity will be double thereto; and near to this it hath been found by feveral Experiments, which by reafon of the Swiftnefs of the Fall, cannot fo exactly determine its Quantity.
From thefe Four Propofitions, all Queftions concerning the Perpendicular Foll of Bodies are eafily folved, and either Time, Height, or Velocity being affigned, one may readily find the other two. From them likewife is the Doeirine of Projeels deducible, affuming the two following Axioms: viz.

1. That a Body fet a moving, will move on continually in a Right Live with an Equable Motion, unlefs fome other Force or Impediment intervene, whereby it is accelerated, or retarded, or deffeEzed.
2. That a Body being agitated by two Motions at a Time, does by their Compounded Forces pafs thro' the fame Points, as it would do, were the two Motions divided and acted fucceflively. As for inftance,
Fig. 172.
Suppofe a Body moved in the Line G F, from G to R, and there ftopping, by another Impulfe fuppofe it moved in a Space of Time equal to the former from R towards K to V ; I fay the Body Shall pafs thro' the point V , tho' thefe two feveral Forces acted both in the fame Time.

Prop. V.] The Motion of all Projects is in the Curve of a Parabola.
Demonftration.] Let the Line GRF be the Line in which the Project is directed, and in which by the firft Axiom it would move equal Spaces in equal Times, were it not deflected downwards by the Force of Gravity. Let G B be the Horizontal Line, and GC a perpendicular thereto. Then the Line GRF, being divided into equal Parts, anfwering to equal Spaces of Time, let the Defcents of the Project be laid down in Lines Parallel to G C, proportioned as the Squares of the Lines, GS, GR, GL, GF, or as the Squares of the Times, from S to T, from R to V, from L to X, and from F to B; and draw the Lines TH, V D, XY, BC, Parallel to GF: I fay, the Points T, V, X, B, are Points in the Curve defcribed by the Project, and that that Curve is a Parabola. By the fecond Axiom they are Points in the Curve; and the Parts of the Defcent GH, GD, GY, GC, =to ST, R V, LX, FB, being as the Squares of the Times (by the fecond Prop.) that is, as the Squares of the Ordinates HT, DV, YX, CB, equal to GS, GR, GL, GF, the Spaces meafured
meafured in thofe Times ; and there being no other Curve but the Parabola, whofe Parts of the Diameter are as the Squares of the Ordinates, it follows, that the Curve defcribed by a Project can be no other than a Parabola: And faying, as KV, the Defcent in Time, to GR, or V D, the direct Motion in the fame Time; fo is VD, to a third Proportional ; that Third will be the Line called by all Writers of Conicks, the Parameter of the Parabola to the Diemeter G C; which is always the fame in Projects caft with the fame Velocity: and the Velocity being defined by the number of Feet, moved in a Second of Time, the Parameter will be found by dividing the Square of the Velocity by 16 Feet I Inch, the Fall of a Body in the fame Time.

Lemma. [The Sine of the Double of any Arch, is equal to twice the Sine of that Arch into its Co-Sine, divided by Radius; and the verfed Sine of the Double of any Arch, is equal to the Square of the Sine thereof divided by Radius.

Let the Arch B C be double the Arch B F, and A the Center; draw the Radii AB, AF, AC, and the Chord BDC, and let Fall BE, perpendicular to A C; and the Angle E B C, will be equal to the Angle B A D, and the Triangle BCE, will be like the Triangle A BD ; wherefore it will be, as AB to AD ; fo BC, or twice B D, to BE; that is, as Radius to Co-Sine, fo treice Sine to Sine of the double Arch; and as A B to B D, fo twice B D or B C, to EC; that is, as Radius to Sine, fo troice that Sine to the verfed Sine of the double Arch: which two Analogies refolved into Equations, are the Propofitions contained in the Lemma to be proved.

Prop. VI.] The Horizontal diftance of Projections made with the fame Velocity, at feveral Elevations of the Line of Direction, are as the Sines of the doubled Angles of Elevation.

Let GB, the horizontal Diftance be $=z$, the Sine of the Angle of Elevation, F G B, be $=s$, its Co-fine $=c$, Radius $=r$, and the Parameter $=p$. It will be, as c to s, fo z to $\frac{s z}{c}=\mathrm{FB}=\mathrm{GC}$, and by reafon of the Parabola $\frac{p s z}{c}$ $=$ to the Square of CB, or GF. Now as c to r, fo is z to $\frac{z r}{c}=G F$, and its Square $\frac{z z r r}{c c}$ will be therefore $=$ to $\frac{p s z}{c}$: which Equation reduced, will be $\frac{p s c}{r r}=z$. But by the former Lemma $\frac{2 s c}{r}$ is equal to the Sine of the double Angle, whereof s is the Sine: Wherefore 'twill be, as Radius to Sine of double the Angle FGB, fo is half the Parameter, to the borizontal Range or Difance fought : and at the feveral Elevations, the Ranges are as the Sines of the double Angles of Elevation. Q.E.D.

Coroll.] Hence it follows, That balf the Parameter is the greatef Randonz, cind that that bappens at the Elevation of 45°, the Sine of robofe dowble is Radius.

(478)

Likewife, That the Ranges equally diffant above and below 45° are equal, as are the Sines of all doubled Arcbes, to the Sines of their doubled Complements.

Prop. VII.] The Altitudes of Projections made with the fame Velocity, at feveral Elevations, are as the verfed Sines of the doubled Angles of Elevation.

As c is to s, $f \circ$ is $\frac{p s c}{r r}=G B$, to $\frac{p s s}{r r}=B F$, and $V K=R V=\frac{1}{4} B F$, the Altitude of the Projection $=\frac{p s s}{4 r r}$. Now by the foreging Lemma $\frac{2 s s}{r}=$ to the versfed Sine of the double Angle; and therefore it will be, as Radius to verfed Sine of double the Angle FGB, fo $\frac{1}{s}$ of Parameter to the beight of the Projection V K ; and fo thole Heigbts at feveral Elerations are as the faid verfed Sines. Q.E.D.

Coroll.] From hence it is plain, That the greateft Alitude of the Perpendicular Projection is a 4 th of the Parameter, or balf the greateft borizontal Rainge: The verfed Sine of 180 Degrees being $=2 r$.

Prop. VIII. 1 The Lines GF, or Times of the Flight of a Project caft with the fame degree of Velocity at different Elevations, are as the Sines of the Elevations. As c is to r, fo is $\frac{p s c}{r r}=\mathrm{GB}$ (by the 6 Prop.) to $\frac{p s}{r}=G \mathrm{~F}$, that is, as $R a$ dius to the Sine of Elevation, fo the Parameter to the Line GF; fo the Lines GF are as the Sines of Elevation, and the Times are proportional to thofe Lines: wherefore the Times are as the Sines of Elevations; therefore the Propofition is manifert.

Prop. IX. Prob. I.] A Projection being made, as you pleafe, baving the DiFance and Altitude, or Defcent of an Object, tbro' which the Project pafles, together with the Angle of Elevation of the Line of Direction; to find the Parameter and Velocity; that is, (having the Angle F G B, GM,) and MX.

Solution.] As Radius to Secant of F G B, f fo GM the diftance given, to GL; Fig 172. and as Radius to Tangent of FGB, fo GM to LM. Then LM-M X in Heights, or + M X in Defcents : or elfe M X - M L, if the Direction be below the Horizontal-Line, is the Fall in the Time that the direct Impulfe given in G, would have carried the Project from G to $L=L X=G Y$; then by reafon of the Parabola; as LX, or GY, is to GL or YX; fo is GL, to the Parameter fought. To find the Velocity of the Impulfe, by Prop. 2 and 4 . find the Time in Seconds that a Body would fall the Space LX, and by that dividing the Line G L, the Quote will be the Velocity, or Space moved in a Second fought, which is always a mean Proportional between the Parameter and i6 Feet, I Inch.

[^2]to bit the given Objert; that is, having GM, MX, and the greateft Random equal to half the Parameter; to find the Angles F G B.

Let the Tangent of the Angle fought be $=t$, the horizontal Diftance $\mathrm{GM}=b$, the Altitude of the Object $\mathrm{MX}=b$, the Parameter $=p$, and Kadius $=r$; and it will be, as r to t, fo b to $\frac{t b}{r}=\mathrm{ML}$; and $\frac{t b}{r} \mp b$ $\left\{\begin{array}{l}\text { in Afcents } \\ \text { in Defcents }\end{array}\right\}=\mathrm{LX}$, and $\frac{p t b}{r} \mp p b=\mathrm{GL} q .=\mathrm{XY} q$. ratione Parabole, $b u t b b+\frac{t t b b}{r r}=$ GLq. (47. 1. Euclid.)) Wherefore $\frac{p t b}{r} \mp p b=b b+$ $\frac{t 1 b b}{r r}$; which Equation tranfpofed, is $\frac{t b b}{r r}=\frac{p t b}{r} \mp p b-b b$; divided by $b b$, is $\frac{t t}{r r}=\frac{p t}{b r} \mp \frac{p h}{\Delta v}-1$. This Equation Thews the Queftion to have two Anfwers, and the Roots thereof are $\frac{t}{r}=\frac{p}{2 b} \mp \sqrt{\frac{p p+4 p b}{4 b b}}$; from which I derive the following Rule. Divide half the Parameter by the Horizontal Diftance, and keep the Quote, viz. $\frac{P}{2 b}$; then fay, as Square of the Diftance given to half the Parameter, fo half Parameter $\left\{\begin{array}{l}- \\ +\end{array}\right\}$ double $\left\{\begin{array}{l}\text { Height } \\ \text { Defcent }\end{array}\right\}$ to the Square of a Secant $=\frac{p p+4 p b}{4 b b}$, the Tangent anfwering to that Secant will be $\frac{p p+4 p b}{4 b b}-1$, or $r r$: fo then the Sum and Difference of the afore-found 2uote and this Tangent, will be the Root of the Equation, and the Tangents of the Elevations fought.

Note here, That in Defents, if the Tangent exceed the Quote, as it does when $p b$ is more than $b b$, the Direetion of the lower Elevation will be below the Horizon; and if $p b=b b$, it muft be direeted Horizontal, and the Tangent of the upper Elevation will be $\frac{p r}{b}$: Note likewife, That if $4 b b+4 p b$ in $A f$ cents, or $4^{b b-4 p} b$ in $D e f$ cents, be equal to $p p$, there is but one Elevation that can bit the $O b j e c t$, and its τ Tangent is $\frac{p r}{2 b}$; and if $4 b b \mp 4 p b$ in $A f$ cents, or $4 b b-4 p b$ in Defeents, do cxceed $p p$, the Object is without the Reach of a Project caft with that Velocity, and fo the thing impoffible.

From this Equation $4 b b \mp 4 p b=p p$, are determined the utmoft Limits of the Reach of any Project, and the Figure affigned, wherein are all the Heights upon each horizontal Diftance, beyond which it cannot pafs; for by Reduction of that Equation, b will be found $=\frac{1}{4} p-\frac{b b}{p}$ in Heighbts, and $\frac{b b}{p}-\frac{1}{4} p$ in Def-

(480)

cents; from whence it follows, that all the Points b are in the Curve of the Parabola, whofe Focus is the Point from whence the Project is caft, and whofe Latus Rextum, or Parameter ad Axem is $=p$. Iikewife from the fame Equction may the leaft Parameter or Velocity be found capable to reach the Object propofed; for $b b=\frac{x}{4} p p \mp p b$ being reduced, $\frac{x}{2} p$ will be $=\sqrt{66 \mp b b}$ $\left\{\begin{array}{l}+b \text { in Afcents } \\ -b \text { in Defcents }\end{array}\right\}$ reach the Object, and the Elevation requifite will be cafily had; for dividing the fo found Semi-Parameter by the Horizontal Diftance given, b, the Qnote into Radius will be the Tangent of the Elcvation fought.

But if a Geometrical Conftruction of this Problen be required, I think I have one, that is as eafy as any can be expected, which I deduce from the foregoing Aualytical Solution, viz. $\frac{t}{r}=\frac{p}{2 \theta} \pm \sqrt{\frac{\frac{1}{4} p p+p b-b b}{b b}}$; and it is this: Having made the right Angle LDA, make DA, DF $=p$, or

Fig. 174 . greateft Range, $\mathrm{DG}=b$, the Horizontal Difance, and $\mathrm{DB}, \mathrm{DC}=b$, the Perpendicular Height of the Object; and draw GB, and make DE = thereto. Then with the Radius A C, and Center E, fweep an Arch, which if the thing be poffible, will interfect the Line A D, in H ; and the Line D H, being laid both ways from F, will give the Points K, and L, to which draw the Lines G L, G K; I fay, the Angles L GD, K G D, are the Elevations required for bitting the ObjeEt, B. But Note, that if B be below the Horizon, its Defcent $D C=D B$, muft be laid upon A, fo as to have $A C=$ $\mathrm{AD}+\mathrm{DC}$. Note likewife, that if in Defcents, DH be greater than FD, and fo K fall below D, the Angle KGD fhall be the Deprefion below the Horizon.
3. 216. p. 6.

When I gave the preceding Solution of this Problem, viz. To bit an Objeef Mar. An. 669 s. above or below the Horizontal Lint, with the greateft Certainty and leaft Force, I was not aware, that the Elevation there fought did conftantly bifect the Angle between the Perpendicular and the Object, as is demonftrated from the Difference and Sum of the Tangent and Secant of any Arch, being always equal to the Tangent and Co-Tangent of the half Complement thereof to a Quadrant. But having difcover'd this, I think nothing can be more compendious, or bid fairer to compleat the Art of Gurnery, it being as eafy to fhoot with a Morter at any Object on demand, as if it were on the Level; neither is there need of any Computation, but only fimply laying the Gun, to pafs in the middle Line between the Zenith and the Object, and giving it its due Cbarge. Nor is there any great need of Inftruments for this Purpofe: For, if the Muzzle of the Mortar be turned truly Square to the Bore of the Piece, as it. ufually is, or ought to be, a Piece of Looking-Glafs Plate applied Parallel to the Muzzle, will, by its Reflection, give the true Pofition of the Piece; the Bombardier having no more to do, but to look perpendicularly down on the Looking-Glafs, along a fmall Thread with a Plummet, and to raife or deprefs the Elevation of the Piece, till the Object appear reflected on the fame Point of the Speculum on which the Plummet falls; for the Angle of

(485)

Incidence and Reflection being Equal, in this cafe a Line at Right Angles to the Speculum, as is the Axis of the Cbafe of the Piece, will bijeet the Angle between the Perpendicular and the Object, according as our Propofition requires.

Prop. XI. Prob. 3.] A Sbot being made on an inclined Plane, baving the Horizontal Diftance of the Objeut it Arikes, with the Elcvation of the Piece, and the Angle at the Gun between the Object and the Perpendicular; to find the greateft Horizontal Range of that Piece, laden with the fame Cbarge; that is, balf the Latus Rectum of all the Parabole maile with the fame Impetus.

Take half the Diftance of the Object from the Nadir, and take the Difference of the given Elevation from that Half; the verfed Sine of twice that Difference fubtract from the verfed Sine of the Diftance of the Object from the Zenith: then fhall the Difference of thofe verfed Sines be to the Sine of the Diffance of the Object from the Zenith, as the Horizontal Diftance of the Object ftruck to the greateft Horizontal Range at 45°.

Prop. XII. Prob. 4.] Having the greateft Horizontal Range of a Gun, the Horizontal Difance and Angle of Inclination of an Objeez to ibe Perpendicular; to find the troo Elevations neceffary to frike that Object.

Halve the Diftance of the Object from the Nadir; this Half is always equal to the Half Sum of the two Elerations we feek. Then fay, as the greateft Horizontal Range, is to the Horizontal Diftance of the Object; fo is the Sine of the Angle of Inclination, or Diftance of the Object from the Perpendicular, to a $4^{t h}$ Proportional ; which $4^{t h}$ being fubtracted from the verfed Sine of the Diftance of the Object from the Zenith, leaves the verfed Sine of the Difference of the Elevations fought; which Elevations are therefore had, by adding and fubtracting that half Difference to, and from, the aforefaid half Sum.

Prop. XIII.] To determine the Force or Velocity of a Project, in every Point n. 172. p. ra. of the Curve it deforibes.

To do this, we need no other Pracognita, but only the Third Propofition, viz. That the Velocity of falling Bodies is double to that, which in the fame Time would bave defcribed the Space fallen by an equable Motion: For the Velocity of a Project is compounded of the conftant equal Velocity of the impreffed Motion, and the Velocity of the Fall, under a given Angle, viz. the Complement of the Elevation: For inftance, In the Time wherein a Projeef would Fig. .7., move from G to L, it defcends from L to X, and by the third Propofition has acquired a Velocity, which in that Time would have carried it by an equable Motion from L to Z, or twice the Defcent LX; and drawing the Line G Z, I fay the Velocity in the Point X, compounded of the Velositics G L, and L Z, under the Angle GLZ, is to the Vilocity impreffed in the Point G, as G Z is to G L ; this follows from our fecond Axiom; and by the 20 tb and $21 / t$ Prop. Lib. I. Conic. Midorgii, X O, Parallel and Equal to G Z, fhall touch the Parabola in the Point X. So that the Velocities in the feveral Points, are as the Lengths of the Tangens to the Parabola in thofe

(482)

Points, intercepted between any two Diameters : and thefe again are as the Secants of the Angles, which thofe Taugents continued make with the Horizontal Line G B. From what is here laid down, may the comparative Force of a Shot in any two Points of the Curve, be either Geometrically or Arithmetically difcovered.

Coroll.] From hence it follows, that the force of a Shot is always leaft at V, or the Vertex of the Parabola; and that at equal Diftances therefrom, as at T and X, G and B, its force is always equal ; and that the leaft Force in V, is to that in G and B, as Radius to the Secant of the Angle of Elevation, FGB.

The Tentb Propofilion contains a Problem, untouched by Torricellius, which is of the greateft ufe in Gunnery, and for the fake of which this Difcourfe was principally intended. It was firft folved by Mr. Anderfon, in his Book of the Genuine Ufe and Effects of the Gun, printed in the Year 1674, but his Solution required fo much Calculation, that it put me upon Search, whether it might not be done more eafly; and thereupon in the Year 1678 , I found out the Rule I now publifh, and from it the Geometrical Conftruction: Since which time, there has a large Treatife of this Subject, Intitled, I' Art de Fetter les Bombes, been publifhed in France by M. Blondel, wherein he gives the Soliutions of this Problem, by Meffieurs Bout, Romer, and de la Heir: but none of them are the fame with mine, or in my Opinion more eafy.
n. 216...68. It was formerly the Opinion of thofe concerned in Artillery, that there was a certain requifite of Powder for each Gun, and that in Mortars where their Diftance was to be varied, it muft be done by giving a greater or leffer Elevation to the Piece. But now our later Experience has taught us, That the fame thing may be more certainly and readily performed, by increafing and diminibing the quantity of Powder, whether regard be had to the Execution to be done, or to the Charge of doing it. For when Bombs are difcharged with great Elevations of the Mortar, they fall too Perpendicular, and bury themfelves too deep in the ground, to do all that Damage they might, if they came more oblique, and broke upon or near the Surface of the Earth; which is a thing acknowledged by the befieged in all Iowns, who unpave their Streets to let the Bombs bury themfelves, and thereby ftifle the force of their Splinters. A Second Convenience is, that at the Extreme Elevation, the Gunner is not obliged to be fo curious in the Direction of his Piece, but it will fuffice to be within a Degree or two of the Truth; whereas in the other method of Sbooling, he ought to be very curious. But a Tbird and no Iefs confiderable Alvaniage is, in the faving of the King's Powder, which in fo great and fo numerous Difcbarges, as we have lately feen, muft needs amount to a confiderable Value. And for Sca Mortars it is fcarce practicable otherwife to ufe them, where the Agitation of the Sea continually changes the Direstion of the Mortar, and would render the Shot very uncertain, were it not that they are placed about 45° Elevation, where feveral degrees above or under makes very little difference in the Effect.

atide 70.

It only remains, by good and valid Experiments, to be affured of the Force Qf Gun-Powder; how to make and conferve it equal; and to know the Ef-

(483)

Feet thereof in each Piece; that is, how far differing Cbarges will caft the fame Shot out of it; which may moft conveniently be Engraven on the outfide thereof, as a ftanding Direction to all Gunners, who fhall from thence forward have occafion to ufe that Piece: and were this Matter well afcertained, it might be worth the while to make all Mortors of the like Diameter, as near as may be alike in Length of Cbafe, Weight, Cbanber, and all other Circumftances.

Now the foregoing Rules would be rigidly true, were it not for the Oppof_ - 879. p. .9. tion of thie Medium, whereby not only the direct impreffed Motion is continually retarded, but likewife the Increafe of the Velocity of the Fall, fo that the Spaces defcribed thereby, are not exactly as the Squares of the Times: But what this Oppofition of the Air is, againft feveral Velocities, Bulks, and Weigbts, is not fo eafy to determine. 'Tis certain, That the Weigbt of the Air to that of Water, is nearly as I to 800; whence the Weigbt thereof, to that of any Projeet is given: 'tis very likely, that to the fame Velocity and Magnitude, but of different Matter, the Oppofition fhould be reciprocally as the Weights of the Sbot; as likewile that to Shot of the fame Velocity and Matter, but of different Sizes, it fhould be as the Diumeters reciprocally: Whence generally the Oppofition to Sbot with the fame Velocily, but of differing Diameters, and Materials, hhould be as their Specifick Gravities into their Diameters reciprocally: but whether the Oppofition to differing Velocities of the fame Sbot, be as the Squares of thofe Velocities, or as the Velocities themfelves, or otherwife, is yet a harder Queftion. However it be, 'tis certain, That in large Shot of Metal, whofe Weight many thouland times furpaffes that of the Air, and whofe Force is very great in proportion to the Surface wherewith they prefs thereon, this Oppofition is fcarce difcernible: For by feveral Experiments, made with all Care and Circumfpection, with a Mortar-Piece, extraordinary well fixed to the Earth on purpofe, which carried a folid Brais Shot of $4 \frac{1}{2}$ Inches Diameter, and of about 14 Pound Weight, the Ranges above and below 45°, were found nearly equal ; if there were any Difference, the under Ranges went rather the fartheft, but thofe Differences were ufually lefs than the Errors committed in ordinary Practice, by the unequal Goodnefs and Drynefs of the fame fort of Posoder, by the Unfitnefs of the Shot to the Bore, and by the Loofenefs of the Carriage. Ina fmaller Brafs Shot of about an Inch and half Diameter, caft by a Crofs-Bow, which ranged it at moft about 400 Foot, the Force being much more equal than the Mortar Piece, this Difference was found more curiouly, and conftantly, and mof evidently, the under Renges out-went the upper. From which Trials I conclude, that altho' in fmall and light Shot the Oppofitions of the Air, ought and muft be accounted for; yet in fhooting of great and weighty Bombs, there need be very little or no Allowance made: and fo thefe Rules may be put in practice to all Intents and Purpofes, as if chis Impedi-
ment were abfolutely removed.

The Mreajwise of the Mir's Rafs. IX. 1. In order to compute the Refifance of the Air to all Projects, I fivft moved in in; by premife this Lemma (as the mort rational that doth occur, for my firt foot-
ing) That (fuppofing other things equal) The Refftance is a proportional to the Celerity. For in a double Celerity, there is to be removed (in the fame time) twice as much Ali (which is a double Impediment; ;) in a treble, thrice as much; and fo_{0} in other Proportions.
2. Suppose we then the Force impreffed (and confequently the Celerity, if there were no Reffetaince) as I; the Refinance as r (which muff beliefs than the Force, or elfe the Force would not prevail over the Impediment, to create a Motion.) And therefore the effective Force at a frt Moment, is to be reputed as $I-r$: That is, fo much as the Force impreffed, is more than the Impediment or Refijtence.
3. Be it as 1 - r to I , fo 1 to m (which m is therefore greater than I .)
4. And therefore the effective Force (and confequently the Celerity) as to a firft Moment, is to be $\frac{1}{m}$ of what it would be, had there been no ReSjifance.
5. This $\frac{1}{m}$ is alfo the remaining Force after fuch firft Moment ; and this remaining Force is (for the fame Reafon) to be proportionably abated as to a fecond Moment : That is, we are to take $\frac{1}{n}$ thereof, that is, $\frac{1}{m m}$ of the impreffed Force. And for a third Moment (at equal Diftance of Time) $\frac{1}{m m m}$; for a fourth $\frac{1}{m^{4}}$; and fo onward infinitely.
6. Becaufe the Length difpatched (in equal Times) is proportional to the Celerities; the Lines of Motion (answering to thole equal Times) are to be as $\frac{1}{m}, \frac{1}{m^{2}}, \frac{1}{m^{3}}, \frac{1}{m^{4}}, \delta^{2} c$. of what they would have been in the fame Times, had there been no Refiftance.
7. This therefore is a Geometrical Progreffion ; and (becaufe of m greater than 1) continually decreafing.
8. This decreasing Progreffion infinitely continued (determining in the fame Point of Reft, where the Motion is fuppofed to expire) is yet of a finite Magnitude, and equal to $\frac{1}{m-1}$ of what it would have been in fo much time, if there had been no Refitance: As is demonftrated in my Algebra, Chap. 95. Prop.8. For (as I have elfewhere demonftrated) the Sum or Aggregate of a Geometrical Progreffion is $\frac{\mathrm{VR}-\mathrm{A}}{\mathrm{R}-\mathrm{I}}$, (fuppofing V the greateft Term, A the leaft, and \mathbf{R} the common Multiplier;) That is, $\frac{V R}{R-I}-\frac{A}{K-1}$. Now in the prefent Cafe (fuppofing the Progreffion infinitely continued) the leaf Term A, becomes infinitely fall, or $=0$: And consequently $\frac{A}{R-1}$ doth aldo vanish, and thereby the Aggregate be-
comes $=\frac{\mathrm{VR}}{\mathrm{R}-\mathrm{I}}$. That is (as will appear by Dividing VR by $\mathrm{R}-\mathrm{s}$;) $\mathrm{V}+\frac{\mathrm{V}}{\mathrm{R}}+\frac{\mathrm{V}}{\mathrm{RR}}+\frac{\mathrm{V}}{\mathrm{R}^{3}}+$, छc. $^{2}=\frac{\mathrm{VR}}{\mathrm{R}-\mathrm{I}}$; (fuppofing the Progreffion to begin at $\mathrm{V}=\mathrm{r}$.) That is, (dividing all by R , that fo the Progrefion may begin at $\left.\frac{V}{\mathrm{R}}=\frac{1}{m}:\right) \frac{\mathrm{V}}{\mathrm{R}-1}=\frac{\mathrm{V}}{\mathrm{R}}+\frac{\mathrm{V}}{\mathrm{RK}}+\frac{\mathrm{V}}{\mathrm{R}^{3}}+\mathrm{E}^{3} c$. That is, in our prefent Cafe (becaufe of $\mathrm{V}=1$, and $\mathrm{R}=m) \frac{1}{m}+\frac{1}{m m}+\frac{1}{m^{3}}, \mathcal{B}^{3} c_{0}=\frac{1}{m-1}$. That is (putting $n=m-1$) $\frac{1}{n}$, of what it would have been, if there had been no Reffeance.
9. This infinite Progreffion is fitly expreffed by an Ordinate in the E_{x} terior Hyperbela, parallel to one of the A fymptotes; and the feveral Members of that, by the feveral Members of this, cut in Continual Proportion: As is there demonftrated at Prop. 15. For let SH be an Hyperbola between the Alymptotes, A B, AF: And let the Ordinate DH (in the Extcrior Hyperbola, parallel to AF) reprefent the impreffed Force undiminifhed; or the Line to be defribed in fuch Time, by a Celerity anfwerable to fuch Undiminifh'd Force. And let BS (a like Ordinate) be $\frac{\mathrm{I}}{\mathrm{in}}$ thereof; which therefore, being lefs than DH (as being equal to a part of i i) will be further than it from AF. In A B (which I put $=1$, let B d be fuch a part thereof, as is B S of DH. Now becaufe (as is well known) all the infribed Parallelograms, in the Exterior Hyperbola, AS, AH, $\delta^{3} c$. are equal ; and therefore their Sides reciprocal: Therefore as $A d=1-\frac{1}{m}$, (fuppofing B d, to be taken from B toward A ,) to $\mathrm{A} \mathrm{B}=\mathrm{I}$, (or as $m-\mathrm{I}$ to m :) fo is $\mathrm{BS}=\frac{1}{m} \mathrm{DH}$ to $d h$, which is therefore equal to $\frac{1}{m-1}$ of DH ; that is (as will appear by Dividing I by $m-1$,) to $\frac{1}{m}+\frac{1}{m m}+\frac{1}{m^{3}}$ छc. of DH.
Or if $\mathrm{B} d$ be taken beyond B : then as $\mathrm{A} d=\mathrm{I}+\frac{1}{m}$, to $\mathrm{A} \mathrm{B}=\mathrm{I}$, or as $m+1$ to m, fo is $\frac{1}{m} \mathrm{DH}$, to $d h$, which is therefore equal to $\frac{1}{m+1} \mathrm{DH}$; that is, (as will appear by like dividing of I by $m+1$) $=\frac{1}{m}-\frac{1}{m m}+\frac{1}{m^{3}}-, \mho c$. of $D H$.
10. Let fuch Ordinate $d b$, or (equal to it in the Afymptote) A F, be fo

(486)

$\left.n, छ^{\circ} c.\right)$ as that $\mathrm{FL}, \mathrm{L} \mathrm{M}, \mathbf{M N}$, be as $\frac{1}{m}, \frac{1}{m_{m}}, \frac{1}{m^{3}}, \Xi^{9} c$. That is, fo continually decreafing, as that each Antecedent be to its Confequent, as i to $\frac{1}{m}$, or as m to I.
II. This is done by taking AF, A L, A N, E \mathcal{c}. in fuch Proportion. For, of continual Proportionals the Differences are alfo continually Proportional, and in the fame Proportion. For let A, B, C, D, छ̌c. be fuch Proportionals, and their Differences, $a, b, c, \exists^{2} c$. That is, $\mathrm{A}-\mathrm{B}=a, \mathrm{~B}-\mathrm{C}=b$, $\mathrm{C}-\mathrm{D}=\mathrm{c}, \mathcal{E}^{\circ} \mathrm{c}$.

Then becaufe, A, B, C, D, छ'c. are in continual Proportion;
That is, $\mathrm{A}: \mathrm{B}:: \mathrm{B}: \mathrm{C}:: \mathrm{C}: \mathrm{D}::, \mathcal{E}^{\circ} c$.
And dividing, $A-B: B:: B-C: C:: C-D: D::, \mathcal{E}^{2} c$.
That is, $a: \mathrm{B}:: b: \mathrm{C}:: d: \mathrm{D}::, \mathcal{E}^{c} c$.
And Alternately ; a.b.c. \mathcal{F}_{c} : : : B. C. D. \mathcal{F}_{c} : : A. B. C. ξ° c.
That is, In Continual Proportion, as A to B, or as m to I.
12. This being done; the Hyperbolick Spaces. $\mathrm{F} l, \mathrm{~L} m, \mathrm{M} n, \mathcal{E}^{2} c$. are equal, as is demonftrated by Gregory San-Vincent; and as fuch is commonly admitted.
13. So that $\mathrm{F} l, \mathrm{~L} m, \mathrm{M} n, \& c$. may fitly reprefent equal Times in which are difpatched unequal Lengths, reprefented by $\mathrm{FL}, \mathrm{L} \mathrm{M}, \mathrm{M} \mathrm{N}$, $E^{\circ} c$.
14. And becaufe they are in Number infinite, (tho' equal to a finite Magnitude) the Duration is infinite ; and confequently the impreffed Force, and Motion thence arifing, never to be wholly extinguifhed (without fome further Impediment) but perpetually approaching to A, in the Nature of Aymptotes.
15. The Spaces F l, $\mathrm{Fm}, \mathrm{F} n, \mathcal{E}^{2}$ c. are therefore as Logaritbms (in Aritbmetical Progreffon increafing) anfwering to the Lines, A F, A L, A M, Ec. or to FL, LM, M N, E'c. in Geometrical Progreffon decreafing.
16. Becaufe F L, L M, M N, छc. are as $\frac{1}{m}, \frac{1}{m m}, \frac{1}{m^{3}}, \delta c_{0}$ infinitely terminated at A; therefore (by Prop. 8.) their Aggregate FA, or $d h$, is to DH, (fo much Length as would have been difpatched in the fame Time, by fuch impreffed Force undiminifhed) as 1 to $m-1=n$.
17. If therefore we take, as ito n, fo AF to DH ; this will reprefent the Length to be difpatched, in the fame Time, by fuch undiminifhed Force.
48. And if fuch DH be fuppofed to be divided into equal Parts innumerable (and therefore infinitely fmall ;) thefe anfwer to thofe (as many) Parts unequal in FA, or $b d$.
19. But, what is the Proportion of r to 1 , or (which depends on it) of i-r to I , or I to m; remains to be enquired by Experiment.

(487)

20. If the Progreffion be not infinitely continued; but end (fuppofe) at N , and its leaft Term be $\mathrm{A}=\mathrm{MN}$: Then out of $\frac{\mathrm{V}}{\mathrm{K}-1}+\frac{1}{m}+\frac{1}{m m}=$ $\frac{1}{m^{3}},+\delta^{c}$. is to be fubducted $\frac{\mathrm{A}}{\mathrm{R}-1}$, (as at Prop. 8.) that is, (as by Divifion will appear) $\frac{A}{R}+\frac{A}{R^{2}}+\frac{A}{R^{3}}+\mathcal{E}^{\circ} c$. That is, (in our prefent Cafe) $\frac{a}{m}+\frac{a}{m m}$ $+\frac{a}{m^{3}}+\varepsilon^{2} c$ And fo the Aggregate will be $\frac{1-a}{m}+\frac{1-a}{m m}+\frac{1-a}{m^{3}}+\delta^{c} c_{c}=$ $\frac{1-a}{n}$.

And thus as to the Line of Projection, in which (fecluding the Reffing) the Motion is reputed uniform; difpatching equal Lengths at equad Times. Confider we next the Line of Defcent.
21. In the Defcent of Heavy Bodies, it is fuppofed, that to each Moment of Time, there is fuperadded a new Impulfe of Gravity to what was before: And each of thefe, fecluding the Confideration of the Air's Reffitance, to proceed equally (from their feveral beginnings) thro' the fucceeding Moments. I As, (in the Erect Lines) IIII ξ° c. III \mathcal{E}° c. II ξ° c. I. \mathcal{E}° c. and fo continually, as in the Line of Projection.
22. Hence arifeth (in the Tranfverfe Lines) for the firft Moment 1 , for the fecond $1+1$, for the third $1+1+1$, and fo forth, in Aritbmetical Progrefion. As are the Ordinates in a Triangle at equal Diftance.
23. And fuch are the continual Increments of the Diameter, or of the Ordinates in the Exterior Parabola, anfwering to the interior Ordinates, or Segments of the Tangent, equally increafing; as is known, and commonly admitted.
24. If we take in the Confideration of the Air's Reffance; we are then for each of thefe equal Progreffions, to fubstitute a decreafing Progrefion Geometrical; in like manner (and for the fame Reafons) as in the Line of Projection.
25. Hence arifeth for the firft Moment $\frac{1}{m}$; for the fecond $\frac{1}{m}+\frac{1}{m^{2}}$; for $\frac{1}{m}$ the third $\frac{1}{m}+\frac{1}{m^{2}}+\frac{1}{m^{3}} ; \varepsilon^{2} c$. And fuch is therefore the Defcent of a heavy $\frac{1}{m^{2}} \frac{1}{m}$ Body falling by its own Weight. The feveral impulfes of Gravity being ${ }^{\frac{m^{3}}{m^{2}}{ }^{-1}}$ fuppofed equal.
26. That is, as FL, FM, FN, Ėc. in the Line of Defcent, anfwering to FL, LM, MN, E'c. in the Line of Projection.
27. But tho' the Progreffions for the Line of Projection, are like to each of thofe many in the Line of Deffent: It is not to be thence inferred, that therefore $\frac{1}{m}$ in the one is equal to $\frac{1}{m}$ in the other : But in the Line

- of Projection (fuppofe) $\frac{x}{m} f$, (fuch a part of the Force impreffed, and a Celerity anfwerable:) in the Line of Defcent $\frac{1}{m} g$, (fuch a part of the impulfe of Gravity.)

28. Thofe for the Line of Defcent (of the fame Body) are all equal each to other: Becaufe g, (the new Impulfe of Gravity) in each Moment is fuppofed to be the fame.
${ }^{29}$. But what is the Proportion of f to g (that is, of the Force impref. fed, to the Impulfe of Gravity, in each Body) remains to be enquired by Experiment.
29. This Proportion being found as to one known Force; the fame is thence known as to any other Force (whofe Proportion to this is given) in the fame uniform Medium.
30. And this being known as to one Medium, the fame is thence known as to any other Medium, the Proportion of whofe Refiftance to that of this is known.
31. If a heavy Body be projected downward in a Perpendicular Line, it defcends therefore at the rate $\frac{1}{m}, \frac{1}{m^{2}}, \frac{1}{m^{3}}, \varepsilon^{\circ} c$. of f (the impreffed Force) increafe by $\frac{1}{m}, \frac{1}{m}+\frac{1}{m^{2}}, \frac{1}{m}+\frac{1}{m^{2}}+\frac{1}{m^{3}}, \varepsilon^{2} c$. of g, the Impulfe of Gravity : (by Prop. 5. and P. 25.) becaufe both Forces are here united.
32. If in a perpendicular Projection upwards; it afcends in the Rate of the former, abated by that of the latter. Becaufe here the Impulfe of Gravity is contrary to the Force impreffed.
33. When therefore this latter (continually increafing) becomes equal to that former (continually decreafing) it then ceafeth to afcend; and doth thenceforth defcend at the rate wherein the latter continually exceeds the former.
34. In an Horizon or oblique Projection: If to a Tangent, whofe Increments are as $\mathbf{F} L, L \mathrm{M}, \mathrm{M} N, \mathcal{E}^{\circ}$. that is, as $\frac{\mathrm{I}}{m} f, \mathcal{E}^{\circ} c$. be fitted Ordinates (at a given Angle) whofe Increments are as F L, F M, FN, \mathcal{E}_{c}. that is, as $\frac{1}{m} g, \mathcal{E}^{c} c$. The Curve anfwering to the Compound of there Motions, is that wherein the Project is to move.
35. This Curve (being hitherto without a Name) may be called Linea Projectorum, the Line of Projects, or things projected; which refembles a Parabola deformed.
36. The Celerity and Tendency, as to each Point of the Line, is determined by a Tangent at that Point.
37. And that againft which it makes the greateft Stroak or Percuffion, is that which (at that point) is at right Angles to that Tangent.
38. If the Projection (at pag. 25.) be not infinitely continued, but terminate

(489)

minate (fuppofe) at N , fo that the laft Term in the firft Column or Series erect, be a; and confequently in the fecond, $m a$; in the third $m m a, \mathcal{E}_{c}$. (each Series having one Term fewer than that before it:) then (for the fame Reafons as at P. 20.) the Aggregates of the feveral Columns (or erect Series) will be $\frac{1-a}{n}, \frac{1-m a}{n}, \frac{1-m m a}{n}$, and fo forth, till (the Multiple of a becoming $=r$, , the Progreffion expire.
40. Now all the Abatements here, $a, n a, m m a, \mathcal{E}^{\circ} c$. are the fame with the Terms of the firft Column taken backward. For a is the laft, $m a$ the next before it ; and fo of the reft.
41. And the Aggregate of all the Numerators is fo many times x, as is the Number of Terms (fuppofe t) wanting the firf Column ; that is, $t-$ $\frac{r-a}{n}$ or $\frac{n t-1+a}{n}$; and this again divided by the common Denominator n, becomes $\frac{n t-1+a}{n n}$. And therefore, $\frac{n t-1+a}{n n} g$, is the Line of Defcent by its own Gravity.
42. If therefore this be added to a projecting Force downward in a Perpendicular, or fubducted from fuch projecting Force upward ; that is, to or from $\frac{1-a}{n} f$: The Defcent in the firft Cafe, will be $\frac{1-a}{n} f+\frac{n t-1+a}{n n} g$; and the Afcent in the other Cafe $\frac{1-a}{n} f-\frac{n t-1+a}{n n} g$. And in this latter Cafe, when the Ablative part becomes equal to the Pofitive part, the Afcent is at the higheft: And thenceforth (the Ablative part exceeding the Pofitive) it will defcend.
43. In an Horizontal or Oblique Projection, having taken $\frac{x-a}{n} f$, in the Line of Projection, and thence (at the Angle given) $\frac{n t-1+a}{n n} g$, in the Line of Defcent ; the Point in the Curve anfwering to thefe, is the place of the Project anfwering to that Moment.
44. I am aware of fome Objections to be made, whether to fome Points of the Procefs, or to fome of the Suppofitions. But I faw not well how to wave it, without making the Computation much more perplexed. And in a manner fo nice, and which muft depend upon phyfical Obfervations, 'twill be hard to attain fuch Accuracy, as not to ftand in need of fuch Allowances.
45. Somewhat might have been further added, to direct the Experiments fuggefted at $P .19$. and 2g. But that may be done at leifure, after Deliberation had, which way to attempt the Experiment.
46 The like is to be faid of the different Refiftance which different Bodies may meet with in the fame Medium, according to their different Gravities, (extenfively or intenfively confidered) and their different Figures and

[^3]Rrr

(490)

Pofitions in Motion: Whereof hitherto we have takern no account; but fuppofed them, as to all thefe, to be atike and equal:
F.2. 176, 177. 47 . The Computation (in P.39, 40, 41) may, if that be alfo defired, be thus reprefented by Lines and Spaces. The Ablatives, $a, m a, m m a, \mathcal{V}^{2} c$. (being the faine with the firft Column taken backward) are fitly reprefented by the Segments of NF, (beginning at N) and therefore by Parallelograms on thefe Bafes, affuming the common height of $F b$, or $N Q$; the Aggregate of which is $\mathrm{N} h$, or $F Q_{2}$, and fo many times x, by fo many equal Spaces, on the fame Bafes, between the fame Parallels terminated at the Hyperbola; the Aggregate of which is $b \mathrm{~F} N \mathrm{Q}$ n. From whence if we fubduet the Aggregate of Ablatives FQ; the remaining Trilinear $b Q n$, repreSents the Defcent.
48. If to this of Gravity, be joined a Projecting Force; which is to the impulfe of Gravity, as $b \mathrm{~K}$ to $b \mathrm{~F}$, (be it greater, lefs or equal) taken in the fame Line; the fame Parallels determine proportional Parallelograms, whofe Aggregate is KQ.
49. And therefore, if this be a Perpendicular Projecting downwards; then $b \mathrm{Kkm}$ (the Sum of this with the former) reprefents the Defcent.
50. If it be a Perpendicular upwards; then the difference of thefe two reprefents the Motion, which, fo long as K Q is the greater, is Afcendant; but Defcendant, when $b Q n$ becomes greater; and it is then at the higheft when they be equal.
51. If the Projection be not in the fame Perpendicular, (but Horizontal or Oblique) then $\mathrm{K} Q$ reprefents the Tangent of the Curve ; and $b \mathrm{Q} n$, the Ordinates to that Tangent, at the given Angle.
52. But the Computation before given, I take to be of better ufe than this Reprefentation in Figure. Becaufe in fuch methametical Enquiries, I chufe to feparate (as much as may be) what purely concerns Proportions; and conlider it abftractly from Lines or other matter wherewith it is incumbred.

As to the Queftion propofed; Whether the refiftance of the Medium does not always take off fuch a proportional part of the Force, moving thro' it, as is the Specifick Gravity of the Medium to that of the Body moved in it (for if fo, it will fave us the trouble of Obfervation;) I think this can by no means be admitted; for there be many other things of Confideration herein, befide the intenfive Gravity (or, as fome call it, the Specifick Gravity) of the Medium.

A vifcous Medium fhall more refift than one more fluid, tho of like intenfive Gravity.

And a fharp Arrow fhall bore its way more eafily thro' the Medium than a blunt-headed Boit, tho of equal Weight and like intenfive Gravity.

And the fame Pyramid with the Point, than with the Bafe forward.
And many other like Varieties intended in my $P \cdot 4^{6}$.
And this I think may be admitted, namely, that different Mediums, equally liquid, (and other Circumftances alike) do in fuch Proportion refift, 25 is their intenfive Gravity. Becaufe there is, in fuch proportion, a hea-

(491)

vier Object to be removed, by the fame Force; which is one of the things to which P. 3 I . refers.

And again: the heavier Project once in motion, (being equally fwift, and all other Circumfances alike) moves thro' the fame Medium in fucls Proportion more ftrongly, as is its intenfive Gravity: for now the Force is in fuch Proportion greater, for the Removal of the fame Refiltance. And this is part of what my P. 30 infinuates.

But where there is a Complication of thefe Confiderations one with another, and with many other Circumftances, whereof each is feverally to be confidered; there muft be refpect had to all of them.
X. I. To know bore far a Gun fhoots Point Blank, (as they call it) that is, fo near the Level of the Cylinder of the Piece, that the Difference is eitber not difcerriible, or non confiderable.

On a fit Platform, place and point the Gun at a Mark as large as the Bullet, fome 50, 60, or more Yards diftant, fo as the underfide of the Mark may be in the fame Level or Line with the underfide of the Cylinder of the Picce. Then between the Gun and the Mark at convenient Diftances, place

Experimenits, to Desarmine the Point Blank Diffance; the Charge of Powe
der; and bept Size of Gans. Propefed; by Sir Rob. Moray. n. 26. p. 473 . June An. 165\%. pieces of Canvas, Sheets of Paper pafted together, or the like, upon ftakes fix'd in the ground; fo as the underfide, being level with the Horizon, may juft touch the vifual Line, that paffeth from the Eye to the upperfide of the Mark, when the Eye is placed in the Line that paffeth from it to the upperfide of the Cylinder of the Gun; the Canvas being fo broad and long, that if the Bullet pais thro' it 2 or 3 Foot higher than the Level of the Mark, or of either hand, the Hole it makes may make it known, how much it flieth higher than the Level of that Place. If the Bullet falls lower than the Mark, and touch not the Canvas, the Gun may be the next time raifed a little, and fo on, till the Bullet hit the Mark, or as high as it. If it fall as high as the Mark and cut the Canvas, the Mark and Canvas may be brought nearer the Gun: But if it fall as high as the Mark and do not cut the Canvas, the Mark may be removed to greater and greater Diftances.

If this way of Experiment be made for further Diftances and Raifings of the Piece, as high as conveniently may be above the Level, and the Diftances meafured, and then all Randoms above thefe likewife tried and meafured; the Diftance of an Object, to be fhot at, being known, and other neceflary Cautions, beneath to be mentioned, carefully obferved; good Gunners inay with great Confidence undertake to hit the Mark, be the Diftance what it will, to it exceed not the reach of the Gun.

2. To know wobat Quantity of Puvder is the juf Charge of any Picce, fo as it

 minketh the fartbest Sbot, and Fires totally.I. Raife the Gun to a mean Random, as of 20°, or 25°, and fhoot with the ordinary Cbarge of Powder, in fome convenient Ground where the Fall of the Bullet may be eafliy feen, and having made a Shot, meafure the Difrances with a Chain between the Hole made by the Bullet and the Muzzle of the Gun.
2. Then inftead of a full Cbarge of Poreder ufed in the firt Shot, take $\frac{1}{T 5}$ part lefs, or fome fuch Propotion, for the next Trial, doing all things elfe as before.
3. For a third, fourth, or more Trials, diminin fill the Quantity of Poweder, by :\% at a Time, till the Shot be confiderably hoorter than at firft.
4. Then take ${ }^{\frac{r}{r}}$ more than the firft Cbarge, and do all things elfe as before, and fo continue more Trials, increafing ftill the Quantily of Powder in the faine Proportion every nerv Trial, till you find the Increafe of the Charge does not make the Piece fhoot further: Only over-charge not fo far as to endanger the Gurt.
5. Three or more Shot are to be made with every different-Cbarge, and at every feveral Trial, that the Certainty may the better appear.
6. The firf Shot being meafured and marked, the reft may all be meafured from it, or from one another, to fave Labour.
7. The Gun is to be pointed, placed and ordered, every time in one and the fame Place and Pofition, aiming ftill at the fame Mark, or Pointing ftill at the fame Line or Azimuth; that fo all the Shot may fall in the fame Line as near as is poffible.
8. The Powder (which ought to be all of the fame Goodne/s) muft be exactly weighed every time the Piece is Cbarged, left it having been weighed long before, the Weight may be altered; tho' Experiment may be made with Cartridges and without.
9. The Poreder and Bullet is to be Rammed home, equally at every Shot; tho', the loofer the Porwder lie, it fire the better.

Io. When the right Cbarge of a Piece is found, that makes the fartbeft Sbot in the ordinary and plain way of Cbarging, M. de Sons's Contrivance of a Wedge may be tried, to make it fhoot farther; which is a piece of Board, fo long, as being thruft home to the Breech of the Piece at one End, the other may reach farther out than the Outfide of the Bullet being Rammed up to its place; broad about an Inch, and thin fo far as the Wadd before the Bullet reaches on the outfide; there it is to have a Shoulder, from which forward to the end, it is to be cut a-flope, like a Wedge, being of fuch thicknefs, as that at the Place, where the Center of the Bullet is to be, it may make it ftick fo faft, that the Powder finding more Refiftance, may at length drive it out with the greater Violence.
II. Another of this Nature is a Wooden Tampion, like a piece of a Cylinder, big enough to fill the hollow Cylinder of the Gun, the length fomewhat more than the Diameter of it, and hollow'd towards the Bullet, fo as to fit it ; and either flat or (which is better) hollow likewife towards the Poreder, and ferving inftead of Wadd. Thefe, and fuch others, will probably render the Effect of the Powder greater, than otherwife it would be: But care mult be had that they do not endanger the Piece.
12. The Strength of the Poroder muft be examin'd by a Powder Trier, that raifeth a Weight, fuch an one as hath been contrived by Mr. Hook.
13. The fame Bullet is to be made ufe of, if it can be had, till the Figure

(493)

of it be marred; Otherwife another as near of the fame Size, Shape and Weight, as is poffible.
14. Obferve the Strength and Pofition of the Wind, and at what Azimutb the Mark ftands from the Gun at every time of Shooting: And take precife notice what effect it hath upon the Bullet in carrying it further, in hindring, or turning it afide.
15. Note the Figure, Dimenfions, and Weight of the Gun, Carriage, and Wheels; and record every thing exactly in a Book, as alfo every Accident and Obfervation.
16. After all other Experiments are made, every Piece may be tried with the right Cbarge of Powder, laying every time more and more Weight upon the Carriage, and at laft fixing the Gun, fo as it may not Recoil at all, obferving every Time how far the Bullet goes, and how much lefs Porwder than the full Cbarge will ferve to fhoot the Bullet, when the Piece is Fixt, as far as the whole Cbarge does, when it Recoils freely.
17. The Right Cbarge found, the beft Random is to be fought, by trying all Randoms, by Degirees at a time.
3. To know what Gun floots farthef.
I. A Gun to be prepared of Culverine-Bore (as being held the beft for fhooting far) but much longer (double the ordinary Length may do well) and without any Ring about the Muzzle, is to be placed as in the former Experiments, and charged with the Ordinary Charge of a Culverine, or rather with that Quantity, which by the former Experiments fhall be found the beft; and being fhot, the Fall of the Bullet is to be mark'd, and Diftance meafured.
2. Then try lefs, and more Powder in her, as before.
3. Then cut off two Inches of the Muzzle with a Saw, and place the Pieces fo cut off in the Carriage, or their Weight of Lead in a convenient Figure, that the Recoil may ftill be the fame : and try as before, doing every thing in the fame manner : and fo cut off fill for new Trials, till the Shot begin to fall fhorter than before.
4. The fame may be done with Guns of different Bores.
2. Mar. 18. 1657. At 200 Yards diftance from the Platform for great Ordinance at Woolwich, there were raifed three Butis, one behind another: The fpace between the firft and fecond Buit was I4 Yards; between the ${ }^{\text {by }}$ Mr. Graves. fecond and the third, eight. The thicknefs of each Butt was 19 Inches, whereof 13 was of Beams of Maffey oak faftened into the Ground, and fet fo clofe that they touched each other: On each fide were Planks of Oak, 3 Inches a-piece in Thicknefs, and thefe were joined clofe, and faftened on both Sides with Iron bolts, and ftrong Pins of Wood; and on the Back, at the Ends, and on the Middle there were ${ }_{3}$ Braces of Elm, a Foot in Breadth, and 5 Inches in Thicknefs.

The firft Experiment was with an Iron Demy-Cannon, having a Cylinder Bore of 3500 lib. Weight, the Bullet 32 lib. of Iron, the Poreder ro lib. which pierced thro' the two firft Butts, and ftuck in the third, fo as the Ball was almoft quite within, but the Timber not fhivered (fmall) nor fcarce fpilt.

(494)

fpilt. The Butts being touched by me, felt not warm; the like Execution was done when it was charged with 9 lib. as alfo when with 8 lib. of Powder.

The fecond Experiment was with an Iron Demy-Cannon, having a Taper Bore and being 3600 lio. in Weight, and 4 Inches longer than the former; the Iron Bullet 3^{2} lib. and the Powider 7. lib. which in three Trials feemed to have the fame Fore with the firf. One of the Shots pietcing thro' the fecond Butt, and lighting near the Edge of the middle * Butt of Elm, tore it, but by the yielding of it, the Bullot glanced afide off the third Butt, and entered into the Earth.

The third Emperiment was with a whole Culverine in Brafs, of 5300 lib . in Weight, 11 Foot I Inch in Length, with a Taper Bore: the Iron Bullet was 18 lib. in Weight; the Powder in the firf Trial 10 lib. in the fecond 9 lib. in the third 8 lib . which laft Proportion did the beft Execution, and paffed thro' the two firft Butts, entering gently into the Third, which the former two did touch, but not enter.

The fourth Experiment was with a whole Culverine in Brafs, made at Amferdam for the French, with this Mark, 3580, being 10 Foot long, and not very thick in the Breech; the firf Shot with 9 lib. of Powder, 18 lib. of Bulletelron, paft thro' the three Butt, and entered one Foot into the Ground; it paffed by the Joints of the Timber, two Planks having been beat down before. The fecond Shot with 8. lib. Powder, paffed thro' two Butls and grazed between them. The third with 8 lib. paft two Butts, and 7 Inches into the third; but the firt Butt was much battered before, where it entered.

The fourth Shot paffed, with 8 lib . of Powder, two Butts, and in both Butts thro' the midit of a Maffey ftrong Beam (below) that had not been battered.

The Fifth Experiment was with an Iron Demy-Culverine, having 9 lib. Bullet in Iron, and 4 lib. Powder; this paft one Buth (which was torn before) and entered the fecond.

This $\frac{1}{2}$ Culverine was fhot 8 Times, as faft as they could charge it with Porwder, and the Iron-Bullet, and yet was but fcarce lukewarm at the Breeck, a little more in the midft, moft at the $M u z z l$, and this laft fcarce fo hot as my Hand; and yet the Gunners in charging her, wet not at all the Scoop, or spunge.

The Sixth Experiment was with a Brafs Dimy-Culverine, the Breech of her was 13 Inches $\frac{5}{5}$, the Mouth $9^{\frac{5}{8}}$. The firt Sbot, with 4 lib. of Powaier, 9.lib. Iron-Bullet, paft two Butts: The Second Sbot with 3 lib. of Powder, paft almoft two Butts: This proved to be the beft Shot, becaufe the Timbers were the ftrongeft.
XI. Whereas ordinary Wind Guns do their Effect by the Comprefion of the Air: Ottbo Gbericke hath found a New fort that fhoots by Rarefaciion; and he hath publifhed that Device at large in his Book about Pneumatick Experiments. I have contrived another which I take to be better.

(495)

A A is a Pipe, very equal from one end to the other.
B B a finall Pipe folder'd in a Hole near the End of the Pipe A A, and ap- Jan. An. 688 . ply'd to the Plate of the Pneumatick Engine.

CCCC fome kind of Stool, to bear up the hinder part of the Pipe A.

D a Piece of Lead fitted to the Bore of the Pipe A A.
The Pipe A A is to be fhut at both Ends by Valves outwardly applied, and fo the faid Pipe A A, tho' never fo big, may be exboufted of Air. by means of the Pneumatick Enginc: Which done, the Valve towards D mutt be fuddenly opened, fo that the whole Preffure of the Atmofphere acting upon the Lead D, may drive it along the Pipe A A, with fuch a Swiftnefs, that it will be able to carry it to a great Diftance: and becaufe fuch a Vaive fhutting a great Hole, would prove very difficult to be opened, when the Pipe A. A, is of a great Bore, the Aperture towards D, may be left much fmaller than the Pipe; the Swiftnefs of the Air being fo great, that even thro' a pretty fmall Aperture, it preffed the Lead D, as freely almoft, as if the whole Bore was quite open.

Having prepared a Barrel carrying a Lead of two Ounces, the Experiment was fhewn before the Royal Society and the Effect was found very confiderable, the Force being littie lefs than that of the Wind-Gun by Compreffion; the fame Experiment being afterwards repeated with a longer Barrel, 'twas found that the length in this way of Sbooting was very little, if any Advantage.
XII. My way of computing the Velocity of the Air (which I think is better than the Trial made by the Royal Acaderiny at Paris) is grounded upon this byaroftatical Principle, That Liquors bave a Strength to afcend as bigh as their Source is; and altho' the Refiftance of the Medium does always hinder Fets d^{\prime} Eau in the open Air from reaching quite fo high, neverthelefs the Liquor at its firft fpouting out, hath the neceflary freiftnefs to come to that beigbt.
wheremitb the Airufles in te an cexhonfecd Rectiver;
by
Dr. Papin. n. $184+p .193^{\circ}$. OQ. An. 1686.

Prop. I.] From this Principle may be eafly deduced this Propofition, That, of two different Lizuors driven by the fame Preffure, that zulbich is in Specie ligbter muft afcend bigher than that which is beavier, and their beigbts suill be reciprocally in the fame Reafon as their Specifick Gravities are.

Prop. II] From the foregoing Propofition another may eafily be deduced, viz. That, of differing Liquors bearing the fame Preffure, thofe tbat are ligbter in Specie muft acquire a greater Swiftnefs, and their differing Velocities are to one anotber * as the Roots of the fpecifick Gravities of the faid Liquors. * * Reciprocally.

For we have feen, P.I. That the Heigbts to be attained are * in the $*$ Rciciproallys, fame Reafon as the Specifick Gravities: Now Gallilous, Hugsius, and others, have demonftrated, That the Velocities of Bodies are to one another, as the Cquare Roots of the Heigbts to which they may afcend: And fo in this occafion they are alfo * as the Roots of the Jpecifick Gravities.

If therefore we would know what is the Velocity of the Air being driven by any degree of Preffure whatfoever, we ought but to find what would be
the Velocity of Water under the fame Preffure: And then take the Square Roots of the fpecifick Gravities of thefe two Liquors; becaufe as much as the Square Root of the Specifick Gravity of Water doth exceed the fquar: Root of the fpecifick Gravity of the Air; fo much in proportion will the Velocily of Air exceed the Velocity of Water. For Example; when I would compute what fhould be the Sroiftne/s of a Bullet foot by my Pneumatick Engine, I fhould at firft compute what was the Velocity of the Air itfelf that drove the Bullet: I did therefore take notice, That in this Occafion the Air bears a Preffure much about the fame as that of Water when its Spring is 3^{2} Foot high. Now fuch Water would fpout out with a fufficient Velocity to afcend 32 Foot Perpendicular, and therefore according to the Rules and Obfervations of Gallizus, Hugenius, and others, fuch Water hath the Velocity of 45 Foot in a Second. It remains therefore but to know the Proportion of the Gravity of the Air to that of Water: And we have found it not to be always the fame; becaufe the Height, the Heat, and the Moifture, of the Atmofpbere, are variable : Neverthelefs, we may fay in general, That the Reafon between the specifick Gravities of Water and Air is much about 840 to I. Taking then their Square Roots as I have faid above, which Roots are 29 and I, we may conclude that the Velocity of Air muft exceed that of Water, by 29 Times: And fo multiplying 45, the Velocity of Water, by 29, we fhall find, that the Velocity of Air driven by the whole Preffure of the Atmofphere, is about 1305 Foot in a Second.

Wind produced by the Fall of Water; by Dr. Wal. Pope. n. 2. p. 25. Fig. 179.
Apr. Ar. 1665.
XIII. In the Brafs-Works at Tivoli, the Waters blow the Fire, not by moving the Bellores, but by affording the Wind. Thus: A, is the River. B, the Fall of it. C, the Tube into which it falls. L G, a Pipe. G, the Orifice of the Pipe, or Nole of the Bellows. GK, the Hearth. E, a Hole in the Pipe. F, a Stopper to that Hole. D, a place under ground, by which the Water runs away. Stopping the Hole E, there is a perpetual ftrong Wind, iffuing forth at G; and G being ftopt, the Wind comes out fo vehemently at E, that it will, I believe, make a Ball play, like that at Frefcati..

Tbe beff Form of Ytorizontal Sails for a Mill; $b y$ ${ }_{\text {Lr. Rob. Hook, }}$ Phi. Coll. л. 3. p. 61. Dec. Ann, 168 ,
XIV. Whatever Men may imagine concerning Horizontal Sails, I doubt there never will be found a better, and more advantageous way, for receiving the Strength of the Wind, or Motion of the Air, than Perpendicular Vanes made of a true Form, fo as every part thereof may draw alike. But becaufe I find divers have of late attempted Horizontal Vanes for Mills, I hall explain a way of making Horizontal Vanes capable of performing the moft that is pofible with Vanes of equal Extenfion.

The Invention is founded upon the fame Principle with that of the Sailing of Sbips, and other Veffels upon the Sea; namely, upon difpofing and ordering of the Vane or Sail fo, as to fand in the beft Pofture' tis poffible to move the Arms of the Mill, or the Body of the Ship, in that way it is to be moved, by the Force of the Wind blowing thus or thus againt them.

The Firft Principle then common to both, is, that the Vane or Sail be as near as 'tis poffible, a perfect plane and fmooth Superficies, without any Belly-

(497)

ing, Bunting, or Curvity in the Superficies thereof, upon which the Motion or Force of the Wind is impreffed.

Secondly, That the Air may have as many Paffages between the parts of the Vane or Sail, as may be, that the moved Air may come to it as freely as may be, without being intercepted by a fagnant Air before it, to impede or divert its Force.

Tbirdy, That the Plane of the Vane or Sail be put in the middle Inclination, between the reay of the Wind and the way of the Arsm, or that of the Body of the Ship.

The Contrivance itfelf is This.
Let A B fignify the Strean or Current of the Air or Wind, moving from ris. 180 . A to B, and let C reprefent the Center of the Axis or Spindle, ftanding perpendicular to the Horizon, upon which, at the Top, is fixed at right Angles, the piece DH, making the two Arms C D, and C H, upon the Ends of which the Vanes M N, are moved on Spindles; fo as that the Plane of the Vane doth always pais thro' the Point D: I fay, thefe Vanes fo ordered, fhall be always placed in the moft advantageous Pofture for moving the Arms round upon the faid Spindle, whofe Center is C, in the Order of DEFGHIKLD.

Firft, For the Vanes placed at D and $\mathrm{H}, ~ I ~ f a y$, They are fet in the moft advantageous Pofture poffible, in thofe two Points: For Firff, the Vane MN at D being to move directly againft the Wind, the moft advantageous Poffure is to turn its edge directly againft the Wind, and thereby to give the leaft Refifance poffible, that being the only Point in which the Vane, fuppofed only a Superficies, draws not. And Secondly, For the Vane M N placed at H, it ftandeth the moft advantageoufly, becaufe its Motion being directly from or before the Wind, it ftandeth full Crofs, or oppofed to the Motion thereof.

Secondly, The Vanes at E, F, G, and I, K, L, ftand the moft advantageoully becaufe they divide the Angle, between the way of the Wind, and that of the Arms in thofe Points into two equal Parts, and confequently the Wind impreffeth the greateft Force in the moft direct Way: For it is eafy to be demonftrated, That the Force impreffed on the Vane by the Wind, is perpendicular to the Surface, and confequently that the Obliquity of the Force to the way of the Arms, increafed by the Vones ftanding more full againft the Wind, will have a lefs Proportion of Power to promote the Motion thereof, than in the Pofture here fet. And fuppofing the Vanes fet fharper to the Wind, the Diminution of the Force impreffed by the Wind on its Surface, will be greater than the Augmentation of its Power by being moved more directly to the way of the Arms. This is eafy enough to be geometrically demonfrated.

The Vane may be fo ordered, as always to ftand in this Poffure by a great many ways: I fhall only inftance in one, not the beft for Practice, but the moft eafy to be underftood and demonfrated.

Let the Vane be equally expanded on each fide of its $A x i s$, by which the Preffure on the Extremes of it are always counterpoifed; then faften upon the lower end thereof a Wheel, which may be in a Diameter about $\frac{2}{2}$ of the

Von. I
Sff
length

Fig 182.
length of the Arms from Hole to Hole; then fix a Wheel upon the Frame in which the Spindle of the Arms do move, that fhall be of half the Diameter with the former, and to contain half the number of Teeth. Then by a third fmall Wheel, fixed under the Arms, of a convenient bignefs, communicate the Motion of the one to the other; for by this means each Vaine being fo provided, they will, being once fet right, always continue to be moved and difpoled in the true Pofture defired.

This Contrigance will not only be ufeful for all manner of common WindMills, butalfo for Water-Mills in Rivers, where there can no Dam be made; as mayalio the perpendicular Vanes of other Mills, neither of which has been fo much as binted, by any Perfon whatfoever, that I have hitherto heard of.

An Ascount of Flying; by Dr. Hook. Plil. Coll. n. 1. P. 14.

The Aut of Fly. ing ; by S. Bef-
nier.
Ibid. p. 85
Fig. 18:。
XV. 1. The Art of Filying hath been in all Ages altempled by many, particularly in the Times of our famous Friar Roger Bacon, who lived about 500 years fince. He was believed a Magician or Conjurer, and to have performed what was related of him, by the help of diabolical Magick; but from the perufal of feveral of his excellent Works yet extant, I efteem him no fuch Perfon. I rather find him to have been a good Matbematician, aknowing Mechanick, a rare Cbemif, and a moft accomplifhed experimental Pbilofopber, which was a Miracle for that dark Age. This Man affirms the Art of Flying poffible, and that he himfelf knew how to make an Engine, in which a Man fitting, might be able to carry himfelf thro' the Siir like a Bird: And affirms, that there was then another Perfon who had actually tried it with good Succefs. We have not wanted later Inftances in England, of feveral ingenious Men, who have employed their Wits and Time about this Difign. Particularly, I have been credibly informed, that one Mr. Gajcoigne did about 40 Years fince try it with good Effect; tho he fince dying, the Thing alfo died with him. And even now, there are not wanting fome in England, who affirm themfelves able to do it, and that they have proved as much by Experiment. We have litcle or no account of the ways they have taken to effect their Defigns; but we may conclude them defective in fomewhat or other, fince we do not find them brought into common UJe.
2. The Sieur Befnier, a Smith of Sable in the County of Naine, hath invented an Engine for Flying. It confifts of two Poles or Rods, which have at each end of them an oblong Cbafle of Taffety; which Cbaflic folds from above downwards, as the frame of a folding Windiow Cbafie: He fits thefe Poles upon his Shoulders, fo that two of the Cbaffies inay be before him, and the other two behind him. The order of moving them is thus: When the rigbt Hand ftrikes down the rigbt Wing before, A, the left Leg by means of the String E, pulls downwards the left Wing behind, B ; then immediately after, the left Hand moves or ftrikes downwards the left Wing before, C; and at the fame time the rigbt Foot, by the String F, moves or pulls down the right Wing behind, D; and fo fucceffively, or alternately, the diagonally oppofite Wings always moving downwards, or friking the Air together.

(499)

3. 4. P. Francifco Lama in his Prodromo, finding by an Experiment, That A Flying chathe Weight of the Air is $\frac{t}{0+0}$ part of the Weight of a like quantity of Water, Frit. Lana. he concludes certainly, That if we could make a Veffel of Glafs or other Ibid. p. 18 . Matter that might weigh lefs than the Air that is in it, and fhould draw out all its Air, this Veffel would be ligbter in Specie than Air itfelf, and therefore would fwim in it and afcend on high. This he fuppofes may be done, by making a round Veffel of thin Plate Brafs (weighing 3 Ounces in a fquare Foot) of the Diameter of 14 Foot. For the Surface of the Veffel will be 616 fquare Feet, and the Brafs will weigh no more than 1848 Ounces; whereas the Content will be $1437^{\frac{1}{2}}$ Cub. Feet, and that Quantity of Air will weigh 2155_{3}^{2} Ounces: So that that Air being evacuated, the Veffel will be $307^{\frac{2}{3}}$ Ounces ligkter than Air, and therefore will not only aifend into the Air, but alfo carry up with it a weight of $307^{\frac{2}{3}}$ Ounces. And thus by encreafing the Bulk of the Veffel, without encreafing the Thicknefs of the Plates of Brafs, he fuppofes a kind of Ship may be made, to fwim in the Air, and to carry two or three Men in it.
1. The fallacy of the Autbor's Reafoning lies in this; he fuppofes Copper of Shem Imprasu3 Ounces in a Foot Square to be of fufficient Thicknefs to refift the Preffure $\begin{gathered}\text { coble } \text {. Hoo }\end{gathered}$ of the Air in a Globe of 14 Foot Diameter, nay of any Dimenfion. But in this Did.t. p . 27 . we can no wife affent to him: For the Preffure from without inwards, tho' it be always the fame upon equal Surfaces, yet upon unequal Surfaces the Cafe is quite otherwife, for there the Preflure will be found not the fame, but to encreafe always in the fame Proportion with the Surface, and thence confequently the Tbickne/s of his Copper, or any Metal or Material, which he Tha! make ufe of, muft increafe in the fame Proportion, with the Diameter of the Sphere, and confequently the Weight of his Copper muft always increafe in the fame Proportion at leaft to the Solidity of his Spbere; fo that by his augmenting the Quantity of his Sphere, he has no manner of Advantage of making it proportionably ligbter than the Air, and proportionably firong, but the contrary: For it is manifeft, That a bigger Sphere fo made of any Matter we yet know, has lefs Power of refifting the fame Preffure of the Air than a lefs, becaufe of finite Refiftance of Matter to Preffure, there being fome degree of Preflure that will crulh every Body.
XVI. This Engine is compofed of four principal Parts; the Serpent A A An Enninn to two Foot-Steps or Treddles B B, one Clapper C, and two Arms D D, D D. $\begin{gathered}\text { make Limu } \text { chy } \\ \text { cloth }\end{gathered}$

The Serpent or Iron Bar A A, has two Elbows, E E, whereto the Ends of M. de Gennes. the Ropes are fix'd that raife and put down the Foot-feps B B; FF are two ${ }^{\text {n. }} 140$. p. Fig . 18.0 . fourths of a Circle, that fucceffively reft upon two Arches or Bows of Juy, An, 1678 . Iron, G G, which are above the Clappler C, to raife it. HH are two Teeth of Iron, added to the Serpent, making an Angle of 25 Deg. with F F, and K K; which ferve to put down a Bafuule, or Sweep, which is in the Arm that carries the Sbutlle. The Foot-fteps or Ireddles differ in nothing from thofe that are ufually made ufe of, only the Cords that hold them pendent from the Ground are fix'd in the Elbows of the Serpent, which in turning
raifes and puts them down by the help of two little Pullies, upon which the Ropes turn.

The Clapper is fupported between two Pillars, with a Rope double twilted, which occafions it to make a kind of Spring, and caufes it naturally to give forwards to beat the Cloth.

L M, is one of the Arms which paffesfreely into the Canal or Pipe N N, fupported by four Pillars of Wood OOOO. The Motion of it proceeds from the following Parts. PQ_{2} is a Bafoule, which tho' unequally divided by its Supporter R, is yet in Equilibrio, the end P R being made to weigh exactly as much as $R \mathrm{Q}$.

At the Extremity of this Bafiule is ty'd a Cord which paffes thro' the Pulley S , and terminates at the Extremity of the $A r m$, where it is faftened, to a little Bow M. At the other Extremity of the fame Arm, that is to fay, towards L, is alfo faftened underneath, a Cord, which paffes thro' the Pulley T, and which carries the Weight V.

At the fame end of the Arm is added a little Niche Z, about the bignefs of half the Sbuttle: Then over a little Bar XY, which paffes a-thwart the Arm, there are two other little pieces of Wood, having at the end of them two Teeth which enter into the Nicbe Z, thro' two Holes which are there, of the one fide and t'other.

To the Ends of thefe little pieces of Wood, there is a little Borw of Whalebone or Steel, which keeps the two Ends afunder, and forces the Teeth, which are at the other end, to enter into the Niche before the faid pieces can themfelves. At the Points I I, are two Ropes that pafs thro' the Pullies 2 2, fartened to the Pillars, 0304 , and have each of them a little weight at the end big enough to keep it from paffing thro' a little Bowl which is under each Pulley.

This Arm thus difpofed, goes and comes in the Hole N N, in the following manner. One Tooth of the Serpent, already defcribed, ftrikes upon the Extremity of the Bafcule PQ, and fo caufes the End Q to rife up, which drawing the Cord faftened to the Point Q, makes the Arm L M, to advance forward. But when afterwards the Tooth of the Serpent is come forth again, then the Weight V , tied to the other End of the fame $A r m$, by a Cord that paffes thro' the Pulley T, forces the faid Arm by its own Weight to return again.

When the Arm L M is in its ordinary place, the two little pieces of Wood into which enters the Bar XY, enclofe the Sbuitle by means of the Whale-bone-Spring. But when the faid Arm approaches the other oppofite Arm, then the Cords tied to the Points I I, being a little too fhort, and the Weight which is at the end of them not being able to pafs thro', the Spring gives way a little, and fo the Sbuttle is no longer enclofed by the Arm which carries it, but is wholly received and grafp'd by the other ; which likewife in its turn, delivers it back again in the fame manner.

The Motion of the whole Macbine is made at the rate as you move the Handle of the Serpent, for then the Arms caufe the Threads to open, and immediately one of the Arms begins to flide in towards the oppofite Arm,
to which it carries the Sbuttle, and retires immediately : At the fame time, one of the Quarters of a Circle, which held the Clapper elevated, forfakes it, and leaves it for to flap, and then the oppofite Quarter of a Circle elevating itfelf, the other Elbow changes the Threads, and the other Arm retires; and fo fuccelfively.
The Advantages of this Engine are thefe. I. One Mill will fet 10 or 12 of thefe Looms at Work. 2. You may make the Clotb of what Breadth you pleafe. 3. There will be fewer Knots in the Cloth, fince the Threads will not break fo fait as in other Looms, becaufe the Sbuttle that breaks the greateft Part, can never touch them. In fhort, The Work will be carried on Quicker, and at lefs Cbarge, in regard that inftead of feveral Work-Folks which are required in making very large Clotbs, One Boy will ferve to tie the Threads at the feveral Looms as fait as they break, and to order the 2 uills about the Sbutlle.
XVII. I ordered a Model of a part of a Waggon to be made confifting of Advanteges of four Wheels, two Axes, and a Board nailed upon the Axes. The Leffer Wheels High Whets exwere $4^{\frac{1}{3}}$ Inches high, and the Bigger-Wheels $5^{\frac{2}{3}}$ Inches high, viz, ${ }^{\frac{1}{2}}$ of the ${ }^{\text {perimentedi; by }}$ ordinary Height of the Wheels of a Waggon: The Weight of the Model was ciety cherd soalmoft $\mathrm{I} \frac{1}{2}$ lib. I had alfo two other Wheels made $5 \frac{1}{3}$ Inches high to be put n. 167 . p. 856 . on inftead of the Leffer. The Middle of the two Axes were $6 \frac{1}{4}$ Inches afunder. All the Wheels turned very eafily upon the Axes.

A piece of Lead $50 \frac{3}{4}$ lib. Averdupoife, was laid upon the Model, fo forward, that the Leffer Wbeels feemed to bear above $\frac{2}{5}$ parts of the Weight. Then the Model was drawn with a String laid over a Pulley, the Top whereof was $\frac{1}{4}$ of an Inch higher than the Top of the Hinder Axis, and the Middle of this Pully was $7 \frac{1}{2}$ Inches from the Middle of the Fore Axis.

The Leffer Wheels being put on, and the String being tied to the Top of their Axis,

1. Three Pound drew the Model on the fmooth Level Table.
2. Trwenty Pound drew the Leffer Wheels over a Squared Rod \div of an Inch thick.
3. Thirty Pound drew them over a round Rod a little more than $\frac{1}{3}$ an Inch thick.
4. Thirty One Pound drew them over a Square Rod half an Inch thick.
5. Twelve Pound drew the Hinder Wheels over the bigger Square Rod.

The String being laid under the Axis, viz. $\frac{5}{8}$ of an Inch lower than before,
6. Twenty nine Pound drew the Leffer Wheels over the Bigger Square Rod.

Then the two Bigger Wheels being put on inftead of the Leffer, and the String lying over the $A x i s$,
7. Three Pound drew the Model on the Table.
8. Twenty five Pound drew the Fore Wheels over the Round Rod.
9. Twenty five Pound drew them over the Bigger Square Rod.
10. The String lying under the Axis, 16 Pound drew them over the leaft Rod.
11. Iwenty tbree Pound drew them over the round Rod.

(502)

12. Tweniy three Pound drew them over the Bigger Square Rod.
13. Tbirteen Pound drew the Hinder Wheels over the Bigger Square Rod.

In all thefe Experiments, the Lead was laid exactly upon the fame part of the Board, but yet when the Lefor Wibeels were taken off, the Lead did not lean fo much forward, fo that the Hinder Wbeels were fomewhat more prefled than they were before.

By comparing the fecond, third, and fourth Experimints, with the tenth, eleventh and twelfth, it appears how much more eafily a Waggon, Eic. might be drawn in rough Ways, if the Fooe Wheels were as high as the Hinder Wheels, and if the Tbills were fixed under the Axis. Such a Waggon as this, would likewife be drawn more eafily, where the Wheels cut in Clay or Sand, or any Soft Ground. And moreover, High Wheels would not cut fo deep as Low Wheels.

Low Wheels indeed are better for Turning in a narrow Compafs than high Ones: But it feems probable that Wagrons with four Higb-Whbeels, might be, fo contrived, that there fhould be no great Inconvenience in that refpect; at leaft, fuch Waggons as feldom have occafion to turn hort, as Carriers Waggons, and fuch like.

The Difference which you may obferve in the eighth and eleventh Experiments, is agreeable to what is faid by S. Stevinus, and Dr. Wallis, viz. That if a Coach, Esc. mult be drawn over rough, uneven Places, it is beft to fix the Traces to the Coach lower than the Height of the Horfes Shoulders.
14. A Table $2 \frac{1}{2}$ Foot long, was fet with one End $8 \frac{1}{2}$ Inches higher than the other End, and the Model being loaded as before, lefs Weight by 6 Ounces drew it up the Table, when the four Bigger Wheels were on, than when two Bigger and two Lefs were on. Becaufe, in the firtt Cafe there was almoft the fame Direction of the Motion of the Model and of the String that drew it; but not in the fecond Cafe, when the Fore Axis was fo much lower than the Top of the Pulley.

A xew fort of Calesh defribed by Sir R. B. ภ. 172. p. 1028. June. An. 1685.
XVIII. This Cale/h goes on two Wheels; carries one Perfon, is light enough ; tho' it hangs not on Braces, yet it is eafier than the Common Coach : A common Coach will overturn, if one Wheel go on a Superficies a Foot and a half higher than that of the other, but this will admit of the Difference of $3{ }^{\frac{1}{3}}$ Foot in Height of the Superficies, without danger of Over-turning: We chofe all the irregular Banks, and fides of Ditches to run over; and I have this Day feen it at five feveral Times turn over and over, and the Horfe not at all difordered. If the Horle fhould be in the leaft unruly, with the help of one Pin, you difingage him from the Calef without any Inconvenience. I myfelf have been once overturned, and knew it not till I looked up, and faw the Wheel flat over my Head; and if a Man went with his Eyes fhut, he fhould imagine himfelf in the moft fmooth way. tho' at the fame time there be three Foot Difference in the Height of the Ground of each Wheel.
XIX. Let DEF, be a pair of Bellows 40 Inches long, that may be open- The contrizane
 but at the Aperture E; and Let a Pipe E G, 20 or 22 Inches long, be fodered to the faid Aperture E, having its other end in a Veffel G, full of Mercury, and placed near the middle of the Bellores.
explained; by A , is an 1 Axis for the Bellures to turn upon.
B, a Counterpoife faftened to the lower end of the Bellows.
C, a Weight with a Clafp to keep the Bellows upright.
Now if we fuppofe the Bellows opened only to $\frac{\frac{1}{3}}{3}$, or $\frac{1}{4}$, fanding upright, and full of Mercury; it is plain that the faid Mercury being 40 Inches high, nuft fall, as in the Torricellian Experiment, to the Height of about 27 Inches, and confequently the Bellores muft open before F, and leave a Vacuity there. This Vocuity muft be filled with Mencury afcending from G thro the Pipe GE, the faid Pipe being but 22 Inches long: By this means the Bellows muft be opened more and more till the Mercury continuing to afcena, makes the upper part of the Bellows fo heavy, that the lower part muift get loofe from the Clafp C, and the Bellores fhould turn quite upfide down s but the Veffel G, being fet in a convenient place, keeps them Horizontal, and the part F, engageth there in another Clafp C; then the Mercury by its Weight runs out from the Bellows into the Veffel C, thro' the Pipe EG, and the Bellowes muft fhut clofer and clofer until the part EF comes to be fo light, that the Counterpoife B is able to make the part F, get loofe from the Clafp C; then the Bellows comes to be upright again as before; the Mercury left in them falls again to the height of 27 Inches, and confequently all the other Effects will follow, as we have already feen, and the Motion will contimue for ever.

Upon this, it is to be obferv'd, That the Belloress can never be opened by And fhem in. the internal Preffure, unlefs the faid Preffure be ftronger than the external. Now in the Cafe before us, it is plain, That altho' the lowermoft part of n. 182, . P. 133^{3}. the Bellores be preffed outward by 40 Inches of Morcury, yet the upper part having no Mercury above it, bears none at all; the parts that lie in the middle near the Axis of the Bellowes bear but 20 Inches, and fo all the reft muft bear more or lefs, according as they lie higher or lower: It is evident therefore, That there are as many parts that bear lefs than 20 Inches, as there are that bear more, and the Increafe of Preffure following an Arithmetical Pragreffion, it is undeniable, that all thefe Preffires added together, will do more than one uniform Preffure, that would be equal to 20 Inches every where. It is alfo plain, that the Weight of the Aimofpbere, cannot come at the inward part of the Bellows, but thro' the Pipe G E, which containing 22 Perpendicular Inches of Mercury, doth counterpoife fo much of the Weight of the Aimopbere; fo that this being fuppoted to be 27 Inches of Mercury, it cannot prefs the inward part of the Bellows, but with a weight equivalent to 5 Perpendicular Inches of Mercury. So that we find, the Inward Preffure both of the Mercury and the Ampopptere, is equivalent but to 25 Inches of Mercury in ali: whereas the Preffure of the Almolpbere upon the Outfide is every where equal to 27 Inches; from whence it appears,

(504)

17..7. That the Preffure without is Itronger than the Prefture within. From this we may conclude, that the Bellowes ftanding upright will rather fuur than open.
2.1 185. p. 267.

I fhall fay nothing to the Alterations this Author may make in his Engine, refolving to leave it to others to fhew him, that upon that Principle all he can do fignifies nothing. And I doubt not, but if he pleafes to confult M. Perault, De la Hire, or any other at Paris, he will find them of the fame Opinion with Mr. Boyle, and Mr. Hook, and others bere.

The Speaking Tysmpet improved; by Mr. J. Conyers.
n. 141 p. 1027°

Sept. An 367^{8}
Fig. 186.
XX. This reflecting Trumpet confifts of two Parts. The utmoft $B b$, is a large Concave Pyramid, about a Yard long, (or may be of any manageable Length) open at the Bafe B, and clofed not with a Flat, but a Concave Head, at the Cone B. Within this is faftened a bended Tube A a This Irumpet did at a Mecting of the Royal Society at Arundel Honfe, diftinctly deliver fome Words, crofs the Garden and the River Tbames, and that againtt the Wind which was then ftrong; and the words were written down by one, that was fent over for that purpofe: Whereby it appeared, That a reflecing Trumpet, after this, or fome other like manner of Wood, Tin, Pewter, Stone, or Earth, or which may be beft, of Bell-Metal, will carry the Voice as far, if not farther, than the long one invented by Sir Samuel
Fig. 18 \%
Fig. 188. Moreland. Befides that, it feems to take off from the aftonifhing Noife near at hand, which happens in ufe of the faid long Trumpet: By Sir Sam. Moreland's Trumpet angularly arched in the middle, the delivery of Sound to any diftant Place was much fhortened; and by another with three large angular Arches, reaching almoft from one end to the other, the Sound was almoft wholly obftructed.

The Swifenefs of soxnds and their Reffections or Ecchoes; by M_{7}. Walker. n. 247 . p. 433
XXI. I provided a Pendulum, of fmall virginal Wire, with a Piftol Bullet at the end of it, which had two Vibrations in one Second of Time. I took this Pendulum, and ftanding over-againft a high Wall, I clapt two pieces of fmall Boards together, and obferved how long it was ere the Eccho returned ; and I removed my Station till I found the place whither the Eccho returned in about half a Second. But that I might diftinguifh the Time more nicely, I clapt every Second of Time, 10 or 15 times together; fo that by this means, I could the better difcover whether the diftances betwixt the Claps and the Ecchoes, and the following Claps, were equal. And tho' it be very difficult to be exact, yet I could come within fome few Yards of the place I fought for, thus I obferved the two Places, where I could but juft difcover that I was too near, and where I was too far off; and from the midway betwixt them I meafured to the Wall, which Meafure doubled, was the Space that the Sound moved in half a Second.

Here follow the Numbers of Englifh Feet which a Sound moved in one Second of Time at feveral Trials.

Trials.	Feet.	Trials.	Feet.	Trats.	Feet.	
	1256		5	1292		9
2	1507	6	1378	1278		
3	1526	7	1292		11	1290
4	1150	8	1185		1200	

Merfennus mentions an Experiment wherein he found the Motion of the Sound to be 1474 Feet in a Second. The Acadeny del Cimento caufed 6 Harquebutfes, and 6 Chambers to be fired one after another at the Diftance of 5739 Englifh Feet, and from the Flafh to the Arrival of the Report each was $5^{\prime \prime}$: And repeating the Experiment at the Midway, the Motion was exactly in half the time; and Mr. Boyle obferved, that the Motion of Sound paffes above 400 Vards in a Second.

When the Firft Trial was made, there was fome Wind ftirring, tho' not much; the $2 \mathrm{~d}, 3 \mathrm{~d}$ and 6 th were made in a Calm Morning. In the 8 th, the Eccho was returned from a Wall at 395 Vards Diftance in two Seconds; and in the gth and 10th, at 213 and $2: 5$ Yards Dittance, in one Second. The 4 th was made at one end of St. 'Yohn's Cloifter, in Oxford, which is 104 Feet 7 Incbes long, where the Sound was Reflected 11 times in two Seconds: And the 5 th, on the North fide of New College Cloifter (which is 160 Feet 8 Incloes long) where there are about $7^{\frac{1}{4}}$ Eicchoes in two Seconds.

By fome of thofe Experiments that I tried, I am inclined to think, That the Sound moved quicker when it was Calm, than in a Wind, even when the Sound moved half way with the Wind; and that it moves fwifter at firft, than afterwards.

There is feldom any Eecbo, where there is not fome Wall, Wood, Bank, or fuch like, directly oppofite, that may Reflect the Sound to the Perfon that makes it; but in St. Fobn's Grove, if you fand near the Gate leading from the College to the Grove, and Clap, the Eccho wiil return to you from the Ball Court, tho' a Line drawn from you to the Ball Court be not perpendicular to the Wall there, but as much oblique as the Line AB is to the Line BC; where A reprefents the Gate, BC the Ball Court Wall, and B I) another Wall. Or, if you ftand at E, the Corner of the Grove next to Trinity, and clap, the Eccho will return to you from the Ball Court.

In the fame Grove I ftood about 20 Yards from the fame Gate, and the Gate being fhut, Clapt, and at other times Stamped, and the Eccho returned from the Gate as loud, if not louder than the Clap or Stamp.

An Eccho reflected from a Gate or Door, has ufually a bafer and duller Sound than that which is returned from a Wall, this being much brifker.

As I have been walking towards a Wall, I have clapped my Hands together feveral times, and I could dittinguith the Ecibo from the Clap, till I came within 7 or 8 Yards of the Wall.

In the Cloifters, where, as we faid before, the Eccloo was repeated feveral times, the firf Repetition feemed to be Nlower than the fscond or third; Vol.

(506)

but of all the Repeticions, befides the firf, the fublequent feemed flower than the precedent.

I have obferved the Toffing of a Sound forward and back again, in very many Places where there are Parallel Wall's and where the Diftance of the Walls is lefs, there the Ecchoes follow one another quicker.

Wherefoever a Sound was thus toffed betwixt two Walls, if I ftood about the Middle, I could hear the Sound twice as quick, that is twice as often repeated in one Second, as if I ftood near one Wall: The Sound being reHected to me from both ends, when I food in the middle.

In Trinity Ball Court, when I ftood and clapt at B, three or four Yards from the End of the Wall C, or at A, which is oppofite to B, the Sound was toffed betwixt the oppofite Walls, but not half fo long as when I ftood betwixt the Walls. In Places where there are Parallel Walls, not above fix or eight Yards afunder, as in Trinity Boll Court, and at the Entrance into St. Fohn's Grove, Ėc. I have heard the Ecchoes of a Clap following one another diitinctly enough : But there the Ecchoes of a mufical Note, which was longer than a Clap, were fo confufed, that they feemed one continued long Sound: which makes me think, that the Eccho in fome Vaults, is nothing elfe but the Sound toffed betwixt the fide Walls, and betwixt the top and botiom. This alfo makes me conjecture, That the Reafon why fringed Muffal Inftruments give a greater and longer Sound to the Strings than if the Strings were fixt to a fingle Board, may be this; becaufe the Somal is toffed from fide to fide in the Belly of the Infitument.

Ts, Doftrine of Suntuls; ly Narcifus, Biflup of Feras aud Leighlin. n. 156. p. 472 Aै̈. An. 1683
XXII. I cannot better explain the Ufefulne/s of this Theory of Sounds, than by making a Comparifon'twixt the Faculty of Seeing and Hearing, as to their Improvements. In order to which, I obferve, That $V_{i j}$ ion is threefold, direit, refracied, and reflex'd; anfwerable whereunto we have Opticks, Dioptricks, and Cetoptricks:

In like manner Hearing may be divided into direct, refracted, and reflex'd; whereto anfwer three Parts of our Doctrine of Acoufticks, which are yet namelefs, unlefs we call them Acouficks, Diacouficks, and Catacoufticks (or in another Senfe, but to as good Purpofe) Pbonicks, Diapbonicks, and Catapbonicks.

Dircit Vifion has been improved two ways.

1. Ex parie Objeiti, by the Arts of producing, conferving, and imitating, and duly applying, Light and Colours.
2. Ex parte Organi vel Medii, by making ufe of Tubes witbout Glafles, or, a Man's clofed Hand to look thro'. So likewife direit Hearing, partly has, and partly may further receive great and notable Improvements, both ex parte Objecti, and ex parte Organi vel Medii.
3. As to the Object of Hearing, which is Sound, Improvement has been and may be made, both as to the brgetting, and as to the conveying and propugating (which is a kind of Conferving) of Sounds.
r. As to the begetting of Sounds. The Art of imitating any Sound whether by fpeaking (that is pronouncing) any kind of Language (which really
is an Art; and the Art of Speaking perhaps one of the greateft) or by Whintling, or by Singing (which are allowed Arts) or by Hollowing, or Luring, (which the Huntfman and Falconer would have to be an Art alfo) or by initating with the Mouth (or otherwife) the Voice of any Animal; as of Quails, Cats, and the like; or by reprefenting any Sound begotten by the Collifion of folid Bodies, or after any other manner; thefe are all Improvements of direct Hearing, and may be improved.

Moreover, the Skill to make all forts of mufical Inftruments, both antient and modern, whether Wind Infruments or Aring'd, or of any other fort, whereof there are very many (as Drums, Bells, the Syfrum of the Egyptians, or the like) that Beget (and not only Propagate) Sounds: The Skill of making thefe, I fay, is an Art, that has much improv'd direcit Hearing; and an bermonious Sound exceeds a fingle and rude one, that is an immuffial Ture: which Art is yet capable of farther Improvement And I hope, That by the Rules which may happily be laid down, concerning the Nature, Propagation, and Proportion or odapting of Sounds, a way may be found out, both to improve Mufical Infruments already in ufe, and to invent new ones, that fhall be more fweet and lufcious than any yet known. Befides, that by the fame means Inftruments may be made, that fhall imitate any Sound in Nature, that is not Articulate; be it of Bird, Beaft, or what thing elfe foever.
2. The Conveving and Propagating (which is a kind of Conforving) of Sounds, is much helped by duly Placing the fonorous Body, and allo by the Medium.

For if the Medium be Tbin and Quiefcent, and the founding Body placed. conveniently, the Sound will be eafily and regularly propagated and mightily conferved.

1. The Medium muft be Thin and Quiefcent: Hence in a ftill Evening, or the Dead of the Night (when the Wind ceafes) a Sound is better fent out, and to a greater Diftance, than otherwife.
2. The fonorous Body muft be placed conveniently, viz. Near a fmooth Wall, cither Plain or Arched (Cycloidically or Elliptically, rather than otherwife; tho' a Circular or any Arib will do; but not to well.) Hence in a Church, the nearer the Preacher ftands to the Wall (and certainly it's much the beft way to place Pulpits near the Wall) the better is he heard, efpecially by thofe who ftand near the Wall; alfo, tho' at a greater Diftance from the Pulpit, thofe at the remoteft End of the Church, by laying their Ears fomewhat clofe to the Wall, may hear him eafier than thofe in the middle.

Hence alfo do arife Wbifpering Places. For the Voice being applied to one end of an Arch, eafily rowls to the other. And indeed were the Motion and Propagation of Sounds but rightly underftood, 'twould be no hard matter to contrive Whifpering Pleces of infinite variety and ufe. And perhaps there could be no better or more pleafant hearing a Concert of Mufic, than at fuch a Place as this; where the Sounds rowling long together before they come to the Ear, muft needs confolidate and imbody in one; which becomes a true Compofition of Sount, and is the very Life and Soul of Concert.
2. If the fonorous Body be placed near Water, the Somnd will eafily be convey' ${ }^{2}$, yet mollify'd; as Experience teacheth us from a Ring of Bells near
a River, and a great Gun fhot off at Sea; which differ much in the ftrength, and yet Softnefs and Continuance, or Proparation of their Sounds, from the fame at Land; where the Sound is more harfh and more perifhing, or much fooner decays.
3. In a Plain a Voice may be heard at a far greater Diftance, than in uneven Ground. The Reafon of all whichlaft nam'd Pbenomena is the fame; becaufe the fonorous Air meeting with little or no Refiftance upon a Plane (much lefs upon an Aich'í) fmooth Superficies, eafily rowls along it, without being let or hindred in its Motion, and confequently without having its Parts disfigured, and put into another kind of Revolution, than what they had at the firft begetting of the Sound, which is the true Caufe of its Prefervation or Progrcfleaz ; and fails much when the Air paffes over an uneven Surface, according to the degrees of its Inequality; and fomewhat alfo, when it paffes over the Plain Superficies of a Body that is hard and refifting.

Wherefore the finooth Top of the Water (by reation of its yielding to the Arcbed Air, and gently rifing again with a kind of Refurge, like to Elafticity tho' it be not fo; by which Refirge it quickens and haftens the Motion of the Air rowling over it, and by its yielding preferves it in its Arched Cycloidical or Elliptical Figure) the jinoost Top of the Water, I fay, for thefe Reafons, and by thefe Means, conveys a Sound more entire, and to a greater Diftance, than the Plane Surface of a piece of Ground, a Wall, or any other folid Body whatever, can do.
2. The Organ, which is the Ear, is helpt much by placing it near a Wall, (efpecially at one end of an Arch, the Sound being begotten at the other) or near the Surface of Water, or of the Earth; along which the Sounds are moft eafily and naturally conveyed; as was before declared. And 'tis Incredible, how far a Sound made upon Earth (by the Trampling of a Troop of Horfes, for Example) may be heard in a ftill Night, if a Man lays his Ear clofe to the Ground in a large Plain.

Otacoufticks here come in for helping the Ear ; which may be fo contrived (by a right underftanding the Progreffion of Sounds, which is the principal Thing to be known for the due regulating all fuch kinds of Inftruments) as that the Sound might enter the Ear without any Refraction.
2. RefraEted Vifion (which is always made ex parte Medii) arifes from the different Denfly, Figure, and Magnitude of the Medium; which is fomewhat altered by the divers Incidence of the Vifive Rays, and fo it is in Refracted Hearing, all thefe Caufes concur to its Production; and fome others to be hereafter confidered.

Now as any Object (a Man for Example) feen thro' a Thickened Air, by Refracion appears greater than really he is: So likewife a Sound heard thro' the fame Thickened part of the Atmofphere, will be confiderably vasy'd from what it would feem to be, if heard thro' a Thinner Medium. And this I call a Refracted Sound.

Improvements of Refracted Vifion have been made, by Grinding or Blowing Glaffes into a certain Figure, and placing them at due Diftances; whereby

(509)

the Object may be (as 'twas) enabled to fend forth its Rays more Vigoroully, and the V_{i} ive Faculty impowered the better to receive them. Thus,

1. A fine Glafs Bubble, filled with clear Water, and placed before a burning Candle or Lamp, does help it to dart forth its Rays to a prodigious Length and Brightnefs.
2. The Vifive Faculty is much helped,
3. By SpeEFacles and other Glaffes, which are made to help the Purblind and Weak Eyes, to fee at any competent Diftance.
4. By Perfpective Glafes and Telefcopes, which help the Eye to See Objects at a very great Diffance, which otherwife would not be difcernible.
5. By Microfoopes or Magnifying Glaffes, which help the Eye to fee near Objects, that by reafon of their Smallnefs were Invijble before.
6. By Polyjcopes or Muitiplying Glaffes, whereby one thing is reprefented to the Eye as many, whether in the fame or different Shapes.

After the fame manner, Inftruments may be contrived for affifting both the Sonorous Body to fend forth its Sound more ftrongly, and the Acouftick Faculy to receive and difcern it more eafily and diftinctly. And thus;
I. An Inftrument may be invented, that applied to the Mouth, (or any Sonorous Body) fhall fend forth the Voice diftinctly as to a prodigious Difance and Loudnefs. For if the Stentoro-phonicon (which is but a Rude and Inartificial Inftrument) does fuch great Feats; what might be done with One compofed according to the Rules of Art, whofe Make fhould comply with the Laws of Sonorous Motion, which that does not?
2. There are fome Infruments, and more fuch may be Invented to help the Ear: As,

1. Otacoufticks (and better may be made) to help Weak Ears to hear at a reafonable Diftance alfo. Which would be as great a help to the Infirmity of Old Age, as the other Invention of Speczacles is, and perhaps greater; forafmuch as the Hearing what's fpoken is of more daily Ufe and Concern to fuch Men, than to be able to read Books, or to view Pictures.
2. A fort of Otacoufticks may be fo contrived, as that they fhall receive in Sounds made at a very great Diftance, which otherwife would have been Inaudible: and thefe Oiacoufticks, in fome Refpects, would be of greater ufe than Perfpectives.
3. In Time of War, for difcovering the Enemy at a good Diftonce, when he marches or lies incamp'd behind a Mountain or Wood, or any fuch Place of Shelter, which hinder the Sight from reaching very far.
4. At Sea, when in dark Hazy Wealber the Air is too thick, or in Stormy Tempeftuous Weatber, the Waves rife too high, for the Perfpective to be made ufe of.
5. In Dark Nights, when Perfpectives become almoft infignificant, and yet at fuch times, generally, Soldiers take their March, when they would furprize their Enemies.
6. Microphones, or Micracouficks, that is, Magnifying Ear Inframonts, which may be contrived after that manner, that they fhall render the moft Minuse Sound in Nature diftinctly Audible by Magnifying it to an unconceiveable
ceiveable Loudnefs: By the help whereof we may hiear the diffe rent Cries and Tones of the fmalleft Avimals.
7. A Polyphone, or Polycouftick, fo ordcred that One Sound may be heard, either of the Same, or a different Note: Infomuch that who ufes this InArument, he fhall at the Sound of a Single Viol feem to hear a whole Concert, and all True Harmony. By which means this Infrument has much the Advantage of the Poly/cope.

I have called it Refratied Hearing, becaufe made thro' a Medium, viz. Thick Air, or an Inftrument, thro' which the Sound pafing is broken or Refraited,
3. Reflecied Vifon (which is always made ex parte Obiecti) hath been improv'd by the Invention of Looking Glaffes and Poolijf'd Metals, whether Plane, Concave or Convex, of feveral Figures, and placed at Determinate Diftances.
In like manner reffex'd Audition (which is only made ex parte Corporis Op pofiri) may be improved by contriving feveral forts of Actifcial Ecchoes. For (fpeaking in general) any Sound falling direezly or obliquely upon any denfe Body of a finooth (whether Plane or Arch'd) Superficies, is beat back again and reflected, or does Eccbo more or lefs.
I fay, (1.) Falling directly or obliquely; becaufe, if the Sound be fent out and Propagated Parallel to the Surface of the denfe Body, there will be no Reffection of Sound, no Eccbo.
I fay, (2.) Upon a Body of a fmootb Superficies; becaufe if the Surface of the Corpus Obffans be uneven, the Air by Reverbcration will be put out of its regular Motion, and the Sound thereby broken and extinguifh'd : So that, tho' in this cafe alfo the Air be beaten back again, yet Sound is not refected, nor is there any Eccho.

I fay, (3.) It does Eccho more or lefs, to fhew, that when all things are, as is before defrib'd, there is ftill an ecchoing, tho' it be not always heard, either becaufe the direet Sound is too weak to be beaten quite back again to him that made it ; or that it does return home to him, but fo weak, that without the help of a good O:tcouffick it cannot be difcerned; or that he ftands in a wrong Place to receive the reflecied Sound, which paffes over his Head, under his Feet, or to one fide of him ; which therefore may be heard by a Man ftanding in that place, where the refected Sound will come, provided no interpos'd Body does intercept it ; but not by him that firlt made it.
Thefe Eccboes (like Reffeited Vifion) may be feveral ways produced, as;

1. A Plane Corpus Obfans reffects the Sound back in its due Tone and Loudnefs ; if allowance be made for the porportionable Decreafe of the Sound according to its Diffance.
2. A, Convex Corpus Obftans repels the Sound (infenfibly) fmaller: but fomewhat quicker (tho' weaker) than otherwife it would be.
3. A Concave Corpus Obfans eccchoes back the Sound (infenfibly) bigger, nower, (tho' ftronger) and alfo inverted; but never according to the order of Words. Nor do I think it pofible for the Art of Man to contrive a fingle

(51I)

a fingle Eccho, that fhall invert the Souird and repeat backwards ; becaufe then the Words laft fpoken, that is, which do laft occur to the Corpus Obfans, muft firft be repell' d; which cannot be. For where in the mean time fhould the firft Words hang and be conceal'd or lie dormant? Or how, after fuch a Paufe be reviv'd and animated again into Motion? Yet in complicated or compound Ecchoes, where many receive from one another, I know not whether fomething that way may not be done.
From this determinate Concavity or Arcbednefs of thefe reflecting Bodies, it comes to pafs, that fome of them from a certain Diftance or Pofiture, will eccho back but one determinate Note, and from no other Place will they reverberate any; becaufe of the undue Pofition of the founding Body. Such an one (as I remember) is the Vault in Merton College in Oxford.
4. The Ecboing Body, being removed farther off, reflects more of the Sound, than when nearer. And this is the Reafon, why fome Ecciooes repeat but one Syllable, fome one Word, and fome many.
5. Ecboing Bodies may be fo contriv'd and plac'd, as that refleting the Sound from one to the other, either directly and mutually, or obliqueis and by Succeffion, out of one Sound fhall many Echoes be begotten; which in the firft Cafe will be all together and fomewhat involv'd or fwallow'd up of each other; and thereby confufed (as a Face in Looking-Glaffes obverted;) in the other they will be diftinct, feparate and fucceeding one another, as moft nuultiple Ecboes do.

Moreover, a multiple Echo may be made, by fo placing the Ecboing Bodies, at unequal Diftances, that they reflecit all one way, and not one on the other; by which means a manifold fucceflive Sound will be heard (not without Aftonifhment ; one Clap of the Hands like many ; one Ho like a Laughter ; one fingle Word like many of the fame Tone and Accont ; and fo one Viol like many of the fame kind, imitating each other.

Furthermore, Echoing Bodies may be fo ordered, that from any one Sound given, they fhall produce many Echoes different both as to their Tone and Intention. By this means a mufical Room may be fo contrived, that not only one Inffrumint, played on in it, fhall feem many of the fame Sort and Size; but even a Concert of (fomewhat) different ones; only by placing certain Ecboing Bodies fo, as that any Note (played) fhall be returned by them in $3 d s$, $5^{t h s}$, and $8 t b s$, which is not poffible to be done otherwife than was mentioned before in refracted Audition.

I have been thus large, that I might give you a little Profpect into the Excellency and Ufefulnefs of Acoufticks, and that thereby I might excite others to bend their Thoughts, towards the making of Experiments for the compleating this (yet very Imperfect tho' Noble) Science; a Specimen whereof I will give in thefe three Problems.

Prob. I.] To make the leaft Sound (by the belp of Infruments) as loud as the sreateft ; a Whifper to become as loud as the Sbot of a Camon.

By the help of this Problem the moft minute Sounds in Nature may be clearly and diftinctly heard.

Prob. II. To propagate any (ibe leaft) Sound to the greateft Diftance.
By the help thereof any Sound may be conveyed to any and therefore heard at any Difance, (I muft add, within a certain, tho' very large Sphere.)

Moreover by this means a Weatber-Cock may be fo contrived, as that with an ordinary blaft of Wind it fhall cry (or whiftle) loud enough to be heard many Leagues. Which haply may be found of fome Ufe, not only for Pilots in mighty tempeftuous Weather, when Ligbt Houfes are rendered almoft ufelefs: But alfo for the meafuring the Strength of Winds, if allowance be made for their different Moifture. For I conceive, That the more dry any Wind is, the louder it will whiftle, cateris paribus: I fay, cateris peribus, becaufe, befides the ftrength and drynefs of Winds or Breath, there are a great many other things (hereafter to be confider'd) that concur to the increafe of magnifying of Sounds, begotten by them in an Inftrument expofed to their Violence, or blown into.

Prob. III.] That a Sound may be convey'd from one extreme to the other (or from one diflant Place to another) So as not to be beard in the middle.

By the Help of this Problem a Man may talk to his Friend at a very confiderable Diftance, fo that thofe in the middle Space fhall hear nothing of what paffed betwixt them.
Fig. '97.
I fhall here add a Semiplane of an Acouftick or Pbonical Spbere, as an Attempt to explicate the great Principle in this Science, which is the Progreffion of Sounds.

You are to conceive this (rude) Semiplene as Parallel to the Horizon; for, if it be Perpendicular thereunto, I fuppofe the upper Extremity will be no longer Circular, but Hyperbolical, and the lower part of it fuited to a greater Circle of the Earth. So that the whole Pbonical Sphere (if I may fo call it) will be a folid Hyperbola, ftanding upon a Concave Spherical Bafe. I fpeak this concerning Sounds made (as ufually they are) nigh the Earth, and whofe foncrous Medium has a free Paffage every way. For if they are generated high in the Air, or directed one way, the Cafe will be different; which is partly defigned in the Inequality of the Draught.

XXIII A Paper, of lefs General UJe, omitted, viz.
Carriges. n. $361 . p, 665$. Xperiments to be made, relating to Carriages; propofed by Sir William
$\mathrm{E}_{\mathrm{kan}}^{\text {kntin }}$

"DEvi Percuffionis, Joh. Alphonf. Borelli. Bononix, 1667 . in 4 to. n. 32.p.626. 2. De Motionibus à Gravitate dependentibus Liber, Jo. Alphonfin. 73.p. 2210. Borelli, in Academia Pifana Mathefeos Profefforis, Regio Julio 1670 . in $4^{\text {to }}$.
3. Dialogi Phyfici, quorum Primus de Lumine; Securdus Eõ Terlius de Vin. 67. p. 2057. Percufionis $\underbrace{3}$ Motu; Quartus de Humoris Eleciatione per Conaliculum; Quintus © Sextus de Variis Selectis. Auth. Honor. Fabry, S. Jefu. Lugduni Galliarum. 1669. in 8 vo.
4. Mechanica, five de Motu, Tractaus Geometricus: Auth. Joa. Wallis, n. 54. p. 1086 . S. S. Th. D. L. ondini, 1670 . 1671. in 410 . The Author bere makes fome n. 1.61 .0 . 200 . 0 . Additions to Prop. L. Chap, XV. p. 753. concerning the Center of Gravity of n., 7. p. 50074. the Hyperbola.
5. Exercitationes Mecbanica, Alexandri Marchetti. Pifis, 166 g. in 4to. n. 6x. p. zous.
6. De Refffentia Solidorum, Alexandri Marchetti in Pifana Academia Pbil. n. 8..p. 4050 . Prof. Florentix. 1665. in $4^{\text {to }}$.
7. Hypotbefis, Phyica nova, five Theoria Motus Concreti, una cum Theoria n. 73 . p. 221 g. Motus Abftracti. Auth. Gothfredo Gulielmo Lebnitio. 7. V. D. Lond. 162 I in 12°. Of this Book Dr. Wallis bere gives bis Opinion.
8. Ln Statique ou la Scicnce de Forces Mouvantes, par le P. Ignace Ga- n.94.e.6042. fton Pardies, S. 7. à Paris 1673. in 12°. The firft Part being of Local Motion. Printed at Paris, 1670. was Englifhed and printed at London, the n. 65.p. 2oto. fame rear, in 12°.
9. Chriftiani Hugenii Zulichemii Horologium Ofcillatorikm. Parifis, 1673. n. 95.p. 6068. in Fol.

Io. A Difcourfe made before the Royal Society concerning the Ufe of Dupli- o. 109.p. 209. cate Proportion in fundry important P'articulars; togetber with a New Hypothefis of Elaftique or fpringy Bodies: By Sir William Petty.
i1. Traité de la Percufion ou Choq des Corps, E'c. par M. Marriotte, de no 134.p.859. P Academie Royal des Sciences. A Paris, 1673. in 12°.

I2. Pbilofopbice Naturalis Principia Matbematica. Autbore If. Newton n. 186.p. 291; Lond. in 4 to.
13. Traité de Mouvement des Eaux E' des autres Corps Fluids. Par feun. 18r.p. 1gro M. Mariotte, à Paris, 1686. in 8 vo.
14. Mecbanick Exercijes; or, The Doctrine of Handy Works. By Mr. n. i38.p. 967 ri Jof. Moxon. Lond. 1677 in 4 to.
15. The Speaking-Trumpet, as it bath been conirived, and Publifhed, by an y9. p. .o56. Sir Samuel Morelands togetber with its Ufes botb at Sea and Land. Lond. 1671.

Vou. I.
Uu u
CHAP.

C H A P. VI.

Hydroftaticks. Hydraulicks.

To whigh Water, I. I.
$\left.\begin{array}{l}\text { or other Fllidst } \\ \text { by }\end{array}\right]$ AKE a Viol with a very narrow Body, and, when it is almoft full, the Water is to be dropt into it, drop by drop, till it can hold

A new Areo-
meter ; by
M. Homberg.
ग. 262 . p. 533°.
Fis. 192.
no more. Then weigh it exactly, and deduct the weight of the empty Viol.
2. A is a Glafs Bottle like a little Malracium, of which the Neck BC is fo fmall that a drop of Water therein takes up the Space of 5 or 6 Lines; near that Neck is a little Capillar Tube D, about 6 Lines long, and Parallel to the Neck B C; the opening B is a little dilated, in the Fafhion of a Tunnel, for pouring more eafily the Liquors into the Bottle, and the little Tuble D is for giving a way to the Air contained in that Veffel to go out, when the Liquor is poured in at B; the Point C is a little Mark at the fame height as the end of the little Tube D.

When we fill the Veffel, we pour the Liquors into it, by the opening B, until it goes out by the little Tube D, and, if the Height of the Liquor is even to the Mark C, 'tis well; if it is lower, we muft fill more to that Point ; if it is higher, we muft ftrike foftly upon the opening B, till the Overplus of the Liquor be even to the Point C in the Neck of the Bottle. By that means we have always exactly the fame Volume of Liquor, and we can know how the fame Volume of the leveral Liquors weighs more one than another precifely. But we muft confider the variation of the Weather, when we compare the weight of a Liquor which we weigh in Summer time, with the weight of another which we have weighed in the Winter; for the fame Liquor, being more rarified in the hot time, and condenfed in the cold, the fame Volume of it will be more weighty in cold Weather than in warm.
II. 1. Many Years ago I made ufe of a little Glafs Infrument, confifting of a Bubble, and furnifhed with a long and Jender Stem to compare the Specifick Gravities of different Liquors by its more or lefs Sinking in them: And I have fince employed it to difcover the fpecifick Gravities of feveral Solids, appended, by its being more or lefs depreffed by them in the fame Liquor. For 'tis clearly deducible from the Grounds of Hydroftaticks, that any folid Body heavier than Water, lofes in the Water as much of the weight it had in Air, as Water of equal Bulk to the immerfed Solid would weigh in the Air; and confequently, fince Gold is by far the moft ponderous of Metals, a piece of Gold, and one of equal Weight of Copper, Brafs, or any other Metal, being propofed, the Gold muft be lefs in bulk, than the Copper or Brafs. And by this means, if both of them be weighed in the Water, the Gold mult
muft lofe in that Liquor lefs of its former Weight than the Brafs or Copper; becaufe the bafer Metal, as well as the Gold, grows lighter by the weight of a bulk of Water equal to it: and the bafer Metal being the more voluminous, the correfpondent Water muft weigh more than that which is correfpondent to the Gold. Whence I concluded, that the floating Infrument abovementioned would be made to fink deeper by an Ounce, for Inftance of Gold, hanging at it under Water, than by an Ounce of Brafs, or any other Metal, which, by reafon of its greater Bulk than Gold, lofing more of its weight by the Immerfion, muft needs retain lefs, and fo have lefs power to deprefs the Inftrument 'twas faftened to. Which Conclufion will alfo hold (tho' the Difparity be not fo great and confpicuous) in reference to other Metals, as Lead and Tin, that differ in pecijfick Gravity.

This Infrument may be of Glafs, Copper, Silver, or almoft any other folid Body, that is, or may be made, fit to float on the Water, with a Guinea, Ejc. banging at it, and of a Texture clofe enough to keep out the Water. It confifts of three Parts: The Ball or Globulous part; the Stem or Pipe; and that which bolds the Coin.

The Ball or Round part of BCDE (if of Metal) confifts of two thin concave Plates, exactly foldered together in the middle; and at the diffanteft parts from the Commiffure, there ought to be left two oppofite Holes, one in each Plate, for the two other parts of the Inftrument. This middle part, tho' for Brevity's fake we name it the Ball, fhould not be exactly round; but of any Shape that fhall be found fit to make the Infrument keep to its erect pofture fteadily in the Water. It muft contain as much Air as may ferve to keep the whole Infrument, when loaded, from finking beneath the top of the Stem.

The Stem A B is to be foldered on to the Ball at the uppermoft of the two mention'd Holes. It may be either hollow or folid: But it ought to be made very flender, that the different Depreffions of the Inftrument in the Water may be the more notable. And, for the fame reafon, it ought not to be too fhort, efpecially if it be to be applied to other Ufes than the Examining of Guineas.

At the undermoft of the two Holes in the Ball, is inferted and folder'd the undermoft part of the Infrument, which I call the Screves, or the Stirrup. The Screve F is a very fhort Piece of Brafs with a broad Slit in it, capable of receiving the Edge of the Guinea, which with one turn or two of a fmall and night lateral Screw may be kept faft in it, and readily, the Operation being ended, taken out again. The Stirrup G is made of a piece of Wire, that, a little beneath the bottom of the Ball, is bent round, fo as to ftand Horizontally, that the Guinea may be laid on it.

It would be convenient, that the undermoft Stem and the Screw be made by itfelf, that it may be at pleafure thruft upon the Stem, and taken off again. For, by this means, if the Ball of the Infrument be made large enough, you may have room to put on for Ballaft, as occafion fhall require, one, two, or three, flat and round pieces of Copper, Lead, $\xi^{3} c$. with each of them a Hole Uu u 2

Fig. 194°

Fig. 195.

Fig. 196.
in the middle fitted to the Size of the Stem, fo that they may be put on as near the lower part of the Bal' as you think fit, and then the Screco may be thruft on after them, not oniy to take Hold of the Coin or metalline Mixture to be examin'd, but to fupport the thin Plates.

To adjuft this Infrumsint for the ufe of examining Guineas, which are by far the moft ufual Gold Coins that pafs in England, you muft by the help of the Stirrup or Screre, hang, at the bottom of it, a piece of that Coin which you know to be genuine, and having carefully ftopt the Crifice of the Stem (if it be a Pipe) that no Water may get in at it, immerle the Infrument leifurely and perpendicularly into a Veffel full of clean Water, 'till it be depreft almoft to the top of the Stem, and then letting it alone; if, being fettled, it continue in the fame Station and Pofture, your work is done, if it emerge, you muft add a little weight to it, either by putting into the Stem, if it be Hollow, fome Duft Shot, Filings of Lead, or fome other minute and heavy Body, or elfe by putting on the fhort Stem abovementioned, that comes out beneath the Ball, a flat, round and perforated piece of Lead, of Weight fufficient to enable the Guinea to deprefs the Weight as low as 'tis defired: But, if it fink quite under Water, you muft lighten it either wich a File, or by fcraping or grating off a little of the Ballaft Plate abovementioned; or, if you have put any Weight into the Cavity to poize it, by taking out fome of that, till you have made it light enough: This being done, a Mark, H, is to be made juft at the place where the Surface of the Water touches the
Stem, and then taking out your Infruments, fubftitute, in the place of your Guinen, a little round Plate of Brafs, of the fame Weight, or a Grain or two heavier, in the Air; and, putting the Inftrument into the Water, as before, fuffer it to Settle, and make another Mark I, at the Interfection of the Stem and the Horizontal Surface of the Water.

There may (tho' 'tis like there very feldom will) happen a Cafe wherein, tho the Principle our Infrument is framed on, will hold good, yet the Practical Application may be Unfecure. For, if a Falffer of Money have the Skill, by Wafhing or otherwife, to take off much of the Quantity or Subftance of the Guinea, without altering or impairing either the Figzre or Stamp, the piece of Coin will not be able to deprefs our Inftrument to the ufual Mark, and may thereby make it to be juaged Counterfeit, when 'tis indeed but too Light. But it prefently Mhews, that the propofed Guineas, if it be not Counterfeit, is otherwife Abujed; and, tho' it does not clearly determine, whether that likewife proceed from the want of Specifick Gravity in the Metal, or from the Coins having been waßbed, or otherwife fraudulently leffened; yet it probably refolves the doubt, becaufe, if the want of Weight appear by the Infrument to be very great, as it ufually does, where the piece has been robbed of fome of its Subftance, 'tis a ftrong Prefumption, that ${ }^{3}$ tis rather Weßbed, \mathcal{E}° c. than Counterfeited. However, it will be fure to prompt him that ufes it, to employ the Balance, which will prefently affift him to refolve lis Doubt. For if the Sufpected Coin have in the Air its due Weight, 'twill argue that the great Lightnefs of it in the Water proceeds

(517)

ceeds from its not being of the requifite Finenefs; and, if it want much of its due Weight in the Air, 'tis very probable, that 'tis Waßhed, E'c. rather of another Metal than Gold.

Any other kind of Gold Coin, that is near about the Weight of a Guinea, may be examined by our Infrument after the Manner above deliver'd. If the Coin be heavier than a Guinea, as is a twenty Shilling piece of Broad Gold, the Ballaft, whether internal or external, of the Inftrument, muft be taken off, that fo heavy a Coin may not quite fink it. But, if it be lighter than a Guinea, one may add as much Gold (of the fame Alloy) beaten into thin Plates, as with the Coin propofed, will make up in the Air the Weight of a Guinea. For then this Aggregate, being examined, as if it were a Guinea, will difcover in the Water, whether the Coin be Right or Counterfeit.

This Inftrument may be alfo made to ferve to examine fome forts of white Money, lefs heavy than Half-Crowns. And, becaufe it may be ufeful to know in General, what Coins may, and what may not, be examined by this or that particular Infrument propofed, I fhall here add a general way that is not difficult for finding this out; namely, firft by Weighing the piece of Gold or Silver in the Air, and afterwards in the Water, and Subtracting the latter from the former, to obtain the Difference of the two Weights: And next by Weighing alfo in the Air and in the Water a piece of Copper or Brafs, if this be the likelieft to be employed in Counterfeiting the Coin, and obferving likewife the Difference between thofe Weights. For, if the leffer of thefe Differences being fubtracted from the greater, the Remains will fhew, how much the true piece of Coin will out-weigh the other in the Water, and confequently, if fo many Grains, as this refidue amounts to, being added to the Weight of the lighter Metal, do make a fufficiently manifett Depreffion of it below the Mark it would flay at without that Addition, one may probably conclude, that the Difference between a True and Counterfeit piece of Coin propofed, will be difcoverable by the Inftrument. But it may be Expedient, for thofe that have frequent Occafions to examine various forts of Coin, to have a feveral Infirument, adjuited for each of them, to fave themfelves fome Pains and Trouble.

With this Inftrument, Pure Tin may be certainly diftinguin'd from fuch as is adulterated. For, as Gold, being the Heavieft of Metals, cannot be allay'd by any other that will not deprefs our Inftrument lefs than Gold can do; fo Tin, being the lighteft of Metals, cannot be mixed with any other that will not fink it lower than unmiz'd Tin, (ftill fuppofing the Weight to be the fame in the Airs.)

After the fame manner may Peverter be compared and examin'd. For, having once obferv'd how much the Infrument is depreft by a piece of two, three, or four Drams, or even an Ounce Weight of Peroter, which is known to be good, and to contain fuch a proportion of Lead in reference to the Tin, if you load the Inftrument with an equally Heavy piece of any other Mafs of Peroser propounded, if the Inforument fink deeper, 'twill be a fign that the former Proportion of Lead may be very probably argued to exceed in the
mixture ; I fay probably, becaufe perhaps 'tis poffible to embare Perwter by mixing not only Lead, but other Mineral Subitances, whofe Specifick Grarity is not well known: But yet I fay very probably, becaufe the Addition of too much Lead is the moft Gainful way of Adulterating Perwter.

This Inflrument may alfo affift us, to make fuch an Eftimate as will not much deceive us of the Finenefs of Gold and its differing Allays with Silver, or fome other determinate Metal.

In order to this, the Inftrument may be firted to fink to the tip of the Pipe with fome determinate Weight of the Finefr Goli, as of 24 Carats, as they call that which is moft Pure and Fine. But 'twill be convenient, that this Metal, in the Air, be juft an Ounce, or half an Ounce, or fome fuch Determinate Weight, that is commodiounly Divifible into many aliquot Parts. Then you may make a Mixture, that contains a known Proportion of the Metal wherewith you allay the Gold; as if it hold 19 or 15 parts of Gold, and one of Silver; and, letting the Infrument fettle in the Water, mark the place where the Surface of the Water cuts the Stem or Pipe. And then putting in another Mixture, wherein the Silver has a new and greater Proportion to the Gold; as if the former be an 18 th or 14 th part of the latter, you may obferve, how much lefs than before this depreffes the Infrument, and fo you may proceed with as many Mixtures or Degrees of Allays as you think fit, or can be diftinguifh'd conveniently on the Stem; being always careful, that, whatever be the Proportion of the two Ingredients, the Weight of the Mafs in the Air be juft the fame with that of the Pure Gold, which we may, have lately fuppofed to be an Ounce, or half an Ounce.

By the fame Method may be examined the differing Allays of Pure Silver, upon the Admixture of fuch and fuch determinate Proportions of Copper, or any other Metal lighter in Specie than Silver; and by the fame way, with a flight Variation, 'twill not be difficult to eftimate, how much divers Coins, whether of Silver or Gold, are more or lefs embas'd by the known ignobler Metal that is mix'd in the piece propofed. Thefe Eftimates (which may be made without much Trouble) will come nearer the Truth, not only than the Eftimates wont to be made by the Touch-Stone, but perhaps too, than fome of thofe that divers make with Trouble, Inconvenience, and Charge.

It may be alfo employ'd to examine other Mixtures befides Allay'd Coins, and that if the Inftrument be adjufted to an Ounce, for inftance, of Pure Copper, it may help Men to make an Eftimate of the Allay of Tin, or the Quantity of it that is oftentimes added to Copper, to make different Sorts of Bell-Metal, and of thofe Metalline Specula, whether Plane or Concave, that are call'd Steel Glaffes, as alfo of Solders confifting of certain Proportions of Silver aud Brafs, or Copper; in all which, and divers others, the Difcovery of the Proportion of the Ingredients may, on fome Occafions, be ufeful to Tradefmen, as well as defirable to Virtuof. And tho' I have obferved, that by Mixture, Tin and Copper acquire a Specific Gravity fomewhat differing from what their Ingredients promife; yet, fince the Infru-
ment is to be fitted for fuch Eftimates, not by Calculation, but by Trials, the Eftimates may be made near enough to the Truth.
2. Long fince I took Notice, how light and Silver-like the Pewter was, Farther corfiwhich defcended to us; but, as foon as, to follow the Famion, we changed it, the Weight and the very Colour was altered; and is in every Change more and more embafed. And, if our Silver-Smitbs hold on their degrading Mixtures, I fhall queftion, whether our Silver-Plate may not fhortly come down to approach our Fore-Fathers Pewter: I mean, in the Country, where 'tis never or feldom tried.
III. A Glafs Bubble, of about the Bignefs of a Pullet's Egg, was purpofely The Weigh of blown at the Flame of a Lamp, with a fomewhat long Stem turn'd up at the End, that it might the more conveniently be broken off. This Bubble being very well heated to rarify the Air, and thereby drive out a good part of it, nimbly fealed at the End, and, by the help of the Figure of the Stem, was by a convenient Weight of Lead depreffed under Water, the Lead and Glafs being tied by a String to one Scale of a good Balance, in whofe other there was put fo much Weight, as fufficed to Counterpoife the Bubble, as it hung freely in the midft of the Water. Then with a long Iron Forceps I carefully broke off the Seal'd End of the Bubble under Water, fo as no Bubble of Air appear'd to emerge or efcape thro' the Water, but the Liquor by the'Weight of the Atmofphere fprung into the unreplenifh'd part of the GlafsBubble, and filled the whole Cavity about half full; and prefently, as I foretold, the Bubble fubfided, and made the Scale it was faftened to, preponderate fo much, that there needed 4 Drachms and 38 Grains to reduce the Balance to an Æquilibrium. Then, taking out the Bubble with the Water in't, we did, by the help of the Flame of a Candle, warily applied, drive out the Water (which otherwife is not eafily excluded at a very narrow Stem) into a Glafs counterpoifed before; and we found it, as we expected, to weigh about 4 Drachms and 30 Grains, befides fome little that remained in the Egg, and fome fmall matter that may have been rarify'd into Vapours, which added to the Piece of Glafs that was broken off under Water and loft there, might very well amount to 7 or 8 Grains. By which it appears not only, that Water hath fome Weight in Water, but then it weighs very near or altogether as much in Water, as the felf fame Portion of a Liquor would weigh in the Air. We repeated the Experiment with another feal'd Bubble as big as a great Hen-Egg, with like Succefs.
IV. Apr.7. 1680. Being off of Pantalara near Sicily in a Calm, I let The Prefine of down a Bottle 70 Fathom, ftop'd with an excellent good tender Cork, well Water in grat fitted, and the Cork came up in the Bottle $\frac{3}{4}$ full of Salt Water. The Bottle Perfon of Howas again fitted with an excellent good Cork, but of a Woodinefs or nour. n. P9. p. 504. Hardnefs as fome Corks are; with the which, being let down in like manner, the Cork continued in its Place; but as it were bruifed, and the Bottle, as before, about $\frac{3}{4}$ full of Salt Water: Whereupon I took a good Ox Bladder,

(520)

and bound it four fold over the Mouth of the Bottle without any Cork at all, only I put a piece of Leather to keep the Glafs from cutting the Bladder; and fo ordered, it was let down as before, but taken up without any Water, or the leaft Moifture in it.

May 18. 1680. Being in aftark Calm fome Leagues diftant from the Coaft of South Spain, off the great Hills of Granada, we took a Bottle and clapt a Leather on the mouth of it, tying over that a fingle part of the Bladder, the which we let down 75 Fatbom, but it came up again entire: We then made a Hole in the Leather, about the bignefs of a large Pca, and let the fame down again 75 Fatbom, but it came up perforated in the vacant place where the Leather had the Hole in it, and almoft full of Water: we then bound over another part of the Bladder fingle, and let it down but 30 Fatbom, but it came up whole and entire; whereupon immediately we let it down 50 Fathom, but it came up broke and full of Water. Then, we again fitted the Bottle with the faid perforated piece of Leather and a double Bladder, and let it down 50° Fathom; but it again came up entire. So again, immediately we let it down 75 Fathom, but then it came up bioken and full of Water.

Fune 24. 1680. Being in $39 \frac{1}{4}$ Degrees of Latitude, and by the Ship's Account 150 Leagues Weftward of Portugal, I caufed a Florence Flask to be well ftopped with a Bladder over the Mouth of it, and lower'd it down 30 Fatbom, but it was taken up broken. Whereupon, imagining that the roughnefs of the Lead's halling fo tender a Body fo violently thro' the Water might be the breaking thereof, I caufed another Flafk in like manner to be fitted, and clofe by it I tied likewife another Flagk, fo as to be borne with the Mouth downwards, as were the other, but which was not ftopp'd ; and thefe I caufed to be taken up when they had been but 10 Fatbom under Water, and found them both entire; but the open Flafk almoft full of Water; the which being emptied, were both let down again and taken up at 20 Fatbom, when the open Flask was entire, tho' full of Water, but the other broken to pieces.
By Dr. Oliver.
Fun. 8. 1693. In the Bay of Bijcay, when we had 100 Fathom of Water, we took a Quart-Glafs-Bottle ftopt with a large Cork: And, faftening it to our Plumbing-Rope with the Lead at the end, we funk it to the Bottom of the Sea, which as foon as we perceived, we drew it up again, and found the Cork quite preffed thro' the Neck of the Bottle into its Cavity, and the Bottle full of Salt Sea-Water. We repeated our Experiment with another Bottle and Cork in the fame manner as before; but, the Cork being not found, the SeaWater foaked thro' it, and the Bottle was half full of Water; fo the Cork remained in the Mouth of the Bottle, not preffed down at all. We repeated our Experiment a third time in 90 Fatbom of Water, with a very found Cork, and much larger than the Mouth of the Bottle. We beat it in with a Hammer as far as it would go, leaving about an Inch of the Cork above the Mouth of the Bottle. The Cork at this Trial was preffed down only into the Neck, and became level with the Mouth of the Bottle: But I really believe, had
we had 10 or 20 Fatboms of Water more, it would have fucceeded as at our firt Trial.
V. I. The following Bodies were poured gently into a Veffel of well The Wirigh of feafoned Oak, whofe Concave was an exact Cubick Foot. Thofe in the divers Bodits $\begin{aligned} & \text { dyd } b y \text { the } D \text {. }\end{aligned}$ Twelve firft Experiments were weighed in Scales turning with two Ounces, rectim of the but the laft Seven were weighed in Scales turning with one Ounce. The ${ }_{\text {at }}$ oxford. Pounds and Ounces here mentioned are Averdupois.

(523)

The laft Experiment was tried with another quantity of Quick-Silver, which had been ufed in Water in the preceding Experiment: However, I rather truft the laft, for that I found a fmall miftake (tho' here in the Calculation allow'd for) in the Weight of the Glafs containing the Quick-Silver, in the Trial before.

The Solids here mentioned, were examined Hydroftatically by weighing them in Air and Water; but the Fluids, by weighing an equal Portion of each in a Glafs holding about a Quart. The Numbers fhew the Proportion of Gravity of equal Portions of thefe Bodies: But if of thefe Bodies we take Portions equally heavy, their Magnitudes will be reciprocally proportional to their correfpondent Numbers: e. g. a Cubic Foot of Water is to a Cubic Foot of Alabafer in Gravity as 1000 to 1872 ; but a Pound Weight of Water, is to a pound Weight of Alabafter in Magnitude, as, 1872 to 1000 . So that, knowing by the former Table, the Weight of a Cubic Foot of Water, and by this Proportion in Gravity betwixt Water and Alabafter, we may by the Rule of Three find the Weight of a Cubic Foot of Alabafter, and fo of any other of thefe Bodies; or we may know their Magnitude by knowing their Gravity. So that, an irregular piece or quantity of thefe Bodies being offered, 'tis but weigbing them, and we may know their juft Magmitude without farther trouble.

VI. M. Homberg has given us the following Table of the Various Weigbts The Different of fome more ufual Liquors in the Coldeft Time, and in the Hottef.

The Aerometer full of Mercury.
Oil of Tartar.
Spirit of Urine. Oil of Vitriol.
Spirit of Nitre.
Spirit of Salt.
Aqua Fortis.
Vinegar.
Spirit of Wine.
River Water.
Difitlled Water.
This Empty Aerometer Weighs

Weight of fevea Tal Liguors in Winter and Summer ; by
M. Homberg,
ת. 262. p. 5300

In Summer.		
3	3	$g r$.
II	0	6
\mathbf{I}	3	8
\mathbf{I}	0	32
\mathbf{I}	3	58
\mathbf{I}	1	40
\mathbf{I}	0	39
\mathbf{I}	1	38
$\mathbf{0}$	7	55
0	6	47
$\mathbf{0}$	7	53
$\mathbf{0}$	7	50

VII. 1. Having poured a ftrongly Alcalizat Menfroum (I ufed that made Experiments aof Fix'd Nitre, diffolved by the moifture of a Cellar) into a Pipe of Glafs, bent the superfealed at one end, and not full a quarter of an Inch in Bore; that the Ca- Fluids, ffecti-
 confpicuous: We gently poured on it fome highly Dephlegm'd Spirit of ohme thamers. Wine, which we knew would not mix with it, but fwim above it, and pre- and their Reffecfently, as we had guefs'd, we found the Figure of the Surface of the lower by Mr. Boyle.
 as it were, common to the two Contiguous Liquors, appearing flat or Horizontal. And fuch a level Superficies we had, by putting thefe two Liquors together in a much wider Glafs.
2. We found alfo, that by Employing Oyl of Turpentine, inftead of the Spirit of Wine, the Liquor did almoft totally lofe its Cavity.

> 3. But
3. But, if, inftead of deliquated Tartar, we putt common Water into the Pipe, we found this Liquor to retain its Concave Surface, tho' we put to it fome Oil of Turpentine, and left it to reft upon the Water a good while.
4. Having provided fome pure Oil of the Gum of Guciacum, and poured a little of it into a flender Pipz, we found the upper Superficies of it to be Concave almoft, if not altogether, like that which Water would have had in the fame Pipe. But when I put a little Water upon this Oil, it prefently changed the Figure of its Surface, which became vifibly, tho' not very much, Protuberant or Convex.
5. Having put fome Oil of Tartar into the nender Pipe, and put fome Drops of the Oit of Guaiacum to it, we found, that this Liquor did not manifeftly alter the Concave Figure of the Surface of the Liquor Alcali, as the Oil of Turpentine had done: And having for Curiofity's fake warily poured a little Water upon the Oil of Guciacum, I found, as I had reafon to fufpect, that the upper Superficies of it changed prefently from a Concave Figure to a Convex; fo that this Oil in the midft of the other two Liquors appeared like a little red Cylinder; which, inftead of having Circular Bafes, was protuberant at both ends; but more at that which touched the Oil of Tartar.
6. I put fome Effential Oil, (as Cbymits call it) of Cloves into a new nender Pipe, and, having obferved it to be fomewhat Concave at the Top, where it was Contiguous to the Air, we caufed a little common Water (perhaps a quarter of a Spoonful or lefs) to be put to it, and found, as we expected, the Surface of this Oil alfo to be tumid. And in regard this Liquor, as well as the forementioned Oil of Guaiacum, tho' it were fo heavy as to fink into Water, would not do fo in Deliquated Salt of Tartar, we did, into another nender Pipe, put firft fome of this laft named Liquor, then fome of the Aromatic Oil, and laftly, a little common Water; by which means we found, that the little Cylinder of Oil, did, like that of the Oil of Guaiacum, appear Convex at both ends, but was unlike it in one Circ umftance, that the Oil of Cloves appear'd more Convex at the upper end where 'twas Contiguous to the Water, than at the lower, that leaned upon the Surface of the Oil of Tartar.
7. Having taken a little fender Glafs, that was much longer, but of the like Bore with the former, we put into it a fmall quantity of Quick-Silver; and having taken notice how the upper Superficies fwelled in the middle above the Level of the Parts where it touched the Glafs, we poured fome Water upon it, and found a manifeft and confiderable Depreffion of the Surface, tho' the Protuberance were not quite fuppreffed.
8. This Pbonomenon, having been for greater fecurity feveral times repeated, fometimes it feem'd, that when the Aqueous Cylinder was much longer, the Depreffion of the Mercurial Surface was fomewhat greater. But this did not fo conftantly happen; but we often obferved, that tho' a very little Water fufficed by its Contact to make, in the Judgment of the Eye, a manifeft Abatement of the Protuberance of the Quik-Silver; yet it had not the fame effect on that ponderous Fluid, that it had, when being increafed almoft as high as the length of the Pipe would permit, a greater Weight of it was
incumbent on the Mercury, for then I manifeftly perceived, and fhewed to others, that the Surface of the 2uick-Silver being depreffed almoft to a Level in thofe Parts of it that were near the infide of the Glafs, there was about the Middle of the Surface an Elevation of Mercurial Matter, that appeared to be rather more than a half Globe, and was, to the Height of its full Semidiameter, raifed above the reft of the Mercurial Surface, and in that State it continued, as long as I thought fit to let it do fo. And, left this Trial fhould impofe upon me, I caufed it to be more than once repeated; and, the better to confirm it, I afterwards caufed the incumbent Water to be litthe by little fuck'd up, and found as I expected, that, when the incumbent Water began to be too much fhorten'd, the little Teat or Segment of a Sphere, lately mentioned, began to be fomewhat flatned, and fubfided more and more as the Water was further taken off.
9. Having conveyed into one of our Pneumatical Receivers, a Couple of fuch flender Pipes as have been already defcribed, one of them furnifh'd with Common Water, and the other with Quick-Silver, we caufed the Common Air to be diligently pump'd out, without obferving any fenfible Change in the Concave Figure of the Water: but as for the Quick-Silver, I knew not what to conclude about $i t$. For, having repeated the Trial twice or thrice, the Murcury fometimes feem'd manifeftly to fwell, to be more protuberant upon the Exhauftion of the Receiver, than when it was put in, efpecially when its Figure was attentively viewed, and the external Air, that was pump'd out but flowly, was fuffer'd to re-enter with all convenient Celerity. But that which yet kept me doubtful was, that I obferved, That, upon the diligent withdrawing of the Air's Preffure upon the Quick-Silver, there difclofed themfelves fome little Bubbles, which, I fear'd, we had not been able to free it altogether from, and which might be fufpected to have fome Intereft in the Pbanomenon. We alfo conveyed into our Receiver, a clear Cbymical Oil that was heavier than Water, and, whilft it was contiguous to it, had not a Concave but a Convex Surface, and, having placed the Pipe furnifh'd with both Liquors in the Pneumatical Receiver, we pump'd out the Air, without finding that the Oil fenfibly altered its protuberant Surface, as neither did the Water lofe the concave Figure of its Surface.
10. I took Fix'd Nitre, (or which is Analogous to it, Salt of Tartar) refolved per Deliquium into a Tranfparent Liquor, and having filled a clear Viol half full with this, I poured on it a convenient Quantity of Vinous Spirit exactly Reciified, that there might be no Phlegm to occafion an Union betwixt the two Liquors, which ought, as ours did, to retain Diftinct Surfaces, and fpeedily regain them, though the Glafs were weil fhaken. Then, having found by a Trial formerly mentioned, that Common Oil of Turpentine, if employ'd in a competent Quantity, will not totally (and much lefs will readily) diffolve in Spirit of Wine, and alfo having obferved (what may feem fomewhat Itrange) that if this Spirit of Wine be exquifitely dephlegm'd, the Oil, tho' a Cbymical One, will not fwim on it, but ink in it ; I warily let fall fome drops of Oil into the Spirit, and had the pleafure to fee, as I expected, that they fell towards the bottom of the Glafs, till their Defcent was ftop'd by
the Horizontal (for it was not Concave) Surface of the Alcalizat Liquor of fix'd Nittre. And, becaufe my defign was chiefly to obferve the fuperficial Figure of a Fluid encompaffed by other Fluids without touching any folid Body, I fhall here take notice of the chief P bsenomena that were produced of that kind, without ftaying to enquire into the Caufes or the Confequences of them.
I. If the Oily Drops were but fmall, they feem'd to the Eye exactly enough Spherical. For, the Oil differing but very little in the Specifick Gravity from the Spirit of Wine, the Drops did but juft touch the Surface of the fubjacent Alcali; and, the fame Drops being but fimall, their own Weight was not great enough vifibly to deprefs them, and hinder that Roundneis which the Areflure of the Ambient Spirit, or their uwn Vifcolity, endeavoured to give them.
2. If an Aggregate of Drops were confiderably bigger than thofe newly mentioned, as if it had about a third part of an Inch in Diameter, it would then manifertly lean upon the Alcalizat Liquor as upon a Floor, and appear fomewhat Ellipticol, (for fome little part of the bottom was a Plane;) the Weight of the upper parts deprefling the Drops, and making the horizontal Diameter fomewhat longer than the Tranfverfe.
3. If a yet greater Portion of Oil were let fall upon the heavy Liquor, it would for a pretty while appear in the Form of a fomewhat imperfect HemiSphere, or fome other large Section of a Spbere, the lower'part being cut off; (as if a Globe were divided by a Plane) by the horizontal Surface of the deliquated Salt.
4. But if the Quantity of Oil were not too great, 'twas pretty to obferve, that, tho' at firlt putting in, it did perhaps fpread itfelf over the fubjacent Liquor, and lie as it were flat upon it; yet, by little and little, (for 'twas but flowly) it would by the Action of the ambient, concurring with it's own Te nacity, be raifed above the Surface of the Fluid Nitre, and be reduced to the Figure, either of half a Globe, or of a greater Segment of a Globe, or even of an Imperfect Ellipfis, according to the Bulk or Weight of the Oil.
5. Tho' thefe Globules, or Portions of Oil, did oftentimes readily mingle, when they touched one another, yet divers times alfo we obferved, that, having warily approach'd them, we were able to make them touch without mingling, infomuch that we have with pleafure made them fo far bear againft one another's Surfaces, as manifeftly to prefs them inwards, tho' being parted they would prefently refume their former Figure. But, in cafe any of thefe Oily Portions came by a more preffing Contact to be united, they would then alter the Figures they had whilf feparate, and take another fuitable to the Bulk of the Aggregate.
9. When a large Portion of Oil refted upon the Saline Liquors, if then the ambient Spirit was moderately and warily agitated, 'twas not unpleafant to obferve the various|Figurations, which the Convex and Protuberant part of the mutilated Globe would be put into by the Shakes, without any vifible Solution of Continuity, or confiderable Motion of the whole Body, which would very quickly recover its former Figure. Tho', if the Agitation were too ftrong,
ftrong, fome Portions would be quite broken off, and prefently turned into litcle Globes.
11. I tried to produce another Phonomenon, that would not have been unpleafant, by putting together in a fomewhat large Veffel, with other Liquors, two Oils, (whereof one, if I miftake not, was from Turpentine) which firft by reafon of the Oleaginous Nature wherein they agreed, might exactly mingle and make a compounded Liquor; and then, by reafon of their being one heavier, and the other lighter in Specie than Water, might by this Liquor be again feparated, and include betwixt them the Liquor that had divided them. But I found that the Oils being once united would not be eafily parted, but according to the Prevalency of the lighter or heavier Ingredient, in the mixture, the compounded Oil, would almoft totally either emerge to the top of the Water, or lie beneath at the bottom of it; I fay, almoft totally, becaufe fome Part of the Oil, which was not perhaps all uniformly mix'd, did not keep in a Body with the reft ; but either was feparated from the Mafs in the form of Globules, or elfe fticking to the Side of the Glafs, had the other Part of its Superficies, which was contiguous to the Water, very Varioufly Figured, according as the bulk and degree of Gravity of the adhereing Oil, and other Circumftances happen'd to determine.

Thefe are fome of the Phonomena I obferved in Oil of Turpentine, when stwas invironed only with Fluids; but, if it were permitted to be contiguous to the Infide of the Glafs, and fo to faften part of its Surface to a Solid, the greater part of the Surface, which remained expofed to one or both of the contiguous Liquors, would partly by their Action, and partly by the Gravity of the Oil itfelf, be put into Figures fo Various and fometimes fo Extravagent, that 'twas much more pleafant to behold them, than it would be eafy to defcribe them.
12. Confining Fluids may have diftinct Surfaces, without having, at leaft in many Pofitions, Refradfions differing enough, or Reflections ftrong enough, to make the Plane that difterminates them, obvious to the Eye. Thus, when the Oil of Tartar, or Nitrous Alcali, that I employed, happen'd to be very clear and colourlefs, I have more than once made highly Recififed Spirit of Wine float upon it fo, that in moft Pofitions the Vial feem'd to have in it but one uniform Liquor; the Plane that divided the two Fluids being unapt to be difcerned, but in a Pofition, wherein the Rays of Light paffing thence to the Eye, fell very obliquely on it; and indeed, when there was no little Duft or other Feculency, fwimming upon the Surface of the Oil of Tartar, I had fometimes much ado to convince ordinary Spectators, that the Vial, in two diftinct Regions of it, contained two Unjociable Liquors.
13. We took a Deliquated Alcali, made of Nitre and Tartar, and deeply tinged with Cocbineal; and, that the Liquors might not only be heterogeneous, but as differing in Gravity and Denfity, as we could make them, we poured on it a peculiar kind of Oil lighter than Spirit of Wine, and holding the Plane where the two Liquors were contiguous in a convenient Pofition, in refpect of the Light and the Eye, I obferved it to make a ftrangely vivid

Reflection of the incident Beams of Light: So that this Phyfical Surface which was flat, look'd almolt, for 'twas not fo Specular, like that of Quickfilver; and, when I kept it till Night, and confidered it by the Light of a Candle, the bright Figure of the Flame was ftrongly refected almof as from a clofe fpecular Body; which tempted me to fufpect, that there might be fomething elfe than the bare Smoothnefs of the Surface of the Alcalizat Liquor to produce fo brifk a Reflection; and the rather, becaufe I did not obferve, that the Remains of the fame Tinged Alcali, which I kept in another Glafs, nor a Portion of the fame Oil, which I had alfo by me in a feparate Vial, did either of them afford fo vivid a Reflection from its Surface; tho' I did the lefs wonder at this, becaufe of the great Difpofition to reflecf Ligbt, which I had formerly the Curiofity to obferve in the foremention'd Oil, when I joined it with other Liquors. I hall add, that looking on this Liquor, as a Body which tho' it have all the neceffary Qualities of an Oil, does in regard of its Origin, and fome Properties I have found in it, differ from common Cbymical Oils; I was invited the more to obferve its Pbrenomena in reference to Reflection; and I found among other Things (not pertinent to this Place,) Firft that the confining Plane often mentioned between the tinged Alcali, and this Liquor, did not appear Red itfelf, nor communicate that Colour to the Image of the Flame of a Candle reflected from it. Secondly, That when I warily fhook the Vial, which contained the two Liquors, the uppermoft would be reduced into a feeming Froth, confifting of a great number of imperfectly Globular Bodies, which after a while would make a kind of a rude Phyfical Plane; which, tho' neither very Horizontal, nor fenfibly Smooth, would at its upper Superficies, fend back the incident Light with more Brifknefs than one would expect; and, when the feeming Froth confifted of fmaller Particles, thefe, when they were of a certain Size, and conveniently placed, in reference to the Flame of a Candle and the Eye, would (as more than one Trial informed me) reflect the incident Light fo many ways, and fo vifibly, that they feemed, for Multitude and Splendor, like little fparkling Corpufcles of polifhed Silver; or almoft like thofe Gliftering ones, that appear when a clean Plate of Copper is firft immerfed into a much allayed Solution of good Silver, made in Aqua Fortis. Thirdly, That tho' pure Spirit of Wine be to thin a Liquor, and our Oil is neverthelefs fo light as to fwim upon it, yet 1 found the confining Surface very ftrongly Reflexive.

I have alfo found, that fome other Effential Oils (as Cbymifts call thofe that are diftilled with Water in Limbecks) and particularly an Unfophifticated Oil of Lemons, did with our tinged Alcali afford moft of the fame Phenomena; but not fo brifk a Reflection: I fay moft, chiefly becaufe with Spirit of Wine, their Subtile Oils, as I formerly noted, will readily be confounded, tho' our Anomalous Oil be unfociable with it.
14. In Cold Weather we took Effential Oil of Annifeeds, whofe Property it is to Coagulate in fuch Weather, and, having in a gentle Warmth brought it to be fluid, we poured it into a fender Vial more than half filled with Com-
mon Water; that had been alfo a little warmed, that the Oil might not be too haftily reduced to its former State. This Oil being lighter than fo much Water, and being poured on in a convenient Quantity, had its upper Surface fomewhat Concave, as that of the Water was ; but the lower Surface, furrounded by the Water was very Convex, appearing almoft (for it was not perfectly) of the Figure of a great Portion of a Spbere. This being done, the Vial was ftopt, and fuffered to reft for fome time in a cold Piace, by which means the Weter continuing Fluid as before, the Oil of Annijecds was, as I expected, found coagulated, in a Form approaching to that it had whilft in a Fluid State; I fay approaching, becaufe it was not eafy to difcern the exact Figure in the Vial I was fain to make ufe of: And I fufpected that the Oil grown confiftent was become lefs Convex than before. But 'twas worth obferving, how great a Difference there was between the dull Reffection it made when it was congulated, and the fine Reflegtion it had made whilft 'twas a Liquor. The latter of which Reflections brought into my mind, how vivid the reflective Power of fome Fluids is in comparifon of that of the Generality of Solid Bodies.
15. Having obferved, That Quick-Silver, and rectified Oleum Petra, are, the Former of them the Heavieft, and the Latter the Lighteft, of all the Vifible Fluids that are yet known to me; I put fome (Diftill'd) Quick-Silver into a fmall Vial, and held it in fuch a polture, that the incident Light was ftrongJy remitted to my Eye: 1 then flowly put to it fome Petroloum, that being well rectified was very clear, and obferved, that, as this Liquor covered the Quick-Silver, there was at the imaginary Plane, where they both confined, a brifker Reflection than the Quick-Silver alone had given before. On this occafion it will not be amifs to take notice, that either the Surface of the Air itfelf, as thin and yielding a Fluid as it is, or the Surface of a Solid contiguous to included Air, or fome interpofed Subtile Matter, may refleet the incident Beams of Light more ftrongly than moft Men would expect. To this purpofe, I remember, that a curious Perfon having one Day brought me a couple of Rarities, which he told me were two pieces of a Solid, but tranfparent Body, that he had cafually found ; in one of which there was a Pearl, Large, Round, and Orient, and in the other a lefs perfect One: One of them was opened, and that which had appeared a Pearl was found to be but a Cavity, that contained no groffer Subftance than Air. And I have by me a well chap'd piece of Glafs of a good Thicknefs, with an Aereal Bubble in the middle, which by fome Qualities, particularly its Pearl-like Shape and vivid Reflection, does not ill refemble a fair, tho' not orient Pearl. But in fuchlike Obfervations, the Pofition of the Eye, and that wherein the Body receives the Beams of Light, may be very confiderable. For I have by me a Small Stone (with which I have puzzled a fkillful Jeweller to determine what kind of Gemz it was) that being laid flat upon ones Hand, or a piece of Paper, and look'd on directly downwards, looks almoft like a piece of common Glafs, and is tranfparent: But, if the Eye be fo placed, that the incident Beams of Light, by whofe Reflection it's feen, fall with a conveni-
ent Degree of Obliquity upon the Stone, it makes an exceeding pretty fhew, fometimes appearing like a fine Opal, and fometimes not very unlike an orient Pearl.
16. We made a competent Quantity of a Refinous or Gummous subfance, that looked like high-coloured Amber, but was eafy to melt. This we put into a deep round Glafs with a wide Mouth, and held it by the Fire-fide in a moderate Warmth, till it was brought into a fluid State ; then we tranfferr'd it into one of our Pncumatical Receivers, where we prefumed, that this temporary Liquor, would, as well as Liquors that are conftantly fuch, difclofe Aereal Bubbles, when the Preflure of the Air was withdrawn from it; and accordingly having caufed the Air to be pumped out by degrees, we found, that ftore of Bubbles appeared at the Top of the Liquor, and made there a copious Froth, many of them being by reafon of the Vifcofity of the. Fluid, very large, and divers of them, becaufe of the Nature and Texture of it, and the thinnefs of the Films, being adorned with the Colours of the Rainbow, whofe Vividnefs made them pleafant to behold, and fuggefted to us fome optical Confiderations. But, notwithftanding this Froth, I caufed the Pumping to be continued, that thofe Bubbles that had moft of common Air in them, and which therefore are wont to rife firf, might get to the Top, and the fublequent Bubbles might meet with more Refiftance from the Liquar ftill tending to grow cold, and fo might be the more expanded, and yet kept from emerging by the Concretion of the refinous Subftance; and anfwerable to this we found, That, when this Subftance had refumed its confiftent Form, there were intercepted, between the upper and the lower Surfaces of it, fome Bubbles that were not fmall, which yet had a confiderable Reflection, notwithftanding the fmall Quantity of the groffer Particles of the Air, that may be fuppofed to be contained in Bubbles fo very much expanded.
airl17. Tis taken for granted, That the falling Drops of Rain are Spberical, yet their Defcent is fo fwift, that I fear 'tis rather Juppofed than obferved that their Figure is Spberical; which will be the more queftionable, if it be true, which is vulgarly thought, That Hail is but Rain Frozen in its Paffage thro' the Air. For'tis evident, That the Grains of Hail are frequently of other Figures than truly Orbicular. Rut the Surface of Water may have differing Figures, according as 'ris totally encompafs'd with heterogeneous Fluids, or as 'tis only in fome places contiguous to one or more of them. In the former cafe we found it not fo eafy to make an Obfervation, becaufe, we know not of any two Liquors (fetting Mercury afide) that will not mingle either with one another, or with Water. We therefore cautiouny convey'd into fome chymical $\mathrm{O}_{\mathrm{l}} \mathrm{l}$ of Cloves fome Portions of common Water of differing Bigneffes, taking care, as far as we could, that they might not touch one another; by which means the Oil being tranfparent, and yet fomewhat coloured, 'twas eafy to obferve, that the fmaller Portions of Water were fo near totally invironed with the Oil, that they were reduced into almoft perfect Globes; Thole Portions, that were fomewhat bigger (as about twice the Bignefs of a

Pea,) would be of a Figure fomewhat approaching to that of an Ellipfis (for 'twas not the fame) and thofe Portions that were yet fomewhat larger, tho' they feemed to be funk almoft totally beneath the Oil; yet, they held to it by a finall Portion of themfelves, whofe Surface was eafily enough diftinguifhable from that of the Oil. Thefe larger Portions of immerfed Water being almoft wholly inviron'd with the other Liquor, were by it reduced into a round Figure, which was ordinarily fomewhat Elliptical, but more depreffed in the Middle than that Figure requires.

IS. Having into a flender Pipe, of that fort that has been defrribed before, put a little Oil of Cloves, and upon this fome Oil of Turpentine, that fo the Water might both above and beneath be touched by Heterogeneous Li quors, I obferved not the Oil of Cloves to be very manifeftly Tumid at the top, nor the lower Surface of the Oil of Turpentine (for the upper was Concave) to be very Convex: For fomewhat Convex it was downwards. And, from this 'twill be eafy to conclude the Figure of the Cylindrical Portion of Water intercepted between thefe two Oils.
19. I took Oil of Annifeeds, thaw'd by a gentle Warmth, and Cominon Water, and, having put them together in a convenient fhap'd Glafs, they were fuffered to ftand in a Cold Place, till the Oil was coagulated; which done, it was parted from the Water, and by the Roughnefs of its Superficies manifefted, as I expected, that, when its Parts were no longer agitated and kept eafily Difplaceable, by the fubtile permeating Matter, or whatever other Agent or caufe it were to which it owed its Fluidity, when the contiguous Water grew unable to inflect, or otherwife place them after the manner requifite to conftitute a mmootb Surface. And, what happen'd to that part of the Oil's Surface that was touched by the Water, happen'd alfo to that which was contiguous to the Air, fave that the ASperity of the laft named Surface was differing from the other, which, whether it were an accidental or conftant $P b$ enomenon, farther Trial muft determine. But I have often obferved, that the upper Surface of Oil of Annijeeds, when this Liquor comes to be Coagulated by the cold Air, was far enough from being Smooth, being varioully afperated by many flaky Particles, fome of which lay with their broad, and others with their edged Parts upwards.
20. An Inequality and Ruggednefs of Superficies I have alfo obferved in Water, when, having covered it with cbymical Oil of Funiper, and expofed it in very cold Weather, tho' the Oil continued Fluid, yet the Water being Frozen had no longer a fmootb Superfices, as whilf in its Liquid State twas contiguous to the Oil. And the like Inequality, and rather a greater, we obferved in the Surface of Water Frozen, which had chymical Oil of Turpentine fwimming over it, yet a no lefs, if not a much greater, Roughnes may be oftentimes obferved in the Surfaces of divers Liquors that abound with Water, when, thofe Liquors being Frozen, their Surfaces have an immediate Contact with the Air. I fhall here add, that, having purpofely caufed a Strong and Blood red Decoction of the Soot of Wood to be expofed in a large Glats in a very cold Night, I was more pleafed than furprized, to find
in the Morning a Cake of Ice, that was curioufly Figured, being full of large Hakes fhap'd almoft like the broad Blades of Daggers, but neatly fringed at the Edges. But that which I chiefly mention thefe Figures for, is, that they feem to be as it were Imboft, being both to the Eye and the Touch raifcd above the horizontal Plane or Level of the other Ice.
21. I have fometimes obferved the like Pbenomenon in one and the fame Liquor, and particularly not long fince in frofty Weather, on a Vial where I had long kept Oil of Vitriol, I perceived that the Cold had reduced far the greateft part of the Menftruum into a confiftent Mafs, whofe upper Surface was very rugged and oddly figur'd, tho' it lay covered all over with a pretty deal of high-coloured Liquor, that was not frozen or coagulated, nor feem'd to be difpofed to be fo, at leaft, in that degree of Cold.
22. This may be alfo obferv'd in the beft fort of what the Clbymifts call Regulus Martis Siellatus, where the Figure of a Star, or a Figure fomewhat like that of the Decoction of the Soot lately mentioned, will frequently appear imbof upon the upper Superficies of the Regulus|; and fuch a raifed Figure I have feen on a Mafs of Regulus made of Antimony without Mars. But if to thofe two Bodies Copper be alfo fkilfully added, the Superficies will be oftentimes adorned with new Figures according to the Circumftances; tho' the moft ufual I took notice of was that of a Net, that feemed to cover the Surface of the compounded Regulus. But this is not fo conftant, but that I have by me a Mafs of the Conical Figure confifting of two very contiguous, but eafily feparable Parts, whereof the lowernoft, which abounds more in Metal, hath its upper Surface covered with round Protuberances, in fhape and bignefs not unlike to fmall Peafe cut in two: and thefe are fo really imboft and elevated above the reft of the Superficies, that the other part of the Cone which is of a more fcorious Nature, as in its lower Surface, which exactly fits the upper of the Regulus, Cavities, for number, Shape and Bignefs, anfwering to the Protuberances lately mentioned; which argues that the Regulus cooled firt with that Inequality of Surface we have defcribed, and that the Lighter and more Recrementitious Subftance, continuing longer Fluid, had thereby opportunity to accommodate itfelf to the Superficial Figure of the Regulus, on which it firft leaned, and afterwards coagulated.

Why Bodies Diffrlyed Swim in Menflysa Speci fieally Ligbber than themfetoes; by Mr. Will. molyneuz. 5. 181. p. 88. May An. 3086 .

VIII. 1. My Brother, Mr. Tho. Mohneux (in the Nouvelles de la Republique des Lettres) has given this Reafon for the Pbonomenon, viz. That the Internal Motion of the Parts of the Liquor does keep up the Particles of the diffolved Solid, for they, being fo very minute, are moveable by the leaft Force imaginable, and the Action of the Particles of the Menftruum is fufficient todrive the Atomes of the Difolved Solid Body from place to place; and confequently, notwithftanding their Gravity, they do not Sink in the Liquor Ligbter than themfelves.

But I conceive another Account may be given of this Appearance, and that the Prime Law of Hydrofaticks is a little deficient. 'Tis true indeed, if we sonfider only the Spesifick Gravity of a Liquor, and the Specifick Gravity of a

(535)

Solid Particle Floating therein, the forementioned Rule is exact ; but in Sinking there is requifite a Separation of the Parts of the Liquor by the Sinking Body; and there being a Natural Inclination in the Parts of all Liquors to Union, ariling from an Agreement or Congruity of their Parts, there is a Refiftance therein to any thing that feparates this Conjunction : Now, unlefs a Body have Weight enough to overcome this Congruity or Union of Parts, fuch a Body will Hoat in a Liquor Specifically Ligbter than itfelf. But that a Heavy Body, as Mercury or Iron, may have its Parts reduced to that Minutnels that their Grovity or Tendency downwards, is not ftrong enough to Separate the Cobefion or Union of Parts of a Liquor, will be manifeft, if we confider, that the Refiftance made by the Medium to a Falling Body, is according to the Superficies of the Body : But, as the Body decreales in Bulk, its Superficies does not proportionably Decreafe : thus a Sphere of an Inch Diameter has not eight times lefs Superficies than a Sphere of two Inches Diameter, tho' it have eigbt times lefs bulk, and confequently paffing thro' a Medium, as fuppofe Air or Water, the Sphere of an Inch Diameter, is proportionably to its Bulk, more Reffied, than a Sphere of two Inches Diameter in proportion to its Bulk ; and hence it will come to pafs, that at laft a Body may be reduced to that Minutenefs, that its Gravity Prefing downwards (which is according to its Bulk) may be lefs than the Refiflance of the Medium, which operates on the Surface of the Body; feeing, as I faid before, the Surfaces of Bodies do not decreafe fo faft as their Bulks, thefe decreafing in a Triplicate, but thofe in a Duplicate Ratio of the Bodies Diameters.

But becaufe I have faid that the forementioned Law of Hydrofaticks is a little defective, I defire to explain myfelf a little further in that point. In Weights Falling thro' the Air, were Gravity only confidered, the Proportions of their Defcents would be exactly as Galileo has demonftrated ; but it is allowed by all, that the Refiftance of the Air, not being confidered in thofe Demonftrations, they are not Matbematically True in Practice, but that really there is fomething of that Proportion hindred by the Air's Refjfance. Now, what is this lefs than to fay, that the Refjetance of the Air takes off fome of the Operation of Gravity, or is able to withftand or oppofe part of its Action? And if fo, what fhall we fay, were an Iron Sphere let thro' a Medium of Water? Surely the Proportions of its Defcents, would be much more difturbed herein, as Water is much more folid and difficult to be feparated or pafied thro' than Air, and confequently we muft needs grant, that more of the Operation of Gravity is taken off or refifted by this Oppofition of the Water, than that of the Air. And if fo, furely there may be a certain Degree of Gravity, that may bequite taken off by the Refffance of the Water. Were a Pittol Bullet let fall thro' the Air, it would defcend imperceptibly nigh the Proportions that Galileo has affigned; but were a fingle Grain of Sand fo let fall, it would be much hindered in its Courfe, and half of this Grain would be more obftructed; what Mhall we then fay of the Ten thoufandth part, or of a part of the Ten thoufand Millionth of this, and again of the infinite Subdivifions of that, till at laft we come to a Part that would be
wholly refjfed, or kept up; fuch I conceive the minute Particles of a Body difolved in a Menftrurun.

On this Account, 'tis, I fay, that the forementioned Principle of Hydroftaticks is a little defective; for it confiders not the natural Congruity of the Parts of a Liquor, whereby they defire as 'twere to unite and keep together, juft as we fee two drops of Water on a dry Board being brought together, do jump and coalefce, and therefore Liquors have an innate Power of reffing a certain degree of Force that would feparate them; fuch as I fuppole the degree of Gravity, in the moft minute Particles of a Body diffolved in a Menftrum.

The forementioned Rule holds true to the moft nice Senfe in great Bodies ; but in thofe that are by many Millions of Divifions fmaller, it feems to fail.

I would not however be thought wholly to reject my Brother's Solution of this Problem: for certainly that Motion (whatfoever it is) in a Menfruum, which is able to diffolve fuch a folid Body as Iron, that is, which is able to difturb the clofe and ftrong Cohefion of the Parts of Iron, may very well be fuppofed fufficient to difturb or keep up thefe Parts from refting in the Bottom of the Veffel, wherein the Solution was made; and certainly no better Account can poffibly be given of fuch Solutions, than by fuppofing fuch an internal Motion in the parts of the Menfruum infinuating themfelves into the folid Body, and loofening its parts. But I leave to others to confider what kind of Motion and peculiar Conformation of Parts is requifite both in the Menfruum and in the diffolved Body, that a Solution may refult from their Commixture.

Confidered; by Mr. Tho. Molyneux.
ivido 8.93i
2. Tho' Liquors confift of Parts united, and tho' this Union be eafily deftroyed, yet of neceffity it requires fome degree of Force for effecting it; yet this Property ought not to be rely'd on as the fole Caufe of this Appearance: For, in this Solution of the Problem, We firft fuppofe the minute Particles of a heavy Body rais'd, and then give the Reafon of their not finking; whereas 'tis not to be queftioned, but that that Force which raifed them, is the fame that keeps them from falling to the bottom.
IX. Sir Sam. Moreland undertakes to demonftrate, (contrary to the common and received Opinion thro' England and all Europe)

1. That he will force Water 60 Foot high with treble the Weight that Thall raife it 20 Foot ; and fo proportionably, in infinitum.
2. That by how much wider the Barrel is, in which the Forcer works,
than the Pipe thro' which the Water is forced up, by fo much is the Engine preffed with unneceffary Weight.

An Undertaling for Raifing of Water; by Sir

Sam. Moreland
Apr. An. 1674
X. 1: The laft Summer, Ann. 1684. a Treatife fell into my Hands, called Sipho Wurtemburgicus, or an inverted Siphon with Legs of the fame Height, running and running back again, fuch as had never been heard of before. The Author fpeaks wonderful Things of this Machine, but begs
A Siphon pere
forming the fam forming the famet Sjipho Wurtem. burgicus; by Mr. J. Davis. n. $167 . \mathrm{p}_{0} 846$. Nov. An. 1684.

(537)

the Reader's Pardon for his moft Serene Patron, who had a mind to preferve the Structure of it for himfelf. When I read this I confider'd how a Siphon might be conftructed, which fhould perform the fame Things as are faid of that of Wurtemburg. Having therefore in my Hands a certain Si phon of Glafs, I erected it as nearly perpendicular as I could over two Veffels; and when it was fixt in this Situation, I poured Water into one of the Veffels, till the Orifice of the Siphon was a little immerfed in it, and prefently as I expected the Water run out into the other Veffel. Then that Veffel being emptied into which I had firft poured Water, I poured it into the other, and immediately that Water run back into the firit Veffel. Tho' I would not venture to compare the Artifice of this Siphon of mine with that of Wurtemburg, yet as to its ufe I doubt not but that it will not much yield to that, efpecially if a certain Inftrument be added to it, which I have contrived in a particular manner.
2. In the Treatife concerning the Wurtemburg Siphon, which was lately By Dr. Papin. printed at Stutgard by Dr. Salomon Reijelius, certain wonderful Things, and before unheard of, are told of that new Siphon, of which the Characteriftic Properties are declared in thefe Words.

1. The Orifices of the two Legs of bis Siphon being placed Horizontally, are dipped into the Brims of the Vefjels; wbereas in thofe of the antient Invention the longer Leg always defcends below the Brim or the Equilibrium.
2. The Orifices being either partly or balf fill'd with Water, yet the Water flores out when drawn over a Mountain. Whereas in other Siphons the webole Orifice mult be fill'd with Water, or immerged in the Water.
3. Tho' the Macbine be at reft and in continual Drynsfs, yet it will produce its Effect, Water being apply'd again.
4. Either of the Eyes or Orifices being open, and the otber after fome Hours or a Day being ftop'd by a Cone or Stopper', yet the Water will run out; whereas in otbers both the Eyes muft be open at the faime time.
5. The Orifices being placed in an Horizontal Line, and the Legs being equal in beigbt, yet the Liquor will run out; but in the Macbines of Porta aind otbers, the Legs muft be unequal, and the Perpendicular greater.
6. The Water being poured into citber Veffel veill afoend and run into citber; qubereas in thofe of the Antients it runs out at one Leg only, and that the longei, out never runs back.

Thefe are the Words of the Author; but by what Method, or what Artifice thefe notable Effects may be produced, he adds not a Syllable. Therefore the Royal Society order'd me to prepare a Machine, which might exhibit the fame Phenomena as thefe defcribed in the Book. I have performed the thing after three different manners; but to avoid being tedious, I judge the following, as the cafieft and fimpleft, will be fufficient.

A A are two Veffels of Metal, in which are inferted the two Extremities of the Siphon. BCDEDCB is a Sipbon, the Eyes of which BB are to be difpofed in the fame Horizontal Line. F is a little Tube foder'd into a VoL. I.

Zzz
Hole

B, D, Salumn: Remfiliue thasTits.
7. 378 , 2. 107コ, 17c土. 1 . 1685

Hole in the upper part of the sitpon, and carefuliy clored, after the sipbon is totally replenifhed with Water. Now it is plain, that the Whter contain'd in the latts C D will hinder the Infux of the extermil Afr, fo that it cannor punetrate to the upper Part of the sipion E.. So that the Sipbon being always full of Water, (provided it does nut exceed a deve height, will moit Furcl: produce irs Eifeet, as foon as the Warer in the Xeffils A A mall fill any patt of cither of the Orifices B. And when both the Orifices being partly fil'd with Wireer, in efther Feffl A the Surface of the Water fhall come to the fime forizontal Line, if you pour never fo little Water to cither Veffe, part of it will prefextly he carry'd through the Siphon into the other Veffel; and in the fame Method the other Planomsua may be exhibited as are defcribed in the Book.
3. That I may not any longer be wancing in fatisfying the Defire of the moft ferene Society, I confels that the Siphons of the moft excellent Dr. Pepin to be the very Wursemburgic Siphon, allo made with a Recurvation of the Fat Nor is there any other Mytery at the Top, as the Inventer has defertbei, than that it muft be fill'd by a Funnel, without which Impletion it cannot run dway. This'fhall foon be confirm'd farther by the Prets, becaufe it would be long and redious to fet down every thing here.

Now that I may hew at prefent that I have already perform'd fomething about the Effects of the Siphon, here is fomeching that has occur'd to me in making my Experiments. For I have learn'd how the Water may run out either at the top, or at the fides, which many have promis'd to do, but hardly any one has perform'd.

A Ntw way of Ralfing Waser Enignaricaliy propofed; by Dr. Papin. ก. ${ }^{273}$. P. To.es. July An. 1685.
Fiz. 198.
XI. I. A A is a grear Glafs made tike a Tumbler, but much bigger, and laid upon the Chimney Board, B B.

CC is the Engine like a Imall Rock, that doth conftantly fpout out Water by the two Holes DD: This Rock is kept at a diftance from the bottom of the Glafs A A; fo thar it may plainly be feen that it cannot receive any Water by fubterraneal Tubes.
$\mathrm{E} E$ is a factitious Coral, reaching from the Center of the Rook CC, to the Center of the Crown F F.

FF is a Crown bearing upon the Aperture of the Glofs A A, and holling the Rock CC , fufpended at a confiderable diftance from the Bottom.

GG a Glafs open at both ends, apply'd to the Rock CC, to keep the Water upon it from falling down.

The Water in this Engine runs conftantly. HH, Two Sbells to receive the Water from the Fesso's.

Solvidily Dr. Nath. Vincert.

 n. 177 . 9.1238.Dcc. An. 1686.
2. Within the Rock CC, there may be a Veffel placed, which thall be made like the Body of a Pair of Bellooos, or thofe Preffs heretofore ufed by Batbers, which being fllled with Water, a Piece of Clockwork put under it may produce the Feite's; the Water being reccived into the Sbell HH , and running thence into the hollow of the Coral EE, may be thereby conveyed into the follicular Cavity in the fame quantity it is ejected from the

(539)

ewoemerging Tubes; and it will circulate according to the going of the Clochwowth.
3. I conceive that the Air is forced into the ohter Glafs at the bottom ny Mr. R, A. thereof.

That it then paffes up between the two Glafes.
That the outer Glafs or Cafe being clofe luted at the Head or Crown to which the inner Glafs is hung by the Coral, the Air is forced into the Mouth of the inner Glafs.

That the Air fo forced, preffing on the Surface of the Water that covers the Rock, forces the Water to rife thro' thofe two extream Parts that are not at alt clogg'd, or covered with Water.
 vided into two Rooms by the Floor E F.

GL MH, is anothet Cylindrical Veffel within that upper Room, ce-n ins, p. 12 mented with its Mouth downwards to the Floor, and full of Water up to Dec, An, icos. the Surface IK ; the upper Past thereof GIKH, being full of Air.

QO, RP, Two Pipes, open above and below, and let thro' the Upper Room into this Veffel, and reaching almort down to the Floor EF.

V W, a. Pipe open above and below, and let into the Upper Room. Thefe Pipes mut be clofe joined round about them to the floors CD and GH.

XY, Two little Hemifpherical Bladders prepared with Oil or fome Oily Subftance (as Butter and Turpentine) againft Water, and Cemented with their Mouths upward to the Floor E F, underneath.
a β Two Valves Opening out of the Upper Room in the Bladders. γ, δ Two other Valves Opening out of the Bladders into the inner Veffel above.

N Z, a Pendulam playing upon the Centre N, and having two Battledoor Arms a, b, to fqueeze alternately the Bladders which reft upon them.

Let the Upper Room be filled with Water at the Pipe V W, and if the Pendulum be made to play by Clack-soork, the Bladders will perpetually pump it thence into the Inner veffel, and the compreft Air GIKH in the Upper part of that Veffel preffing upon the Surface of the Water IK, will force it thence into the Pipes $\mathrm{O} Q, \mathrm{PR}$, out of which fpouting with a perpetual even Stream into the Spoons S T, it will run down by the Pipe W V, into the Upper Room again: the Pendulem will play moft eafily when the upper Room is filled to the Top of the Pipe W V. Inftead of the Bladders may be other Contrivances, as of Suckers or little Organ Bellows, playing alternately with two Leaves about an Axis in the middle.
5. A A, is the Great Timbler, that mult have fome litcle Hole in the B, Dr Papin. bottom, as 1 .
IL L, a nender Pipe hidden by the Chimney Board BB, whereby the Fig. 2000 Irmbler A A, hath Communication with the Pump or Bellows M M.

[^4]MM, fome kind of Pump or Bellows well fhut, and having no other Aper: ture, but thro' the Pipe IL L. Thefe are put in fome fecret Place where a Body may play the fame and not be feen.

NN, a llender Pipe, that makes a Communication between the Glafs AA, and the Crown F F; this Pipe reachech riear to the cover of the Crown, that the Water contained in it may not run down by that Aperture.

EE, the Faifitious Coral, hollow within, thut at the Bottom and open at the Top.

DD, DD, Two crooked Pipes foldered to the Sides of the Coral EE, fo that the Water running down the Coral may foout out at the Holes DD.

OO, a Pipe hidden in the Coral EE, paffing thro' the bottom of the rame, where it muit be well folder'd, and reaching near to the Bottom of the Rock C.

P P, a Pipe to convey the Water from the Glafs G G, into the Rock CC; this Pipe is well folder'd to the Cover of the faid Rock.

Q, a Valve working by a Spring at the Bottom of the Pipe P P, to keep the Water, that gets in that Way, from returning back.
R, another Valve at the top of the Pipe $O O$, that the Water getting up that way, may not fall thro' the fame.

Now it is plain, that the Rock CC, being filled partly with Water, partly with Air; if we open the Bellcres MM, the Air from the Crowin F F, muft run thro' the Pipe NN, into the Tumbler A A; and thence thro' the Pipe IL L, into MM, to fill the Vacuity made therein: The Air in the Crown FF, being thus rarified, gives liberty to the Air in the Rock C C, to rarify too, by driving the Water thro' the Pipe OO. The Water being got up into the Crown FF, runs down the Coral EE, and thro' the crooked Pipes D D, DD, fpouts out at their upper Apertures, and from the Sbells H H falls upon the Rock C C: If we come afterwards to fhut the Bellows M M, the Air got into their Vacuity muft run back into the Tumbler A A, and prefs upon the Water at the Top of the Rock C C : But the Air in the faid Rock having been rarified, its Spring is not fufficient to refift this Preffure, and fo the Water is forced into the faid Rock thro' the Pipe PP: And thus opening and fhutting the Bellows MM, the Water muft conftantly circulate by the Ways aforefaid.

The Ufe of this Cuntrivance.

As for the Ufes this way for raifing Water may be applied to, this I do conceive: The Glaffes, being merely to conceal the Secret, muft be left out; and their may be made feveral Receptacles above one another to receive the raifed Water, fo as doth the Crown FF : And there fhould be as many Bellows to communicate every one with one Receptacle : Thefe Bellows fhould be moved by an Axis, fo that, when the Firft is open, the Second fhould be Thut ; the Tbird open, the Fourth fhut ; and fo forth, alternatively; which may be eafily done : By this Means, the firf or loweft Receptacle would give the neceffary Supply of Water to the Second, the Second to the Third, and the Tbird to the Fourth, ξ° c. till the Water would be raifed to the intended Height. Such Receptacles might eafily be fet at 12 or 15 Foot above one another,
another, and fo but few of them might raise Water to a confiderable Height, as well as ordinary Pumps do: But this new Way would have this advanrage, that in the ordinary Pumps the Strength to be applied lieth near the Water to be railed, but by this Contrivance the Stream of a River may be applied to draw Water out of a Mine far diftant from it. By the fame way the Stream of the Thames might keep conftant Water-Works in Windfor-Caflle, as early almoft as in the lower Fields: The River Seine might do the fame at St. Germain, and perhaps at Verfailles too, notwithstanding the great Di_{i} france. For it is to be obferved, That the Pipes of Communication between the Bellows and the Engine, being merely for the conveying of the Air, which moves very fwiftly, they may be fender enough, and fo contain bur 2 fall Quantity of Air to be ratified; and befides, they will not be fubjec: to burt or leak, fince the Preffure they bear, being all external to the Pipe, will rather strengthen than break the fame. From whence it follows, That the fail Pipes need not be ftrong, but may be made at very fall Charges. It is alfo to be obferved, That thole Bellows which are open, have the Air in them very much ratified, fo that the outward Air lieth heavy upon (to fut) them ; by which means the Motion of the Engine mut be help'd in Lifting up the oppofite Bellows, that are to be opened: And this Obfervation may anfwer the greateft difficulty that might be objected againft this Contrivance. So that I don't queftion but this way for raising Water, may on feveral Occafions be of great Advantage.

A B, A B, Are feveral Receptacles fit above one another, which mut be Further E_{x-} well hut and foldered every where.

CDD, CDD, Are two nender Pipes, whereby the Firft and Third Receptacles have a Communication with the Pump HH.

EFF, EFF, Two other fender Pipes, whereby the Second and Fourth Receptacles have a Communication with the Pump II.

HH, II, Two Pumps whore Plugs are fo moved by the Axis L L, that when one goth down the other goeth up.

MM , a Wheel fattened to the Axis LL, that it may be moved by the Stream of a River.

NO, PQ, NO, PQ, Are big Pipes for the Water to go up, from a lower into a higher Receptacle.
$\mathrm{O}, \mathrm{Q}, \mathrm{O}, \mathrm{Q}$, Are Valves fitted to the Top of the aforefaid Pipes, that the Water may not go down thro' the fame.

Now it is plain, that, when the Plug in the Pump HH, is going up, the Air comes in thro' the Pipes CDD, and fo it is ratified in the firth and third Receptacles marked A, A: And by that Means the Water may be diven up into the faid Receptacles thro' the Pipes NO, becaufe at the fame time the Plug in the Pump II, going down, caufeth the Air to return to its ordinary Preffure in the fecond and fourth Receptacles, that it may be able to drive up the Water thro' the laid Pipes NO, and the loweft Pipe draws the Water that lies open to the Air. By the fame reafon when the Plug in the Pump II, goeth up, the Air mut come in tho' the Pipes EFF:

EFF: And fo it is ratified in the fecond and fourth Receplecles marked. B, B, and by that means the Water may be driven up into the faid Receptacles thro' the Pipes $\mathrm{PQ}, \mathrm{P} Q$, becaufe at the fame time the Plug in the Punzp AH, going down, caufes the Air to recurn to its ordinary Preffure in the firft and third Recoptactes, fo that it is able to drive up the Water thro' the faid Pipes PQ.

Several Objections made by M. Nuis, AnSwered; by Dr. Pavin. n. 186. p. 263. Jano An. 1687
6. 1. To keep the Receptacles from being fill'd too much, the Water may be let out by inferting into each a crooked Pipe, reaching a pretty way downwards, and having its lower Aperture flut up with a Valve, whereby the Water inay run out when the Receptacle fhall be fill'd to a certain Height: And I may add, to prevent new difficulties, that, left the Pumps fhould be filld too much, a Valve may be made that thall open as foon as the Air in the Pump fhould be more compreft than the outward Air: So the Air getting in thro' any Pores would be conftantly let out.
2. I have not pofitively promifed a good Succefs, but for Windfor and St. Germain; but when 1 fpoke of Verfailles I ufed the Word perbaps, thereby fhewing that, before any one fhould go about fuch a great Undertaking, he Thould refleet upon it more than I would then do, not having occafion for fuch Work. But I now make the following computation.

Let the Diftance of Verfailles, as M. Nuis fuppofeth, be 12000 Foot, and the Capacity of each Reciptacle be about one half of a cubic Foot: I might make the Wheel with the Axis to make their Revolution in one Minute of Time, and fo order all things that the Air under the afcending Plugs might come to be rarified to fuch a Degree, that by its Elafticity it might not counterpoife more than ${ }_{7}$ Foot of Water; but at the fame time the Air in the Receptacles $\mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{B}$, would, even in its greateft Dilatation, be able to counterpoife 17 Foot; So it is plain, that the Air will be driven from the Receptacles into the Pumps by a Strength equivalent to 10 Foot of Water: Now if we compute the * Velocity of Air driven by fuch a Preffure we fhall find that the faid Velocity will be about 740 Foot in a Second: So that in half a Minute, during which the Plug goeth thp, this Air night pafs above 22000 Foot, altho' it were not rarified at all ; but being rarified, as we do fuppole it to be, it might go a great deal further.
Imuft now take notice, that according to the Honourable Mr. Boyle's Experiments, the Rarefaition of the Air is much leffer than M. Nuis takes it to be: for the Water contained in the Pipe NO, is fo far from caufing the Air to fill up a Space four times bigger, that it will not extend iffelf to a Space once bigger than before : Confidering therefore the Velocity of the Air, and the fmall Dilatation it doth fuffer, if any one will take the Trouble to compute, he will find, that if the Punips have in Diameter the Diagonal of a quare Foot, and the fame Height; and if the fmall Tubes of Communication be made of $\frac{t}{9}$ part of an Inch in Diameter; fo that being 12000 Foot long, they may contain about one cubic Foot of Air; that would be more than fufficient to make the neceffary Rarefaction in the Receptacles.

(543)

But for the good Succefs of the Engine it is not enough to make the Air pals from the Recepracles into the Pumps, it muft alfo return from the Pumps into the Receptacles: Now for this Intent it would be neceffary to fet the Receptaedes but frve Foot above one another ; fo to drive the Water up the Pipe NO, it would be enough that the Air in the Receptacle B, fhould prefs with a Strength equivalent to 23 Foot of Water: for it is plain, that five Foot in the Pipe NO, together with a Preffure equivalent to 17 Foot, which I have fuppofed to be in the upper Receptacle A, will make but 22 Foot in all; and therefore 2_{3} Foot depreffing in the Receptacle B, muft prevail, and caufe the Water to afcend: Now the Preffure in the Receptacle being but 23 Foot, and the Air in the Pump returning to its ordinary Preffure, which is about 33 Foot, it is plain that the Air going back to the Receptacle, will bedriven by a Strength equivalent to to Foot, as well as it had been in coming from the Receptacle towards the Pump: and fo the Bignefs affigned for the Communication Pipes will alfo prove more than fufficient to this Effect.

From what I have been faying, it is plain, That in great diftances there flould be made as many Pumps as Receptacles, as hath been already propounded: And for to raife Water but 16 Foot High, there fhould be required I_{3} or 14 Receptacles, and as many Pumps of the Bignefs aforefaid. Some People may take this for a great Difficulty: But I anfwer, That in this Engine, this is not fo much as it feems at firlt ; becaufe, the Preflure being all from without, there is no need of any great Strength to refift it; and fo the Metal for the Pump will coft but little: There may alfo be found Occafions where to make fo good ufe of them, that fuch an Engine as I have defcribed would in a Year's time fave Labour enough to pay for many Pumps, fince it might every hour raife about 1800 Pounds of Water to the Height of 60 Foot. Mean while I don't pretend to have given here the beft Proportion for the Bignefs of every part of the Engine; but it may be, by altering the Capacity of the Pumps, of the Pipes, or of the Receptacles, a much more confiderable Effect might be produced.
3. The Water doth not at any time afcend higher than from a lower Receptacle into the next upper Receptacle; which Height is but 12 Foot: So that it is plain enough, that the Preffure of the Air may be fufficient to drive it up. It is indifferent, whether it be by Rarefaction or otherwife that the Water comes into the Receptacle A ; it is enough that the Water is there, and that the Air prefles upon it with fuch a Strength as will prevail againt all that oppofeth it.
4. Tho the Ufe of the Pipes be merely for conveying of Air, they may neverthelefs be eafily fill'd with Water, when need requires; and fo the Defects in them may as well be found out as in Pipes that are ufed for the conveying of Water.

An Engincfar
XII. A, The Furnace.

B, The Boyler.
CC, Two Cocks, which convey the Steam by turns to the Veffels D D.

- Raifing Waiet,
by the Helpof
Fire ; by Mr.
Thu. Savery.

DD, The Veffels which receive the Water from the Bottom, in order to Difcharge it again at the Top.

EEEE, Valves.
FF, Cocks which keep up the Water, while the Valves on Occafion are cleans'd.

G, The Force Pipe.
H, The Sucking Pipe.
I, The Water.

An Hydrasligne Engine; by 7. 128. p. 679.

Fig. 203.
An 1675.
XIII. This Engine is a Cheft of Copper A, pierced with many Holes above B B, and holds within it the Body of a Punp EFM, whofe Sucker D E, is raifed and abafed by two Levers C, O; thefe Levers having each of them two Arms, and each Arm being fitted to be laid hold on by both Hands of a Man. Each Lever is pierced in the middle by a Mortile a a, in which an Iron Nail, which paffes thro' the Handle of the Sucker, turns when the Sucker is raifed or lower'd. Near the Body of the Pump there is a Copper Pot $\mathrm{I}_{1} \mathrm{HL}$, joined to it by the Tube G, and having another Tube KNL, which in N may be turned every way.

To make this Engine play, Water is pour'd upon the Cbeft to enter in at the Holes that are in the Cover thereof. This Water is drawn into the Body of the Pump, at the Hole F, at the time when the Sucker is raifed: and when the fame is let down, the Valve of the fame Hole F fhuts, and forces the Water to pafs thro' the Hole M into the Tube G, of which the Valve H being lifted up, the Water enters into the Pot, and filling the bottom, it enters thro' the Hole K, into the Tube KNL, in fuch a manner, that when the Water is higher than the Tube KNL, and the Hole of the Tube G is fhut by the Valve日, H, the Air enclofed in the Pot hath no Iflue; and it comes to pars, that, when you fcontinue to make the Water enter into the Pot by the Tube G, which is much thicker than the Aperture of the end L, at which it muft iffue, it muft needs be, that the furplus of the Water that enters into the Pot, and exceeds that which at the fame time iffues thro ${ }^{2}$ the finall end of the $7 e t$, compreffes the Air to find Place in the Pot: which makes that, whilft the Sucker is raifed again, to make new Water to enter into the Body of the Pump, the Air which has been Comprefs ${ }^{3} d$ in the Pat drives the furplus of the Water by the Force of its Spring, Incan time that a new Compreflion of the Sucker makes new Water to enter, and caules alifo a new Compreflion of Air. And thus the Courfe of the Water, which iffues by the fet , is always entertained in the fame State.

A cheap Psmp:
 no. $\times 36$. p. 838. June An. 1677.
XIV. A A, the Body of a fquare Taper Pump, made of Oak, Elm, or BB , the Bucket, in the midft of which there is a Valve b, not vifible in the Figure, being concealed by the Sides of the Leather, $b b$.

CCC, the Iron to raife the Bucket.

D D, the Wood at the bottom of the Bucket containing the Valve.
E E, the Handle for raifing the Bucket, to be managed by fewer Hands than ordinary Pumps are; which may be altered fo as to employ a Horfe, or Mill, or other fuch-like way, more advantageous than that of this Handle managed by the ftrength of Men.

FF, a Square Taper-Box with Holes in the Sides, and open at the Bottom; into the narrower part of which is enclofed the narrower End of the Body of the Pump.

G G, an additional Bucket of a larger Dimenfion, to be placed on the Iron Work of the Pump about H , when it thall be needful to lengthen the Taper of your Plump, and thereby to raife the Water more forcibly to a greater height.

II, the Spout of the Pump, to caft out the Water, of the fame Breadth with the fide of the Pump.

K K, the Iron or Wooden Work fet off, or bent back (if need be) and whaced at the back of this Pump, for the eafier and more capacious Motion of the Pump-Handle, in which it moves.

This Pump was by me contrived in 1673. when the Nere Canal of FleetRiver in London was enlarged: It was found to raife at leaft twice as much Water proportionably as thofe of the fame, or rather bigger Bore, that were firt made ufe of and caft by. It was $8 \frac{x}{2}$ Foot long, and I Foot 8 Inches broad at the top, and about 8 Inches broad at the bottom, where it is inferted in the Box; and did caft out 8 Gallons at a Stroke, and 21 Strokes being made in one Minute, there were delivered about 169 Gallons in a Minute's time; whence it is eafy to compute, what Quantity is thrown out in an Hour. This kind of Pump may by the fame Contrivance be made of a Tree bored thro' with a Taper Bore : and a Bafket may be ufed at the bottom of the Pump inftead of the Box-Colender.
> XV. Papers of lefs General Ufe, (ExtraEEed from a Book of Jo. Alph. Borellius de Motu Animalium) omitted.

1. Way bowe a Man may Swim under Water, and breathe by tbe Help of
a Bag about bis Head. Pbil. Coll.
2. Another way of Breathing under Water by the belp of a Leatbern Pipe kept open by wreathed Wires, and extended by the Swimmer's Head to the top of the Water.
3. A way to make a Submarine Veffel accommodated with ways to Row it, and to make it Rife and Sink in the Water.

Vor. T.
Aaaa
XVI. Ac-

H Ydroftatical Paradoxes, made out by New Experiments, (forl the mofe part Pbyical end Eafy) by the Tlonourable R. Bayle, Efq;

2. Recueil de diverfes Pieces touchant quelques Nouvelles Macbines, \&xc Par D. Papin, M. D. A Caffer. 1695. in 8vo.

C H A P. VII. Geograpby. Navigation.

A neri place foy the firf: Meridian pripos'd; ty - Proteffer of Math. at Seville n. II8. p. 425. OEt. An. 1675.

2801
I. नHHE Longitude of a Place upon the Eartb is an Arch of the Equinoc17. tial intercepted between two Meridians; or the Space of Time which is number'd by the Equinoctial between two Places. Wherefore it would be proper to fix the beginning of Longitude in the Equinoctial it felf. Moreover fince the Equinoctial Circle divides the Globe into Northern and Southern Hemifpheres, if the fixing of this Primary Meridian is appointed. in it, there will be an Equality and Conformity between the Northern and Southern Parts. Befides it is neceffary for exactnefs, that the Place of this firft Meridian fhould be fimall, that the Reckoning of the Longitude may be exprefs'd the more exactly; not as fome have done, who have affumed all the Fortunate Ifands for their Beginning of Longitude, and did not regard the Diftance of two Degrees which they have from one another; which furely is very abfurd. Again care muft be taken that the Primary Meridian may not be confounded with the Land and Draughts of Places which are defcribed on the Globes or Maps, which muft be if it paffes thro' the midif of Countries. And if it divides the principal Parts of the Earth, as America, Africa, Europe, paffing over the Seas, it will be fo much the fitter and more conventent in the Reprefentation of the Terraqueous Globe. Now conlidering all thefe Reafons here mentioned, I have found, that as Nature, which provides nothing in vain, has placed a certain Ifland under the very Equinociial Circle, near Brafile, formerly called Abroxos, which Inand is diftant from the Pike of Teneriff 9 Degrees to the Weft, and from Uraniburg 4^{2} Degrees to the Weft, in which all the Circumftances are found proper to conftitute the firft Meridian, as by me have been enumerated.
II. I. Thofe

(547)

II. 1. Thofe that intend to make ufe of Pendulum Watches at Sea, muft M. Huygen's have two of them at leaft ; that, if one of them Thould by mifhap or neg- finfurung the Lhe Lonlect come to ftop, or (being by length of time become foul) need to be gitude with Pramade clean, there may likely always remain one in Motion.
2. The Watcbes on Sbipboard are to be hung in a Clofe Place, where they …...... may be freeft from Moifture or Duft, and out of Danger of being difordered Myy An. 1659 . by knocking or touching.
3. Before the Watches be brought on Shipboard, 'tis convenient they be adjufted to a Middle or Mean Day; the Ufe of them being then moft eafy.
4. Here take notice, That the Sun paffeth the 12 Signs, or makes one To adjug tho entire Revolution in the Ecliptick in 365 Days, $5^{\text {h }} 4^{8^{\prime}}$. or thereabout; Watches. and that thofe Days, reckoned from Noon to Noon, are of different Lengths; as is known to all that are verfed in Aftronomy. Now between the Longeft and the Shorteft of thofe Days, a Day may be taken of fuch a Length, as 365 fuch Days, $5^{\text {a }} 49^{\prime}$. E ${ }^{\circ} c$. make up, or are equal to that Revolution; and this is called the Equal or Mean Day, according to which the Watcbes are to be Set; and therefore the Hour or Minute hewed by the Watches, tho' they be perfectly juft and equal, muft needs differ almoft continually from thofe that are fhew'd by the Sun, or are reckoned according to its Motion. But this Difference is Regular, and is otherwife called the Equation; which is accounted from the firft of February in the following Table.
（548）

	W
	\％
 	\％
 	袻
	运
 	畓

(549)

Fuly.		Auguft.		Septem.		OEzober.		Novem.		Decemb.	
	45	511	107	,				3			
2	- 38	811	16	20	1	29	30	31	03		
3	103^{1}	111	125	20	2	29	43	30	53	20	
4	1025	511	13^{6}	20	43	29	56	30	43	19	
5	1019	911	148	21	04	30	09	30	32	19	
6	1013	312	2 OI	$2 I$	25	30	22	30	20	18	
	- 07	72	214	21	47	30	34	3	08	18	4
8	$10{ }^{2}$	212	$2 \quad 28$	$22 \quad 0$	09	30	45	29	55	1	,
9	5^{8}	812	$2 \quad 42$	22	3 I	30	55	29	40	17	
10	$9 \quad 5$	412	257	23	52	31	04	29	23		
11	95	I 13	312	23	13	31	12	29	06	16	4
12	949	913	$3 \quad 27$	23	33	3 I	19	2	48	15	44
13	$9 \quad 4$	73	343	23	53	$3{ }^{\text {I }}$	26	28	0		4
14	94	13	$3 \quad 59$	24	13	3 I	32	28	1	14	43
15	94	614	410	24	33	31	38	27	51	14	
16	9	614	433	24	53	31	43	27		1	
17	947	714	$4 \quad 50$	25	13	31	47	27		13	
18	949	9 I 5	5 08	25	33	3 I	50	20	45	12	
19	95^{2}	215	$5 \quad 26$	25	52	31		26	22	12	
20	95	615	545	26	11	3 I		25	88	II	
21	10	O 16	0	2	30	31			,		
22	10	416	$6 \quad 23$	26		31		25			
23	100	816	$6 \quad 42$	27		31	55	24		10	
	10	317	701	27		31	54	2.			4
	ro	817	721	27	43	31	5^{2}	23	55		13
26	102	317	$7 \quad 41$	28	00	31	50	23	30		45
27	$10 \quad 28$	818	8 O1	28		31	47	23	04		-17
28	103	418	$8 \quad 21$	28		31	43	22	38	7	5
9	10	118	8 41			31	$3{ }^{5}$	≥ 2			3
30	10		1901			31	30		43		58
31	110	8819	1921			31					

By the help of the foregoing Table you will always know what a Clock it is by the Sun precifoly, and confequently, whether the Waiches have been fet to the right Meafure of the Mean Day, or no; ufing the Table as follows.

When you firft Set your Watch by the Sun, you are to fubduct from the Time obferved by the Smm, the X Equation adjoined to that Day of the Month in the Table, and to Set the Wasches to the remaining Hours, Minutes and Seconds; that is, the Wabcbes are to be Set fo much Slower than the Time of the Sun, as (in the Table) is the Aquation of that Day; fo that the Equation of the Day added to the Time of the Clock, is the true Time by the Sun. And when after fome Days, you defire to know by the Watcb the Time by the Sun, you are to add to the Time thewed by the Watch, the Equation of that Day ; and the Aggregate fhall be the Time by the Sun, if the Watch hath been perfectly well adjuited after the Meafure of the Mean Days; for the Doing of which, this will be a convenient Way.

Draw a Meridicn Lite upon a Floor, and then hang two Plummets, each by a fmall Thread or Wire, directly oyer the faid Meridian, at the diftance of fome two Foot or more one from the other, as the Smallnefs of the Thread will admit. When the Middle of the Sun (the Eye being placed fo, as to bring both the Threads into one Line) appears to be in the fame Line exactly (for the better and more fecure difcerning whereof, you muft be furnif'd with a Glafs of a dark Colour, or fomewhat Black'd with the Smoak of a Candle) you are then inmediately to Set the Watch, not precifely to the Hour of 12, but by fo much lefs as is the 布quation of that Day; e.g. If it were the $12^{\text {th }}$ of March, the Equation of that Day being by the Table, $8^{\prime} 3^{\prime \prime}$ thefe are to be fubducted from 12 Hours, and the Remainder will be $11^{h}, 51^{\prime} 57^{\prime \prime}$, to which Hours, Minutes, and Seconds, you are to Set the Index of the Watch refpectively: Then after fome Days you are to obferve again in the fame manner, and likewife to note thie Hour, Minute, and Second of the Waich; to which you are to add the Ftouation of thefe Days, taken out of the Table; and if the Aggregate do juft make 12 Hours, the Watch is adjufted to the Right Meafure; but if it differ, you are to divide the Minutes and Seconds of that Difference by the Number of the Days between both the Obfervations, to get the daily Difference.

Let us fuppofe thisfecond Obfervation to have been made the $20^{\text {th }}$ of Merch , viz. Eight Days after the firlt, and finding that the Middle of the Sum, being feen in the Meridian in the fame Line with the two Threads, as before, The Watcio points, - - 11 51 07". The Equation of the 20 th of March, by the Table, is - 00 io 40 Which being added to the Time fhow'd by the Watch, gives 12 or 47

If this had been juft 12 Hours, the Watch would have been well adjufted, but being $I^{\prime} 47^{\prime \prime}$, more than 12 , it hath gone fo much too faft in eight Days. And thefe $\mathbf{I}^{\prime} 47^{\prime \prime}$, that is $107^{\prime \prime}$, being divided by 8 , there come ${ }^{1} 3^{\frac{3}{8}}$ Seconds for the Difference of every 24 Hours; which Difference being

(55r)

known, if you want time, or have no mind to talke the Pains to adjuft the Waich to its right meafure, (this being not neceflary, fince you may bring it thus on Sbip-Board) note only the daily Difference, and regulate yourfelt accordingly. But if you will adiuft it better, you muft remove the lefs. Weight of the Pendalum a little downwards, which will make it go nower, and then you munt begin a-new to obferve by the Sun, as before. If it had gone too flow, you muft have removed the mentioned Weight fomewhat upwards. And this is of that Importance in the finding out of Longitudes, that if it be not obferved, you may fometimes in the fpace of Three Months mifreckon 7 Degrees, and more yet (without any faule in the Watches;) which under the Tropicks will amount to above 400 Engli.f Miles.

The Wetch may alfo be adjufted on Boord, when a Ship Rides at Anchor. thus: In the Morning, when the Sun is juft half above the Horizon, Note what Hour, Minute and Second, the Watch points at, if it be going; if not, fet it a going, and put the Tidexes at what Hour, Minute, and Second you pleafe. Let them go till Sun-Set, and when the Body of the Sun is juft half under the Horizon, fee what Hour, Minute, and Second the Indexes of the Watch point at, and note them too; and reckon, how many Hours, Ec. are paffed by the Watch between the one and the other. Then take the half of that Number, and add it to the Hours, $\mathcal{E} c$. of the Morning Obfervation, and you fhall have the Hours, $\delta^{2} c$. which the Watch did fhow, when the Sun was in the South; whereunto add the Equation in the Table belonging to that Day, and note the Sum. Then, fome Days being pafs'd, (the more the better) you are to do juft the fame: And if the Hour of this laft Day be the fame that was noted before, your Watch is well adjufted; but if it be more or lefs, the Difference divided by the Number elapped between the two Obfervations, will give the daily Difference. And if you will, you may let it reft there, or otherwife, removing the leffer Weight of the Pendulum, you may adjuft it better. You may alfo, inftead of the Sun's Rijing and Setting, take two equal Aititudes of the Sun, before, and after Noon, and having noted the time given by the Watches at the time of both the Obfervations, proceed with it in the fame Manner, as was juft now directed for obferving the Sun in the Horizen. In either of which ways there may be fome Error, caufed by the Sun's Refraetion; which is inconfiderable, and therefore needs not to be taken notice of.
5. Give to each of the Watches a Name, or a Mark, as A, B, C; and T_{0} find by then before you fet Sail, fet them to the Time obferved by the Sun in the Place the Longitude where you are, and whence you are departing, allowing for the Equation of the Day whereon you make your Obfervation; which Day you are to note, if the Watcbes be not well adjufted; otherwife it is not neceffary.

Then afterwards being at Sea, and defiring to know the Longitude of the Place where you are ; that is, How many degrees the Meridian of that Place is more Eafterly or Wefterly, than the Meridian of that Place where you did fet the Watcbes; you mult obferve by the Sun or Sters, what Time of the Day it is, as precifely as is poffible, and Note at the fame time, to what Hour, Minutes,

Minutes and Seconds the Watcbes do point (which Time, if the Watcbes be not fet to the Right Meafure, is by the known Daily Difference to be adjufted,) adding thereunto the Equation of the prefent Day, which gives you the time of the Day, fhewed by the Sun, at the Place where the Watcbes were fet: And, if this time of the Day be the fame with that obferved where you are, then you are under the fame Meridian with the Place where the Watches were Set by the Sun; but, if the time of the Day, obferved where you are, be greater than that fhewed by the Watches, you may be affured, that you are come under a more Eafterly Meridian; and if lefs you are come under a more Wefterly. And counting for every hour of difference of Time, 15 Degrees of Longitude, and for cvery Minute, ${ }_{15}$ Minutes, or $\frac{1}{4}$ of a Degree, you fhall then know, how many Degrees, Minutes, हृc. the faid Miridiails do differ from one another. E. g. Suppofe the Watches A, B, C, were Set at the Place, whence you parted, on the 20th of February, to the time of Day obferved by the Sun, abating the Fquation of the 20 th of February, (viz. $2^{\prime} 28^{\prime \prime}$.) and fuppofe that the Watch A, be fet to its Right Meafure, but that B goes every Day $7^{\prime \prime}$ too Slow, and C every Day 12" too falt: Some Days after, fuppofe the $5^{t b}$ of May, defiring to know the Longitude of the Place where you are at Sea.
You obferve the Time of the Day there to be - - $05^{\text {h }} 18^{\prime} 10^{\prime \prime}$
And you find the Watch A to point at $\quad 020600$
But the Watch B to point at ————— $\quad 1 \quad 22$
Going too flow by $7^{\prime \prime}$ every Day, which makes in 74 Days
(viz. From the $20: b$ of $F e b$. to the $5 t b$ of $M a y$,) Which being added to its own Time, gives the fame with
that of the Watch A, viz.
You find alfo the Watch C to point at - O2 204^{8} Going $12^{\prime \prime}$ too faft every Day, which makes in 74 Days $00 \quad 144^{8}$
Which being Subducted from its own Time, gives again - 02 o6 00
The Time of the Day therefore by the Watcbes being - $02 \quad 0600$
Add thereunto the Aqquation of the $5^{t h}$ of May - $00 \quad 19 \quad 29$
And fo you have for the Time of Day at the Place where the $\} 02$
Watcbes were fet
But the Time obferved being $=\square$ ——— 0510
Exceeds this by $\quad-\quad 02 \quad 5^{2} \quad 4 \mathrm{I}$
$\left.\begin{array}{llll}\text { Wherefore the Meridian of the Place, where you are May } 5 \text {. is } \\ \text { more Eafterly, than the place where the Watches were fet by }\end{array}\right\} \begin{array}{lllll} & 52 & 5^{2} & 40\end{array}$
Which being reduced to Degrees, reckoning 15 Degrees $\} 43^{\circ} 10^{\prime} 15^{\prime \prime}$
for an Hour, comes to
'Tis true, that from the fame Reckoning it may be concluded, that you are 180 Degrees more Eafterly; which happens, becaufe the Hour Index goes round in the fpace of 12 Hours in the Watches; but the Difference is fo great, that one cannot be deceived in it; elfe the Watch might be fo made, that the Index fhall go round about once in 24 Hours.

Tis find ibe Time of the Day 4s Sed.
6. Since that for finding the Longitude, the Time of the Day, at the Place where you are, muft be known, (as hath been faid above you muft have a

(553)

care to obferve that Time as precifely as poffible. For every Minute of Time, that you mifreckon, makes $\frac{\square}{4}$ Degree in Longitude, which amounts, near the Equator, to above 15 Englif Miles, but lefs elfewhere. Wherefore to find the Time of the Day with Certainty, the beft way is to obferve the Sun's Altitude when it is in the Eaft or Weft, (the nearer the better:) for, being there, its Alitude changes in a fhort time more fenfibly than before or atter; and thus from the Height of the Pole and the Declination of the Sun, the Hour may be calculated.
7. At the Rifing and Setting of the Sun, when it is half above the Horizon, An Esfer Wogn mark the time of the Day, which the Watches then fhew; and tho' ye have in the mean time failed on, it is not confiderable. Then reckon by the Waiches what Time is elapfed between them, and add the half thereof to the Time of the Rijing, and you fhall have the Time by the Watches, when the Sun was at South, to which is to be added the Aquation of the prefent Day by the Table. And, if this together makes 12 Hours, then was the Ship at Noon under the fame Meridian where the Watches were fet with the Sun. But, if the Sum be more than 12, then was fhe at Noon under a more Weferly Meridian; and, if lefs, then under a more Eafterly; and that by as many Times ${ }_{15}$ Deg. as that Sum exceeds or comes fhort Hours of 12; as the Calculation thereof hath been already deliver'd.

Suppofe, e.g. that the Watcbes A and B, as before, were fet with the Sun at the Place whence you parted, the 20 of February; and the Indexes Set to the Hour, Min. and Sec. fhewed by the Sun, abating the Equation of that Day, viz. $2^{\prime} 20^{\prime \prime}$; the Watch A being reduced to the right Meafure, and B going too now by $7^{\prime \prime}$ a day. Afterwards on the $22 d$ of May defiring to know the Longitude of the Place to which you are come, you obferve in the $\begin{array}{llllllllll} & \text { Morning the Sun half above the Horizon, when the Watch points at } & 2^{\text {n }} & 30^{\prime \prime} & 10^{\prime \prime}\end{array}$ And in the Evening, the Sun being half under the Horizon, when the fame W atch points at $\quad 3 \quad 840$
To find the Time elapfed between them, fubducting the Time
of the Rijing ——— —— 23010
From
There Remains
Adding thereunto the Time of the Setting - $\quad 3 \quad 8 \quad 40$

| You have for the Time elapfed between the Obfervations | -12 | 38 | 30 |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad 19 \begin{array}{ll}15\end{array}$

Being added to the Time of Ri/ing
$\begin{array}{ll}19 & 15 \\ 30 & 10\end{array}$
$\begin{array}{lllll}\text { You have the Time by the Watch A, when } 0 \text { was in the South } & 8 & 49 & 25\end{array}$
And after the fame manner you are to feek the Time by the
Watch B, when the Sun was in the South; which let be $-8 \begin{array}{llll}88 & 48\end{array}$
But thisWatch going $7^{\prime \prime}$ a day too flow, it is retarded in 19 days (from the 20th of Febr. to the 22d of May) —— - 01037
Which therefore added to the faid. Time gives - - 84925
That is the fame Time given by the Watch A. Now adding to this Time of the Walches, the Equation of the 22d of Mey O 18 IO
You have Vol. I.

B b b b
7 Which

Which is the fame time of the Day with that of the Place, where the Warches were fet when the Sun was in the fame Meridian with the Ship, or where the Ship was at Noon.
The Difference is - - - 2 22 25
Wherefore this laft Meridion is by fo much more Eafterly than the firft, which being reduced to Degrees, as (as hath been formerly directed) make - - - $\quad-43 \quad 15$
'Tis manifeft, that by this way you find precifely enough the Longitude of the Place, where you were at Noon, or the Time of the Sun's being in the South: Which altho' it differs from the Longitude of the Place, where you are when you obferve the Setting of the Sun; yet you may eftimate near enough, how much you have advanc'd or chang'd the Longitude in thefe few Hours, by the Log-Line, or other ordinary Practices of Reckoning the Ship's Way; or (which is the furer Way) by the Degrees paffed in 24 Hours by a former day's Obfervation.

You may alfo, inftead of obferving the Sun's Rifing and Setting, obferve the Setting firft, and then the next Morning the Rijing; marking at both Times the Time fhew'd by the Watcbes; and find thence, after the fame manner as before, the Longitude of the Place where the Ship was at Midnight.

Finally, You may alfo, inftead of the Rifing and Setting of the Sun, obferve before and after Noon two Equal Altitudes of the Sun, noting the Time fhown by the Watches, and reckoning in the fame manner, as hath been faid of the Rijing and Setting: Yet it is to be confider'd, that the Altitudes of the Sun are beft taken, when it is about Eaft and Weft, as hath been already intimated. But note, that in Sailing North and South you make not the Obfervations at the Sun's Rifing and Setting, but at its being due Eaft and Weft.
8. But you may put the Rule here prefribed in Practice, by taking two Equal Altitudes of fome known Star, that rifeth high above the Horizon. For you fhall thence, according to the mentioned Rule, know at what time by the Watches the Star hath been in the South; and fo the Rigbt Afienfon of that Star being known, as alfo the Rigbt Afcenfion of the Sun, you may thence eafily calculate, what Time it then was: Which, being compared with the Time of the Walcbes, as before, fhall give the Longitude of the Place where you were, when you had the Star in the Meridian.
9. If the Wa:ches that have gone exactly for a while, thould come to differ from one another (as in length of time it may well happen, that the one or other fail a Minute, more or lefs;) in that cafe it will be beft to reckon by that which goes fafteft; unlefs you perceive an apparent Caufe, why it goes too faft (as it may happen when the Cbeeks retain not their proper Figures) feeing it is not fo cafy for thefe Pendulum-Watcbes to move fafter than at firt, as it is to go flower. For the Wire, on which the Pendulum hangs, may perhaps by the violent Agitation of the Ship, come to ftretch a little, but it cannot grow Thorter; and the little weight of the Pendulum may perhaps nip-downwards, but cannot get up higher.

(555)

20 If it fhould be faid, that upon any Foulnefs the Watch will go fafter by n. 48. p. 976 . reafon of the florter Vibrations of the Pendulum, it is to be confidered, that this is only True when the Watches have no Cbeeks, but when they have them 'tis not fo.
10. When you get Sight of any known Country, Inand or Coaft, be fure ${ }^{\text {n. } 47.9 .95 r}$ to note the Longitude thereof as exactly as you can by the help of the Rules here prefcribed. Firft, thereby to correct the Sea-Map;, after the Longitude of a Place fhall have been found at divers times to be the fame, fo that you doubt no more of it. For all Meps are very defective as to the Situation of Places in refpect of Eaft and Weit, chiefly where Seas are interpofed. Secondly, to be able always to know in the Profecution of your Journey, how far you have failed from any Place to the Eaft or Weft. And, if by any notable Mifchance or Careleffnefs all the Watches fhould come to ftand ftill, yet you may at any Place, whereof the Longitude is certainly known, fet them a going again, and adjuft them there by the Sun, and fo reckon the Longitudes from that fame Meridian. For you are to know, that you are not at all obliged to put one certain Meridian of any known Place as a Beginning of the Longitude Reckoning; this happening only in Maps, or Tables of Longitude: As when you take for that purpore the Meridian of the Pico in Teneriffe, or that of the Iflands of Corvo and Flores (the moft Wefterly of the Azores) or any others. Yet it were very fit, that all Geographers agreed and pitched upon one and the fame Firft Meridiom, that fo all Places might be known by the fame Degrees as well of Longitude as Latitude; tho' in Voyaging, it is fufficient to obferve only the Difference of Longitudes, beginning to reckon from the Meridian of any Place, you pleafe, as if it were the Firft.
11. If it happen that being at Sea all the Watches ftop, you muft as fpeedily as is poffible, fet them a moving again, that you may know how much you advance from that Place towards the Eaft or Wef.
12. The Watches being diftinguifhed by Marks, as A, B, or the like, every The Youmal for Day about Noon, or when moft conveniently you can, obferve the Time of the Day by the Sun, or by the Siars at Night, and fubduct thence the Minutes and Seconds, that are adjoined to that Day in the Table, and write the Remainder down in the Paper, wherein 9 Columns or more are marked, placing them in the fecond Column, having placed the Day of the Month in the Firtt ; and at the fame time write down the Hours, Minutes, and Seconds, of each Watch in a diftinct Column, all oppofite one to another. Then in another Column write down the Difference between the Time taken by Obfervation, and that given by the Watibes, or one of them. Then one Column for the Latitude: One for the Longitude by the Ordinary Way of Reckoning : Another for the Longitude taken from the Difference between the Time found by Obfervation, and that given by the Watches: And at laft a large Column to note the Accidents, that befal the Watches, Exc.
2. Major Holmes having left the Coaft of Guinea, and being come to the The Smacts of Ine of St. Thomas under the Lin:, he adjufted his Watches there, and put to Warthest by Sea, and Sailed Weftward, 7 or 800 Leagues, without Changing his Courfe ; Maj. Homes.

ת. I, P. I马.

(556)

after which finding the Wind favourable, he fteered towards the Coaft of Africk N. N.E. But, having failed upon that Line, a matter of two or three hundred Leagues, the Marters of the other Ships under his Conduct, apprehending that they fhould want Water, before they could reach that Coaft, did propofe to him to fteer their Courfe to Barbadoes, to fupply themfelves with Water there. Whereupon the faid Major, having called the Mafters and Pilots together, and caus'd them to produce their Journals and Calculations, it was found that thofe Pilots did differ in their Reckoning from that of the Mojor, one of them about 80 Leagues, another about a hundred, and the third more; but the Major, judging by his Pendulum Watches that they were only fome thirty Leagues diftant from the Ine of Fuego, which is one of the Ines of Cape Verde, and that they might reach it next day, and having a great Confidence in the faid W atcbes, refolved to fteer their Courfe thither; and having given Order fo to do, they got the very next Day about Noon a Sight of the laid Ine of Fuego, finding themfelves to fail directly upon it, and fo arrived that Afternoon as he had faid.
M. Huygens being informed of this Succefs, wrote to Paris to this effect ; I did not magine that the Watches of this Firit Structure would fucceed fo well, and I had referved my main Hopes for the New ones. But, feeing that thofe have already ferved fo fuccefsfully, and that the other are yet more juft and exact, I have the more Reafon to believe, that the Invention of Longitudes will come to its Perfection. In the mean time I fhall tell you, that the States did receive my Propofition, when I defired of them a Patent for thefe New Watcbes, and the Recompence fet apart for the Invention, in Cafe of Succefs; and that without any difficulty they have granted my Requeft, commanding me to bring one of thefe Watcbes into their Affembly, to explicate unto them the Invention, and the Application thereof to the Longitudes; which I have done to their Contentment.

Longitudes from she Moon's Places; by Math. Profeffor as Seville.
a. $188 . p .427$.
III. I. I have at laft found a Method of knowing the Moon's Place, by the Affiftance only of a fmall Inftrument, within a Scruple or two; and which is wonderful, neither the Refraitions nor the Parallaxes are any hindrance to my Obfervations, becaufe the Contrivance of the Method delivers me from thefe Niceties. I can ufe this Method either at Sea or Land; therefore the Tables of the Moon being corrected, a Method will no longer be wanting of taking the fo much defired Longitudes of Places, wherever they are, either at Sea or Land,

Confidered by Mr. Fiamfteed.
2. What the Profeffor of Seville writes about his little Inftrument, with his leave 1 muft own exceeds my belief. In our Horizon the Moon cannot be clear'd either of Refraction or Parallax, unlefs the could afcend as high as the Zenitb. For the Refractions are extended fo far, and make her Place troublefome to find. Once only in a Day the Parallax of Longitude ceafes in the Nonagefim Degree of the Ecliptic, but not fo that of Latitude. Nor can I comprehend how an Inftrument fhall be conftructed, which together with the Parallax takes notice of the Refraction, the Increafe of which is owing to very different Principles.
IV. The Obfervation of Lunar Occultations is of Singular Ufe to deter- Longitidee mine the Longitude of Places, efpecially thofe that are far remote.
V. The Revolution of Fupiter upon his Axis being the fwifteft, and the in. Ingifiri. \&s. moft Regular Motion that is hitherto known in the Heavens, a Traveller tionthe fertosem alone, even without having any Correfpondence with other Obfervers, may yemot fip pietict make ufe of it to find the Longitudes of the moft remote Places of the ${ }_{n, 2}^{b_{n}, s_{2} \text {. Caifini. }}$ Earth.
VI. I. I am fomeching in doubt whether the Eclipfes of fupiter's Satellites Longiude are equally convenient for inveftigating the Difference of Meridians, as the thth statatith Occultations of the fixt Stars by the Moon. Particularly becaufe of the too Hevelius. flow Motion of the fovials, tho' the Obfervations were perform'd with a $\mathrm{n}^{\mathrm{n} .78 . p .5303^{\circ} \text {. }}$ more accurate Tube.
2. The Eclipfes of the Satellites of Yupiter, which happen almoft every by M. Borelli. Day, afford a fair Way for eftablifhing the Longitudes over all the Earth. n. $133^{\text {p. }} . \mathrm{g}_{2}$. For, befides that thefe Eclipfes are very frequent, the Emerffon and Immerfion of there Satellites, efpecially in the Shadow of Yupiter, is fo Momentary and fo Senfible, that they may be obferved with the greateft Exactefs, being altogether exempt from thofe Effential Inconveniences that accompany the Eclipfes of the Sun and Moon, which alfo are rare, and whofe Beginning and End are always doubtful by reafon of a certain Ambiguous Ligbt.
The Longiude of Places at Sea, Capes, Promontories, and divers IJands, being once exactly known by this Means, would doubtlefs be of Great Help, and confiderable Ufe to Navigation:
3. The Eclipfes of 7 ypiter's Satellites have been efteemed, and certainly are ${ }_{\text {By }} M_{r}$. Flama much better Expedient for the Difcovery of the Longitude than any yet thed hi. is.1. known, by reafon that they happen frequently, and are eafily obfervable ${ }^{\rho \cdot 322 .}$ with a Telefcope of 12 Foot, or for need with one of eight.
The Longitude might be alfo attained by Obfervations of the Moon, if we $\mathrm{m}_{\text {. }}$. 4 p p 4at. had Tables that would anfwer her Motions exactly ; but after 2000 Years ${ }^{\text {n. } 165 \text { s.p. }}$. 6 cos Experience (for we have fome Obfervations of Eclipfes much Ancienter) we find the beft Tables extant erring fometimes 12 Minutes or more in her apparent Place, which would caure a Fault of half an Hour, or $7^{\frac{t}{2} \text { deg. in }}$ the Longitude deduced, by comparing her Place in the Heavens with that given by the $\tau_{\text {ables. }}$ I undervalue not this Method, for I have made it my Bufinefs, and have fucceeded in it, to get a large Stock of good Luthar Obfervations in order to the Correction of Her Thecry, and as a Ground-W ork for better Tables; but, if we fhould happily attain what we feek, yet the Calculation will be fo perplexed and tedious, that it will be found much more inconvenient and difficult than that I propofe by obferving the Eclipfes of Yupiter's Satelitites, which however at prefent I muft prefer. For Iam perfuaded, that the Eccipfes of the Firft will fcarcely be found above 4 Minutes of Time different from my Calculations, and I hope it will fcarce ever be found to err fo much. But, if the fame Eclipfe may be obferved in two diftant

($35{ }^{8}$)

diftant Places at the fame time, or compared with an Obfervation of the fame Satellite, made within Week elfewhere, the Difference of Meridians will be had fomething better, than by comparing two Obfervations of the fame Pbafis of a Lunar Eclipfe, made in diftant Places. For, whereas it is fomewhat difficult by reafon of the Penumbra to determine the True Time of the Application of either of the Moon's Limbs to the Shadow, the Satellite Eclipfes, efpecially thofe of the Firft, are almoft Momentary.

And, whereas there can rarely happen 4 Eclipjes of the Moon Vifible, the fame Year, thofe of the Satellites happen fo frequently that there are more of them Vifible in one Year than we count Days in it, tho' the Planet $\mathcal{F}_{u} u$ piter lie hid under the Sun's Rays every Year a whole Month together.
I know our Navigators will object againft this Method, that it is difficult to practife at Sea, becaufe long Telefcopes are required, which the Motion of the Sbip will not permit them to manage aboard. But, if it be not practicable at Sea, they cannot deny but that it is at Land; and that the $T_{\text {rue }}$ Longitude of remote Coafts from us is the firft thing defired for the Correction of their Charts; (Let them attempt thefe firlt, and I doubt not but the Succefs will encourage them fo much, that they will readily find means to put it in Practice at Sea;) That the French have ufed this Method fuccefsfully both in Denmark and in their Owin Coun!ry; That a Telefcope of ${ }_{14}$ Foot Long at moft, or for need one of 8 Foot, with broad Eye Glaffes, will be fufficient for this purpofe; That the Difficulty cannot be known till it be tried, and that Ufe renders may things eafy, which our firlt Thoughts conceived impracticable.

If it be required to know whether any of thofe Eclippes which are invifible with us, be vifible in any other given Place, convert the Difference of Meridians betwixt it and London into Time; and, if the Place lie to the Eaft of London, add it to, if to the Weft, fubtract it from, the Time of the Appearance at London; the Sum or Difference accordingly fhall be the true Time of the Eclipje under that Meridian, at which, if fupiter be above the Horizon, and the Sun beneath it, the Eclipfe is there vifible, otherwife not.

Or, By the help of the Ephemerides of the Planet's Places, and a Terreftrial Globe, the fpace on it, in which any of thefe Eclipfes will be vifible, may be found thus:

Firft feek the true Places of the Sun and Fupiter with his Latitude in the Epbemerides, whereby you may find their Declinations and Right Afcenfrons, either by the Vulgar Tables, or the Globe itfelf, exactly enough for this Method.

Bring London on the Glohe to the Meridian, and, detaining it there, note what Deg. of the Equator is cut by it. From this fubtract the Time of the Eclipfe after Noon converted into deg. and min. the Remainder fhews you the Longitude of that Meridian on the Earth, where it is then Noon when the Satellite is EclipJed, which I therefore call the Meridional Longitude of the Eclipfe. Bring this Meridional Longitude under the Meridian, and elevate the nearer Pole to the Sun as much as is his Declination: keep the

(559)

Globe in this Pofition, and, if Fupiter be in Confequence of the Sun, draw a Line of the Globe along the Eaftern Horizon, it paffes over all thofe Places where the Sun is Setting at that Time; but, if fupiter be in Antecedence of the Sun, draw the faid Line on the Globe by the Weftern Edge of the Horizon, it paffes over all thofe Places where the Sun is then Rifing. Jupiter being in Confequence of the Sun, add the Difference of His and the Sun's Right Afcenfions to the Meridional Longitude afore-mentioned, bring the Deg. of the Equator anfwering their Sum under the Meridian, raife the Pole next $\mathcal{F} u$ piter equal to his Declination, and, detaining the Globe in this Pofition, draw a Line again to the Eafecrn Horizon; the Space intercepted betwixt this and the Line of the Sun's Setting, before defcribed on the Globe, comprehends all thofe Places on the Earth where this Eclipfe is feen from Sun Setting till $\mathcal{F u p i t e r}$ is Set. But, if Yupiler were in Antecedence of the Sun, Subtract the difference of his and the Sun's Right Afcenfions from the Meridional Longitude, fet the Degree of the Æquator anfwering the Remainder under the Meridian, and elevate the Pole next Fupiter equal to his Declination: Keeping the Globe in this Pofition, draw a Line by the Wefern Edge of the Horizon, the Space included betwixt this and the Line of the Sun's Rifing contains all thofe places on the Earth, where this Eclipfe is vifible betwixt Fupiter's Rijing and Sun-rije.

When any Eclipse of thefe is obferved, the Difference betwixt the noted Time and that given by the Tables Shall be the Difference of Meridians betwixt the Place of the Obfervation and London.

As the Sun removes from the Conjunction of Fupiter, the Ingreffes of the Satellites into his Shadow become obfervable. When he is about 30° from it, the Emerfions of the Fourth, and at 60°, of the T bird, began to be feen betwixt the Shadow and Body, continuing fo till the Sun be arrived within 60° of the Oppofition of $\mathcal{F} u p i t e r$, when the Emerfions of the Third fall behind nis Body, but the Emerfions of the Fourth continue vifible till he be lefs than 30° diftant from 8 : at which Time they alfo are hid behind him, all the Appearances being made really to the Right Hand, or in Antecedence of $\mathfrak{F} u$ iter, tho' with inverting Telefcopes, they appear on the contrary, to the Left.

After the Oppofition of the Sun and Fupiter we begin to fee the Immerfions of the Satellies from the Shadow now on the Left Hand, or in Confequence of 'Fupiter, but thro' inverting Glaffes on the Right; when the Sun is near 30 deg. from the Oppofition, the Ingrefles of the Fourth, when 60 deg. from it, of the Tbird, begin to be obfervable betwixt the Body and Shadow, continuing fo till the Sun arrive at the fame or rather within fomething a wider Diftance for the Conjunction of Fupiter.
4. By this very eafy Method, to be perform'd with a very little Appa- Ey Mr. Halley, ratus of Inftruments, the Foundations for reftoring Geography may be laid. The Precepts leading to this cannot be unknown to Aftronomers. It may be proper to take notice of one thing, that with a Tube of 7 or 8 feet, which is eafily portable, the Moments of thefe Eclipfes may be obferved diftinctly enough, particularly in the exterior Satellites; efpecially if the Aperture of the Object-glafs be $2 \frac{1}{2}$ or 3 Inches. For thus the greatef Quantity of the
the refracted Rays will come to the Eye, whence thefe very little Stars near Jupiter may be feen, which otherwife would be extinguin'd by his greater Light. And tho' they may be tinged with Colours, and the Limb of fupiler may feem not very bright, yet fince we are only concern'd about the Moment of lofing or of recovering the Light, it is fufficient that they ftrike our Eyes furely, increafed in their Light as much as may be.

The Eclipfes of the Firft Satellite of fupiter are found by the Royal Acdemy at Paris, in Afcertaining the Geographical Site of the Principal Ports of France, almoft Inftantaneous, and with good Telefcopes difcernible almoft to the very Oppofition of Jupiter to the Sun. So that, could the Satellites be obferved with Telefcopes manageable on Shipboard, a Sbip at Sea might be enabled to find the Meridian fhe was in to a very great exactnefs, beyond what we can yet hope to do by the Moon, tho' they feem to afford us the only Means practicable for the Seamen. However, before Sailors can make ufe of the Art of Finding the Longitude, it will be requifite that the Coaft of the wolole Ocean be furt laid down truly; for which Work this Method by the Satellites is moft appofite.

Loing. and Lat. of Derby ; by Mr. Flamiteed ก. 55. P. 1103, 1106. n. 111. p. 237.

Lat. of EEnn. n. 76.p. 2272. Long. and Lat. of Townley. n. 127.p. 684 ,

Las. of Tredagh. n. 164 . p. 749.

Long. of Ox iurd and Dantzick; by M_{r}. Haley. n. 129. p: 7^{24}. vid fup. Cap. IV. $\$$ LXII.
VII. The Longitude of Derby from London W. is 5 or 6 min. the Latitude $52^{\circ} 57^{\prime}$ or 59^{\prime}.
VIII. The Latitude of EEFon in the County of Nortbamptori is $52^{\circ} 15^{\circ}$.

The obferved Latitude of Townley in the County of Lancafter, (as Mr. Townley writes,) is $53^{\circ} 44^{\circ}$. and its Longitude from the Meridian of London, is about 9 Minutes to the Weft.
X. The Latitude of Tredagb in Ireland is $53^{\circ} 40^{\circ}$.
XI. Having carefully confidered the Parallaxes of the Moon in the Obfervations of the Occultations of Mars, Aug. 21. 1676 at Dantzick and Greenwicb, I find from the Immerfion the difference of Meridians between Greenwich and Oxford $4^{\prime} 57^{\prime \prime}$, between Greenwich and Dantzick $1^{\text {b }} 14^{\prime} 50^{\prime \prime}$: By the EmerSion the firft of thefe Differences is found $4^{\prime} 59^{\prime \prime}$, the latter $\mathrm{r}^{\text {b }} 14^{\prime \prime} 4 \mathrm{I}^{\prime \prime}$; which near Agreement fhews the exactnefs of the Obfervations.
XII. 1. I took much Pleafure in comparing the Obfervations of Mr. Flamiteed, about the Eclipfe of the Moon, Fuly 7. New Style 1675. with ours made in the Royal Obfervatory. For from them I fee confirm'd within a few Seconds, by ten new Comparifons, the Difference of Meridians which formerly I had defined to be is Minutes, by a Comparifon of our Obfervations.

(561)

Mr. Flamfleed's Obfervations.	Our Obfervations.	Diff of Meridians.
Pentadacfylus cover'd h. '1. Porply 55 15	The fame, or Seleucus $\quad 206$ is	1100
Porphyrites cover'd 2022 C	The fame, or Ariftarchus 21240	1029
The firft Limb of Sinai 20530	Of the fame, or of Tycho 21630	1100
	or* 1625	105
The firt Limb of Fitna 206 oc	Of the fane, or of Coperricusz 1630	1030
		$\begin{array}{ll}10 & 40 \\ 11 & 0\end{array}$
$\begin{array}{lllll}\text { The frit Limb of Befbicus } & 2 & 23 & 05 \\ \text { Horminius cover'd } & 2 & 26 & 03\end{array}$	Of the fame, or of Manilius 23415 To the fame, or Dionvifus 236 I5	$\begin{array}{llll}\text { Lefs than } & 11 & 05 \\ \text { Greaterthan } & 10 & 12\end{array}$
It touch'd the firft Limb of Corocondometes 23930	Of the fame, or Palus Somni 25020	1050
It touch'd Palus Maotis 24500	The fane, or Mare Cafpium 25520	$10 \mathrm{2c}$
	Or* ${ }^{*} 5540$	$10 \quad 40$
$\begin{array}{llll}\text { Mror is wholly cover'd } & 2 & 50 \\ \text { Immerfion }\end{array}$	The fame 301 lc	1030
Immerjon $\quad 25655$		1050 1045

This Mark * denotes the particular Determination of Mr. Cafini ; in the reft he agreed with Mr. Picbard and Mr. Romer.
2. The Middle of the Lunar Eclipfe, Fan. 1. New Style, 1675. h. " " n. r23.p. 56z. is derived from a Comparifon of the Beginning and End

Of two equal Pbajes
From the Obfervations of Mr. Flamfeed the Middle of the Eclipse
32000
may be derived in a like manner. For he at $2^{\mathrm{h}} 29^{\prime} 30^{\prime \prime}$, obferved the Diftance of the Cufpids to be $17^{\prime} 16^{\prime \prime}$. and at $3^{\mathrm{h}} .52^{\prime} 45^{\prime \prime}$, the Eclipfe decreafing he obferved the fame Diftance $18^{\prime} 57^{\prime \prime}$, that is, $1^{\prime} 41^{\prime \prime}$. greater. Therefore the Middle of the Eclipse is nearer the latter Obfervation than the former. The middle Time between both the Obfervations was $3^{\mathrm{h}} 11^{\prime \prime} 7^{\prime \prime}$. Therefore the Middle of the Eclipse is derived from hence fomething later. Whence the Difference of Meridians would come out lefs than 9'; which but little agrees with more certain Obfervations of the preceding Summer Eclipfe, from whence I determin'd it to be $10^{\frac{3}{4}}$ Minutes. Our firft Obfervation compared with the former of Mr. Flamfeed, which was a little later, exhibits the Difference of Meridians greater than $8^{\prime} 35^{\prime \prime}$. Our latter, being later than Mr. Flamfieed's latter Obfervation, would exhibit the Difference of Meridians lefs than $9^{\prime} 40^{\prime \prime}$.

The End as eftimated by Mr. Flamfeed - - 40715 And by us - - $\quad 41525$ Would infer the Difference of Meridians to be _o 0810 The Beginning obferved by Dr. Halley at London - 21600 With that obferved by us - - 22435 Would make the Difference of Meridians to be - 00835

Therefore from this Eclipfe the Difference of Meridians would come out lefs by about two Minutes than by the Eclipfe of the foregoing Summer, which yet I prefer far before this. Not only in refpect of the greater Facility of determining the Times of the Appulfes and Emerfions

(562)

in that total Eclipfe than in this partial one; but alfo becaufe of the clearnefs of the Air, which we enjoy'd alike in that Eclipfe, whereas in this the Air was very ferene at Paris, but at London it was cloudy. Therefore I judge we ought to ftand by the former, till we can determine the Matter with greater exactnefs, by Obfervations of the Immerfions and Emerfoons of the Sa:ellites of \mathcal{F} upiter, which I think better fitted for this purpofe.
By Mr. Flam- 3. I can hardly truft to the Difference of Merdans, derived from the Aced. Ib. p. 565. Eclipfe of the Moon of June 27. 1675. obferved at London and at Paris; for tho' 1 believe the Times of the Pbajes obferved by you to be very accurately determin'd; yet as I was obliged to make ufe of a Quadrant of only 20 Inches, becaufe a larger was not at hand, which had only plain Sights, in in order to correct my Clock; therefore I can hardly be fure of the Moment of any Phafis, nearer than to a Minute. I was better furnifhed when I obferved the laft Eclipfe of Dec. 22. 1675 but as the Air was fomething cloudy, and becaufe of the oblique Incidence of the Moon into the Eartb's Shadow, its Appulfe to the Spots was very fow, and thence this Eclipfe was not fo proper for this purpofe. Therefore the Difference of our Meridians till remains uncertain within two Minutes, which I do not queftion but we fhall fometime determine to our Wifhes.

Long. of Stras- XIII. The Meridian of Paris is diftant from that of Strafourg $22^{\prime} 4^{\prime \prime \prime}$. burg and Paris; t_{y} M. Bulliaidus. ก. 125 . p. 610. vid. frip cap.
IV. f.
xivi. Long. of Avignon; by Mr Halley. Ph. Col. n. 5. P. ${ }^{126 .}$ Loos. \& Lat. of feveral Places in France Eclipfe the Meridian of Paris is diftant from that of London $6^{\prime} 3^{8^{\prime \prime}}$ Eafterly. From the Obfervation of the Eclipse of Yuly 7. 1675. this appear'd to be 10's as alfo from the Eclipse of Fan. II. of the fame Year.
XIV. Avignon is $19^{\prime} 40^{\prime \prime}$, or $4^{\circ} 50^{\prime}$ to the Eaftward of London.
XV. M. Cafini having compared together the Obfervations of the Solar Eclipfes of Fuly 12.ft.n. 1684. and made fuch Reductions as the Parallax requires, lays down the Longitudes from Paris to

Aix in Provence $14^{\prime} \mathrm{E}$. The Lat. by M. Gautier is $43^{\circ} 30^{\prime}$. Avignon $8 z^{\prime \prime} \mathrm{E}$.
Lyons 8^{\prime}, or $13^{\prime} \mathrm{E}$.
Rofes $4^{\prime} \mathrm{E}$. The Lat. by M. Cbaffeles $42^{\circ} 10^{\prime}$.
Honfleur 7^{\prime} W.
Pau II'. W. The Lat. by P. Ricbaud $43^{\circ} 30^{\prime}$.

Long. of L isbon n. 146 . p. 35 r. vid. fup. Cap. iv. S. XLIX.

Letr. of Ma-

 drid; by E . of Sandwich. n. 22. P. 390.XVI. Mr. Jacobs an Englifh Merchant refiding at Lisbon, informed Mr. Flamfeed, that he oblerved the Biginning of the Lurar Eclipfe, Feb. II. $168^{\frac{1}{2}}$ there at $8^{\text {b }} 31^{\prime}, p . m$. which gives the Difference of the Meridians betwixt the Obfervalory at Greenroich and Lisboin, $41^{\frac{1}{2}}$ Minutes of Time, or $10^{\circ} 22^{\prime}$, confiderably different from our Maps and Sea-Cbarts.
XVII. The Earl of Sandruich efteem'd, by the Sun's Altitude in the Sow fice, and by other Meridian Altitudes, the Latitude of Madrid to be $40^{\circ} 10^{\prime}$; which differs confiderably from that affigned by others, the General Chart of Europe giving to it $41^{\circ} 30^{\prime}$, the General Map of Spain $40^{\circ} 27^{\prime}$, and a large Provincial Map of Cafile $40^{\circ} 38^{\prime}$.

(563)

XVIII. 1. By many concurring Obfervations of the Moon and other Long of Seville Planets, I have found that the Diftance of the City of Seville from Uraniburg, as to Longitude, is 90^{\prime} or $1 \frac{1}{2}$ Hour, the Difagreement being within 2^{\prime}.
2. The Profeffor fhould confider again, how he can make the Diftance r g, as to Longitude, is 90^{\prime} or $1 \frac{1}{2}$ Hour, the Difagreement being within 2'.
2. The Profeffor fhould confider again, how he can make the Diftance of the Meridians of Seville and Uraniburg to be 90.' For the Obfervations of the Eclipfe of the Moon, Zan. $\frac{1}{T T}, 1675$. make the Middle at London $7^{\text {h }}$ $11^{\prime \frac{1}{2}}$ after Noon; to which the Obfervations at Paris agree. The Obferva-
 Yrofeflor at se-
vile, $n, 118$. ville. n 118 .
p. 427.
by
Mr. tions of the faid Profeflor fix the Middle at Seville at $6^{\mathrm{h}} 47^{\prime}$. Therefore the Difference of our Meridians is $24 \frac{1}{2}$. But between us and Uraniburg there are only 52^{\prime}. Therefore the Difference of Meridians between Secille and Uraiziburg can be only $1^{\mathrm{h}} 16^{\frac{1}{2}}$. I am afraid thefe Obfervations of the Profeffor are made only with his naked Eye; for the Times of Incidence and Emerfion make $\mathrm{I}^{\text {h }} 5^{\prime}$. whereas our Obfervations, thofe of Paris, and of Hevelius, do not make thofe Times greater than $\mathbf{I}^{\mathrm{h}} \mathbf{I}^{\frac{\prime ⿱}{2}}$. or perhaps fomething lefs.
XIX. The Difference of Meridians of Copenbagen and Paris by the Obler- Lonn. of Co. vations of 'Fupiter's Satellites, is found by Mr. Picard to be $0^{\text {h }} 41^{\prime} 40^{\prime \prime}$.
XX. An. 1680. Ori. 23. St. v. S. Fof. Pontbia, and Marco Antomio Cellio, Long, of Rome with a Telefcope of ${ }_{25}$ Palms, obferved the Total 1 mmerfion of the firft Sa-by Uran Flamtellite in fupiter's Shadow at Rome, at $10^{\text {h }} 7^{\prime} 53^{\prime \prime} ; p . m$. which in our $O b$ - fteed. fervatory here I noted at $9^{11} 15^{\prime} 41^{\prime \prime}$, whofe Difference is the Difference of ${ }^{\text {n. } 177 . \text { p. } 1215}$. our Miridians $=52^{\prime} 12^{\prime \prime}$, or $13^{\circ} 03^{\prime}$. Again, Fan. 28. 1685. S. Francis Blancbini obferved the Total Immerfion of the Firft at Rome, at $11^{\text {b }} 19^{\prime \frac{3}{4}}$ which I faw not here, but my Numbers give at $10^{h} 27^{\prime \frac{1}{4}}$: Therefore the Difference of Meridians is $52^{\frac{1}{2}}$, and Rome lies fo much more Eafterly than the Obfervatory at Greenwicb; agreeing with the former Obfervation.

The Noble Tycbo judged therefore not much amifs, when he placed Uraniburg and Rome under the fame Meridian; for by feveral Obfervations of Satellite Eclipfes it is evident, that the Difference of Meridians betwixt Uraniburg and our Obfervatory is $51^{\prime} 10^{\prime \prime}$ of Time; fo that Rome lies only one Minute of Time, or $\frac{1}{4}$ of a Deg. to the Eaft of Uraniburg.
XXI. I. Dantzick is by many and undoubted Obfervations proved to be Lens. of Dant$1^{\mathrm{h}} 1_{5}^{\prime} 30^{\prime \prime}$, more Eafterly than London.
zick; by M r.
2. An. 1683. On the very Day of the Sumner Solfice, Fun. 2 I. New Style, , Halley. P. P. Ph. at Dantzick, the Sun's Altitude at Noon was $59^{\circ} 7^{\prime}$. by a certain fmall Brafs zatick of bant M. Quadrant, but very exact. But on the Day of the Autumnal Equinox the Heverius. Sun's Altitude at Noon was found $35^{\circ} 27^{\prime}$.
A. ISI. P. 330.
n. $154, \mathrm{P} .424=$
XXII. The Longitude of Nuremburg has been formerly ftated in ${ }^{\circ}$ from Long. of NuLondon, and fince found to be fo by Oblervations of the Eclipfe of the Sun remburg;. Fuly 2. 1684. which made it $44^{\frac{1}{2}}$ of Time.

Zong. of Mosco, Leipfick and Aleppo; by n. 392. p. 453 . vid. fup. Cspp. v. §. Lill.
7. 18 r. p. 86 . it is 52 Min.
T.at. of Several Places in Ruffiac ib. p. 454 .
XXIII. The Duration of the Lunar Eclipfe, Apr. 5. 1688. is made by M. Timmerman from $7^{\text {h }} 38^{\prime}$ about $10^{\text {b }} 45^{\prime}$, which agrees within 8 or ro Minutes with our Tables, that never err fenfibly in the Continuance of Eclipfes; and fo much ought to be allowed to an Obferver not fufficiently inftructed to diftinguifh the Penumbra from the true Shadow, tho' a fmall Telefcope were ufed in this Obfervation. Let us conclude then, that the End was at $10^{\text {h }} 40^{\prime}$ at Mofco. We do not find that this Eclipfe was obferved at London: However this defect is in good part fupplied by an Obfervation thereof made at Leipfick, by M. Gotfrid Kirck, and publifhed in his Ephemerides for the Year 1689 ; where the End is determined at $8^{\mathrm{h}} 54^{\prime}$ p.m. Hence Mofco will be $\mathbf{1}^{\mathrm{B}} 46^{\prime}$ to the Eaftward of Leijfick; and the Difference of Meridians between London and Leipfick being already determin'd 49', it will follow that Mofco is $2^{\mathrm{h}} 35^{\prime}$ to the Eaft of London, or $38^{\circ} 45^{\prime}$ of Longitude, which from other Accounts we find to be very near that of the City of Aleppo in Syria.

By the fame hand we have procured the Latitudes of the following Places, obferved, as 'tis faid, with a large Quadrant.

Mofo	55°	34^{\prime}
Yerefare-	57	44
Wologda	59	19
Wofak	61	15
Arcb-Angel -	64	30

Latitudes of fome temarkable Places; by M r. Firancis Vernon. ก. 124. P. 582. Jan. An. 1675.
XXIV. I have been as curious as I could in taking the Latitudes of fome remarkable Places: As I find them, I fhall give them you.

Latitudes of

 Conftantinofle and Rhodes; di relled io A. B.UTher; Ey Mr. Uher; n. 178 .p. 1295 . Dec. AD. 1885.
XXV. Upon Intimation of your Grace's Defires, and upon Importunity of fome Learned Men, having finifhed a Table, as a Key to your Grace's exquifite Difquifition, touching Afa properly fo called; I thought myfelf obliged to give both you and them a Reafon, why, in the fituation of Byzantimapait 1 and Pouch (w Antients, and from the Tables of our late and beft Geographers; and confequently, Diffenting in thefe, have been neceffitated to alter the Latitudes (if not Longitudes) of moft of the remarkable Cities of this difcourfe. And firft for Byzantium, the received Latitude of it by Appianus, Mercator, Ortelius, Maginus, and fome others, is $43^{\circ} 5^{\prime}$. And this alfo we find in the Bafll Edition of Ptolemy's Geograpby, procured by Erafnus out of a Greek MS. of Petticbius. The fame likewife is confirmed by another choice MS. in Greek, of the moft Learned and Judicious Mr. Selden, to whom for this Favour

(565)

and feveral others I ftand obliged. And as much is expreffed in the late E dition of Ptolemy by Bertius, compared and corrected by Sylburgius, with a Manufcript out of the Palatine Library. Wherefore it cannot be doubted, having fuch a croud of Witneffes, but that Ptolemy affigned to Byzantium, as our beft Modern Geographers have done, the Latitude of $43^{\circ} 5^{\prime}$. And this will farther appear, not only out of his Geography, where it is often expreffed,
 where defcribing the Parallel paffing dià Buzautis, he affigns to it $43^{\circ} 5^{\prime}$. What was the Opinion, concerning Byzantium, of Strabo preceding Ptolemy, or of Hipparcbus preceding Strabo, or of Eratofthenes antienter, and it may be accurater than all of them, (for Strabo Lib. 2. calls him $\tau \varepsilon$ हeviaion
 Hipparcbus often reprehend Eratefbenes, as Ptolemy after him doth Marinus, their Writings not being now extant, (unlefs thofe of Strabo) cannot be determined by us. But as for Strabo, in our Inquiry we carp expect little Satisfaction; for his Defcription of Places having more of the Hiftorian and Pbilofopher, (both which he hath performed with fingular Gravity and Judgment) than the Exactnefs of a Matbematician, who ftrictly refpects the Pofition of Places, without Inquifition after their Nature, Qualities and Inhabitants, (tho' the beft Geography would be a Mixture of them all, as Abulfeda, an Arabian Prince in his Reclification of Countries above 300 Years fince hath done ;) I fay, for thefe Reafons we can expect little Satisfaction from Strabo, and lefs may we hope for from Dionyfus Afer, Arrianus, Stepbanus Byzantius, and others. Wherefore, next having recourfe to the Arabians, who in Geography deferved the fecond Place after the Gracians, I find in Naffir Eddin the Latitude of Byzantium, which he terms Buzantiya, Confantiniya, to be 45°, and in Uleg. Beg's Aftronomical Tables the fame to be expreffed. Abulfeda chiefly follows four Principal Authors as his Guides, in the compiling of his Geograpbical Tables; thofe are, Alfaras, Albiruny, Hon Saiid Almagraby, laftly Ptolemy, whofe Geography he terms a Defcription of the Quadrant, (or the fourth Part of the Earth) inhabited; and all thefe, according to his Affertion, place Byzantium in 45° of Latitude. And here it may juftly be wondred, how this Difference fhould arife between the Greek Copies of Piolemy, and thofe tranflated into Arabick by the Command of Almamon, the Learned Caliph of Babylon; for Abulfeda expreny relates, that Ptolemy was firf interpreted in his Time, that is, in the Computation of Almecinus in Erpenius's Edition, and of Emir Cond a Perfan Hiftoriograpber, more than 800 Years fince: Concerning which Abulfeda writes thus, This Book (difcourling of Piolemy's Geograpby) was tranlated out of the Grecian Language into the Arabick for Alnamon: And in this I find (by three fair MSS of Abulfeda) Byzantium to be conftantly placed in 45°. and as conftantly in the Greek Copies in $43^{\circ} 5^{\prime}$. But in the rgóxsesos Kávores of Cbryfococca, out of the Perfian Tables, made about the Year 1346. in Scaliger's Calculation, it is placed in 45°. To reconcile the Difference between the Greeks and Arabians may feem impoffible, for the common Refuge of flying to the Corruption of Numbers by Tranfrribers, and laying the Fault on them which fometimes is the Author's, will
not help us in this particular; feeing the Greek Copies agree among themfelves, and the Arabick Copies amongft themfelves. The beft way to end the Difpute will be, to give Credit concerning the Latitude of Byzantium, neither to the Greeks nor Arabions. And that I have reafon for this Affertion, appears by feveral Obfervations of mine at Coinfantinople, with a Brafs Sextant of above 4 Foot Radius. Where taking, in the Summer Solfice, the Meridian Altitude of the Sun without ufing any π goo α Qásperts for the Parallax and Refraction, (which at that time was not necellary, I found the Latitude to be $41^{\circ} 6^{\prime}$. And in this Latitude in the Cbart I have placed Byzantium, and not in that either of the Greeks or Arabians. From which Obfervation, being of fingular Ufe in the Rectification of Geography, it will follow by way of Corollary, that all Maps for the North Eaft of Europe, and of Affu, adjoining upon the Bofphorus Thracius, the Pontus Eiuxinus, and much farther, are to be corrected; and confequently the Situation of moft Cities in Afia, properly fo called, are to be brought more Southerly than thofe of Ptolemy by almoft two entire Degrees, and than thofe of the Arabians by almoft forr.

Concerning Rhodes, it may be prefumed, that, having been the Mother and Nurfe of fo many eminent Mathematicians, and having long flourifhed in Navigation, by the Direction of thefe, and by the Vicinity of the Pbonicians, they could not be ignorant of the precife Latiude of their Country, and that from them Ptolemy might receive a true Information. Tho it cannot be denied, but that Ptolemy in Places remoter from Alexandria hath much erred. I fhall only inftance in our own Country, where he fituates पovoivov, that is London, in 54° of Laticude; and the ro pisoov or the middle of the Ille of Wight, (which in the printed Copies is falfely termed 'Ovixizers, but in the MSS. rightly 'Ouñx15s,) in 52° and 20^{\prime} of Latitude. Whereas London is certainly known to have for the Altitude of the Pole, or Latitude of the Place, only 51° and 32^{\prime}, and the Middle of the Ifle of Wight not to exceed 50° and fome Minutes.

But in my Judgment Ptolemy is very excufable in thefe and the like Errors, of feveral other Places far diftant from Alexandria; feeing he muft for their Pofition neceffarily have depended either upon Relations of Travellers, or Obfervations of Mariners, or upon the Longitude of the Day meafured in thofe times by Cleppydre: All which how uncertain they are, and fubject unto Error, if fome Celeftial Obfervations be not joined with them, and thofe exactly taken with large Inftruments, (in which kind the Antienis had not many, and Our Times (excepting Tycho Brabe, and fome of the Arabians) but a few,) I fay no Man, that hath converfed with Modern Travellers and Navigators, can be ignorant. Wherefore to excufe thofe Errors of his (or rather of others fathered by him) with a greater Abfurdity, by aiferting the Poles of the World fince his time to have Changed their fite, and confequently all Countries their Latitudes, as Mariana the Mafter of Copernicus, and others after him have imagined: Or elfe to charge Ptolemy, being fo excellent an Artift, with Ignorance, and that even of his own Country, as Cluverius hath done, (from which my Obfervations at Alexandria, and

（ 5^{67} ）

Memphis，may vindicate him，）the former were too great a Stupidity，and the latter too great a Prefumption．But to return to Rbodes，an Inand（in Eufatbius＇s Comment upon Dionyfius＇s Msgaínnors）of 920 Furlongs Circuit， where according to Ptolemy the Parallel pafling dia＇Póds hath 36° of Lati－ tude，and fo hath Lindos，and＇In入uorós，the Chief Cities of the Illand；the fame is confirmed by the MS．but where the printed Copy and Euftatbius read ＇Inतu⿱一兀oós，which Mercaior renders Talyjus，the MS．renders＇Iassós．Abul－ feda in fome Copies fituates the Ifland Rbodes，（for he mentions no Cities there）in the Latitude of 37 Deg．and 40 Min．and the Geography of Said Ibin Aly Algiorgany，commended by Gilbertus Gaulmyn，in 37° ，if it be not by a Tranlpofition in the MS．of the Numerical Letters in Arabick， 37 for 36 ． which by reafon of their Similitude are often confounded in Arabick MSS． By my Obfervations under the Walls of the City Rbodes，with a fair Brafs Aftrolable of Genma Erijfus，containing 14 Inches in the Diameter，I found the Latilude to be 37° and 50^{\prime} ．A larger Inftrument I durt not adven－ ture to carry on Shore in a Place of fo much Jealoufy．And this Latitude in the Chart I have afligned to the City Rbodes，（from the Ifland fo denomi－ nated，upon which on the North Eaft fide it ftands fituated）better agree－ ing with the Arabians than with Prolemy，whom I know not how to ex－ cufe．

XXVI．In the Second Book of the Voyage de Siam des Peres Fefrites，are Lom．ondidac． related two Obfervations of the Satellites of Jupiter，capable，if well made，Cape of good Hope．n．$^{2} 85$. to afcertain the Longitude of the Cape of good Hope．The fint was therep．253． made fune 2d．f．n．1685，when at $1 \mathrm{Ih} 29^{\prime} 20^{\prime \prime}$ ，the Firft or innermoft Satellite touched the Weftern Edge of Fupiter，and at IIh $30^{\prime} 50^{\prime \prime}$ it ap－ peared no more：This Obfervation is faid to be made with an excellent Te－ lefcope of 12 Foot．The other was on Fune the $4^{t b}$ following f ．n．when the Emerfion of the fame Satellite was obferved at $9 \mathrm{~h} 37^{\prime} 40^{\prime \prime}$ ，from which latter is concluded，that the Lorigitude of the Cape is 18° to the Eaf of Paris；for that the faid Emerfion，according to the Calculus of Caffini，in the Meridian of Paris，ought to have happen＇d at 8h 26＇．This fame Emerfion is computed by Mr．Flamfiteed，at $8 \mathrm{~h} 19^{\prime}$ ，at London，that is 3 min ．Jater than by S ．Culd $12 i$ ；and confidering that neicher is verified by Oblervation in Europe，the Longitude hence deduced is doubtful at leaft 3 min．if this had been the only Obfervation．But the former being confidered will yet fhew that there is a much greater Doubt ftill remaining：For from certain A－ Itronomical Principles the Parallax of the Orb，or Difference between the Place of Fupiter feen from the Sun and Earth was，at the Time of the firft Obfervation， $9^{\circ} 9^{\prime}$ ；which Arch that Satellite moves in $1^{n} 6^{\prime}$ ．and the utmoft Duration of an Eclipfe hereof in this Pofition of fupiter being farce $2^{\text {h }} 20^{\prime}$（as appears by the accurate Obfervations of M．Caffini and M．Flam－ fieed）it will follow，that from the Immerfoon behind Fupiter＇s Weftern Edge to the Emerfion out of the Shadow，there could not be full $3^{\text {n }} 26^{\prime}$ ．Where－ fore the Emerfion out of the Shadow，on Fune $2 d$ ，ought according to the time of Immerfion，to be at $14^{\text {b }} 56^{\prime}$ ，at the lateft at the Cape；which by

Mr. Flampleed's Calculus was at London $13^{\text {h }} 51^{\prime}$. or according to S. Cafini at $13^{b} 5^{\prime}$ at Paris. Hence the Longitude of the Cape will be found but 14 deg. and a half at moft to the Eaff of Paris; fo that thefe 2 Obfervations will differ in the Refult about a quarter of an Hour, which is a little too much. However there are fome Reafons that feem to argue for this latter Longitude rather than the former; for it is much eafier to obferve what becomes of a luminous Object that appears, than to wait upon the firft Appearance of a Star eclipfed: And it is probable that the Satellite might in the latter Time be feveral Minutes emerged out of the Shadow, when they might firft perceive it ; but they could not but fee the Application to the Body of 7upiter in the Former, if we may fuppofe their Telefcopes fo good as they are faid to be. And that the Cape of good Hope is not more than an Hour to the Eaft of Paris, is proved by the conftant Confent of our Navigators, who find by their Reckonings that the Inand of St. Helena is about 22 or 23 deg . of Longitude to the Weftward of the Cape: (and that Sailing both backwards and

Lerg of St. Halena, Ib. forwards, 'tis the fame, which takes away the Objection of Currents) Now by accurate Obfervations made at St. Helena, and compared with others made in Europe at the fame time, the Longitude of that Ine is certainly about $8 \frac{3}{2}$ deg. to the Weft of Paris; it follows therefore that the Cape cannot be much more than 14 or 15 deg. to the Eaft of Paris; and undoubtedly it muft be lefs than 18°; for 3 deg. is much too great an Error to be committed in fo fhort a Diftance of Sailing.

The Long. of Madagafcar; by Mr. Flamfteed. ก. $143 \cdot p .19$. wid. fup. Cup.
IV. § XLVIII.
XXVII. Mr. Tbomas Heathcot was Chirurgeon to a Ship, which, Aug. 19. 1681. lay at the bottom of a deep Bay on the Weftern Shore of Madagafcar, and that part which the Portuguefe and our Maps call the Terra del Gada; He had then with him on Shore, a Quadrant of two Foot Radius, and a Telefcope of 9 Foot, but no Clock; to fupply which Defect, he made a Pendulum of a String and a Bullet 39 Inches long, that each fingle Vibration might anfwer a Second of Time. Waiting the Beginning of the Eclipfe with his Glafs, as foon as he faw the true Shadow enter on the Moon's Limb, he caufed his Friends who affifted him, to make the Pendulum vibrate, and count its Vibrations; of which they had numbred $140=2^{\prime} 20^{\prime \prime}$ of Time, when he took the height of Procyon (then Eaft of the Meridian) 25° 39^{\prime}. The next day he obferved the Sun's Meridional Height with the fame Quadrant, whence he found the Latitude of the Place $19^{\circ} 29^{\prime}$ Soutb: hence the time when he took the height of Procyon is found $4^{\mathrm{h}} 51^{\prime}$ mane, and fubtracting the $2^{\prime} 20^{\prime \prime}$, paft fince the obferved Beginning of the Eclipfe, its true Beginning was at Which at the Obfervatory here I noted at - I $50 \quad 40$ Therefore this Part of Madagafcar is more Eafterly -—— ${ }^{2} 58 \quad 00$ or $44^{\circ} 30^{\prime}$, which our Maps make 52°; that is $7 \frac{1}{2}$ deg. more remote from it than it really is.

The Longs, and Las. of Balla.
XXVIII. Taking the Obfervations of the Occultation of the Bull's Eye, OEt. 28. 1680. under the Examination of a Calculus, I find that at 86^{\prime}

(569)

or the Immerficn at London, the true Place of the Moon correct by Parallex fore in India;

 the Moon was $I I 5^{\circ} 54^{\prime}$, that is $1^{\circ} 2 \mathbf{1}^{\prime} 36^{\prime \prime \prime}$, more than at $8^{\mathrm{h}} 6^{\prime}$, at London. IV. Sv. S.xvi. Now according to the Moon's Velocity at that Time, fhe paffed an Arch Feb, An. 168s. of $1^{\circ} 21^{\prime} 36^{\prime \prime}$, in $2^{\text {h }} 8^{\prime} 40^{\prime \prime}$, of time; fo then at $10^{\text {h }} 14^{\prime} 40^{\prime \prime}$, at London, the Moon was in the fame Place as at $10^{\mathrm{h}} 00^{\prime}$, at Ballafore Road; whence the Difference of Longitude will be $-545^{\prime} 20^{\prime \prime}$, or $86^{\circ} 20^{\prime}$. Ballafare being fo much to the Eaftward of London.
2. By the Calculation of the Immerfion of the Bull's Eye, Dec. 1680. I $v_{i d} d$ fapp. Cap. find that at the $14^{\text {h }} 49^{\prime}$, at Ballafore the Moon's true Place was II $6^{\circ} 30^{\prime \text { IV. SLxvir }}$ $30^{\prime \prime}$, and at $7^{h} 46^{\prime} 12^{\prime \prime}$, the correct Time of the Immerfon at Dantzick, the true Place was $I I^{\circ} 55^{\prime} 11^{\prime \prime}$; that is $1^{\circ} 35^{\prime} 20^{\prime \prime}$, fhort of the Place deduced from the Obfervation at Ballafore Road; which make in Time $2^{\text {h }} 32^{\prime \prime}$ $40^{\prime \prime}$. Whence it follows, that $10^{b} 18^{\prime} 52^{\prime \prime}$, at Dantzick make $14^{\text {h }} 49^{\prime}$, at Ballafore Road, and the Difference of Longitude $4^{\text {h }} 30^{\prime} 8^{\prime \prime}$; and Dantzick being $1^{\text {h }} 1^{\prime} 5^{\prime} 30^{\prime \prime}$, more Eafterly than London, Ballafore Road will be from London $5^{\mathrm{h}} 45^{\prime} 38^{\prime \prime}$, or $86^{\circ} 24^{\prime}$. and the fame Difference of Meridians will be found $86^{\circ} \mathrm{I} 4^{\prime}$, if you make ufe of the Immerfon at Dantzick.
3. For farther Confirmation hereof, Mr. Benj. Harry, being afhore at Ballafore Town, obferved with very great Care and Exactnefs, Nov. 18, 1680. that at $9^{h} 13^{\prime}$, the Star, which Tycbo calls, in Cotyla dextra Aquarii duarum procedens, (and which was then in Aquarius $28^{\circ} 5^{2^{\prime}}$, and Lat. $2^{\circ} 46^{\prime}, N$.) was in a right Line with the Cufps of the Moon, then near the firt Quarter. The Star's place is confirmed by the Agreement of Hevelius's Obfervations with thofe of Tycbo; and the Theory of the Moon cannot be confiderably faulty in that Part of the Orb, it falling precifely on her greateft Equation: wherefore by the Theory and Numbers of Horrox, the true Place of the Moon at $2^{\mathrm{h}} 53^{\prime}$ at London, is found $\approx{ }^{2} 29^{\circ} 22^{\prime} 10^{\prime \prime}$. but at $9^{\mathrm{h}} 13^{\prime}$, at Ballafore, her Place was in $w^{m} 29^{\circ} 4 \mathrm{I}^{\prime} 17^{\prime \prime}$; that is, $19^{\prime} 7^{\prime \prime}$ more than at London, which in Time gives $3^{6^{\prime}}$; fo that $3^{\text {b }} 29^{\prime}$ at London, was $9^{\text {b }}{ }^{1} 3^{\prime}$, at Ballafore, and the Difference of Long. $5^{\text {b }} 44^{\prime}$ or 86° oo' precifely; which the Dutch Maps make full out 99° : And the French Maps of Sanfon, pretending to correct them, have made them 5° worfe, and the Error 18° completely. What then is to be thought of the Defcriptions of thofe Places which have been but feldom vifited?
XXIX. I have deduced $\eta^{\text {b }} 23^{\text {. }}$. for the Difference of Longitudes between Long. of $\mathrm{C}_{\text {an }}$ Canton and Paris, from the Exit of Mercury out of the Sun's Dink obferved rons byM. at Canton and Nurimburg; and from the Liclipfes of the Moon obferved at p. 3 It. Nurimburg and Paris.

Vid. fup. Cap.
XXX. From the greateft Meridian Altitude of the Polar Star, obferved Laf. and Long, by the Fathers of the Society of Fefus, Dec. 31. 1694. with a correct Inftru- of Pekin $;$ by ment, which was $42^{\circ} 16^{\prime} 50^{\prime \prime}$, the Refraction being fuppofed to be $I^{\prime} 17^{\prime \prime \prime}$, and ${ }_{2}$ 237. P. 53. the Diftance of the Pole Star from the Pole at that time was $2^{\circ} 19^{\prime} 57^{\prime \prime}$, whence the Altitude of the Pole is $39^{\circ} 54^{\prime} 56^{\prime \prime}$.

Vol. I.
D d d d
From

(570)

From the leart Meridian Altitude of the faid Polar Star, obferved on the 7. 8, and 13 Days of May, 1695 . with a correct Inftrument to be $37^{\circ} 36^{\prime}$ $40^{\prime \prime}$. fuppofing the Refraction to be I^{\prime} 2 $8^{\prime \prime}$. and the Diftance of the Polar Star from the Pole to be $2^{\circ} 19^{\prime \prime} 50^{\prime \prime}$. The Allitude of the Pole is found $39^{\circ} 55^{\prime} 2^{\prime \prime}$.
Neglecting the Refraction, the greateft Altitude of the PoleStar derived from the Obfervation of Dec, 31. aforegoing, was " " at the Beginning of May _ 421643 And the leaft Altitude of the fame was then - 373640 Therefore the Difference of Altitudes - - 04400_{3} And the Diftance of the Polar Star from the Pole -- 0220 O1 $\frac{1}{2}$ And the apparent Altitude of the Pole -- - $395^{6} 41^{\frac{1}{2}}$ To this apparent Altitude the Refraction by my Table is - oo or 10 Wherefore the Altitude of the Pole at $P_{\text {cking }}$ is - $39553^{1 \frac{1}{2}}$

For the Longitude of the City of Peking, the Immerfion of the firt of Yupiter's Sacellites into the Shadow of Yupier was oblerved Fan. 18. 1695 . at $12^{\text {n }} 5 \mathrm{y}^{\prime} 14^{\prime \prime}$.

Oir Tables on that Day reprefent this Immerfion to have been at $5^{\prime \prime} 18^{\prime \prime} 49^{\prime \prime}$. Now the Obfervations made in the fame Month in the Rogal Obfervalory at Paris fhew that the Tables were retarded at that time $2^{\prime \prime} 30^{\prime \prime}$.
Therefore that Immorfion was at Paris at $5^{\text {ha }} 16^{\prime \prime} 19^{\prime \prime}$. Therefore the Difference of Meridians between the Cities of Paris and Pcking will be $7^{\mathrm{h}} 34^{\prime} 55^{\prime \prime}$.
But as from other Obfervations the fame Difference of Meridians has been formerly found to be $7^{\mathrm{h}} 33^{\prime}$. we may affume it $7^{\mathrm{n}} 35^{\prime \prime}$. .

Lat. nf St. Salvadore. n. 105
p. 9 :

Lat. of Bridge-
Town. n. 189. p. 370 .

A Dejcription of Nova Z:mbla; by M. Nich.
Witien 11. 101 . p. \hat{i}.

Fifg. 205.
Niar. All. 1674
XXXI. St. Salvadore in Brafil is in the Soutbern Latitude $12^{\circ} 47^{\prime}$.
XXXII. Bridge-Town in Barbadoes is in the Nortiorn Latitude of $12^{\circ} 5^{\prime}$.
XXXIII. I. I herewith fend you what I have received out of Mufcory, which is a Nere Map of Nova Zembla and Weigats, as it hath been difcover'd by the exprefs Order of the Czar ; and drawn by a Painter, call'd Panelapoet $/ k i$, who fent it me from $M o f r o$ for a Prefent; by which it appears, that Nova Zembla is not an $1 /$ land, as hitherto it hath been believed to be; and that the Mare Glaciale is not a Sea, but a Sinus, or Bay, the Waters whereof are frefh: Which is the fame with what the Tartars do alfo affure us, who have tafted thefe very Waters in the midft of the Sinus. The Samojeds, as well as the Tartars, do unanimoully affirm, that paffing on the back of Nova Zembla, at a confiderable Diftance from the Shore, Navigators may well pafs as far as Fapan. And 'tis a great Fault in the Englifh and Dutch, that, feeking to get to Fapan on the South-fide of Noria Zembla, they have almoft always pais'd the Weigats.

The Letter O in the great River Oby marks the Place of a Cataract or Fall of Waters. The Letter K denotes the Conjunction of Zembla with the Continent. The River marked L runs from China, called Kitaie; which is not every where Navigable, by reafon of the Rocks, and other Inconveniences that obftruct the paffing of Veffels. Weigats itfelt is very difficult to pals, becaufe of the great Quantity of Ice continually falling into it out of the River Oby, whereby that freight Paffage is ftopped up. The Sa-

(57I)

mojeds go every year a Fifhing upon the faid frefh Sea, and that on Nova Zembla's fide.
2. I formerly thought Nova Zembla had been a Continent: But I have 193. p. 4940 fince been better informed, and retracted that Error. And, whereas the late M. Voflus would needs perfuade himfelf, as well as he did others, to their Ruin, that there was a Paflage to Fapan by the North, and that the Tartariain Countries behind Nova Zembla did decline immediately towards the South; I did always oppofe it, and think I can even demonftrate the Impoffibility thereof. So that what he wrote, to encourage Mariners to that Attempt, was even directing them to the point of Death; as it afterwards enfued.
XXXIV. What is noted with a fingle Line, is exactly copied from the $\Delta M_{\text {Frape }}$ of by M. Map, which M. Sanfon, one of the moft illuftrious Geograpbers of this Age Friard; ; and M. prefented to the Daupbin, An. 1679 . The Names of Cities, whofe Situation is alfo taken from this Map, are written in Italian Characters; the Correc. tion of the Pofition of Coafts (which is deduced from the Obfervations which were made to that End) is marked with a Stroke a little fhadow'd towards the Sea, as is commonly done; and the Names of Cities, whole Situation is corrected, are fet down in Romon Characters.

The Degrees of Latitude are marked on both fides of the Border, and the Degrees of Longitude in the fame Border, above and below; but the Divifion of them begins at the Meridian that paffes thro' the Obfervatory at Paris, by going to Eaft and Weft, and not at the Meridian of the Ine of Fer, as hath been eftablifhed, becaufe we do not exactly know the Situation of this Inand in refpect of the Obfirvatory.
XXXV. I. What Arthmetick, in whole Numbers and Fractions, as alfo in Decimals and Logarithms, is neceffary for the fame: And what Books are beft for Teaching to much thereof. 2. What Vulgar, Practical, Me chanical Geometry, performable by the Scale and Compafs, is fufficient. n, y Sir w. Pety. 3. What Trigonometry, right Lined and Spherical, will fuffice. 4. How many Mar. An. 1693. Stars are to be known. 5 What Infruments are beft for Ufe at Sen, with the Conftruction of them and the Manner of ufing them. 6. The whole Skill of the Magnet, as to the directive Virtues thereof, and all the Accidents that may befall it. 7. The Ilydrograpby of the Globe of the Earth, the Per\int pective of the Coafts, and the Defcription of the under-water-bottom of the Sea. 8. The Knowledge of Winds and Meteors, fo far as the fame is attainable. 9. The Hiftory and Skill of all Sorts of Fijbings. 10. The Art of Nedicine and Cbirurgery, peculiar for the Sea. I1. The Common Laws of the Adiniraly, and furiddialion of the Sea. 12. The feveral Vītuallings and Cloatbings fit for Seamen. 13. The whole Science of Elbing and Flowing, as alfo of Currents and Eddies at Sea. 14. Dromometry, and the Meafures of a Ship's Motions at Sea. 15. The Building of Sbips of all Sorts, with the feveral Riggings and Sails for each Species, and the Ufe of all the Parts and Motions of a Ship. 16. Naral Oeconomy, according to the feveral

Voyages and Countries. 17. The Art of Conning, Rowixgg and Sailing, of all the feveral forts of Vefiels. 18. The Gunnery, Fireworks and other Armatures peculiar to Sea and to Sea-Fights. 19. The Art of Loading and Unloading the Chief Commodities to the beft Advantage. 20. The Art of weeighing funk Sbips and Goods, as alio of Diving for funk Goods in deep Water. 21. The General Pbilofophy of the Motion and Figures of the Air, the Sea, and of Sealons; of Timber, Iron, Hemp, Brimfone, Tallow, \&ec. And of their feveral Ufes in Naval Affairs. 22. An Account of 5 or 6 of the beft Navies of Europe, with that of the Arfenals, Magazines, Tards, Docks, 8cc. 23. An account of all the Sbipping able to croi's the Seas belonging to each Kingdom and State of Europe. 24. An account of all the chief Commercial Darts of the World; with mention of what Commoditites are originally carried from, and ultimately to, any of them. 25. An account of the chief Sea-Figbls, and all other Naval Expeditions and Exploits, relating to War, Trade, or Difcovery, which have happened in this laft Century. 26. Of the moft advantageous Ufe of Telefcopes for feveral Purpofes at Siea. 27. Of the feveral Depibs of the Sea, and Heigbts of the Almospbere. 28. The Art of making sea-waser frefh and poiable, and fit for all Ufes in Food and Phyfick at Sea.

2na clltaiar of XXXVI. I. Tho' it be well known, that, in the Terrefirial Globe, all Scamst, and the the Meridians meet at the Pole, (as EP, EP,) whereby the Parallels to
trat ${ }_{t}$ trae Me Merididuan of in the Sea-Chart;
by Dr Wallis, n.
176. P. 1193°

Fiss.
Nov. An. 1685% the Equator, as they be near to the Pole, do conrinually decreafe.
2. And hereby a degree of Longitude in fuch Furatiels is lefs than a degree of Longitude in the Equator, or a degree of Latitude: 3. And that in fuch Proportion, as is the Co-Sine of Latifude (which is the Semidiameter of fuch Parallel) to the Radius of the Globe, or of the Equator.
4. Yet hath it been thought fit (for fome Reafons) to reprefent thefe Miridians, in the Sea-Cbart, by parallel ftraight Lines; as Ep, Ep.
5. Whereby, each Parallel to the Equator (as L A) was reprefented in the Sea-Chart, (as I a) as equal to the Equator EE; and a Deg. of Longisude therein, as large as in the Equator.
6. By this means, each Degree of Longitude in fuch Parallels was increafed, beyond its juft proportion, at fuch rate as the Equator (or its Radius is greater than fuch Parallel, or the Radius thereof.)
7. But, in the Old Sea-Cbarts, the degrees of Latitude were yet reprefented (as they are in themfelves) equal to each other, and to thofe of the Equator.
8. Hereby, amongtt many other inconveniencies, (as Mr. Ed. Wrigbt obferves, in his Correfition of Errors of Navigation, firtt publifhed in the Year 1599) the Reprefentation of the Places remote from the Equator was io diftorted in thofe Charts, as that (for Inftance) an IJand in the Latitude of 60 degrees, (where the Radius of the Parallel is but half fo great as that of the Equator) would have its Length (from Eaft to Weff) in Comparifon of Breadth (from Nortb to Soutb) reprefented in a double Proportion of what indeed it is.
9. Fur

(573)

9. For rectifying this in fome Meafure, (and of fome other Inconveniencies) Mr. Wrigbt advifeth, that (the Meridians remaining Parallel, as before) the degrees of the Latitude remote from the Equator, fhould at each Parallel be protracted in like Proportion with thofe of Longisude.
10. That is; as the Co-Sine of Latisude, (which is the Semidiameter of the Parallel) to the Radius of the Globe, (which is that of the Equator:) So fhould be a degree of Latilude (which is every where equal to a degree of Lorgitude in the Equator,) to fuch degree of Latisude fo protracted (at fuch Diftance from the Equator;) and fo to be reprefented in the Chart.
11. That is, every where, in fuch Proportion, as is the refpective Secant (for fuch Latitude) to the Radius. For, as the Co -Sine, to the Radius; io is the Radius, to the Secant of the fane Arch or Angle ; or $\Sigma: R:: \mathrm{R}: \mathrm{I}$.
12. So that (by this means) the Pofition of each Parallel in the Cbart fhoukd be at fuch Diftance from the Equator, compared with fo many Equinoctial Degrees or Minutes, (as are thofe of Latitude) as are all the Secants (taken at equal Diftances in the Arch) to fo many times the Radius.
13. Which is equivalent (as Mr. Wrigbs there notes) to a Projection of the Spherical Surface (fuppofing the Eye at the Centre) on the Concave Surface of a Cylinder crected at right Angles to the Plane of the Equator.
14. And the Divifion of Meridians, reprefented by the Surface of a Cylinder erected (on the Arch of Latisude) at Right Angles to the Plane of the Meridian (or a Portion thereof:) The Altitude of fuch Proiection (or Portion of fuch Cylindrick Surface) being (at each Point of fuch Circular Bafe) equal to the Secant (of Latitude) anfwering to fuch Point.
15. This Projection (or Portion of the Cylindrick Surface) if expanded into a Plane, will be the fame with a plain Figure, whofe Bate is equal to a Quadrantal Arch extended (or a Portion thereof) on which (as Ordinates) are crected Perpendiculars equal to the Secants, anfwering to the refpective Points of the Arch fo extended: The leaft of which (anfiwering to the Equinoctial) is equal to the Radius; and the reft continually increaling, till (at the Pole) it be infinite.
16. So that, as ERS L, (a Figure of Secants erected at right Angles on EL, the Arch of Latitude extended) to ER R L, (a Rectangle on the fame Bafe, whofe Altitude ER is equal to the Radius;) fo is E L (an Arch of the Equator equal to that of Latisude, to the Diftance of fuch Parallel, (in the Cbart) from the Equator.
17. For finding this Diftance, anfwering to each Degree and Minute of Lnsitude, Mr. Wrigbt (as the moft obvious way) adds all the Secants (as they are found calculated in the Trigonometrical Canon) from the Beginning to the Deg. or Min. of Latitude propofed.
18. The Sum of all which, except the greateft, (anfwering to the Figure infcribed) is too little: The Sum of all, except the lealt, (anfwering to the circumfribed) is too great ; (which is that he follows:) And it would be nearer to the Truth than either, if (omitting all thefe) we take the Intermediates ; for Min. $\frac{1}{2}, 1 \frac{1}{2}, 2 \frac{1}{2}, 3 \frac{1}{2}, \mathcal{E}^{3} c$. or (the double of thefe) Min. 1, 3, $5,7, E_{c}$. Which yet (becaufe on the Convex-fide of the Curve) would be fomewhat too litele.

Fig. 307.

Fig. 3:8.

Fis. 209.
19. But any of thefe ways are exact enough for the Ufe intended, as creating no fenfible Difference in the Cbart.
20. If we would be more exact ; Mr. Ougblred directs, (and fo had Mr. Wright done before him) to divide the Arch into Parts yet fmaller than Minutes, and calculate Secants fuiting thereunto.
21. Since the Aritbmetick of Iyfinites introduced, and (in purfuance thereof) the Doctrine of Infinite Series, (for fuch Cafes as would not, without them, come to a determinate Proportion;) Methods have been found for fquaring fome fuch Figures.
22. In order to a Quadrature for this Figure of Secants (by an infinite Series fitted thereunto) put we, for the Radius of a Circle, R ; the Right Sine of an Arch or Angle, S; the verfed Sine, V; the Co-Sine, (or Sine of the Complement) $\Sigma=\mathrm{R}-\mathrm{V}=\sqrt{ } \mathrm{Rq}-\mathrm{Sq}$; the Secant, δ; the Tangent, T.
23. Then is $\Sigma: R:: R: \int$. That is, $\left.\Sigma\right) \mathrm{R}^{2}\left(\int=\frac{R^{2}}{\Sigma}\right.$; the Secant.
24. And $\Sigma: S:: R: T$. That is, $\Sigma) S R\left(T=\frac{S R}{\Sigma}\right.$; the Tangent.
25. Now, if we fuppofe the Radius CP, divided into equal Parts, and each of them $=0 \div \mathrm{R}$;) and on thefe, to be erected the Co-Sines of Latitude L. A.
26. Then are the Sines of Latitude in Arithnetical Progreffion.
27. And the Secants anfwering thereunto, $L f=\frac{R^{2}}{\Sigma}$.
28. But thefe Secants, (anfwering to the Right Sines in Arthemetical Progreffion,) are not thofe that ftand at equal Diftances on the Quadrantal Arch extended. Fig. 209.
29. But, ftanding at unequal Diftances (on the fame extended Arch;) Namely, on thofe Points thereof, whofe right Sines (whilft it was a Curve) are in Arithmetical Progreffion. As Fig. 211.
30. To find therefore the Magnitude of REL/S, Fig. 209. which is the fame with that of Fig. 21 t, (fuppofing EL of the fame Length in both; however the Number of Secants therein may be unequal) we are to confider the Secants, tho' at unequal Diftances, Fig. 211, to be the fame with thofe of equal Diftances, in Fig. 210. anfwering to Sines in Arithmetical Progreffion.
31. Now, thefe Intervals, (or Portions of the Bafe) in Fig. 211. are the fame with the intercepted Arches, (or Portions of the Arch) in Fig. 210. For this Bafe is but that Arch extended.
32. And thefe Arches, (in Parts Infinitely fmall) are to be reputed equivalent to the Portions of their refpective Tangents intercepted between the fame Ordinates. As in Fig. 210, 212.
33. That is equivalent to the Portions of the Tangents of Latitude.
34. Ind thefe Portions of Tangents are to the equal Intervals in the Bafe, as the Tangent (of Latitude) to its Sine.

(575)

35. To find therefore the true Magnitude of the Parallelograms, or Segments of the Figure; we muft either protract the Equal Segments of the Bafe, Fig. 210. (in fuch Proportion as are the refpective Tangents to the Sine) to make them Equal to thofe of Fig. 21 I.
36. Or elfe, (which is equivalent) retaining the equal Intervals of Fig. 210, protract the Secants in the fame Proportion. (For either way the Intercepted Rectangle, or Parallelograms will be equally increafed) as LM. Fig. 212.
37. Namely, as the Sine (of Latitude) to its Tangents; fo is the Secant, to a Fourth; which is to ftand (on the Radius equally divided) inftead of that Secant.

$$
S: \frac{S R}{\Sigma}(:: \Sigma: R .):: \frac{\mathrm{R}^{2} \mathrm{R}^{3}}{\Sigma: \Sigma^{2}=\mathrm{R}^{2}-S^{2}}=\mathrm{LM} .
$$

38. Which therefore are as the Ordinates in (what I call Arith. Infin. Prop. 104.) Reciproca Secundanorum : Suppofing Σ^{2} to be Squares in the Order of Secundans.
39. This (becaufe of $\Sigma^{2}=R^{2}-S^{2}$; and the Sines S, in Arithmetical Progreffion) is Reduced (by Divifion) into this Infnite Series:

$$
\mathrm{R}:+\frac{S^{2}}{\mathrm{R}}+\frac{\mathrm{S}^{4}}{\mathrm{R}^{3}}+\frac{S^{6}}{\mathrm{R}^{5}} \mathrm{E}^{2} c .
$$

40. That is, (putting $R=1$,) $1+S^{2}+S^{+}+S^{6}, छ^{2} c$.
41. Then, according to the Aritbmetick of Infinites, we are to interpret S , fucceffively by i $\mathrm{S},{ }_{2} \mathrm{~S},{ }_{3} \mathrm{~S}, \mathcal{E}^{\circ} \mathrm{c}$. till we come to S , the greateft. Which therefore reprefents the Number of all.

And, becaufe the firft Member doth reprefent a Series of Equals, the fecond of Secundans; the third of Quartans, $\mathcal{E} c$. Therefore the firft Member is to be multiplied by S; the fecond by $\frac{1}{2} S$; the third by $\frac{1}{5} S$; the fourth by $\frac{1}{7} S ; \mathcal{E}^{2}$.
43. Which makes the Aggregate, $S+\frac{1}{5} S^{3}+\frac{1}{5} S^{5}+\frac{1}{7} S^{7}+\frac{1}{9} S^{2}, 8_{0}^{2} 0$ $=\mathrm{ECLM}$.
44. This, (becaufe S is always lefs than $R=1$) may be fo far continued, till fome Power of S become fo fmall, as that it (and all which follow it) may be fafely neglected.
45. Now, (to fit this to the Sea-Cbart, according to Mr. Wrigbl's Defign) having the propofed Parallel (of Latitude) given; we are to find (by the Trigonometrical Canon) the Sine of fuch Latitude; and take Equal to it, C L, $=S$. And by this find the Magnitude of ECLM, Fig. 212. that is, of REL \int, Fig. 2 II, that is, of REL \int, Fig. 209. And then, as RRLE (or fo many times the Radius) to REL f, (the Aggregate of all the Secants;) fo muft be a like Arch of the Equator (equal to the Latitude propofed,) to the Diftance of fuch Parallel, (reprefenting the Latitude in the Cbart) from the Equator: Which is the Thing required.
46. The fame may be obtained in like manner, by taking the verfed Sines in Arithmetical Progreffion. For, if the right Sines (as here) beginning at the Equator, be in Arithmetical Progrefion, as, 1, 2, 3, Esc. Then will the
the verfed Sincs, beginning at the Pole, (as being their Complements to the Radius) be fo alfo.
47. The fame may be applied in like Manner, (tho' that be not the prefent Bulinefs) to the Aggregate of Tangents, anfwering to the Arch divided into equal Parts.
48. For thofe anfwering to the Radius fo divided are $\frac{S R}{\Sigma}$; (taking S in Arithmetical Progreffion.)
49. And then inlarging the Bare (as in Fig. 21I.) or the Tangent (as in Fig. 212.) in Proportion of the Tangent to the Sine;

$$
S: \frac{S R}{\Sigma}(:: \Sigma: R):: \frac{S R}{\Sigma}: \frac{S R^{2}}{\Sigma^{2}}=\frac{S R^{2}}{R^{2}-S^{2}} .
$$

50. We have by Divilion this Series, $S+\frac{S^{3}}{R^{2}}+\frac{S^{5}}{R^{4}}+\frac{S^{7}}{R^{6}}+\frac{S^{9}}{R^{5}}$, $\mathcal{E}^{2} c$.
51. That is, (putting $R=1$) $S+S^{3}+S^{5}+S^{7}+S^{9}$, $\varepsilon^{2} c$.
52. Which (multiplying the refpective Members by $\frac{1}{2} S,{ }_{4}^{5} S,{ }_{6}^{2},{ }_{8}^{\frac{1}{8}} \mathrm{~S}$, ${ }_{5}^{1} \mathrm{~S}$, $\mathcal{E}^{\circ} c$.) becomes $\frac{1}{2} S^{2}+\frac{1}{4} S^{4}+\frac{1}{6} S^{6}+\frac{1}{8} S^{3}+\frac{1}{10} S^{10}, \mathcal{E}^{2} c$.

Which is the Aggregate of Tangents to the Arch whofe right Sine is S.
53. And this Method may be a Pattern for the like Procefs in other Cafes of like Nature.

Twap Probliems in XXXVII. The Line of Artificial Tangents, or the Logarilbmical Tangent Navigation, proo
pos did $b y$$M_{r}$. Line, beginning at 45°, and taking every half Deg. for a whole one, is Nich. Mercaror. found to agree pretty near with the Meridian-Line of the Sea-Cbart, they
n. 13. p. 215 . n. 13. P. 215 . Jun. An. 1666 both growing, as it were, after the fame proportion. But the Table of Meridional Degrees being calculated only to every fexagefimal Minute of a Degree, fhews fome fmall Difference from the faid Logaritbmical Tangentline. Hence it may be doubted, whether the Difference do not arife from that little Error which is committed by calculating the Table of Meridional Degrees only to every Minute.

But, if a certain Rule could be produced, by which the Agreement or Difagreement of the faid two Lines might be fhewn, the Helix or Spiral Line of the Sbip's Courfe would be reduced to a more precife Exactnefs than ever was pretended by any.

The fame Rule would alio difcover a far eafier way of making Logaritioms, than ever was practifed or known; and therefore might ferve, whenever there fhould be Occafion, to extend the Logarithms beyond the number of Places that are yet extant.

Moreover, fuch a Rule would enable Men to draw the Meridian Line Geometrically, that is, without Tables or Scales; which indeed might alfo be done by fetting of the Secants of every whole or half Degree, if there were not this Inconveniency in it, which is not in my Rule: That a Line compofed of fo many fmall Parts, would be fubject to many Errors, efpecially in a fmall Compafs.

(577)

The fame Rule will alfo ferve to find the Courfe and Diftance between two Places affigned, as far as Practice fhall require it; and that without any Table of Meridional Parts, and yet with as much Eafe and Exactnefs.

And, feeing all thefe things do depend on the Solution of this Queftion, Whether the Artificial Tangent Line be the true Meridian Line; it is therefore that I undertake, by God's Affiftance, to refolve the faid Queftion. And, to let the World know the Readinefs and Confidence I have to make good this Undertaking, I am willing to lay a Wager againtt any one or more Perfons that have a Mind to engage, for fo much as another Invention of mine (which is of lefs Subtilty, but of a far greater Benefit to the Publick) may be worth to the Inventor.

As for the great Advantage, that all Mercbants, Meriners, and confequently the Common-Wealth, may receive from this other Iivention, it is, in my Judgment, highly valuable, feeing it will oftentimes make a Sbip fail, tho', according to the common way of Sailing, the Wind bequite contrary, and yet as near to the Place intended, as if the Wind had been favourable: Or, if you will, it will enable one to gain fomething in the intended Way, whether the Wind be good or no, (except only when you go directly Soutb or Nortb) but the Advantage will be moft where there is molt need of it, that is, when the Wind is contrary: fo that one may very often gain a fifth, fourth, third Part, or more of the intended Voyage, according as it is longer or fhorter, riz. always more in a longer Voyage, where the Gain is more confiderable, and more welcome, not only by faving Time, but alfo Victuals, Water, Fuel, Mens Health, and fo much Room in the Ship.
XXXVIII. It was firf difcovered by chance, and, as far as I can learn, firt publifhed by Mr. Henry Bond as an Addition to Norwood's Epitome of Navigation, about 50 Years fince, that the Meridian Line was analogouis to a Scale of Logaritbmick Tangents of balf the Complements of the Latitudes.

For the Demonftration of that Propofition, it is requifite to premife thefe four Lemmata.

The Analogy of Logarisbmick Tangents to she Meridian Line Demonfirased; by Mr. Fdm.

Lemma I. In the Stereograpbick Projestion of the Splbere upon the Plane of the Equinoctial, the Diftances from the Centre, which in this Caie is the Pole, are laid down by the Tangents of balf thofe Diftances; that is, of half the Complements of the Latitudes. This is evident from Eucl. 3. 20.

Lemma 2. In the Stereograptrick Projection, the Angles, under zobich the Circles interfect each otber, are in all Cafes equal to the Spherical Angles they reprefent; which is a very valuable Property of this Projection.

Demonf. Let EPBL be any great Circle of the Spbere, E the Eye placed Fig. 2rs. in its Circumference; C its Center, P any Point thereof; and let FCO be fuppofed a Plane erected at Right Angles to the Circle EPBL, on which FCO we defign the Sphere to be projected. Draw EP croffing the Plane FCO in p, and p fhall be the Point P projected. To the Point l^{\prime} draw the Tangent APG, and on any Point thereof, as A, erect a Perpendicular AD, at right Angles to the Plane EPBL, and draw the Lines PD, AC, DC; and the Angle APD thall be equal to the Spherical Angle contained between the Vot. I.
Eee

Planes

Planes APC, DPC. Draw alfo AE, DE, interfecting the Plane FCO in the Points a and d; and join $a d, p d$: I fay, the Triangle $a d p$, is fimilar to the Triangle ADP; and the Angle a $p d$ equal to the Angle APD. Draw PL,AK, Parallel to FO; and, by reafon of the Parallels, $a p$ will be to $a d$, as AK, to A D: But, (by Eucl. 3. 32.) in the Triangle AKP, the Angle $A K P=L P E$, is alfo equal to $A P K=E P G$: wherefore the Sides $A K, A P$, are equal ; and 'twill be, as a p to cd, fo AP to AD. Whence the Angles DAP, $d a p$, being right, the Angle APD will be equal to the Angle $a p d$; that is, the Spherical Angle is equal to that on the Projection, and that in all Cafes. Q.E.D.

This Lemma I lately received from Mr. Ab. de Moivre, tho' I fince underftand from Dr. Hook, that he long ago produced the fame thing before the Society. However, the Demonfration, and the reft of the Difcourfe is my own.

Lemma. 3. On the Globe, the Rbumb Lines make equal Angles woith every Meridian, and, by the foregoing Lemma, they mutt likewife make equal Argles with the Meridians in the Stereographick Projection on the Plane of the Equator: They are therefore in that Projection, Proportional Spirals about the Pole Point.
$\sqrt{7 i g} 214$
Lemma 4. In the Porportional Spiral it is a knowen Property, that the Angles BPC, or the Arches BD, are Exponents of the Rationes of BP to PC: For, if the Arch BD be divided into innumerable equal parts, Right Lines drawn from them to the Center P , fhall divide the Curve B c c C into an Infinity of Proportionals between PD and PC, whofe number is equal to all the Points d, d, in the Arch BD: Whence, and by what I have delivered concerning the Conftruction of Logaritbm., it follows, that, as BD to Bd , or, as the Angle BPC, to the Angle BP c, fo is the Logaritbm of the Ratio of PB to PC, to the Logaritbm of the Ratio of PB to $\mathrm{P} c$.

From thefe Lemmata our Propofition is very clearly Demonfrated: For, by the Firft, PB, Pc, PC, are the Tangents of half the Complements of the Latitudes in the Stereograpbick Projection: And, by the Laft of them, the Differences of Longitude, or Angles at the Pole between them, are Logaritbms of the Rationes of thofe Tangents one to the other. But the Nautical Meridian Line is no more than a Table of the Longitudes, anfwering to each Minute of Latitude on the Rbumb Line, making an Angle of 45 Degrees with the Meridian. Wherefore, the Meridian Line is no other than a Scale of Logaritbmick Tangents of the Half Complements of the Latitudes. Q.E.D.

Corol. 1. Becaufe that in every Point of any Rbumb Line, the Difference of Latitudes is to the Diparture, as the Radius to the Tangent of the Angle that Rbumb makes with the Meridian; and thofe equal Departures are every: where to the Differences of Longitude, as the Radius to the Secant of the Latitude; it follows, that the Differences of Longitude are, on any Rbumb, Logariritbms of the fame Tangents, but of differing Species; being proportioned to one another, as are the Tangents of the Angles made with the Meridian.

Corol. 2.

(579)

Corol. 2. Hence any Scale of Logarithm Tangents (as thofe of the vulgar Tables made after Briggs's Form ; or thofe made to Napier's, or any other Form whatfoever) is a Table of the Differences of Longitude, to the feveral Latitudes, upon fome determinate Rbumb or other: And therefore, As the Tangent of the Angle of fuch Rhumb, to the Tangent of any other Rhumb; fo the difference of the Logaritbms of any two Tangents, to the difference of Longitude on the propofed Rhumb, intercepted between the two Latitudes, of whofe half Complements you took the Logarithm Tangents.

Now the momentary Augment, or Fluxion of the Tangent-Line at 45 Degrees, is exactly double to the Fluxion of the Arch of the Circle, (as may ealily be proved) and the Tangent of 45° being equal to the Radius, the Fluxion allo of the Logaritbm Tangent will be double to that of the Arch, if the Logaritbm be of Napier's Form: But, for Briggs's Form, it will be as the fame doubled Arch multiplied into $0,53429, \mathcal{E}^{\circ} \mathrm{c}$. or divided by $2,30258, \mathcal{E}^{\circ} c$. yet this muft be underftood only of the Addition of an indivifible Arch, for it ceafes to be true, if the Arch have any determinate Magnitude.

Hence it appears, that, if one Minute be fuppofed Unity, the Length of the Arch of one Minute being 0,0002908S8208665721596154, \& c . in parts of the Radius, the Proportion will be as Unity to 2,908882 , \mathcal{C} c. So Radius to the Tangent of $71^{\circ} 1^{\prime} 4^{\prime \prime \prime}$, whofe Logarithm is 10,46372611720718$325204, \mathcal{E}^{\circ}$. and under that Angle is the Meridian interfected by that Rbumbline, on which the Differences of Napier's Logarithm Tangents of the Half Complements of the Latitudes are the true Differences of Longitude, eftimated in Minutes and Parts, taking the firft 4 Figures for Integers. But for Vlacq's Table, we muft fay,

- As $23025^{8} 5, \mathcal{F}^{3}$ c. to 2908882, $\mathcal{E}^{\circ} c$. fo. Radius to $1,2633114387244^{-}$ $569212, \mathcal{E}^{\circ} c$. which is the Tangent of $51^{\circ} 38^{\prime \prime} 9^{\prime \prime}$, and its Logarithni 10, 10$1510428507720941162, \mathcal{E}^{\circ} c$. Wherefore in the Rbumb-line, which makes an Angle of $55^{\circ} 3^{\prime \prime} 9^{\prime \prime}$ with the Meridian, Vlacq's Legaritbm Tangents are the true Differences of Longitude. And this, compared with our jecond Corolla$r y$, may fuffice for the Ufe of the Tables already compuited.

But, if a Table of Logaritbm Tangents be made by Extraction of the Root of the infiniteth Power, whofe Index is the Length of the Arch you put for Unity, (as for the Minutes the $0,0002908882 \mathrm{th}$, Ec. Power) which we will call a; fuch a Scale of Tangents fhall be the true Meridian Line, or Sum of all the Secants taken infinitely many. Here the Reader is defired to have Recourfe $\begin{aligned} & \text { vid } \delta \text { fin. Cop. } \\ & \times x v i l i\end{aligned}$ to my little Treatife of Logaritbms, that I may not need to repeat it. By what is there delivered it will follow, that putting t for the Excefs or Defect of any Tangent above or under the Radius or Tangent of 45° : the $L_{\rho}-$ garitbm of the Ratio of Radius to fuch Tangent will be

$$
\frac{1}{m} \text { into } t-\frac{1}{2} t^{2}+\frac{2}{3} t^{3}-\frac{1}{4} t^{4}+\frac{1}{5} t^{5}, 8 c c .
$$

when the Arcb is greater than 45°, or

$$
\frac{1}{m} \text { into } t+\frac{1}{2} t^{2}+\frac{1}{3} t^{3}+\frac{1}{4} t^{4}+\frac{x}{5}, \& x .
$$

Eeee ${ }^{2}$
when it is lefs than 45°. And by the fame Doctrine putting T for the Tangent of any Arch, and t for the Difference thereof from the Tangent of another Arch, the Logarithm of their Ratio will be $\frac{1}{m}$ into $\frac{t}{\mathrm{~T}}+\frac{t t}{2 T \mathrm{~T}}$ $+\frac{t^{3}}{3 \mathrm{~T}^{3}}+\frac{t^{4}}{4 \mathrm{~T}^{4}}+\frac{t^{5}}{5 \mathrm{~T}^{5}}$, Ec. when T is the greater Term; Or, $\frac{1}{m}$ into $\frac{t}{T}-\frac{t^{2}}{2 T^{2}}+\frac{t^{3}}{3 T^{3}}-\frac{t^{4}}{4 T^{4}}+\frac{t^{5}}{5 T^{3}}, छ^{c} c$. when T is the leffer Term.

And, if m be fuppofed, $0,0002908882, \Xi^{2} c$. $=a$, its reciprocal $\frac{r}{a}$ will be 3437,7467707849392526, Evc. which multiplied into the aforefaid Series fhall give precifely the difference of the Meridional Parts between the two Latitudes, to whofe half Complements the affumed Tangents belong.

Nor is it material from whether Pole you eftimate the Complements, whether the elevated or depreffed; the Tangents being to one another in the fame Ratio, as their Complements, but inverted.

In the fame Difcourfe I alfo fhewed, that the Series may be made to converge twice as fwift, all the even Powers being omitted; and that putting τ for the Sum of the two Tangents, the fame Logaritbm would be $\frac{2}{m}$ or $\frac{2 r}{a}$ into $\frac{t}{\tau}+\frac{t^{3}}{3 \tau^{3}}+\frac{t^{5}}{5 \tau^{5}}+\frac{t^{7}}{7 \tau^{7}}+\frac{t^{9}}{9 \tau^{9}}, \Xi^{2} c$. but the Ratio of τ to c, or of the Sum of two Tangents to their Difference, is the fame as that of the Sine of the Sum of the Arches, to the Sine of their Difference. Wherefore, if S be put for the Sine Complement of the middle Latitude, and s for the Sine of half the Difference of Latitudes, the fame Series will be $\frac{2 r}{a}$ into $\frac{s}{\mathrm{~S}}$ $+\frac{s^{2}}{3 S^{3}}+\frac{s^{5}}{5 S^{5}}+\frac{s^{7}}{7 S^{7}}+\frac{s^{9}}{9 S^{9}}, \delta c$. wherein, as the Differences of $L a$ titude are fmaller, fewer Steps will fuffice. And, if the Equator be put for the middle Latitude, and confequently $S=R$, and s the Sine of the Latitude, the Meridional Parts reckoned from the Equator will be $\frac{s}{a}+$ rid $s \times x \times v i \frac{s^{3}}{3 r r a}+\frac{s^{5}}{5^{r^{4} a}}+\frac{s^{7}}{7 r^{6} a}, \mathcal{E}^{2} c$. which is co-incident with Dr. Wallis's Solution. And this fame Series, being half the Logaritbm of the Ratio of R+s to R -s, that is of the verfed Sines of the Diftances from both Poles, does agree with what Dr. Barrow had fhewn in his XI. Leeture.

($5^{8 \mathrm{I}}$)

The fame Ratio of τ to t may be expreffed alfo by that of the Sum of the Co-fines of the two Latitudes, to the Sine of their Difference: As likewife by that of the Sine of the Sum of the two Latitudes, to the Difference of their Co-fines: Or by that of the verfed Sine of the Sum of the Co-Latitudes, to the Difference of the Sines of the Latitudes: Or as the fame Difference of the Sines of the Latitudes, to the verfed Sine of the Difference of the Latitudes; all which are in the fame Ratio of the Co-fine of the middle Latitude, to the Sine of half the Difference of the Latitudes. As it were eafy to demonftrate, if the Reader were not fuppofed capable to do it himfelf, upon the bare Infpection of a Scheme duly reprefenting thefe Lines.

This variety of Exprefion of the fame Ratio I thought not fit to be omitted, becaufe by help of the Rationality of the Sines of 30°, in all Cafes where the Sum or Difference of the Latitudes is $30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}$, or 150°; fome one of them will exhibit a fimple Series, wherein great Part of the Labour will be faved. But the former feems for all Ufes the moft convenient, whether we defign to make the whole Meridian-Lines, or any Part thereof, viz. $\frac{2 r}{a}$ into $\frac{s}{s}+\frac{s^{3}}{3^{3}}+\frac{s^{5}}{5 S^{5}}+\frac{5^{7}}{7^{S^{1}}}+\frac{s^{9}}{9 S^{9}}$, \mathcal{F} c. Wherein a is the Length of any Arch, which you defign fhall be the Integer or Unity in your Meridional Parts (whether it be a Minute, League or a Degree, or any other) S the Co-fine of the Middle Latitude, and sthe Sine of half the Difference of Latitudes; but, the Secants being the Reciprocals of the Co-fine $\frac{s}{\mathrm{~S}}$ will be equal to $\frac{\int s}{r r}$ putting \int for the Secant of the Middle Latitude; and $\frac{2 r}{a}$ into $\frac{s}{S}$ will be $=\frac{2 \int s}{r a}$. This multiplied by $\frac{\int s}{3 S S}$ that is by $\frac{\iint s s}{3 r r r r}$, will give the fecond Step; and that again by $\frac{3 \iint s s}{5 r r r r}$ the third Step; and fo forward till you have compleated as many Places as you defire. But, the Squares of the Sines being in the fame Ratio with the verfed Sines of the double Arches, we may inftead of $\frac{s S}{3 S S}$ affume for our Multiplicator $\frac{v}{3 V}$, or the verfed Sine of the Difference of the Latitudes divided by thrice the verfed Sine of the Sum of the Co-Latitudes, \& zc . which is the utmoft Compendium I can think of for this Purpofe; and the fame Series will become $\frac{2 s r}{a S}$ into I $+\frac{v}{3 V}+\frac{v^{2}}{5 V^{2}}+\frac{v^{3}}{7 V^{3}}+\frac{v^{4}}{9 V^{4}}$. Hereby we are enabled to eftimate the Default of the Method of making the Meridional Line, by the continual Addition of the Secants of equi-different Arches, which, as the Differences of thofe Arches are fmaller, does ftill nearer and nearer ap-

(582)

proach the Truth If we affume, as Mr . Wright did, the Arch of one Minute to be Unity, and one Minute to be the common Difference of a Rank of Arcbes; it will be in all Cales, as the Arch of one Minute to its Chord, fo the Secant of the middle Latitude to the firft Step of our Series. This by Reafon of the near Equality between a and $2 s$, which are to one anocher in the Ratio of Unity to $1-0,00000000352566457713, छ^{2} c$. will not differ from the Secant δ, but in the 9 th Figure; being lefs than it in that Proportion. The next Step being $+\frac{2 r^{3} s^{3}}{3 a r r}$ will be equal to the Cube of the Secant of the middle Latitude multiplied into $\frac{2 \mathrm{sss}}{3 \mathrm{arr}}=0,0000-$ $0000705^{132908715 ; ~ w h i c h ~ t h e r e f o r e, ~ u n l e f s ~ t h e ~ S e c a n t ~ e x c e e d ~ t e n ~ T i m e s ~}$ Radius, can never amount to 1 in the fifth Place. Thefe two Steps fuffice to make the Meridian Line, or Logaritbin Tangent, to far more Places than any of natural Secants yet extant, are computed to ; but, if the third Step be required, it will be found to be $+\delta s$ into $\frac{2 s^{5}}{5 a r^{4}}=0,00000-$ 0000000000089498 ; by all which it appears that Mr. Wright's Table does no where exceed the true Meridian Parts by fully half a Minute; which finall Difference arifes by his having added continually the Secants $I^{\prime}, 2^{\prime}, 3^{\prime}, \mathcal{E}^{c} c$. inftead of $\mathrm{O}_{\frac{1^{\prime}}{2}}, 1 \frac{1^{\prime}}{2}, 2 \frac{\frac{1}{2}^{\prime}}{\frac{1}{2}}, 3 \frac{1}{2}^{\frac{1}{2}}, \xi^{3} c$. But, as it is, it is abundantly fufficient for Nautical Ufes. That in Sir Fonns Moor's Nerw Sytem of the Matbematicks is much nearer the Truth; but the Difference from Wright is fcarce fenfible, till you exceed thofe Latitudes where Navigation ceafes to be practicable; the one exceeding the Truth about half a Minute, the other being a very fmall Matter deficient therefrom.
For an Example eafy to be imitated by whofo pleafes, I have added the true Meridional Parts to the firt and laft Minutes of the ©uadrant.

The Firf Minute, 1,00000001410265862178.
The Second, 2,00000005641063806707.
The Laft, or $89^{\circ}, 59^{\circ} .30374,963+311414228643$, and not 32348 , $5^{2} 79$, as Mr. Wrigbt has it, by the Addition of the Secants of every whole Minute: Nor 30249,8 , as Mr. Ougbtred's Rule makes it, by adding the Secants of every half Minute. Nor 30364,3 , as Sir Fonas Moor had concluded it by I know not what Method, tho' in the reft of his Table he follows Ougbtred.

The fame may be deduced independently from the Arch itfelf. For if the Latitude from the Equator be eftimated by the Length of its Arcb A, Radius being Unity, and the Arch put for an Integer be a, as before ; the M_{e} ridional Parts anfwering to that Latitude will be $\frac{1}{a}$ into $A,+\frac{1}{6} \mathrm{~A}^{3}+\frac{1}{24} \mathrm{~A}^{5}+$
$\frac{\frac{1}{84}}{60} A^{7}$ or $\frac{61}{5040} A^{7}+\frac{11}{\frac{2880}{1366}} A^{9}$ or $\frac{1385}{302880} A^{9}, छ^{9} c$. which converges much fwifter than any of the former Series, and befides has the Advantage of A increafing in Arithmetical Progreffion; which would be of great Eafe if any flould undertake de novo to make the Logarithm Tangents, or the Meridianline to any more Places than now we have them ; the Logarithm Tangent to the Arch of $45^{\circ}+\frac{1}{2}$ A being no other than the aforefaid Series $\mathrm{A}+$ $\frac{1}{6} \mathrm{~A}^{3}+\frac{1}{2+} \mathrm{A}^{5}, छ^{2} c_{\text {, }}$ in Napier's Form, or the fame multiplied into 0,43429 , E'c. for Briggs's.

But, becaufe all thefe Series towards the latter End of the Quadrant do converge exceeding flowly, fo as to render this Method almoft ufelefs, or at leaft very tedious: It will be convenient to apply fome other Arts, by affuming the Secants of fome intermediate Latitudes; and you may for s, or the Sine of n, the Arch of half the Difference of Latitudes, fubftitute $a-\frac{1}{6} a^{3}+$
 ing the Sine from the Arch; and, if a be no more than a Degree, a very few Steps will fuffice for all the Accuracy that can be defired.

And, if a be commenfurable to a, that is, if it be a certain Number of thofe Arches which you make your Integer, then will $\frac{a}{a}$ be that Number, which if we call n, the Parts of the Meridional Line will be found to be

In this the firft two Steps are generally fufficient for nautical Ufes, efpecially when (neither of the Latitudes exceed 60 Degrees, and the Differences of Latitudes do not pafs 30 Degrees.

To conclucle, I fhall only add, that Unity being Radius, the Co-fine of the Arch A, according to the fame Rules of Mr. Nervon, will be $1-{ }_{2}^{1} \mathrm{~A}^{2}$ $+\frac{1}{24} A^{4}-\frac{1}{720} A^{6}+\frac{1}{40320} A^{8}-\frac{x}{3628800} A^{10}, \delta^{\circ} c$. from which and the
former Series exhibiting the Sine by the Arch, by Divifion it is eafy to conclude, that the natural Tangent to the Arch A is $\mathrm{A}+\frac{1}{3} \mathrm{~A}^{3}+\frac{2}{25} \mathrm{~A}^{\text {s }}$ $+\frac{17}{375} A^{7}+\frac{62}{2835} A^{9}, \mathcal{E}^{\circ}$. and the natural Secant to the fame Arch $1+$ $\frac{1}{2} A^{2}+\frac{5}{54} A^{4}+\frac{61}{720} A^{6}+\frac{227}{8064} A^{3}, \mathcal{E}^{3} c$. And from the Aritbmelick of Infnites, the Number of thefe Secants being the Arch A, it follows, that the Sum total of all the Infinite Secants on that Arch is $\mathrm{A}+\frac{1}{6} \mathrm{~A}^{3}+\frac{1}{24} \mathrm{~A}^{5}$ $+\frac{61}{5040} A^{7}+\frac{277}{72577^{6}} A^{9}, \mathcal{B}^{3}$. the which, by what foregoes, is the Logarithm Tangent of Napier's Form, for the Arch of $45^{\circ}+\frac{1}{2}$, before.
And collecting the infinite Sum of all the natural Tangents on the faid
Arch A, there will arife $\frac{1}{2} A A+\frac{x}{12} A^{4}+\frac{x}{45} A^{6}+\frac{17}{2520} A^{8}+\frac{31}{1475}, A^{10}$, Ec. which will be found to be the Logarithm of the Secant of the fame Arch A.

To find the V_{2} riation of the Compafs at Sea byn. 24. P. 435. Apr. Ar. 1667.
XXXIX. The Height of the Pole, and the Sun's Declination being known, a large Ring-Dial, truly wrought, having a Box with a Compafs or Needle fixt to its Meridian below, may go as near as any other Inftrument, to fhew the Variation of the Needle at Sea. For, when it is fet to the juft Hour and Minute of the Day, the Meridian of it ftands juft in its due Place; and fo fhews how far the Needle varies from it, as exactly as the Largenefs of the Card will permit.

But, becaufe thefe Dials are fo rarely juft, $E^{3} c$. tho' they may be ufed and taken notice of, yet they are not to be relied on. The Thing therefore is to be performed, as followeth:

Find out the Sun's Azimutbal diftance from the Meridian fome Hours before or after Noon, and then its magnetical Azimuth, or diftance from the Meridian pointed at by the Needle; and the difference of thofe two diftances is the variation of the Needle.

To find the Sun's true Azimutb, or by how many Degrees, $\xi^{\circ} c$ of the Horizon, it is diftant from the Meridian: Its Declination, its Altitude, and the Elevation of the Pole, muft all three be known; and thence the true A zimutb may be eafily calculated. The true Azimuth of the Sun being thus found, and the magnetical Azimulb of it, according to your Needle, being obferved, fubtract the leffer number from the greater, and the Remander is the Variation of the Needle. If the Magnetical Azimuth be lefs than the other, then the Variation is towards the fame fide of the Meridian, where the Sun is; if greater, on the other.

(585)

To obferve the Sun's Azimutb by the Needle, and the Needle's Variation, to Degrees, any Needle long enough to afford upon a Card under it a Circle divided into Degrees, put into a fquare Box, after the ordinary manner of Clinatories, will ferve turn; by placing the Box fo, as the Sun may fhine upon any two oppofite fides of it, at the fame time when the Sun's Heighr, $E^{3} c$ are taken. For then the Needle's Diftance from the Diameter of the Circle on the Card, that is parallel to thofe Sides, is the Magnetick Azimuth required.

The fame may be done with an ordinary Sea-Compafs, fo it have a Circle towards the Limb of the Card, divided into degrees, by faftning a fmall Thread, Lute-ftring or Wire (not of Iron) fo upon it, as to pafs jut over the Centre of that Circle; and placing a ftrait Piece of Wood or Brafs-wire perpendicular on the Edge of the Box at the end of the Thread, and turning it to the Sun till the Shadow of it fall juft upon the Thread: Then obferve what Degrees of the Circle on the Card the Thread cuts, by looking plum upon it; and that is the Sun's Magnetical Azimuth.

But to have the Variation to Degrees and Minutes, (which is moft defireable) then the Obfervation laft mentioned muft be made with a Quadrant, Sextant. or fome fuch other Inftrument, fo large as to admit of the Divifion of a Degree into Minutes: which will require the Radius to be about 3 Foot ; the larger the better. If a Quadrant; then, it being laid flat, and the fquare Box with the Needle placed upon it, move the Quadrant to and again, till that fide of it, on which the Box is placed, lie parallel to the Needle when at quiet : Then the Sight of the Quadrant being flid along the Limb of it, till the Sun fhine on both its fides at the fame time, the Mid-line, that divides equally the Sight, when the Sun fhines upon it through the Slit, will mark the Degrce and Minute of the Sun's Magnetical Azimutb. All which is eafy to be put in Practice.

To find this Variation by the Stars, is fo eafy, that every Mafter can do it.
XL. It is a received Error, in the Practice of obferving the Variation at A Castion for
 tre àppears in the Vifible Horizon, whereas he ought to be obferved when hyry Edm. his Under-Limb is fill above the Horizon about $\frac{2}{3}$ of his Diameter, or 20 Halley, n. 195. Minutes, upon the Score of the Refraition, and the Height of the Eye of itgz. the Obferver above the Surface of the Sea: Or elfe they are to work the Amplitude as they do the Azimuth, reckoning the Sun's Dift. from the Zenitb $90^{\circ} 36^{\prime}$.

This, though it be of little Confequence near the Equinoctial, will make a great Error in Higb Lititudes, where the Sun rifes and fets obliquely.
XLI. The Latitudes of the Lizard and Scilly, are laid down too far A cartionts Northerly by near 5 Leagues: For, from undoubted Obfervation, the L_{i} - Seamen boumd zard lies in $49^{\circ} 55^{\prime}$, the middle of Scilly due Weft therefrom, and the South channel Part thereof neareft $49^{\circ} 50^{\prime}$. Whereas in moft Charts and Books of ${ }^{\text {Mr }}$. Halley, n. Vol. I.

(5^{86})

Navigation they are laid down to the Northward of 50°, and in fome full $50^{\circ} 10^{\prime}$. Nor was this without a good Effect, as long as the Variation continued Eafterly, as it was when the Cbarts were made. But fince it is become confiderably Weferly, (as it has been ever fince the Year 1657.) and is at prefent about $7 \frac{\pi}{2}$ Deg. all Ships ftanding in, out of the Ocean, Eaft by the Compafs, go two thirds of a Point to the Nortbward of their true Courfe, and in every 80 Miles they fail, alter their Latitude about 1ó. So that if they mifs an Obfervation for two or three Days, and do not allow for this Variation, they fail not to fall to the Northward of their Expectation, efpecially if they reckon Scilly in above 50°, and to run up the Brifol Cbannel, not without great Danger of all, and the Lofs of many of them. This has been by fome attributed to the Indrougbt of St. George's Cbannel: But, the Variation being allowed, it hath been found, that the faid Indrougbt is not fenfible. It is therefore recommended to all Mafters of Ships, that they fteer two Watches E. by S. for one E. which will exactly keep their Parallel; as alfo, that they come in, out of the Sea, on a Parallel not more Nortberly, than $49^{\circ} 40^{\prime}$, which will bring them fair by the Lizard.

XLII. Papers of Lefs General Ufe, omitted.

Pendulum Wat- Mr. Oldenburg having publifhed from fournal de Scavans, an Account of M. 440. vid. fup. Huygen's Portable Watches, Dr. Hook, in the Poftfcript to his Defoription of HeCap. v. Scel. v. liofcopes, complains of it, for not having taken Notice, That this Invention was firt found out by an Englifhman, and long fince publihed to the World. To
n. 128.p.710. this Mr. Oldenburg anfwers, by relating the Plain Trutb of the Matter: Where-
*. 129. p. 749. upon Dr. Hook, in a Poftfcript to his Lampus, further complains, and reflects on Mr. Oldenburg's Integrity and Faithfulnefs in his Management of the Intelligence of the Royal Society. This gave Occafion to the Council of that Society to declare, Tbat Mr. Oldenburg bad carried bimself Faitbfully and Honeftly, and given no juft Caufe of fuch Refieetions: To which Mr. Oidenburg adds Part of a Letter from Mr . Hluggens to him, Offering (if Mr . Oldenburg believes a Patent in England might be worth fometbing) ail be might there pretendel to. So that if Mr. Oldenburgh had a Defire to take out a Patent, it was for no other Contrivance than Mr. Huyoen's.

XLIII. Account of Books and Emendations omitted.

n. 23. p. 670. 1. Volumen Primum Geograpborum Gr. Minorum. Oxon in 8 vo.
n. 23 1.p. 67% 2. Diony fii Periegefes, Grece \& Latine, cum Scholiis Gr. tani Editis quam Ineditis. Cura Edw. Thwaits, M. A. Oxon. in 8 vo.
n. 9t.p.5172. 3. Bernbardi Vareni, M. D. Geographia Generalis; aucta \& illuftrata ab Ifacaco Nerwtono, R. S. S. Cantab. 1672 . in 8 vo.
2. 23r. p. 66 ! \quad 4. Pbilippi Cluverii Introductio in Univerfam Geograpbiam, tam Veterem quam Novam: Tabulis Geographicis 46 ac Notis olim ornata, à Yoanne Bunone; jam vero locupletata Additamentis \& Annotationibus fo. Frid. Hekclii \& Fo. Reei/kii. Amjt. 1697. in $4 t 0$.

(587)

5. Geograpby Anatomiz'd; or a Compleat Geograpbical Grammar. Being a ${ }^{\text {n. }}$ 256.p.-335* fhort and exact Anolyis of the whole Body of Modern Geography, after a New and Curious Method; by Pat. Gordon, M. A. F. R. S. The Second Edition.
6. An Account of the Meafure of a Degree of a Great Circle of the Eartb; n. x12.p. 261 . by M. Picart. Paris. 1671 . Fol. Trannated into Englifh; by Mr. Waller, R. S. . . 124.p.p.966. Sec. Lond. 1687. This Book is bere abridg'd, and the Sum of the whole amounts in phort to this, M. Picart meafured on a Plain and Straigbt Ground a fpace of 5663 Toifes, to ferve for the firt Bafis to divers Triangles; by which be bath concluded the Length of a Meridian Line equivalent to a Degree of Latitude, n. rx6. p. 63 s. to be 57060 Toifes or Fathoms, that is, $28 \frac{1}{2}$ Leagues and 60 Toifes.
7. The Seaman's Practice ; by Mr. Richard Norwood, Lond. 1636. in $4^{\text {to. }}$ The Meajure of a Degree is bere extratted from that Book. Mr. Norwood, An. 1635. baving actually meafured, for the moft Part, the Way from York to London, and baving obferved the Meridian Altitudes of the Sun in both Places, be found the Difference of Latitude to be $20^{\circ} 28^{\prime}$, and the Diftance of their Parallels 905751 Englifh Feet; and therefore one Degree of a Great Circle is $3^{6} 719^{6}$ Feet, or Numero Rotundo 367200 Feet, wewich is equal $10.69 \frac{1}{2}$ Englif Miles, and 14 Poles; Whereas the French make it no more than 365000 Juch Feet.
8. Longitude found; by Hen. Bond, Sen. Lond. 1676. in 410. A Miftake n. 9. p. 60 bs. in that Book is bere correEted. n. 130. p. 774 .
 reftrial Globes, invented by the E. of Caflemain.
9. The Engligh Atlas. Oxford, for Mofes Pitt. 1680. Fol.

Ph. Col. n. © 8 .
11. A New Map of England, full 6 Foot Square, wherein Computed and ${ }_{\text {n. }}^{\text {n. }} \mathbf{8 3 5} 5 \cdot p .886$. Meafured Miles are entered in Figures; by Mr. 7o. Adams.
12. A large and curious Map of Great Tartary; by M. Nich. Witfon. a0. 193.2.492.

C H A P. VIII.

Architecture. Ship-Building.

Stennes fir for Building ; by 7. 93. p. 6010. Apr. An. 1673.

Tibe Chuice and
Charges of Slate for covering
Honfes ; by Mr.
Honjes ; by 1 n. 50. p. 1009.

Aug. Ar. 1669.

1. HERE is a fort of grey Freeftone at Paris, every where on the South fide of the River Sein, which is of a reafonable coarfe Greet, and fo foft when firft taken out of the Quarry, that 'tis dreft and hewn with broad fharp Axes, almoft as eafily as dried Clay, but grows harder and harder in the Air; 'tis very durable, and exceeding fit for Building. The Portland Stone is of a fine Chalky Greet, fit for all curious hewn and carved Work, tho' not fit for Water or Fire. On the contrary, the Freefone in Kent, of a whitifh grey Colour, lafts well in Air and Water; the Greet thereof lefs fine and chalky than that of Portland. The Derby/fire Freefone, tho' it endure the fierceft Fire, is yet brittle, and fo unfit for fine and curious Workmanfhip.
II. I. Take the thin cleft Stone, Slat or Shindle, and fo knock it againft any hard Matter, as to make it yield a Sound; if the Sound be good and clear, that fort of Stone is not crazy, but firm and good. Or,
2. If in hewing it does not break before the Edge of the Sects, (the Hewing Inftrument of the Slatters) you may not much doubt of the Firmnefs of the Slate. But,
3. If after it hath been exactly weighed (and the Accompt thereof laid by) it be put, and for 2,4 , or 8 Hours left to remain all under Water in a Veffel; and afterward taken up and wiped very clean with Cloths, if then it weigh more than before, 'tis of that kind which imbibes Water, and therefore not fo fit to endure any confiderable time without rotting the Lathes and Timber.
4. Thefe Stones may be pretty well gueffed at, whether they be of a clofe or loofe Texture, by their Colour : For the over blackifh Blue is apteft to take in Water; but the lighter Blue is always the firmeft and clofeft. To which may be added the Touch; for a good Stone feels fomewhat hard and rough; whereas an open Stone feels very fmooth, and as it were Oily.
5. Place your Stone long-ways perpendicular in the midft of a Veffel of Water, (no matter how fhallow the Water be, fo it exceed half a Foot depth;) and be fure, the upper un-immerfed Part of the Stone be not accidentally wetted by the Hand, or otherwife; and fo let it remain a Day, or half a Day, or lefs. If it be a good firm Stone, it will not draw (as they (peak)

(589)

fpeak) Water more than half an Inch above the Level of the Water, and that perhaps but at the Edges only, the Parts of which might be fomewhat loofened in the Hewing. But a bad Stone will draw Water up to the very top, be the Stone as long as it will, all over.

As for the Charge of covering Houfes with Slate, they may be thus computed.

1000 of Efford Small Blue at the Ship's fide in Pbmoutb Harbour -5 6
1000 of Efford Large Blue
1000 of Can Pelinel
1000 of Small Blue of other Quarries _ 40 1000 of Large Blue

3000 of Small Bluc, accompted two Tuns in Carriage by Water.
1000 of Large Blue, 1 Tun.
3000 of Small will cover 1 Pole of Work at the 5 Pin Plain.
Every Pole of Work is either 6 Foot broad and 14 up, on both fides, or 168 Foot in Length, and one in Breadth.
3000 of Large, will cover two Poles of Plain Work.
Hewing of all forts of plain Pelmel per 1000 ——————— 6
Pinning per 1000, 8 d. Pins per 1000. 8 d. - - I 4
Three Bufhels (Winchefter Meafure) of good Lime, will take 6 Bufhels of frefh Water Sand, and ferve to lay on one Pole of work; tho' much lefs may ferve the Turn.

300 of Lathes to every Pole of Work.
1000 of Lathe Nail to every 300 of Lathes.
An Able Workman may $\left\{\begin{array}{l}\text { Lath one Pole of Work } \\ \text { Lay on } 200 \text { or more of Slate } \\ \text { Hew } 1500 \text { plain }\end{array}\right\}$ by the Day.
Cbequer-work confifts in Angles, Circles, and Semicircles, E'c. which require no common Skill and Time in hewing and laying.

It is worthy Obfervation, That, if a fide Wall happen to take Wet by the beating of the Weather, or the like, when nothing elfe will cure it, our Kerfeying with Slate (which is much ufed in the curious Fronts of Houfes, efpecially in Towns) will quickly remedy it.

We have fome forts, which by the Conjectures of the more experienced Hethiers, (or Coverers with Slate), have continued on Houfes feveral Hundreds of Years, and yet as firm as when firft put up.
III. The Cuftom of Felling Timber here in the South of England, differs from that of Siaffordfoire in the Time of Felling, and Manner of Barking. It is Fel-- Felling of frim- Rob led here in the Spring, as foon as the Sap is found to be fully up, by the Trees Ploo. n. 192.p. putting out, and then Barked after the Trees are proftrate, the Sap yet remain- ${ }^{4559 \text {. Jan. An. }}$ ing in the Bodies of them: Whereas there it is firft Bark'd, (in the Spring as bere) but before it is Felled, the Trees yet living and ftanding all the Summer, and not Felled till the following Winter, when the Sap is fully in Repofe.

(590)

In the Spring Seafon, and fome time after, all Trees are pregnant and fpend themfelves (as Animals do in their refpective Offsprings) in the Production of Leaves and Fruits, and fo become weaker than at other times in the Year; their Cavities and Pores being then turgid with Juices, or Sap, which (the Trees being felled at that time) ftill remain in the Pores, having no manner of Means of being otherwife fpent, and there putrefy; not only leaving the Tree full of thofe Cavities which render the Timber weak; but, $2 d y$, breeding a Worm, as both Pliny and Mr. Evelyn teftify, that will fo exceedingly prejudice it, that it becomes altogether unfit for ftrong Incumbencies, or other robuft Ules. $3 d y$, All Timber fell'd at this Time of the Year, whether the Juices putrify, or otherwife fweat forth, or dry away, is not only fubject to rift and gape, but will fhrink fo confiderably, that a Piece of fuch Timber of a Foot fquare will ufually fhrink in the Breadth $\frac{3}{7}$ of an Inch; than which, fays Vegetius, nothing is more pernicious, if us'd for the Building of Sbips. To which, 4 tbly, the firft and greateft Roman Emperor, $\mathcal{I V}_{u}$ lius Cafar, adds, that tho' Ships may be made of fuch moift Timber, felled in the Spring, yet they will certainly be Sluggs, not near fo good Sailers as Ships made of Timber felled later in the Year.

In all which Circumftances, I find, moft of the Antients fo very well agree, that none of them advife the felling of Iimber, for any fort of Ufe, before Autumn, at fooneft; others, not till the Trees have born their Fruit; which, fays Theophraftus, muft always be proportionably later, as their Fruits are ripe later in the Year. A third fort, not till Mid-winter; not till November, fays Palladius, nay, not till the Winter Solffice, fays the wife Cato; and then too in the Decreafe or Wane of the Moon, between the $15 t b$ and 23d Day of her Age, fays Vegetius, or rather, according to Columella, between the 20 th and the New-Moon. In general, fays Theophrafius, the Oak muft be fell'd very late in the Winter, not till December, as the Emperor Confantine Pogonatus pofitively afferts, the Moon too being then under the Earth, as 'tis for the moft part in the Day-time in the firt Part of its Decreafe. And the felling of Oak within thofe Limits they call Tempefiva Cefura, Felling Timber in Seafon, which they all unanimounly pronounce (if thus felled) will, neither fhrink, warp, nor cleave, nor adnit of Decay, in many Years; it being tough as Horn, and the whole Tree in a manner (as Tbeopbraftus afferts) as hard and firm as the Heart: with whom alfo agrees our Countryman Mr. Evelyn; if you foll not Oak (fays he) till the Sap is in Repofe, as 'tis commonly about November and December, after the Froft has well nipped them, the very Saplings thus cut will continue without Decay, as long as the Heart of the Tree.

And the Reafon of this is given in fhort by Vitruvius, quia Aeris Hyberni vis comprimit! ${ }^{\circ}$ confolidat Arbores, becaufe the Winter Air doth clofe the Pores, and fo confequently confolidates all Trees, by which means, the Oak, (as he and Pliny both exprefs it) will acquire a fort of Eternity in its Duration; and much more will it fo, if it be Bark'd in the Spring, and left ftanding all the Summer, expofed to the Sun and Wind, as is ufual in Staffordjbire, and the adjacent Countries; whereby they find, by long Experience, the Trunks of their

(591)

their Trees fo dried and harden'd, that the fappy Part in a manner, becomes as firm and durable as the Heart itfelf.
Which way of Barking and Felling of Timber, tho' it were unknown to the Ancients (as perhaps it is to all the world befides thefe few Counties) yet they feem not unacquainted with the Rationality of the Practice, The great Vitruvius prefers the Timber on the Soutb-fide the Apennine (where it winds about, and inclofes Tufcany and Cairipania, and ftrongly refeets the conftant Heat of the Sun upon it as it were from a Concave) incomparably before that which grows upon the Nortb-Fide of the fame Hill, in the flady moitt Grounds: Of which his Opinion he renders us this Reafon, for that the Sun does not only lick up the fuperfluous Moifture of the Eartb, whence the Trees are fupplied in fuch fhady Places with too great a Quantity, but in great meafure exhales the remaining Juices (after the Production of Leaves and Fruits) out of the Trees themfelves, rendering the Timber of them the more clofe, fubftantial and durable; which certainly it would do alfo much more effectually, if the Bark were taken off in the Spring of the Year, as is accuftomed in Staffordflire, where the People are content to ufe this Method in their Provifion of Timber, tho' but for private Ufes.
Much rather then fhould it be done in fo publick a Concern as the Building of Ships, were tough and folid Timber is much more neceffary than in ordinary Buildings. There is indeed an AZ7 of Parliament, I Yac. I. Cbap. 22. which forbids the Felling of Timber for ordinary Ufes (in confideration of the Tan) at any other time but between the of of April and the laft of Yunc, when the Sap is up, and the Bark will run; made on Suppofition, (I guefs) that fhould they have admitted Felling Timber in any other Seafon, the Tanners would have wanted a Supply of Bark. To which I readily anfwer, that Ifear the Legifotors that preffed the making that Act were ignorant that the Bark might be taken off in the Spring, and that the Tree would notwithftanding live and flourifh till the Winter following, as 1 have feen many in Staffordfire : So that tho the Tree be not Folld d till the Winter Solfice, of Fanuery following, yet the Tanner is not at all defeated of lis Tan, but has it here in as due Seafon, as in any of the Southern Counties. The Legifataors, Ifay, were ignorant of this, otherwife thiey would never have made an Act fo pernicious to the whole Kingdom, as Felling Fimmber at this Seafon is, for the fake of a few Taniers.
But notwithfanding this Ignorance, yet then they were fo wife as to except in that Act the Timber to be ufed in builling of Slips, which may be Felld in Winter, or any other Time ; as I ann told all the ancient Timber remaining in the Royal Soverecign was, it being ftill fo hard, that 'tis no eafy matter to drive a Nail into it.
'Tis true indeed, that the barking and peeling the Trees fanding is fomewhat more troublefome, and therefore fomewhat more chargeable, than when they are proftrate; and that 'tis likely, People therefore have ufually fell'd their Timber, as well for Shipping as other ufes, in the Spring of the Year, for the fake of the more cafy and cheap Barking it only, rather than any thing elfe. 'Tis too true, that Zimber is harder to Fell in the Winter, it being now fo com-

(592)

pact and firm, that the Ax will not make fo great Impreffion as it doth in the Spring, which will alfo increafe the Price of the Felling fome finall Matter and its Sarwing afterwards; but how inconfiderable thefe things are in comparifon of the great Good of this manner of Felling, I think is felf-evident.

The greatelt Objection, that I can forefee will be urged here in the South againft this Practice, is, that if the Timber be not fell' d till Mid-winter, or $\mathcal{F} a$ nuery, where it grows in Copfes and Woods, they cannot perhaps inclofe their young Sprigs fo foon as fome may imagine needful, and therefore will be backward to fell their Timber (fo growing) at that Seafon. To which I anfwer, That the Timber fo fell'd in Woods or Copfes may be eafily carricd off before the fecond Spring, and fo the Prejudice fmall, and the firft it muft be there, whercver it is fell'd. But Secondy, That which will quite remove this inconfiderable Difficulty, is, that perhaps it may be expedient that no Timber whatfoever growing in Woods or Copfes, be at all bought in the King's Yards, for that Timber growing in fuch fhady Places, and fo fenced from the Sun and Wind, as Timber in Woods for the moft part is, cannot be fo good as that which comes from an expofed Situation, fuch as it ufually has in Foreffs, Parks, Hedge-rows, and open Fields; whereto it is indifferent at leaft if not better for the Proprietor, that it be fell'd in Winter, (when the Grafs and Corn is gone) than in the Spring it felf: and the Officers defigned for that purpofe may buy all their Timber under fuch Conditions as to be fell'd in Winter, enjoining the Proprietor, to take off the Bark in the Spring in due Time, making him fome fmall Allowance for the Trouble he will have in peeling it ftanding.

The Difference of Timber in difforent Countries, and Fell das differentSeafons;
by M. Ant. Vañ. by M. Ant. Van.
Leuwenhoek. n. 213.p.224. Sep. An. 1694.
IV. It is the common Opinion, That Timber which is fell'd in Winter, is ftronger and more lafting, as being more clofe and firm than that which is fell'd in Summer : But, M. Leurwenboek's Sentiment is, that there is no Difference, except in the Bark, and outermoft Ring of the Wood, which in the Summer are fofter, and fo more eafily pierced by the Worm; Wood confiting of hollow Pipes, which in the Summer and Winter both, are full of Moifture, they do not fhrink in the Winter, and therefore the Wood cannot be clofer at one time than another, for otherwife it would be full of Cracks and Clefts. The fudden and unexpected rotten of fome Timber, he conceives to proceed from fome inward Decay in the Tree before it was fell'd; having obferved all Trees to begin to decay at firft in the Midft, or Heart of the Tree, tho' poffibly the Tree may ftand and grow for near an Hundred Ycars afterwards, and increafe in Bignefs all along.
2. He fays, he was once of Opinion, that Trees growing in good Ground, but increafing fowly, were the beft and ftrongeft Timber; and that thofe Trees, which in few Years grew large were the fofteft and brittleft; the contrary to which, upon Enquiry of experienced Workmen, he found to be true, and inftances of an Elm of 80 Years Growth, which was in Foot in Circumference, and proved excellent tough Timber.

(593)

3. The Age of Trees is to be known by the Number of Rings to be feen when the Tree is cut athwart, in each of which Rings is one Circle of large open Pipes; now the fewer of thefe large Pipes the ftronger the Timber is: wherefore by Confequence thefe Trees that make the largeft Growth, in a Year; muft be the Clofer and ftronger, and therefore thofe Trees that grow in warm Countries grow fafteft, and are the beft and tougheft Timber; which he confirms by Riga and Dantzick Oak, which is of now Growth, and proves fpongy and brittle Timber, whereas the contrary is obferveable in Einglifh and French Oak, which grows fafter, and is excellent Timber.
V. I. This Famous Romen Bridge at Pont Sl. Efprit, is very crooked, bow- Tre Bridge at
ing in many Places, and making feveral unequal Angles, efpecially in thofe Places where the Torrent runs ftrongeft, as where the Turret ftands, 4. In which Place the Angle is moft unequal, and the greateft; the Arcbes are very p wide, and have their Feet fecured by two Pedeftals that encompafs them. St. Efprit in France; by D_{r}. Tanksed Ro-
binfon, n. 160. p. 584 Fig. 215 Both the Pedeftals have their feveral Degrees or Ranks of Fettings out, like fo many Rows of Stairs or Steps, the lowermoft Order pufhing out moft, the others being lefs, and going gradually more in ; the Second or uppermoft Pedeftal is much lefs than the firt or lowermoft, being built a little within its Lines of Circumfirence; 1, 2. Between the great Arches there are Windseys, or, (as it were) fmall Arcbes; 3. that come down to the very Plane of the fecond, or uppermoft Pedeftal, dividing the Feet of the great Arches. From this my rude Defcription it appears to me, that the Romans have here contrived all poffible ways to break gradually the mighty Force of the Rbofne, and to render its Paffage eafy, and inoffenfive to the Feet of the great Arches; for here we fee fo many feveral Palifedoes and Sluices, as may be fufficient to defend this wonderful Fabrick againft all Storms of the Torrent; the leveral Ranks of Stairs jetting from the Pedeftals (for the moft part Triangularly built, and faced well with Free-ftone) oppofing and breaking the Stream feverally, I mean, not all together, or at the fame time, by reafon of their various Inequalities in ftanding out: in cafe the Flood fhould fwell fo high (as it frequently does) as to cover both the Pedeftals, then the fmall Arches, dividing the Feet of the great ones, help to convey the Water thro', which otherwife might endanger the great Arcbes.
4. That which feems the Foot of the Areb is an Horizontal Arch gradually ${ }_{\text {By }}$ Dr. Lifer. contracted, every Stone being of vaft Length and Wedge-like, Laid level ib. 585 . with the Water. This I fpeak by Memory.
5. The ftately Modern Bridge at Avignon hath yiclded in many Places to Compared wish the extreme Rapidity and Violence of the Rbofne. Its Fall, in my Opinion, may fridges; be afcribed to three Defects, Firft, It was not fo multangular, as that at br D_{r} Tank. St. Efprit: Secondly, it wanted in three or four Places, the little Arcbes di- Robinfon. $163 \cdot p .712$. viding the Feet of the great ones, and in thofe Parts it hath fuffered moft; for where thofe ufeful Sluices are, there I obferved the Bridge to Itand ftill the moft intire. Thirdly, The Pedefals (or as you very propenly call them Ilorizontal Arches) were not fo Geometrically and exactly laid, as thofe of Pont Si. Efprit; their Jettings out were few, and they not gradually contracted; fo that the Force of the Stream mult be greater upon the Fabrick.

VOK, I.
Gggg
Tho ${ }^{\circ}$

(594)

Tho' the Tiber be not fo fwift as the Rbofne, yet it is fubject to greater Inundations, as many Infcriptions affure us. No River ever had fo many Bridges buile with that Magnificence and Art, as this; and tho' they were more'pompous and rich in rare Stones, in Sculpture, \mathcal{E}°. than that Iformerly fent you a Draught of from Mon!pelier; yet they had the like Provifion for their Security and Prefervation, and their Defign was much the fame; which may be feen at Rome this very Day at the old Pons Mellius (now Ponte Nolle) near the Via Flaminia, in the Marble Remains of the Pons . Amilius, repaired with rich Materials by Antoninus Pius, on the Side of the Ripa, or Traftaver,, near the Root of the Aventine Hill, where firit the Pons Sublicius ftood; as alfo in the Pons Fabricius and the Cefius, that leads over to the Infula Tiberine; in all which there are ftill very fair Marks of the old Roman Structure and Defign; and if that prodigious City had not been knocked fo oft to pieces by Barbarous Sackers, we might have had ftill as clear Proofs from the other Bridges, viz, the Pons Triumphalis, the Senaeotius, \& c. But Gothish and Northers Torrents broke all before them.

A Bridge with out any Pillar zonder it, from The Yournal of the Phil. Scciery of Oxford. ib. p. 714.

Fig. 216 .
VI. A Timber Bridge may be built 70 Foot long, or fomewhat more, without any Pillar under it, which may be ufful in fome Places where Pillars cannot be conveniently built, after this manner; A C, and BO are Beams 28 Foot long, and A B is 32 Foot long. Under the Angles are fet two large Braces, EL, and S R. At each end is a Wall, on which are laid two Beams BH, and AD, each 20 Foot long; under thefe two are two Braces DE, and RH. There may alfo be: Braces at the End of the Arches, that may lie obliquely crofs the Bridge. It may be laid with Planks and Railed. Behind the Walls are Caufeys FD, and AN. The Length of the Bridge CMO, is 70 Foot; in the Height KM is 19 Foot.

An Aqueduct near Verfaillcs m. 171. p. 1016. May, An. 1685°
VII. I. The Aqueduct which is to be made near Maintenon, for the carrying the River Bure to Verfailles, will have in Length 7000 Fathom; 402 whereof will be 35 Fathom and 4 Foot high, the reft will be lower, according to the Difference of the Ground, but no lefs than 5 Foot and 6 Inches high. There will be to the faid Aqueduct 861 Arcbes, which, where they are higheft, will have 12 Fathom in Breadth, and 8 Fathom in Thicknefs, diminifhing to 14 Foot at the Top. The other Arches will be leffer in Breadth as well as Thicknefs, according to the Nature of the Ground. The faid AqueduIt will have 15 Inches Fall to every Thoufand Fathom in Length; fo that for the $j 000$ Fathom, there will be 8 Foot 8 Inches Fall. The River is to pafs by Maintenon, le Parc Efpernon, Gageran, Rambouillet, les Effars, le Perrey, Cognieres, and from thence to Verfailles. There are 14000 Soldiers that work there, under the Command of the Marquefs d^{\prime} Uxelles, with three Commiffaries of War for their Conduct.
4. 176. p. 1206. 2. A Magazine for the Waters upon the Mountain Mantboron, is already cut, which will have 2200 Perches of Surface (each Perch being 8 French Foot) and 12 Foot in Depth. In another Place, much lower, will be another Magazine, to receive the Waters of many Pools, the moft part of which,

(595)

as yet 'have no Water in them. In the Valley of Buc will be an Aqueduct, the Middle whereof will be raifed 22 Fathom high, for conveying the Pools of Sarle, which, it's faid, contain much Water, tho' there be nothing but Rain to fill them. This Aqueduct is 300 Fathom long, and pafies thro ${ }^{\circ}$ two Mountains which have been cut thro' upon that Account. The Valley alfo on both fides of the Aqueduct is raifed is Fathom high, to make Paffiages.

An Aqueduct is alfo making near the Tower of Stone, where the Mills raife the Water, which will now pafs without Force to the Top of the Mountain : and there be part of it diftributed into feveral great Cifterns, which are making about \bar{M} arli for that Place.

The Elevation of the Aqueduci of Maintenon is now fet forth at but 2560 Fathom; whereas it was defigned to be carried on more than 8000 Fathom, and the Remainder will be made of Earth, which muft be brought thither ; this Opinion prevails, in regard it gives a quicker Difpatch, tho' it may be doubted, it will not be for the better.

Thefe 2560 Fathoms contain 242 Arcades, whofe Aperture is 6 I athom and $\frac{\pi}{2}$, and the Face of each Pillar fuftaining the Arches, 4 Fathom; there will be then on the fide of Maintenon 33 Single Arches, afterwards 71 Double ones; (as having one Arcb upon another) then 46 Treble ones; which will generally be 216 Foot 6 Inches high, (viz. up to the Floor of the Cbannel) afterwards 72 Doute ones; then 20 Single, which will reach to the Mount of Earlh, that is to be 50 Foot high.
From the Ground up to the Seconl Arcade, are I 6 Fathom; from the Second to the Third, or upper Arcade, are ${ }_{1} 4$ Fathom, (which Arcades are Double in Number to thofe they fland upon) and 6 Fathom 6 Inches more to the Floor of the Cbannel, which will at leaft be 7 Foot high, befides the Parapet.

The Pillars by the Ground are 8 Fathom thick; but, what with the Siopes and Sbortnings, which are made in every Story, the Top, where the Cbonnel goes, will be but 20 Foot broad. There will likewife be at each Pillar a Buttrefs jetting out one Fathom, and two Fathom wide.

The intelligent Obferver, tho' well fkill'd in things of this Nature, as being no Stranger to the Writings of the Ancients, or the famous Ruins and Remainders of their Fabricks in Italy, and other Places, profeffes himfelf furpriz'd with the Greatnefs of this Undertaking at Verfailles, and Maintenons; for the Magnificence of the Defign, the Number of Labourers, the Exceffivenefs of the Expence, and the admirable Beauty of the Work.
VIII. Having been lately at Edgecot in Nortbamptonffire, at the Houfe of A very harge Tobias Cbancy, lifq; he fhewed me in an Antient Kitchen (now difufed) two surits a percrlidr Chimneys, vaftly large, of Stone-W ork: Which I took the more Notice of, be-fort of Archcaufe of a peculiar Way of Arch-Work in the Front of them; whereby, Jork halls. D_{r}. without the Advantage of a Difcbarge of Timber (which is ufual, in fuch 166 . p p. 800 . Cafes, to defend the Arcb-Work from being overburden'd) an Arch of maffy Stone (in each of them) futtains itfelf at a great Length, tho' almoft upon

$$
\mathrm{Gggg}^{2}
$$

(596)

a Flat, being very little rais'd in the middle. Over this Arch (after fome walling interpofed) there is another Arch (to defend the former) more raifed from the Flat. The Dimenfions of all, I have thought fit here to fubjoin.

A B, The Breadth between the $\mathcal{F} \mathrm{mbs}$, from Infide to Infide, 8 Font.
CD, The Depth of the Stones in the Lower Arch, 22 Inches ; locked one into another, with a crooked Joint.

1) E, The Diftance in Walling, between the Arches, 2 Foot and 7 Inches.

EF, The Depth of the Stones for the Upper Arch, 15 Inches: With a Atreight Joint.

GH, The Place of two vaft Tumels of Stone.
K , a window between them.

A new Kind of Stairs; by M. Weighelius.
ก. $74 \cdot p .2212$.

Preferving of Sinips from being Worm-eaten; by....n. 11 . p 190. Apr.
IX. M. Weigbelius hath lately invented an odd Bridge, or kind of Stairs, by which a Man fhall defcend, and yet really be raifed upward; and going as 'twere upon a Plain fhall from a lower, by gently fubfiding, arrive to an upper Story.
X. In the Indian Seas, there is a kind of fmall Worms that faften themfelves to the Timber of the Ships, and fo pierce them that they take Water every where; or if they do not altogether pierce them thro', they fo weaken the Wood, that it is almoft impoffible to repair them. Some have employed Deal, Hair and Lime, \&cc. and therewith Lined their Ships; but befides that, this does not altogether affright the Worms, it retards much the Ship's Courfe. The Portugufe fcorch their Ships, infomuch that in the Quick Works there is made a Coaly Cruft of about an Inch thick. But as this is dangerous, it happening not feldom that the whole Veffel is burnt ; fo the Reafon why the Worms eat not thro' Portugal Ships, is conceived to be the exceeding Hardnefs of the Timber employed by them. There is in Holland a Man that pretends to have found an admirable Secret to remedy this Evil. And a very worthy Perfon in London fuggefts the Pitch, drawn out of Sea-Coals, for a good Remedy to fcare away thofe noifome InjeEts.

An Accoust of Lead Sheatang ; by Mr. J. Bulteel, ~ 100 . po $6{ }^{6} 9^{20}$ Jan. An 3674 .
XI. Some few Years fince, Sir Pbil. Howard and Major Watfor, with great Charge and Induftry found out a new Way, by a Manufacture of our own, to preferve the Hulls of Ships from the Worms, $\xi^{\circ} c$. which is much fmocther and confequently better for Sailing, and more cheap and durable than the Way of Boards, Pitch, Tar, Rofin, Brimfone, or any Sbealbing or Graving hitherto ufed. The King and Parliament being fatisfied, upon Examination, of the great Benefit that might redound thereby to his Majefy and Subjects in general, for the Inventors Encouragement to make the fame publick, were pleafed, almoft 4 Years fince, to grant them an AEE of Parliament for the role Life of this their Invention, with Penalty and Prohibition to all others. In Profecution whereof, Experiments have been made upon feveral of his

Majefiy's Ships, viz, the Pbanix, done three Years ago, has made two Voyages into the Streights, \&c. and when the was lately taken into the Dock at Woolwick to be repaired, upon View of the Mafter Sbipreright and others, her Sheathing was found to be in as good Condition, as at the firft doing; and the Ship fo tight during the whole time, that they were forced to heave in Water to keep her fweet. The Dreadnought, a Third Rate, done in fune 1671; the Henrietta, Lyon, and Mery, all three of the Third Rate, and done a Year and half fince, being lately laid on Ground at Sbeernefs and Portfinouth, are found to be all in as good Condition, and the Sheathing to continue as firm and as well as at the firf doing; as the Mafer-Builder and Alfjeant at Portfmoutb, and others, have certified.

The Bread Rooms alfo of fome of thefe, and many others of his Majefiy's Ships, have been lined within, almoft in the fame manner the Sheathing is without; which has prov'd a great Prefervation of the Bread, as feveral of the Purfers and Officers of the faid Ships have certified; and by Reafon of its Duration muft be much cheaper and better than Tin, which is fo liable to ruft, or any Way yet ufed.

Alfo the Lead itfelf (which is the principal thing ufed herein) they make fo clofe preffed, fmooth, and equal, or of what 1 hicknets or Thinnels defired, that great Ufe may be made thereof about feveral other things relating to Shipping.

XII. A Paper of lefs General Ufe Omitted, viz.

Directions for Inquiries concerning Stones and other Materials for the Ufe n. 93.p.60to. of Building.
XIII. Accounts of Books Omitted.

1. Vitruvius done into Englifb; by Mr. Cbr. Wafe.

$$
\text { n. } 72 \cdot p \cdot 2390
$$

Les dix Livres d' Arcbitečure de Vitruve, corrigez, \&t traduits nouvellement A. 112. p. 279 , en Francois, avec des Notes \&e des Figures; par Cloude Perrault. Paris 1637. in Folio.
2. Cours d' Architecture, enfeigne dans l' Acalemy Rayale d' Arcbitecture, n. y12. p. 549 . premiere Partie; par M. Francois Blondel, à Paris, 1675, in Fol.
3. Rapbaelis Fabretti Urbinatis de Aquis \& Aquaductibus Veteris Rome, n. 155.po. 66. Differtationes tres, Rome 1680. in 4 to.
n. 95. p. 607 x .
4. Modern Fortification, E^{3} c. by Sir Fonas Mocr, 1673 . in 8 vo.
a. 158. p. 586.
5. Nouvelle Maniere de Fortificr les Places ; par M. Blondel. Hague, 1684. n. 79.p. 3071 .
6. Marci Meibomii de Fabrica Triremium Liber. Ainlfelodami 1671 . in 480.
7. Scbeeps-Boow ein Befier, that is, Naval Arcbitcecture and Condust ; by N. n. 77.p. 3006. Wiefen. Amferdam 1671 in Folio.
8. L'Architeczure Navale, avec le Routier des Indes Orientales \&e Occiden- n. 135.p. 8790 tales: par le Sieur Dafféé, à Peris. 1677 . in 410.

C H A P. IX.

Perpective. Sculpture. Painting.

A Per.jective I. Infruzmens; by Sir Chr Wren. n 45 -p 89 .
 A

 Fig. 218.Mar. An. 1669. Is a fmall Sight with a fhort Arm B, which may be turned round about, and moved up and down the fmall Cylinder C D, which is frewed into the Piece ED, at D: This Piece ED moving round about the Center E; by which means the Sight may be removed either towards R, or F.

EF is a Ruler faftened on the two Rulers GG, which Rulers ferve both to keep the Square Frame S SS S perpendicular, and, by their niding thro' the fquare Holes T T, they ferve to ftay the Sight, either farther from, or nearer to the faid Frame; on which Frame is ftuck on with a little Wax the Paper OOOO, whereon the PiEture is to be drawn by the Pin I. This Pen I is by a fmall Brafs Handle V fo fix'd to the Ruler HH, that the Point I may be kept very firm, fo as always to touch the Paper. HH is a Ruler, that is always, by means of the fmall Strings aaa, bbb, moved Horizoitally, or Parallel to itfelf; at the End of which is ftuck a fmall Pin, whofe Head P is the Sight, which is to be moved up and down on the Out-Lines of any Object.

The Contrivance of the Strings is this. The two Strings aca, $b b b$, are exactly of an equal Length. Two Ends of them are faften'd into a finall Leaden Weight QQ, which is moved in a Socket on the backfide of the Frame, and ferves exactly to counterpoife the Ruler H H, being of equal Weight with it. The other two Ends of them are faften'd to two fmall Pins $\mathrm{H} H$, after they have rolled about the fmall Pulieys $\mathrm{N}, \mathrm{M} \mathrm{M}, \mathrm{L} \mathrm{L}$, K K ; by means of which Pulleys, if the Pen I be taken hold of, and moved up and down the Paper, the Strings moving very eafily, the Ruler will always remain in an Horizontal Polition.

The Manner of ufing it is this: Set the Infrument upon a Table, and fix the Sight A, at what Height above the Table, and at what Diftance from the Frame S S S S, you pleafe. Then, looking thro' the Sight A, and holding the Pen I in your Hand, move the Head of the Pin P up and down the Out-Lines of the Object, and the Point I will defcribe on the Paper OOOO, the Shape of the Object fo traced.

A nerv way of

 Delineating by Paralliel Ti/wal Rays, exarly obferving the Symmetry; by Mr. S. Clare, n. 96. p. 6080 . Fig. 219.July, An. 1673.
II. ABCD is the Profopographick Parallelogrem, H F the Central Style, LC the defcribing Quill, K A the Index, or an oblong Ruler adapted at right Angles to the Plain of the Parallelogram, by means of the winding brafs Pin according to the Pattern E. To this Ruler are fixt two Sights PR,SV, in the Middle of PR is a Hole bored at O, and in the Middle of SV a Thread is erected perpendicular to the Ruler R A, in the Middle of which is a certain little Globe or Bead, through which and the Hole O a

(599)

Ray is extended from the Object to the Eye, which while you delineate fhould not be fixt, but free and at liberty.
I. It is to be obferved, that a Ray extended through the Hole O and the Bead, will always be perpendicular to the Plain of the Parallelogram, or to its Diameter, which is a right Line extended through the defcribing Style LC, and the fixt Center F, and the faid little Globe or Bead, in which Line the Bead will always be found, however the Paralielogram may be moved.
2. The fenfible Delineatory Plain, upon which the Point L moves about, which is the Nib of the drawing Style LC, defcribing the Image exactly according to the Motion of the Index K A, and upon which the Central Style HF is fixt, is the Plain QYX' ; but the mere Rational or Mathematical Plain, being a Continuation of the former, is $s \delta \beta \gamma$.
3. That all the Rays extended from the Object through the Bead and the Hole O to the Eye, (which is placed in fo many Points of a tranfparent Medium, by means of the Index K A, as there are Points in the vifible Superficies of the Object to be defcribed, which are infinite,) will always be parallel to one another.

Perhaps fome may object, that in Objects at a great Diftance there can be no ufe of the Sights. But which way will that concern us, fince this Method of ours is defign'd only for removing thofe Difficulties in Delineation, which hitherto have attended the Parallelogram of Scbeiner. For I have often found by experience, (tho' for this the Artift does not think the worfe of his Inftrument,) that by no means there is that Proportion between the Parts of the Copy in the Plain, as there is in the Parts of the Original at a Diftance.
III. I here fend you a Method of Cafing Statues in Metal, in Obedience A Methed fiefid to the Commands of the Royal Sociely; it is as follows. Firft, I form out of ing statues of of good Clay, that will endure the Fire, and not crack either in drying or T Thinhs s; ${ }^{\text {by }}$, burning, fuch a Figure or Statue as I defire to caft; when this is well dry, chard valvafor. I make, all over the Figure, little Holes of no great Depth (but both Size and Depth proportionate to the Bignefs of the Statue) into which I let fmall Jan. An. ${ }^{\text {Fig. } 2200}$. Pieces of Metal, and with fome of the fame Clay fix them firmly in the Holes; the Ufe of thefe Bits of Metal, a a a a a, is to keep the Core and Mould from touching one another, or falling together when the Wax runs out ; and that they may remain conftantly in the fame fixt Pofture. This done, I fcrape away with fome proper Inftrument, as much of the Clay in thicknefs as I defign for the thicknefs of my Statue; and then laying it in a Furnace, 1 burn the Core till it be red hot: (by the Core is meant always the Statue firt made in Clay,) when it is cold, I rub the Core all over with that fort of Eartb or Colour, which our German Potters ufe to colour the Joints of the Tiles, when they fet Stcves of Tiles or (Kacbel-Ofens:) this Colour much refembles Black Lead which is ufed to D_{i} fgri on Paper, and cafily wipes out with Bread, but it is not the fame. This Colour I mix with Water, and daub all over the Corr, becaufe the Mctal is found to run freely upon it. There are other Subftances proper for this Ufe, but I have always made ufe of this, efpecially for thin Statues. This done, I lay upon the Core' as much yellow Wax mix-

(600)

ed with Pitch or Rofin, as will make the Thicknefs of the intended Statue, which I form in the Wax, with all the Exactnefs poffible.

Here note, that the Particles of Metal mentioned to be fet into the Core, to keep it a Diftance from the Mould, muft be fo fet as to fall in with the Surface of the Wax exactly; and that the Reafon of mixing Pitch or Rofin with the Wax is, becaufe that when it is burnt out, it makes a great Smoke, and that Smoke adhering to the Mould, occafions the Metal to run more freely ; as I have experienced it. Next I put all over upon the Surface of this Statue of Wax, little Pieces of Wax, which I call the little Cbannels coccoc, (all which muft be contrived fo as to enter the great Cbannels $d d d$.) This done, I cover the Core and Wax all over with the fame fort of Clay, that will endure the Fire without cracking; and fo I have my Concave Statue or Mould made. Upon this I lay the great Cbannels marked $d d d d$, both upright and tranfverfe, formed likewife in Wax, and placed according to Judgment, fo as beft to receive the Ends of the little Cbannels ccccoc, for the more eafy diAtribution of the Metal. The great Cbannels muft all meet at the top of the Statue, fo as to come out by one Hole, as at E, where the Metal is to be poured in: It is alfo neceffary to have a Cbannel or two to let out the Air as the Metal enters, as thofe marked $f f$, and there muft be a Hole or two left at the Foot, as $g g$, where the great Cbannels and waxen Statue join; and whereat, when the Mould is burnt, the Wax as well of the Statue as of the Cbannels may run out. The great Cbonnels being thus placed, the Mould muft be again laid over with the fame fort of Clay; (I ufe conitantly to bind about the Mould with Iron Wire, and then lay on more Clay) and when this Mould is well dry, then I heat it red-hot; as I did before the Core, fo now both together.

I burn the Core firft, that there may not need fo ftrong a Fire to burn the Mould as will melt the fmall bits of Metal : but for fmall manageable Statues, of not above a Foot or two high, they may be both burnt together, and there is no need of the Holes $g g$, but the Mould may be inverted, and the Wax run out by the Cbannels $f f$, and E .

The Mould being thus burnt, I fop with the fame Clay the two Holes $g g$, and then I bury it in a Pit, and proceed as is ufual in Cafting of Bells and the like; but care muft be taken, that the Metal be very well in Fufion.

If it be a fmall Statue, not above a Foot or two high, whofe Mou'd may be managed in one's Hands; then I make me a Concave Statue of Wax, of the Thicknefs I defire, and then place upon it all thofe great and leffer Channels, as afore: Which done, I put it all together, into a liquid Subftance made of Plaifter and Tile, or Brick Duft tempered with Water.

If the Statue be intended very thin, then I take Copper, and when it is well in Fufion, I mix with it a good quantity of Zinc, without obferving any certain Proportion of Weight; the more Zinc the better the Metal runs. I have fometimes for fmall and thin Statues put in above a third part of Zinc. I have found by Experience, that this Mineral makes the Metal run moft freely, and gives it a fair Golden Colour.

(601)

The Statue being caft, I take off the Mould, and cut off all the little Cbannels; all which, both great and fmall, are filled with Metal, which may be kept for farther Ufe: In thefe there is much more Metal than in the whole Statue; for, if the Statue be very thin, there muft be more and bigger Cbannels, and fo, the cheaper the Statue, the more weighty the Cbannels, and the more Metal remaining.

To know the Quantity of Metal requifite for any intended Work, I take a Lump of the fame mixture of Wax and Pitch, with which I make the Mould of my Statue; and having weighed it, I make a Mould upon it, and caft in the fame a Lump of Metal of the fame Size; which I weigh, and thereby compute the Proportion of the Weight of the Metal and W Wax; and then, obferving how many Pounds of Wax I ufe about the Figure and Channels, I can calculate to a fmall matter how much Metal I need to melt.

Hitherto I have caft no Statue above 9 Foot high, but I doubt not but I could, by the fame Methods, caft one of any Bignefs defired.
IV. I. Spanifh White is made of Chalk and Allum burnt together.
2. I take the Lapis Armenius to be the Blue Bice fold in the Shops, for it $A_{\text {Jome Serription of }}^{\text {Simple }}$ Cois light and friable ; formerly brought out of Armenia, now from the Silver (omers simple co. Mines of Germany, called Melochites, in High-Dutch, Bergbblawo. Rich. Waller. A. 179 P. $26,3{ }^{\circ}$
 Gold Veins, by Calcination.
4. Smalt is made of Zaffer and Pot A/bes calcined together in a Glals Furnace.
5. Lilmafe or Litmofe, I fuppofe the Juice of a Plant.
6. Indigo, faid by Pliny to be brought from India; a kind of Mud adhering to the Froth about Reeds, and that when tried with a Coal, the true burns with a purple Flame, and fmells of the Sea. Linfchoten fays it is called Anil, that it grows in Cabaia, and is a Plant like Rofemary, which is gathered and dried, then wetted with fair Water, and beaten to a Mud.
7. India Ink; its Ufe is known to Pliny, tho' not its Compofition; which is yet undifcovered, except it fhould be burnt Rice, as hath been thought.

1. Cerufe is the Ruft of Lead, made by a vaporous Calcination. Pliny writes thus of it in Cap. 34. Lib. 18. Cerufe Pfimitbium is made in the Plumbers Shops, of fmall Plates of Lead laid upon a Veffel of ftrong Vinegar; what falls into the Vinegar is taken out and dried in the Sun: and in Cap. 6. Lib. 35he fays it was made at Rome of burnt Marble Flint quenched in Vinegar.
2. Mafficot is a kind of improper Calx or Tin.
3. Gutta Camba, or Cambodia, the infpiffated Juice of a Plant, not well known; it comes from both the Indies. Some think it the Juice of Eupborbium; others Scammony or Titbymal; others Ricinus; others refer it to the greater Cataputia, Efula, or the Flowers of the Indian Ricinus, and will have it coloured with Turmerick; as Scbroder.
4. Okir, a kind of natural Earth. There are two forts thereof, the one Native, formerly brought out of Africa, now from Dacia and Hungary, and from many Places in England, efpecially in the Forelt of Dean: The other, a factitious Subftance of Lead burnt and quenched in Vinegar. In Pliny's. Time it was made of Rubrica, or Ruidle burnt.

Vol. 1.

Hhhh
5. Or-

(602)

5. Orpiment, a fat inflammable Mineral, juftly ranked amongft Poifon for its extreme corrofive Quality. Pliny fays, it was dug up in Syria on the Surface of the Earth, and that the Emperor Caligula had hopes of getting Gold out of it; wherefore he caufed is Pounds of it to be tried, which afforded him very good Gold, but in fo fmall a Proportion, that he loft by the Trial.
6. Umber is a native Earth.
7. Red-Lead, a Colour unknown to the Antients, made of Litbarge, or burnt Lead, by a Reverberatory Celcination, or of Cerufe put in a Platter over the Fire, which muft be continually ftirred till it has acquired a Red-Lead Colour. Dr. Cbarleton de Fof.
8. B'urnt Oker is the common Yellow Oker burnt in the open Fire.
9. Cinnabar, or Vermilion. There are two forts, Native, or the Miniuns of the Antients, which is the Mineral that yields quickelver; whereof, and of Sulpbur, it chiefly confifts; it is found in the Mines of Ifria. This Colour was amongft the Anticnt Romans ufed to facred Purpofes, and on Feftivals Fupiter's Face was painted therewith, as likewife the Bodies of thofe that entred in Triumph. The Factitious Cimabar is that which we now ufe, and is made by a Sublimation of Mercury and Sulphur.
10. Carmin, made of Cocbineel.
ir. Lake, thought to be an Arabick Word: It is made of Flocks dyed, or fhavings of fcarlet Cloth, or of the Cocbineel Infect, or elfe of Kermes-Berries, their Tincture being extracted with a Lye of Pot-Ajhes, and then precipitated with a Solution of Roch-Allom. After the fame manner a Lake may be made of any Plant or Flower. There is another fort of Lake made of Gum-lac, by extracting its Tincture with Urine.

12 Sanguis Graconis is the Gum of a Tree, which looks like dried Blood; 'tis brought out of feveral Places in the Eaft-Indies.
13. Englijs Reddle, or Ruddle, is found in many Places of Engiant; amongft the reft, near Witney in Oxfordfuire.
14. Lamp-black, by Pliny thus defcribed: 'Tis made of the Soot of Rofin, or Pitch burnt, Houfes being built on purpofe for it, that keep in the Smoak.
V. This way of making feveral Cbina Varnißbes was firt fent from the Fefuits in Cbina to the great Duke of Tufcany.

Take of Crude Varnifb 60 Ounces, ordinary Water 60 Ounces, mix them well together till the Water difappears, afterwards put this matter into a wooden Veffel 5 or 6 Palms long, and 2 or 3 broad, mix them with a wooden Spatula, for a whole Day in the Summer's Sun, and for two in the Winter. It is afterwards kept in earthen Veffels with a Bladder over it, and cool. This is the Varnifs prepared in the Sun.

Take 20 Ounces of the Oil, called Oil of Wood, of that of the Fruit 10

Toyling the Ogl of Wiod.
To give she firfs Gruturads sulted Cacolfictar

To make China Varnifhes; by Dr. Will She5a•d. n. 262.p. 525. Mar. An. $\$ 760$. Drams; give them 5 or 6 Boils, till it comes to be a little Yellow. Let it cool, and put to it 5 Drams of Quick-lime powdered.

Take Swines Blood and Quick-lime powder'd, mix them well, lay this mixture on the Wood, and, when it is dry, fmooth it with Pumice-Stones.

(603)

Take of the Variifs prepared in the Sun, 60 Ounces, Stone-black Allum, To mateblack (fuppofe to be a fort of Copperas) diffolved in a little Water, 3 Drams; 70 Drams of Lamp-Oil, call'd by the Portugueze Azeite de Candea. It is prepared in a wooden Veffel, as the prepared Varni/h, obferving to put in the Lamp-Oil at twice.
Take of the Oil of Wood crude, (called by the Portugueze Azeite de Pao) Pitch-ctourt 40 Drams, of the Lamp-Oil, called de Candea, Crude, 40 Drams: It is pre- Varmifh. pared in the Sun in a wooden Veffel, as the prepared Varnifh.

Take 10 Drams of Cinnabar, 20 Drams of Varni/h prepared, a little Oil Red Varnifhe de Candea, or Lamp-Oil; mix them well.

Take of the Yellowe Colour 10 Drams, 30 Drams of the prepared Varnifh, Yellow Vamiah. with fame Lamp-Oil.

Take of the Red Varai/h 10 Drams, of the Black Varnifh 4 Drams; mix Musk-colour'd them well.
VI. M. Colbert being pleafed fome time fince to vifit the Academy Royal for An Examen of the Improvement of Painting and Sculpture, expreffed himfelf to this Effect, poodid; by M. That he thought it proper from time to time that the Works of the moft ex-Colbers. .a. 47cellent Painters fhould be examined, and fuch Obfervations made thereon as PA. Ps. 1669. May would inform others wherein the Perfection of a Picture confifts. Which hath been ever fince practifed among them, as the beft Means to carry the Art of Painting to its higheft Perfection; fuch an Examen of the beft Piecures difclofing many Secrets of that Art, for which there are no Rules, and opening a door to debate many important Queftions, not hitherto treated of.
VII. Here is a Man who makes more lively Counterfeits of Nature in Wax, Wax Work, ank than ever I yet faw in Painting, having an extraordinary Addrefs in model- a meap kind of ling the Figures, and mixing the Colours and Sbadows; making the Eyes fo Reievero in

I have alfo feen a new kind of Maps in Lowo Relievo, or Sculpture; for Ex- An. 1695. ample, the Ine of Antibe, upon a Square about 8 Foot, made of Boards, with a Frame like a Picture: There is reprefented the Sea, with Ships, and other Veffels artificially made, with their Cannons, and other Tackle of Wood fix'd upon the Surface, after a new and moft admirable manner; the Rocks about the Ifland exactly form'd, as they are upon the natural Place; and the Illand itfelf with all its Incqualities, and Hills and Dales; the Town, the Forts, the little Houfes, Plat-form, and Cannons mounted; and even the Gardens, and Plat-forms of Trees, with their green Leaves ftanding upright, as if they were growing, in their natural Colours; in fine, Men, Beafts, and whatever you may imagine to have any Protuberancy above the Level of the Sea. This new delightful, and moft inftructive Form of a Map, or wooden Country, you are to look upon either Horizontally, or fide long, and it affords equally a very pleafant Object.
VIII. Whether the way mentioned by Kircher in his Mrindus Subterranzus To Cower wiwwill fuceced or not, is much doubted by fome experienced Men: But'tis cer ure by. ...s.

(604)

tain, that a Stone-cutter in Oxford, Mr. Bird, hath many Years fince found out a way of doing the fame thing, in effect, that is there mentioned; and hath practifed it for many Years: That is, he is able fo to apply a Colour to the Out-fide of polifhed Marble, as that it fhall fink a confiderable Depth into the Body of the Stone, and there reprefent like Figures or Images as thofe are on the out-fide; deeper or fhallower, according as he continues the Application a longer or leffer while.

An Extrsord:nary Tinctare given to a Stone by Br . Satumon keifel. n. 179. P. 22.
IX. A Goldfmith at Stutgard, a very ingenious Ingraver, by Name Cbrifopber Muller, in the Year 1685 . while he was rubbing fome Aurum fulminans in a little Scuttle made of Cbalcedony of the pellucid Onyx Colour, or of a horney Caft, mixed with red Glafs prepared for Fufion, and moiftened with Spring Water, in order to make Enamel, (of which Antonius Nerius, as tranflated by Andrea Frij2o treats in his Book upon the Art of making Glafs) found upon repeating it for the third Time, that the Purple Colour of the Powder, which had remained fome Days dry in the Veffel, and had fpread as far as the Lips of it in rubbing, had penctrated this exceeding hard Stone, which the File can make no Impreffion upon, fo deep not only in the Scuttle, but in the Piftle itfelf, and had mark'd it with Spots or pretty regular Circles, that it could neither be taken out by fimple Water, nor Lixive, or any other aerid Liquor, and all this without hurting the exquifite Polifh of the Stone, leaving however fome Spots here and there ftill of the Oryx. Colour. This was repeated feveral times in another Veffel of the fame Colour, without ever having the fame Effect. But what is chiefly to be obferved in the colouring of this Stone, is, that according to the Texture of the Gem, as appeared both to the naked Eye and a Glafs, in the external Part of the Veffel, where the Tincture has juft reached, you can perceive Fibres or circular Layers, according to which it is probable that it encreafed in its Bulk, frefh Layers of ftony Matter being laid upon one another; as Bezoar and other Stones are encreafed by new Lamina, and alfo Trees, in whofe Trunks the Circles or Rings denote the Number of Years that the Tree was a growing. And this purple Colour appears lighter or darker, according as the tinging Stuff met with larger or leffer Pores, a harder or fofter Texture of the Stone, and produces circular Streaks furrounding a Kind of Vertex, as you fee round the Pith, or Cor, as it is called, the Grain, or Chaff in other Stones and Wood; intermixed here and there with darker Spots. As the illuftrious Boyle in his Specim. de Orig. E Virt. Gemmarum. Sect. 1. P. 22, 23. has obferved the Points and Joinings of thin Layers or Planes in Adanzant and Granates; which Artits call the Grain, or fomething refembling the Texture of cleft Wood.

Several Writers have mentioned that Marble, Alabafter and Bones may be tinged by lixivious and acrid Juices: and this may perhaps be expected of Gems, fince the above mentioned Boyle, Sect. 2. p. ${ }^{12}$. fays that a Tincture may evidently be extracted from them; and elfewhere, p. 43 and 190. that Rock Cryftal may be tinged by Mineral Acids ${ }_{2}$ and p. 45. the Sapphire itfelf by fubterraneous Vapours.

(605)

Seeing then it is plain from this Obfervation, that the Gem called the Cbalcedony was really tinged, tho' it happened accidentally, nor by repeating the Procefs could the fame Effect be produced, it deferves however to be confidered, whether it was not owing to the Influence of the Stars, or rather fome other hideden Quality, and a Trial to be made, whether from a Mixture of Salts and acrid Jnices there might not be produced a Tincture of that Kind, and even without the Affiftance of Fire, by which the Splendor and Pellucidity of the Gem fhall not be deftroyed and its Hardnefs ftill remain, and therefore its Value be not only preferved, but even increafed by its new acquired Colour.
X. Papers omitted.

1. A Defcription of Scbeiner's Stereograpbick Parallelogram, and its Imper-n.96. p. 608s. fections confidered; by Mr. F. St. Clare, vid. fup. Sect. II.
2. A Table of Simple and mix'd Colours, in Latin, Greek, French, and n. 179.p.24,290 Engli/h: with a Specimen of each Colour prefix'd to its proper Name; by Mr. Rich. Waller.
XI. Accounts of Books omitted.
3. Entretiens fur les Vies \& fur les Ouvrages des plus excellens Peintres, ${ }^{\text {n. }}$ 2r. p. ${ }^{2}$. 83. Antiens \& Modernes; par M. Felibien.
4. An Idea of the Perfection of Painting: Originally written in French, n. 39.p. 784. by Roland Freart Sieur de Cambray; and render'd into Englifb by 7. Evelin, Efq; F. R. S. Lond. 1668. in 8 vo.
5. A General ldea of the Art of Painting, and Relation of feven Confe-n.47. P. 954. rences held at Paris in the Academy Royal, for the Improvement of the Arts of Painting and Sculpture.
6. Optique de Portraiture \& Peinture, contenant la Perfpective, Specula- 0.86. p. 594% tive, \& Pratique Accomplie; E'c. Par Gregoire Huret, de l'Academie Royal de Peinture \& Sculpture. A Paris, 1670 , in Fol.

(606)

C H A P. X.

Mufick.

of se Trembiuts of Comforant Strizes; by Dr Wallin. n. 1_{3+} p. 839 . Mar. An. 1677 .

I.T hath been long fince obferved, That if a Viol-firing, or Lute-firing, be touched with the Bow or Hand, another String on the fame or another Inftrument not far from it, (if an Unijon to it, or an Oifave, or the like) will at the fame time tremble of its own Accord. But I can now add, That not the whole of that other String doth thus tremble, but the feveral Parts feverally, according as they are Unijons to the whole, or the
Fig: 21 . Parts of that String to ftruck. For Initance, Suppofing AC to be an upper Offove to a γ, and therefore an Unifon to each Half of it, ftopped at β. If, while $\alpha \gamma$ is open, AC be ftruck; the two Halves of this other, that is, a β, and $\beta \gamma$, will both tremble ; but not the middle Point at β. Which will eafily be obferved, if a little Bit of Paper be lightly wrapt about the String a γ_{2} and removed fuccefively from one End of the String to the other.

Fig. 222.

Fig. $2=$ h.
Fis. 224.
(1)07 +5d

In like manner, If A D be an Upper Fwelf tb to a δ, and confequently an Unijois to its three Parts equally divided in β, γ; if $\alpha \delta$, being open, AD be ftruck, its three Parts $\alpha \beta, \beta \gamma, \gamma \delta$, will feverally tremble, but not the Points $\beta \gamma$. In like manner, if A E be a double O8fave to $\alpha \varepsilon$, the four Quarters of this will tremble when that is ftruck, but not the Points β, γ, δ. So if A G be a Fiflo to a n; and confequently each Half of that ftopped: in D , an Unifon to each third Part of this ftopped in $\beta \gamma$; while that is ftruck, cach Part of this will tremble feverally, but not the Points β, γ; and while this is ftruek, each of that will tremble, but nor the Point D. The like will hold in lefer Concords; but the lefs remarkably, as the Number of Divifions increafes.

This was firft of all, (as I know of) difcovered by Mr. Will. Noble, M. A. of Merton: College; and by him hewed to fome of our Mufficians, about three Years fince; and after him by Mr. Thb. Pigot, A. B. of Wadbam College, without knowing that Mr. Noble had difcover'd it before. I add this further, (which I took Notice of upon Occafion of making Trial of the other) that the fame Siring, as $\alpha \gamma$, being ftruck in the midit of 6 , each Part being Unifon to the other, will give no clear Sound at all, but very confufed. And not only fo (which others have obferved, that a Sering doth not found clear, if ftruck in the mid凡) but alfo, if $\alpha \delta$ be ftruck at β, or γ, where one Part is an O\&ure to the other; and in like manner, if e s be ftruck
Fis. 235. at $\mathcal{\rho}$ or δ; the one Part being a double OBrava to the other. And fo if a $\}$ be ftruck in y or δ; the one Part being a Fifsb to the other; and fo in other like Comjomant Divifions; but ftill the lefs remarkable, as the Number of Divi-

(607)

Divifions encreafeth. This and the former I judge to depend upon one and the fame Caufe, wiz, the contemporary Vibrations of the feveral Urifons Parts which make the one tremble at the Motion of the other: But; when Atruck at the refpective Points of Divifions, the Sound is incongruous, by Reafon the Point is difturbed, which fhould be at reft.

A Lue-fing or Viol-ffring will alfo thus anfwer to a Conforant Nore in Wind Infiruments: But not fo remarkably to the Wire-firings of an Har Msubbord: And we feel the Wainfcot Seats, on which we fit or lean, to tremble conftantly at certain Notes on the Organ, or other Wind Infrumsin's; as well as at the fame Notes on a Bafs Kiol. I have heard alfo (but cannot aver it) of 2 thin fine Venice Glafs cracked with che ftrong and lafting Sound of a Tyninpet, or Cornet, (near it) founding an Unifon or a Confonant Note that of the Tone orfing of the Glafs.

Concerning thefe Pbenomena, an Exquifite Solution is given by Dr. NVar-n. iss. p. 872 . cifius: Marifh, In Dr: Plot's Natural Hijfory of Oxfordfhire.
11. The Eixsems of the Trumpes cannot be ftrictly determined; is reaches as Tu, Dffor, of a Higb as the Strength of the Breadth can force it: But by confidering its Notes Trumpert, Mand within the ordinary Compafs of the Scale of Mufck (from Double C-fa-uf to tine; in Mr.
 are all fet down in the Table; only rake Notice, that the Prick'd. Notes are imperfect, not exactly in Tune, but a little Fiatter or Sbarper than the Places where they ftand, according as f or s is fet over them.
Here we may make two Enquiries.

1. Whence it comes to pafs, that the Irumpet will perform no other Notes (in that Compafs) bur only thofe in the Table, which are ufually called by Muficians Trimpet-Notes:
2. What is the Reafon that the $7: b, 11 t b, 13^{t h}$ and $14^{\text {th }}$ Noles are oue of Tune, and the others exactly in Tune.

In this Matter we may receive fome Light from the Trumpet Marine, an Inftrument, tho' as unlike as poffible to the Trumper in its Frame, one being a Wind Infriumenr, the other a Monocbord, yet has a wonderful Agrecment with it in its Effect.

The Sound is fo like, as not to be eafily diftinguifhed by the niceft Ear, and, as it performs the very fame Notes, fo it has the fame Defects as a Trumpet; for, if the Strings be ftopt in any part but fuch as produces a TrumpetNote: it yields a harih and uncouth (not a Mufical) Sound.

Let us therefore proceed to our firt Inquiry, and examine what is the Reafon that the Trumpet Marine will perform no other but the Trumpes-Notes. It is a known Experimens of two Unifons Strings, that ftriking one of them moves the other; which probably proceeds from hence, that the Impulfes of the Air, which are made by one String, do more eafily fet another in Morion, whick lies in a Difpofition to have its Vibrations Syncbroncus to them, than a Third, whofe Motion would becrofs.

We may improve this a little farther, by oblerving that a String will move not only at the Striking of an Unijom, but an $8: b$ or 12 th , tho' alter a different Manner.

Fig. $23^{1 .}$

If an Unijon be ftruck, it makes one intire Vibration in the whole String, and the Motion is moft fenfibly in the midit at m, for there the Vibrations take the greateft Scope.

If an $8 \mathrm{c} b$ is ftruck, it makes two Vibrations; and the Point m is in a manner Quiefcent, and the mof fenfible Motion at n, n.

If a 12 l be ftruck, then it makes three Vibrations: and the greateft Motion at q, m, q; and hardly to be perceived at p, p. So that in fhort, this Experiment holds when any Note is ftruck which is! an UniJon to half the String, and a 12 th to a third Part of it.
In this Cafe, (the Vibrations of the equal parts of a String being fynchronous) there is no Contrariety in the Motion to hinder each other; whereas it is otherwife, if a Note is Unijon to S, that does not divide the String into equal Parts; for then the Vibrations of the Remainder r, not fuiting with thofe of the other Parts, immediately make a Confufion in the whole.

Now in the Trumpet-Marine, you do not ftop clofe, as in other Infruments, but touch the String gently with your Thumb, whereby there is a mutual Concurrence of the upper and lower part of the String to produce the Sound. This is fufficiently evident from that, That if any thing touches the String below the Stop, the Sound will be as effectually fpoiled, as if it were laid upon that Part which is immediately ftruck with the Bow. From hence therefore we may collect, that the Trumpet Marine yields no Mufcal Sound, but when the Stop makes the upper part of the String an Aliquot of the Remainder and confequently of the whole Otherwife, as we juft now remarked, the Vibrations of the Parts will ftop one another, and make a Sound fuitable to their Motion, altogether confufed.

Now that thefe Aliquot Parts are the very Stops which produce the Irumi-pet-Notes, fnall be plainly fhewn in the treating of the fecond Inquiry, viz. What is the Reafon that the $7 t h, 11 t h, 13 t h, 14 t b$ Notes are out of Tune; and the reft exactly in Tune.

All Writers of the Mathematical Part of Mujck agree,
That by \(\left.\left\{$$
\begin{array}{l}\text { Half } \\
\text { a Third Part } \\
\text { a Fourth } \\
\text { a Fifth } \\
\text { a Sixth }\end{array}
$$\right\} \begin{array}{l}an Eighth

String\end{array}\right\}\)| a Fifth |
| :--- |
| a Fourth |

a Sharp Third
a Flat Third.

From this Foundation all the other Notes are derived. The Flat and Sharp Sixth are to be the Flat and fharp Tbird to the Fourth, and the 7 th the like to the $5^{\text {th }}$: The Second to be a Fifth to the Fourth below, $\mathcal{E}^{\circ} c$. By this Rule let us examine what Notes a Monochord fretted in its Aliquot Paris will produce.
Suppofe the Monochord F to confint of 720 Parts, and its Tone Double C-fa-ut, the firft Note in the Table; then Half of it will be 360 , and a third Part 240, ${ }^{\circ} \mathrm{E}$ C.

（609）

Now I fay，Fretting，（or Stopping with the Thumb）at 360 murt produce C－fa－ut ；becaufe 360 being half 720 ，the Sound will rife an Eigbtb from double C－fa－ut．Again 360 being C－fa－ut， 240 muft make G－fol－re－ut，the third Note in the Table；becaufe 240 being juft a Third－part lefs than 360 ， the Sound will rife a Fifth from that Note．After the fame manner pro－ ceeding Step by Step it will be evident that，

1807		［240］		［a Fourth］		［C－Sol－fa－u	urth	
144		180		a Fifth		E－la－mi	fifth	
120	¢	144		a Sixth		G－Jol－re－ut	6th	®ँ
90	告	180	岑	Half	U	C－fol－fa	8th	L
80		12		a Third		D－la－sol	9th	
72	－	90	－	a Fifth	号	E－la	10th	．
60	．	90.		a Third		G－fol－re－ut	12 th	－
48	乭	60		a Fifth		$B-f a-b-m i$	15 th	＜
45		［90］		Half		LC－fol－fa	1 6th	

By the fame Reafon，

And confequently，

Which anfwers the fecond Inquiry．
Now to apply this（in a few words）to the Trumpet，where the Notes are produced only by the different Force of the Breath；it is reafonable to ima－ gine that the ftrongeft Blaft raifes the Sound by breaking the Air within the Tube into the fhorteft Vibrations，but that no mufcal Sound will rife，unlefs they are fuited to fome aliquot Part，and fo by Reduplication exactly meafure out the whole Length of the Inftrument，as in Fig．229．for otherwife a Re－ mainder will caufe the fame Inconvenience in this Cafe，as in Fig．230．To which if we add，that a Pipe，being fhortened accoording to the Proportions we even now difcourfed of in a String，raijes the Sound in the fame Degrees， it renders the Cafe of the Irumpet juft the fame with the Monochord．

For a Corollary to this Difcourfe，we may obferve that the Diftances of the Trumpet Notes，afcending continually，decreafed in Proportion of $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}$ ， in infinitum．For，

Vol．I．

(610)

 The $\left\{\begin{array}{l}\text { Second } \\ \text { Third } \\ \text { Fourth, } E_{c} .\end{array}\right\} \begin{aligned} & \text { Note in the } \\ & \text { Table, differs } \\ & \text { from the }\end{aligned}\left\{\begin{array}{l}\text { Firft } \\ \text { Second } \\ \text { Third, } \varepsilon_{c} c .\end{array}\right\}$ by $\left\{\begin{array}{l}\frac{1}{2} \\ \frac{1}{5} \\ \frac{7}{7}\end{array}\right\}$ of theSiring, $\varepsilon_{c} c_{\text {. }}$The Divifion of the Monochard; by Dr. J. Wallis. n 238 . p. So. Mar. An. 1698 .
III. Any String or Cbord of a Mufical Inftrument Open (or at its full length) will found (what we call) an Octave (or Diapofon) to that of the fame String ftopt in the Middle, or at half its Length. Hence it is, that we commonly affign to an OEtave, the Duple Proportion (or that of 2 to 1) becaufe fuch is the Proportion of Lengths (taken in the fame String) which give thofe Sounds. And (upon a like Account) we affign to a Fiftib (or Diapente) the Sijqui-alier Proportion (or that of 3 to 2.) And to a Fourtb (or Diateffaron) the Sefqui-tertion (or that of 4 to 3.) And to a Tone (which is the Difference of a Fourth and Fifth) the Sefqui-octave (or that of 9 to 8 :) Becaufe Lengths (taken in the fame String) in thefe Proportions, do give fuch Sounds.

And (univerfally) whatever Proportion of Lengths (taken in the fame String equally ftretched) do give fuch and fuch Sounds; fuch Proportions (of Gravity) we affign to the Sounds fo given.

But, when an Eigbtb (or OEtave) is faid (in common Speech) to confift of 12 Hemi-tones, or 6 Tones; this is not to be undertood according to the utmoft Rigour of Mathematical Exactnefs, (of fuch 6 Tones) as what they call the Diazeutick Tone, or that of la, mi, which is the Difference of a Fourib and Fifth; but, as exact enough for common Ufe. For 6 fuch Tones, (that is, the Proportion of 9 to 8, 6 times repeated) is fomewhat more than that of an OEFave, (or the Proportion of 2 to I.) And confequently, fuch an Hemitone, is fomewhat more than the Twelfth-part of an Eighth or Ocfave, or Diapafan. But the Difference is fo little, that the Ear can hardly diftinguifh it: And therefore (in common Speech) it is ufual fo to fpeak.

And, accordingly, when we are directed to take the Lengths (for what are called the 12 Hemi-tones) in Geometrical Proportion, it is to be underfood (not to be fo in the utmoft Strictnefs, but) to be accurate enough for common Ufe, for placing the Frets on the Neck of a Viol, or other Mufical Infirumint, wherein a greater Exactnefs is not thotight neceflary. And this is very convenient, becaufe (thus) the Change of the Ky (upon altering the Seat of mi) gives no new Trouble, for this doth indifferently ferve any Key; and the Difference is fo fmall, as not to offend the Ear.

But thofe who chufe to treat of it with more Exactnefs, go this way to work.

Prefuppofing the Proportion for an OEIave (or Dia-pafon) to be that of 2 to 1 ; they divide this into two Proportions; not juft equal (for that would fall upon the Surd Numbers, as $\sqrt{ } 2$ to 1 ;) but near equal (fo as to be expreffed in fmall Numbers.) In order to which, inftead of taking 2 to 1 , they take (the Double of thefe Numbers) 4 to 2 ; (which is the fame Proportion as before ;) and interpofe the Middle Number 3. And of thefe three Numbers, 4, 3, 2, that of 4 to 3 , is the Proportion of a Fourth (or Dia-teffaron.) And that of 3 to 2, the Proportion for a Fifth (or Dia-

(611)

pente.) And thefe two, put together, make up that of an Oitave (or Diapafon, that of 4 to 2, (or 2 to I.) And the Difference of thofe two, that of a Tone, or 9 to 8. As will plainly appear in the ordinary Method of mulliplying and dividing Frairions, That is, $\frac{4}{3} \times \frac{3}{2}=\frac{4}{2}=\frac{2}{1}$. And $\frac{4}{3}$) $\frac{3}{2}\left(\frac{9}{8}\right.$.

Thus in the conmon Scale (or Gam-ut) taking an Oetave, in thefe Notes, $l a, f a, f o l, l a, m i, f a, f o l, l a$; fuppofe from E to e (placing mi, $B-f a-b-m i$, which is called the natural Scale;) the Lengths for the Extremes $l a, l a$, an OElcve, are as 2 to 1 , or 12 to 6 . Thofe for $l a, l a,($ in $l a, f a, f o l, l a$,) or $m i, l a$, (in $m i, f a, f o l, l a$,) a Fourth, as 4 to 3 , or 12 to 9 , or 8 to 6 . Thofe for la, mi, (inla, fa, fol, la, mi, or la, la, (in la, mi, fa, fol, la,) a Fifth, as 3 to 2, or 12 to 8 , or 9 to 6. Thofe for la, mi, the Diazeutick-Tone (or Difference of a Fourth and Fifth, as 9 to 8. So have we for thefe four Notes $l a, l_{a}, m i, l a$, their proportionate Length in the Numbers 12, 9, 8, 6.

Then, if we proceed in like manner to divide a Fiftb (or Dia-pente, la, $f a, f o l, l a, m i$, or $l a, m i, f a, f o l, l a$, or the Proportion of 3 to 2 , into near Equals, (taking double Numbers in the fame Proportion, 6, 4 ; and interpofing the middle Number 5;) of thefe three Numbers, $6,5,4$, that of 6 to 5 , is the Proportion of a leffer Tbird, (called a Tri-bemitone, or Tone and half,) as $l a, f a$, (in la, mi, fa.) And that of 5 to 4 , is the Proportion of the greater Third, (commonly called a Ditone, or two Tones, as $f a$, la, (in $f a$, fol, la,) which two put together make a Fifth, as 3 to 2 ; that is $\frac{6}{5} \times \frac{5}{4}$ $=\frac{6}{4}=\frac{3}{2}$; and their Difference is, as 25 to 24 : That is $\left.\frac{6}{5}\right) \frac{5}{4}\left(\frac{25}{24}\right.$. So have we for thefe 3 Notes, la, $f a$, ll, their proportionate Lengths in Numbers, as $6,5,4$.

In like manner, if we divide a Ditone, (or greater Third, as $f a, l a$, (in $f a$, fol, $l a$, whofe Proportion is as 5 to (, (or 10 to 8,) into two near Equals (by help of a middle Number 9 ;) then have we (in thefe three Numbers $10,9,8$,) that of to to 9 , for (what they call) the leffer Tone: And that of 9 to 8, for (what they call) the greater Tone.

But, whether $f a$, fol, fhall be made the Leffer (as 10 to 9 ,) and fol , la, the Greater, (as 9 to $8 ;$) or, This the Lefler, (as 10 to 9,) and that the Grecter, (as 9 to 8,) or fome time This, fome time That, as there is occafion, (to avoid what they call a Schijm ;) is fomewhat indifferent: For, either way, the Compound will be as 5 to 4 ; and the Difference (which they call a Comma,) as 8 I to 80 . This is $\frac{9}{8} \times \frac{10}{9}=\frac{10}{9} \times \frac{9}{8}=\frac{10}{8}$ $=\frac{5}{4}$. And $\left.\frac{10}{9}\right) \frac{9}{8}\left(\frac{81}{80}\right.$.

(612)

Laftly, if from that of the Tri-bemi-tone (or Lefler Third) la, mi, fia, whofe Proportion is as 6 to 5 ; we take that of the Tone, la, $m i$, (which is the Difference of a Fourtb and Fifth) as 9 to 8; there remains for the Hemi-tone, $m i, f a$, (or $l a, f a$, that of 16 to 15 . That is $\frac{9}{8}$) $\frac{6}{5}\left(\frac{48}{45}\right.$ $=\frac{16}{15}$.
Or, the Tri-bemi-tone (or lefler Third) whofe Proportion is as 6 to 5, may be divided into three near Equals, (by taking triple Numbers, in the fame Proportion 18, 15; and interpofing the two Intermediates 17, 16 ;) which will therefore be as 18 to 17 , and as 17 to 16 , and as 16 to 15 ; That is, $\frac{18}{17} \times \frac{17}{16} \times \frac{16}{15}=\frac{18}{15}=\frac{6}{5}$.

Where alfo the greater Tone, whofe Proportion is as 9 to 8 or 18 to 16 , is divided into its two near Equals (commonly called Hemi-tones,) that of 18 to 17 , and that of 17 to 16 : That is, $\frac{18}{17} \times \frac{17}{16}=\frac{18}{16}=9$.

And the lefer Tone, that of 10 to 9 , or 20 to 18 , may be in like manner divided into that of 20 to 19 , and that of 19 to 18 : That is, $\frac{20}{19} \times \frac{19}{18}=\frac{20}{18}=\frac{10}{9}$.

Which Divifions of the Greater and Lefler Tone anfwer to what is wont to be defigned by Flats and Sharps.

So that (by this Compofition) of thefe Eight Notes, la, fa, fol, la, mi, $f a, f o l, l a$, their Proportions ftand thus; that of $l a, f a$, (or mi, $f a$, is as 16 to 15 . That of $f a, \int o l$, as 10 to 9 , and that of $f o l, l a$, as 9 to 8 ; (or elfe that of $f a$, fol, as 9 to 8 , and that of fol, la, as 10 to 9.) That of $l a$, mi, as 9 to 8. And, if either of the Tones (Greater or Leffer) chance to be divided (by Flats or Sharps) into (what they call) Hemi-tones, their Proportions are to be fuch as is already mentioned.

There may be a like Divifion of a Fourth, (or Dia-tefaron) into two Near Equals : And of fome others of thefe, into three Near Equals. Which might be of ufe for (what they were wont to call) the Cbromatick and Enarmonick $M u j c k$. But, thofe forts of $M u / i c k$ having been long fince laid afide, there is now no need of thefe Divifions, as to the Mujck now in Ufe.

The Imerfection IV. I think 'tis evident that the Pipe in the Organ is intended to exprefs of $a n$ Organ; by Dr. J. Wallis. 11. 242. p. 249. July, An. 1698. R a Diftinct Sound at fuch a Pitch; that is, in fuch a Determinate Degree of Gravity or Acutene/s; or (as it is now called) Flatne/s or Sbarpnefs; And the Relative or Comparative Confideration of Two (or more) fuch Sounds or Degrees of Flatnefs or Sbarpnefs, is the Ground of (what we call) Concord and Diford; that is a foft, or harfh Coincidence.

($6 \mathrm{I}_{3}$)

Now concerning this, there were amongft the Antient Greeks, Two (the moft confiderable) Sects of Mufcians: the Arifoxenians, and Pytbagoreans.

They both agreed thus far; that Dia-teffaron, and Dia-pente, do together make up Dia-pafon; That is (as we now fpeak) a Fourtb and Fifth do together make an Eighth or OcFave: And, the Difference of thofe two, of a Fourib and Fifib, they agreed to call a Tone, which we now call a Whole Note.

Such is that, (in our prefent $M u j f c k_{3}$) of la, mi, (or, as it was wont to be called, re, mi.) For la, fa, fol, la, or mi, fa, fol, la, is a perfect Fourth: And $l a, f a, f o l, l a, m i$, or la, mi, fa, fol, lla, is a perfect Fiftb: The Difference of which is la, mi, which is what the Greeks call the Diazeutick-Tone; which doth disjoin two Fourtbs (on each fide of it; and being added to either of them doth make a Fifib; Which was, in their Mufick, that from Mefe to Paraniefe; that is in our Mufick, from A to B: Suppofing mi toftand in B-fa-b-mi, which is accounted its Natural Pofition.

Now in order to this, Arifoxenus and his Followers did take that of a Fourth, as a known Interval, by the Judgment of the Ear; and that of a Fifib likewife: And confequently that of an Ocfave, as the Aggregate of both; and that of a Tone, as the Difference of thofe Two.

And this of Tone (as a known Interval) they took as a common Meafure, by which they did eftimate other Intervals: And accordingly they accounted a Fourth to contain two Tones and a Half; a Fiftb to contain three Tones and a Half, and confequently an Eighth to contain fix Tones; or five Tones and two Half Tones.

And at this Rate our Practical Muficians talk of Notes and Half Notes at this Day; fuppofing an OEEave to confift of twelve Hemi-lones, or Half Notes.

But, Pytbagoras and thofe who follow him, not taking the Ear alone to be a Competent Judge in a Cafe fo nice, chofe to diftinguifh thefe, not by Equal Intervals, but by Due Proportions: And this is followed by Zarline, Kepler, Cartes, and others, who treat of Speculative Mufck in this and the laft Age. Accordingly they accounted that of an OEtave, to be, when the Degree of Gravity, or Aculeness of the one Sound to that of the other, is Double, or as 2 to 1; that of a Fifth, when it is Sefqui.aller, or as 3 to 2: that of a Fourth when Sefqui-tertian, or 4 to 3. Accounting that the fweeteft Praportion, which is exprefs'd in the fmalleft Numbers, and therefore (next to the Unifon) that of, an OELave, 2 to 1, then that of a Fifth, 3 to 2, and then that of a Fourth, 4 to 3 .

And thus that of a Fourth and Fifib do together make an Eigbth; for $\frac{4}{3} \times \frac{2}{3}=\frac{4}{2}=\frac{2}{1}=2$, or the Proportion of 4 to 3 , compounded with that of 3 to 2 , is the fame with that of 4 to 2 , or 2 to i. And confequently, the Difference of thofe two, which is that of a Tone, or Full Note, is that of 9 to 8 . For $\left.\frac{4}{3}\right) \frac{3}{2}\left(\frac{9}{8}\right.$; or, if out of the Proportion of 3 to 2, we take that of 4 to 3 ; the Refult it that of 9 to 8 .

(614)

Now according to this Computation, it is manifeft, that an Oetcue is fomewhat lefs than Six Full Notes. For (as was firft demonftrated by Euclid, and fince by others) the Proportion of 9 to 8 , being fix Times compounded, is fomewhat more than that of 2 to 1 . For $\frac{9}{8} \times \frac{9}{8} \times \frac{9}{8} \times \frac{9}{8}$ $\times \frac{9}{8} \times \frac{9}{8}=\frac{531441}{262144}$, is more than $\frac{5^{2} 4288}{262144}=\frac{2}{1}$.
This being the Care; they allowed (indifputably) to that of the Diczeulick Tone ($l a, m$, , the full Proportion of 9 to 8 , as a thing not to be altered; being the Difference of the Dia-pente and Dia-teffaron, or the Fifth and Fourth.

All the Difficulty was, How the remaining Fourth ($\mathrm{mi}, \mathrm{fa}, \mathrm{fol}, \mathrm{la}$, hould be divided into three parts, fo as to anfwer (pretty near) the Arifoxenions Two Tones and a half: And might, all together, make up the Proportion of 4 to 3 , which is that of a Fourlh or Dia-teflaron,

Many Attemps were made to this purpofe: And according to thofe, they give Names to the Different Genera or kinds of Mufick, (the Diatonick Cbromatick, and Enarmonick Kinds,) with the feveral Species, or leffer Diftinctions under thofe Generals.

The firft was that of Euclid (which did moft generally obtain for many Ages: Which allows to fa, fol, and to fol, la, the full Proportion of 9 to 8 ; And therefore to $f a, J o l, l a,{ }_{2}$ (which we call the Greater Tbird) that of 81 to 64. (For $\frac{9}{8} \times \frac{9}{8}=\frac{81}{64}$.) And, confequently, to that of $M i$, $f a$, (which is the Remainder to a Fourtb) that of ${ }_{25} 6$ to 243 . For $\left.\frac{81}{6_{4}}\right) \frac{4}{3}\left(\frac{25^{6}}{243}\right.$; that is, if out of the Proportion of 4 to 3 we take that of 8 I to 64 , the Refult is that of 256 to 243 . To this they give the Name of $\operatorname{Limma}(\lambda \varepsilon i \mu \mu \alpha)$ that is, the Remainder (to wit, over and above two Tones.) But, in common Difcourfe (when we do not pretend to fpeak nicely, nor intend to be fo underftood) it is ufual to call it an Hemi-tone, or Half-Note, (as being very near it) and the other, Two Whole Notes. And this is what Ptolemy calls Diatonum Ditonum, (of the Diatonick kind with $\tau_{\text {woo Full }}$ Tones.)

Againft this it is objected (as not the moft convenient Divifion) that the Numbers of 81 to 64, are too great for that of a Ditone, or Greater Tbird; which is not harfh to the Ear ; but is rather fweeter than that of a fingle Tone, whofe Proportion is 9 to 8. And, in that of 25^{6} to 243, the Numbers are yet much greater. Whereas there are many Proportions (as $\frac{5}{4}, \frac{6}{5}, \frac{7}{6}, \frac{8}{7}$, in fmaller Numbers than that of 9 to 8 ; of which, in this Divifion, there is no Notice taken.

(615)

To rectify this, there is another Divilion thought more convenient; which is Ptolemy's Diatonum Intenfum (of the Diatoinick Kind, more Intenfe or Acute than that other) which inftead of two Full Tones for fa, fol, la, affigns (what we now call) a Greater and a Leffer Tone; (which by the more Nice Mufcians of this and the laft Age feems to be more embraced;) Affigning to $f a$, fol, that of 9 to 8 , (which they call the Greater Tone;) and to foi, la, that of 10 to 9, (which they call the Leffer Tone:) And therefore to fa , la, (the Ditone or Greater Tbird) that of 5 to 4. (For $\frac{10}{9} \times \frac{9}{8}=\frac{10}{8}=\frac{5}{4}$.) And confequently to $m i, f a$, (which is remaining of the Fourtb) that of 16 to 15 . For $\left.\frac{5}{4}\right) \frac{4}{3}\left(\frac{16}{15}\right.$. That, if out of that of 4 to 3 we take that of 5 to 4 , there remains that of 16 to 15 .

Many other ways there are (with which I fhould not trouble you at prefent) of dividing the Fourth or Dia-tefaron, or the proportion of 4 to 3 , into three Parts, anfwering to what (in a lnofer way of expreflion) we call an balf Note, and two whole Noits. But this of $\frac{16}{15} \times \frac{9}{8} \times \frac{10}{9}=\frac{4}{3}$, is that which is now received as the moft proper.

To which therefore I fhall apply my Difcourfe; where $\frac{16}{15}$ is (what we call) the Hemi-Tone, or Half-Note, in $m i, f a ; \frac{9}{8}$ that of the greater Tone, in $f a$, fol, and $\frac{10}{9}$ the leffer Tone, in fol, la.

Only with this Addition ; that each of thofe Tones, is (upon Occafion) by Flats and Sbarps (as we now fpeak) divided into two Hemi-cones, or Half Notes; Which anfwers to what by the Grceks was called Mutatio quoad Modos (the Change of Mood;) and what is now done by removing mi to another Key. Namely $\frac{9}{8}=\frac{18}{16}=\frac{18}{17} \times \frac{17}{16}$; and $\frac{10}{9}=\frac{20}{18}=\frac{20}{19} \times \frac{19}{18}$.

Thus by the help of Flats and Sbarps (dividing each rubole Note, be it the Greater or Leffer, into two Half Notes, or what we call fo, the whole OEfave is divided into Twelve parts or Intervals (contained between Thirteen Pipes) which are commonly called Hemi-tones or Haif-Notes; not that each is precifely Half a Note, but fomewhat near it, and fo called. And I fay, by Fiats and Sbarps; for fometime the one, fometime the other is ufed. As for Inftance, a Flat in D, or a Sbarp in C, do either of them denote a Middling Sound (tho' not precifely in the Midft) between C and D ; Sbarger than C , and Flatior than D.

Accordingly, fuppoling mi to ftand in $B \cdot f a-b-m i$ (which is accounted its Natural Seat) the Sounds of each Pipe are to bear thefe Proportions to each other, viz.

And fo in each OEtave fucceffively following. And, if the Pipes in each Octave be fitted to Sounds in thefe Proportions of Gravity and Acutenefs, it will be fuppofed (according to this Hypotbefis) to be perfectly proportioned.

But, inftead of thefe fucceffive Proportions of each Hemi-tone; it is found neceffary (if I do not miftake the Practice) fo to order the 13 Pipes (containing 12 Intervals which they call Hemi-tones) as that their Sounds (as to Gravity and Acutene/s) be in continual Proportion, (each to its next following, in OEtave or Dia-pafon, as 2 to I. Whereby it comes to pafs that each Pipe doth not exprefs its proper Sound, but very near it, yet fomewhat varying from it; which they call Bearing; which is fomewhat of Imperfection in this Noble Inftrument, the Top of all.

It may be afked, why may not the Pipes be fo ordered, as to have their Sounds in juft Proportion, as well as thus Bearing.

I anfwer, It might very well be fo, if all $M u f i c k$ were Compofed to the fame Key, or (as the Greeks call it) the fame Mode; as for Inftance, if, in all Compofitions, $m i$, were always placed in $B-f a-b-m i$. For then the Pipes might be ordered in fuch Proportions as I have now defigned.

But Mufical Compefitions are made in great Variety of Modes, or with great Diverfity in the Pitch. $M i$ is not always placed in $B-f a-b-m i$; but fometimes in E-la-mi, fometimes in A-la-mi-re, \&c. And (in Sum) there is none of thofe 12 or 13 Pipes but may be made the Seat of mi. And, if they were exactly

(617)

exactly fitted to any one of thefe Cafes, they would be quite out of Order for all the reft.

As for Inftance; If $m i$ be removed from $B-f a-b-m i$, (by a Flat in B) to E-la-mi, inftead of the Proportions but now defigned, they muft be thus ordered,

$$
\begin{aligned}
& \frac{18}{17} \frac{17}{16} \frac{20}{19} \frac{19}{18} \frac{18}{17} \quad \frac{17}{16} \frac{16}{15} \frac{18}{17} \frac{17}{16}<\frac{20}{19} \frac{19}{18} \frac{16}{15}
\end{aligned}
$$

where 'tis manifeft, that the Removal of $m i$ doth quite diforder the whole Series of Proportions. And the fame would again happen, if $m i$ be removed from E to A (by another Flat in E, and again, if removed from A to D. And fo perpetually. But the Hemitones being made all equal, they do indifferently anfwer all the Pofitions of $m i$ (tho' not exactly to any;) yet nearer to fome than to others. Whence it is, that the fame Tune founds better at one Key than at another.

It is afked, whether this may not be remedy'd by interpofing more Pipes; and thereby dividing a Note not only (as now) into Haif Notes, but into Quarter-Notes, or Half-Quarter-Notes, \&xc.

I anfwer; It may be thus remedy'd in Part; (that is, the Imperfection might thus be fomewhat lefs, and the Sounds fomewhat nearer to the juft Proportions:) but it can never be exactly true, fo long as their Sounds (be they never fo many) be in continual Proportion ; that is, each to the next fubfequent in the fame Proportion.

For it hath been long fince demonftrated, that there is no fuch thing as a juft Hemitone practicable in Mufick (and the like for the Divifion of a Tone into any Number of equal Parts; three, four or more.) For, fuppofing the Proportion of a Tone or Full Note, to be $\frac{9}{8}$ (or, as 9 to 8) that of the Half-Note muft be as $\sqrt{ } 9$ to $\sqrt{ } 8$; that is, as 3 to $\sqrt{ } 8$. (or 3 to $2 \sqrt{ } 2$) which are Incommenfurable Quantities: And that of a Quarter-Note, as $\sqrt[4]{ } 9$ to $\sqrt[4]{8}$, which is yet more Incommenfurate. And the like for any other Number of equal Parts; which will therefore never fall in with the Proportions of Number to Number.

So that this can never be perfectly adjufted for all Keys (without fomewhat of Bearing) by multiplying Pipes; unlefs we would for every Key, (or every different Seat of mi) have a different Set of Pipes, of which this or that is to be ufed according as (in the Compofition) $m i$ is fuppofed to ftand in this or that Seat. Which vaft Number of Pipes, (for every OEtave) would vaftly, increafe the Charge; and (when all is done) make the whole impracticable.

Vor. I.
Kkkk
V. S_{0}
$A_{\text {Nem Tuning of }}$ the Lyra Viol; ty S . Salvetti. n. 37. p. 9064. Aug. An, 1672.
V. S. Salvelti, about 4 Years ago, invented a Nero Tuning of the Antient Lyra-Viol with the ufual 13 Strings; by Means of which Tuning, it is render'd wholly perfect, fo that you may exprefs upon it all Concords, Difords, and alfo the Imperfeez Concords, as fevencbs, fixtbs, $\mathcal{E}^{2} c$. as well as upon any Virginal that hath the Quarters of Notes upon it. 'Tis true, 'tis only for melancholy and pafionate Matter, and not for Divifon, as is the proper Nature of the Lyro. I fhall only add, that with the abovefaid Tuning, it afcends in Ait as high as G-fol-re-ut; and defcends as low as Double C-fa-ut ; and can make every where the fame Concords as above.
T.e Strange Effrat, vepurted of Nufick is Former Times, examined; by Dr. V_{2} llis $\mathrm{n}=43$. D 297. Aug. An. lig 8
VI. I. I take it for granted, that much of the Reports concerning the great Effects of Mufick in former Times, beyond what is to be found in latter Ages, is highly Hyperbolical, and next door to Fabulous ; and therefore great Abatements muft be allowed to the Elogies of their Mufick.
2. We muft confider, That Mufick (to any tolerable Degree) was then (if not a new, at leaft) a rare Thing, which the Rufticks, on whom it is reported to have had fuch Effects, had never heard before; and on fuch, a little Mufick will do great Feats; as we find at this Day a Fiddte or a Bag-pipe at a Country Morice Darice.
3. We are to confider, that their Muffck (even after it came to fome good Degree of Perfection) was much more plain and fimple than ours now-a-days. They had not Conforts of two, three, four or more Parts or Voices: But one fingle Voice or fingle Inftrument apart which to a rude Ear, is much more taking than more compounded Mufick. For that is at a Pitch not above their Capacity; whereas this other confounds it, with a great Noife, but nothing diftinguiflhable to their Capacity
4. We are to confider, that Mufick with the Antients was of a larger Extent than what we call $M u j$ ick now a days: For Poetry and Dancing (or comely Motion) were then accounted Parts of Mufick when Mufick arrived to fome Perfection. Now we know that Verfe of itfelf, if in good Meafures and affectionate Language, and this fet to a Mufical Tunc, and fung by a decent Voice, and accompanied but with foft Infrumental Mufick, if any, fuch as not to drown or obfcure the emplatick Expreffions (like what we call Recitative Mufick) will work ftrangely upon the Ear, and move all Affections fuitable to the Tune and Ditty; (whether brifk and pleafant, or foft and pitiful, or fierce and angry, or moderate and fedate) efpecially if attended with a Gefture and Action fuitable. For, 'tis well known, that fuitable Aaing on a Stage gives great Life to the Words. Now all this together (which were all Ingredients in what they called Mufck) mult needs operate ftrongly on the Fancies and Affections of ordinary People unacquainted with fuch kind of Treatments. For if the deliberate reading of a Romance (when well penn'd) will produce Mirth, Tears, Joy, Grief, Pity, Wrath, or Indignation fuitable to the refpective Intents of it; much more would it fo do, if accompanied with all thofe Attendants.

(619)

5. You will afk, perhaps, why may not all this be now done, as well as then? I anfwer, no doubr it may, and with like Effect, if an Addrefs be made in proper Words, with maving Accents in juft Meafures, (Poeitical or Rbetorical) with the empbatickWords, Words fet in fignal Places, pronounced with a good Voice, and a true Accent, and attended with a decent Gefture: all thefe fuitably adjufted to the Paffion, Affection, or Temper of Mind, particularly defigned to be produced, (be it Joy, Love, Grief, Pity, Courage or Indignation) will certainly now as well as tben, produce great Effects upon the Mind, efpecially upon a Surprize, and where Perfons are not otherwife pre-engaged; and if. fo managed, as that you be (or feem to be) in earneft; and if not over-acted by apparent Affectation.
6. We are to confider, that the ufual Defign of what we now call Mufick, is very different from that of the Antients. What we now call Mufick is but what they called Harnonick; which was but one Part of their Mufick, (confifting of Words, Verfe, Voice, Tune, Inftrument, and Acting;) and we are not to expect the fame Effect of one Piece, as of the whole.
..7. When Mufick arrived to great Perfection, it was applied to particular Defigns of exciting this or that particular Affection, Paffion, or Temper of Mind; the Tumes and Meafures being fuitably adapted to fuch Defigns. But fuch Defigns feem almoft quite neglected in our prefent Mufick. The chief Defign now, in our moft accomplifhed Mufik, being to pleale the Ear; when by a fweet Mixture of different Parts and Voices, with Cadencies and Concord intermixed, a grateful Sound is produced, which only the judicious Mufician can difcern and diftinguifh.
7. 'Tis true, that even this Compound Mu/tck admits of different Cbaracters: fome are more brifk and airy; others more fedate and grave; others more languid; as the different Subjects do require. But that which is moft proper to excite particular Paffions or Dijpofitions, is fuch as is more Simple, and Uncompounded; fuch as a Nurfe's languid Tune, lulling her Babe to ileep; or a continual Reading in an Even Tone; or even the foft Murmur of a little Rivulet, running upon Gravel or Pebbles, inducing a quict Repofe of the Spirits: And contrariwife, the Brifknefs of a $\mathrm{Fig}_{\mathrm{g}}$ on a Kit or Violin, exciting to dance. Which are more operative to fuch particular Ends, than an Elaborate Compofition of Full Mufick.
8. To conclude; If we aim only at pleafing the Ear, by a fweet Concert, I doubt not but our Modern Compofitions may be equal, if not exceed thofe of the Antients; amongft whom I do not find any Footfteps of what we call feveral Parts or Voices, (as Bafe, Treble, Mean, \&cc. fung in Concert) anfwering each other, to complete the Mufick. But if we would have our Mufick fo adjufted, as to excite particular Paffions, Affections, or Tempers of Mind, (as that of the Antients is fuppofed to have done) we mult apply more fimple Ingredients, fitted to the Temper we would produce. And this, I doubt not, but a Judicious Compofer may fo effect, that (with the Help of fuch Hyperboles, as with which the Ausient Mifjick is wont to be fet off) our Mufick may be faid to do as great Feats as any of theirs.
VII. $A c$ -
VII. Account of Books, Omitted.
л. 143 . p. 20.
9. Claudii Ptolemai Harmonicorum Libritres, Ex Cod. MSS. undecim, nunc primum Grece editi. Fo. Wallis, S. S. Th. D. Recenfuit, Edidit, Verfione \& Notis Illuftravit, \& Auctuarium adjecit. Oxon 1682. in $4^{t o}$.
n. 231 . p. 668.
10. Porpbyrii Commentarius in Librum Primum Harmonicorum Claudii Ptolemai : atque Manuelis Bryennii Commentarius in tres Libros Harmonicos ejufdem Piolemai (Qui foli reftant ex Gracis Mufice Scriptoribus nondum editis.) Grace ac Latine. Curâ fo. Wallifi, S. Th. D. Fol.
n. 8o. p. so95. 3. An Effay to the Advancement of $M u f / f_{c k}$; by Tho.Salmon, M. A. Lond. 1672 . in $8 v o$.
n. 9.9 .9 .555.
n. Ico. p. 7000. 4. Syntagma Mufce; Treating of Mufick Pbilofophically, Mathematically, n. 1co. p. 7000 and Practically; by F. Bircbengha, Efq; This Book was preparing for the Prefs, 1674.
11. 100. p. 6.94. 5. Mufzca Speculativa del Mengoli. in Bologna 1670 . in 4 to.
д. 133. p. 835 .
n. 208. p. 67.
1. A Pbilofopbical EjJay of Mufick. Lond. 1677 . in 4 to.
2. A Treatife of the Natural Grounds and Principles of Harmony; by Will. Holden, D. D. Lonid. 1694. in 8 vo.

UПеD

MILOSOPHICAI, RANSACTIONS

VOL. I
1665-1700

059

[^0]: Vol. I.

[^1]: By Sir Crinit. Wren. Itid. p. 867.

[^2]: Prop. X. Prob. 2.] Having the Parameter, Horizontal Difance, and Heigbt or Defcent of an Object; to find the Elevations of the Lines of Direction neceffary

[^3]: Vol. I.

[^4]: Z Z Z 2
 MM,

