($1 ; 4$)

that adhere to any of thofe Hypothefes, fhould feek for other Caufes of thefe Effects, unlefs (to ufe the Objector's Argument) they will multiply Entities without Necefity.

The tbird 'Thing to be confidered is, the Condition of the Animadverfor's Conceffions, which is, That I would explicate my Theories by his Hypothefis: And if I could comply with him in that Point, there would be little or no Difference between us: For he grants, That, without any refpect to a different Incidence of Rays, there are different Refractions; but he would have it explicated, not by the different Refrangibility of feveral Rays, but by the fplitting and rarefying Æthereai Pulfes. He grants my third, fourth, and fixth Propofitions; the Senfe of which is, That uncompounded Colours are unchangeable, and that compounded Ones are changeable only by refolving them into the Colours of which they are compounded: and that all the Chaiges which can be wrought in Colours, are effected only by variounly mixing or parting them : But he grants them on Condition that I will explicate Colours by the two Sides of a fplit Pulfe, and fo make but two Species of them, accounting all other Colours in the World to be but various Degrees and Dilutings of thofe two. And he further grants, that Whitenefs is produced by the Convention of all Colours; but then I muft allow it to be not only by Mixture of thofe Colours, but by a farther uniting of the Parts of the Ray fuppofed to be formerly fplit.

If I would proceed to examine thefe his Explications, I think it would be no difficult Matter to fhew, that they are not only infufficient, but in fome refpects (to me at leaft) unintelligible: For though it be eafy to conceive, how Motion may be dilated and fpread, or how parallel Motions may become diverging; yet I underftand not, by what Artifice any linear Motion can by a refracting Superficies be infinitely dilated and rarefied, $f 0$ as to become fuperficial: Or, if that be fuppofed, yet I underftand as little, why it thould be fplit at fo fmall an Angle only, and not rather fpread and difperfe through the whole Angle of Refraction. And further, though I can eafily imagine, how unlike Motions may crofs one another; yet I cannot well conceive, how they hoould coalefce into one uniform Motion, and then part again, and recover the former Unlikenefs; notwithfanding that I conjecture the Ways by which the Animadverfor may endeavour to explain it. So, that the direct, uniform, and undifturb'd Pulfes fhould be fplit and difturbed by Refraction; and yet the oblique and difurbed Pulfes perfift without fplitting, or further Difturbance, by following Refractions, is (to mé) as unintelligible: and there is as great a Difficulty in the Number of Colours; as you will fee hereafter.

But whatever be the Advantages or Difadvantages of this Hypothefis, I hope I may be excufed from taking it up, fince I do not think it needful to explicate my Doctrine by any Hypothefis at all: For if Light be confidered abftractedly without refpect to any Hypothefis, I can as ealily conceive, that the feveral Parts of a fining Body may emit Rays of different Colours and other Qualities, of all which Light is conftituted, as that the feveral Parts of a falfe or uneven String, or of unevenly agitated Water in a Brook or Cata-

(155)

ract, or the feveral Pipes of an Organ infpir'd ail at once, or all the Variety of founding Bodies in the World together, Should produce Sounds of feveral Tones, and propagate them thro' the Air confufedly intermixed. And if there were any natural Bodies that could reflect Sounds of one Tone, and ftifle or tranfmit thofe of another; then, as the E.cho of a confufed Aggregate of all Tones would be that particular Tone, which the echoing Body is difpofed to reflect; fo, fince (even by the Animadverfor's Conceffions) there are Bodies apt to reflect Rays of one Colour, and ftifle or cranimit thofe of another; I can as eafily conceive, that thofe Bodies, when illuminated by a Mixture of all Colours, muft appear of that Colour only which they reflect.

But when the Objector would infinuate a Difficulty in thele Things, by alluding to Sounds in the String of a mufical Inftrument before Percuffion, or in the Air of an Organ-Bellows before its Arrival at the Pipes; I mult confefs, 1 underftand it as little, as if one had fpoken of Light in a Piece of Wood before it be fet on Fire, or in the Oil of a Lamp before it afcend up the Match to feed the Flame.

You fee therefore how much it is befide the Bufineis in Hand to difpute about Hypothefes. For which Reafon I fhall now, in the laft Place, proceed to abiftract the Difficulties in the Animadverfor's Difcourfe, and without having regard to any Hypothefis, confider them in general Terms. And they may be reduced to thefe three Queries:
> 1. Whether the unequal Refractions, made without refpect to any Inequality of Incidence, be caufed by the different Refrangibility of Several Rays; or by the Splitting, breaking, or diffipating the fame Ray into diverging Parts?
> 2. Whether there be more than two Sorts of Colours?
> 3. Whether Wbitenefs be a Mixture of all Colours?

The firft of thefe Queries you may find determined above, by an Experiment: The Defign of which was to fhew, that the Length of the colour'd Image proceeded not from any Unevennefs in the Glafs, or any other contingent Irregularity in the Refractions. Amongft other Irregularities, I know not what is more obvious to fufpect, than a fortuitous Dilating and Spreading of Light, after fome fuch manner, as Des Cartes has defcribed in his \mathcal{E} thereal Refraitions, for explicating the Tail of a Comet; or as the Animadverfor now fuppofes to be effected by the fulitting and rarefying of his æthereal Pulfes. And to prevent the Sufpicion of any fuch Irregularities, I told you, that I refracted the Light contrary ways, with two Prifms fucceffively, to deftroy thereby the regular Effects of the firft Prifm by the fecond, and to difoover the irregular Effects by augmenting them with iterated Refractions. Now, amongtt other Irregularities, if the firft Prifm had fpread and difipated every Ray into an indefinite Number of diverging Parts, the fecond fhould in like manner have fpread and diffipated every one of thofe Parts into a further indefinite Number, whereby the Image would have been ftill more dilated, contrary to the Event. And this ought to have happened, becaule thofe linear diverging Parts depend not on one another for the manner of their Refraction,

(156)

but are every one of them as truly and compleatly Rays, as the whole was be+ fore its Incidence; as may appear by intercepting them feverally.

The Reafonablenefs of this Proceeding will, perhaps, better appear by acquainting you with this further Circumftance. I fometimes placed the fecond Prifm in a Pofition tranfverfe to the firf, on Defign to try if it would make the long Innage become four-fquare, by Refractions croffing thofe that had drawn the round Image into a long one. For if, amongt other Irregularities, the Refraction of the firft Prifm did, by fplitting, dilate a linear Ray into a fuperficial ; the crofs Refractions of that fecond Prifm ought, by further fplitting, to dilate and draw that fuperficial Ray into a pyramidical Solid. But, upon Trial, I found it otherwife; the Image being as regularly oblong as before, and inclined to both the Prifms at an Angle of 45 Degrees.

I tried alfo all other Pofitions of the fecond Prifm, by turning the Ends about its middle Part ; and in no cale could obferve any fuch Irregularity. The Image was ever alike inclined to both Prifms, its Breadth anfwering to the Sun's Diameter, and its Length being greater or lefs, according as the Refractions more or lefs agreed or contradicted one another.

And by thefe Obfervations, fince the Breadth of the Image was not augmented by the crofs Refraction of the fecond Prifm, that Refraction muft have been performed without any fplitting or dilating of the Ray; and therefore at leaft the Light incident on that Prifm muft be granted an Aggregate of Rays unequally Refrangible in my Senfe. And fince the Image was equally inclined to both Prifms, and confequently the Refractions alike in both, it argues that they were performed according to fome conftant Law, without any Irregularity.

To determine the fecond Query, The Animadverfor refers to an Experiment made with two Wedge-like Boxes, recited in the Micrography of the ingenious Mr. Hook, Obferv. 10. Peg. 73. The Defign of which was to produce all Colours out of a Mixture of two. But there is, I conceive, a double Defect in this Inflance: For it appears not, that by this Experiment all Colours can be produced out of two; and if they could, yet the Inference would not follow.

That all Colours cannot by that Experiment be produced out of two, will appear by confidering, that the Tincture of Aloes, which afford one of thofe Colours, was not all over of one uniform Colour, but appeared Yellow near the Edge of the Box, and Red at other Places where it was thicker; affording all Variety of Colours, from a pale Yellow to a deep Red or Scarlet, according to the various Thicknefs of the Liquor. And fo the Solution of Copper, which afforded the other Colour, was of various Blues and Indicoes. So that inftead of two Colours, here is a great Variety made ufe of for the Production of all others. Thus, for Inftance, to produce all Sorts of Greens, the feveral Degrees of Yellow and pale Blue muft be mix'd; but to compound Purples, the Scarlet and deep Blue are to be the Ingredients.

Now if the Animadverfor contend, that all the Reds and Yellows of the one Liquor, or Blues and Indicoes of the other, are only various Degrees and Dilutings of the fame Colour, and not divers Colours; that is a begging of

(157)

the Queftion: And I frould as foon grant, that the Two Thirds or Sixths in Mufick are but feveral Degrees of the fame Sound, and not divers Sounds. Certainly it is much better to believe our Senfes, informing us, that Red and Yellow are divers Colours; and to make it a philofophical Query, Why the fame Liquor doth, according to its various Thicknefs, appear of thofe divers Colours; than to fuppofe them to be the fame Colour, becaufe exhibited by the fame Liquors. For if that were a fufficient Reafon, then Blue and Yellow muft alfo be the fame Colour, fince they are both exhibited by the fame Tincture of Nephritic Wood. But that they are divers Colours, you will more fully underftand by the Reafon, which in my Judgment is this: The Tincture of Aloes is qualified to tranfmit moft eafily the Rays endued with Red, moft difficultly the Rays endued with Violet, and with intermediate Degrees of Facility, the Rays endued with intermediate Colours. So that where the Liquor is very thin, it may fuffice to intercept moft of the Violet, and yet tranfinit moft of the other Colours; all which together muft compound a middle Colour, that is, a faint Yellow. And where it is fo much thicker, as alfo to intercept moft of the Blue and Green, the remaining Green, Yellow, and Red, muft compound an Orange. And where the Thicknefs is fo great, that fcarce any Rays can pafs through it befides thofe endued with Red, it muft appear of that Colour, and that fo much the deeper and obfcurer, by how much the Liquor is thicker. And the fame may be underftood of the various Degrees of Blue, exhibited by the Solution of Copper, by reafon of its Difpofition to intercept Red moft eafily, and tranfmit a deep Blue or Indico Colour moft freely.

But fuppofing that all Colours might, according to this Experiment, be produced out of two by Mixture; yet it follows not, that thofe two are the only original Colours; and that for a double Reafon: Firft, Becaufe thofe two are not themfelves original Colours, but compounded of others; there being no Liquor, nor any other Body in Nature, whofe Colour in Day-light is wholly uncompounded. And then, becaufe though thofe two were original, and all others might be compounded of them, yet it follows not that they cannot be otherwife produced. For I faid that they had a double Origin, the fame Colours to Senfe being in fome Cafes compounded, and in others uncompounded; and fufficiently declared in my third and fourtb Propofitions, and in the Conclufion, by what Properties the one might be known and diftinguif'd from the other. But becaufe 1 fufpect by fome Circumflances, that the Diftinction might not be rightly apprehended, I hall once more declare it, and further explain it by Examples.

That Colour is Primary or Original, which cannot by any Art be changed, and whofe Rays are alike refrangible: And that Compounded, which is changeable into other Colours, and whole Rays are not alike refrangible. For Inftance: To know whether the Colour of any green Object be compounded or not, view it through a Prifin; and if it appear confufed, and the Edges tinged with Blue, Yellow, or any Variety of other Colours, then is that Green compounded of fuch Colours as at its Edges emerge out of it: But if it appear diftinet, and well defined, and entirely Green to the very Edges, without

(158)

without any other Colours emerging, it is of an original and uncompounded Green. In like manner, if a refracted Beam of Light, being caft on a white Wall, exhibit a green Colour, to know whether that be comipomeded, refract the Beam with an interpofed Prifin; and if you find any Difformity in the Refractions, and the Green be transformed into Blue, Yellow, or any Variety of other Colours, you may conclude that it was compounded of thofe that emerge: But if the Refractions be uniform, and the Green perfilt without any Change of Colour, then is it original and uncompounded. And the Reafon why I call it fo is, becaufe a Green endued with fuch Properties cannot be produced by any mixing of other Colours.

Now if two green Objects may to the naked Eye appear of the fame Colour, and yet one of them through a Prifm feem confuied and variegated with other Colours at the Edges, and the other diftinct and entirely green; or if there may be two Beams of Light, which falling on a white Wall, do to the naked Eye exhibit the fame green Colour, and yet one of them, when tranfmitted through a Prifm, be uniformly and regularly refracted, and retain its Colour unchanged, and the other be irregularly refracted, and made to divaricate into a Multitude of other Colours: I fuppofe thefe two Greens will in both Cafes be granted of a different Origin and Conftitution. And if by mixing Colours, a Green cannot be compounded with the Properties of the unchangeable Green, I think I may call that an uncompounded Colour, efpecially fince its Rays are alike refrangible and uniform in all Refpects.

The fame Rule is to be obferved in examining whether Red, Orange, Yellow, Blue, or any other Colour, be compounded or not. And, by the way, fince all white Objects through the Prifm appear confufed and terminated with Colours, Whitenefs muft, according to this Diftinction, be ever compounded, and that the moft of all Colours, becaule it is the moft confufed and changed by Refractions.

There now remains the third Query to be confidered, which is, Whether Whiteness can be an uniform Colour, or a diffimilar Mixture of all Colours? The Experiment which I brought to decide it, the Animadverfor thinks, may be otherwife explained, and fo concludes nothing. But he might eafily have fatisfied himfelf by trying what would be the Refult of a Mixture of all Colours. And that very Experiment might have fatisfied him, if he had pleafed to examine it by the various Circumftances. One Circumftance I there declared, of which I fee no Notice taken; and it is, That if any Colour at the Lens be intercepted, the Whitenefs will be changed into other Colours: If all the Colours but Red be intercepted, that Red alone in the Concourfe or croffing of the Rays, will not conftitute Whitenefs, but continues as much Red as before; and fo of the other Colours. So that the Bufinefs is not only to fhew how Rays, which before the Concourfe exhibit Colours, do in the Concourfe exhibit White; but to fhew, how, in the fame Place, where the feveral Sorts of Rays apart exhibit feveral Colours, a Confufion of all together makes White. For Inftance, If Red alone be firft tranfmitted to the Paper at the Place of Concourfe, and then the other Colours be let fall on that Red, the Queftion will be, Whether they convert it into White by mixing with it only,
as Blue falling on a Yellow Light is fuppofed to compound Green? Or whether there be fome further Change wrought in the Colours by their mutual acting on one another, until, like contrary peripatetic Qualities, they become affimilated? And he that fhall explicate this laft Cafe mechanically, muft conquer a double Impoffibility. He muft firt fhew, that many unlike Motions in a Fluid can by clafhing fo act on one another, and change each other, as to become one uniform Motion; and then, that an uniform Motion can of itfelf, without any new unequal Impreffions, depart into a great Variety of Motions regularly unequal. And after this he muft further tell me, why alt Objects appear not of the fame Colour ; that is, why their Colours in the Air, where the Rays that convey them every Way are confufedly mix'd, do not affimilate one another, and become uniform before they arrive at the Spectator's Eye?

But if there be yet any doubting, 'tis better to put the Event on further Circumftances of the Experiment, than to acquiefce in the Poffibility of any hypothetical Explications: As for Inftance, by trying what will be the Apparition of thefe Colours in a very quick Confecution of one another. And this may be eafily performed by the rapid Gyration of a Wheel with many Spokes or Coggs in its Perinneter, whofe Interftices and Thickneffes may be equal, and of fuch a Largenefs, that, if the Wheel be interpofed between the Prifm and the white Concourfe of the Colours, one half of the Colours may be intercepted by a Spoke or Cogg, and the other half pafs through an Interftice. The Wheel being in this Pofture, you may firf turn it nowly about, to fee all the Colours fall fucceffively on the fame Place of the Paper, held at their aforefaid Concourfe; and if you then accelerate its Gyration, until the Confecution of thofe Colours be fo quick, that you cannot diftinguifh them feverally, the refulting Colour will be a Whitenefs perfectly like that, which an unrefracted Beam of Light exhibits, when in like manner fucceffively interrupted by the Spokes or Coggs of that circulating Wheel. And that this Whitenefs is produced by a fucceffive Intermixture of the Colours, without their being affimilated, or reduced to any Uniformity, is certainly beyond all Doubt, unlefs Things that exif not at the fame Time, may notwithftanding act on one another.

There are yet other Circumftances, by which the Truth might have been decided; as by viewing the white Concourfe of the Colours through another Prifm placed clofe to the Eye, by whole Refraction that Whitenefs may appear again transformed into Colours: And then, to examine their Origin, if an Afiftant intercept any of the Colours at the Lens before their Arrival at the Whitenefs, the fame Colours will vanifh from amongft thofe, into which that Whirenefs is converted by the fecond Prifm. Now, if the Rays which difappear be the fanse with thofe that are intercepted, then it muft be acknowledged, that the fecond Prifm makes no new Colours in any Rays, which were not in them before their Concourfe at the Paper. Which is a plain Indication, that the Rays of feveral Colours remain diftinct from one another in the Whitenefs, and that from their previous Difpofitions are derived the Colours of the
fecond Prifm. And, by the Way, what is faid of their Colours may be applied to their Refrangibility.

The aforefaid Wheel may alfo here be made ufe of; and, if its Gyration be neither too quick nor too flow, the Succeffion of the Colours may be difcern'd thro' the Prifm, whilft to the naked Eye of a By-ftander they exhibit Whitenefs.

There is fomething ftill remaining to be faid of this Experiment. But this, I conceive, is enough to enforce it, and fo to decide the Controverly. However, I hall now proceed to fhew fome other Ways of producing Whitenefs by Mixtures, fince I perfuade myfelf, that this Affertion above the reft appears paradoxical, and is with moft Difficulty admitted. And becaufe the Animadverfor defires an Inflance of it in Bodies of divers Colours, I fhall begin with that. But in order thereto it muft be confider'd, that fuch colour'd Bodies reflect but fome Part of the Light incident on them; as is evident by the 13 th Propofition: And therefore the Light refiected from an Aggregate of them will be much weaken'd by the Lo/s of many Rays. Whence a perfect and intenfe Whitenefs is not to be expected, but rather a Colour between thofe of Light and Shadow, or fuch a Grey or dirty Colour as may be made by mixing White and Black together.

And that fuch a Colour will refult, may be collected from the Colour of Duft found in every Cornef of an Houfe, which hath been obferv'd to confift of many colour'd Particles. There may alfo be produced the like dirty Colour, by mixing feveral Painters Colours together. And the fame may be effected by painting a Top (fuch as Boys play with) of divers Colours. For when it is made to circulate by whipping it, it will appear of fuch a dirty Colour.

Now the compounding of thefe Colours is proper to my Purpofe, becaufe they differ not from Whitenefs in the Species of Colour, but only in a Degree of Luminoufnefs: Which (did not the Animadverfor concede it) I might thus evince. A Beam of the Sun's Light being tranfmitted into a darkened Room, if you illuminate a Sheet of white Paper by that Light, reflected from a Body of any Colour, the Paper will always appear of the Colour of that Body, by whofe reflected Light it is illuminated. If it be a Red Body, the Paper will be Red; if a Green Body, it will be Green; and fo of the other Colours. The Reafon is, that the Fibres or Threads, of which the Paper confifts, are all tranfparent and fpecular ; and fuch Subftances are known to reflect Colours without changing them. To know, therefore, to what Species of Colour a Grey belongs, place any Grey Body (fuppofe a Mixture of Painters Colours) in the faid Light, and the Paper being illuminated by its Reflection, fhall appear White. And the fame Thing will happen, if it be illuminated by Reflection from a Black Subftance.

Thefe therefore are all of one Species; but yet they feem diftinguifh'd not only by Degrees of Luminoufnefs, but alfo by fome other Inequalities, whereby they become more harfh or pleafant. And the Diftinction feems to be, that Greys, and perhaps Blacks, are made by an uneven Defect of Light, confifting as it were of many little Veins or Streams, which differ either in Luminoufnefs, or in the unequal Diftribution of diverfly colour'd Rays; fuch as ought to be

(161)

caufed by Reflection from a Mixture of White and Black, or of diverlly coloured Corpufcles. But when fuch imperfectly mix'd Light is by a fecond Reflection from the Paper more evenly and uniformly blended, it becomes more pleafant, and exhibits a faint or fhadowed Whitenefs. And that fuch dittle Irregularities as thefe may caule thefe Differences, is not improbable, if we confider, how much Variety may be caufed in Sounds of the fame Tone, by irregular and uneven Jarrings. And befides, thole Differences are fo little, that I have fometimes doubted, whether they be any at all, when I have confidered, that a Black and White Body being placed together, the one in a ftrong Light, and the other in a very faint Light, fo proportioned that they might appear equally luminous, it has been diflicult to diftinguifh them, when viewed at Dittance, unlefs when the Black feemed more Bluifh, and the White Body in a Light ftill fainter, hath, in Comparifon of the Black Body, itfelf appeared Black.

This leads me to another Way of compounding Whitenefs; which is, that, if four or five Bodies of the more eminent Colours, or a Paper painted all over in feveral Parts of it with thofe feveral Colours in a due Proportion, be placed in the faid Beam of Light, the Light reflected from thofe Colours to another White Paper, held at a convenient Diftance, fhall make that Paper appear White. If it be held too near the Colours, its Parts will feem of thofe Colours that are neareft them; but by removing it further, that all its Parts may be equally illuminated by all the Colours, they will be more and more diluted, until they become perfectly White. And you may further obferve, that if any of the Colours be intercepted, the Paper will no longer appear White, but of the other Colours which are not intercepted. Now that this Whitenefs is a Mixture of the feverally coloured Rays, falling confufedly on the Paper, I fee no reaton to doubt; becaufe, if the Light became uniform and fimilar before it fell confufedly on the Paper, it muft much more be uniform, when at greater Diftance it falls on the Spectator's Eye; and fo the Rays, which come from feveral Colours, would in no Qualities differ from one another, but all of them exhibit the fame Colour to the Spectator, contrary to what he fees.

Not much unlike this Inftance it is, that if a polifh'd Piece of Metal be fo placed, that the Colours appear in it as in a Looking-Glats, and then the Metal be made rough, that by a confufed Reflection thofe apparent Colours may be blended together, they fhall difappear, and by their Mixture caule the Metal to look White.

But further to enforce this Experiment: If inftead of the Paper, any White Froth, confifting of fmall Bubbles, be illuminated by Reflection from the aforefaid Colours, it fhall to the naked Eye feem White, and yet through a good Microfcope the feveral Colours will appear diftinct on the Bubbles, as if feen by Reflection from fo many fpherical Surfaces. With my naked Eye, being very near, I have alfo difcerned the feveral Colours on each Bubble; and yet at a greater Diftance, where I could not diftinguifh them apart, the Froth hath appeared entirely White. And at the fame Diftance, when I look'd intently, I have feen the Colours diftinctly on each Bubble; and yet by ftraining

(162)

my Eyes, as if I would look at fomething afar off beyond them, thereby to render the Vifion confufed, the Froth has appeared without any other Colour than Whitenefs. And what is here faid of Froths, may eafily be underftood of the Paper, or Metal, in the foregoing Experiments. For their Parts are fpecular Bodies, like thefe Bubbles; and perhaps with an excellent Microfeope the Colours may alfo be feen intermixedly reflected from them.

In proportioning the feveral colour'd Bodies to produce thefe Effects, there may be fome Nicenefs; and it will be more convenient to make ufe of the Colours of the Prifm, caft on a Wall, by whofe Reflection the Paper, Metal, Froth, and other white Subftances may be illuminated. And I ufually made my Trials this Way, becaufe I could better exclude any fcattering Light from mixing with the Colours to dilute them.

To this Way of compounding Whitenefs may be referred that other, by mixing Light after it hath been trajected through tranfparently colour'd Subftances. For Inftance, if no Light be admitted into a Room, but only through colourd Glafs, whofe feveral Parts are of feveral Colours in a pretty equal Proportion ; all white Things in the Room fhall appear White, if they be not held too near the Glafs: And yet this Light, with which they are illuminated, cannot poffibly be uniform; becaufe, if the Rays, which at their Entrance are of divers Colours, do in their Progrefs through the Room fuffer any Alteration to be reduced to an Uniformity, the Glafs would not in the remoteft Parts of the Room appear of the very fame Colour, which it doth when the Spectator's Eye is very near it: Nor would the Rays, when tranfmitted into another dark Room through a little Hole in an oppofite Door or PartitionWall, project on a Paper the Species or Reprefentation of the Glafs in its proper Colours.

And, by the by, this feems a very fit and cogent Inftance of fome other Parts of my Tbeory, and particularly of the 13 th Propofition. For in this Room all natural Bodies whatever appear in their proper Colours. And all the Phænomena of Colours in Nature, made either by Refraction or without it, are here the fame as in the open Air. Now the Light in this Room being fuch a difimular Mixture, as I have defcribed in my Theory, the Caufes of all thefe Phenomena mult be the fame that I have here affigned. And I fee no reafon to furpect, that the fame Phænomena fhould have other Caufes in the open Air.

The Succels of this Experiment may be eafily conjectured by the Appearances of Things in a Church or Chapel, whofe Windows are of co? our'd Glafs; or in the open Air, when it is illuftrated with Clouds of various Colours.

There are yet other Ways by which I have produced Whitenefs; as by cafting feveral Colours from two or more Prifms upon the fame Place; by refracting a Beam of Light with two or three Prifms fucceffively, to make the diverging Colours converge again; by reflecting one Colour to another, and by looking through a Prifm on an Object of many Colours; and (which is equivalent to the above-mentioned Way of mixing Colours by concave Wedges filled with coloured Liquors) I have obferved the Shadows of a painted Glais-

(163)

Window to become White, where thofe of many Colours have at a great Diffance interfered. But yet for further Satisfaction, the Animadverfor may try, if he pleafe, the Effects of four or five fuch Wedges fill'd with Liquors of as many feveral Colours.

Befides all thefe, the Colours of Water-bubbles, and other thin pellucid Subftances, afford feveral Inftances of Whitenefs produced by their Mixture; with one of which I fhall conclude this Particular. Let fome Water, in which a convenient Quantity of Soap or Walhball is diffolv'd, be agitated into Froth, and after that Froth has ftood a while without further Agitation, 'till you fee the Bubbles, of which it confifts, begin to break, there will appear a great Variety of Colours all over the Top of every Bubble, if you view them near at hand ; but if you view them at fo great a Diftance that you cannot diftinguifh the Colours one from another, the Froth will appear perfectly White.

Thus much concerning the Defign and Subftance of the Animadverfor's Confiderations. There are yet fome Particulars to be taken notice of, before I conclude; as the Denial of the Experimentuin Crucis. On this I chofe to lay the whole Strels of my Difcourfe; which therefore was the principal Thing to have been objected againft. But I cannot be convinced of its Infufficiency by a bare Denial, without affigning a Reafon for it. I am apt to believe it has been milunderftood; for otherwife it would have prevented the Difcourfes about rarefying and fplitting of Rays; becaufe the Defign of it is to fhew, that Rays of divers Colours confidered apart, do at equal Incidences fuffer unequal Refractions, without being fplit, rarefied, or any ways dilated.
VI. 1. Mechinks that the moft important Objection which is made againft Mr. Nereton by way of Query, is that, Whether there be more than two forts of Colours? For my part, I believe, that an Hypothefis, that hould explain Mechanically, and by the Nature of Motion, the Colours Yellow, Green, and
S.me Confiderations upon this Dezinne of Cahaur; ; from Paris, by -......- Blue, would be fufficient for all the reft, in regard thote others, being only J more deeply charged, (as appears by the Prifms of Mr. Hook) do produce the dark or deep Red and Blue; and that of thefe four all the other Colours may be compounded. Neither do I fee why Mr. Neroton doth not content himfelf with the two Colours, Yellow and Blue; for it will be much more eafy to find any Hypothefis by Motion, that may explicate thefe two Differences, than for fo many Diverfities as there are of other Colours. And 'till he hath found this Hypothefis, he hath not taught us, what it is wherein confifts the Nature and Difference of Colours, but only this Accident (which certainly is very confiderable) of their different Refrangibility.

As for the Compofition of White made by all the Colours together, it may poffibly be, that Yellow and Blue might alfo be fufficient for that: Which is worth while to try; and it may be done by the Experiment which Mr. Netiton propofeth, by receiving againft a Wall of a darkened Room the Colours of the Prifm, and to caft their reflected Light upon white Paper. Here you muft hinder the Colours of the Extremities, viz. the Red and Purple, from ftriking againft the Wall, and leave only the intermediate Colours, Yellow, Green, and Blue, to fee whether the Light of thefe alone would not make the

(164)

Paper appear White, as well as when they all gave Light. I even doubt, whether the lighteft Place of the Yellow Colour may not all alone produce that Effect, and I mean to try it at the firft Conveniency; for this Thouglit never came into my Mind but juft now. Mean time you may fee, that if there Experiments do fucceed, it can no more be faid, that all the Colours are neceffary to compound White, and that'tis very probable, that all the reft are nothing but Degrees of Yellow and Blue, more or lefs charged.

Avfwered by Mr. Newtun. N. 97. p. 6103. Aug. An. 1673°
2. It feems to me, that N. takes an improper Way of examining the Nature of Colours, whilt he proceeds upon compounding thofe that are already conspounded. Perhaps he would fooner fatisfy himelf by refolving Light into Colours, as far as may be done by Art, and then by examining the Properties of thofe Colours apart, and afterwards by trying the Effedts of re-conjoining two or more, or all of thofe; and laflly, by feparating them again, to examine what Changes that Re-conjunction had wrought in them. I have formerly fhewn, That all Colours cannot practically be deriv'd out of the Yellow and Blue, and confequentiy that thole Hypothefes are groundlefs, which imply they may. If you afk, what Colours cannot be derived out of Yellow and Blue? I anfwer, None of thofe which I defined to be Original; and if he can fhew by Experiment how chey may, I will acknowledge myfelf in an Error. Nor is it eafier to frame an Hypothefis by affuming only two original Colours, rather than an indefinite Varicty; unlels it be eafier to fuppofe that there are but two Figures, Sizes, and Degrees of Velocity or Force of the Æthereal Corpufles or Pulfes, rather than an indefinite Variety; which certainly would be a harth Suppofition. No Man wonders at the indefinite Variety of Waves of the Sea, or of Sands on the Shore; but, were they all but two Sizes, it would be a very puzzling Phrenomenon. And I Should think it as unaccountable, if the feveral Parts or Corpufcles, of which a fhining Body confifts, which mult be fuppofed of various Figures, Sizes, and Motions, hould imprefs but two Sorts of Motion on the adjacent 不ihereal Medium, or any other Way beget but two Sorts of Rays. But to examine how Colours may be explain'd hypothetically, is befide my Purpofe. I never intended to thew wherein confifts the Nature and Difference of Colours, but only to fhew, that de failo they are origimal and immutable Qualities of the Rays svhich exhibit them; and to leave it to others to explicate by mechanical Hypothefes, the Nature and Difference of thefe Qualities; which I take to be no difficult Matter. But I would not be underftood, as if their Difference confitted in the different Refrangibility of thofe Rays; for that diferent Rcfrangibility conduces to their Production no otherwife, than by feparating the Rays whofe Qualities they are. Whence it is, That the fame Rays exhibit the fame Colours when feparated by any other Means; as by their different Reflexibility, a Quality not yet difcourfed of.

In the next Particular, where N. would fhew, that it is not neceffary to mix all Coiours for the Proditation of White; the Mixture of Yellow, Green and Blue, without Red and Violet, which he propounds for that End, will not produce White, but Green; and the brightelt Part of the Yellow will afford no other Colour but Yellow, if the Experiment be made in a

(165)

Room well darkened, as it ought; becaufe the coloured Light is much weakened by the Reflection, and fo apt to be diluted by the mixing of any other feattering Light. But yet there is an Experiment or two formerly mentioned, by which I have produced White out of two Colours alone, and that variouny; as out of Orange and a full Blue, and out of Red and a pale Blue, and out of Yellow and Violet, as alfo out of other Pairs of intermediate Colours. The moft convenient Experiment for performing this, was that of cafing the Colours of one Prifm upon thofe of another, after a due Manner. But what N. can deduce from hence, I fee not; for the two Colours were compounded of all others, and fo the refulting White (to fpeak properly) was compounded of them all, and only decompounded of thofe two. For Inftance, the Orange was compounded of Red, Orange, Yellow, and fome Green; and the Blue, of Violet, full Blue, light Blue, and fome Green, with all their intermediate Degrees; and confequently the Orange and Bine together made an Aggregate of all Colours to conttitute the White. Thus if one mix Red, Orange, and Yellow Powders to make an Orange; and Green, Blue and Violet Colours to make a Blue ; and laftly, the two Mixtures to make a Grey; that Grey, though clecompounded of no more than two Mixtures. is yet compounded of all the fix Powders, as truly as if the Powders had been all mixed at once.

This is fo plain, that I conceive there can be no further Scruple; efpecially to them who know how to examine, whether a Colour be fimple or compounded, and of what Colours it is compounded; which having explain'd in another Place, I need not now repeat. If therefore N. would conclude any Thing, he mult fhew how White may be produced out of two uncompounded Colours: Which when he hath done, I will farther tell him, why he can conclude nothing from that. But I believe there cannot be found an Experiment of that Kind; becaufe, as I remember, I once try'd, by gradual Succeffion, the Mixture of all Pairs of uncompounded Colours; and though fome of them were paler, and nearer to White than others, yet none could be truly called White. But it being fome Years fince this Trial was made, I remember not well the Circumftances, and therefore recommend it to others to be tried again.
3. Seeing that Mr. Nereton maintains his Opinion with fo much Concern, ARepl, fy I lift not to difpute. But what means it, I pray, that he faith, Tbougob $I_{\mathrm{N} .97 \cdot p .652 .}^{\text {Moricur }}$ N. Should Jow bim, that the White could be produced only of two uncompounded Colours, yet I could conclude notbing from that? And yet he hath affirm'd, that to compofe the White, all primitive Colours are neceffary.
4. In my faying, that when Monfieur N. hath fhewn bow White may be Arfwered; by produced out of two uincompounded Colours, I will tell bim, why be can conclude N. N. Newton. notbing from that; my Meaning was, That fuch a White (were there any fuch) July, An. $6^{673^{\circ}}$ would have different Properties from the White which I had refpect to, when Ideferibed my Tbeory, that is, from the White of the Sun's immediate Light, of the ordinary Objects of our Senfes, and of all white Phænomena that have hitherto fallen under my Obfervation. And thofe different Properties would evince it to be of a different Conftitution: Infomuch, that fuch a Production
of White would be fo far from contradicting, that it would rather illuftrate and confirm my Theory; becaufe by the Difference of that from other Whites, it would appear, that other Whites are not compounded of only two Colours like that. And therefore if Monfieur N. would prove any Thing, it is requifite that he do not only produce out of two primitive Colours a White, which to the naked Eye fhall appear like other Whites, but alfo fhall agree with chem in all other Properties.

But to let you undertand wherein fuch a White would differ from other Whites, and why from thence it would follow that other Whites are otherwife compounded, I fhall lay down this Pofition.

Tbat a compounded Colour can be refolved into no more Simple Colours tban thofe of which it is compounded.

This feems to be felf-evident, and I have alfo tried it feveral Ways, and particularly by this which follows: Let a reprefent an oblong Piece of White Paper about $\frac{1}{3}$ or $\frac{2}{4}$ of an Inch broad, and illuminated in a dark Room, with a Mixture of two Colours caft upon it from two Prilms, fuppofe a deep Blue and Scarlet, which muft feverally be as uncompounded as they can conveniently be made ; then, at a convenient Diftance, fuppofe of fix or eight Yards, view it through a clear Triangular Glafs or Cryftal Prifm held parallel to the Paper, and you fhall fee the two Colours parted from one another in the Fafhion of two Images of the Paper, as they are reprefented at β and γ; where fuppofe β the Scarlet, and γ the Blue, without Green, or any other Colour between them.

Now from the aforefaid Pofition I deduce thefe two Conclufions; 1. That if there were found out a Way to compound White of two fimple Colours only, that White would be again refolvable into no more than two. 2. That if other Whites, as that of the Sun's Light, $\xi^{2} c$. be refolvable into more than two fimple Colours (as I find by Experiment that they are) then they mult be compounded of more than two.

To make this plainer, fuppofe that A reprefents a white Body, illuminated by a direct Beam of the Sun tranfmitted through a fmall Hole into a dark Room, and α fuch another Body, illuminated by a Mixture of two fimple Colours; which, if poffible, may make it alfo appear of a white Colour exactly like A: Then, at a convenient Diftance, view thefe two Whites through a Prifm, and A will be changed into a Series of all Colours, Red, Yellow, Green, Blue, Purple, with their intermediate Degrees fucceeding in Order from B to C. But α, according to the aforefaid Experiment, will only yield thofe two Colours of which it was compounded, and thofe not conterminate like the Colours at BC, but feparate from one another, as at β and γ, by means of the different Refrangibility of the Rays to which they belong. And thus by comparing thefe two Whites, they would appear to be of a different Conftitution, and A to confift of more Colours than α. So that what Monfieur N. contends for, would rather advance my Theory by the Accefs of a new Kind of White, than conclude againft it. But I fee no Hopes of compounding fuch a White.

(167)

As for Monfieur N. his Expreffion, That I maintain my Doetrine with fome Concern, I confefs it was a little ungrateful to me, to meet with Objections which had been anfwered before, without having the leaft Reafon given me why thofe Anfwers were infufficient. Thofe Anfwers were to fhew, that vid, Suppl. po there are other fimple Colours befides Blue and Yellow; I inftanced in a fim- $149, \& \mathrm{feq}$. ple or homogeneal Green, fuch as cannot be made by mixing Blue and Yellow, or any other Colours. And I alfo fhew'd why, fuppofing that all Colours might be produced out of two, yet it would not follow that thofe two are the only original Colours. The Reafons I defire you would compare with what hath now been faid of White. And fo the Neceffity of all Colours to produce White, might have appear'd by that Experiment, where I fay, That if any Colour at the Lens be intercepted, the Whitenefs (which is compounded of them all) will be changed into (the Refult of) the other Colours.

However, fince there feems to have happened fome Mifunderftanding between us, I fhall endeavour to explain myfelf a little further in thefe Things, according to the following Method.

Definitions.] I. I call that Light homogeneal, fimilar, or uniform, whofe Rays are equally refrangible.
2. And that heterogeneal, whofe Rays are unequally refrangible.

Note, There are but three Affections of Light, in which I have obferved its Rays to differ, viz. Refrangibility, Reflexibility, and Colour; and thofe Rays which agree in Refrangibility, agree alfo in the other two, and therefore may well be defined homogeneal, efpecially fince Men ufually call thofe Things homogeneal, which are fo in all Qualities that come under their Knowledge, tho' in other Qualities, that their Knowledge extends not to, there may poffibly be fome Heterogeneity.
3. Thofe Colours I call fimple, or homogeneal, which are exhibited by homogeneal Light.
4. And thofe compounded or heterogeneal, which are exhibited by heterogeneal Light.
5. Different Colours, I call not only the more eminent Species, Red, Yellow, Green, Blue, Purple, but all other the minutef Gradations; much after the fame manner that not only the more eminent Degrees in Mufick, but all the leaft Gradations are efteemed different Sounds.

Propofitions.] 1. The Sun's Light confifts of Rays differing by indefinite Degrees of Refrangibility.
2. Rays which differ in Refrangibility, when parted from one another, do proportionally differ in the Colours which they exhibit. Thefe two Propofitions are Matter of Fact.
3. There are as many fimple or homogeneal Colours, as Degrees of Refrangibility: For to every Degree of Refrangibility belongs a different Colour, by Prop. 2. and that Colour is fimple, by Def. 1, and 3.
4. Whitenefs, in all Refpects like that of the Sun's immediate Light, and of all the ufual Objects of our Senfes, cannot be compounded of two fimple

(168)

Colours alone: For fuch a Compofition muft be made by Rays that have only two Degrees of Refrangibility, by Def. 1, and 3; ard therefore it cannot be like that of the Sun's Light, by Prop. 1 ; nor, for the fame Reafon, like that of ordinary white Objects.
5. Whitenefs, in all Refpects like that of the Sun's immediate Light, cannot be compounded of Simple Colours, without an indefinite Variety of them: For to fuch a Compofition there are requifite Rays endued with all the indefinite Degrees of Refrangibility, by Prop. I. And thofe infer as many Simple Colours, by Def. 1, and 3. and Prop. 2, and 3.

To make thefe a little plainer, I have added alfo the Propofitions that folliow.
6. The Rays of Light do not act on one annther in paffing through the fame Medium. This appears by feveral former Paffage, and is capable of further Proof.
7. The Rays of Light fuffer not any Change of their Qualities from Refraction.
8. Nor afterwards from the adjacent quiet Medium. Thefe two Propofitions are manifeft de faifo in homogeneal Light, whofe Colour and Refrangibility is not at all changeable, either by Refraction, or by the Contermination of a quiet Medium. And as for heterogeneal Light, it is but an Aggregate of feveral Sorts of homogeneal Light; no one Sort of which fuffers any more Alteration than if it were alone, becaufe the Rays act not on one another, by Prop. 6. and therefore the Aggregate can fuffer none. Thefe two Propofitions alfo might be further proved apart by Experiments, too long to be here defcribed.
9. There can no homogeneal Colours be educed out of Light by Refraction, which were not commixt in it before; becaufe by Prop. 7. and 8. Refraction changerh not the Qualities of the Rays, but only feparates thofe which have diverfe Qualities, by means of the different Refrangibility.
10. The Sun's Light is an Aggregate of an indefinite Variety of homogeneal Colours; by Prop. 1, 3, and 9. And hence it is, that I call homogeneal Colours alfo primitive or original.

Animadverfions on this Theory of Ligbt and CO_{0} dours; by Mr. Fr. Linus. N. 110.p. 217° Jan. Art. 8675°
VII. I. I doubt not of what Mr. Nereton affirms; and have myfelf fometimes in like Circumftances obferved the like Difference between the Length and Breadth of the coloured SpeEtrum; but never found it fo when the Sky was clear and free from Clouds, near the Sun: But then only appeared this Difference of Length and Breadth, when the Sun either Thined thro' a white Clouri, or enlightened fome fuch Clouds near unto it. And then indeed it was no marvel, the faid SpeEtrum fhould be longer than broad; fince the Cloud or Clouds fo enlightened, were in order to thofe Colours like to a great Sun, making a far greater Angle of Interfection in the Hole, than the true Rays of the Sun do make; and therefore are able to enlighten the whole Length of the Priim, and not only fome fmall Part thereof, as we fee enlightened by the true SunBeams coming thro' the fame little Hole. And this we behold alfo in the true Sun-Beams, when they enlighten the whole Prifm; for altho' in a clear Heaven, the Rays of the Sun pafling thro' the faid Hole, never make a

(169)

Spectrum longer than broad, becaufe they then can occupy but a fmall Part of the Prifm; yet if the Hole be fo much bigger as to enlighten the whole Prifm, you fhall prefently fee the Length of the Spectrum much exceed its Breadth; which Excefs will always be to much the greater, as the Length of the Prifm exceeds its Breadth. From whence I conclude, That the Spectrum, this Learned Autbor faw, much longer than broad, was not effected by the true Sun-Beams, but by Rays proceeding from fome bright Cloud, as is faid; and by Confequence, that the Theory of Light grounded upon that Experiment cannot fubfift.
What I have here faid, needs no other Confirmation than meer Experience, which any one may quickly try: neither have I only tried the fame upon this Occafion, but near 30 Years ago fhew'd the fame, together with divers other Experiments of Light, to that worthy Promoter of Experimental Philofophy, Sir Keneln Digby, who coming into thefe Parts to take the Spawe-Waters, reforted oftentimes to my darkned Chamber *, to fee the various Phænomena* at Leige, of Light, made by divers Refractions and Reflections, and took Notes upon them; which Induftry if they alfo had us'd, who endeavour to explicate the aforefaid Difference between the Length and Breadth of this colour'd S'pectrum, by the received Laws of Refraction, would never have taken fo impoflible a Task in Hand.
2. Thefe Animadverfions feem to need no other Anfwer but this, that you Arfwered by would be pleafed to confider the Scheme in Mr. Nerwton's fecond A nfiwer to P. Parides, and reft affured, that the Experiment, as 'tis reprefented, was tried in clear Days, and the Prifm placed clofe to the Hole in the Window, fo that the Light had no room to diverge, and the coloured Image made not parallel (as in that Conjecture) but tranfverfe to the Axis of the Prifm.
3. If thefe Alfertions be admitted, they do indeed directly cut off what I AReplybyr. faid of Mr. Nereton's being deceived by a bright Cloud. But if we compare Fr. Linus. them with Mr. Nereton's firft Relation of the Experiment, it will evidently Jano An. 16.107°. appear, they cannot be admitted, as being directly contrary to what is there delivered. For there he tells us, Thbe Ends of the coloured Image, be fare on the oppofite Wall near five times as long as broad, feem to be femicircular. Now thefe Semicircular Ends are never feen in a clear Day, as Experience dhews. From whence follows againft the firf Affertion, that the Experiment was not made in a clear Day. Neither are thofe femicircular Ends ever feen when the Prifm is placed clofe to the Hole; which contradicts the fecond Affertion. Neither are they ever feen when the Image is tranfverfe to the Length or Axis of the Prifm; which directly oppofes the third Affertion. But if in any of thefe three Cafes, the Image be made fo much longer than broad (as eafily it may, by turning the Prifm a little about its Axis, near five times as long as broad) then the one End thereof will run out into a Tharp Cone or Pyramis like the Flame of a Candle, and the other into a Cone fomewhat more blunt ; both which are far from feeming femicircular: Whereas, if the Image be made not in a clear Day but with a bright Cloud, and the Prifm not placed clofe to the Hole but in a competent Diftance from the fame, then thele Semicircular Ends always appear, with the Sides thereof, ftreight Lines, juft

(170)

as Mr. Newton defcribes them. Neither is the Length of the Image tranfverfe, but parallel to the Length of the Prifm. Out of all which it evidently follows, that the Experiment was not made in a clear Day ; nor with the Prifm clofe to the Hole; nor yet with the Image tranfverfe, but by a bright Cloud and a parallel lmage (as I conjectured); and I hope you will alfo now fay, I had good Realon to to conjecture, fince it fo well agrees with the Relation. And Experience will alfo fhew you, if you pleafe to make Trial, as it was made in a dark Chamber, and obferve the Difference between fuch an Image made by a bright Cloud, and another made by the immediate Rays of the Sun: For the former you fhall always find parallel, with the Ends femicircular; but the latter you fhall find traniverfe, with the Ends pyramidical, as aforefaid, whenfoever it appears fo much longer than broad.

More might be faid out of the fame Relation, to fhew that the Image was not tranfverfe. For if it had been tranfverfe, Mr. Nerwton, to well skill'd in Optics, could not have been furprized (as he fays he was) to fee the Length thereof f_{0} much to exceed the Breadrh ; it being a Thing fo obvious and eafy to be explicated by the ordiary Rules of Refraction. That other Place alfo (where he fays the Incident Refractions were made in the Experiment equal to the Eimergent) proves again, that the faid oblong Image was not tranfverfe, but parallel. For it is impofible the traniverfe Inmage fhould be fo much longer than broad, unlefs thofe two Refractions be made very unequal; as both the Computation according to the common Rules of Refraction and Experience teltify.
Atrwer dyy Mr. 4. What it is that impofes upon Mr. Line I cannot imagine; but I fufpect

Newton.
N. 12 I. $p .501$. N. 123 .p. 556 . Mas. An. $=676$. he has not try'd the Experiment fince he acquainted himfelf with my Theory, but depends upon his old Notions, taken up before he had any Hint given to oblerve the Figure of the coloured Image. I fhall defire him therefore, before he returns any Anfwer, to try it once more for his Satistaction, and according to this Manner.

Let him take any Prifm, and hold it fo that its Axis may be perpendicular to the Sun's Rays, and in this Pofture let it be placed as clofe as may be to the Hole through which the Sun Aines into a dark Roon,, which Hole may be about the Bignefs of a Pea. Then let him rurn the Prifm flowly abcut its Axis, and he mall fee the Colours move upon the oppofite Wall, firft towards that Place to which the Sun's direct Line would pafs, if the Prifm were taken away, and then back again. When they are in the Middle of thefe two contrary Motions, that is, when they are neareft that Place to which the Sun's direct Ray tends, there let him ftop; for then are the Rays equally refracted on both Sides the Prifin. In this Pofture of the Prifm let him obferve the Figure of the Colours, and he fhall find it not round, as he contends, butoblong, and fa much the more oblong as the Angle of the Prifin, comprehended by the refracting Planes, is bigger, and the Wall, on which the Colours are caft, more diftant from the Prilim; the Colours Red, Yellow, Green, Blue, Purple, fucceeding in Order, not from one Side of the Figure to the other, as in Mr. Line's Conjecture, but from one End to the ther; and the Length of the Figure being not parallel but tranfverfe to the

171)

Axis of the Prifm. After this manner I ufed to try the Experiment; and it will not fucceed well if the Day be not clear, and the Prifm placed clofe to the Hole, or fo near at leaft, that all the Sun's Light that comes from the Hole may pafs through the Prifin alfo, fo as to appear in a round Form, if intercepted by a Paper immediately after it has paffed the Prifm.

When Mr. Line has try'd this, I could wifh he would proceed a little further, to try that which I call'd the Experimentum Crucis. For when he has try'd them (which by his denying them, I know he has not done ye t as they flould be try'd) I prefume he will reft fatisfied. It may be try'd (tho' not fo perfectly) even without darkning a Room, or the Expence of any more Time than half a Quarter of an Hour.
5. Mr. Linus (now deceafed) try'd the Experiment again and again, andrbe Experiment called divers on purpofe to fee it, nor ever made Difficulty to fhew it to any of Mr. Line
 shewed the leaft Defire to fee the fame, fo that for Point of Experience, Mr. Marz. $121 . p \cdot 503$. Nerwton cannot be more conident on his Side, than we are here on the other; Jan. An. 1676. who are fully perfuaded, that, unlefs the Diverfity of placing the Prifn, or the Bignefs of the Hole, or fome other fuch Circumftance, be the Caufe of the Difference betwixt them, Mr. Newoton's Experiment will hardly fand.
6. By Mr. Gafooigne's Letter one might fufpect, that Mr. Linus try'd the Anfwerrd by Experiment fome other Way than I did; and therefore I thall expect, till his Mrid. Ne. I23. Friends have try'd it according to my late Directions. In which Trial it may p. 556 . poffibly be a further Guidance to them, to acquaint them that the Prifon cafts from it feveral Images. One is, that oblong One of Colours which I mean; and this is made by two Refractions only. Another there is made by two Refractions and an intervening Reflexion; and this is rourd and colourlefs, if the Angles of the Prifm be exactly equal ; but if the Angles at the reflecting Bafe be not equal, it will be colour'd, and that fo much the more, by how much unequaller the Angles are, but yet much more unround, unilefs the Angles be very unequal. A third Image there is, made by one fingle Reflection, and this is always round and colourlefs. The only Danger is, in miftaking the Second for the Firft. But they are diftinguifhable not only by the Length and lively Colours of the Firff, but by its different Motion too: For, whilft the Prifm is turned continually the fame Way about its Axis, the Second and Tbird move fwiftly, and go always on the fame Way, till they difappear; buc the Firft moves flow, and grows concinually flower, till it be Stationary, and then turns back again, and goes back falter and falter, till it vanih in the Place where it began to appear.

If, without darkning their Room, they hold the Prifin at their Window in the Sun's open Light, in fuch a Pofture that its Axis be perpendicular to the Sun-Beams, and then turn it about its Axis, they cannot mifs of feeing the firft Innage; which having found, they may double up a Paper once or twice, and make a round Hole in the middle of it, about $\frac{1}{2}$ or $\frac{2}{4}$ of an Inch broad, and hold the Paper immediately before the Prifin, that the Sun may fhine on the Pritim through that Hole; and the Prifm being flayed, and held Iteddy in that Pofture which makes the Image ftationary, if the Image
then fall direetly on an oppofite Wall, or on a Sheet of Paper piaced at the Wall, fuppofe 15 or 20 Feet from the Prifm, or further off; they will fee the Image in fuch an oblong Figure as I have defcribed, with the Red at one End, the Violet at the other, and the bluifh Green in the Middle: And if they obfcure their Room as much as they can, by drawing Curtains, or otherwife, it will make the Colours the more confpicuous.

This Direction I have fet down, that no Body, into whofe Hands a Prifm thall happen, may find Difficulty and Trouble in trying it. But when Mr. Linus's Friends have try'd it thus, they may proceed to repeat it in a dark Room with a lefs Hole made in their Window-fhut. And then I fhall defire that they will fend a full and clear Defcription how they try'd it. I fhould be glad too, if they will favour me with a Defcription of the Experiment as it hath been hitherto try'd by Mr. Linus; that I may have an Opportunity to confider what there is in that which makes againft me.
7. Mr. Gafioigne wanting Convenience to make the Experiment, according to the frefh Directions from Mr. Nerotom, requefted me to fupply this Want.

The vertical Angle of my Prim was 60 Degrees; the Diftance of the Wall, whereon the coloured Spectrum appeared from the Window, about 18 Feet; the Diameter of the Hole in the Window-fhuts about $\frac{5}{2}$ Inch, which, upon Occafions, I contracted to half the faid Diameter, but ftill with equal Succefs as to the main of the Experiment. The Refractions on both Sides the Prifm were, as near as I could make them, equal ; and confequently about 48 Deg. 40 Min , the refractive Power of Glass being computed according to the Ratio of the Sines 2 to 3. The Diftance of the Prifm from the Hole in the Shuts was about 2 Inches; the Room darkned to that Degree as to equal the darkeft Night, while the Hole in the Shuts was covered.

Now as to the Iffue of my Trials; I conftantly found the Length of the coloured Image (tranfverfe to the Axis of the Prifin) confiderably greater than its Breadth, as ofren as the Experiment was made on a clear Day; but if a bright Cloud were near the Sun, I found it fometimes exactly as Mr. Line wrote to you, namely, broader than long, efpecially while the Prifm was placed at a great Diftance from the Hole : Which Experiment will not, I coneeive, be quieftion*d by Mr. Nerwton, it being fo agreeable to the received Laws of Refractions. And indeed the Obfervations of thefe two learned Perfons, as to this Particular, are eafily reconcileable to each other, and both to Truth; Mr . Nervion contending only for the Length of the Image (tranfverfe to the Axis of the Prifm) in a very clear Day; whereas Mr. Line only maintained the Excefs of Breadth, parallel to the fame Axis, while the Sun is in a bright Cloud. Tho as to what is further deliver'd by Mr. Neroton, and oppofed by Mr . Line, namely that the Length of the coloured Image was five times the Diameter of its Breadth; I never yet have found the Excefs above thrice the Diameter, or at moft $3 \frac{1}{2}$, while the Refractions on both Sides the Prifm were equal. So much as to the Matter of Fact.

Now as to Mr. Neroton's T'beory of Light and Colours, I confefs his neat Sett of very Ingenious and Natural Inferences was to me, upon the firft Perufal ${ }_{3}$ a.ftrong Conjecture in Eayour of his new Doctrine; I having formerly

(173)

merly obferved the like Chain of Inferences upon Search into natural Truths. But fince feveral Experiments of Refractions remain ftill untouched by him, I conceived a further Search into them would be very proper, in order to a further Difcovery of the Truth of his Aifertion. For accordingly as they are found, either agreeing with, or difagreeing from his new Theory, they muft needs much frengthen, or wholly overthrow the fame. The Experiments I pitched upon for this Purpofe are as follow :

1. Having frequently obferved, that the Form of Objects viewed in the Microfcope (or rather of the Microfcope itfelf) confifts almolt in an indivifible Point, I concluded two very fmall Pieces of Silk, the one Scarlet, the other Violet Colour, placed near together, fhould, according to Mr. Nerwton's Theory, appear in the Microfcope in a very different Degree of Clarity, in regard their unequal Refrangibility muft caufe the Scarlet Rays, or Species, to over-reach the Retina, while placed in the due Focus of the Violet ones, and confequently mult occafion a fenfible Confufion in the Vifion of the former, one and the fame Point of the Scarlet Object affecting feveral Nerves in the Retina. Yet upon frequent Trials I have not been able to perceive any Inequality in this Point.
2. The fecond Experiment I made in Water. I took a Brafs Ruler, and faftning thereunto feveral Pieces of Silk, Red, Yellow, Green, Blue, and Violet, I placed it at the bottom of a Square Veffel of Water : Then I retired from the Veffel fo far, as not to be able to fee the aforefaid Ruler and coloured Silks, otherwife than by the Help of the refracted Ray. Now, did Mr. Newton's Doctrine hold, I conceived I fhould not fee all the mentioned Colours in a ftreight Line with the Ruler, in regard the unequal Refrangibility of different Rays muft needs difplace fome more than others. Yet in Effect, upon many Trials, I conftantly found them in as ftreight a Line, as the bare Ruler had appeared in.
3. To advance this Experiment, I adjoined a fecond Refraction to the former of Water, by placing my Prilin fo, as to receive perpendicularly the refracted Species of the Silk and Ruler; whereby only the emergent Species fuffered a fecond Refraction :- but ftill with equal Succefs, as to their appearing in a ftreight Line to the Eye placed behind the Prifm.
4. To thefe two Refractions I further added a third, by receiving the coloured Species obliquely upon the Prifm ; whereby both incident and emergent Species fuffered their refpective Refractions: But ftill with the fame Succefs as formerly, as to the ftreight Line they appeared in.

For further Affurance in this Experiment, left Prepoffeffion, occafion'd from previous Knowledge of the Silk's Situation in a Areight Line, might poffibly prejudice the Judgment of the Eye (as fometimes I have obferv'd to happen to the Judgment the Eye paffeth upon the Diftance of Objects) I call'd into the Room fome uncoricern'd Perfons, wholly ignorant of what the Experiment aim $^{2} \mathrm{~d}$ at; and demanding whether they faw not the coloured Silks and Ruler in a crooked Line, they anfwer'd in the Negative.
5. The next Experiment I made in uncompounded Colours (as Mr. Neroton terms them, Prop. 5. and 13.) as follows. Having caft two coloured Images

(174)

upon the Wall, fo as the Scarlet Colour of the one did fall in a ftreight Line (parallel to the Horizon) with the Vinlet of the other; I then looked upon both through another Prifm, and found them ftill appear in a ftreight line parallel to the Horizon, as they had formerly done to the naked Eye. Now according to Mr. Newton's Affertion of different Refrangibility in different Rays, I conceive the Violet Rays mould fuffer a greater Refraction in the Prifm at the Eye, than the Scarlet ones; and confequently both Colours fhould not appear in a fureight Line parallel to the Horizon.
6. Another Experiment I made, in order to fome further Difcavery of that furprizing Phænomenon of the coloured Image, which occafioned Mr. Newton's ingenious Theory of Light and Colours, as alfo of his excellent Invention of the reflecting Telefcope and Microfcope. Having then fometimes fufpected, that not only the direct Sun-Beams, but alfo other extraneous Light, might pofibly influence the coloured Spectrum, I hoped to difcover the Truth of this Sufpicion by means of the Sun-Spots, made to appear in the coloured Image, by placing a Telefcope behind the Prifn. But my Endeavours proving ineffectual herein, by reafon of fome intervening Difficulties, I thought at length of a more feafible Method, in order to the defigned Difcovery; as in the following Experiment.
Fis. 77. I taftned a very white Paper-Circle (about an Inch in Diameter) upon my Window fhuts; and beholding it thros my Prifm, I found a coloured Inage painted thereby upon my Retina, anfwerable in almoft all refpects to the former of the Sun-Beams upon the Wall, efpecially when the Paper-Circle was indifferently well illuminated. This Image indeed appeared contrary to the former, as to the Situation of. Colours, that is, the Scarlet appearing above, the Violet below, tho' but faint. But this I was not furprized at, having obferved upon diffecting the Eye, that Objects are painted on the Retima after a contrary Pofture to what they appear to fight. Having thus rendered the coloured Image much more tractable than formerly it was, I conceived good Hopes of fome further Difcovery in the Point mentioned.

In Purfuance then of my former Sufpicion, having fixed my Prifm in a fteady Pofture, 1 caufed the Paper C to be applied clofe up to the Paper-Circle a $b d$; whereupon the former Violet d, and the Scarlet Colour of C, vanifhed into Whitenefs. Next I removed tie mentioned Circle from the Shuts, and placed it in the open Window, fupported only by the Edged: whereupon, to my Aftonifhment, all the former Colours exchanged Poltures in the Retina; the Scarlet now appearing below, the Violet above, the intermediate Colours farce difcernible. And here, by the by, 'tis very remarkable, that during this Obfervation I clearly perccived both Blue and Scarlet Light to be tranfparent, I being able to difcern feveral Objects thro' both, namely, Steeples oppofite to my Window : Whence it follows, that thefe Colours do in great Part arife from the neighbouring Light. Lafty, I placed the PaperCircle anew, fo as the one half b was faftned to the Shuts, the other Semicircle a being expofed to the open Air. Whereupon the Semicircle a became bordered with Violet above, Scarlet below; but the other Semicircle b, quite contrary. Hence I make the following Inferences.

Firft, That not only the Light refected from the Paper-Circle, but alfo from the ambient Air, hath great Influence upon the coloured Image, efpecially as to the Violet and Scarlet Colours. Whence, perchance, it will not hereafter feem frange that the coloured Spectrum on the Walls is fo long, but only that the Breadth is not greater. Secondly, Were there a more luminous Body behind the Sun, we fhould in all likelihood have the Colours of the Spectrum in a contrary Situation to what they appear in at prefent: Whence, Thirdly, it feems to follow, that the prefent Situation and Oider of Colours arifeth not from any intrinfical Property of Refrangibility, (as maintained by Mr. Nerwton) but from contingent and extrinfical Circumitances of neighbouring Objects: For accordingly as the Body belind the PaperCircle was more or lefs illuminated than the Circle itfelf, all the feveral Colours changed their Situation.
8. The next Experinient was made in order to Mr. Newton's Doctrine of primary Colours, as Prop. 5. Having covered the Hole in the Windowfhuts with a thin Slice of Ivory, the tranfmitted Light appeared Yellow ; but upon adding chree, four, or more Slices, it became Red. Whence it feems to follow, that Yellownefs of Light is not a primary Colour, but a Compound of Red, ઉc.
9. The laft Experiment was made in reference to Mr. Nerwion's 12. Prop. where from his own Principles he renders a very plaufible Reafon of a furprizing Phænomenon, related by Mr. Hooke; namely, of two Liquors, the one Blue, and the other Red, both feverally tranfparent; yet both, if placed together, became opake. The Reafon whereof, faitin Mr. Neruton, is, becaufe if one Liquor tranfmitted only Red, the other anly Blue, no Rays could pafs thro' both.

In reference then to this Point, I filled two fmall Glaffes with flat polifhed Bottoms, the one with Aqua fortis deeply died Blue, the other with Oil of Turpentine died Red, both to that Degree, as to reprefent all Objects thro' them refpectively Blue or Red: Then placing the one upon the other, I was able to difecrn feveral Bodies thro' both. Whereas, according to Mr. Nerwton's Theory, no Object hhould appear through both Liquors; becaufe if one tranfmit only Red, the other only Blue, no Rays can pals chro' both.
P. S. Tuft upon the clofe of the adjoined Letter, I received from Mr. Gafcoigne yours of May the 4th; wherein you are pleafed to favour us with an exact Account of the famous Experiment of the coloured Speirrum, lately exbibited before the Royal Society. I was much rejoiced to See the Trials of that Illuftrious Company agree fo exaElly with ours bere; tho' in Somerebat ours difagree from Mr. Newton.
8. The Things oppofed by Mr. Line being upon Trials found true and Anfwerd by
 of the Image to its Breadth: And it is no wonder that Mr. Lucas found the Image fhorter than I did, feeing he tried the Experiment with a lefs Angle.

(176)

The Angle indeed which I ufed was but about σ_{3} Degrees, 12 Min. and his is fet to 60 Degrees; the Difference of which from mine being but 3 Deg. 12 Min. is too little to reconcile us; but yet it will bring us confiderably nearer together. And if this Angle was not exactly meafured, but the round Number of 60 Degrees fet down by guefs, or by a lefs accurate Meafure (as I fufpect by the conjectural Meafure of the Refraction of his Prifm, by the Ratio of the Sines as 2 to 3, fet down at the fame Time, inftead of an Experimental one) then might it be two or three Degrees lefs than 60 Deg. if not ftill lefs: And all this, if it fould be fo, would take away the greateft Part of the Difference between us.

But however it be, I am well affured my own Obfervation was exact enough. For I have repeated it divers times fince the Receipt of Mr. Lucas's Letter, and that without any confiderable Difference of my Obfervations, either from one another, or from what I wrote before: And that it might appear experimentally, how the Increafe of the Angle increafes the Length of the Image, and alfo that no body, who has a mind to try the Experiment exactly, might be troubled to procure a Prifm which has an Angle juft of the Bignefs affigned by me, I tried the Experiment with divers Angles, and have fet down my Trials in the following Table; where the firt Column expreffes the Angles of two Prifms which I ufed, which are meafured as exactly as I could, by applying them to the Angle of a Sector; and the fecond Column expreffes, in Inches, the Length of the Image made by each of thofe Angles; its Breadth being two Inches, its Diftance from the Prifm 18 Feet and 4 Inches, and the Breadth of the Hole in the Window-fluut $\frac{7}{4}$ of an Inch.

$$
\text { The firft Prifm }\left\{\begin{array} { c c }
{ \text { Angles } } & { \text { Lengths } } \\
{ 5 6 ^ { \circ } } & { 1 0 ^ { \prime } } \\
{ 6 0 } & { 2 4 } \\
{ 6 0 } & { 7 ^ { \frac { 1 } { 4 } } } \\
{ 6 3 } & { 2 6 }
\end{array} 1 0 ^ { \frac { 1 } { 2 } } | \begin{array} { c c }
{ \text { Angles } } & { \text { Lengths } }
\end{array} | \text { The fecond Prifm } \left\{\left.\begin{array}{cc|c}
54^{\circ} & 0^{\prime} & 7 \frac{3}{3} \\
62 & 12 & 10^{\frac{1}{3}} \\
63 & 4^{8} & 10^{\frac{3}{4}}
\end{array} \right\rvert\,\right.\right.
$$

You may perceive, that the Length of the Images, in refpect of the Angles that made them, are fomething greater in the fecond Prifm than in the firft; but that was becaufe the Glafs, of which the fecond Prifm was made, had the greater refractive Power.

The Days in which I made thefe Trials were pretty clear, but not fo clear as I defired; and therefore, afterwards meeting with a Day as clear as I defired, I repeated the Experiment with the fecond Prifm, and found the Lengths of the Image made by its feveral Angles, to be about $\frac{1}{4}$ of an Inch greater than before; the Meafures being thofe fet down in the Table.

1クク)

The Reafon of this Difference, I apprehenc, was, that in the cleareft Days the Light of the White Skies, which dilutes and renders invifible the fainteft Colours at the Ends of the Image, is a little diminifhed in a clear Day, and fo gives leave to the Colours to appear to a great Length; the Sun's Light at the fame time becoming brifker, and fo ftrengthening the Colours, and making the faint ones at the two Ends more confpicuous: For I have obferved, that in Days fomething cloudy, whilf the Prifm hass ftood unmoved at the Window, the Image would grow a little longer or a little fhorter, accordingly as the Sun was more or lefs obfcured by thin Clouds which paffed over it ; the Image being fhorteft while the Cloud was brighteft, and the Sun's Light fainteft. Whence it is eafy to apprehend, that if the Light of the Clouds could be quite taken away, fo that the Sun might appear furrounded with Darknefs, or if the Sun's Light were much fronger than it is, the Colours would ftill appear to a greater Length.
In all thefe Obfervations the Breadth of the Image was juft two Inches. But obferving that the Sides of the two Prifms I ufed were not exactly plain, but a little Convex, (the Convexity being about fo much as that of a double Convex-Glafs of a fixteen or eighteen Foot Telefcope) I took a third Prifm, whofe Sides were as much Concave as thofe of the other were Convex; and this nade the Breadth of the Image to be two Inches and a third Part of an Inch; the Angles of this Prifm, and the Lengths of the Inage made by each of thofe Angles, being thofe expreffed in this Table.
dixum okise sd bas criciz

Angles	Lengtbs
58^{8}	$8 \frac{1}{2}$
$59 \frac{1}{2}$	9
$62 \frac{1}{2}$	$10 \frac{1}{3}$

In this Cafe you fee the Concave Figure of the Sides of the Prifm, by making the Rays diverge a little, caufes the Breaddh of the Image to be greater in proportion to its Length than it would be otherwife. And this I thought fit to give you notice of, that Mr. Lucas may examine, whether his Primm hath not this Fault. If a Prifm may be had with Sides exactly plain, it may do well to try the Experiment with that; but 'tis better if the Sides be about fo much Convex as thofe of mine are, becaure the Image will thereby become much better defined: For this Convexity of the Sides does the fame Effect, as if you fhould ure a Prifm with Sides exactly plain, and between it and the Hole in the Window-fhut, place an Object-Glals of an 18 Foot Telefcope, to make the round Image of the Sun appear diftinctly defined on the Wall when the Prifm is taken away, and confequently the long Image nade by the Prifm to be much more diftinetly defined (efpecially at its ftreight Sides) than it would be otherwife.

One Thing more I fhall add: That the utmort Length of the Image, from the faintef Red at one End, to the fainteft Blue at the other, mult be mealiced. For in my firt Letter about Colours, where I fet down the Length to be five Times the Breadch, 1 called that Length the utnoft Length of

(178)

the Image; and I meafured the utmof Length, becaufe I account all that Length to be caufed by the immediate Light of the Sun, feeing the Colours (as I noted above) become vifible to the greateft Length in the cleareft Days, that is, when the Light of the Sun tranfeends moft the Light of the Clouds. Sometimes there will happen to fhoot out from both Ends of the Image a glaring Light a good way beyond thefe Colours; but this is not to be regarded, as not appertaining to the Image. If the Meafures be taken right, the whole Length will exceed the Length of the ftreight Sides by about the Breadth of the Image.

By thefe Things fet down thus circumfantially, I prefume Mr. Lucas will be enabled to accord his Trials of the Experiment with mine; fo nearly at leaft, that there, fhall not remain any very confiderable Difference between us. For if fome little Difference fhould ftill remain, that need not trouble us any further, feeing there may be many various Circumftances which may conduce to it; fuch as are not only the different Figures of Prifms, but alfo the different refractive Power of Glaffes, the different Diameters of the Sun at divers Times of the Year, and the little Errors that may happen in meafuring Lines and Angles, or in placing the Prifm at the Window; though, for my part, I took Care to do thefe Things as exactly as I could. However, Mr. Lucas may make fure to find the Image as long or longer than I have fet down, if he take a Prifm whofe Sides are not hollow ground, but plain, or (which is better) a very little convex, and whofe refracting Angle is as much greater than that I ufed, as that he hath hitherto tried it with, is lefs; that is, whofe Angle is about 66 or 67 Degrees, or (if he will) a little greater.

Concerning Mr. Lucas's other Experiments, I am much obliged to him that he would take thefe Things fo far into Confideration, and be at fo much Pains for examining them; and I thank him fo much the more, becaufe he is the firft that hath fent me an experimental Examination of them. But yet it will conduce to his more fpeedy and full Satisfaction, if he a little change the Method which he has propounded, and, inftead of a Multitude of Things, try only the Experimentum Crucis: For it is not Number of Experiments, but Weight to be regarded; and where one will do, what need many?

The main Thing he goes about to examine is, the Different Refrangibility of Ligbt; and this I demonftrated by the Experimentum Crucis. Now if this Demonftration be good, there needs no further Examination of the Thing; if not good, the Fault of it is to be fhewn: For the only way to examine a demonftrated Propofition is to examine the Demonftration. Let that Experiment therefore be examined in the firft Place, and that which it proves be acknowledged; and then, if Mr. Lucas wants my Affirtance to unfold the Difficulties which he fancies to be in the Experiments he has propounded, he fhall freely have it. At prefent I fhall fay nothing in Anfwer to his Experimental Difcourfe, but this in general, That it has proceeded partly from fome Mifunderttanding of what he writes againft, and partly for want of due Caution in trying Experiments; and that amongt his Experiments, there is one, which, when duly tried, is, next to the Experimentum Crucis, the moft con-

(179)

fpicuous Experiment, I know, for proving the different Refrangibility of Light, which he brings it to prove againft.
By the Pofffcript of Mr. Lucas's Letter, one not acquainted with what has paffed, might think that he quotes the Obfervation of the Royal Society againtt me; whereas the Relation of their Obfervation, which you fent to Liege, contained nothing at all about the juft Proportion of the Length of the Image to its Breadth according to the Angle of the Prifm, nor any Thing more (fo far as I can perceive by your laft) than what was pertinent to the Things then in Difpute, viz. that they found them fucceed as I had affirmed. And therefore, fince Mr. Lucas has found the fame Succels, I fuppofe, that when he expreffed, That be much rejoiced to fee the Trials of the R. Society agree fo exaictly with bis, he meant only fo far as his agreed with mine.
P. S. I had like to bave forgotten to advife, that the Experimentum Crucis, and fuch others as 乃hall be made for knowing the Nature of Colours, be made with Prifins that refract fo much, as to make the Length of the Images five Times its Breadth, and rather more than lefs; for otberwife, Experiments will not fucceed So plainly with others, as they bave done with me.
VIII. I took a ftiff Piece of brown Paper, and pricking a fmall Hole there- A_{n} optical E_{x}. in, I held it at a little Diftance from mee; then applying a Needle to my Eye, primentr; by Mr I was furprized to fee the Point of it inverted. The nearer the Needle was $\mathrm{N} .22 \mathrm{ze} . \mathrm{p} .286$. to the Hole, it was fo much the more magnified, but lefs diftinct; and if it June, An. 1596. were fo held, as that its Image was near to the Edge of the Hole, its Point feemed crooked. So that, it feems, thefe fmall Holes, or fomewhat in them, perform the Effects of a Concave Speculum; and fo I take leave to call them Aerial Speculums.
IX. I. Having this Opportunity I fend you a Conftruction of the Pro- A Problem of blem of Alhazen, which my Colleges here approve of very much. The Alhazen, Gilved Problem is this: A Concave or Convex Speculum being given, alfo the Eye and Hy Mysens. a Point of the Object, to find the Point of Reflexion.

Let the Speculum be a Part of a Sphere whofe Center is the Point A, let the Eye be at B, and the vifible Point at C, and let the Plain drawn through A, B, C, make a Circle D d in the Sphere, in which the Points of Reflexion are to be found. Through the three Points A, B, C, let the Circumference of a Circle be defcribed, whofe Center is Z: Let AE produced meet it in R, being perpendicular to $B C$, and to the two Lines $R A, O A$, let NA be a third Proportional, and N M parallel to B C will be one of the Aiymptores. Again, let thefe be Proportionals E A, $\frac{2}{2}$ A O, A I, and the Sum I Y' being equal to $I N$, let $Y M$ be drawn parallel to $A Z$; which will be the other Afymptote. Laftly taking IX, IS, each of which is cqual in Power to half the Square A O, together with the Square A I; the Points x and s will be in the Hyperbola, or the oppolite Sections $D d$ to be defcribed to the Afymptotes now found, whofe Interfections with the Circumference DO will heir the Points of Refexion required. This Conftruction takes Place in every

(180)

Cafe in which the Problem is folid, except in one, wherein a Parabola and not an Hyperbola is to be defcribed. That is, when the Circumference through the Points A, B, C, touches the Right Line A E.
By Mr. Slufus, 2. When I reduced the Conftruction of the ingenious Mr. Huygens to Calibid. culation, I found he had follow'd the fame Analyfis as myfelf. But fince two Effections may be derived from it, each of them by the Hyperbola about its Afymptotes, he made Choice of one, and I of the other as being the eafier. Now it is plain, that nothing elfe is required in this Problem, if we reduce it to mere Geometrical Terms, unlefs that in a given Circle, whofe Center is A and Radius A P, fome Point as P fhould be found, from whence drawing Right Lines P E, P B, to the given Points E, B, at an unequal Diftance from the Center A, the Right Line AP being produced may bifect the Angle EP B. Now this admits of a Variety of Cafes. Either the Perpendicular from A upon the Right Line E B, that is A O, falls between E and B , or beyond B , If beyond, the Rectangle EOB is either equal to the Square of AO, or is greater or lefs. Concerning the Cafe of Equality we fhall fee afterwards; now we fhall comprehend the other three Cafes nearly
Fig. 79, 80,81 . in the fame Conftruction. Let a Circle pafs through the three Points A, E, B, to the Circumference of which let A O be produced to D. And if the Point O falls between E and B , the Right Line A O is to be produced towards O ; but if it falls beyond B, and the Rectangle EO B be greater than the Square of AO, it muft be produced towards A; but if that Rectangle be lefs than the Square, the Circle will cut the Right Line AO in the Point D. Then drawing $A X$ parallel to $E B$, cutting the given Circle in N, let it be made, as the Rectangle DAO is to the Square of AN, fo $\frac{1}{2}$ AX to AH, which muft be taken towards X if O falls between E.and B, or the Rectangle EOB be lefs than the Square of OA, or on the contrary Side if it be greater. Now let us fuppofe OQ to be equal to AH , (directly to EB in the firlt and fecond Cafe, but towards E in the third) then let thefe be made Proportionals $\mathrm{XA}, \mathrm{NA}, \mathrm{HK}$, to be taken in all Cafes towards X ; and $\mathrm{A} O$ being divided in V, that K A to $\mathrm{A} V$ may have the fame Ratio as A D to A X; let K V be joined, and produced till it meet the Right Line QM, parallel to O A, indefinitely produced in the Point L. Then in every Cafe K L and QL will be the Afymptotes of the Hyperbola, which being defcribed through the Point O will anfwer the Purpofe : Yet with this Difference, that in the firit and fecond Cafe an Hyperbola through O will folve the Problem in the Convex Speculum, but the Section oppofite to it in the Concave. But in the third Cale on the contrary, the Hyperbola through O will ferve for the Concave, and the oppofite Hyperbola for the Convex. And thus it will be when the Point V falls between A and O ; for if it fhould fall beyond O , one Hyperbola alone defcribed between the fame Q L, K L, would fuffice both for the Concave and Convex. Put if V fhould fall upon the Point O, then the Problem would become plane, and the Right Lines L Q, LK, would perform it. Whence it appears, that there are infinite Cafes of this Problem, which may be folved by what is called Locus planus: So that they feem to deferve to be forgiven, who have thought it may be folved univerfally by

181)

the fame Locus; becaufe thus fometimes the Calculation has been fuccefsful. For no Pofition can be given of the three Points $\mathrm{A}, \mathrm{E}, \mathrm{B}$, (as to the Cafe of Equality between the Rectangle EOB and the Square OA, we fhall fee prefently) which does not admit that fome Circle may be defcribed from the Center O, at whofe Circumference the Problem may be folved by a plane Place. Now the Radius of this Circle, if it be worth while, may thus be found. In the firft and fecond Cafe of the Conftruction above, let it be made, as the Square of A X together with the double of the Rectangle O A D, to the double Square of AD, fo the Square of AO to the Square of A N; A \mathbf{N} will be the Radius required. But in the third Cafe it mult be made, as the Square of A X fubtracting the double Rectangle O A D, to the double Square of AD, fo is the Square of AO to the Square of A N.

Now there remains another Cale to be conftructed, that is, when the Rectangle EOB is equal to the Square of AO, or in which the Circle defrribed through the Points A, E, B, touches the Right Line A O. For Mr. Huygens has rightly admonifhed, that in this Cafe a Parabola muft be defrribed. Which yet is not fo to be underfood, as though it could not be folved by an Hyperbola, fince it admits of either an Hyperbola, or an E1lipfis, nay an infinite Number of them, if any one fhall proceed by our Method. However it admits of a Solution by a Parabola, which the other Cafes refufe. For the fame Reafon that muft be limited when he fays, that his Conftruction takes Place in every Cafe where the Problem is folid; for he means, that by a fmall Alteration an Hyperbola may always be found, which will ferve the Purpofe; which will appear to any one that fhall compare the Cafes above conftructed with his Conftruction. Now that I may return to the Cafe of Equality, and that I may not feem to have made a rafh Affertion, here you have not one but two Parabola's, and oppofite Hyperbola's befides, that will anfwer the Purpofe. Let the given Points be E, B, as before; let a Circle be defcribed with Center A, and another through the three Points A, E, B, whofe Tangent is A O, and Center D. Drawing the Diameter N A D X, let there be three Proportionals X A, N A, Z A, the half of which is A L. Again let there be three Proportionals 2 O A, N A, IA, whofe half is K A, and let the Rectangle LAOV be compleated; and L V being produced to S , till VS be a third Proportional to A I, OV; with Axis SL and latus recium AI, and Vertex S, let a Parabola be defcribed; for this will cut the Circle in the Points required, P, P. Another will do the fame Thing; thus the Rectangle D A K C being compleated, and K C being produced to T , fo that C.T may be a third Proportional to A Z, D C, it may be defcribed about the Axis TK, with the Vertex T, and the latus reetum Z A; for it will meet the Circle in the fame Points P, P. The Conftruction is fill eafier by the oppofite Sections; for making as before the three Proportionals X A , N A, Z A, let fall the Perpendicular Z I, being a third Proportional to the double of A O, and AN. Therefore will Z I be greater than ZA , fince the double of AO is lefs than XA . Then in the Point I let the Right Lines I Q, IM, be inclined to the Right Line IZ on both Sides to half a Right Angle, and be produced indefinitely both

(182)

Ways. Then about them as Afymptotes let an Hyperbola be defribed through A, and another oppofite to it; for this will fatisfy the Problem in the Convex Speculum, and the other in the Concave. But fince ZI is always greater than Z A, as we have fhewn, the Right Line I M will never pafs through A. Therefore there will be no Cafe in which by this Conftruction (as in the former) the Problem can be folved by the Afymptotes themfelves. And yet this fometimes may admit a Locus Planus, when it happens, that the Right Line X O, drawn to the Center D, may touch the Circle N P P; for then the Point of Contadt itfelf will fatisfy the Queftion. And fo much concerning a Problem, which has exercifed the Wits of many, and whofe Solution I compleated fome Years ago.
neterwife by Mr. Slufus. ibid. p. 6123. F:\%.84.

I fend you here my fecond Thoughts about the Problem of Albazen.
Let a Circle be given whofe Center is A ; and D and d are Points given. Let that which is inquired be fuppofed to be done, and let the incident Ray be DE; the reflected Ray $\mathrm{E} d$, and from the Point of Reflexion E let the Perpendicular EI fall upon the joined Line D A; and upon the fame the Perpendicular $d \mathrm{~N}$ from d, and let the Tangent EC and the Ray $d \mathrm{E}$ meet the fame produced in B . Now make $\mathrm{D} \mathrm{A}=z, \mathrm{~A} \mathrm{I}=a, \mathrm{~N} \mathrm{~A}=n$, $\mathrm{E} \mathrm{I}=e, d \mathrm{~N}=b, \mathrm{~B} \mathrm{~A}=y, \mathrm{~A} \mathrm{E}=q$, and $\mathrm{C} \mathrm{A}=x$. Therefore, fince the Angles DEC and CEB are equal, and CEA is a Right Angle, by the Hypothefis the three Lines D A, C A, B A, will be Harmonically Proportionals, which is eaflly fhewn. Therefore it will be as D A to B A fo is DC to C B ; or in Analytical Terms; z.y::z-x.x-y, and $2 z y-x y$ $=z x$, or $\frac{2 z y}{z+y}=x$. Now fince the Rectangle C A I, or $x a$, is equal to the Square of A E , or $q q$, it will be $x=\frac{q q}{a}$, and confequently $\frac{2 z y}{z+y}=$ $\frac{q q}{a}$, or $\frac{z q q}{2 z a-q q}=y$. Again, it is as $d \mathrm{~N}$ to E I, fo is NB to IB; or $b . e:: y-n . y-a$. Therefore $y e-n e=b y-b a$, and $y=\frac{b a-n e}{b-e}$. Therefore $\frac{z q q}{2 z a-q 1}=\frac{b a-n e}{b-e}$ or $2 z b a a-2 z n a e-q q b a+q q n e$ $=b z q q-z q q e$. Which is an Equation to the Hyperbola about its Afymprotes, the Conitruction of which with a given Circle fatisfies the Problem. But becaule of the Circle, fince it is $q q=a a+c e$, if inftead of $2 b z a a$ its Value $2 b z q q-2 b z e e$ is fubftituted, we fhall have $b z q q$ $2 b z e c-2 z n a e-q q b a+q q n e=-z q q e$, which is another Equation to the Hyperbola about the Afymptotes. And by this Method, or by that which we have explained in our Treatife of Analyfis, infinite Equations will come out to Hyperbolas and Ellipfes, which with a given Circle will perform the Problem; excep: that the Effections will generally become fo intricate, as it may not be worth while to attempt them. Yet they may be conftructed after that Manner which we have made ufe of in the Ellipfis.

(183)

We have reduced, as you will perceive, the Sum of our Calculation to the Line D A ; but you may obferve, that with the fame eafe it might have been referred to $d \mathrm{~A}$, which is alfo given, by drawing thofe Lines which in the Scheme are fhadowed out by Points. But there is no need of the Labour of a new Calculation. For if you apply to the Right Line $d \mathrm{~A}$ and to its Parts the fame Analytical Terms as before, that is, if you make $d \mathrm{~A}=z$, $\mathrm{D} n=b, n \mathrm{~A}=n, \mathrm{AI}=a, i \mathrm{E}=c$, $\& c$. the fame Equation will come our as before, and you will obtain infinite other Hyperbola's and Ellipfes, which with the given Circle will fatisfy the Porblem. I fhould be tirefome if I was to purfue all the Cafes, fince their Equations differ only by the Signs + and -. I except only one, which is when d A D is a right Angle; for its Equation will be had only by expunging out of the former thofe Terms which are effected by n, which then vanifhes into nothing. Which Equation will be this, $2 z b a a-q q b a=b z q q-z q q e$; or this, $z b q q-q q b a=2 z$ $b e e-z q q e$, inftead of $2 z b a a$ writing its Value.

Yet it is to be obferved, that although by referring the Analyfis to the right Line D A, two Hyperbola's in the Equation prefently offer themfelves; and others as many different from the former, when the Calculation is referred to the Right Line d A; yet the very fame Parabola's come forth, when the Analyfis is referred to either of the Right Lines $d \mathrm{~A}$ or D A. The Reafon of which you will perceive by a little Confideration.
Now give me Leave, learned Sir, to apply the foregoing Analyfis to all the Problems which are ufed to be propofed about the Reflection of Spherical Specula, and that by a new Scheme. Therefore let there be a Circle as before, whofe Center is A, D a point given, and from that an incident Ray $D E$, whofe reflected Ray is EQ. Let DA be joined, and to it be drawn the Tangent E C, and perpendicular EI. Let the Right Line QE B be produced to the fame, and the Parts be denominated as before; that is, $\mathrm{DA}=z$, $\mathrm{CA}=x, \mathrm{AE}=q, \mathrm{BA}=y, \mathrm{AI}=a, \mathrm{IE}=e$. Now becaufe of the three Lines harmonically Proportionals DA, CA, B A , and the three Geometrically Proportionals CA, A E, AI, we fhall always have the Equation $y=\frac{z q q}{2 z a-q q}$, upon whatever point of the Circle the Ray DE may fall. Therefore if the Point E be required, in which if the Ray DE falls, it may be reffected parallel to the Diameter LAV perpendicular to D A, the reflected Ray QE produced will pafs through I, as is plain; and I and B will coincide. Therefore $a=y=\frac{z q q}{2 z a-q q}$, or $a a-\frac{1}{2} \times \frac{q q a}{z}=\frac{1}{2} q q$, and the Problem will be folved by Pains.
If the Point be required, from whence a Ray may be reflefted parallel to any other Line, as $A K$ drawn from the Center A; from the point L draw a Tangent to it $K L=d$; it is plain the Triangles AKL, EIB, will be fimilar, fince all the Sides of one are parallel to the Sides of the other.
Therefore AL to LK , as EI to $I \mathrm{~B}$, or $q \cdot d:: c \cdot a-y$; and $\frac{q a-d e}{q}=$

(184)

$y=\frac{z q q}{2 z a-q q} ;$ and $z q^{*}=2 q z a a-2 z d a c-q^{3} a+q q d e$, or for ac puting $q q-c e, z q^{3}=2 z q-2 z q e c-2 z d a c-q^{3} a+q^{2} d c$. But either of the Equations is to an Hyperbola about the Afymptores, which with a given Circle folves the Problem.
Let it now be propored to caufe, that the reflected Ray fhall pafs through a given Point N, as in the Problem of Albazen, or that being produced towards the Point of Reflection E, it may meet the given Point N. From N let $\mathrm{NO}=n$ fall perpendicularly upon A L , and make $\mathrm{A} \mathrm{O}=b$. It is plain it will be, as $A O$ to the difference of $O N$ and $A B$, fo is EI to IB; that is, $b: n-y:: e, a-y: \operatorname{Or} b, y-n:: e . y-a$. Therefore $\frac{b a-n e}{b-e}=y=\frac{z q q}{2 z a-q q^{\circ}}$ Whence $2 z b a a-2 z n a e-q q b a+q q n e$ $=b z q q-z q q e$; which is the very Equation of Albazen's Problem, which we deduced above. Or in the fecond care $\frac{b a+n e}{b+e}=y=\frac{z q q}{2 z a-q q}$, or $2 z b a a+z z n a e-q q b a-q q n e=z b q q+z q q e$.

And thefe are the Problems commonly propored about the Point of Reflection, in which hitherto we have fuppofed the Diftance of the point D to be finite. But the Analyfis will be eafier if we fuppofe it infinite. For CA being divided equally in G , it is plain from the Property of the three harmonical Proportionals D A, CA, B A, that the three Lines D G, CG, B G, will be Geometrical Proportionals, whatever the Diftance of the point D is fuppofed to be. Therefore if it is fuppofed infinite, $B G$ will become nothing, and the Points B, G, will coincide. Therefore A B will always be equal to $B C$, and $C A=2 y_{2}$, and the Rectangle C A I being equal to the Square of A E , will give in Analytical Terms $2 a y=q q$, or $y=\frac{q q}{2 q}$. And fince the Diftance of the Point D is fuppofed infinite, ED will be parallel to AC. Therefore if the refleeted Ray parallel to A L is required, becaure in this Cafe a and y coincide, it will be $a=y=\frac{q q}{2 a}$, or $a a=\frac{1}{2} q q$; if it is defired to be parallel to AK , it will be again $q \cdot d:: e \cdot a-y$, and $\frac{q a-d e}{q}=y=$ $\frac{q q}{2 a}$, or $2 q a a-d a e=q^{3}$. If it is required to pafs through N , it will be as above $\frac{b a \pm n e}{b \pm e}=y=\frac{q q}{2 a}$, and therefore $2 b a a \pm 2 b a e=b q q \pm q q e$. Which Equations are alfo to Hyperbola's about their Afymptotes, unlers when the Point N is fuppofed to be in AL ; for whereas then n becomes nothing, taking away thore Terms from the Equation in which n is found, the remaining Terms will give an Equation to a Parabola, as we have taken Notice before.

(185)

You cannot expect, learned Sir, that as hitherto I have given Examples only in concave Speculum's, fo now I fhould proceed to convex. For you know the Analyfis is the fame in both, and their Equations differ only in varying the Signs + and - You know the Parabola or Ellipfis that fatiffies one, will fatisfy the other alfo; and if the Hyperbola folves the Problem in the Convex, the oppofite Hyperbola will do the fame in the Concave. Therefore omitting thefe I fhall only add, that by the fame Analyfis in concave Speculum's we may find their Focus's, and the Spaces taken up by the Rays in the Axis, at any diftance of the lucid Point: But with great Facility when the Rays come paraliel, which yet I have feen demonitrated by fome in a round-about way. For in the Concave Speculum E E, whofe Center is A, if the extreme Ray is fuppofed to be reflected to the Axis A R in B, Fig. 86, drawing the Tangent $E C$ it will be $C B=B A$. Let the Semiaxis $A R$ be bifected in Q; therefore Q will be the Focus; and QB will be the Space required. But $Q B$ is half $C R$, becaule of the Equals $A Q, Q R, A B, B C$, that is, half of the Excefs of the Arch E R above the whole Sine. Therefore if the Arch E R, for Example, be Nine Degrees, AC will be 101246, and $\mathrm{BQ}=\frac{623}{100000}$ of AR .
4. This is the Compendium that I found at the fame time, about the firft orbernitie ths mor. Conftruction communicated to you at firlt. Drawing the Line A T, parallel fuygans, N. gs. to CB , and that being bifected in V , this is that point through which one of the ${ }_{1673^{\circ}}^{p .640}$. D. An. oppofite Hyperbola's ought to pafs, whofe Afymptotes are found to be Y M, Fis. 87, ss. $\mathrm{M} N$.

But here is that genuine Conftruction which is fufficient in all cafes. Let the given Circle be ED whofe Center is A , and the points given B and C . Drawing the Lines A B, A C; let thefe be Proportionals, B A, the Radius of the Circle, and FA ; and likewife CA , the Radius of the Circle, and G A. Then let F G be joined, and let it be bifected in H. Through this Point let the Lines LHK, MHN, be drawn, interfecting one another at Right Angles, of which let LHK be parallel to the Line which bifects the Angle B A C. Thefe are the two Afymptotes of the Hyperbola's to be defcribed through the Points F and G, one of which will pafs alio through the Center A; whofe Interfections with the Periphery of the Circle will mark out the Points of Reflection required.
5. Here the great Huygens has well obferved, how the Equilateral Hyperbola may be accommodated to all the cafes, which, as I infinuated in my for- Far Mrercrenfidered mer, immediately offered itfelf in the cate of a Right Angle. Alfo of thofe ${ }^{i b . p .6 \mathrm{raq} .}$ infinite Ellipfes which might be ufed, one may be chofen of no difficulc Conftruction. But it is tedious to dwell fo long upon one Problem. But one thing ftill remains of no difagreeable Speculation: That is, fince the Sesticns which with the given Circle are made uife of for the Solution of the Problem, cut it in four Points, of which only two can ferve for the Reflexion; it may be inquired, what Problem is folved by the other two, and how is the Propofition to be expreffed fo as to include all thofe four Cafes? And again, do

> YOL. I.

B b
1205
not thofe four Cafes occur, when thofe Points are equally diftant from the Center?

The learned Huygens makes ufe of no other than my Analyfis, which admits of a Parabola only in one Cafe. That this may appear more evidendy to you, I will here produce the Equation which he has contrueted. Recollect (if you pleafe) what I wrote to you, when I fent you my fecond Thoughts, and you will find, that I affign'd two Equations proper for folving the Prob.em by an Hyperbola about its Afymptotes. They were thefe following.

$$
\begin{aligned}
& 2 z b a a-2 z n a e-q q b+q q n e=b z q q-z q q e, \\
& \text { And } \quad q z q q-2 z n a e-q b a-q q n e=2 z b e e-z q q e ;
\end{aligned}
$$

Then I added, that by a finall Atteration (for inflance, by fubtitituting for $q q$ its Value $a e$ - ee, infinite Hyperbola's and Ellipfes might be found, which with the given Circle would folve the Problem. Now in the former of there Equations for $b z q q$ let its Value be fubftituted; then

$$
\begin{aligned}
& z b a a-2 z n a e-q q b a+q q n e=b z e e-z q q e ; \\
& \text { Or, } a a-\frac{q q a}{z}=e e-\frac{q q e}{b}+\frac{2 n a e}{b}-\frac{q q n e}{z b}
\end{aligned}
$$

And this is the Equation which that very learned Gencleman has conftruted, with great Ingenuity and equal Facility.
I happened lately upon the following Conftruction, which I could not forbear fubmitting to your Judgment and Cenfure, believing that a Thorter can hardly be given. Let the given Points be E, B, the Circle with Center A. Joining EA, B A, cutting the Circle in F and C; let EA, FA, VA, be three Proportionals, and three others B A, C A, X A. Then V X being joined and prociuced at Pleafire, with Vertex X, latus tranfoerfuni X X, and latus rectum equal to it, let the Hyperbola XP be deferibed, whofe Ordinates to the Diameter VX G are parallel to the Right Linc A B. For this fatisfies the Propofition in the Cafe of a Convex Speculum, and its oppofite in the Cafe of a Concave. If you defire to have the Alymptotes they will eafily be found, by producing V X till it meets E B produced in L. Then bifecting V X in I , and taking L D equal to LI ; for DI being joined will be one of the Arymptotes, upon which the other falls perpendicularly at I.
But perlaps it will not be unacceptable to you to know how I arrived at this Confruction. Know then that I deduced it thus from my former Analyfis. The fame things being given as before, let fall the Perpendicular AO upon EB , and let the Point delired be P , from which let PR fall perpendicularly upon AO . Make $\mathrm{AO}=b, \mathrm{E} O=z, \mathrm{OB}=d, \mathrm{AP}=q, \mathrm{PR}=e, \mathrm{AR}=c$. Then this Equation is eafily derived. $\frac{2 z d a e+-2 b b a c-2 b q q e}{z b-b d}+e c=a a-\frac{q q a}{b}$, which may be changed into thefe,

$$
\begin{aligned}
& \frac{z d a c+b b a e-b q q e}{z b-b d}=a a-\frac{1}{\bar{z}} q q-\frac{\frac{1}{2} q q a}{b}, \\
& \text { And } \frac{z d a e+b b a e-b q q e}{z b-b d}+e e=\frac{1}{2} q q-\frac{\frac{1}{2} q a}{b} .
\end{aligned}
$$

(187)

The Confruction of this laft I have fent to you already, and Mr. Huygens has fent you the Conftruction of the other. But as to the firft, tho' it prefently came into my View, yet I almoft neglected it, becaufe its Conftruction feenied to be difficult. But I find myfelf to have been deceived by a needlefs Fear, fince I have lately found it to bring me to this Confiruetion which I now fend you. For the false of abbreviating the Calculation, nake $z-d=k$, $z d+b b=b m$; it will be $e e+\frac{2 m a c-2 q q e}{k}=a a-\frac{q q a}{b}$. Andadding $\frac{q^{+}+m^{2}}{a^{2}-2 q^{2} m a} \frac{k k}{l}$ on both Sides, it will be ee $+\frac{m a e-2 q q e}{k}+$ $\frac{q^{+}+m m a a-2 q q m a}{k k}$ (that is, the Square of $e-\frac{q q+m a}{k}$) $=a a$ $\frac{q q a}{b}+\frac{q^{4}+1-m^{2} a^{2}-2 q^{2} m a}{k k}$. Therefore there will be this Analogy, $k k \cdot k k$ +mm::aa- $\frac{k k q q a}{b k k+b m m}-\frac{2 q q m a+q^{2}}{k k+m m}$. And the Square of c $\frac{q q+n z a}{k}$. Which may be reduced to an eafier Equation, if making $k k$ + $m m=p p$, it fhall be $\frac{k y}{p}=a$. At length it is, the Square of $e-\frac{q q}{k}$ $+\frac{m y}{p}=y y-\frac{q q k y}{b p}-\frac{2 q q m y}{k}+\frac{q^{4}}{k k}$, which Equation you will find to anfwer the former Conitruction, if you undertake the Calculation. And at the fame time you will obferve, to which ever of the Lines E A, A B, BE, the Analyfis is refer'd, the fame Sections will always arife, though by a longer Procefs and very different Equations.

From this Equation by Analogy we may deduce an Effection of the other Problem, that is, when a Point is fought from whence the Reflected Ray fhall be parallel to any given Line. Thus it the luminous Point B being given, and the Circle with Center A, the reflected Ray parallel to the Right Line A E were fought. For it is the fame thing as if in the other Problem the Diftance of the Points A and E were fuppofed infinite. In which Cafe the third Proportional to EA and F A would vanilh into nothing, and the Points A and V would coincide. Therefore V X would be equal to AX, and AE parallel to PE. Therefore apply the foregoing Conftruttion and you will folve the Problem. That is, with Vertex X , and latus tranfuerf fumb VX or AX , and latus rectum equal to it, defcribe the Hyperbola XE, whofe Ordinates to the Diameter AX are parallel to the Right Line AE.
6. It is true, and likewife wonderful, that the Conftruction Ifent you for-By Mr. Huygenso merly, may aifo be found by Mr. Slufius's Calculation, after the Change of ibid. $p .61+6.3^{\circ}$. $q q$ into $a a+e e$. But this leems to be done by chance, nor does the Simplicity of the Conftruction appear there, till after we have apply'd ourfelves to it.

The Problem of Alhazen] A Circle being given wobofe Center is A, Radizs AD, and two Points B, C; to find a Point Hin the Circumference of the given B b 2 Circle

Fig.gro

Circle, whence drawing the Lines HB, HI C, they Soall make equal Angles at the Circumference.

Suppofe it found, and drawing the Right Line A M which fhall bifect the Angle $\mathrm{B} \perp \mathrm{C}$, draw $\mathrm{H} F$ perpendicular to it, as alfo $\mathrm{B} M, \mathrm{C}$. Then join AH , to which let HE be perpendicular, and let H M meet the Lines BH , HC, in the Points K, G.

Now let it be $\mathrm{A} M=a, \mathrm{M} B=b, \mathrm{AL}=c, \mathrm{~L}=n$, Radius $\mathrm{AD}=d$, $\mathrm{AF}=\dot{x}$, and $\mathrm{FH}=y$. Now becaufe the Angles K HE and CHZ are equal, as alfo EHG; and EHA is a Right Angle; it will be as K E to EG, fo KA to AG. And becaufe BM to MD, fo HF to FK, it will be as $\mathrm{BM}+\mathrm{HF}$ to HE, fo is MF to FK. That is, $b+y . y:: a-x$. $\frac{a y-x y}{b+y}$. Add F A $=x$, then $\mathrm{K} \mathrm{A}=\frac{a y+b x}{b+y}$.

Again, becaufe CL to L G, as HF to FG , it will be permutando $\mathfrak{\text { E di- }}$ videndo, $\mathrm{CL}-\mathrm{HF}$ to HF , fo is LF to FG . That is, $n-y . y:: c-x$. $\frac{c y-x y}{n-y}$. Which being taken away from $\mathrm{AF}=x$, tis $G \mathrm{~A}=\frac{n x-c y}{n-y}$. But it is $\mathrm{E} \mathrm{A}=\frac{d d}{x}$, becaufe F A, A H, A E, are Proportionals. Therefore $\mathrm{EA}-\mathrm{GA}=\mathrm{EG}=\frac{d d}{x}-\frac{n x+c y}{n-y}$. And $\mathrm{KA}-\mathrm{EA}=\mathrm{KE}=\frac{a y+b x}{b+y}$ $-\frac{d d}{x}$.

But we have faid it is KE to EG, fo is KA to AG. That is, $\frac{a y+b x}{b+y}$ $-\frac{d d}{x} \cdot \frac{d d}{x}-\frac{n x+c y}{n-y}:: \frac{a y+b x}{b+y} \cdot \frac{n x-c y}{n-y}$. Whence is found
$2 a n x x y+2 b n x^{3}-d d b n x-d d n x y=n a d d y-n b d d x-2 a c x y y$ $-2 b c x x y+d d b c y+d d c y y-a d d y y-b d d x y$.

And becaufe $n=\frac{b c}{a}$, it becomes $\frac{2 b b c}{a} x^{3}-\frac{b b d d c x}{a}-\frac{2 b b c y y x}{a}$, becaufe $x x=d d-y y$. But it is $\frac{2 b b c}{a} x^{3}=\frac{2 b b c d d x}{a}-\frac{2 b b c y y x}{a}$, be. caufe $x x=d d-y y$. Therefore - $\frac{2 b b c x y y}{a}-\frac{d d b c x y}{a}-2 a c x y y+$ $d d c y y=-a d d y y-b d d x y$. And dividing all by y, and multiplying by a,
$-2 b b c x y-d d b c x-2 a a c x y+d d c a y=-a a d d y-b d d a x$ $a b d d x-c b d d x+a c d d y+a a d d y=2 a a c x y+2 b b c x y$ $\operatorname{abd} d x-\operatorname{cod} d x+\operatorname{acd} d y+\operatorname{ard} d y$

(189)

Or becaufe $b c=n a, \frac{a b d d x-a n d d x+a c d d y+a a d d y}{2 a a c+2 b b c}=x y$.
Let $\frac{a d d}{a a+b b}=p$; therefore $\frac{p b x-p n x+p c y+p a y}{2 c}=x y$.
Now from hence the following Conftruction was not difficult to find. Let Fis. 95° B A, A C, be joined, and the Square of the Radius A D being feparately applied to each, let A P and A Q be produced by that Application. Then joining P Q let it be bifected in R, and through the Point R let R D, R N, be drawn cutting each other at Right Angles, of which let R D be paralle! to A D, which bifects the Angle B A C. Now R D, R N, will be the Aiymptotes of the oppofite Hyperbolas, one of which muft pafs through the Center A, and which will cut the Circumference in H the Points required. Alfo the Hyperbolas will pafs through the Points P, Q.

The Reafon of the Conftruction appears, when $\left.\mathrm{P}_{\gamma}, \mathrm{Q}\right\}$, are drawn, perpendicular to AM. For it is $A_{\gamma}=\frac{a d d}{a a-b b}=p$, and $\left.A\right\}=\frac{a p}{c}$. Alfo $\mathrm{P}_{\gamma}=\frac{p n}{c}$ and Q$\}=\frac{p b}{c} . \quad$ Therefore $\mathrm{AO}=\frac{p c+p a}{2 c} \rightarrow$ and $\mathrm{OR}=$ $\frac{p b-p n}{2 c}$. Whence the reft wlll be eafy.
7. You will ceafe to wonder, learned Sir, that in the Problem of Albazen By Mr. Slufuso the fame Conftruction hould be derived from different Equations, when you ${ }^{\text {ib }}$ confider that all we have hitherto made ufe of, are contained in one and the fame general Analyfis. Now to fhew this, let a Circle be given whofe Center is A , the Points H and I ; and let the Point required be K , to which from the Points I and H let be drawn the Right Lines HK, IK, and the Tangent K D. Then from A let any Line A G be drawn, meeting $H K$ in E, IK in B , the Tangent KD in D ; the Lines if needful being produced. Thefe Things fuppofed it is plain, becaufe of equal Angles E K D and DK B , and the Right Angle AK D, that the three Lines A E, B E, DE, will be Harmonically Proportional. Therefore drawing K C, IF, H G, perpendicular to A E , and calling $\mathrm{AK}=q, \mathrm{~A} \mathrm{C}=a, \mathrm{C} \mathrm{K}=e, \mathrm{HG}=b, \mathrm{~A} \mathrm{G}=d$, $\mathrm{FA}=z, \mathrm{FI}=n$, by the Method I formerly ufed in my fecond Analy fis of this Problem, we fhall have this general Equation, $n d a a-b z a a-n q q a+$ $b q q a=n d e e-z b e c+2 b n a c+2 z d a e-d q q e-z q q e$.

Now fuppofe A G to be perpendicular to HI ; there will be no Variety in the Equation, except that AF and AG (that is d and z) will be equal. Writing therefore d for z, the Equation will become ndaa-bdaa$n q q a+b q q a=i d e e-a^{2} b e e+2 b n a e+2 d d a e-2 d q q e$. Or applying all to $n d-d b$, the Equation is $a a-\frac{q q a}{d}=e e+\frac{2 b n a e-\mid-2 d d a e-2 d q q e}{n d-d b}$.

(190)

Which is the fame that I deduced from my firt Analy fis, though another Way, and which I lately fent you conltructed after an eafy Manner.

Then fuppofe A G to coincide with AH; therefore H G or b vanifhes into nothing. Therefore the Terms being expunged in which b is found, there will remain $n d a a-n q q a=n d e c+2 z d a e-d q q e-q q z e$. This as you may remember I gave you as my fecond Thoughts, and another like to it, in the Cafe wherein the Right Line A G puffes through I.

Then let us fuppofe the Right Line A G to bifect the Angle H A I ; then becaufe of the Similitude of the Triangles HAG, IAF, it will be as HG to GA , fo is IF to FA ; or $b . d:: n, z$, or $n d=b z$. Therefore taking away Equals, 'is $b q q n-n q q a=2 b n a e+2 z d a e-d q q e-q q z e$. The fame which, as I undertand by your Letters, Mr. Huyyens has conftructed.

Laftly, let it be fuppofed that the Right Line II G bifects the Right Line H1; therefore $\mathrm{HG}=\mathrm{IG}$, or $b=n$. Then it will be by taking away Lquals, $b d a a-b z a a=b d e c-b z c c+2 b b a c+2 z d a e-d q q e-$ $q q z e$. This though no difficult one, none of us have yet conftructed. But thefe, and the general Equation itfelf, may be divided into two others, by fubnituting (as you know) for a a or $e e$ their Values $q q$ - $e e$ or $q q-a a$.

You fee therefore that whatever has been done yet may be refolved into the fame Analyfis, which comprehends alfo infinite other Conftructions by the given Circle and an Hyperbola. But to inveftigate them is of no great Confequence, fince in this Problem, though formerly Solutions were wanting, yet now we have Plenty enough. I will only add a Conftruction by the Parabola, and that two Ways; which though it may feem more operofe than thole by the Hyperbola, yer it makes amends by the Simplicity of the Curve, in which the Parabola has the Aelvantage of the other Conic Sections.

The fame Things then being given, let A I be joined and produced to S, 'till A S become equal to $\mathrm{A} H$, and HS be joined, bifect IS in M , and through M let R MQ be drawn perpendicular to $\mathrm{H} S$, upon which let fall the Perpendicular A Q, parallel to MQ let the Ray AC be drawn. Then making three Proportionals IA, AC, AE, let it be as SA to AE, fo is $M Q$ to AD, and RS to AP, in the Right Line A Q towards Q. And in the fame on the other Side take D O equal to D C. Then bifect PD in X, and let the Right Line V X L be inclined through X in balf a Right Angle to AX, meeting the Perpendicular erected at D , in the Point V , and upon which from O let fall the Perpendicular OB. I fay, if it be $V X$ to $X B$, fo is X B to BL, the Point L will be the Vertex, LV the Axis, and XV the latuis reEfuai of the Parabola, which will fatisfy the Problem in every Cafe. For it will cut the given Circle in the Points K , of which the highelt and laft will belong to the Problem of Albazen, and the reft to fome other Problem.

Another Parabola may alfo be given, as I have hinted already, which will do the fame as this, and whofe Defeription may eafily be deduced from this, fo that there is no Occafion for any other. For let A δ be taken directly to $D A$, and equal to it; and $A \omega$ directly to OA , and alfo equal to it. Then

(191)

bifect $\mathrm{P} \delta$ in ξ, and through ξ let the Right Line $8 \xi \bar{\beta}$ be drawn perpendicular to X B , meeting with $\delta \varepsilon$, perpendicular to O A , in y, and upon which let the Perpendicular $\omega \beta$ fall. Then let it be as y ξ to $\xi \beta$, fo is $\xi \beta$ to $\beta \lambda$. Then λ will be the Vertex, $\lambda \xi$ the Axis, and 8ξ the latus rectum of the Parabola, which will cut the given Circle in the fame Points with the former.
X. Let $\mathrm{BE} \beta$ be a double Convex Lens, C the Center of the Segment To find rbeprimax EB , and K the Center of the Segment $\mathrm{E} \beta ; \mathrm{B} \beta$ the Thicknefs of the Lens, ipapliforus of D a Point in the Axis of the Lens; and it is required to find the Point F , optick , flajus at which the Beams proceeding from the Point D are collected therein, the Mr . Edm. HalRatio of Refraction being as $n z$ to n. Let the Diftance of the Object D B B.g. N. . 2 . $=\mathrm{DA}=d$, (the Point A being fuppofed the fame with B , but taken at a Diffance thercfrom, to prevent the Coincidenee of fo many Lines) the Radius of the Segment towards the Object C B, or C $A=r$, and the Radius of the Segment from the Object $K \beta$, or $K \alpha=\rho$, and $\operatorname{ler} B \beta$, the Thicknefs of the Lens, be $=t$, and then let the sine of the Angle of Incidence D A G, be to the Sine of the Refraçted Angle HA G, or CA φ, as m to n; and in very fmall Angles the Angles themlelves will be in the fame Proportion; whence it will follow, that, as d to r, fo the Angle at C to the Angle at D, and $d+r$ will be as the Angle of Incidence GAD; and again, as m to n, fo $d+r$ to $\frac{d n \frac{1}{1} r n}{m}$, which will be as the Angle G AH $=\mathrm{CA} \varphi$. This being taken from ACD, which is as d, will leave $\frac{m-n d-n r}{m}$ analogous to the Angle $\mathrm{A} Q \mathrm{D}$; and the Sides being in this Cafe proportional to the Angles they fubrend, it will follow, that as the Angle $A \varphi D$ is to the Angle $A D \varphi$, fo is the Side AD or BD , to $\mathrm{A} \varphi$ or $\mathrm{B} \varphi$: that is, $\mathrm{B} \varphi$ will be $=\frac{m d r}{m-n d-n r}$, which fhews in what Point the Beams proceeding from D would be collected by means of the firf Refraction: but if $n r$ cannot be fubtracted from $m-n d$, it follows, that the Beams after Refraction do fill pafs on diverging, and the Point ϕ is on the fame Side of the Lens beyond D. But if $n r$ be equal to m - $n d$, then they proceed parallel to the Axis, and the Point φ is infinitely diftant.

The Point φ being found as before, and $\mathrm{B} \phi-\mathrm{B} \beta$ being given, which we will call δ, it follows by a Procefs like the former, that $\beta \mathrm{F}$, or the Focal Diftance fought, is equal to $\frac{\delta \rho n}{m-n \delta+m_{\rho}}=f$. And in the room of δ fubftituting $B \varphi-B \beta=\frac{m d r}{m-n d-n r}-t$, piltting p for $\frac{n}{m-n}$, after due Reduction this Equation will arife, $\frac{m p d r_{\rho}-n d \rho t+n p r_{\rho} t}{m d r+m d \rho-m p r_{\rho}-m-n d t+n r t}$ $=f$.

Which Theorem, however it may feem operofe, is not fo, confidering the great Number of Data that enter the Queftion, and that one half of the Terms

(192)

Terms arife from our taking in the Thicknefs of the Lens, which in moft Cares can produce no great Effect; however, it was neceffary to confider it, to make our Rule perfect. If therefore the Lens confift of Glafs, whofe Refraction is as 3 to 2 , 'twill be $\frac{6 d r_{\rho}-2 d_{\rho} t+4 r_{\rho} t}{3 d r+3 d_{\rho}-6 r_{\rho}-d_{t}+2 r^{t}}=f$. If of Water, whofe Refraction is as 4 to 3 , the TBeorem will fland thus: $\frac{12 d r_{\rho}-3 d_{\rho} t+-1 r_{\rho} t}{4 d r+4 d_{\rho}-12 r_{\rho}-d t+3 r_{t}}=f$. If it could be made of Diamant, whofe Refraction is as 5 to 2, it would be

$$
\frac{\frac{10}{3} d r_{\rho}-2 d_{e}+\frac{*}{2} r_{\rho} t}{5 d r+5 d \rho-2 r t}=f .
$$

And this is the univerfal Rule for the Foci of double Convex Glafes expofed to diverging Rays. But if the Thicknels of the Lens be rejected as not fenfible, the Rule will be much fhorter, viz. $\frac{p d r \rho}{d r+d p-p r \xi}=f$; or in Glafs, $\frac{2 d r_{\rho}}{d r+d_{\rho}-2 r_{\rho}}=f$. All the Terms wherein t is found being omitted, as equal to nothing. In this Cafe, if d be fo fmall, as that $2 r_{\rho}$ exceed $d r+d \rho$, then will it be $-f$, or the Focus will be Negative, which fhew that the Beams after both Refractions ftill proceed diverging.

To bring this to the other Cafes, as of Converging Beams, or of Concave Glaffes, the Rule is ever compofed of the fame Terms, only changing the Signs of + and - ; for the Diftance of the Point of Concourfe of Converging Beams from the Point B , or the firt Surface of the Lens, I call a Negative Radius, or $-r$ if it be the firf Surface, and $-\rho$, if it be the fecond Surface. Let then converging Beams fall on a double Convex of Glafs, and the Theorem will fand thus $\frac{-2 d r_{\rho}}{-d r-d_{\rho}-2 r_{\rho}}=+f$, which fhews, that in this Cafe the Focus is always Affirmative.

If the Lens were a Menijcurs of Glafs, expofed to diverging Beanns, the Rule is $\frac{-2 d r_{\rho}}{-d r+d \rho-2 r_{\rho}}=f$: Which is Affirmative, when $2 r_{\rho}$ is lefs than $d r-d_{p}$, otherwife Negative: But in the Cafe of converging Beams falling on the fame Menijous, 'twill be $\frac{+2 d r_{\rho}}{+-d r-d \rho+2 r_{\rho}}=f$. And it will be $+f$, whilft $d_{\xi}-d r$ is lefs than $2 r_{\rho}$; but if it be greater than $2 r_{\rho}$, it willalways be found Negative or $-f$. If the Lens be double Concave, the Focus of converging Beams is Negative, where it was Afirmative in the Cafe of diverging Beams on a double Convex, ciz. $\frac{-2 d r_{e}}{\not+d a+d r-2 r_{\rho}}=f$: which is Affirmative only when $2 r_{\xi}$ exceeds $d r+d \rho$: But diverging

(193)

Beams paffing a double Concave, have alway a Negative Focus, viz. $\frac{2 d r_{\rho}}{4 d r+d \rho+2 r_{\rho}}=-f$.

The Theorems for converging Beams are principally of ufe to determine the Focus refulting from any fort of Lens placed in a Telefcope, between the Focus of the Object-Glafs and the Glafs itfelf; the Diftance between the faid Focus of the Object-Glafs and the interpofed Lens being made $=-d$.

In cafe the Beams are parallel, as coming from an infinite Diftance (which is fuppofed in the cafe of Telefcopes) then will d be fuppofed infinite, and in the Theorem $\frac{p d r_{\rho}}{d r+d \rho-p r_{\rho}}$ the Term $p r_{\rho}$ vanifhes, as being finite, which is no Part of the other infinite Terms; and dividing the Remainder by the infinite Part d, the Theorem will fland thus $\frac{p \rho r}{r+\rho}=f$, or in Glafs $\frac{2 r \frac{\rho}{r}}{r+\rho}=f$.

In cafe the Lens were plano-convex expofed to diverging Beams, inftead of $\frac{p d r \rho}{d r+d \rho-p r \rho}, r$ being infinite, it will be $\frac{p d \rho}{d-p \rho}=f$, or $\frac{2 d r}{d-2 \rho}=f$, if the Lens be Glafs:

If the Lens be doubie-convex, and r be equal to ρ; as being formed of Segments of equal Spheres, then will $\frac{p d \rho r}{d r+d \rho-p r \rho}$ be reduced to $\frac{p d r}{2 d-p r}=f$; and in cafe d be infinite, then it will be yet farther contracted to $\frac{1}{2} p r$, and p being $=\frac{\pi}{m-n}$, the Focal Diftance in Glafs will be $=r$, in Water $1 \frac{1}{2} r$, but in Diameter $\frac{1}{3} r$.

This is not only ufeful to difcover the Focus from the other propofed Data; but from the Focus given, we may thereby determine the Diftance of the Object, or from the Focus and Diftance given we may find of what Sphere it is requifite to take another Segment, to make any given Segments of another Sphere caft the Beams from the Diftance d to the Focus f : As likewife from the Lens, Focus, and Diftance given, to find the Ratio of Refraction, or of m to n, requifite to anfwer thefe Data. All which, it is obvious, are fully determined from the Equation we have hitherto ufed, viz. $p d_{\rho} r=d_{r} f+d_{\rho} f-+p r_{\rho} f$. For to find d_{3} the Theorem is $\frac{p r \rho f}{r f+\rho f-p \rho r}=d$, the Diftance of the Object; for ρ, the Rule is $\frac{d r f}{p d r+d f+p r f}=\rho$; but for p, it will be $\frac{d r f+d \rho f}{d \rho r+f \varrho r}=p$; which latter determines the Ratio of Refraction, m being to n as $x+p$ to p.

(194)

I fhall not expatiate on thefe Particulars, but leave them for the Exercife of thofe that are defirous to be informed in Optical Matters, which I am bold to fay are comprehended in thefe three Rules, as fully as the molt Inquifitive can defire them, and in all poffible Cafes, Regard being had to the Signs + and -, as in the former Cafes of finding the Focus. I fhall only fhew two confiderable Ules of them; the one to find the Diftance whereat an Object being placed, flall by a given Lens be reprefented in a Species as large as the Object itfelf, which may be of fingular Ufe in drawing Faces, and ocher Things in their true Magnitude, by tranfmitting the Species by a Glafs into a dark Room, which will not only give the true Figure and Shades, but even the Colours themfelves, almoft as vivid as the Life. In this Cafe d is equal to f; and fubftituting d for f in the Equation, we fhall have $p d r \rho=d d r$ + $d^{d} d_{\rho}-d p_{\rho} r$; and dividing all by $d, p r_{\rho}=d r+d_{\rho}-p r_{\rho}$, that is, $\frac{2 p r e}{r+\rho}=d$; but if the two Convexities be of the fame Sphere, fo as $r=\rho$, then will the Diftance be $=p r$, that is, if the Lens be Glafs $=2 \dot{r}$; fo that if an Object be placed at the Diameter of a Sphere diftant, in this Cafe the Focus will be as far within as the Object is without, and the Species reprefented thereby will be as big as the Life; but if it were a Plano-Convex, the fame Diftance will be $=2 p r$, or, in Glafs, to four Times the Radius of the Convexity.

A fecond Ufe is to find what Convexity or Concavity is required to make a vaftly diftant Object be reprefented at a given Focus, after the one Surface of the Lens is formed; which is but a Corollary to our Theorem for finding ρ, having p, d, r, and f, given; for d being infinite, the Rule becomes $\frac{r f}{p r-f}=p$, that is, in Glafs, $\frac{r f}{2 r-f}=p$; whence, if f be greater than $2 r$, p becomes Negative, and $\frac{r f}{f-2 r}$ is the Radius for the Concave fought.

But to return to their firtt Theorem, which, accounting for the Thicknefs of the Lens, we will here again refume, viz.

$$
\frac{m p d r_{p}-n d_{\rho} t-n p r_{\rho} t}{m d r+m d \rho-m p p r-m-n d t-n r t}=f .
$$

And let it be required to find the Focus, where a whole Sphere will collect the Beams proceeding from an Object at the Diftance d. Here t is equal to $2 r$, and $r=\rho$; and after due Reduction, the Theorem will ftand thus, $\frac{m p d r-2 n d r+2 n p r r}{2 n d+2 n r-m p r}=f$: But if d be infinite, it is contracted to $\frac{m p r}{2 n}-r=\frac{2 n-m}{2 m-2 n} r=f$; wherefore a Sphere of Glafs collects the Sun's Beams at half the Semidiameter of the Sphere without it, and a Sphere
of Water at a whole Semidiameter. But if the Ratio of Refraction m to n be as 2 to I, the Focus fails on the oppofite Surface of the Sphere; but if it be of greater Inequality, it falls within.

Another Example fhall be, when a Hemilphere is expofed to parallel Rays, that is, d and p being infinite, and $t=r$, and, after due Reduction, the Theorem refults $\frac{n n}{m m-m n} r=f$; that is, in Glafs it is at $\frac{4}{3} r$, in Water at $\frac{9}{4} r$; but if the Hemifphere were Diamond, it would collect the Beams at $\frac{4}{T 5}$ of the Radius beyond the Center.

Laftly, As to the Effect of turning the two Sides of a Lens towards an Object; it is evident, that if the Thicknefs of the Lens be very finall, fo as that you neglect it, or account $t=0$, then in all Cafes the Focus of the fame Lens, to whatfoever Beams, will be the fame, without any Difference upon the turning the Lens: But if you are fo curious to confider the Thicknefs, (which is feldom worth accounting for) in the cafe of parallel Rays falling on a Plano-Convex of Glafs, if the plane-fide be towards the Object, t does occafion no Difference, but the Focal Diftance $f=2 r$. But when the Convex Side is towards the Object, it is contracted to $2 r-\frac{2}{3} t$; fo that the Focus is nearer by $\frac{2}{3} t$. If the Lens be Double Convex, the Difference is lefs; if a Menifcus, greater. If the Convexity on both Sides be equal, the Focal Length is about $\frac{2}{6} t$ fhorter than when $t=0$. In a Menifcus, the Concave Side towards the Object increafes the Focal Length, but the Convex towards the Object diminifhes it. A general Rule for the Difference arifing on turning the Lens, where the Focus is Affirmative, is this $\frac{2 a t-2 \rho t}{3 r-3-t}$ for double Convexes of different Spheres. But for Menifci the fame Difference becomes $\frac{2 r t+2 \rho t}{3 r-3 p+t}$; of which I need give no other Demonftration, but that by a due Reduction it will follow from what is premifed, as will the Theorems for all forts of Problems relating to the Foci of Optick Glaffes.
XI. i. Let D B and EC be oppofite Hyperbola's, whofe tranfverfe Axis Tbe Generation is BC, Center A, and one of the Afymptotes G P; alfo let OM be drawn of an Hyperbolithrough the Center at Right Angles to B C. Wherefore if the Hyperbola's by yrin chrifto are converted about the Axis OM, it is plain, by fuch a Revolution an Hy- Wren. $\mathrm{N} . \mathrm{N}_{8} \mathrm{p} .96 \mathrm{r}$. perbolical Cylindroidal Body will be generated, whofe Bafes and Sections par. Jan. An. 166 g . allel to the Bafe will be Circles. I fay moreover, if the fame Body be cut through the Afymptote G P, the Section will be a Parallelogram.

Let it be cut through the cranfverfe Axis by a Circular Section B NC, alfo through O and M into equal Circles equally diftant from the Center; alfo through the Axis into a generating Figure, whofe half is BDEC, in the

196)

Plain of which will be the Afymptote G P, through which at Right Angles let the Plain B DE be cut in the Plain F H P ; lattly let HO be joined.

Becaufe of the Right-angled Triangle OGH, the Square of OH or OD, fubtracting the Square of O G, is equal to the Square of GH. And becauie DO is parallel to B A, and cuts the Afymptote in G, it will be (by the Properties of the Hyperbola demonftrated in the Conics) the Square of O G rogether with the Square of B A, equal to the Square of O D. That is, the Square of OD leffened by the Square of OG is equal to the Square of A B, or the Square of A N. Therefore the Square of G H is equal to the Square of A N, and thence GH is equal to AN, and they are at Right Angles to G A: And the like may be demonftrated of all other Sections parallel to the Bare. Wherefore the Hyperbolic Cylindroid is truly cut through the Afymptote into a Parallelogram. 2.E.D.

Coroll. Hence it appears that in the Superficies of the Cylindroid, though it confifts of a double Flexure, innumerable Right Lines may neverthelefs be drawn. It appears alfo, that there is another Way of generating this Body, that is, by the Revolution of a Parallelogram about the Axis at reff, in an Angle to the Axis equal to GAO; or lafly, the generating Line HR remaining immoveable, and forming or cutting the Mafs as it turns about.

And if the very fharp and ftreight Edge of the Chiffel be difpofed in refpect of the Axis after the manner of the generating Line, while the Mandrel turns about ; it is plain, that by the Lathe as true Hyperbolas as Circles may be defcribed, fince nothing more is required for forming a Cylindroid than a Cylinder; unlefs that in the Cylinder the Edge of the Chifel muft be parallel to the Axis, whereas it muft be inclined to it to form a Cylindroid.

Therefore we muft obferve, that the Species of the Hyperbola will be varied, according to the different Inclination or Magnitude of the Angle GA Θ; fo that it is more eafily accommodated to a given Hyperbola, than to need any Demonftration. But if the fame Angle remaining, the generating Line approaches nearer to the Center, thence will arife a leffer Hyperbola, but of the fame Species as before.

Tbe Application tbereof to the Grinding of Hyperbolical Optick Glaffes ; by Sir Chrift. Wren. N. 53. P. 1059. Nov. An. 1669.

Fig. 98.
2. Let there be three Bodies fit for Grinding, $\mathrm{P}, \mathrm{Q}, \mathrm{R}$; of which let P and Q be equal, and formed in the Shape of a Pillar, but let the Body R be in the Shape of a Lens. Let P have a Rotation about the Axis A B, Q about $C D$, and R about E G. But let $A B$ and CD be in different Plains, yet fo that E G produced may be at Right Angles to both A B and CD. Laftly, let the Bodies approach to one another, as much as neceffary, yet fo as that the fame Inclination of the Axes may be ftill preferved.

I fay, that by the Revolution and mutual Attrition of the Bodies before fuppofed, new Geometrical Bodies will arife, of which P and Q will be equal Hyperbolical Cylindroids, and R an Hyperbolical Conoid, of a given Species and Magnitude.

We have the Demonftration at hand, as alfo a Model of the Machine itfelf, which is intended for the grinding of Hyperbolical Lenfes. To defrribe which by the laborious A pparatus of a Picture, and a tedious Explication.
rion, would be more troublefome to me and the Engraver, than it would be to any ingenious Man to find the like. For after the Geometrical Principles are now explained, it is eafy to guefs what fort of an Inftrument it is. The Parts are three oblong Boards, plain, ftrong, moveable, and placed upon one another. The loweft and middlemoft fupport the unequal Puppets (or Handles that fuftain the Mandrel) placed alternately. This is required by the Obliquity and as it were Decuffation of each of the Mandrels. The Puppets of the uppermoft Board are equal, and difpofed according to the Length of the Board; and the Mandrel is let through the nearet Puppet, being perforated for that End. I fhall not mention the Wheels, Rollers, Thongs, Weights, Skrews, and other Things neceffary for the expeditious Motion and Strength of the Machine. P belongs to the loweft Board, Q to the middlemoft, R to the uppermoft. R is a Lens of Glafs; Q is the Model grinding the Lens; P is the Pattern that corrects the Model; which as it is carried by an oblique Motion, and different from the Motion both of the Lens and the Model, continually grinds and wears away whatever Imperfeetion is communicated to the Model by the Attrition of the Lens and the Matter.

Wherefore fince the Generation of the Hyperbolical Conoid is fo fimple and natural, being produced only by Circular Motions; and fince the Motion is double and various; it is probable that Hyperbolical Lenfes may be formed upon thefe Principles, if upon any at all.
XII. This Phænomenon appears very eafily explicable, from the Confide-wby fur Convex ration of placing Glaffes in a Tube; which is thus: After the Object-Glafs, Glades in a T_{t} the firf Eye-Glafs is placed fo much diftant (towards the Eye) from the Focus jectap Ereez ; by of the Object-Glafs, as is the Focus of the Eye-Glafs; then the middle Eye-Mr. William Glafs is placed fo much diftant from the Focus of the firt Eye-Glafs, as isN. 183. $p .169$. the Focus of the middle Eye-Glafs: Laftly, the neareft Eye-Glafs is placed Jul. An. 1686. fo much diftant from the Focus of the middle Eye-Glafs, as is the Focus of this neareft Eye-Glafs; and the Eye looking through them all, is placed in the Focus of the neareft Eye-Glafs.

I fay therefore, 1. That one fingle Convex-Glafs cannot properly be faid by itfelf to fhew Objects Erect or Reverfe, but in refpect of the placing of the Eye that looks through it: For if the Eye, that looks through a fingle Convex Glafs, be placed nigher thereto than the Glafs's Focus, the Objects are Erect; if the Eye be placed juit in the Focus, the Objects are neither Erect nor Reverfed, but all in Confufion between both; and if the Eye be placed further from the Glafs than the Focus, the Objects are Reverfed. I mean here diftant Objects, the Rays flowing from any Point whereof may be counted. to come Parallel towards the Object-Glafs.
2. The Object-Glafs of a Telefcope reverfes the Object, both to the EyeGlafs and the Eye that looks through it: For the Eyc-Glafs is placed farther from the Object-Glafs than is the Focus of the Object-Glafs: But the EyeGlafs does nothing towards the Rectification, or Reverfion; the Eye being placed juft in its Focus.
3. If the fecond Eye-Glafs (the fint being that next the Object-Glafs) be placed, as it ought, in a Telefcope, place the Eye nearer in this middle EyeGlafs than its Focus, and it fees the Object inverted and confufed: Place the Eye in the Focus, and it fees the Object all in Confufion, neither Erect nor Reverfed; for here again there is a diftinet Reprefentation of the Objects to be received on a Piece of Paper, as in the Focus of an Object-Glais; and the Eyc being placed at any Time at this Place (which is ufually call'd che Diftinet Bale) fees all in Confufion: But then let the Eye be placed farther from this middle Glafs than its Focus, and it perceives the Objects erect and confufed.

Laftly, The third, or immediate Eye-Glafs, does nothing towards the E. recting or Reverfing the Species, which it receives Ereet from the middle EyeGlafs; no more than in a Ielefcope of two Convex.Glafes, the Eye-Glafs does to the Species it receives from the Object-GlaIs; as we have fhewn before. The Reafon that this laft or immediate Eye-Glafs has nothing to do in the Erecting or Reverfing the Species, is the fame as in the Telefcope of two Convex-Glaffes, viz. The Eye placed in its Focus, and therefore fees the Species as 'tis reprefented in the Diftinet Bafe; that is, the Species is inverted in the Diftinet Bafe of the Object. Glafs, and therefore a fingle Convex EyeGlafs brings it to the Eye Inverted; but in the Diftinct Bafe of the middle or fecond Eye-Glafs the Species is Erect, and cherefore the third or immediate Eye-Glafs brings it to the Eye Erect.

Wherefore we are to confider the Telefcope confifting of an Object-Glats and three Eyc-Glaffes, as two Telefcopes, each confifting of two Convex Glaffes. The firft confifts of the Object-Glafs and firt Eye-Glafs, and this inverts the Species; that is, the Species is inverted in the Diftinet Bate of the Objeel-Glafs, and fo brought into the Eye. The fecond Telefcope collfifts of two immediate Eye-Glaffes, and this Erects what the former Inverted; that is, the Species in the Diftinet Bare of the middle Eye-Glafs is Ereet, and is fo brought into the Eye by the Eye-Glafs; the Eye-Glaffes themfelves in neither Cafe having any thing to do with the Erecting or Inverting, but merely in reprefenting in the fame Pofture the Species immediately before them. So that one Convex-Glafs, as pofited in a Telefcope, Inverts; the fecond (that is, the firf Eye-Glafs) does nothing towards the Erecting or Reverfing, but reprefents the Image as it is in the Diftinet Bafe of the Ob-ject-Glats before it, that is Inverted; the chird Glafs Ereets, or rather Reftores, what was before Inverted; the fourth 'reprefents the Image as it receives it from the Diftinct Bafe of the third, that is, Ereet.

XIII. 1. Mr. Auzout has found that the Apcrtures, which Optic-Glaffes Tue Aomurne can bear with Diftinetne's, are in about a fubduplicate Proportion to their ${ }^{\circ}$, Mafonanzost. Lengths: And, accordingly, he hath made the following Table.
N. 4. P. 55.

2. This Theory of Apertures feems to me not very clear: For the fame canflred by Glafs will endure greater or leffer A pertures, according to the leffer or greater Dr, Hook. Light of the Object; if ic be for looking on the Sun and Venus, or for feeing the Diameters of the fixed Stars, then fmaller Apertures do better; if for the Moon in the Day-light, or on Saturn, or Fupiter, or Mars, then the largett. Thus I have often made ufe of a 12 Foot Glafs to look on Saturn with an Aperture of almoit 3 Inches, and with a fingle Eye-Glaif of 2 Inches double Convex; but when, with the fame Glafs, I loolied on the Strm or Venus, I ufed bork a fmaller Apcrture, and fallower Charge.
XIV.

(200)

To nieafive DiPances at one Station ; by M. Auzout. N. 7.p. 125 .

Dec. An, 1665°
XIV. I have found long fince a Way to meafure, with a great Telefcope, the Diftance of Objects upon the Earth from one Station. The Practice indeed does not altogether anfwer the Theory, becaufe that the Length of the Telefcopes admits of fome Latitude; yet one comes near enough, and perhaps as juft as by moft of the Ways ordinarily ufed with Inftruments. That which I am propofing, I doubt not but Mr. Hook will foon underfand, and fee the Determination of all Cafes poffible. I fhall only fay, That if we look upon the fole Theory, we may make ufe of an ordinary Telefcope, whereof the Eye-Glafs is to be Convex: For by putting the Glaffes at a little greater Diftance than they are, proportionably to the Diftance for which it is to ferve, and, by adding to it a new Eye-Glafs, the Object will be feen diftinet, tho obfcure; and if the Eye-Glafs be Convex, the Object will appear Erect. They may be done two manner of Ways 3 either by leaving the Telefcope in its ordinary Situation, the Object-Glafs before the Eye-Glafs ; ci by inverting it, and putting this before that. But if any will make ufe of two Object-Glaffes, whereof the Focus's are known, the Diftances of them will be known. If it be fuppofed, that the Focus of the firt be B, and that of the fecond C, and the Diftance given, $\mathrm{B}+2 \mathrm{D}$, and that $\mathrm{D}-\mathrm{C}$ be equal to F ; for this Di ftance will be equal to $\mathrm{B}+\mathrm{C}+\mathrm{F}-r \mathrm{~F}^{2} \mathrm{C}^{2}$. And if you have the Focus of the firft Object-Glars equal to B , the Diftance where you will put the fecond Glafs, equal to $\mathrm{B}+\mathrm{C}+\mathrm{D}$, the Focus of the fecond Glafs will be found equal to $\frac{C D}{C+D}$. And if you will that the Object fhall be magnified as much with thefe two Glaffes as it would be with a fingle one, whereof the Focus fhould be of the Diftance given, having the Focus of the ObjectGlais given equal to B, and the Diftance given to $B+D$; the Diftance between the firft and fecond Glafs will be equal to $\frac{2 B^{2}+2 B D}{2 B+D}$; whence, fubducting B (the Focus of the Object given) there remains $\frac{B D}{2 B+D}$: And if this Sum be compofed equal to C, we fhall eafily know by the precedent Rule, the Focus of the fecond Glafs.
XV. Prepare two Glaffes, the one exactly flat on both Sides, the other

To make a Planosonvex Glafs of a frail Spbere, col-
leaf ibe Rays at a leef sbe Rays at a
great Difance; hy Dr. Hook. N. $4 \cdot$ p. 66. N. 12. p. $^{2} 2$. June, An. 1665. May, An. 1666. flat on the one Side, and convex on the other, of what Sphere you pleafe. Let the flat Glafs be a little broader than the other. Then let there be made a Cell or Ring of Brafs, very exactly turned, into which thefe two Glaffes may be fo faftened with Cements that the plain Surfaces of them may lie exaetly parallel, and that the Convex Side of the Plano-convex Glafs may lie inward; but fo, as not to touch the Flat of the other Glafs. Thefe being cemented into the Ring very clofely about the Edges, by a fmall Hole in the Side of the Brafs Ring or Cell; fill the interpoled Space between thefe two with Water, Oil of Turpentine, Spirit of Wine, Saline Liquors, $\begin{aligned} & \text { G. }\end{aligned}$ then ftop the Hole with a Screw: And according to the differing Refraction of the interpofed Liquors, fo fhall the Focus of this Compound Gla/s be longer or fhorter.

(201)

But this I would have only look'd upon as one Inftance of many (for there may be others) of the Poffibility of making a Glafs, ground in a fmaller Sphere, to conftitute a Telefcope of a much greater Length: Though (not to raife too great Expectation) I mult add, That, of Spherical ObjectGlaffes, thofe are the beft which are made of the greateft Sphere, and whofe Subftance hath the greateft Refraction.
XVI. I. S. Campani pretends to have found a Way to work great OpticGlaffes with a Turn-tool, without any Mould: And that he ufeth three EyeGlaffes for his great Telefcopes, without finding any Rainbow Colours.

The Great Duke of Tufcany, and Prince Leopold his Brother, upon Trial made of the Glaffes of Campani and Divini, have found that thofe of Campani excel the other; and with them they have been eafily able to diftinguifh Peo-
eiefcopes ana otber OpticGlaffes; by Campani and Divini. N. 1. p. 2. Mar. An. 5665° N. 8. p. 13 \%. Jan. An. 1666. ple at 4 Leagues Diftance.

But Euffacbio Divini pretends, that in all the Trials made with them, his N. 22. p. 209. great Glaffes have performed better than thofe of Campani; and that Campani was not willing to do what was neceffary for well comparing one with the other, viz. to put equal Eye-Glaffes in them, or to exchange the fame Glaffes.
2. 'Tis now above ten Years fince I invented a peculiar Way of grinding Optic-Glaffes, and reduced it alfo into Practice; by which 'tis eafy, without any confiderable Danger of failing, to make and polifh Optic-Glaffes of any Conic Section, and that (which is moft notable) in any Difh of any Section of a Sphere. I have already made feveral Glaffes by it, which many learned Men have feen and tried.

Mr. Huygens alfo intends very fhortly to try fomething in that kind.
3. M. du Sons doth at prefent employ himfelf in London, to bring Tele. fcopes to Perfection, by grinding Glaffes of a Parabolical Figure. Thave feen two Eye-Glaffes of that Shape, about one Inch and a half deep, and one Inch and a quarter broad, wrought by this eminent Artift with a rare Steel Inftument of his own Contrivance and Worknanfhip, and by himfelf alfo polifh'd to Admiration. And certainly it will be wondered at by thofe, who fhall fee thefe Glafles, how they could be truly wrought to fuch a Figure, with fuch a Cavity; and yet more, when they fhall hear the Author undertake to excavate other fuch Eye-Glaffes to above 2 Inches, and Object-Glaffes of 5 Inches Diameter. He hath likewife already begun his Object-Glaffes for the mentioned two ocular ones, of the fame Figure of about 2 Inches Diameter, which are to be left all open, yet without cauling any Colours.
4. The Optic-Glaffes of M. Burattini in Poland, are perfectly well By M. Burat-
 one of ro, the other of 8 Foot. They bear a great Aperture in refpeet of $f=374$. their Length.
5. Mr. Fr. Smetbrwick having found a Way of grinding Glafes not Sphe- By Mr. Francis
 of that Invention; which were, a Telefcope, a Reading, and two BurningGlaffes.

Vor., I.
Dd
The

By M. Huygens. lbid.
By M. du Sons. Ibid p. 99. N. 7•po 119. Dec. An. 1665°
is tivas on (x) xc) . 15 nivet

By M. Hevelius, N. 6. p. 98 .

Nov. An. 1665° $8 x^{2}=-19083$

(202).

The Telefcope was about 4 Foot long, furnifhed with four Glaffes, whereof the three ocular ones, Plano-convex, were of this newly invented not-Spherical Figure, and the fourth a Spherical Object-Glafs. This being compared with a common, yet very good Telefcope, longer than it by about 4 Inches, and turn'd to feveral Objects, was found by thofe of the faid Society that look'd through them both, to exceed the other in Goodnels, by taking in a greater Angle, and reprefenting the Objects more exactly in their refpective Proportions, and enduring a greater Aperture free from Colours.

The Reading. Glafs of the fame Figure being compared with a common Spherical Glafs did far excel it, by magnifying the Letters to which it was applied up to the very Edges, and by fhewing them diftinctly from one Brim through the Center to the other ; which the Spherical Glas came far fhort of.

Laftly, The two burning Concaves of this new-invented Figute, were the one of 6 Inches Diameter, its Focus 3 Inches diftant from the Center thereof; the other of the fame Diameter, but lefs Concave, and its Focus 10 Inches diftant. Thefe, when approached to a large Candle lighted, did fomewhat warm the Faces of thofe that were 4 or 5 Foot diftant at leaft; and when held to the Fire, burned Gloves and Garments at the Diftance of about 3 Foot from the Fire.

Thie Bifhop of Salisbury, Dr. Seth Ward, was by at another Time, wheñ the deeper of the two Concaves turned a Piece of Wood into Flame in the Space of 10 Sec. of Time, and the fhallower in 5 Sec. at moft, in the Seafon of Autumn, about Nine of the Clock in the Morning, the Weather gloomy. The Inventor adds, That the deeper Concave, when held to a lucid Body, would caft a Light ftrong enough to read by at a confiderable Diftance; and that expofing the fame to a Northern Window, on which the Sun fhined not at all, or very little, he had perceived that it would warm one's Hand fenfibly, by collecting the warmed Air in the Day-time, which it would nct do after Sun-fet.

By an Artif at Paris. N. ${ }^{40}$ p. 795.

Oct. An. 1668.
By M. Borelli.
N. 128. p. 69 I. Aug. An. 1676 .
6. We have an Artift at Paris that polifhes Optic-Glaffes on a Turn. I have feen a Glafs of his Workmanhip, which is very good. He turns thofe Glaffes as he does Wood, that is, with the fame Facility.
7. M. Borelli hath found out a fure and very eafy Method to work all forts of great Glaffes. He hath already made one of them very good of 200 . Foot, wrought on both Sides on the fame Rule. His Defire of advancing Aftronomical Difcoveries hath induced him to make Prefents of them to feveral Perfons capable to make ufe of them. He hath entrufted the Secret ta one of the Royal Academy of Sciences.
N. 140. p. 1005° Compani and Divini have commonly fold their Glaffes at a Piftole the Foot,
Sometimes they have far exceeded that Price. One of Divini's, of 12 Foot, was fold for 400 Livres; and another of Campani's, of 34 Foot, for 2000 Livres. Norwithftanding which, S. Borelli is willing to part with the beft of his own Glaffes, of 50, 60, or 65 Foot, for 500 (French) Crowns; and the fmall Glaffes, from 6 to 12 Foot, at a (French) Ciown a Foot; from 12 to 18 , at half a Piftole; and from 18 to 26 , at a Piftole.
8. Though

(203)

8. Though it be commonly believed, that Rock Crylal is not fit for Roptick Lennof of Optic-Glaffes, becaufe there are many Veins in it; yet Euffachio Divini Envt. Divini.
 Veins: But perhaps they were only fuperficial Strictures and night Scratches, not Veins.
9. Drops of fair Water being let fall on a Piece of plain Glafs, form them- of Warer; by felves into Plano-convexes, having a Convexity proportionable to the Heights $\mathrm{Grray}^{\text {inr. S. }}$ from which they defcend; from a greater Height a lefs, fromi a lefs a greater $\mathrm{N} .228 . p$. 539 . Degree of Convexity. I applied fome of thefe as Reading. Glafles for fingle Words of fmall Letters, as on the Globes and Maps, and found no other Inconveniency, than that the Fluidity of the Water obliges one to keep the Glafs Horizontal, which I after devifed a Way to remedy. I took a fufficient Quantity of Ifing-Glafs, and diffolved it in Water over the Fire, and whilf it was warm I dipt a Stick into the Solution, and let fome Drops of it fall on the Glafs as before ; and in a quarter of an Hour they acquire a Confiftency, that permits them to be held in any Pofition; and though they are not altogether fo tranfparent, yet this is little or no Impediment to their Ufe. The Drops of this Solution are more exactly defined than thofe of common Water, having their Edges exactly circular; and one may make them of a much longer Focus than thofe.

A thin flat Ring of Brafs, not exceeding 4 Tenths of an Inch Diameter in its interior Circle, being cemented to a plain Piece of Glafs, and filled with Water, or the Solution now mentioned; then by preffing the Finger into it, 'till what is fuperfluous be taken off, there will be formed a Planoconcave, which may ferve as an Eye-Glafs to a Perfpective, or to any other optical Ufe Concave Glaffes are applicable to.

I have tried what would be the Succefs of combining Portions of Water by the help of Brafs Rings, and plain Pieces of Glafs, to give them their true Figure and requifite Apertures, and inferted them at the Ends of Tubes of feveral Lengths; and find, that though thefe Natural Lentes may ferve as Eye-Glaffes, yet when ufed as Object ones, either to Telefcopes, or double Microfcopes, the Effects will not compenfate the Trouble there is in ufing them.
XVII. r. When I had found, that Light confifts of Rays differently refran-Tbe Aduantaget gible, I left off my Glafs-works; for I faw, that the Perfection of Telefcopes of Reffeficion to was hitherto limited, not fo much for want of Glaffes truly figured according menrs; by to the Prefcriptions of Optic Authors, (which all Men have hitherto ima- N. $80 . p$. p. 3079. gined) as becaufe that Ligbt itfelf is an heterogeneous Mixture of differently Feb. An. 8679. Refrangible Ray's: So that were a Glafs fo exactly figured as to collect any one fort of Rays into one Point, it could not collect thofe alfo into the fame Point, which having the fame Incidence upon the fame Medium, are apt to fuffer a different Refraction. Nay, I wondered, that feeing the Difference of Rcfrangibility was fo great as I found it, Telefcopes fhould arrive to that Perfection they are now at: For, meafuring the Refractions in one of my Prifms, I found, that fuppofing the common Sine of Incidence upon one

(204)

of its Planes was 44 Parts, the Sine of Refraction of the utmof Rays on the red End of the Colours, made out of the Glafs into the Air, would be 68 Parts, and the Sine of Refraction of the utmoft Rays on the other End 69 Parts; fo that the Difference is about a 24 th or 25 th Part of the whole Refration. And confequently, the Object-Glafs of any Telefcope cannot collect all the Rays which come from one Point of an Object, fo as to make them convene at its Focus in lefs room than in a circular Space, whofe Diameter is the 50th Part of the Diameter of its Aperture; which is an Irregularity, fome hundreds of times greater, than a circularly figured Lens, of fo fmall a Section as the Object-Glaffes of long Telefcopes are, would caufe, by the Unfitnefs of its Figure, were Light uniform.

This made me take Reflections into Confideration; and finding them regular, fo that the Angle of Reflection of all fort of Rays was equal to their Angle of Incidence, I underfood that by their Mediation Optic Inftruments might be brought to any Degree of Perfection imaginable, provided a reflecting Subftance could be found, which would polifh as finely as Glafs, and reflect as much Light as Glafs tranfmits, and the Art of communicating to it a parabolic Figure be alfo attained. But thefe feemed very great Difficulties, and I have almoft thought them infuperable, when I farther confider'd that every Irregularity in a reflecting Superficies makes the Rays ftray five or fix times more out of their due Courfe, than the like Irregularities in a refracting one: So that a much greater Curiofity would be here requifite, than in figuring Glaffes for Refraction.

Amidtt thefe Thoughts I was forced from Cambridge, Anno 1666, by the intervening Plague, and it was more than two Years before I proceeded further. But then having thought on a tender way of polifhing, proper for Metal, whereby, as I imagined, the Figure would be corrected to the laft, I began to try what might be effected in this kind, and by degrees fo far perfected an Inftrument (in the effential Parts of it like that I fent to London) by which I could difcern 'fupiter's four Concomitants, and fhewed them divers times to two others of my Acquaintance. I could alfo difcern the Moonlike Pbafe of Venus, but not very diftinetly, nor without fome Nicenefs in difpoling the Inftrument.

From that time I was interrupted till this laft Autumn, when I made another. And as that was fenfibly better than the firft (efpecially for Day-Objects) fo I doubt not, but they will be ftill brought to a much greater Perfection by their Endeavours, who, as you inform me, are taking Care about it at London.

A new Catadi2. This new Inftrument is compofed of two Metalline Speculums, the one Concave (inftead of an Object-Glafs) the other Plain: and alfo of a fmall Planoconvex Eye-Glafs; as in the Figure, where A B is a Concave Speculum, of invented by Mr. Newton. N. 32. p. 4004 .

Mar. An. 1672.
Fig. 99. which the Radius or Semidiameter is $12 \frac{2}{3}$ or 13 Inches.
C D, another Metalline Speculum, whofe Surface is flat, and the Circum- ference oval.

GD, an Iron Wire, holding a Ring of Brafs, in which the Speculum CD is fixed.

(205)

F, a fmall Eye-Glafs, flat above, and convex below, of the 12 th Part of an Inch Radius, if not lefs.

GGG, the fore Part of the Tube (which is open) faftened to a Brafs Ring HI. to keep it immoveable.

PQKL, the hinder Part of the Tube, faftened to another Brafs Ring $P \mathrm{O}$.

O, an Iron Hook faftened to the Ring Ring P Q, and furnifhed with a Screw N , thereby to advance or draw back the hinder Part of the Tube, and fo by that means to put the Specula in their due Diftance.

MQGI, a crooked Iron fuftaining the Tube, and faftened by the Nail R to the Ball and Socket S, whereby the Tube may be turned every Way.

The Center of the flat Speculum C D, muft be placed in the fame Point of the Tube's Axe, where falls the Perpendicular to this Axe, drawn to the fame from the Center of the little Eye-Glafs; which Point is here marked at T.
And to give the Reader fome Satisfaction to underftand in what Degree it reprefents Things diftinct, and free from Colours, and to know the Aperture by which it admits Light, he may compare the Diftances of the Focus E from the Verrexes of the little Eye-Glas and the Concave Speculum ; that is, EF, $\frac{7}{6}$ of an Inch, and ETV, $6 \frac{1}{3}$ Inches; and the Ratio will be found as 1 to 3^{8}; whereby it appears, that the Objects will magnified about 38 times; and be reprefented bigger by $2 \frac{1}{2}$ times in Diameter, when feen thro' this, than thro an ordinary Telefcope of about two Foot long.

Thus far as to the Structure of this Telefcope. Concerning the metalline Matter, fit for thefe Reflecting Speculums, the Inventor hath alfo confidered the fame, and gives this Caution, that whilf. Men feek for a white, hard, and durable metalline Compofition, they refolve not upon fuch an one as is full of fmall Pores, only difcoverable by a Microfcope: For tho' fuch an one may, to Appearance, take a good Polifh, yet the Edges of thofe fmall Pores will wear away fafter in the polifhing, than the other Parts of the Metal; and fo, however the Metal feem polite, yet it fhall not reflect with fuch an accurate Regularity as it ought to do. Thus Tin-Glafs mixt with ordinary Bell-Metal makes it more white, and apt to reflect a greater Quantity of Light; but withal, its Fumes raifed in the Fufion, like fo many aërial Bubbles, fill the Metal full of the microfcopical Pores. But white Arfenick both blanches the Metal, and leaves it folid, without any fuch Pores, efpecially if the Fufion hath not been too violent. What the Stellate-Regulus of Mars (which I have fometimes ufed) or rather fuch like Subftance, will do, deferves particular Examination.
To this he adds this further Intimation, that Putty, or other fuch like Powder, with which it is polihned, by the fharp Angles of irs Particles, fretteth the Meal, if it be not very fine, and fills it full of fuch fmall Holes as he fpeaketh of. Wherefore Care muft be taken of that, before Judgment be given, whether the Metal be throughout the Body of it porous or not.
But not having tried, as he faith, many Proporions of the Arfenick and Metal, he does not affirmwhich is abfolutely beft, but thinks there may con-
veniently be ufed any Quantity of Arfenick cqualling in Weight between a fixth and an eighth Part of the Copper; a greater Proportion making the Metal brittle.

The Way which he ufed was this: He firtt melted the Copper alone, then put in the Arfenick, which being melted, he ftirred them a little together, be waring, in the mean time, not to draw in Breath near the pernicious Fumes. After this he put in Tin; and again, fo foon as that was melted (whici was very fuddenly) he firred then well together, and immediately poured them off.

He faith, he knows not, whether by letting them fland longer on the Fire after the Tin was melted, a higher Degree of Fufion would have made the Metal porous; but he thought that Way he proceeded to be the fafeft.
He adds, that in the Metal, which he fent to London, there was no Arfenick, but a fmall Proportion of Silver; as he remembers, one Shilling in three Ounces of Metal. But he thought withal, that the Silver did as much harm in making the Metal foft, and fo lefs fit to be polifhed, as good in rendering it white and luminous.

At another time he mixed Arfenick one Ounce, Copper fix Ounces, and Tin two Ounces; and this an Acquaintance of his hath, as he intimates, polifhed better than he did the other.

As to the Objection, that with this kind of Perfpectives, Objects are difficultly found; he anfwers, That that is the Inconvenience of all Tubes that magnify much; and that after a little Ufe, the Inconvenience will grow lefs, feeing that himfelf could readily enough find any Day Objects, by knowing which way they were pofited, from other Objects that he accidentally faw in it. But in the Night, to find Stars he acknowledges it to be more troublefome; which yet may, in his Opinion, be eafily remedied by two Sights affixed to the Iron Rod, by which the Tube is fuftained, or by an ordinary PerfpectiveGlafs faftened to the fame Frame with the Tube, and directed towards the fame Object ; as Des Cartes in his Dioptrics hath defrribed, for remedying the fame Inconvenience of his beft Telefcopes.

Approved by M. Hugens de Zulichem. Ibid. p. 4008.
3. I fee by the Defcription you have fent me of Mr. Neroton's adnuirable Telefcope, that he hath well confidered the Advantage which a Concave Speculum hath above Convex-Glaffes in collecting the parallel Rays; which certainly, according to the Calculation I have made thereof, is very great. Hence it is, that he can give a far greater Aperture to that Speculum, than to an Object-Glafs of the fame Diftance of the Focus; and confequently, that he can much more magnify Objects this Way, than by an ordinary Telefcope. Befides, by it he avoids an Inconvenience, which is infeparable from Convex Object-Glaffes, which is the Obliquity of both their Surfaces, which vitiateth the Refraction of the Rays that pafs towards the Sides of the Glafs, and does more hurt than Men are aware of. Again, by the mere Reflection of the metalline Speculum there are not fo many Rays loft as in Glaffes, which reflect a confiderable Quantity by each of their Surfaces, and befides intercept many of them by the Obfcurity of their Matter.

Mean time the main Bufinefs will be, to find a Matter for this Speculum that will bear fo good and even a Polifh as Glafes, and a Way of giving this Polifh

Polifh without vitiating the Spherical Figure. Hitherto I have found no Specula that had near fo good a Polifh as Glafs: And if Mr. Nereton hath not already found a way to make it better than ordinarily, I apprehend his Telefcope will not fo well diftinguifh Objects as thofe with Glaffes. But 'tis worth while to fearch for a Remedy to this Inconveniency, and I defpair not of finding one. I believe that Mr. Neroton liath not been without confidering the Advantage, which a Parabolical Speculum would have above a Spherical one in this Conftrution; but that he defpairs, as well as I do, of working other Surfaces than Spherical ones with due Exactnefs; tho' elfe it be more eafy to make a Parabolical, than Elliptical or Myperbolical ones, by reafon of a certain Propriety of the Parabolic Conoid, which is, that all the Sections parallel to the Axis make the fame Parabola.

But though Mr. Newton (with M. Hugens) defpairs of performing that Work Ilid. p. quoge by Geometrical Rutes, yet he doubts not but that the thing may in fome meafure be accomplifhed by mechanical Devices.
4. In my laft Letter I gave you occafion to furpect that the Infrument which I fent you is in fome refpect or other indifpofed, or that the Metals are tarnifned; and by yours I am fully confirmed in that Opinion: For, whilft I had it , it reprefented the Moon in fome Parts of it as diftinctly as other Telefcopes ufually do which magnify as much as that. Yet I very well know, that that lnAtrument hath its Imperfections both in the Compofition of the Metal, and in its being badly caft, as you may perceive by a fabrous Place near the Middle of the Metal of it on the polifhed Side, and alfo in the Figure of that Metal near that fcabrous Place: And in all thofe Refpects that Inftrument is capable of further Improvement.

You feem to intimate, that the Proportion of 38 to 1 , holds only for its magnifying Objects at fmall Diftances. But if for fuch Dittances, fuppofe 500 Feet, it miagnify at that Rate, by the Rules of Optics it muft for the greater Diftance imaginable magnify more than $37 \frac{3}{4}$ to 1 , which is fo inconfiderable a Diminifhing, that it may be even then as 38 to 1.

Here is made another Inftrument like the former, which does very well. Yefterday I compared it with a fix Foot Telefcope, and found it not only to magnify more, but alfo more diftinctly: And to Day I found, that I could read in one of the Philofophical Tranfactions, placed in the Sun's Light, at 100 Foot Diffance, and that at 120 Foot Diftance I could difcern fome of the Words. When I made this Trial, its Aperture (defined next the Eye) was equivalent to more than an Inch and a third Part of the Object-Metal. This may be of fome Ufe to thofe that fhallendeavour any thing in Reflections; for hereby they will in fome meafure be enabled to judge of the Goodnefs of their Inftruments.
5. I know that the Aperture was $\mathbf{x} \frac{1}{3}$ of an Inch, by trying that an Ob Atacle of that Breadth was requifite to intercept all the Light which came from one Point of the Object.

I fhould tell you alfo, that the little plain Piece of Metal next the Eye-Glafs

The Apertures and Cbarges of sbefe Inffrumients;
by Mr. Newtor. N. 8_{2}, p. 4032 . April, An, 1672. is not truly figured: Whereby it happens, that Objects are not fo diftinct at the Middle as at the Edges. And 1 hope that by carrecting its. Figure (in. which

(208)

which I find more Difficulty than one would expect) they will appear all over diftinct, and diftincter in the middle than at the Edges. And I doubt not but that the Performances will then be greater.

But yet I find, that there is more Light loft by Reflection of the Metal which I have hitherto ufed, than by Tranfmiffion through Glaffes: For which Reafon a fhallower Charge would probably do better for obfcure Objects; fuppofe fuch a one as would magnify 34 or 32 times. But for bright Objects at any Diftance, it feems capable of magnifying 38 or 40 times, with fufficient Diftinctnefs. And for all Objects, the fame Charge, I believe, may with Advantage be allowed, if the fteely Matter, employed at London, be more ftrongly reflective than this which I have uted.

The Performances of one of thefe Inftruments of any Length being known, it will appear by this following Table, what may be expected from thofe of other Lengths by this Way, if Art can accomplifh what is promifed by the Theory. In the firft Column is expreffed the Length of the Telefcope in Feet; which doubled, gives the Semidiameter of the Sphere on which the Concave Metal is to be ground. In the fecond Column are the Proportions of the Apertures for thofe feveral Lengths. And in the third Column are the Proportions of the Charges, or Diameter of the Spheres, on which the Convex Superficies of the Eye-Glaffes are to be ground.

Lengths.	Apertures.	Charges.	Lengths.	Apertures.	Charges.	
$\frac{1}{2}$	100	100		8	800	200
1	168	119	10	946	211	
2	283	141	12	1084	221	
3	383	157	16	1345	238	
4	476	168	20	1591	251	
5	562	178	24	1824	263	
6	645	186				

The Ufe of this Table will beft appear by Example: Suppofe therefore a half Foot Telefcope may diftinctly magnify 30 times with an Inch Aperture, and it being required to know, what ought to be the analogous Conftitution and Performance of a four Foot Telefcope: By the fecond Column, as roo to 476 ; fo are the Apertures, as alfo the Number of Times which they magnify. And confequently fince the half Foot Tube hath an Inch Aperture and magnifieth 30 times, a four Foot Tube proportionally fhould have 4 ז $\frac{76}{0}$ Inches Aperture, and magnify 143 times. And by the third Column, as 100 to 168 ; fo have their Charges. And therefore if the Diameter of the Convexity of the Eye-Glafs for a half Foot Telefcope be $\frac{1}{5}$ of an Inch ; that for a four Foot fhould be $\frac{768}{\frac{68}{6}}$, that is about \div of an Inch; and fo of other Lengths. But what the Event will really be, we muft wait to fee determined by Experience. Only this I thought fit to infinuate, that they which intend to make Trial in other Lengths, may more readily know how to defign their Inftruments. Thus for a four Foot Tube, fince the Aperture fhould be 5 or 6

(209)

Inches, there will be required a Piece of Metal 7 or 8 Inches broad at leafl, becaufe the Figure will fcarcely be true to the Edges. And the Thicknefs of the Metal muft be proportional to the Breadth, left it bend in the Grinding. The Metals being polifhed, there may be Trials made with feveral Eye-Glafles, to find what Charge may with beft Advantage be made ufe of.
XVIII. 1. I doubt not but M. A. will allow the Advantage of Re- Scme objertians flection in the Theory to be very great, when he fhatl have informed himfelf of the different Refrangibility of the feveral Rays of Light. And for the practick Part, it is in fome Meafure manifeft by the Inftruments already made, to what Degree of Vivacity and Brightnefs a metalline Subitance may be polifhed. Nor is it improbable but that there may be new Ways of polifhing found out for Metal, which will far excell thofe that are yet in Ufe. And when a Metal is once well polifhed, it will be a long whife preferved from tarnifhing, if Diligence be ufed to keep it dry and clofe fhut up from Air: For the principal Caufe of Tarnifhing feems to be the condenfing of Moifture on its polifhed Surface, which, by an acid Spirit, wherewith the Atmofphere is impregnated, corrodes and rufts it; or at lealt at its exhaling leaves it covered over with a thin Skin, confifting partly of an earthly Sediment of that Moifture, and partly of the Duft, which, flying to and fro in the Air, had fettled and adhered to it.

Where there is not occafion to make frequent Ufe of the Inftrument, there may be other Ways to preferve the Metal for a long time ; as perhaps by immerging it in Spirit of Wine, or fome other convenient Liquor. And if they chance to tarnifh, yet their Polifh may be recovered by rubbing them with a foft Piece of Leather, or other tender Subftance, without the Affiftance of any fretting Powders, unlefs they happen to be rufty; for then they mult be new polifhed.

I am very fenfible, that Metal reffects lefs Light than Glafs tranfmits; and for that Inconvenience, I gave you a Remedy in my laft Letter, by affigning a fhallower Charge in Proportion to the Aperture, than is ufed in other Telefcopes. But as I have found fome metalline Subftances to be more ftrongly reflective, and to polifh better, and be freer from tarnifhing than ochers; fo I hope there may in time be found out fome Subftance much freer from thefe Inconveniencies than any yet known.
2. The Confiderer is pleafed to reprehend me for laying afide the Thoughts Toconnfiderations of improving Optics by Refractions. If he had obliged me by a private of freerd by $A n$. Letter on this Occafion, I would have acquainted him with my Succels on Newion. N. 88. the Trials I have made of that kind, which, I fhall now fay, have been lefs than p. 5084. Now. I fometimes expected, and perhaps than he at prefent hopes for. But fince he is pleafed to cake it for granted, that I have let this Subject pafs without due Examination, I fhall refer him to my former Letters, by which that Conjecture will appear to be ungrounded. For what I faid there was in refpect of Telefcopes of the ordinary Conftruction, fignifying, that their Improvement is not to be expected from the well figuring of Glaffes, as OptiVol. I. E e cians

(210)

cians have imagined; but I defpaired not of their Improvement by other Conftructions, which made me cautious, to infert nothing that might intimate the contrary. For although fucceffive Refractions that are all made the fame Way, do neceffarily more and more augment the Errors of the firt Refraction; yet it feemed not impoffible for contrary Refractions fo to correet each other's Inequalities, as to make their Difference regular; and if that could be conveniently effected, there would be no further Difficulty. Now to this end, I examined what may be done, not only by Glaffes alone, but more efpecially by a Complication of divers fucceffive Mediums, as by two or more Glaffes or Chryftals with Water or fome other Fluid between them; all which together may perform the Office of one Glafs, efpecially of the Ob-ject-Glafs, on whofe Conftruction the Perfection of the Inftrument chiefly depends.

To the Affertion, that Rays are lefs true, reflected to a Point by a Concave, than refracted by a Convex, I cannot affent ; nor do I underftand, that the Focus of the latter is a lefs Line chan that of the former. The Truth of the contrary you will rather perceive by the following Table, computed for fuch a reflecting Concave, and the refracting Convex, on Suppofition that they have equal Apertures, and collect parallel Rays at an equal Diffance from their Vertex; which Diftance being divided into 15000 Parts, the Diameter of the Concave Sphere will be 60000 of thofe Parts, and of the Convex 10000; fuppofing the Sines of Incidence and Refraction to be, in round Numbers, as 2 to 3 . And this Table following fhews, how much the exterior Rays, at 隹eral Apertures, fall fhort of their principal Focus.

The Diameter of the Aperture.	The Parts of the Axis intercepted between the Vertex and the Rays.		The Errors by	
	Reflecred.	Refracted.	Reflection.	Refraction.
2000	$1499{ }^{1} \frac{2}{5}$	14865	$8 \frac{1}{3}$	
4000	14966	14449	33	551
6000	14924	13699	76	301
8000	14865	12475	135	2525
10000	14787	9472	213	5528

By this you may perceive, that the Errors of the refracting Convex are 1o far from being lefs, that they are more than 16 Times greater than the like Errors of the reflecting Concave, efpecially in great Apertures; and that without refpect to the heterogeneous Conftitution of Light. So that, however the contrary Suppofition might make the Author of thefe Animadverfions reject Reflections as ufelefs for the promoting of Optics; yet I mult for this, as well as other Confiderations, prefer them in the Theory before Refractions.

Whether the Parabola be more difficult to deferibe than the Hyperbole, or Ellipfis, may be a Query; but I fee no abfolute Neceffity of endeavouring after any of their Defriptions. For if Metals can be ground truly Spherical, they will bear as great Apertures, as I believe Men will be well able to communicate an exact Polifh to. And for Dioptrique Telefcopes, I told you, that the Difficulty confifted not in the Figure of the Glafs, but in the Difformity of Refractions; which if it did not, I could tell you a better and more eafy Remedy than the Ufe of the Conic Sections.
3. We fee that a Picture made by an Object-Glafs of 12 Foot in a dark Room, is too diftinct, and too well defined, to be produced by Rays, that fhould ftray the 5 cth Part of the Aperture.

Obicetions; by

N. $9^{6} \cdot p .6087^{\circ}$
July, An. 1673°.

To take away this Difficulty, I muft acquaint you, that though I put Anfwered hy, the greateft Lateral Error of the Rays from one another to be about \div of the Glals's Diameter; yet their greater Error from the Points on which they N.97. p. 6110. ought to fall, will be but $\frac{1}{\mathrm{r}}-$ of that Diameter: And then, that the Rays, whofe Error is fo great, are but very few in Comparifon to thofe, which are refracted more juftly; for the Rays which fall upon the middle Parts of the Glafs, are refracted with fufficient Exactnefs, as alfo are thofe that fall near the Perimeter, and have a mean Degree of Refrangibility; fo that there remain only the Rays which fall near the Perimeter, and are moft or leaft refrangible, to caufe any fenfible Confufion in the Picture. And thefe are yet fo much further weakened by the greater Space through which they are fcattered, that the Light which falls on the due Point, is infinitely more denfe than that which falls on any other Point round about it. And by this Excefs of Denfity, the Light which falls in or invifibly near the juft Point, may, I conceive, ftrike the Senforium fo vigoroully, that the Imprefs of the weak Light, which errs round about it, Thall, in Comparifon, not be ftrong enough to be animadverted, or to caufe any more fenfible Confufion in the Picture than is found by Experience. But if this fatisfy nor, N. may try, if he pleafe, how diftinct the Picture will appear, when all the Lens is cover'd, excepting a little Hole next its Edge on one Side only: And if in this Cafe he pleale to meafure the Breadth of the Colours thus made at the Edge of the Sun's Picture, he will perhaps find it to approach nearer to my Proportior than he expects.
4. I am fatisfied with the manner whereby Mr. Newton reconciles the a neply by Effect of Convex Glaffes with his Theory; but then he is alfo to acknowledge, that this Aberration of the Rays is not fo difadvantageous to OpticGlaffes, as he feems to have been willing to make us believe. His Invention is very good; but the Defeet of the Metal feems to render it as impoffible to execute, as the Difficulty of the Form obftructs the Ule of the Hyperbole of M. Des Cartes.

If M. N- - pleafes to compare the Errors of a Glafs and Speculum Arfurered, by that collect Rays at equal Diftances, he will find how much he is miftaken; M. N. Newon. and that I have not been extravagant, as he imagines, in preferring Refle- Nuls, An. $167 \mathrm{I}_{3}$. ctions. And as for what he fays of the Difficulty of the Praxis, I know it is very difficuic; and by thofe Ways which he attempted it, I believe it im-

(212)

practicable. But there is a Way infinuated above, by which it is not improbable, but that as much may be done in large Telefcopes as I have thereby done in fhort ones; but yet not without more than ordinary Diligence and Curiofity.

1 Cata-Dicptrical Telifcope, by M. Caffegrain. N. 83. p. 4056.
XIX. 1. M. Caflegrain has communicated the Figure of a Telefcope, almoft like that of Mr. Newton.

A B C D is a ftrong Tube, in the bottom of which there is a great ConMay, An. 1672. cave Speculum CD, pierced in the middle E.
lig. Ico.
F is a Convex Speculum, fo difpofed, as to its Convexity, that it refects the Species, which it receives from the great Speculum, towards the Hole E, where is an Eye-Glafs, which one looketh through.

The Advantage which I find in this Inftrument above that of Mr. New. ton, is, 1. That the Mouth or Aperture A B of the Tube may be of what Bignefs you pleafe; and confequently you may have many more Rays upon the Concare Speculum, than upon that of which you have given us the Defcription. 2. The Reflection of the Rays will be very natural, fince it will be made upon the Axis iffelf, and therefore more vivid. 3. The Vifion of it will be fo much the more pleafing, in that you fhall not be incommoded by the great Light, by reafon of the bottom C D, which hideth the whole Face. Befides, you'll have lefs Difficulty in difcovering the Objects, than in that of Mr. Neroton.
2. When I firft applied myfelf to try the Effects of Reflections, Mr. Gregory's Optica Promota (printed in the Year 1663.) being fallen into my Hands, where there is an Inftrument (defcribed p. 94.) like that of Mr. Caffegrain, with a Hole in the midft of the Object Metal, to tranfmit the Light to an Eye-Glafs placed behind it; I had thence an Occafion of confidering that fort of Conftructions, and found thefe Difadvantages in it ; viz. 1. There will be more Light loft in the Metal by Reflection from the little Convex Speculum, than from the oval Plane. For it is an obvious Obfervation, That Light is moft copioufly reflected from any Subftance when incident moft obliquely. 2. The Convex Speculum will not reflect the Rays fo truly as the oval Plane, unlefs it be of an hyperbolic Figure; which is incomparably more difficult to form than a Plane; and if truly formed, yet would only reflect thofe Rays truly which refpect the Axis. 3. The Errors of the faid Convex will be too much augmented by the too great Diftance, through which the Rays reflected from it mult pafs, before their Arrival at the Eye-Glafs. For which Reafon, I find it convenient to make the Tube no wider than is neceffary, that the Eye-Glafs be placed as near to the oval Plane as is poffible, without obftructing any uffeful Light in its Paffage to the Object-Metal. 4. The Errors of the Object-Metal will be more augmented by Reflection from the Convex than from the Plane, becaufe of the Inclination or Deflexion of the Convex on all fides, from the Points on which every Ray ought to be incident. 5. For thele Reafons there is requifite an extraordinary Exactnefs in the Figure of the little Convex; whereas I find by Experience that it is much more difficult to communicate an exact Figure to fuch fmall Pieces of Metal,

Metal, than to thofe that are greater. 6. Becaufe the Errors of the Perimeter of the Concave Object-Metal, caufed by the Sphericalnefs of its Figure, are much augmented by the Convex, it will not with Diftinctnels bear fo large an Aperture as in the other Conftruction. 7. By reafon that the little Convex conduces very much to the magnifying Virtue of the Inftrument, which the oval Plane does not, it will magnify much more in Proportion to the Sphere, on which the great Concave is ground, than in the other Defign; and fo magnifying Objects much more than it ought to do in Proportion to its Aperture, it mult reprefent them very obfcure and dark; and not only fo, but alfo confufed, by reafon of its being over-charged. Nor is there any convenient Remedy for this. For if the little Convex be made of a harger Sphere, that will caufe a greater Inconvenience, by intercepting too many of the beft Rays; or if the Charge of the Eye-Glafs be made fo much Thallower as is neceffary, the Angle of Vifion will thereby become fo little, that it will be very difficult and troublefome to find an Object; and of thas Object, when found, there will be but a very fmall Part feen at once.

By this you may perceive, that the three Advantages, which Mr. Caffegrain propounds to himfelf, are rather Difadvantages. For according to his Defign, the Aperture of the Inftrument will be bur fmall, the Object dark and confufed, and alfo difficult to be found. Nor do I fee, why the Reflection is more upon the fame Axis, and fo more natural in one Cafe than in the other; fince the Axis itfelf is reflected towards the Eye by the oval Plane, and the Eye may be defended from external Light, as well at the Side as at the Bottom of the Tube.

Mr. Gregory fpeaking of thefe Inftruments, in the aforefaid Book, p. 95. faith; I hhall fay nothing about the Mechanifm of thefe Specula and Lenfes, which has been tried in vain by others; and as to myleff, I am but little verfed in Mechanics. So that there have been Trials made of thefe Telefcopes, but yet in vain. And I am infurmed, that about 7 or 8 Years fince, Mr . Gregory himfelf, at London, caufed one of 6 Foot to be made by Mr . Reive, which I take to have been according to the aforefaid Defign deficribed in his Book; but, though made by a fkilful Artift, yet it was without Succefs.
XX. S. Salvetti hath made a Profpective-Glafs according to Mr. Nerelon's new Invention. It was not above half a Foot long, but had the fame Effect of one of two. He is now making another after the Conceit of Mr. CalJegrain, though he agrees not with him in making Convex the little Speculum, which one looks into through the Eye-Glafs, but believes the Frencb Author only devifed that to difguife as much as was poffible his pretended new Invention, which he endeavours to make anterior to Mr. Nereton's moft noble one.
XXI. 1. Oppofite to the Place or Wall, where the Apparition is to be, To male tbe P_{i-} let a Hole be made of about a Foot in Diameter, or bigger: If there be a torn of any high Window, that hath a Cafement in it, 'twill be fo much the better. a Lisight Rom;
 may Aug. An, I6SS.

(214)

may not be perceived by the Company in the Room) place the Picture or Object, which you will reprefent inverted, and by means of LookingGlaffes placed behind, if the Picture be tranfparent, reflect the Rays of the Sun fo, as that they may pafs through it towards the Place where it is to be reprefented ; and to the End that no Rays may pafs befides it, let the Pieture be encompaffed on every Side with a Board or Cloth. If the Object be a Statue, of fome Living Creature, then it muft be very much enlightened by cafting the Sun-Beams on it by Refraction, Reflection, or both. Between this Object and the Place where 'tis to be reprefented, there is to be placed a troad Convex-Glafs, ground of fuch a Convexity, as that is may reprefent the Object diftinct on the faid Place ; which any one, that hath an Infight in the Optics, may eafily direct. The nearer it is placed to the Object, the more is the Object magnified on the Wall, and the further off the lefs; which Diverfity is effected by Glaffes of feveral Spheres. If the Object cannot be inverted (as 'tis pretty difficult to do with Living Animals, Candles, $छ^{\circ}$ c.) then there muft be two large Glaffes of convenient Spheres, and they placed at their appropriated Diftances (which are very eafily found by Trials) fo as to make the Reprefentations erect, as well as the Object.

Thefe Objects, Reflecting and Refracting Glaffes, and the whole Apparatus; as allo the Perfons employed to order, change, and make ufe of them, muft be placed without the faid high Window or Hole, fo that they may not be perceived by the Spectators in the Room; and the whole Operation will be eafily performed.

Whatfoever may be done by means of the Sun-Beams in the Day-time, the fame may be done with much more eafe in the Night, by the help of Torches, Lamps, or other bright Lights, placed about the Objects, according to the feveral forts of them.

Tie Magick Lantborn improv'd, by Sir Rub. Scuthwell. N. $245 \cdot$ P. $3^{64 .}$. Oct. A13. Itgg.
2. There are every where made of thefe Lanthorns to reprefent and magnify Figures upon a Wall; but then'tis only in the Dark: wherefore to give Variety of Colours, take Oil of Spike, and therein mix the feveral Colours, wherewith you will have your Glafs to be ftained; paint them finely on, they dry prefently, and penctrate any Glafs.

A Way to belp Sbort- Jig betervess. by Dr. Hook. Pb. Coll. N. 3. P. 59 . Dec. An. 168 F .
XXII. Having found by many Trials, that fome fhort-fighted Perfons could find little or no Relief by the Ufe of Concave-Glaffes for feeing Objeets at any Diftance diftinct, anid that any one may be made fhort-fighted, and to be able to diftinguifh nothing but what is placed very near his Eye, but within certain Limits of Diftance, by putting on and looking through a very deep Pair of Spectacles, fuch as ancient Men ufe: I concluded that what Glaffes Hould make this Man, whilf looking thro' thefe Spectacles, to fee Things at a greater Diftance, would alfo help any ocher Perfo:s that fhould be fhort-fighted by Nature. I then confider'd, that by the help of a Convex. Glafs, placed between the Object and the Eye, the Image of the Objeet may be made to appear at any Diftance from the Eye; and confequently all Ojjects may thereby be male to appear in any convenient Dilfance from the Eye: So that the Thort-fighted Eye fhall contemplate the PiEure of the

215)

Object, in the fame manner as if the Object itfelf were in that Place. But then, becaufe the Pictures themfelves are fo inverted, and therefore will be uncouth to one, not ufed to fee them in that Pofture, I confider'd of thefe Expedients to help that Defect alfo:
Firft, If it be only for reading of a Book, or Writing, there needeth nothing but the Inverfion of the Book, and then holding the Convex at a due Diftance; for the Picture of the Letters will appear ereeted in the due Place, for the Eye to fee and diftinguifh them very plainly.
Secondly, For feeing to write, I thought this would be the beft Expedient, That the Perfon fhort-fighted fhould firft learn to read with his naked Eye (both printed Letters and alfo written Hand) upfide downwards, which is quickly attained to by one that can do both the right Way.

Thirdly, For diftinguifhing Objects at a Diftance, I can affert by my own Experience, that with a litcle Ufe of contemplating Objects inverted, one fhall have as good an Idea, and as true a Knowledge of all mamer of Objects, as if they were feen erected in their natural Poiture.
XXIII. 1. Eustacbio Divini hath made a Microfcope of a new Invention, Microrcups; by wherein, inftead of an Eye-Glafs Convex on both Sides, there are two Plano- S. Divini.
 of their Convex Surface. It hath this Peculiar, that it thews the Objects flat and not crooked; and although it takes in much, yet neverthelefs magnifieth extraordinarily.

It is almoft $16 \frac{1}{\frac{1}{2}}$ Inches high, and adjufted at four different Lengths. In the firft, which is the leaft, it fhews Lines 41 times bigger than they appear to the naked Eye; in the fecond 90 times; in the third 111 times; and in the fourth 143 times: Whence one may eafily calculate how much it augmients Surfaces and Solidities.
2. S. Salvetti lately fhew'd one of his Microfcopes, made in Imitation of p, s. Pet. s.tthofe of Divini and Campani, to the Great Duke of $\tau u f$ fany, which was judged by all much better than any of the beft his Highnefs hath. It was found, 0 0.5t, Ain. 3672. for Magnifying, Defining, and Clearnefs, to be very excellent.
3. M. Leeurwenboeck hath lately contrived Microfcopes, excelling thofe that have been hitherto made by Euftacbio Divini, and others.
4. I have Microfcopes of the manner lately brought out of Holland by Mr. Huygens, of feveral Fafhions ready made. I have tried feveral Ways for the making of Glaffes of the Bignefs of a great Pin's Head and lefs; as in the p. 1026
Flame of a Tallow.Candle, and of one of Wax. But the beft Way of all ${ }^{\text {Sept. An. 16-8. }}$ I have yet found, to make them clear and without Specks, is with the Flame of Spirit of Wine well rectified, and burned in a Lamp. Inftead of Cotton I make ufe of very fmall Silver-W ire, doubled up and down like a Skein of Thread; which being wet with the Spirit of Wine, and made to burn in Thread; which being wet with the Spirit of Wine, and made to burn in
the Lamp, giveth through the Veril of the Lamp, a very ardent Elame. Then take your beaten Glafs, being firft walhed very clean, upon the Poins of a Silver Needle filed very fmall, and wet with Spittle. Hold it thus in the Flame till it be quite round, and no longer, for fear of burning it; and

276)

if the fide of the Glafs next the Needle be not melted, you may put it off, and take it up with the Needle on the round fide, prefenting the rough fide to the Flame, till it be every where round and fmooth, then wipe and rub one or feveral of them together with foft Leather, which makes them much the better. Then put them between two Pieces of thin Brafs, the Apertures very round and without Bur, and that towards the Eye fo big almoft as the Diameter of the Glafs, and fo placed in a Frame with the Object conveniently for Obfervation.
B. Mr. Stephen - 5. I took a fmall Particle of Glafs, about the Bignefs I defigned my GloGray. N. 221. fi. 280 .
June, An. 1626. bule, and laying it on the End of a Charcoal, I could, by the Help of a Blaft-Pipe, with the Flame of a Candle, foon melt it into a Spherule ; and by this means could make them indifferently clear, and the fmallent very round, and I could make them much larger, than by the unafiifted Heat of the Candle: but thefe latter were attended with an Inconvenience; they were, on that fide that refted on the Coal, flatted, and received a rough Impreffion from it. To remedy this Inconvenience, 1 was wont to grind them and polifh them on a Brafs-Plane, and fo reduce them to Hemifpherules; but I found the clear fmall Globules, not to mention that they magnify more, fhew Objects more diftinctly.

AWater Microfope ; by Mr. Stuphen Gray. N. 221. p. 28 r .
N. $223 \cdot \rho \cdot 353 \cdot$
XXIV. A. A B, I call the Frame of the Microfcope. It may be about $\frac{7}{T} \pi$ of an Inch in Thicknefs. At A there is a fmall Hole, near $\frac{1}{3}$ of an Inch Diameter; this ferves for the Aperture of the Water, being in the Center of a larger Spherical Cavity, about $\frac{1}{8}$ of an Inch Diameter, and in Depth fomewhat more than half the Thicknefs of the Brafs. Oppofite to this, at the other fide, there is another Concave, but half the Breadth of the former;
Fig. Ic 1. which is fo deep, as to reduce the Circumference of the fmall Hole in the Center, to almoft a Marp Edge. In thefe Cavities the Water is to be placed, being taken upon a Pin, or large Needle, and conveyed into them till there be formed a double Convex Lens of Water; which, by the Concave's being of different Diameters, will be equivalent to a double Convex, of unequal Convexities. By this means, I find the Object is rendered more diftinct than by a Plano convex of Water, or by a double one, formed on the plain Surface of the Metal.

CDE, is the Supporter, whereon to place the Object; if it be Water, in the Hole G; if a folid Object, on the Point F. This is fix'd to the Frame of the Microfcope by the Screw E, where 'tis bent upwards, that its upper Part may ftand at a Diftance from the Frame : 'tis moveable on the Screw as a Center, to the end that either the Hole C, or the Point F, may be expoled before the Microfcope ; and that the Object may be brought to, and fix'd in its Focus. There is another Screw, about half an Inch in Length, which goes through the round Plate into the Frame of the Microfcope A E, the Screw and Plate taking hold of the Supporter about D, where there is a Slit fomewhat larger than the Diameter of the Screw, which is requifite for the Admiffion of the Hole C, or Point F, according to the Nature of the Object, into the Focus of the Glafs; for by turning the Screw G, the

G, the Supporten is carried to or from the fame; which may be fooner done, if whilf one turns the Screw with one Hand, the other hold the Microfonpe by the End B, and one continue looking through the Water till the Object be feen moft diftinetly.
The Supporter mutt be made of a thin Piece of Brafs well hammer'd, that by its Spring it may the better follow the Motion of the Screw. I chofe rather to fix the Supporter by the Sorew E, than by a Rivet; becaufe it may now, by help of a Knife, be unferew'd, and by the other Screw G, be brought clofe to the Frame of the Microfcope without weakening its Spring, and fo become more conveniently portable. If the Hole at G be filled with Water, but not fo as to be Spherical, all Objects that will bear it, are feen therein more diftinctly.
2. Having obferv'd fome irregular Particles in Globules of Glafs, and finding them diftinet, but prodigioully magnified, when held clofe to the Eye; I concluded that if I convey'd a fmali Globule of Water to my Eye, and that there were any opacous or lefs tranfparent Particles than the Water therein, I might fee them diftinctly. I therefore took on a Pin a fmall Portion of Water, which I knew to have in it fome minute Anmale, and laid it on the End of a fmall Piece of Brals Wire (that lay then by me) of about $\frac{1}{5}$ of an Inch Diameter, till there was formed fomewhat more than an Hemifpherule of Water; then keeping the Wire erect, I applied it to my Eye, and flanding at a proper Diftance from the Light, I faw them and fome other irregular Particles, as I had predicted, but moft enormouny magnified; for whereas they are fcarce difcernible by my Glafs-Microfcopes, or firit Aqueous one, within the Globule they appeared not much different both in their Form, nor lefs in Magnitude than ordinary Peafe. They cannot well be feen by Day-light, except the Room be carkened after the manner of the famous Dioptrical Experiment, but moft diftinctly by Candle-light; they may be very well feen by the full Moon-light. If the Water be conveyed into the Hole B (which may be about $\frac{1}{\mathrm{~T}}$ of an Inch Diameter) till there remain near N. 223. P. 355°. an Hemifphere of Water on each fide of the Hole, the Objects are feen more diftinctly; and the Spherical Form of the Water is this way better fecured, than on the Poins of a Pin-Wire.

The Reafon of this Appearance may be thus explained. I.et the Circle N. 22r.p.285. 'DB B D reprefent a Sphere of Water, A an Object placed in its Focus, fending forth a Cone of Rays, two of which are A B, A B, which, Opticians know, coming into the W ater at B and B, will be refracted trom their direet Courfe, and become BD, BD; at D they will, at their paffing into the Air, be again refracted into D E, DE, and for run parallel to one another, and to the Axis of the Sphere AFCG. Now' 'tis a k:own and fundamental Principle in Optics, that the Angle of Reflexion is equal to the Angle of Incidence: wherefore let the Rays BD, BD, be imagined to come from forne Point of an Object placed within a Sphere of Water, by being reflected from the interior Surface of the Sphere at B B; C B D is the Angle of Rehexion; to which making C BF equai, F will be the Place where an Otjeet fending forth a Cone of Rays, two of which are FB, FB , which are Vol. I.
refiected

(218)

reflected into the Rays $B D, B D$, and then coming to the other fide the Sphere at D and D, they are refracted into D E, D E, as before; and confequently be as fit for diftinct Vilion, whether the Object be placed in F within, or in A without the Sphere, if its interior Surface be confidered as a Concave Reflecting Speculum.

Mitrofopers improw' 'd' by Mr. Newton.
N. $83 . f .5 c 96$.
XXV. From the Diftinction I have elferwhere given between Compounded and Uncompounded Colours, I take occafion to communicate a Way for the Improvement of Microfopes by Refraction ; viz. By illuminating the Object in a darkened Room with Light of any convenient Colour not too much Compounded; fin: by that means the Microfcope will with Diftinetnefs bear a deeper Charge and larger Aperture, efpecially if its Conftruction be fuch as I may hereafter defcribe; for the Advantage in ordinary Microfcopes will not be to fenfible.

A Refic:ing

Anitrofoper; by Mr. Newton,
N. 80. p. 3080 .

Fig. 103.

Giray.
N. $228 . p$. 54 .
. we may call i. Frame or Cell of the Glafe it oun be prepied for Uf after the following manner. Take a fnall Globule of Quick filver, and difFig. 104.
XXVI. 1. I have fometimes thought to make a Microfoope, which fhould have, inftead of an Object-Glafs, a reflecting Piece of Metal. For thefe Inftruments feem as capable of Improvement as Telefcopes, anci perhaps more ; becaufe but one refective Piece of Metal is requifite in them, as you may perceive by the Diagram, where A B reprefenteth the Object-Metal, C D the Eye-Glafs, F their common Focus, and O the other Focus of the Metal, in which the Object is placed.
2. A reprefents a fmall flat Ring of Brais, whofe interior Circle muft not much exceed $\frac{4}{50}$ of an Inch Diameter, and about $\frac{1}{5}$ of an Inch thick: This folve it in a few Drops of Aqua Fortis, to which you may add so Parts of common Water; dip the End of a Stick in this Liquor, and rub the inward Circle of the Ring with it; fo as it will have acquired a mercurial Tincture, and being wiped dry, be fit for Ufe. Then let it be laid on the Table, and pour a Drop of Quick filver within it, which prefs gently with the Ball of the Finger, and it will adhere to the Ring; then cleanfe it with a Hare's Foot, and you will have a Convex Speculum. Take up the Ring and Speculum carrying it Horizonta!, and lay it on the Brims of the hollow Cylinder B; fo will the Mercury become a Concave Reflecting Speculum, which from the Smallneis of the Sphere of which it feems to be a Section, may be ufed as a Microfcope. The Cylindric Veffel B has a Screw-Hole at the Bottom, by which it is forew'd to the Top of the Pedeftal CD; CEFG is the Supporter of the Object-Plate, which, as you fee, may be raifed higher, or let lower, as there is Occafion, by the Screw on the Pedeftal: The ObjectPlate muft be of Glafs cemented to the Ring G.

This Inftrument, with a little Variation, may be made a Microfcope of Water, if, inttead of the Ring G, there be only a fmall Arm wich a Hole in it to receive a Drop of Water, and the Cylindric Veffel B be either taken away, or fcrewed on with its Bottom upwards, fo as to make an Object-Plate.

(219)

This will be more convenient for viewing the Textures of opacous Objects, than that above defcribed, which is more fit for fluid and tranfparent ones.
XXVII. I. The Figure of it is round, being 30 Inches and fomewhat 1 Burning Combetter in Diameter. On one fide it hath a Frame of a Circle of Steel, to the caue ert Lyons; end that it may keep its jun Meafure. 'Tis eafy to remove it from Place to viletese. N. 6 . Place, tho' it be above an Hundred Weight, and 'tis eafily put in all forts of p. 95 . Poltures. The Burning Point is diftant from the Center of the Glafs about 3 Foot. The Focus is about half a Louris d'Or large. One may pafs one's Hand through it, if it be done nimbly; for if it flay there the time of a Second of a Minute, there is danger of receiving much hurt. Green Wood takes Fire in it in an inftant, as do alfo many other Bodies.

Seconds.

A fmall Piece of Pot Iron was melted, and ready to drop down, in - 40
A Silver Piece of Fifteen Pence was pierced, in — - — - 24
A Grofs Nail (called le Clou de Pifan) was melted, in - - 30
The End of a Sword Blade of Olinde was burned, in - - - 43
A Brafs Counter was pierced, in - \quad - - - - - 6
A Piece of Red Copper was melted ready to drop down, in - - 42
A Piece of a Chamber Quarry-Stone was vitrified, and put into
a Glafs-Drop, in 45
Steel, whereof Watchmakers make their Springs, was found melt- $\}$
ed, in
A Mineral-Stone, fuch as is ufed in Harquebuffes à rouët, was $\}$ I
calcined and vitrified, in
A Piece of Mortar was vitrified, in - _ - - - 5_{2}
In fhort, There is hardly any Body which is not deftroy'd in this Fire. If one would melt by it any great Quantity of Metal; that would require much Time, the Action of Burning not being performed but within the Bignefs of the Focus, fo that ordinarily none but fmall Pieces are expofed to it. One M. de Aliber buys it, paying for it 1500 Livres.

You incline to believe, that the Glaffes of Maginus and Septalius do ap. Ibid. p. 970 proach to that of Lyons; but I can affure you they come very far hort of it. You may confult Maginus his Book, where he detcribes his; and there are fome Perfons here who have feen one of his beft, which had but about 20 Inches Diameter; fo that this of Lyons muft perform at leaft twice as much. As to Septalius, we expect the Relation of it from Intelligent and Impartial Men. It cannot well be compared with that of Lyons, but in Bignefs; and in this Cafe, if it have five Palms (as you fay) that would be but $3 \frac{1}{2}$ Foot French, and fo it were a Foot bigger, which would make it half as much greater in Surface: But as to the Effects, feeing it burns fo far off, they cannot be very violent. And I have heard one fay, that had feen it, that it did not fet Wood on Fire but after the time of faying a Miferere. You may judge of the Difference of the Eiffects, fince that of Lyons gathers its Beams
together within the Space of 7 or 8 Lines; and that of Septalius mult faater them in the Compais of 3 Inches.
N. $49 \cdot p .986$.
-Anoiber by tbe fome.
N. $49 \cdot$ P. 986.

It was difpofed of to the King of Denmark.
The fame M. de Vilette of Lyons hath made another Burning Concave. It is of 34 Inches Diameter, and melts all forts of Metals, and Iron itfelf of the Thicknefs of a Silver Crown, in lefs than a Minute of Time, and vitrifies Brick in the fame Time; and as for Wood, whether green or dry, it fets it on Fire in a Moment. The King hath feen it, and the Performances of it, with great Satisfaction; and his Majefly is likely to make it his, and then to beftow it on his Royal Academy of Philofophers, for making of farcher Experiments with it.
By
1bic.p. gS7.

Py S. Settalla.
N. 4 . P. $79^{6 .}$

A íurnirg Concave in G:smany; by
N. 188. P. 252 .

This kind of Concaves burning the moit forcibly of any Fire we know of, would be of great Ufe, if they could be fo contrived as to have a Focus of any confiderable Largenefs, to take in a good Quantity of combuftible Matte: at once.
3. S. Settaila at-Milan caufeth to be made a Burning-Glafs of 7 Foot in Diameter. He pretends to make it burn at the Diftance of 50 Palms, which is about 33 Foor.
4. The outer Circle of the Concave Burning Speculum, which I lately caufed to be made in Luface, is near 3 Leipfock Ells in Diameter, exceeding that great one at Paris by $\frac{3}{8}$ of fuch an Ell. It is made of a Copper Plate fcarce twice fo thick as the Back of an ordinary Knife, and may therefore be eafily removed from Place to Place, and order'd for Ufe: And the Workmanflip of it may, by the Contrivances I have invented, be eafily, and in litele Time performed by one Man. The Polifh thereof is very good, and reprefents by diftinet Reflections all thofe Appearances which arife from the Concave Figure thereof.

The Force of this Speculum is incredible. For, 1. A Piece of Wood put into the Focus (which is 2 Ells off) flames in a Moment, fo as a frefh Wind can hardly put it out. 2. Water applied in an Earthen Veffel prefently boils, fo as to boil an Egg; and the Veffel being held there fome Time, the Water evaporates all away. 3. A Piece of Tin or Lead 3 Inches thick, as foon as it is put into the Focus, melts away in Drops; and held there a little Time, is in a perfect Fluor, fo as in two or three Minutes to be quite pierced through. 4. A Plate of Iron or Steel placed in the Focus, immediately is feen to be red-hot on the Backfide, and foon after a Hole is burnt through : I have made three fuch Holes in a Plate in fix Minutes Time. 5. Copper, Silver, and the like, applied to the Focus, melt; which I have tried with feveral Sorts of Coin; among the relt, with a Rix-Dollar; and the fame happened to it as to the aforflaid Iron Plate in five of fix Minutes. 6. Things not apt to melt, as Siones, Brick, and the like, foon become red-hot like Iron. 7. Siate at fift is red-hor, but in a few Minures zurns into a fine fort of black Glafs; of which, if any Part be taken in the Tongs and drawn out, it runs into Glafs Threads. 8. Tiles, which had fuffered the mott intenfe Heat of Fire, in a little Time melt down in a yellow Glafs: As do, 9. Pot-Shreads, not only well burnt at firf, but much ifed in the Fire, into a black-
a blacking yellow Glafs. 10. Pumice-Stone, faid to be that of Burning Mountains, in this Solar Fire melts into a white tranfparent Glafs. I r. A Piece of a very ftrong Crucible put into the Focus, in eight Minutes was melted into a Glafs. 12. I have feen Bones turned into a kind of opake Glafs, and a Clod of Earth into a yellow or greenifh Glafs.

Thefe Experiments were made in Auguft and Septenber, when the Sum has not the fame Force as when he is about the Summer Solftice. The Beams of the Full Moon, concentred ty this Speculum, did not produce any Degree of Heat, tho' the Light was not a little increafed.
5. Some Years ago, Dr. Hook made a Propofal to the Royal Society con- By Dr. Hook. cerning the fame Thing. He conccives one may be made of many Foot ${ }^{\text {Lbid.p.354* }}$ Diameter, for a fmall Price, being hammered out of a Copper Plate, and tinned over with a Mixture of Tin, Lead, and Tin-Glafs, which is found to bear a very good Polifh. Such a Speculum might be of great Ufe in perfecting the Art of Paftes, or fictitious Jewels, which require the moft intenfe Degree of Heat, to bring them to an exaet Mixture.
XXVIII. A Linnen-Cloch, firft being wet in fair Water, and then laid on a Concave Cylinder, as the Verge of a Sieve, Keeler, or the like, its central Parts will defeend fo as to form a very regular Concave Superficies. And a Thread, being firf wet in common Water, and then fufpended with its two Enids, or any two Points nearer than their utuoft Extent, fo as it might touch the Center of the furpended Cloth, and its two oppofite Points

Concave Specuia nearly of a Para-
bolic Figure bolic Figure alrempied by Mr. Stephen Gray. N. $223 \cdot p .543$. N. $235 \cdot p \cdot 787$ on the Ring, was found to have the fame Curvature. My Bufinefs was then to examine the Pure of the Thread thus fufpended; which I did in manner fullowing. On the fide of a Wall I defcribed Parabola's of feveral Species, whofe Axes were perpendicular, and Perimeter horizontal; to which the Line being applied, fo as it might touch the Vertex, pafs'd very nearly through all the intermediate Points of the Paraboln, much nearer than the Portion of a Circle, which paffed shrough the Extremity of the Perimeter, and Latus reEtum, would do.

From hence I conclude, That a ponderous and pliable Subftance, being fufpended on a Ring or hollow Cylinder, fo as that its central Parts may defeend, will form itfelf into a Figure that is more commodious for BurningGlaffes than the Spherical, of which they are now made, being much niearer their moft abfolute Figure, the Parabola.

Now if there may be a Way found to give to Cloth or Leather a metalline Surface, or a Varnifh that may bear a good Polifh; or if this be found impracticable, perhaps Flates of Metal may be beat out fo thin, as being fufpended on a large Ring, will by their own Gravity receive their true Figure; one may make Speculums of what Largenefs he pleafeth.

Upon this Confideration, I devifed the following Experiment. There was taken a fufficient Quantity of Potter's Clay, of which there was formed a plain circular Plate, by help of an Iron Ring about 13 Inches Diameter. This was laid on a leffer Ring, which was fupported by four Feet; and it immediately became a very regular Concave on its upper, and Convex on
its under Superficies; but notwithfanding 'twas fet to dry in the Shade, yet before it was dry enough, its central Pares extended to as to become almoft plain, not without fome Defects; if it had continued in its Regularity, I defigned to have burned and glazed it in a Potter's Furnace.

To make tbe Glote l.cokingGlajs; by Sir R. Southwell. N. $245 \cdot$ P. $3^{6} 3^{\prime \prime}$
XXIX. Take Quickfilver, Marchafite of Silver, each three Ounces; Tin and Lead, each half an Ounce; thefe two firt throw on the Marchafite, and laft of all the Quick filver; ftir them well together; but they mult be taken from the Fire, and be towards cooling before the Quickfilver be added; let your Glais be well warmed, and pour in the Mixture, and roll it from Side to Side.

Note, This will do alfo when cold, but'tis beft when the Glafs is heated and very dry.

Note alfo, That if at the Glafs-Houfe your Ball be of yellow Glafs, then all will thine like Gold.

XXX. Papers (of lefs General $U{ }_{J e}$) onitited.

Opric-Glaffes by - Iurn-Latic. N. 3.p. 31. N. $4 . p .56$.

DR. Hook having (in his Micrograpbia) defcribed a new Engine for Grinding Optic-Glaftes of very great Lengths, M. Auzout (in a fmall French Tract) objects feveral Difficulties to this Engine itfelf: But however he thinks it impracticable to make any Glaffes of above 300 or 400 Foot at moft (and fears that neither Matter nor Art will go even fo far) which will be very far from hhewing us Plants or Animals in the Moons; and then propofes Remedies to fome of the Inconveniencies of the Turn. To all
Ibid. p. σ_{j}. this, Dr. Hook here replies; He anfwers the Objections, and rejects the propofed Expedients.
2. Carlo Ant. Mancini having, in his Occbiale all' Occbio, defrribed a par-
N. $42 \cdot$. $\cdot \mathrm{S}_{3}$ S. ticular Way for making Convex-Glaffes upon a Plane, his Method is here trannated from the Italian into Englifh. But 'cis added, That though the Contrivance be ingenious, yet it is conceived by fkilful Artifts, that it will be very difficult to put it into Practice.

XXXI. Accounts of Books omitted.

N. 79.0. 3068. I. HTy/co. Matbefis de Lumine, Coloribus, छु Iride, \&xc. Auth. Franc. Maria Grimaldo, S. F. Bononix : 665 . in 410.
N. 71.p. 2163. 2. Cogitationes Pbyyico-Mechanica de Natura Viforiis. Auth. Jo. Ott, Sclisophufa Helvetio. Heidelbergæe 1670, in 410.
N. 32.p.626. 3. Synopfis Optica. Auth. Honcrato Fabri. Soc. Fefu. Lugduni 1667. in 4 to.
N. 42. p. 837. 4. L' Occbiale all' Occbio, overo Dioptrica Prattica del Carlo Ant. Mancini, in Bologna 1660. in $4 t 0$.
N. 75.p.225s. 5. LeEtioizes xviii ; Cantaobrigia in Scholis publicis babita, in quibus Opticorum Pbanomenan genuince Rationcs inveffigantur, Eo exponiuntur, ab lfaco Barrow. Lond. 1669. in 410.
6. La

6. La Dioptrique Occulaire, par le Pere Cherubin d' Orleans, Capucin. A N. 78. p. $3045-$

 Paris, 1671 . in Folio.7. Chrittiani Hugenij Afrrofcopia Compendiaria, Tubi Optici molimine libe- N. 16r. p. 663. rata: or, The Defcription of an Aërial Telefcope. Hague, 1684. in $4 t 0$.
8. A Treatife of Dioptries. By Will. Molineux, Efq; F. R. S. in $4^{t o .}$ N. 205. p. 9670
9. Catoptrica © Dioptrica Elementa. AuGZore Davide Gregorio, D. M. n. 21 1. p. 214. Oxon. 169 j . in 3 vo.

C H A P. IV. $A S T R O N O M \Upsilon$.

I.HE Inand Ween (vulgarly termed the Scarlet-Ifland) famous for Tbe oberevatory the Obfervations of Tycho Brabe, that renowned Danißh Aftrono- of Tycho Brahe; mer (with all Submifion to better Judigments) was none of the $\mathrm{N} .266 . p .6 g^{2}$. fitteft for Aftronomical Obfervations of all forts, fuch as the taking the exact Time of the true Rifing and Setting of Celeftial Bodies, together with their refpective Amplitudes; becaufe the Inard lies low, and is Land-lock'd on all the Points of the Compafs, fave three. Befides, the fenfible Land-Horizon of the Ween is extremely uneven and rugged, the North and Eaftern Parts thereof being fome rifing Hills in the Province of Schonen; and the Weftern Part is moftly overfpread with Trees on the Inand Zealand; from the remoteft of which Coafts the Ween is not diftant above three Leagues.
II. M.Weigbelius hath invented an Inftrument, which he calls Aftrodieicum, Anero Afronoby the means whereof very many Perfons fhall be able at one and the fame micel ninffument Time to behold one and the fame Star. He hath alfo invented an exceeding fius great Globe of the World, capable of 10 Peifons to fit in it all at once, and N. $74 \cdot p \cdot 2229$. to behold the Motions of the celeftial Bodics, $\mathcal{E} c$.
III. The Bignefs of this Globe is only of four Inches Diameter. The AcelefinalGiber; Body of the Globe of burnifhed Steel, where all the ligures of the Conftel-hy. M. Didier, lations are defigned in Silver-Colour, but the Stars themfelves of all Magni- N. $136 \cdot \rho \cdot p \cdot 9$. tudes are put on in emboffed Gold.

This Globe moves from Eaft to Weft in 24 Hours; and you may there fee the Sun exactly rife and fet as in the great World, together with the Moon, as alio the Stars of the Conftellations; likewife, how the Sun of this Globe comes to his Meridian, with an admirable Regularity, conform to the Primumz Mobile. And you may alfo there perceive the mean Mocions of the Sun and Moon from Weft to Eaft, and all the Lunations; and by the Diurnal Motion of the Moon, it fnews the Flux and Reflux of the Sca.

The

(224)

The Meridian ferveth for a Needle to fhew the Hours, which hath two main Rays, one whereof goeth directly Northward, the other Southward. That of the North marks the Way, or Degree, which the Sun maketh from Wieft to Faft upon the Signs of the Zodiack, and upon a Circle of Silver, where the 360 Degrees of the Circle are marked. The other Ray of the South, marks upon another Circle of Silver the Days of the Month, where the 365 Days are noted. The Circles of the Longitude of the Stars, which feparate the Signs, and which come from the Poles of the Zodiack, are marked by GoldWires; as alfo the Equator, the Tropicks, and the Polar Circles.

There is but one great Spring, the Primum Mobile, which puts all the reft in Morion: It is wound up by the Antarelick Pole, and you may wind it up to the Right or Left Hand, without wronging any contrary Motion: And by the Arefick Pole, you may advance and retard this Movement, if you flould find any Inequality, without altering at all the great Spring.

A Way to meafure tbe Diamicters of tie Pl/snets, and the
Parallux of ibe ML:on; by
M. Auz uut.
N. 21. P. 373 .
IV. I applied myfelf the lan Summer to the taking of the Diameters of the Sun, Moon, and the other Planets, by a Method which M. Picard and mylelf have, efteemed by us the bett of all thofe that have been practifed hitherto; fince we can take the Dianjeters to Second Minutes, being able to divide one Foot into 24000 or 30000 Parts, fcarce failing fo much as in one only Part, fo à we can in a manner be affured not to deceive ourfelves in 3 or 4 Seconds. I thall not now tell you my Obfervations; but I may very well afure you, that the Diameter of the Sun has not been much let's in his Apogee, than 31 min .37 or 40 fec . and certainly not lefs than 31 min .35 fec . and that at prefent in his Perigee it paffes not 32 min .45 fec. and may be lefs by a Second or two: That which is at the prefent troublefome, is, that the vertical Diameter, which is the moft eafy to take, is diminifhed, even at Noon, by 8 or 9 fec. becaufe of the Refractions, which are much greater in Winter than Summer at the fame Height; and that the horizontal Diameter is difficult, becaule of the fwift Motion of the I Ieavens.

As for the Moon, I never yet found her Diameter lefs than 29 min .44 or 45 fec. and I have not feen it pafs 33 min . or if it hath, it was only by a few Seconds. But I have not yet taken her in ail the Kinds of Situations of the Apogees and Perigees which happen, with the Conjunctions and Quadratures. I do not mention all that can be deduced from thence; I flall only tell you, that I have found a Way to know the Parallax of the Moon, by the means of her Diameter: viz. If on a Day, when fhe is to be in her Ápogee or Perigie, and in the moft Boreal Signs, you take her Diameter towards the Horizon, and then towards the South, with her Altitudes above the Horizon. For if the Obfervation of the Diameters be exact, as in thefe Situations the Nioon changes not confiderably her Diftance from the Earth in 6 or 7 Hours, the Difference of the Liameters will niew the Proportion there is of her Diftance with the Semidiameter of the Earth. I do not enlarge, becaule that as foon as one hath this Idea, the reft is eafy. The fame would yet be practifed better in the Places where the Moon pafes through the Zenith, than here; for the greater the Difference is of the Heights, the greater is that of
the Diameters, I do not note (for it eafily appears) that if one were under the fame Meridian or the fame Azimutb, in two very diftant Places, and took at the fame Time the Diameter of the Moon, one would do the fame Thing; tho' this Method goes not to Precifenefs.

From what has been faid may be collected the Reafon of the Obfervation, which M. Hevelius made in the laft Eclipfe of the Sun (July 2. St. N. 1666.) tonching the Increafe of the Moon's Diameter about the End. I am exceeding glad, that a Perion, who probably knew not the Caufe of it, has made the Experiment; but it is frange, that until now no Aftronomer has forefeen that that flould happen, nor given any Precepts for the Change of the Moon's Diameter in the Eclipfes of the Sun, according to the Places where they fhould happen, and according to the Hour and Height the Moon fould have: For what happened in that Eclipfe, of Augmentation, would have fallen out contrarily, if it had been in the Evening; for the Moon, which in that Eclipfe that began in the Morning was higher about the End than at the Beginning, was nearer us, and confequently was to appear bigger: But if the Eclipfe fhould happen in the Evening, fhe would be lower at the End, and therefore more diftant from us, and confequently appear leffer. So alfo in two different Places, whereof one fhould have the Ecliple in the Morning, and the other at Noon, the Moon fhould appear bigger to him that hath it at Noon: And fhe muft likewife appear bigger to thofe who fhall have a leffer Elevation of the Pole under the fame Meridian, becaufe the Moon will be nearer them.
V. I. I fhould be looked upon as a great Wronger of our Nation, fhould I not let the World know, that I have, out of fome fattered Papers and Letters that formerly came to my Hands, of one Mir. Gafcoigne's, found out, that before our late CivilWars he had not only devifed an Inttrument of as great a

An sicounn of M. Gafcoignés Micrometer ; by Mr. Richard Townley. Power as M. Auzoul's, but had alfo for fome Years made ufe of it; not only for taking the Diameters of the Planets, and Diftarices upon Land; but had farther endeavoured, out of its Precifenefs, to gather many Certainties in the Heavens; amongtt which I fhall only mention one, viz. The finding the Moon's Difance, from two Obfervarions of her Horizontal and Meridional Diameters; which I the rather mention, becaufe the French Afronomer efteems himfelf the firtt that took any fuch Notice, as thereby to fettle the Moon's Parallax: For our Countryman fuliy confidered it before, and imparted it to an Acquaintance of his, who thereupon propofed to him the Difficulties that would arife in the Calculation; with Confiderations upon the Alrange Niceties, neceffary to give him a Certainty of what he defired. The very Inftrument he firft made, I have now by me, and two others more perfected by him; which coubtlefs he would have infinitely mended, had he not been nain unfortunately in his late Majefty's Service. He had a Treatife of Oplics ready for the Prefs; but chough I have ufed my utmoft Endeavour to retrieve it, yet I have in that Point been totally unfuccetsful: But fome loofe Papers and Letters I have, particularly about this Infrument for taking of Angles, which was far from perfect. Neverthelefs, I find it fo much to ex-

(226)

ceed all others, that I have ufed my Endeavours to make it exact, and eafily tractable; which above a Year fince I effected to my own Defire, by the Help of an ingenious and exact Watchmaker: Since which time, I have not altogether neglected it, but employed it particularly in taking the Difances (as Occafion ferved) of the Circum-jovinlifts, towards a perfect fettling their Motion. I fhall only fay of it, That it is fmall, not exceeding in Weight, nor much in Bignefs, an ordinary Pocket-Watch, exaelly marking above 40000 Divifions in a Foot, by the help of two Indexes; the one fhewing Hundreds of Divifions, the other Divifions of the Hundred; every laft Divifion in my fmall one containing $\frac{1}{r-\frac{1}{6}}$ of Inch, and that fo precifely, that, as I ufe it, there goes about $2 \frac{1}{2}$ Divifions to a Second. Yet I have taken Land-Angles feveral Times to one Divifion, tho' (for the Reafon mentioned by M. Auzout) it be very hard to come to that Exactnefs in the Heavens, (viz. the fivift Motion of the Planets.) Yet, to remedy that Fault, I have devifed a Reft, in which I find no fmall Advantage, and not a little pleafing thofe Perfons who have feen it, being fo eafy to be made, and by the Obferver managed without the help of another; which fecond Convenience my yet namelefs Inftrument hath in great Perfection, and is, by reafon of its Smallnefs and Shape, eafily applicable to any Teletcope.
2. a a a a, is a fmall oblong Brafs Box, ferving both to contain the Screws and their Sockets, or Female Screws, and alfo to make all the feveral moveable Parts of the Inftrument to move very true, fmooth, and in a fimple direct Motion. To one End hereof is fcrewed on a round Plate of Brafs $b b b b$, about 3 Inches over; the extreme Limb of whofe Outfide is divided into 100 equal Parts, and numbred by 10,20 , and $30, \delta^{\circ} c$. Through the Middle of this Plate, and the Middle of the Box a a a a, is placed a very curioufly wrought Screw, of about the Bignefs of a Goofe-Quill, and of the Length of the Box; the Head of which is, by a fixed Ring or Shoulder on the Infide, and a fmall fpringing Plate $d d$ on the Outfide, fo adapted to the Plate, that it is not in the leaft fubject to Thake. The other End of this Screw is by another little Screw (whofe fmall Points fill the Center or Hole made in the End of the longer Screw for this Purpofe) rendered to fixed and fteddy in the Box, that there appears not the leaft Danger of fhaking. Upon the Head of this Screw, without the fpringing Plate, is put on a fmall Index $e e$, and above that a Handle $m m$, to turn the Screw round as often as there fhall be Occafion, without at all endangering the difplacing of the Index, it being put on very ftiff upon a cylindrical Part of the Head, and the Handle upon a Square. The Screw hath that Third of it, which is next the Plate, bigger than the other two Thirds of it, by at leaft as much as the Depth of the fmall Screw made on it: The Thread of the Screw of the bigger Third is as fmall again, as that of the Screw of the other two Thirds. To the groffer Screw is adapted a Socket f, faftened to a long Bar or Bolt $g g$, upon which is faftened the moveable Sight b, fo that every Turn of the Screw promotes the Sight h, either a Thread nearer, or a Thread farther off from the fixed Sight i. The Bar $g g$, is made exactly equal, and fitted into two fmall Staples $k k$, which will not admit of any thaking. There are 60 of thefe

Threads, and anfwerable thereto are made 60 Divifions on the Edge of the Bolc or Ruler $g g$, and a fmall Index l fixed to the Box a a a a , denotes how many Threads the Edges of the two Sights b and i are diftant; and the Index ee, fhews on the circular Plate what Part of a Revolution there is more; every Revolution, as was faid before, being divided into 100 Parts. At the fame Time that the moveable Sight b is moved forwards or backwards, one or more Threads of the coarfer Screw, is the Plate pp, by the means of the Socket q, to which it is fcrewed, moved forward or backward, one or more Threads of the finer Screw : So that this Plate being fixed to the Telefcope by the Screws r, fo as the middle betwixt the Sights may lie in the Axis of the Glals, however the Screw be turned, the midft betwixt the Sights will always be in the Axis, and the Sights will equally either open from it, or fhut towards it.

It is conceived by fome ingenious Men, that it will be more convenient, inftead of the Edges of the two Sights b and i, to employ two Sights r and s, fitted with the Hairs t and v, fo that they may be conveniently ufed in the Place of the folid Edges of the Sights b and i.

The Inftrument is thus applied to the Telefcope. The Tube A D is divided into three Lengths, of which (as in ordinary ones) BC is to lengthen or contract, as the Object requires: But A B is here added, that at A you may put fuch Eye-Glaffes as fhall be thought moft convenient, and to fet them ftill at the Diftance moft proper from the Indexes or Pointers, which here are fuppofed to be at B, which Length alters alfo in refpect of divers Perfons Eyes. E is a Screw, by which the great Tube can be fixed fo, as by the help of the Figures any fmaller Part of it can immediately be found, meafuring only, or knowing the Divifions on BC , the Diftance of the Ob -

Fig. 10

Fig. 80%

Fig. 109.

Fig. iog. ject-Glafs from the Pointers. F is the angular Piece of Wood, that lies on the upper Screw of the Reft.

This Reft.(by Dr. Hook's Suggeftion) may be rendered more convenient, IVid.p. 55^{6}. if, inftead of placing the Screw Horizontal, it be fo contrived, that it may be laid parallel to the Equinoctial, or to the Diurnal Motion of the Earth $;$ for, by that Means, the fame Thing may be performed by the fingle Motion of one Screw, which in the other Way cannot be done but by the turning of both Screws; as will eafily appear to thofe that fhall confider it.
3. I have by me two or three feveral Ways of Meafuring the Diameters Mare Wrasto of the Planets, whether Horizontal, Perpendicular, or Inclined, to the Ex- mafiure fimall actnefs of a Second, by the help of a Telefcope; as alfo of taking the Pofition and Diftance of the fmall fixed Stars one from another, or from any of the lefs bright Planets, if the Diftance be not above two or three De- May, An. 1667. grees.
4. With a Micrometer and a Tube of 14 Feet; I have often meafured Execllence of tbe the Diameters of the Planets, and their Diftances from the fixt Stars, al- Mr. Fiamtead. moft to Seconds; which, without having tried it, you would hardly believe. N. g.p.pogg.

(228)

Plain Sigbsre- VI. 1. It may be proved by many Arguments, that Tycbo erred from the Mr. Flamferd. Truth, by two, three, nay fometimes four or five whole Minutes, both in N. 89.p. 5119. the Places and Latitudes affigned to fome of the fixt Stars. We have heard
N. $96 . p .650 c$. that that great Man Jobn Hevelius bas undertaken the Reftitution of the fixt Stars; yet as it is reported he makes ure of Sights without Glaffes, it is doubtful whether we flall have their Places much more correct from hin than thofe left us by $\mathcal{T y c h o}$, unlefs where he has been very much miffaken.

Plain Sigbes preferred to Teice-
JCogic; by
M. Hevelius.
N. Ic.2. p. 27°

Apr. As. 1674°
2. I perceive that all your People do not agree with me, in the Bufinefs of Sights, concerning which I have treated in the Organographia of my Macbina Cueleftis. But tho' Mr. Hook and Mr. Flamftead, and others are of a different Opinion, yet I have been taught by caily Experience, and am fill convinced, that the Matter is far otherwife in thofe great Infruments, as Quadrants, Sextants, and Octants, and chiefly Azimuth Quadrants, and other Quadrants confrueted by Rulers, which cannot fo eafily or indeed by any means be difturbed and inverted (which happens to Telefcopic Sights when they are examined) as thofe Inftruments of three or four Feet conftructed with a Perpendicular. The Matter chiefly amounts to this, that they can undertake no Obfervation with their Telefcopic Sights, til! they examine and rectify them anew; in which Examination there is Room to mittake perpetually, and different Ways, tho you perform it never fo induftrioully. And indeed I cannot underfland by what Method this Examination can be performed, in Azimuthal Quadrants, Oetants, and Sextants, at all Times, with Convenience, and without a great Lofs of Time.

I fee there are fome alfo (among whom is Mr. Flamflead) who have undertaken to give Judgment upon our Obfervations, whatever they may be, before they have feen or examined them, or can know any Thing about them. I do not defire to be a vain Boafter of my own Affairs, nor did I ever imagine, that in this Attempt of the Reftitution of the fixt Stars, knowing my own Weaknefs, that I fhould be perfect in every thing. But this I am convinced of, that if I had undertook the Bufinefs with the help of Telefcopic Sights, I muft not only have wafted many Years with fruitlefs Examinations, but doubtlefs I hould have been difappointed of my Hopes, and that on various Accounts, which it is not neceffary to mention here. Hence I congratulate with myfelf, that I never could embrace that Opinion, but that I performed every Thing by my own Method, whatever by the Affitance of God I have performed. Now when we fhall have Obfervations on both Sides, continued for the Space of 20 or 30 Years; that is, as well thofe that are made with Telefcopic Sights, as thote which are derived from the Heavens by our plain Sights, the Matter will then be brought to a fair Trial. In the mean Time let every one enjoy his own Opinion, and proceed in his own Way.

Why Geleftial Objecis appear greaser quben sigh she Horizon
tban wben bigbor tban wben bigbor elevared;
VII. 1. It is well known that the mean apparent Magnitude of the Moon is 30 min .30 fec . we will take it Numero rotundo to be 30 min . at a Full Moon in the midft of Winter, and when fhe's in the MEeridian, and at her greateft Northern Latitude, and confequently the utmoft that fhe can be ele-
vated in our Horizon: 'Tis as well known alfo, that when the is in this Pofure, being looked upon by the naked Eye, fhe appears (that we may accommodate all to fenfible Meafures) to be Magnitudinis Pedalis, about a Foot broad. But the fame Moon being looked upon juft as fhe rifes, the appears to be three or four Foot broad, and yet if with an Inftrument we take her Diameter, both in one Pofture and the other, we fhall find that ftill fhe fiall be but 30 min . That this Matter of Faft is true, beffdes the Authority of many Authors, I can affert that I have accurately tried it myfelf, and I have fo found it. One of the Ways I proceeded was thus: I took a very good Telefcope of about 6 Foot long, in the inward Focus of whofe Eye-Glais I applied a very fine Lattice made of the fingle Hairs of a Man's Head; then looking with this at the Moon, when the was juft rifen, and looked extraordinary big, I obferved what Number of the Squares of the Lattice were occupied by her Body; and then obferving her again, when more elevated and free from all extravagant Greatnefs, I fill found the fame Squares of the Lattice poffeffed by her. This Way is equivalent to that now more ufed, of taking her Diameter by Mr. Townley's Micrometers; but I have alfo tried and found the fame Thing by an accurate Sextant, taking the Diftance of the Moon's oppofite Limbs.

The celebrated Des Cartes attributes this Appearance rather to a deceived Judgment, than to any natural Affection of the Organ or Medium of Senfe: For the Moon (lays he) being nigh the Horizon, we have a better Opportunity and Advantage of making an Eftimate of her, by comparing her with the various Objects that incur the Sight, in its Way towards her; fo that tho' we imagine fhe looks bigger, yet 'tis a meer Deceit; for we only think fo, becaufe the feems nigher the Tops of Trees, or Chimneys, or Houfes, or a Space of Ground, to which we can compare her, and eftimate her thereby; but when we bring her to the Teft of an Inftrument, that cannot be deluded or impoled upon by thefe Appearances, then we find our Eltimate wrong, and our Senfes deceived. Thefe Thoughts, methinks, are much below the accuftomed Accuracy of the noble Des Cartes; for certainly if it be fo, I may at any. Time increafe the apparent Bignefs of the Moon, tho' in the Meridian; for it would be only by getting behind a Clufter of Chimneys, a Ridge of a Hill, or the Tops of Houfes, and comparing her to them. in that Pofture, as well as in the Horizon; befides, if the Moon be looked at juft as the is rifing from an Horizon determined by a fmonth Sea, ards: which has no more Variety of Objects to compare her to, than the pure Air, yet he will feem big, as if looked at over the rugged Top of an uneven Town, or rocky Country. Moreover, all Variety of adjoining Objects may be taken off, by looking through an empty Tube, and yet the deluded Inagination is not at all helped thereby.

The famous Thomas Hobbes gives this Solution. Let the Point G be the Fig. nrox Center of the Earth, and F the Eye on the Surface of the Earth; on the fame Center G let there be ftruck the two Arches EH, determining the Atmofphere, and AD to reprefent that blue Surface in which we imagime the Fixed Stars, and let F D be the Horizon: Divide the Arcls A D into three

(230)

equal Parts by the Lines B F, C F ; it is manifeft that the Angle A F B is greater than the Angle B F C, and this again is greater than the Angle CF D. Wherefore (fays he) to make the Angle CF D equal to the Angle C F B, the Arch C D mult be greater than the Arch C B; and confequently, that the Moon may in the Horizon appear under the fame Angle, as when elevated, fhe mult cover a greater Arch, and therefore feem greater; that is, the Moon in the Meridian appearing under the Angle B F C, that the may appear under an equal Angle in the Horizon, as fuppofe C F D, 'tis neceffary that the Arch C D fhould be greater than C B ; and confequently, tho' fhe appear to fubtend a greater Arch when in the Horizon than when elevated, yet fhe appears under the fame Angle ; and all this without Refraction. The Geometry of this Figure is moft certainly true and demonftrable. At this I quarrel not; but it makes no more in our prefent Difficulty than if nothing had been faid: For he has made the Circle G F, repretenting the Earth, very large in Proportion to the Circle AD; and then indeed takung the Point F in the Earth's Surface, and by Lines from thence dividing the Angle A F D into whatever equal Parts, the intercepted Arches A B, B C, C D, fhall be unequal. But if he had confidered, that the Earth is, as it were, a Point in refpect of the Sphere of the Fixed Stars, nay the very annual Orbit of the Earth is almoft imperceptible, he would have found that the Lines F B, F C, FD, muft be all conceived as drawn from the Point G, and then equal Angles will intercept equal Arches, and equal Arches equal Angles: And fo it happens (at leaft beyond the Poffibility of the Difcovery of Senfe) to the Eye on the Surface of the Earth; fo that his drawing his Lines fo far from Gas F is, and to another concentric Circle fo nigh as AD, deceived him in this Point.

The famous Gaffendus has written four large Epifles on this Subject, the Subllance of all which is, That the Moon being nigh the Horizon, and looked at through a more foggy Air, cafts a weaker Light, and confequently forces not the Eye fo much as when brighter ; and therefore the Pupil does more enlarge itfelf, thereby tranfmitting a larger Projection on the Retina. In this Opinion I find he is not alone; for this Difquiftion being lately revived by a Irench Abbé, he therein follows the Sentiment of Gaffendus, with this Addition, That this concracting and enlarging of the Pupil caufeth a different Siape in the Eye; an open Pupil making the Cryftalline flatter, and the Eye jonger, and the narrower Pupil mortening the Eye, and making the Cryftalline more convex: The firft attends our looking at Objects which are remote, or which we think fo; the latter accompanies the viewing Objects nigh at hand. Likewife an open Pupil and flat Cryftalline attends Objects of a more fedate Light, whilt Objects of more forcible Rays require a greater Convexity and narrower Pupil. From thefe Pofitions the Abbé endeavoured to give an Account of our Pbonomenon, as follows: When the Moon is nigh the Horizon, by Comparifon with interpofed Objects, we are apt to imagine her much fartler from us than when more elevated; and therefore (fays he) we cider our Eyes as tor viewing an Object farther from us; that is, we romething enlarge the Pupil, and thereby make the Cryftalline more flat:

(23I)

moreover, the Dufkinefs of the Moon in that Pofture does not fo much ftrain the Sight; and confequently the Pupil will be more large, and the Cryftalline more flat. Hence a larger Image fhall be projected on the Fund of the Eye, and therefore the Moon fhall appear larger. And this Difpofition of the Eye that magnifies her, magnifies alfo the Divifions of our forementioned Lattice, and confequently fhe by her Body fhall poffefs no more of the Divifions than when fhe feems lefs. Thefe two forementioned Accidents, viz. The Moon's imaginary Diftance and Dufkifhnefs, gradually vanifhing as the rifes, a different Species is hereby introduced in the Eye, and confequently the feems gradually lefs and lefs, till again fhe approaches nigh the Horizon. Thefe two Opinions of Gaffendus and the Abbé being fo near a.kin, I thall confider them both together: And firft I affert, That a wider or narrower Aperture of the Pupil increafes not, neither dimininhes the Projection on the Retina. I know, Honoratus Faber, in his Synopfis Optica, endeavours to prove the clear contrary to this my Affertion, and that after this manner: AB is an Object, EF the greater Aperture of the Pupil, admisting the Projection KI on the Retina, whereas the Jeffer Aperture CD, admits only the Projection GH; but GH is lefs than KI, wherefore a lelfer Aperture diminifhes the Projection. I admire that any Man that undertook (as Honoratus Faber) to write of Optics more accurately than all that went before him, hould be guilty of fo very grofs an Error; and I do more admire, that the celebrated Gaflendus, and with him the noble Hevelius, fhould be of the fame Opinion: For tho' the aforefaid Demonftration hold moft certainly true in direct Projections, as in a dark Room with a plain Hole; yet it will not hold in Projections made by Refraction, as it is in thofe on the Retina in the Eye, by means of the Cryftalline, and other Coats and Humours of the Eye. For let AB be a remote Object, and EF the Cryftalline at its large Aperture, projecting the Image IM on the Rtina. Let then C D be the leffer Aperture of the Pupil before the Cryftalline: I fay, the Image IM Thall be projected as large as before; for the Cone of Rays E A F confifts partly of the Cone of Rays C A D; therefore where the former EAF is projected, the latter C A D, as being a part of the former, fhall be projected alio. So that no more is effected by this narrow Aperture, but that the Sides of the radiating Cones are intercepted, and confequently the Point I thall be affected with lefs Light, but it fhall fill be in the fame Place: What is faid of that Cone and that Point, may be faid of all other Cones and other Points of the Object. From hence appears, Firft, The Invalidity of the Account given of the Moon's Appearance by Gaffendus from this Reafon. Secondly, The Reafon appears why a Telefcope's leffer or greater Aperture, makes no Difference in the Angle it receives: For imagine E. F to be ant Object-Glafs of a Telefcope, and 'tis plain. Tbirdly, 'Tis evident why a greater or lefs Aperture on a Telefcope fhould make the Objects appear lighter, or darker; for thereby more or lefs Rays are admitted to determine on the Projection of each Point. But all this by the by: And this is fufficient for a Confutation of Gaffendus and Faber. But our forementioned Abbé fuperadids to a greater or leffer Aperture of the Pupil, as a neceflary Confe-

Fig. 118.

Fig. 1720
quent, a greater and leffer Convexity of the Cryftalline, as alfo a Lengthening and Shortening the Tube of the Eye. And this I muft confefs would do fomerhing, if we find it true in our Cafe; and this let us try. Firft, (fays he) The Dufkifhnefs of the Moon nigh the Horizon admits the Pupil to enlarge itfelf, the Cryftalline to flatten, and the Eye to lengthen: But what if we change our Object, and inftead of the Moon take the Diftance between fome of the Fixed Stars (as fuppofe chofe of Orion's Girdie) we fhall find the fame Plecnomenon in them, and yet I hope neither he nor Gaffendus will affert, that they at one Time ftrain the Eye more than at another, or that at any time their Fulgur ftrains the Eye at all; if he do, let him take Stars of the leffer Magnitudes, nay even thofe that can but juft be perceived, and then he will be convinced: Or let him confider, whether this will hold in looking at the Sun through very dark Glaffes, which render the Sight thereof as inoffenfive to the Eye as that of a green Field; but perhaps he will then fay, that this other Reafon holds, which is, Secondly, That the greater imaginary Diftance, at which we think the Moon near the Horizon, than when more clevated, makes us contemplate her as if reaily fhe was fo, viz. with ample Pupils, Ecc. But this I have fufficiently overthrown in my Remarks againft Des Cartes: Therefore I pats it over, only fubjoining, that if there were any thing in this Surmife, methinks the horizontal Moon fhould rather be fancied nigher to us than farther from us; for if we are for trying natural Thoughts, let us take Children to determine the Matter, who are apt to think, that could they go to the Edge of that Space that bounds their Sight, they fhould be able (as they call it) to touch the Siky; and confequently the Moon feems then rather nigher to us than farther from us.

After I had writ thus far, I accidentally caft my Eye upon Riccioli's Treatife of Refracion, at the End of his Second Volume of Almagef, Lib. 10. Seit. 6. Cap. s. 2uef. 13. wherein he fpeaks of our prefent Difficulty; but to my wonder I find him affert, That he and Father Grimaldi had often taken the horizontal Sun and Moon's Diameters by a Sextant, when to the naked Eye they appeared very large (Grimaldus directing his Sight to the left Edge, ant Ricciolus to the right) and that even by the Inftrument they atways found the Diameters greater than when more elevated, the Sun often fubtending an Angle of almoft a Degree, and frequently 45 Minutes, the Moon alfo 3^{8} or 40 Minutes. This is downright contrary to the Matter of Fact which I have before alledged, and directly repugnant to the Matter of Fact afferted by the forementioned French Abbé: Whether of us be in the right, I leave to accurate Experiment to determine, and fubmit the Whoie to the Decifion of the illuttrious Royal Society. Only give me leave to add one Word againft Riccioli; for had his Experiments been accurately profecuted, he hould have tried them when the horizontal Moon hat looked ten times more large in Diameter than ordinary; and then, if it be true, that even by an Intiument the will be found proportionally broader; then really fhe fhouid fubtend an Angle of 300 Mint. or 5 Deg. for very often I have feen the Mioon when the appeared ten times broader than ordinary, which

(233)

which the fmall Addition of 8 or yo Min. to her ufual Dianeter will never caufe.
2. I difcourfed of this Appearance near 40 Years ago with Mr. Foffer, This Pbenumeren then Profeffor of Aftronomy in Greflam College, who did then affure me ewfidedsty (from his own Obfervation I fuppofe) that the apparent Magnitude taken by bibid. . $2 \cdot 323$. Inftruments (however the Fancy may apprehend it) is not greater at the Horizon than when higher. Mr. Cafwell affirms the fame Thirg; and I do not doubt but the Thing is fo: For though Refraction near the Horizon alters the Altitude of the Thing feen; yet it cannot diter the Azimuth at ali. For fince this equally repeets all Points of the Horizon; lee the Refraction be what it will, the whole Horizon can be but a Circle: So that there is no room for the Breadth of a Thing (as to the Angle at the Eye) to be made greater, whatever its Tallncfs may (the Refraction not equally affecting all Parts in the Circles of Alcitude). Nor is therc ainy Reafon, why this fhould rather thruft the other, than the other thruft this, out of Place. Whereas, in the Altitude, it is otherwife: For while what is near the Horizon is enlarged, that which is further off is thereby contracted: which, as to the Azimuth, or Horizontal Pofition, cannot be.
Suppofing then that the Sun's apparent Horizontal Diameter, taken by Inftrument, is the fame near the Horizon, as in a higher Pofition ; it take its imaginary Greatnefs, which is fancied near the Horizon, to be orily a Deception of the Eyc, or rather the Imagination from the Eye.
For fure it is, that the Imagination doth not eftinate the Greatnefs of the Objet feen, only by the Angle which it makes at the Eye; bur, by this compared with the fuppofed Diftance. True it is, that, ceteris paribus, we judge that to obe the greater Object which makes at the Eye the greater Angle ; but not fo, if apprehended at different Diffances.

For if through a Cafement (or leffer Aperture) we fee a Houre at 100 Yards Diftance; this Houfe (though feen under a lefs. Angle) doth not to us feem lefs than the Cafement through which we fee it, (or this greater than that, becaufe it niakes at the Eye the greater Angle) but the Imagination makes a comparative Eftimate from the Angle and Diftance joinsly confidered.

So that of two Things feen under the fame or equal Angles, if to one of them there be ought which gives the Apprehenfion of a greater Diftance, that to the Imagination will appear greater. Now fure it is, that one great Advantage for eftimating the Diftance of a Thing feen, is from the Variety of intermediate Objects between the Eye and the Thing feen. For then the Imagination mult allow room for all thefe Things.
Now when the Sun or Moon is near the Horizon, there is a Profpect of Hills, and Valleys, and Plains, and Woods, and Rivers, and Variety of Fields and Inclofures, between it and us; which prefent to our Imagination a great Diftance capable of receiving all thefe: Or if it fo chance that (in fome. Pofition) thefe Intermediates are not actually feen; yet having been accultonted to fee them, the Memory fuggefts to us a View as large as is the vifible 1 Horizon.

(234)

But when the Sun or Moon is in a higher Pofition, we fee nothing between us and them (unlefs perhaps fome Clouds) and therefore nothing to prefent to our Inagination fo great a Diftance as the other is.

And therefore, though both be feen under the fame Angle, they do not appear (to the Imagination) of the fame Bignefs; becaufe not both fancy'd at the fame Diftances: But that near the Horizon is judged bigger (becaufe fuppofed farther off) than the fame when at a greater Altitude.
'Tis true, that as to fmall and middling Diftances (befides this Eftimate from Intermediates) the Eye hath a Means within itfelf to make fome Eftimate of the Diftance. As, when we already know the Bignels of a thing feen, to which we have been accuftomed; as, a Man, a Tree, a Houfe, or the like : If fuch thing appear to us under a fmall Angle, and indiftinet, and faintly coloured, the Imagination doth allow fuch Diflance as to make fuch a thing fo to appear. And if this, through a Perfpective-Glafs, be reprefented to us under a bigger Angle, and more diftinet, it is accordingly apprehended as fo much nearer. But the Cafe is otherwife, when we do not, by the known Bignefs, judge the Diftance; but, by the fuppofed Diftance, judge of the Bignefs, as in the Cafe before us. And accordingly, different Perfons, according to different fancied Diftances, judge very differently.

Again: In our two Eyes (when the Object is feen by both) there is yet another Means of eftimating how far off it is. (And it is this by which we judge of Diftances.) Namely, there are from the fame Object, two different vifual Cones, terminated at the two Eyes; whofe two Axes contain, at the Object, different Angles, according to different Diftances; an acuter Angle at a greater Diftance, and more obtufe when nearer.

Now, that fuch Object may be feen by both Eyes clearly, it is requifite that the Eyes be put in fuch a Pofition, as that the Sight of each Eye receive the refpective Axis at Right Angles; which requires a different Pofition of the two Eyes, according to the different Diftance of the Object: As will manifeftly appear, if we look with Attention on a Finger (or other fmall Object) at 2 or 3 Inches Diftance from the Eye, and then upon another like Object at 3 or 4 Yards beyond it (and this alternately feveral times.) For it will be manifeft, that while we look intently on the one, we do not fee the other (or but confufedly) though both be juft before us. And, as we change our View, from the one to the other, we manifefly feel a Motion of the Eyes (by their Mufcles) from one Pofture to another.

And according to the different Pofture in the Eyes, requifite to a clear Vifion by both, we eftimate the Diftance of the Object from us.

And hence it is, that they who have loft the Sight of one Eye, are at a great Difadvantage, as to eftimating Diftances, from what they could do while they had the Ufe of both.
But now when the Diftance grows fo great, as that the Pofition of thefe vifual Axes become parallel, or fo near to parallel as not to be diftinguifhable from it, this Advantage is loft, and we can thenceforth only conclude, that it is far off; but not how far. Hence it is, that our View can make no Diftinction of the Moon's Diftance from that of the other Planets, or even of

235)

the fixed Stars: But they feem to us as equally remote from us; though we otherwife know their Diftances from us to be vaftly different; becaufe the Parallax (as I may fo call it) from the different Pofition of the two Eyes, is quite loft, and undifcernable in Diftances much lefs than the leaft of thefe.

So that, though as to fmall Diffances we may make fome Eftimate from the known Magnitude of the Object; and as to middling Diftances, from the Parallax (as I may call it) arifing from the Interval of the two Eyes: Yet even this latter will hardly reach beyond, if fo far as, the vifible Horizon, and all beyond it is loft. And therefore, there being nothing left to affift the Fancy in eftimating to great a Diftance, but only the intermediate Objects; where thefe Intermediates appear to the Eye (as when the Sun or Moon are near the Horizon) the Diftance is fancied greater, than where they appear not (as when farther from it) and confequently (though both under the fame or equal Angles) that near the Horizon is fancied the greater : And this I judged to be the true Reafon of that Appearance.
VIII. We took a Cylinder of caft Brafs, A B CD, and cut one End of An Experiment it $C D$, perpendicular to the Axis $a c x$; the other End $A B$, inclined to it of the Refration at an Angle of about 27 deg .30 min . and therefore the Perpendicular to this inclining Plane $p c$, and the Axis of the Cylinder $a c x$, comprehended an Mr. Luwthorpe. N. 257. p. 329 • Angle p c a, of about 62 deg . 30 min . Thele Ends were ground very true upon a Glais-Grinder's Brafs Tool, and each of them was compafs'd about Fig. ris. with a narrow Feril of thin Brafs $b b b b$. Into the upper Side of the Cylinder, at E, was foldered the Brafs-Pipe E F, and into the under Side, at G, the other Brafs-Pipe GH; the former of thefe Pipes being about 3 Inches long, and the latter 6 Inches. Upon the Plate $d d d$, were fixed two other Plates, L L, perpendicular to it, and parallel to each other. Each of thefe two Plates had an Arch of a Circle (whofe Diameter was equal to that of the Cylinder) cut out of its proper Edge ; fo that when the Pipe GH was let thro' a Hole near the Middle of the Plate $d d d$, the Cylinder fell into the Arches; and being faftened there with Solder, the Axis $a c x$ lay Parallel to the Piate $d d d$, and about an Inch and an half above it. The perpendicular End of the Cy linder, D C, was clofed with an Objeet Glafs of a $7 \frac{1}{2}$ Foot Telefcope 00 , and the inclining End A B, with a well polifhed flat Glafs, $f f$; which was carefully chofen to tranfmit the Object diftinct enough, notwithftanding its Obliquity to the vifual Rays. The Ferils were filled with Cement round about the Edges of the Glaffes, which lay flat, and every where touched the fmooth Ends of the Cylinder, that they might firmly fupport the Weight and Preffure of the excluded Air.

Inftead of a Ciftern (as in the Torricellian Experiment) we made ufe of the Fig. mi4. inverted Syphon of Brafs M N O, folder'd to the Plate $g g g$. One of the Sides MN, ftood perpendicular to the Plate $g g g$, and the other Side N O, inclined to it, and was fupported near the upper End O, with a little Piece of Brafs, $k k$.

We then placed the Cylinder upon a Table, which was well faftened to Fig. Ir5. a firm Floor: The Pipe GH, was let through a Hole in the Top of the Table; and the Plate $d d d$, was mailed down to it: The Tube of the Telefonpe sss, with the Eye-Glafs in it, was applied to the Object-Glafs, and a Hair fixed at x, the common Focus of both Glaffes, in the Axis of the Cylinder continued to it. Upon the Floor (under the Cylinder) we nailed the Plate $g g g$, with the inverted Cyphon upon it, and joined M to H , by the Infercion of the Glafs Tube T. The Joints were very carefully clofed with Cement, and then covered over with Pieces of a Bladder wrapped hard with ftrong Thread. There was alfo a Bladder tied below each Joint at m, and when it was filled with Water it was tied about at n; fo that no Air could come to the Cement, to infinuate itfelf through its Pores or Fiffures, if any happened to be left unclofed.

It will not (I hope) be thought more than neceffary, that in this Account of the Apparalus, I have neentioned fo many minute Circumitances; for we found it difficult enough to exclude the Air, and alnoft impoffible to difcover the very little Holes through which fo fubtle a Fluid would freely enter and poffefs the Spaces deferted by the fulfoding Mercury. But, with all this Precaution, the Experiment fucceeded at laft, as I wifhed ; after this Manner:

We placed the Object a (which was a black Thread faftened in a little Frame over a Piece of white Paper) in the Axis of the Cylinder x ca: We filled the Pipes and Cylinder with Mercury; and having flopped the upper End of the Pipe at F, with the little lron Stopple K, and clofed it, at the upper Part of the Tube and other Joints, we let the Mercury run out gently at O (into the Bladder u) till it remained fufpended at the ufual Height (as in the Barometer) leaving the upper Part of the Tube, and the Cavity of the Cylinder between the Glaffes 00 , and $f f$, void of Air. We then faw the Object, which before appear'd in the Axis at x, raifed confiderably above it; and we reduced it to appear again at x, by removing it from a to α. The Axis therefore of the vifual Ray (which was alfo the Axis of the Cylinder) $x \subset a$, falling perpendicularly on the void Space, paffed through it without any Refraction: but emerging obliquely into the Air, it was refracted towards the Perpendicular $p c$, and received a new Direction to α. And therefore the Diftance $a \dot{\alpha}$, fubtended the Angle of Refraction $a c \alpha$; all which we meafured, and found as follows; viz.

The Height of the Object above the Axis, or the? unrefracted vifual Ray a a	000		425
The Diftance of the Object from the refracting Plain ac, about 5 : Feet, or	612		000
Therefore the Angle of Refraction ac α,	$\begin{aligned} & \text { Deg. } \\ & \text { oo } \end{aligned}$	$\begin{gathered} \text { Min. } \\ 02 \end{gathered}$	$\begin{aligned} & \text { Sec. } \\ & 23 \end{aligned}$
The Angle of Emerfion pca, (by the Conflruction? of the Cylinder) was	62	30	00

Therefore the Angle of Incidence $p c \alpha=p<a+$? $a \subset \alpha$, was - - - - - - -5
 Deg. Min. Sec. $\begin{array}{lll}62 & 27 & 37\end{array}$

And therefore univerfally, (according to the known Laws of Refraction)

$$
\begin{aligned}
& \text { The Sines of the Angles of Incidence being - - - - } 100000 \\
& \text { The Sines of the Angles of Emerfion are - - - } 100036 \\
& \text { And the refractive Power of the denfe Air - - }
\end{aligned}
$$

By the refrailive Power of a pellucid Body, I mean that Property in it whereby the oblique Rays of Light are diverted from their direct Courfe, and which is meafured by the proportional Differences (always obferved) between the Sines of the Angles of Incidence and Emerfion.

This Property is not always proportional to the Denfity (at leaft not to the Gravity) of the refracting Medium : For the refractive Power of Glafs to that of Water is as 55 to 34 , whereas its Gravity is as 87 to 34 ; that is, the Squares of their refractive Powers are (very near) as their refpective Gravities. And there are fome Fluids, which, tho lighter than Water, yet have a greater Power of Refraction: Thus the refractive Power of Spirit of Wine (according to Dr. Hook's Experiment, Microgr. Obf. Iviii. p. 220.) is to that of Water, as 36 to 23 ; and its Gravity reciprocally as 23 to 36 , or $36 \frac{1}{2}$. But the refractive Powers of Air and Water feem to obferve the fimple Proportion of their Gravities direizly, as I have compared them in the following Table. The Numbers there exprefling the Refraction of Water are taken from the Mean of Nine Experiments, made at fo many feveral Angles of Incidence, Fan. 25, 64\% ${ }^{\circ}$, by Mr. Gajcoigne, (the ingenious firft Inventor of the Micrometer, and the Ways of meafuring Angles by Telefcopes) and thofe of Air are produced by the preceding Experiment.

[^0]
(238)

From hence it feems very probable, that their refpective Denfities and refractive Powers are in a juft fimple Proportion. And if this fhould be confirmed by fucceeding Experiments, made at different Angles of Incidence, and with Cylinders continuing exhaufted through feveral Changes of the Air, it would be more than probable that the refractive Powers of the Atmofphere are every where, and at all Heights above the Earth, proportional to its Denfities and Expanfions: And then it would be no difficult Matter to trace the Light through it, fo as to terminate the Shadow of the Earth, and (together with proper Expedients for meafuring the Quantity of Light illuminating an opake Body) to examine at what Diftances the Moon mult be from the Earth to fuffer Eclipfes of the obferved Duration.

To find tbe Parallax of the Fixed Stars; by Dr. Wallis, 6 Mr . William Molyneux. July, An. ${ }^{6} 693^{\circ}$ N. 202. p. 844°
IX. Give me leave to fuggeft a Speculation, which hath been in my Thoughts thefe forty Years or more; but I have not had the Opportunity of reducing it to Practice: It is concerning the Parallax of the fixed Stars, as to the Earth's annual Orbit.

Galileo complains of it a great while fince (in his Syftema Cofmicum) as a Thing not attempted to be obferved with fuch Diligence as he could wilh; and I doubt we have the fame Caufe of complaining ftill. I know that Dr. Hook and Mr. Flamifead have attempted fomewhat that way, but have delifted before they came to any Thing of Certainty. What hath been done to that Purpofe Abroad I know not.

Galileo hath fuggefted divers Things confiderable in order to it; as, the Times of Obfervation, the Stars to be obferved, and the Manner of obferving them; which yet I doubt is not practicable. That which occurred to my Thoughts upon thefe Confiderations, was to this purpofe: That fome circumpolar Stars (nearer to the Pole of the Equator than is our Zenith, and not far from the Pole of the Zodiack) fhould be made choice of for this purpofe. And in cafe the meridional Altitude be difcernibly different at different Times, fo will alfo be their utmoft Eaft and Weft Azimuth, which may be better obferved than their Rifing or Setting: And this will not be obnoxious to the Refraction, as is the meridional Altitude (for though the Refraction do affect the Altitude, yet not the Azimuth at all;) and we may here have choice of Stars for the purpofe; which, in Obfervations from the Bottom of a Well, we cannot have; being there confined to thofe only which pafs very near our Zenith, tho' very fmall Stars.

I would then take for granted, as a Thing at leaft very probable, that the fixed Stars are not all (as was wont to be fuppofed) at the fame Diftance from us, but the Diffance of fome vaftly greater than of others; and confequently, though as to the more remote, the Parallax may be undilicernible, it may, perhaps, be difcernible in thofe that are nearer to us.

And thofe we may reafonably guefs (though we are not fure of it) to be neareft to us, which to us do appear biggeft and brighteft, as are thofe of the Firft and Second Magnitude ; and there are at leaft of the Second Magnitude pretty many not far from the Pole of the Ecliptic (as that in particular in the Sboulder of the Leffer Bear:) And, in cale we fail in one, we may uy

(239)

again and again on fome other; which may chance to be nearer to us than what we try firft. And Stars of this Bignefs may be difcerned by a moderate Telefcope, even in the Day-time; efpecially when we know juf where to look for them.

The Manner of Obfervation, I conceive, may be thus. Having firft pitched upon the Star we mean to obferve, and having then confidered (which is not hard to do) where fuch Star is to be feen in its greateft Eaft or Weft Azimuth; it may be then convenient to fix (very firm and fteddily on fome Tower, Steeple, or other high Edifice, in a convenient Situation) a good Telefcopic Object-Glafs in fuch Pofition as may be proper for viewing that Star. And at a due Diftance from it, near the Ground, build on purpofe (if already there be not any) fome little Stone Wall, or like Place, on which to fix the Eye-Glafs, fo as to anfwer that Object-Glafs: And having fo adjulted it, as through both to fee that Star in its defired Station (which may beft be done while the Star is to be feen by Night in fuch Situation, near the Time of one of the Solificcs) let it be there fixed fo firmly, as not to be difturbed (and the Place fo fecured, as that none come to diforder it) and care be taken fo to defend both the Glaffes, as not to be endangered by Wind and Weather. In which Contrivance, I am beholden to Mr. Jobn Cafwel, M. A. of Hart-Hall in Oxford, for his Advice and Affiftance, with whom I have many Years fince communicated the whole Matter.

This Glafs being once fixed (and a Micrometer fitted to it, fo as to have its Threads perpendicular to the Horizon, to avoid any Inconvenience which might arife from Diverfity of Refraction, if any be) the Star may then be viewed from Time to Time (for the following Year, or longer) to fee if any Change of Azimuth can be obferved.

This I thought fit to recommend to your Confideration, who do fo well underftand Telefcopes, and the Managery of them: But when I fuggeft (as a convenient Star for this purpofe) the Sboulder of the Lefler Bear (as being the neareft to the Pole of the Zodiack of any Star that is of the Firft or Second Magnitude) I do not confine you to that Star; but (without retracting that) fuggeft another; namely, the Middle Star, in the Tail of the Great Bear, which (though fomewhat further from the Pole of the Zodiack) is a brighter Star than the other, and may be nearer to us.

But I do it principally upon this Confideration; namely, That there is adhering to it a very fmall Star (which the Arabs call Alcor, of which they have a proverbial Saying, when they would defcribe a harp-fighted Man, That he can difcern the Rider on the Middle Horfe of the Wayn: And of one who pretends to fee fmall Things, but overlooks much greater, Vidit Alcor at non Lunam Plenam) which Hevelius in his Obfervations finds to be diftant from it about nine Minutes and five or ten Seconds: So that befides the Advantage of difcovering the Parallax of the greater Star, if difcernible; the Difference of the Parallax of that and of the leffer Star (being both within the Reach of a Micrometer) may do our Work as well. For if that of the greater Star be difcernible, but that of the leffer be either not difcernible or lefs difcernible, their different Diftances from each other at different Times
of the Year may perhaps (without farther Apparatess) be difeerned by a good Telefcope of a competent Length, furnihhed with a Micrometer, if carefully preferved from being difordered in the Intervals of the Oblervations; and difcover at once, both that there is a Parallax, and that the Fixed Stars are at different Diftances from us; wherein, that I may not be miftaken, my Meaning is not that the Inftrument or Micrometer fould be removed for the obferving of the Leffer Star, but that (when the Azimuth of the Greater Star is taken) by a Micrometer (confifting of divers fine Threads parallel and tranfverfe) may (at the fame Time) be obferved the Diftance of the two Stars, gach from ocher, in that Poftion (both being at once within the Reach of the Micrometer) Which Difance (the Infrument remaining unmoved) if it be found (at different Times of the Year) not to be the fame, this will prove that there is a different Parallax of thefe two Stars.

This latter Part of the Obfervation (of their different Diftances at different Times) I fuggeft as more eafily practicable, though not fo nice as the former: Forit may be dore, I think, without any further Apparatus there than a grood Telefcope of ordinary Form, furnifhed with a Micrometer, (this being caxefully kept unvaried during tie Interval of thefe Obfervations.) And if this Part only of the Oblervation (without the other) be purfued, it matters not though the two Obfervations (near the two Solitices) be, one at the Eatern, the other at the Weltern, Azimuth (whereby both may be taken in the Night-time) for the Diftance mule (at both Azimuths) be the fame. If, after oblerving the Azimuth of the greater Star, it be neceffary to move the Micrometer for meafuring its Diftance from Alcor, that may be done another Night, (and it is not neceffary to be done at one Oblervation) for that Diftance canmot be difeernibly varied in a Night or two.

Concerning the Difance of tbe Fixed Sears; by Mr. Francis Roberts.
N. 209.p. 101.
X. Since the Pythagarean Sy.fem of the World has been revived by Copernicus, (and now by all Mathematicians accepted for the true one) there feemed Ground to imagine, that the Diameter of the Earth's annual Courfe (which, according to our beft Altronomers, is at lealt 40000 Times bigger than the Semidiameter of the Earth) might give a fenfible Parallax to the Fixed Stars, and thereby determine their Diftance. But there are fome Confiderations which make us fufpect that even this Bafis is not large enough for that Purpofe.
M. Huygens (who is very exact in his Aftronomical Obfervations) tells us, He could never difcover any vifible Magnitude in the Fixed Stars, though he ufed Glaffes which magnified the appatent Diameter above 100 Times.

Now, fince in all likelihood the Fixed Stars are Suns, (perhaps of a different Magnitude) we may, as a reafonable Medium, prefume they are generally about the Bignefs of our Sun.

(241)

Let us then (for Example) fuppofe the Dog-Star to be fo. The Diftance from us to the Sun being about soo Times the Sun's Diameter, it is evident, that the Angle under which the Dog-Star is feen in Mr. Huygens's Telefcope, nuut be near the fame with the Angle of its Parallax to the Sun's Diftance, or Semidiameter of the Earth's annual Courfe; fo that the Parallax to the whole Diameter can be but double fuch a Quantity as even to $\mathrm{Vin}^{2} \mathrm{I}$. Hihugens's 11 nice Obfervation is alcogether inferfible.

The Diftance therefore of the Fixed Stars feems hardly within the reach of any of our Methods to determine : But from what has been laid down, we may draw forne Conclufions that will much illuftrate the prodigious Vaftnefs of it.

1. That the Diameter of the Earth's annual Orb (which contains at leaft 160 Millions of Miles) is but as a Point in comparifon of it; at leaft it mult be above 6000 Times che Diffanice of the Sun: For if a Star Ahould appear through the aforefaid Telefcope half a Minute broad, (which is a pretty fenfible Magnitude) the true apparent Diameter would not exceed $18^{\prime \prime \prime}$, which is lefs than the 6000° th Part of the apparent Diameter of the Sun ; and confequently the Sun's Diftance not the 6000th Part of the Diftance of the Star.
2. That could we advance towards the Stars 99 Parts of the whole Diftance, and have only rooth Part remaining, the Stars would appear little bigger to us than they do here: For they would fhew no otherwife than they do through a Telefcope which magnifies an hundred-fold.
3. That at leatt 9 Parts in 10 of the Space between us and the Fixed Stars can receive no greater Light from the Sun, or any of the Stars, than what we have from the Stars in a clear Night.
4. That Light takes up more Time travelling from the Stars to us, than we in making a Weft-India Voyage (which is ordinarily performed in fix Weeks:) That a Sound would not arrive to us from thence in 50000 Years, nor a Cannor-Eullet in a much longer Time. This is eafily computed, by allowing (according to Mr. Newton) io Minutes for the Journey of Light from the Sun hither, and that a Sound moves above 1300 Feet in a Second.
XI. Among your Aralick Books in the Library of Merton College (of which you have above forty, which abound with the Doctrine and Obfervations of the Heavens) in the Ilchanic Tables, by the Care of that famous Perfian Cboaga NVafrodinus Tufus, I have found it reprefented in a fhort Page, what were the Latitudes and what the Longitudes of fome of the principal Fixed Stars, according to the Obfervations of divers Aftronomers. This litele Canon I have eniarged, as you fee, partly from your own Stock, and N. isf. $p . j 67$ partly from others. I would not pretend to have done any great Matter in

> VOL. I.
$1 i$

(242)

this, but that the prefent Age may have fome Notion of the Aftronomy of the Ealt, where it is plain this Science had its firt Original. Certainly there are many Things that recommend to us the Aftronomy of the Eaftern People: The peculiar Felicity and Serenity of the Regions in which they obferved; the Largenefs and Accuracy of their Machines, being fo great that we can hardly conceive how they applied them to the Heavens; befides the great Number of Obfervers and Writers, ten Times more than the Greeks or Latins can boaft of; to which you may add, that their Princes were ten Times more powerful and munificent, who fupplied ingenious Men with Wealth, and a neceffary Apparatus for Celeftial Obfervations. But what the Arabian Aftronomers have juftly reprehended in Cl. Ptolomy, the great Conftructor of the Celeftial Art; how diligently they diftinguifhed and meafured the fmalleft Parts of Time by Drops of Water, by vaft Sun-Dials, nay (which you will wonder at) by the Vibrations of a pendulous Thread; how fkilfully and accurately they were converfant in that great Attempt of Hu man Ingenuity, concerning the Extent and Diftances of the two great Luminaries and of our Earth; are too much for one Epiftle to declare.
A Table of the principal Fixed Stars, according to the Observations of the Ancients.

A Table of the principal Fixed Stars, according to the Observations of the Antients.

[^1]A Table of the principal Fixed Stars, according to the Obfervations of the Antients.

* The Grandfon of Timurus never faw the bright Canopus, nor any other Afronomer of this Catalogue, except the Alcxandrines.

A Table of the principal fixed Stars according to felect Obfervations.

(248)

A Table of the principal fixed Stars according to Select Obfervations.

(249)

A Table of the principal Fixed Stars, according to the Obfervations of the $A n$ tents.

By Ricciolus Bononienfis, in bis Aftronomia Reformata.

Vow. I.
K k
A Table

(250)

The Declinations of eight of the principal Fixed Stars, by the Induffy of the Antients; the noble Tycho Brahe being also consilted.

(252)

The Fixed Stars go forward one Degree in Solar Years.

ACcording to Hipparcbus, Ptolemy, Theo, Proclus, and Alferganus, 100 2. Timoocbaris Alexandrinus, who obferved Spica Virginis in the Years of Nabonaflar 454, 466; Abdorabmanus Salcbius, and D. Petavius, 72 ; or $\frac{60 \times 12}{10}$; and $5^{\prime \prime}$ in every Year.
3. By Fobannides Agyptius, the Compiler of the Hacimic Tables, $\quad 70 \frac{3}{4}$
4. By Fabias Abomanfor, and other Authors of what they called the approved Aftronomy; allo by Nafirodinus Tufus, Cotbodinus Sirafius, Ologbec Prince of the Mogols, Xacbolgius, Abolphetacbus, Abenefdra, Maimonides, and moft of the Moderns - - 70 . and $51^{\prime \prime} .26^{\prime \prime \prime}$.
5. Cbryjococca in Perfic. and Aftron. Anglic. An. Cbr. 1300 - 68 . and $52^{\prime \prime} .23^{\prime \prime \prime}$.
6. By moft of the Arabian Aftronomers under Prince Mamon - $66 \frac{3}{3}$.
7. By Abdorabmanus Sopbius, Baboninus Cborcius, King Alpbonfus, Albätanius of Racca, (which is Callinicos of Mefopotamia) Abdolgadilus Segazius, Levi and Zacutus the Ferws, and fome of the Maragenfian Obfervers 66 . and $53^{\prime \prime} \cdot 33^{\prime \prime \prime}$.
8. By Copernicus, Maftin, and others upon their Credit, -near 7 1. and $50^{\prime \prime}$. $12^{\prime \prime \prime} \cdot 5^{\prime \prime \prime \prime}$.
9. By fome in Cborcius the Arabian - - - $54^{\prime \prime}$. 10. By Tycho Brabe, Kopler, Bullialdus, from the Obliquity of the Zodiac $23 \frac{\frac{1}{2}^{\circ}}{}{ }^{\circ} \cdot 70 \frac{\bar{T}_{\overline{2}}}{}$. and $51^{\prime \prime}$. 11. By Longomontanus - - - $72 \frac{1}{5} \cdot$ and $49^{\prime \prime} \cdot 54^{\prime \prime \prime}$.
12. By Gajlendus - - $70 \frac{1}{5}$. and $5 r^{\prime \prime} .19^{\prime \prime \prime} \cdot 24^{\prime \prime \prime \prime}$. 13. By Ricciolus in Afrr. Reform. from the Obliquity of the Zodiac $23^{\circ} \cdot 30^{\prime}$. $20^{\prime \prime} \cdot 71 \cdot 19^{20} \cdot 50^{\prime \prime} \cdot 40^{\prime \prime \prime}$.
 ferc:

The Ptciates abferueds, in 1671. b.) Mr . Flamflect N. 79. P. 306 5, 3062 .
XII. I have a Tube of $13 \frac{1}{3}$ Feet, furnifhed with Convex Lens's, and a moit exact Townley's Micrometer, with which, in the ferene Nights of the Months of Oriober and November latt pait, I have often meafured the minute Diftances of the Pleidedes, and that with fuch Succefs, that my repeated Obfervations never differed from one another $20^{\prime \prime}$, and very feldom $10^{\prime \prime}$. They are confirmed by the preseding Obfervations of the deceaied Mr. Gafcoigne, and the late ones of Mr. Townley (what great Men!) which were performed in the fame Manner. Thefe moft correct Diftances are as follows.

Stars.	Difances To Me	saccording To Mutus	Stars.	Difances To Me	ces according To Mutus
a	$\frac{1}{3540}$		$\overline{a d}$		
a e	2740	31	e d	2610	22 30
e b	2000	32	d i	1625	
c b	2145	22	a i	1818	
e c	1000	11	f i	2904	
e g	1440		f a	2300	27
c g	1155		ha	2320	
b d	2204	24	f a	044.5	04

Vinc. Mutus adds in his Epiftle to the moft learned Ricciolus (which he mentions in his Appendix to Alm. No. Tom. 1. Pag. 747) that the Weftern brighter Star paffed over the Meridian juft at the fame Altitude as the bright Star of the Pleiades. Relying upon which Notice, and the obferved Diftances, I have affigned their Places to thofe Stars as below; firt having given the fame Place and Latitude to the middle bright Star, as the Caroline Author has thought fit; and the reft alfo being fettled from thence. All which however, if I might follow my own Opinion in this Matter, I fhould advance three Minutes, or two at leaft: And I fhould affign them a greater Latitude from the Ecliptic. At the Beginning of the Year 1672 were conftituted

The Stars of the Pleiades.	Long. ช'	N. Lat.	1 mag
The Weftern brighter Star - - -	244515	40851	5
Between this and the Northerly Telefcopic Star	244647	41921	8
The Weftern and more Northerly	24544^{3}	42819	6
The higheft in the Quadrilaterum	250124	42039	5
The loweft Southern oppofite	250218	$\begin{array}{lllll}3 & 53 & 59\end{array}$	6
The middlemolt bright Star	251948	40000	3
That in the Point to the Eaft	$\begin{array}{lllll}25 & 41 & 29\end{array}$	35219	5
The upper Telefcopic of the Eaftern Stars	254255	35651	7
tnother Telufcopic Star - - -	$\left\lvert\, \begin{array}{ll}25 & 1404\end{array}\right.$	34237	9

XIII.

(2£4)

A Nebulous Star, XIII. I. Between the Great Dog and the Ship I lately difcovered a Nebu-
by M. Cafini.
by M. Canini. lous Star, which was very beautiful to behold, if it was viewed with large Telefcopes; being compofed of Stars very clofe togethe:. With the Leffer Dog it divides the Heaven into equal Parts.
2. Viewing the Heavens below the Lefler Dog, I found a Nebulous Star, broad and very thick, fet with fmall Stars. I fuppofe this to be the fame as was olderved by Mr. Caflini.
XIV. Ain. 1664. I difcovered the firf Star in the Head of Aries to be a s.sur suris a cicuble Star ; by Dr. Hook. Ptil. Coll. N. 4 . p. 108. Marg.

Cbangis among f the ITixed Stars, by S. Montanari. N. 73.
p. 2202. Marg.

Sy Mfr. Flamsteed.
Jlid. p. 5^{67} double Star, made of two confiderable Srars, fo near as not to be difcovered two, but by a Glals of lix or eight Feet long.
XV. I. There are wanting in the Heavens two Stars of the fecond Magnitude, in the Stern of the Ship and its Hatches, according to Bayer β and 2, near the Greater Dog, which were obferved and recognized by me and others, chielly on occafion of the Comet, An. 1664. To what Year we are to refer its Difappearance I cannot tell; but this is certain, that from the 1oth Day of April, 1608, I can no longer obferve any Traces of them; while the other Stars about them, even of the fourth and fifth Magnitude, continue immoveable. I have taken Notice of above an hundred Changes in the other fixed Stars, but not of fuch Confequence.
Ey M. Caffini.
N. $73 . p .2201$.
2. M. Caflini hath difcovered many new Stars; viz. One of the Fourch Magnitude, and two of the Fifth, in Caffopein. He hath difcovered two others towards the Beginning of Eridanus, where we were fure they were not yet about the End of the Year 1664 . confidering that this Place of the Heavens, where paffed the then appearing Comet, was diligently beheld by many, who perceived divers others finall Stars, without obferving thofe two. The fame hath alfo obferved, towards the Arétick Pole, four of the Fifth or Sixth Magnitude.

He hath alfo obferved, That the Star which Bayerus puts near that which he marketh in the Figure of Urfa Minor, appears no more; that that which is marked A, in the Figure of Andromeda, is alfo difappeared; that in lieu of that which is marked v, at the Knee of the fame Figure, there are two others more Northward; and that that which is ξ, is very much diminifhed; the Star which Tycho placeth at the Extremity of Andromeda's Cbain, and calls it of the Fourtl Magnitude, is now fo fmall that one can fcarce fee it; and that which is in his Catalogue the 20th of the Conftellation of Pifces, is now no more feen.

The Nows Star in Pectore Cygni ; b; M. Hevclius. N. 19. p. 349.
N. 21 . P. 372 .
3. On the 24 th of Sept. (St. N.) 1666 , I have obferved that New Star in Peqiore Cygiri, (which from the Year 1662 until this Time, hath been almoft altogether hid) not only with my naked Eye, like a Star of the Sixth or Seventh Magnitude, but alfo with a very great Sextant. It is ftill in the very. fame Place of the Heavens where it was from Ann. 1661 to almoft 1662 . For its Diftance from Scbeat Pegafi hath been by me found $35^{\circ} \cdot 51^{\prime} \cdot 20^{\prime \prime}$, and from Marcab, $43^{\circ} \cdot 10^{\prime} \cdot 50^{\prime \prime}$. which Diftances are altogether equal to thote which I obterved Amm. 1658. the Firf of Nivember. For the Diftance from Scbiat

Sibeat at that Time was $35^{\circ} \cdot 51^{\prime} \cdot 20^{\prime \prime}$. and from Marcab, $43^{\circ} \cdot 10^{\prime} \cdot 25^{\prime \prime}$. where that former from Scheat exactly anfwers to the Recent; and that from Marcab, 'tis true, differs in a very few Seconds; but that Difparity is of no moment, fince it only proceeded from thence, that this New Star is not yet fo diltinetly to be leen as at that Time, when it was of the Third Magnitude. It is therefore certain, that it is the felf-fame Star which Kepler did firft fee Ann. 1601, and continued till Ann. 1662. He that will obferve this Star, muft take care left he miftake the Three more Southern ones of the Sixth Magnitude ; the higheft of which is diftant from Scheat Pegafi, $36^{\circ} \cdot 25^{\prime} \cdot 45^{\prime \prime}$. the middlemoit from the fame $37^{\circ} \cdot 25^{\prime} \cdot 20^{\prime \prime}$. and the loweft $3^{8^{\prime \prime}} \cdot 4^{\prime} \cdot 30^{\prime \prime}$.

An. 1662. Nov. 28. That new Star in the Swan's Breaft, which for N. 1344 p. 8550 fome Time, from Ail. 1662, was intirely hid, the Heaven being clear, feemed as it were to revive.
An. 1666. Sept. 21. It appeared to the naked Eye, even when the Moon mined. Sept. 24. It was leis than thofe three preceding in the Neck, and farcely feemed of the fixth Magnitude.

An. 1670. Aug. 26. It feemed fenfibly to increafe, though not yet greater N. 6. p. cosgo than Stars of the lixth Magnitude. Sept. 3, It feemed fill to increafe. 8, We found it itill increafing. Oitob, 13, It appeared plainly enough.

Ahn. 1671. Apr. 2. . It hardly appeared greater than in the foregoing Year, N. 134. p. 8550 for it was equal to Stars of the fixth Magnitude.

An. 1671. Fun. 26. It almot feemed greater.
An. 1672. March 29. It ftill feemed to increafe.
An. 1675. Fuis 22. It appeared ftill as a Star of the fixth Magnitude.
An. 1677. It was not yet arrived to its former Magnitude, which was N. x54.p. 85400 that of the third, nor had it attained its ufual Brightnefs and Splendor, as it appeared in the Years $1657,1658,1659$; for it did not yet Shine but as a Star of the fixth Magnitude.

Ann. 168 1. Aug. 18. The new Star in the Swon's Neck was hardly to be feen by the naked Eye becaufe of its Smallnefs and Oofcurity, yet at laft was ${ }^{P b .162 .}$ found by the Telefcope.
4. I. Don Antbelme, a Cartbufian at Dyon, on the 20th of Fuine, An. Tbe New Star, 1670 , difcovered a Star of the Third Magnitude beneath the Head of Cygnus, Cybaii fituated in the Section of the two ftreight Lines, one of which goeth from N. 6 . A . 209 ? Lyra to the neareft of the Quadrangle in the Dolphin, and the other from the Eagle to the Star, which is on the Top of the Upper Wing of Cygnus. He fent the News of this Difcovery to M. L'Abbe Mariotte, one of the Royal Academy, who communicated it to the reft. They all agree 'tis a New Star, though M. B- oppnfed it at firft, affirming it to be in Bayerus's Tables; but chey prove that Star in Bayerus to be another; giving for Diflinguifmment thefe Meafures.

Longis

In the Beginning of $\mathcal{F u l y}$, this Star was obferved to decreafe: $\mathcal{F u l y} 11$, it faree appeared of the Fourdh Magnitude.

Aug. 10. It was of the Fifth, and continued to decreafe till it wholly dilappeared.
Anno 1671. March 17, D. Antbelne fpied it again of the Fourth Magnitude.

April 4. M. Cafini found it greater than the two Stars of the Third Magnitude that are below in the Conitellation of Lyra, and a little fmaller than that in the Beak of Cygnus, but more radiant.

April 9 . He found if a little diminifhed, and almoft equal to the greateft of the two Stars that are below in Lyra.

The 12 th , it was equal to the leatt of there two Stars.
The 15 th, he perceived that it increafed, and found it equal the fecond time to the greateft of thele two Stars.

From the 16 th unto the 27 th, it appeared of different Magnitudes, being fometimes equal to the biggeft of thefe two Stars, fometimes equal to the leaft, and now and then between both.

But the 27 th and 28 th, it was become as big as the Star in the Swan's Beak.

The 3oth, it appeared a little clearer; and the firt fix Days in May it was greater.

The 15 th of May, it was feen fmaller than the fame Star.
The 16 th , it was in Bignefs between the two Stars that are below in $L y$ $r a$: And ever fince the hath ftill diminihhed.

Thus this Star hath been twice in her greatef Splendor; firft on the $4^{\text {th }}$ of April, and the fecond time in the Beginning of May.
3. Mr. Herelius. I write you this to acquaint you with a certain remarkable Obfervation, and at the fame Time to let you know my Mind of the Matter. I mean of that new fixed Star, almoft of the third Magnitude, about and below the Swan'; Head, and conficicuous among the unformed Stars. Its Longitude is now $1^{\circ} \cdot 52^{\prime} \cdot 26^{\prime \prime} \cdot m$ and Latitude $47^{\circ} \cdot 25^{\prime} \cdot 22^{\prime \prime}$, as plainly appears by my Obfervations, An. 1670 . Fuly 25. There is no Reafon to doubt but that this is intirely a new Star, and aitogether inconfpicuous in the Heavens in the Year 1660. For it happened that in the Years $1659,1660,1661$, I obferved almoft all thofe Stars, that appear in the Conftellation of the Swan, with the utmoft Diligence and with proper Inftruments; and fo took Notice
of all thofe about the Neck and Head, and meafured their Diftances from feveral fixt Stars. But I found no Star of the third Magnitude in that Place where the above-mentioned new Star is now to be feen; which if it had been there I mut have feen it. So that, firlt, I am fure from hence, that in the Years 1660 and 1661 this Star was not yet vifible ; and then it clearly appears from Bayer's Uranometria, that this now mentioned new Star did not appear in the Year 1603 , and confequently not to Tycho, and much lefs to Hipparchus. For Bayer would have found a Star of that Magnitude, fince he defcribes one of the fixth Magnitude not far from it; as may be feen in his Conftellation of the Swan. But perhaps you will fay, this is the very fame that you call a new one; for fince Bayer did not obferve the Stars with proper Inftruments, it may eafily be, that he might err a Degree or two from the true Place, But this cannor be the Thing, fince that fmall Star Atill continues in the fame Place where Bayer puis it, nor is it greater than a Star of the fixth Magnitude, as he obferved it. For, as I have lately found, it is diftant from Pegafus's Mouth $32^{\circ} \cdot 39^{\prime} .00^{\prime \prime}$. and from Pegafus's Right Knee $39^{\circ} \cdot 23^{\prime} \cdot 45^{\prime \prime}$. Hence its Longitude comes out $00^{\circ} \cdot 06^{\prime} \cdot 28^{\prime \prime \prime}$. $\mathrm{my}^{\prime \prime}$, and its Latitude 46°. $11^{\prime} .14^{\prime \prime}$ North, to the current Year 16\%0, in Fuly. But the new Star is diftant from Pegafus's Mouth $32^{\circ} \cdot 31^{\prime} \cdot 25^{\prime \prime}$. and from the Right Knee of Pegafius $3^{8^{\circ}}$. 18 . $50^{\prime \prime}$. From which Diftances the Longitude is found to be $1^{\circ} \cdot 52^{\prime} \cdot 26$. «n, and Northern Latitude $47^{\circ} \cdot 25^{\prime} \cdot 22^{\prime \prime}$. So that this new Star is plainly different from that of the fixth Magnitude obferved by Bayer, though thefe two are not above two Degrees removed from each other. And from what is faid it is manifeft, that this new Star did not fhine among the other Stars, neither $A n .1603$, nor $A n .1670$.

When it was firft obferved by me, as to Magnitude and Brightnefs it was not inferior to the Star in the Eagle's Breaft, mulefs that its Light was a little more obtufe. As to its Situation in refpect of the other Stars, it was placed in a Right Line with that in the bending of the upper Wing of the Srean, and that in the Shoulder of the Eagle; as alfo with the bright Star of the Harp, and that in the Rbombus of the Dolphin, which is the more Northern of the middle ones. It made an Equilateral Triangle with that in the Head and Beak of the Sivai.

It wonderfully decreafed in the Month of September, fo that on the 14 th N. $66 . p .2028$. of OEzober I could not obferve it at all with my Sextant, though I ufed all my Induftry for that Purpofe.

An. 1671. Apr. 29, I obletved again. It exceeded that in the Swan's N. 73 -p, 2n97. Beak, and likewife that in the bending of the lower Wing of the Swan, and was almoft equal to that in the Scran's Breaft, except that it fhone with a Light a litele more dull and reddifl. But upon what Day it firt began to thine I dare not affirm. This I ain fure of, that it was not confpicuous in the Months of December, Fanuary, or even Februory. For after Oizob. 14, when it ceafed to be feen, I remember I often fought for it in its Place, but it did not appear. Therefore as far as I can recollect, it hardly came into Sight again before the Beginning of March, or rather later. On April 30, I meafured its Diftance from the other fixed Stars. It is diftant from the Vol. I.

258)

Swan's Tail $20^{\circ} \cdot 55^{\prime \prime} \cdot 20^{\prime \prime}$. From the bending of the upper Wing of the Swan $17^{\circ} \cdot 47^{\prime} \cdot 50^{\prime \prime}$. From the Head of Serpentarius $34^{\circ} \cdot 19^{\prime} \cdot 40^{\prime \prime}$. fo that it ftill continues in the fame Place where it was.
N. r $_{3}+$ p. $\Sigma_{5} 6$. May the ${ }_{1} 7$ th, it feemed fomething lefs than the Sroon's Beak, and that in the Shoulder of the Eigle, as alfo duller in its Light; but greater than that in the Point of Sagitta, and almoft equal to that following in the Body of the Harp.

May 25. It feemed lefs than on the 2gth of April, when it was firft feen, fo that it leemed to decreafe. Lefs than that in the Swon's Beak, or than that in the bending of the Southern Wing; or even lefs than thofe in the Belly of the Harp and the Eagle's Shoulder. It appeared hardly greater than the leffer of the two in the Swan's Foot, and that in the Breaft of the Eagle.
fun. 26. It appeared lefs than that in the Swan's Neck, fo that it had decreafed notably.

Fuly 3. Lefs than that in the Sroon's Neck; and on the 18th it hardly feemed equal to Stars of the fifth Magnitude.

Aug. 2. It hardly appeared of the fixth Magnitude, nay lefs than all the other Stars about the Neck and Head of the Swan. It only twinkled now and then.

Sept. It. It was not to be feen any more.
N. $81 . p_{0}^{-4} 48$.
N. $134 \cdot \hat{p} \cdot 85 \%$ 854.

The Nebulofa in the Girdle of Anciromeda; by M. Bulliaidus. N. $25 \cdot p .459$. Tbe Nezw strar in Cullo Ceti; by Mr. Bullialdus. rbid.

Ann. 1672. Mar. 6. I obferved it again; but it can hardly be feen with the naked Eye.

Mar. 29. It hardly appeared of the fixth Magnitude; from which Time to An. 1667. it came no more into Sight, though I often fought for it very diligently,
5. Ann. 1667. in Fan. The Nebulofa in Andromeda's Girdle (which may well enough be feen by the bare Eye) appeared much obfcurer than the Year before. In the Months of February and March I did not fee it.
6. 1. Ann. 1667. Fan. 20. The Nerw Star in the Neck of the Wbale, did approach to the Bignefs of a Star of the fixth Magnitude, and grew bigger afterwards.

Feb. 12. I faw it at leaft of the Fourth Magnitude.
Feb. 24. It was equal to the Stars of the Third Magnitude, fhining very bright.

Feb. 26. and 27. It appeared yet to increafe.

By M. Hevelius. N. 25. p. 4^{60}. N. 134 . p. 855 .
2. Ann. 1667. In the Beginning of \mathcal{F} anuary this Star did not appear.

Fan. 23. I found a little Star of the Sixth or Seventh Magnitude about the fame Place where the faid Nerw Star ufes to appear. But it then feemed to me not the genuine Nero Star, but another; to wit, preceding the Nerw, whofe Longitude in An. 1660. was defined by me, $\gamma^{2} 5^{\circ} 43^{\prime} 3^{\prime \prime}$, and the Latitude $14^{\circ} 41^{\prime} 32^{\prime \prime}$.

Fcb. 2. It appeared very bright, and that, when the Moon fhone, of the Bignefs of that in the Mout's of the Whale, or Nodo Lini; from which time I always obferved it to grow bigger.

(259)

Mar. 13: I did ftill find it extremely bright, but could not by my naked Eye, becaufe of the vivid Crepufcle, and the low Sight of the Star, accurately determine its Magnitude.

An. 1668. Octob. 26. The new Star in the Wbale's Neck was firft feen, N. 132. p. 955. but like the fmalleft of the fixed Stars.

Nov. 7. The new Star in the Wbale's Neck was almoft equal to the middle Star in the Mouth.

Ain. 1669 . Fan. 28. It was lefs than that in the Mouth.
Sept. 26. It appeared like a Star of the fixth Magnitude.
OEF. 16. It was greater and brighter than that in the Mouth.
Oit. 27. It was equal to the bright Star in the Jaw.
Nor. 19. It was greater than that in the Mouth, and lefs than that in the Jaw.

An. 1670. Aug. 27. It fhined with very much Light, and was almoft equal to the Stars of the fecond Magnitude in the Whale's Jaw.

Sept. 3. It was very bright, and on the 8th was equal to the Whale's $J a w$.
To the middle of the Month of OEFober it was almoft equal in Magnitude N. 66. p. 20:s. to that in the Wbale's Jaw, and nearly exceeded it in Brightnefs; fo that this Year it was of the fecond Magnitude, and greater than in the former Years, excepting $A n$. 1660, when I found it to be even greater than the Whale's Jaw. At other Times I do not remember that it exceeded Stars of the third Magnitude. It is therefore certain, that it did not always appear of the fame Magnitude or Brightnefs, however it may be in its greateft Increafe.

Dec. 5. It had fo dwindled away, that it was hardly equal to a Star of N. 134. p. 8560 the fixth Magnitude.

An. 1671. Aug. 14. It was equal to the Star at the Cheek, nay it feemed to be fomething larger.

Sept, 12. It was equal to that in the Mouth, of the fourth Magnitude.
OiF. 30. It appeared to be hardly of the fixth Magnitude.
Nov. 3. It appeared no more.
An. 1672. Aug. 9. It fhined with very bright Rays, and was greater than that in the Mouth, and lefs than that in the Jaw.

Sept. 17. Lefs than that in the Cheek, was hardly of the fourth, nay of the fifth Magnitude, and on the 25 th was hardly of the fixth Magnitude.

From about the Month of October to December 23, 1676, it did not once ${ }_{\text {Ibid. p. }} 8_{54 .}$ come to view, though I directed my Eyes towards it very attentively, whenever I applied mylelf to Obfervations on a clear Night.

An. 1676. Dec. 10. I remember very well, I could not fee the new Star in lbid. p. 85%. the Wbale's Neck, though I obferved very many little Stars in that Pari of the Heavens.

Dec. 23. The Heaven being very clear, we faw very plainly the new Star in the Whale's Neck, It thone with fo much Brightnefs, and was of fuch a Magnitude, that it was not only equal to, but even exceeded the Jaw of the Wbale.

Dec. 3^{1}. It was rather greater than the Jaw, that is, of the fecond Magnitude.

An. 1677. Fan. I, It again mone very brightly, rather greater than the

(260)

Whale's Jaw, and rather greater than that in the Extremity of the Wing of Pegafus, and Marcab, in Colour and Light not unlike to the Jaw. Yet I remember to have obferved formerly, when it was of the fecond Magnitude, that it was a little whiter and brighter.
Phil. Coll.
N. 5.p. 162 .

By M. Cafin:
N. 123. P. 565°

An. 168 r. Aug. 18. The new Star in the Wibale's Neck this Night, tho' the Moon was full and fhining, was greater than that in the Wbale's Mouth, but yet not equal to the bright Star in the Jaw.
3. An. 1676. March. I viewed the new Star in the Whale's Mouth, which had difappeared for fome Years, being immerfed in the Sun's Beams, at the Time of its greateft flining. Now it plainly exceeds Stars of the third Magnitude.

By Mr. FlamRe3a.
1b.d. p. 567.
A netu Star in
Ericanus; by
M. Calfini.
N. ${ }_{35} \cdot$ p. 68_{3}.

A New Star in
Taurus; by
AI Calini.
N. 82.p. 4046 .

To find the Aphelia of tbe Planers direefly; by M. Cafini. Confidered, iy Mr. Nic. Mercator.
N. 57.p. 1168. Mat. An. 1670.

Fig 137.

4. For eight Months before, I have often feen the new Star in the Whale's Breaft, which was not lefs than Mr. Cal $\sqrt{1} n i$ mentions.
5. Merch 10. 1668. Not far from the Star in Eridamus, which is called the 14th by Bayerus, there appeared a Star equal to the brighteft of the 4 th Magnitude, almoft in the fame Place where was obferved the Comet of An. 1664. Dec. 31. which Star was not then feen, nor at other Times ellewhere, nor is defcribed in any Catalogue, on any Globe or Map, that I can learn; which therefore I deem to be a New one, that is, of New Appearonce.
6. The Comet, Anino 1672, had (on the if of April, N. S.) paffed 45' beyond the moft Northern Star of the Head of Taurus, and was diftant I° 43^{\prime} from the Star that was neareft to that towards the South. M. Caffini having confidered thefe two Stars, obferved that the Second is not lefs bright than the Firf, and yet that Bayerus hath not marked it; and that at firft fight it feems that Tycbo hath left it out in his Catalogue: For he puts four Stars in the Place he calls in Quadrilatero Cervicis; and he fpeaks mot of this, which is the fifth, and maketh, with the other four, an irregular Pentagon. This Omifion of Bayerus, and the Denomination which Tycbo ufeth to denote thefe Stars, which fuits not with the Number nor the Configuration that now appears, do adminifter Caufe to doubt whether the Star in queftion be not one of thofe that appear from Time to Time.
XVI. 1. Mr. Caffini fuppofes, that to the Planet moving in an Elliplis two R'git Lines are extended from the two Foci, one of which is the Line of mean Motion, and the other of true Motion. Now the Conftruction is this.
L is the Center of the Concentric $\mid B I$ is perpendicular to $R H G$.

ABCDE.
BLD is the Diameter.
$\mathrm{BA}, \mathrm{BC}, \mathrm{BP}$, are appearing Intervals.
$D E, D F, D Q$, are Intervals of mean Motion.
$B E, B F, B Q$, as alfo $D A, D C, D P$, are Right Lines.
$B E$ cuts $D A$ in H; $B F$ cuts $D C$ in $G, B Q$ cuts $D P$ in R.
RHG is a Right Line.
Demonflration. I. The moft illuftrious and Right Reverent Setb Ward, Bifnop of Salifury, in his Exmmation of the Philolaic Aftronomy, has
taught us a Method, from the mean Anomaly of the Planets being given, to find the true one, which is thus:

C is the Center of the Ellipfis A E P, F the Focus about which the mean Motion is performed, S the Focus of the true Motion, A the Apogeum, P the Perigeum, E the Planet, A F E the mean Anomaly, A SE the true Anomaly, F ET a Right Line, ET $=$ SE. S T is a Right Line.

In the Triangle SF'T are given, 1. SF, the Diftance of the Foci. 2. $\mathrm{FT}=\mathrm{FE}+\mathrm{ES}=\mathrm{AP}$. 3. AFT the external Angle, or the mean Anomaly, equal to the Sum of the Angles F S T and T. Therefore F S E may be found, or the true Anomaly, equal to the Difference of the Angles F S T and T; thus,

As balf the Sum of the Sides FT and F S, is to balf the Difference of the fame, So is the Tangent of balf the Sum of the Aingles F S T and Γ to the Tangent of balf their Difference.

But the Half fum of the Sides F T and FS is found, by fubifituting for F T its Equal A P, whofe half is A C, which added to CS, half of F S, makes the Semi-fum A S, the Planets greatef Diftance.

Then if from the Half-fum A S be taken the leffer Side F S, there remains the half-difference of the Sides F A equal to P S, the leaft Diftance of the Planet. Then from the mean Anomaly to find the true one, the Rule is,

As AS, the greoteft Diftance of the Planet, is to P S the least Diflance, fo is the Tangent of balf the mean Anomaly to the Tangent of balf the true Anomaly.

Corol. i. If $S E$ is continued as far as V, fo that $E V=F E$, and the whole SV = Axis A P; the Angle V of the Triangle F S V will be half the Profthapherefis F ES, and therefore equal to the half-difference of the Angles of the mean and true Anomaly, that is, of the Angles AF E and A SE. (And the external Angle A F V is equal to half the Sum of the fame Angles A FE and ASE) by taking away the Semi-difference VFE from the greater A FE; whence arife thefe two Analogies,

1. As the Sine of baif the Sum of the mean and true Anomslies A F V, to the Sine of balf the Difference of the fante V; so is S V, equal to the tranjverfe Axis A P, to S F the Difance of the Fori.
2. As the Sine of balf the Sum of the meain and true Anomaly A F V, to the Sine of the true Anomaly, FSV; fo is SV, or the Axis A P, to FV the Subtenfe of the true Anomaly; and fo is the Semi-axis A C, to the Semi- Jubtenfe VX or F X.

Corol. 2. If in the fane Triangle F S V, from the middle Point X of the Subtenfe F V, be raifed the Perpendicular X E ; it will divide SV into two Parts, one of which VE is equal to the Line of mean Motion FE, the other $S E$ is the Line of true Motion itfelf.
2. Let a be the Center of the Concen- $\mid c d b$ is the Angle of half the true tric cbfi.
c ad the Diameter, and likewife the Line of the Apfids.
cb the Arch of the true Anomaly, to which anfwers, dithe Arch of mean Anomaly; therefore Anomaly, and
$d c i$ the Angle of half the mean Anomaly.
$c i$ and $d b$ are Right Lines, which interfect one another in g.

Fig. 119.

(262)

From the Point of Interfection g let fall $g b$ perpendicular to $c d ;$

$$
\text { Then } d b . b g:: \text { Radius. Tang. } b d g \text { or } c d b \text {. }
$$ And $c b . b g::$ Radius. Tang. $b c g$ or $d c i$. Therefore $d b \times$ Tang. $c d b=b g \times$ Rad. $=c b \times$ Tang. $d c i$. Wherefore $d b, c b:$: Tang $d c i$. Tang. $c d k$.

That is, $d b$ will be to $c b$, as the Tangent of half the mean Anomaly to the Tangent of half the true Anomaly: And therefore by the Rule above-mentioned, as the greateft Diftance of the Planet to the lealt Diftance. Therefore $d b$ will be equal to the greaten Diftance of the Planet, $c b$ will be equal to the leaft, and $a b$ to the Eccentricity..

And fince the fame Thing may be demonfrated in the fame Manner of all the other Points of Interfection, that is, that Perpendiculars from them to the Line $c d$ will fall upon the Point b, 'ris neceffary that a Right Line joining thofe Interfections muft be congruous with the Perpendicular $b g f$.
3. Drawing the Diameter $b a k$, make the Arch $k l=i d$, and draw $k c$ and $b l$ cutting one another in p. From b upon $b g f$ let fall the Perpendicular br, and the fame is parallel to the Line of Apfids $c d$. Then the Angle $r b s$ will be the half-difference of the Arches of the true Anomaly $c b$ and of the niean $d i$. Then from the fame Point b let the Right Line $b \beta$ be drawn, making an Angle with $k b$ equal to the Angle $r b s$, and meeting the Line of Apfids in β; then the Angle $\beta a b$ of the Triangle $a \beta b$ will be the Meafure of the Arch $c h$, or of the true Anomaly; and $\beta b a$ the halfdifference of the true and mean Anomaly, by Conftruction; and the external Angle $c \beta b$ (equal to the two internal and oppofite Angles $\beta c b$ and $\beta b a$, and therefore compounded of the true Anomaly and its half-difference from the mean) will be the femi-fum of the true and mean Anomaly. Therefore by the firft Analogy of the firt Corollary, as the Sine of $c \beta b$ to the Sine of $\beta b a$, fo is Radius $a b$ to the Excentricity $a \beta$. But we have demonftrated above, that $a b$ is equal to the Excentricity. Therefure the Point β is congruous with the Point b.

Then from b let $b t$ be raifed perpendicular to $b b$. I fay, that this being continued will fall upon the Point of Interlection p. For the Triangles $r b s$ and $b b t$ are fimilar by Conftuction. Wherefore alfo the Triangle $b p k$ is
 the fame Arch $c h$, are equal; as alfo the Angles $p b k$ and $g b i$ are equal, as infitting upon equal Arches $k l$ and $i d$. Therefore the third $b p k$ is equal to the third $b g i$. And from Equals $p b k$ and $g b i$ taking away Equals $b b t$ and $r b s$, there remain Equals $p b b$ and $g b r$. Whence I argue thus, $s r b$ $=t b b$, and $r b s=b b t$; therefore $b s r=b t b$, and therefore the Complements of thefe to a Semicircle are equal, that is, $r s i=b t k$, and sig= $t k p$. Therefore alfo $i g s=k p t$, which being taken from Equals $i g b$ and $k p b$, there remains $h g s=b p t$, and $g b r=p b b$. Therefore alfo $b r g=$ $b b p$. But $b r g$ is a Right Angle, and therefore alfo bbp is a Right Angle. And fince by the Conftruction $b b t$ is a Right Angle, thence $t b$ will make a Right Line with $b p$. Aind fince the fame Thing may be demonftrated after the fame Manner of any other Interfection of Lines from b and k, drawn to congruous Points of the true and mean Anomaly; it is plain, that

(263)

not only the Right Line that joins the Interfections, will pars through the Point b, but alfo the Line $b b$ will be perpendicular to the fame joining Line. 2E.D.

Corollory. If from any Point of the true Anomaly, fuppofe b, to the correfponding Point i of the mean Anomaly, a Right Line $b i$ be drawn; $b f$ perpendicular to $c b d$, being drawn from the Center of Excentricity b, will cur $b i$ in s, in the Ratio of the Line of the mean Motion to the Line of the true Motion.

For by the latter Analogy of the firft Corollary, $b b$ is the Semi-fubtenfe; therefore by the fecond Corollary, a Perpendicular $b t$ erected at b cuts the Diameter $b k$ in t, in the fame Ratio that the Line of mean Motion has to the Line of true Motion. Therefore $r s$ or $b f$ cuts the Line $b i$ in the fame Ratio in s; becaufe of the Similitude of the Figures $t b b k p b b$ and $s r b i g h r$ juft now demonftrated.

But from the above-quoted Method of the Right Rev. Dr. Ward, for finding the firft Inequality, it will not be difficult to produce fill another Way of inveftigating the Apogeum and the Excentricities, which is not lefs direct and Geometrical, and admits of any Number of Obfervations; which I fhall explain in a few Words. The Lovers of Aftronomy may find feveral Ways in the Right Rev. Author's Aftronomia Geometrice, to which therefore I refer them. But now

Let l and d be the two Foci of the Ellipfis, t and u two Points of the Planct's true Motion, $t u$ an Arch of the Ellipfis, which from l is viewed under the Angle $t l u$, and from d under the Angle $t d u$; alfo the Diftance of the Foci $l d$ is viewed from t under the Angle $d t l$, and from u under the Angle $d u l$. I fay, the Difference of the Angles $t l u$ and $t d u$ is equal to the Difference of the Angles $d t l$ and $d u l$.

For fince all the three Angles of the Triangle lux taken together are equal to all the three Angles of the Triangle $d t x$ when taken together, if from each be taken away the equal Angles $l x u$ and $d x t$, the Sum of the other two $u l x+l u x$ will be equal to the Sum of the others $t d x+d t x$; and if from thefe equal Sums be taken away Unequals, that is $u l x$ from the former and $t d x$ from the latter; the Difference of the Remainder $l u x$ and $d t x$ will be equal to the Difference of the Angles taken away $u l x$ and $t d x$. Which was the Thing propofed.

With Center l, and Diftance of the tranfverfe Axis $m n$, let a Circle $a b c$ be deferibed, whofe Arch $a b$ is again viewed from l under the Angle $a l b$, and from d under the Angle $a d b$. Alfo the Diftance of the Foci $l d$ is viewed from a under the Angle $l a d$, and from b under the Angle $l b d$. Therefore again the Difference of the Angles $a l b$ and $a d b$ is equal to the Difference of the Angles lad and $l b d$. But by Corol. i. the Angle lad is half the Angle $l u d$, and the Angle $16 d$ is half the Angle $l+d$. Therefore the Difierence of thefe Angles $l a d$ and $l b d$ is equal to half the Difference of the Angles $l u d$ and $l t d$. Therefore alfo the Difference of the Angles alb and $a d b$ is equal to the half difference of the Angles $u l t$ and $u d t$, the former of which is the apparent Interval of the two Obfervations, and the latter

(264)

is the Interval of the mean Motion. Therefore the Difference of thefe In tervals being given, half this Difference is alfo given, or the Difference of the Angles $a l b$ and $a d b$. But $a l b$ is the fame as the given Angle $u l t$; therefore the Angle $a b d$ is alfo given, under which the Arch $a b$ is viewed from d.

In a like manner it may be fhewn, that the Difference of the Angles $t l y$ and $t d y$ is equal to the Sum of the Angles $l t d$ and $l y d$; alfo the Difference of the Angles $b l c$ and $b d c$ is equal to the Sum of the Angles $l b d$ and $l c d$. And fince $l b d$ is half of $l t d$, and $l c d$ half of $l y d$; the Sum of $16 d$ and $l c d$ will be equal to half the Sum of the Angles $l t d$ and $l y d$, that is, the Difference of the Angles $b l c$ and $b d c$ will be equal to the half Difference of the Angles $t l y$ and $t d y$, of which the firt is the apparent Interval of the two Oblervations, and the latter the Interval of the mean Motion. Therefore the Difference of thefe Intervals being given, half of this Difference is alfo given, or the Difference of the Angles $b l c$ and $b d c$. But $b l c$ is the fame with the given Angle $t l y$; therefore the Angle $b d c$ is allo given, under which the Arch $b c$ is viewed from d.

Whence it appears, that the mean and apparent Intervals of the Oblervations being given, the Angles alfo are given, under which any Arches of the Circle $a b c$ are feen from d, which Arches are intercepted by Lines of the true Motion. Therefore by Herigon's Theory of the Planets, lib. I. cap. 3. Prop. 12. Schol. 1. fo many Segments of a Circle may be defcribed, capable of receiving Angles under which thofe Arches are viewed from d, all which Segments will interfect one another in d. Therefore by this Method the A pogees and Excentricities of the Planets may be found by a Geometrical Delineation, and applying any Number of Obfervations: Nor is it more difficult 10 draw Circles than Right Lines.
But to grant what is true, that Mr. Cafini's Geometrical Delineation is fomething more expeditious; it is however to be feared, that if we purfue that Exactnels required by Aftronomers, it requires Diagrams of an enormous Size, and thereby becomes more operole than the Calculation itfelf. But if we make ufe of this, we Shall find both Methods to be equivalent. Now left any one fhould think, that the Difference from the Truth, of the Apogeum and Excentricity found by either Method, is to be impured to an Esror of Calculation; we Mall now difcufs the Hypothefis iefelf.

The Invention of the F.lliptic Orbit without any doubt is owing to Kepler; but to derermine by what Degrees of Acceleration and Retardation the Planets move, does not le's belong to the completing the Hypothefis, than to determine the Orbit itfelf. Though from Mr. Caflini's Words, or thofe of his Interpreter, it no where appears; yet it is plain from his Conftruction of the Problem, and from his Analy fis, that he fuppored the Planet, if feen from the upper Focus, to move with an equable Motion. This was becaule Kepler thought the fame, as may appear to thofe who will confult his Writings. But when he perceived that this by no means agreed with the Obfervations, he changed his Cipinion, and elpoufed this, that the Line of the Plance's true Motion defcribed equal Elliptical Areas in equal Times. But

(*257)

dhat Point from. whence the Planet may be feen to proceed exatty with an equable Motion, is no where to be found in the Univerfe, unlefs we have a Mind to make it fluctuating. Yet no Point comes nearer to this equable Motion of the Planet, than that of the upper Focus of the Ellipfis. Nor is any one yet found that will deny, but that Kepler's Area's may fatisfy the Phrenomena; but fince neither he himfelf, nor any cne fince his Time, has been able to exhibit them by a direct Calculation, fome have been apt to blame Kepler, as laying too great a Strefs upon Phyfical Caufes, and thereby departing from Geometry. As though Phyfical Caufes can be contrary to Geometry, or as if the Froblem is lefs Geometrical which is thus propofed, without making any mention of Phyfical Caufes: The Area of the Trilinium being givert, webich is comprebended between the Lines of the Apfids, of the true Motion, and alfo the Elliptical Arch; to find the Angle at the Sun. They that object to this, a departing from Geometry, may take Kepler's Anfwer; Let them go and folve the Problem.

But though Kepler was fo fcrupulous, as not to give up an Hypothefis which, he was fully perfuaded, obtained in Nature, yet it may be free for others to make a Tryal, whether any other Way may be found, by which the firt Inequality of the Planets may be inveftigated by a direct Calculus. Therefore the learned Bullialdus undertook to fearch out by Geometrical Reafonings, in what Path, and with what Degrees of Intenfion and Remiffion the Planets might be urged, fo that by the Rule of equable Motion which was affumed by the Aftronomers before Kepler, we might be brought to that Inequality we behold. The Monuments of that great Man are ftill in being, whence the Lovers of Aftronomy may be informed of his whole Method. The Right Rev. Seth Ward has embraced the fame, and is the firft that has fhewed, that it performs the fame Thing as a Line of equable Motion revolving about the other Focus of the Ellipfis. He has alfo fupplied it with a direct Method of Calculation, the fame which we have recited a little before. So that nothing feems to be farther required, than that-Urania would profper fuch happy Attempts. And in her Name it was that the illufrious Count Pagan, in a Treatife publifhed two Years after, of the fame Tenour, ventured fo far to affert the Truth of this Hypothefis, as to chufe to afcribe to the Ignorance of Aftronomers that Difcrepancy that was difcovered about the Octants. But the learned Bullialdus judged it fafer to hear Aftronomy herfelf, fpeaking as it were by the Mouth of Obfervers; and by his fecond Endeavours he exterminated that Difcrepancy, by a certain Limitation which he annexed to his former Difcoveries. Whence we may finally conclude, that this Hypothefis, on which Mr. Cafini has founded his Inveftigation of the Apogee's and Excentricities, is to far removed from the Truth, as to make Bullialdus's Limitation neceffary; and from that Defect proceeds the Difagreement between the Calculation and the Heavens themPelves.
2. The Annual Motion of the Earth through the Ecliptic occafions an By Mr. Edm. Optical Inequality in the Motions of the other Planets, which is well known Halley. An, 1676. to Aftronomers that embrace the Copernican Syftem, by the Name of the N. $128 . p .6 \mathrm{~S}_{3}$. Vol. I.

* L.

Paral.

(*258)

Parallax of the Orbit. And this Inequality, which without much Labour is derived from Obfervations, I lay down as the ftrongeft Foundation of the following Method. In which, befides Obfervations, nothing elfe is fuppofed, than that the Orbits of the Planets are Ellipfes, and that the Sun is placed in the common Focus of all the Orbits; and laftly, that the Periodical Times of them all are fo well known, that no Error can be perceived at leaft in two or three Revolutions. Thefe Things being granted, firft I muft begin with the Motion of the Earth, which is neceffarily required to account for the Motions of the other Planets.

Let S be the Sun, A B C DE the Orbit of the Earth, P the Planet Mars, which for many Reafons is chiefly to be preferred for this Purpofe. And firft let the true Time and Place be obferved, when Mars is oppofite to the Sun; for then the Sun and Earth coincide in the fame Right Line with Mars: or, if he has Latitude, (which almoft always happens) with that Point where a Perpendicular from Mars falls upon the Plain of the Ecliptic. Thus in the Scheme S, A, and Pare in a Right Line. Again, after 687 Days Mars returns to the fame Point P where he was oppofed to the Sun in the former Obfervation; but as the Earth does not return to A till after $730 \frac{1}{2}$ Days, in B it regards che Sun in the Line S B, but Mars in the Line B P; and the Longitudes of the Sun and Mars being obferved, all the Angles of the Triangle P B S are given, and P S being fuppofed 100000 , in the fame Parts the Length of the Line S B is found. In like manner, after another Period of Mars, the Earth being in C, the Line S C is found, and fo likewife the Lines SD, SE, SF; and the Differences of the obferved Places of the Sun are the Angles at the Sun A S B, B S C, C S D, D S E. Thus we come at laft to this Geometrical Problem, Tbree Lines being given botb in Length and Pofition, meeting in one of the Focus's of an Ellipfis, to find the Lergth of the tranfuerfe Diameter, and the Diflance of the Foci. The Refolution of this Problem may be extended alfo to the other Planets, if, after the Theory of the Earth's Motion is known, we find out (according to the Method propofed by the Right Rev. the Bifhop of Satisbury in his Geometrical Aftronomy, Lib. 2. Part 2. Cap. 5.) three Diftances of any Planet from the Sun with its Pofitions. Now becaufe the Bifhop fuppofes the Planet fo to move in its Orbit, that in equal Times it compleats equal Angles at the other Focus of the Ellipfis, and upon this Suppofition builds his Calctilation; it will not be improper to fhew how the fame Thing may be done without that Suppofition; which Obfervation obliges us to reject.
Let S be the Sun, A L.BK the Earth's Orbir, P the Planet, or the Point in the Plain of the Ecliptic marked out by the Perpendicular from the Planet; A B the Line of the Earth's Apfids. Firft let the Longitude and Latitude of the Planet be obferved, and alfo the Sun's Longitude from the Earth in K; and after a Period of the fame Planet, the Earth being in L, let two Pofitions of the Planet and the Sun be again obferved as before. Now from the obferved Longitudes of the Sun and the Earth's Aphelion are given the Angles AS K, A S L, and confequently the Sides S K, S L. Now in the Triangle K S L are given the Sides K S, LS, and the Angle K S L;
required the Side K L, and the Angles SK L, S L K. Then in the Tri* angle K L P are given K L, K P L the Difference of the obferved Longitudes of the Planet, and PK L the Difference of the Angles S K L lait found, and of S K P the Planet's Elongation from the Sun in the firft Obfervation; required LP. Then in the Triangle LS P are given the Sides L S, L P , and the Angle P L S, the Planet's Elongation from the Sun in the fecond Obfervation; required the Side S P and the Angle L S P; which being found it is, as SP to LP, fo is the Tangent of the Latitude obferved at L, to the Tangent of Inclination or Latitude to the Sun; and as the Co-fine of Inclination to Radius, fo is SP, the curtated Diftance, to the true Diftance of the Planet from the Sun. So at laft we have found the defired Pofition and Longitude. It remains to Thew, how from three given Diftances from the Sun, with the intercepted Angles, to find the middle Diftance with the Excentricity of the Ellipfis.

Let S be the Sun, and SA, SB, S C, three Diftances in due Pofition, and drawing $A B, B C$, let $A B$ be the Diftance of the Foci in an Hyperbola, and $S A-S B=E H$ be the tranfverfe Diameter. Thefe Things being premifed, let that Hyperbolical Line be defcribed, whofe internal Focus is at the Point A, and the Extremity of the longer Line S A. In like manner let B, C, be the Foci of another Hyperbola, whofe Diameter is S B $-S \mathrm{C}=\mathrm{KL}$; from which let the Hyperbolical Line be defcribed, having its internal Focus at the Point B. I fay thefe two Hyperbola's thus defcribed will interfect one another in the Point F, which is one of the Foci of the Ellipfis required; and drawing the Line FA, FB, or F C, either S A $+F A, S B+F B$, or $S C+F C$, will be equal to the tranfverfe Diameter, and S F is the Diftance of the Foci. Thefe being fuppored, the Defcription of the Ellipfis will be very eafy. But whereas the Reafon of this Conftruction may not be obvious to every one, it will not be improper to give fome Illuftration of it. I fay therefore, that from the molt known Property of the Ellipfis, 'tis $S B+F B=S A+F A$, and tranfpofing the Parts of the Equation FB-FA=SA-SB, fo that though we did not know F B and F A, yet their Difference is equal to $\mathrm{SA}-\mathrm{SB}$, that is, to EH. And fince it is from the Nature of the Hyperbola, that it has any two Lines from their Foci to any Point in the Curve, conftantly differing by the Quantity of the tranfverfe Diameter; it is plain that the Point F is fomewhere in the Curve of the Hyperbola, whofe tranfverfe Diameter is equal to $S A-S B$, and its Foci A and B. In a like manner it may be demonitrated, that the Point F is in an Hyperbola, whofe Diameter is SB-SC, and its Foci B and C. Therefore it muft neceffarily be in the Interfection of thofe two Hyperbola's, which, as they interfect one another in one Point only, plainly fhew where the other Focus of the Ellipfis required muft be.

Now that the fame Thing may be performed Analytically, fuppofe it done, and let $\mathrm{FB}=a, \mathrm{~S} a-\mathrm{SB}=\mathrm{FB}-\mathrm{FA}=b, \mathrm{AB}=c, \mathrm{SB}-$ $\mathrm{SC}=\mathrm{FC}-\mathrm{FB}=d, \mathrm{BC}=f$, and let the Sine of the Angle $\mathrm{ABC}=\mathrm{S}$, and the Cofine of the fame $=s$.

Then $c . b:: 2 a-b \cdot \frac{2 a b-b b}{c}$; and $\frac{2 a b-b b+c c}{2 c}=B D$, by 36 . 3. Eucl. And $f . d:: 2 a+d \cdot \frac{2 a d+d d}{f}$; and $\frac{f f-2 a d-d d}{2 f}=B G$, by the fame. Now to abbreviate the Calculation, make $\frac{c c-b b}{2 c}=g$, and $\frac{b}{c}$ $=b$; alfo make $\frac{f f-d d}{2 f}=k$, and $\frac{d}{f}=l$. Then $\mathrm{BD}=g+b a_{0}$, and $\mathrm{BG}=k-l a$. And becaufe in every
$\left\{\begin{array}{l}\text { Obtufe-angled } \\ \text { Acute angled }\end{array}\right\}$ Triangle the Square of the Bafe is equal to the $\left\{\begin{array}{c}\text { Sum } \\ \text { Difference }\end{array}\right\}$ of the Squares of the Sides, and of the double Rectangle of the Sides into the Cofine of the contained Angle; it will be $g g+2 g b a+b b a a+k k$ $-2 k l a+l l a a+2 g k s-2 g l s a+2 k b s a-2 b l s a a$ is equal to the Square of D G. But D G is equal to the Sine of the Angle D F G or D B G drawn into FB or a; (for F B D G is a Quadrilaterum infcribed in the Circle whofe Diameter is F B) therefore SSaa $=g g+2 g b a+b b a a+k k$ $-2 k l a+l l a a+2 g k s-2 g l s a+2 k b s a-2 b l s a a$: Which Equation is eafily refolved, fince it does not exceed an affected Quadratick, and is always compofed of thofe Squares and Rectangles. Yet the Signs and -, becaufe of the different Conftitution of the three Lines, muft be ap. plied to the Rectangles with good Caution.

The Obliquity of tbe Ecliptich, from tbe Obfervations of ibe Ancients: by Dr Ed, Bernard. Sept. Ar. 1684° N. $163 . p$ p. 721 .
XVII. 1. An. 230. before the Birth of Cbrif, Eratofteries found the Ob: liquity of the Ecliptic, $23^{\circ} \cdot 5 I^{\prime} \cdot 19^{\prime \prime} \cdot 31^{\prime \prime \prime} \cdot 5^{\prime \prime \prime}$.

For according to him the Diftance of the Tropicks was $\frac{11}{3}$ of the Circle of the Meridian, or $47^{\circ} \frac{59}{8}$. Ptolemy's Magna Syntaxis, p. 18. 21 . Wherefore which is a very contemptible Difference.

Eratofibenes according to Cleomedes (as derived by Ricciolus) makes it 23 Degrees, and 46 Minutes befides.

Eratofibenes, as corrected by Ricciolus, $31^{\prime}, 5^{\prime \prime}$. (above 23°).
Hipparchus (140 Years before Cbrift) has retained the Obliquity of Eratofibenes. Ptol. Mag. Syntax, p. 18. and p. 60.

Thro, as taken more exactly, $51^{\prime} \cdot 19^{\prime \prime} \cdot 31^{\prime \prime \prime} \cdot 5^{\prime \prime \prime \prime}$.
Yet the Chovarefmic Tables, compiled 830 Years after Cbrift, exhibit the Canonic Obliquity of the Alexandrians, according to a Latin Manufcript of D. Hatton, 5i'.

Pytbeas Maffilienfis, 324 Years before Cbrift, (in Ricciolus) $52^{\prime} .41^{\prime \prime}$.
Arifarchus, before Cbrift 280 Years, by the illuftrous Savil's Computation, $51^{\prime} .20^{\prime \prime}$.

Ariftarchus, as Ricciolus has deduced it, $30^{\prime} .00^{\prime \prime}$.
Strabo the Geographer, $p .93 .30$ Years after Cbrijf, makes it $\div \frac{\square}{\circ}$ of a Circle, or above 23°, yet I more, or 60 .

Nor otherwife Gemminus, in Cbrifis Time, Cbop, iv. Elcm. Afrom. And

(* 26 F)

Tatius, cap. 26. and Proclus of the Sphere. And the Aftrologers in Noddamus the Arabian, Abrabom Abenefdra, Eic.

Noddamus the A.fronomer, who flourifhed about An. Dom. 1200, takes Notice, that the Obliquity was never obferved greater than 24 Degrees, nor lefs than $23^{\circ} \cdot 33^{\prime}$, and yet that it continually decreafes.

Claud. Plolemeus, after Cbrift 140. having often tried it with his Ring and his Table, always found it nearly the fame with that of Eratoffbenes, 51.20.

For the Diftance of the Tropicks was between $47 \frac{2}{3}$ and $47 \frac{3}{4}$. But he chofe for his little Table $47^{\circ} \cdot 42^{\prime} \cdot 40^{\prime \prime}$. Mag. Syntax, p. 18. 20, 21 , and 27. He took nearly the middle, $23^{\circ} \cdot 51^{\prime} \cdot 20^{\prime \prime}$; nor otherwife in his Hy pothefes of the Planets. But Tbeo in his fhorter Tables, for the Sake of Expedition, omits the Seconds. But Ricciolus is miftaken, when from the Climate of Rbodes he deduces the Meafure of the Obliquity for Ptolemy to be $23^{\circ} \cdot 30^{\prime}$.

Pappus of Alewandria, (390 Years after Cbrif) l. 6. Theor. 35. by Ricciolus 30°.

Pappus, as Fr. Commandinus computes it, $50^{\prime} .00^{\prime \prime} .00^{\prime \prime \prime}$.
Theo, (after Cbrif 370 Years) p. 88. more accurately, $51^{\prime} \cdot 20^{\prime \prime} \cdot 00^{\prime \prime}$.
Elfewhere in a round Number, as $p .57$. and frequently in his Morter Tables not yet publifhed, $51^{\prime} .00^{\prime \prime} \cdot 00^{\prime \prime \prime}$.

Almamon the Prince, An. Cbrist. 825. of the Flegira 210 , makes it 23°. 35'. Grav. p. 44. from Eln-Sbatir of Damafous, NiS. Selden. many Aftronomers affifting him. For fo Abenefdras relates, MS. Lat. in the Archives of Digby. Allo an uncertain Aftronomer in Arcbiv. Seld, affirms, that Jabia Ebr Albimanjur, with many other Philofophers, in the Time of Almanion, found the Obliquity to be by Obfervation $23^{\circ} \cdot 35^{\prime}$.

The molt learned $A l$ Noddam, in his Commentaries upon the Aftronomical Works of Hofein Nifaburienfis, fays the fame Thing of the Obfervations of Almamon. To which he adds, that in the fame Age Beni Mufa often obferved the fame Meaiure to be $23^{\circ} \cdot 35^{\prime}$. in the Neighbourhood of Bagdad. MS. Arab. Coll. St. Fobn Oxorn. And this was approved by moft of the Aftronomers that fucceeded. At leaft Ailferganus acquiefces in it in his Aftronomy, Cbap. 5. Mobammed Ebin Gaber Al Batanius (or Bategnius) at Racca; according to Ricciolus, Aus. Dom. 880. Savil. 8go. Gravius P.44. S82. of the Hegira, 269. He died in the Year of the Hegira, 317. An. Dom. 929. In the Hiftory of Abolfaragus, p. 191. Obliq. $35^{\circ} \cdot \mathrm{Co}$.
Il Batanius in this Affair makes no Scruple of preferring his own Obfervations before the Words of Ptolemy, cap. 4, and fays, that being afifted with a very long Albidada, or Parallactical Ruler, in Refemblance of thole of Plolemy, with great Care and Diligence he found ai Racca, that the Diftance of the Tropics was $47^{\circ} \cdot 10^{\prime}$. (that is, $59^{\circ} \cdot 36^{\prime}-12^{\circ}{ }_{2} 6^{\circ}$) and therefore the Latitude of Racca was $35^{\circ \prime}$; which yet Ulocbeg makes 36°. 10' ; Schickard in Curtius, (p.33.) and Ricciolus make it $3^{6^{\circ}}$.
Thabet Ebn Corra, (with Ricciolus, An. Dom. 12:0. more truly gor, in the 289. of the Hegira) found the Obliquity to be $33^{\prime} \cdot 30^{\prime \prime}$.
$(* 262)$
Aivil Hofein Ebn Suphi, 35 . $00^{\prime \prime}$.
Abul Waff Albuziani, and Abn Hamed Sagenienfis, a very ingenious Perfon, (A. D. 987. Heg. 377.) at Bagdad found the Obliquity to be very near 35°.

So a Perfian Author in the Archives of Selden, 35^{\prime}.
In like manner the Perfic Tables of Cry fococca, 35'.
Al Batrunius Abul Riban, (A.D. 995. of the Hegira 385. Abolfaragius puts him at 463 . of the Hegira, or A. D. 1070.) made ufe of a Quadrant whofe Radius was 15 Cubits (Grav. p. 54. from an Arabic Book of Birunius) 35^{\prime}.

But Abu Foafer Alcbazan, with his Affociate Abufaldus Harwanenfis at Edeffa, and others of that Age, (A.D.970.) obferved that the Obliquity did not quite come up to $23^{\circ} \cdot 35^{\prime}$, but was fomething lefs.

Almacn Son of Almanfor (A. D. 1140. Ricc.) $33^{\prime} \cdot 30^{\prime \prime}$. But according to Clavius and Maftlin he made it 33^{\prime} only.

Ifmael Abulfeda Prince of Hama, (A. D. I3II. of the Hegira 7 II.) in his Manuicript Tables Arab. Coll. St. Fobn, retains 35'. o0" . perhaps on the Authority of Almamon.

Prophatius the few, (A. D. 1300. Ricc. 1303. Nieftin in Curtius p. 40. 230 Years after Arzacbel, faith Copernicus) and in Ricciolus, and a Manufeript of Merton College, $32^{\prime} .000^{\prime \prime}$.

Abu Mabmud Al Cbogandi, (A. D. 992. of the Flegira 382.) in the Time of Fecrodaula, with a Sextant whofe Radius was 40 Cubits, and the Limb was divided into Seconds, found the Obliquity lefs than it had ever been taken by any of his Anceftors; that is, $32^{\prime} \cdot 21^{\prime \prime}$.

Hence Noddamus the Aftronomer affirms, (MS. Coll. St. Fobn) that the Sun's greateft Declination was hardly ever found lefs than $23^{\circ} \cdot 33^{\circ}$.

Arzacbel of Spain, (Grav. p. 44. A. D. 1089. of the Hegira 482. Ricc. 1070. Maftlin in Curtius, p. 35. 1075. Copernicus, 1. 3. c. 6. 190 Years after Al Batanius) has propofed the Obliquity $23^{\circ} \cdot 33^{\prime} \cdot 30^{\prime \prime}$. So MS. Coll. Mert. Oxon. where it is faid, that there is a Difference of $17^{\prime} \cdot 30^{\prime \prime}$. between the Obliquity of Ptolemy and that of Arzacbel.

At Maraga the moft noble Perfian Cbojab Nafiroddinus Tufenfis, A. D. 1629. of the Hegira 668. (but Grav. p. 44. 1261. Hegir. 660.) obferved the Obliquity moft accurately, and found it $23^{\circ} \cdot 30^{\prime} \cdot 00^{\prime \prime}$.

This is the leaft of the Sun's greateft Declinations, that has been found to this Day, fays the very learned Commentator upon the Aftronomical Works of Hofein Nifaburienfis.

Ebn Sbatir Damafcenus, MS. Seld. A. D. $13{ }_{3} 63$. fays that he corrected the Obliquity, not neglecting the Sun's Horizontal Parallax, which was found $2^{\circ} \cdot 59^{\prime}$. Hence the Sun's greateft Declination, $23^{\circ} \cdot 31^{\prime} .00^{\prime \prime}$.

Olocbegus the Prince, A. D. 1437. Hegir. 841. with Ali Cufbgius and other Aftronomers, with very great Care and the largef Inftruments, (fee Graves, p. 44.) found the Obliquity $23^{\circ} \cdot 30^{\prime} \cdot 17^{\prime \prime}$. So MSS. Coll. St. Fobn and of the Savilian Library. For Selden's Manufcript makes it $23^{\circ} \cdot 30^{\prime} \cdot 27^{\prime \prime}$.

(*263)

Rabbi Moyses Ben Maimon, the moft learned of the Fews, fays in fad. de Confecratione Calendarum, c. ult. Sect. 4. that the greateft Obliquity of the Zodiac, A. D. 1174, was $23^{\circ} \cdot 30^{\prime}$, very near.

I muft let you know, that I have confulted fearce half of the Oriental Aftronomers, whofe Writings are preferved in the Libraries of the Univerfity of Oxford. But from thefe Obfervations, and fome others which I keep to myfelf from the Vulgar, I conclude, that the Obliquity of the Zodiac has always been the fame from the Beginning of the World. For the latter Ages, as you may perceive, by the Affitance of better Inttruments, have truly corrected the Error and Excefs of the antient Aftronomy.
2. Whether the Poles and Axis of the Earch be really fixed in the Globe, or fubject to be transferred from Place to Place, is an old Enquiry, though now lately revived by Mr. Hook, in his ingenious Eflays upon the great Pole cortininte o u unMutations and Cataftrophes which, in all appearance, have happened to the allered; by Earth's Surface. A neceffary Confequence of fuch a Tranflation of the Poles Nov. An. 1687. would be the Change of the Latitudes of Places, which would increale in ${ }^{\text {N. 190. P. } 403 \text {. }}$ thofe Regions towards which the Poles approach, and decreafe in thofe from which they recede: and under the Meridian, 90 Degrees removed from that in which the Poles flift, the Latitudes continuing the fame, the Meridian Line would only alter; but not two Places confiderably differing in Longitude can be fuppofed, wherein, if there be any fenfible Motion of the Poles, it fhall not be perceived by the Alteration of the Latitude of one or both of them.

The accurate M. Wurtzelbour has lately furnifhed us with the Means of examining this Hypothefis by Obfervation, having fent us the Meridian Altitude of the Sun taken at Nuremberg about the two Solftices in the Year 1686. Fune 10. he found the Meridian Altitude of the Sun $64^{\circ} 2^{\prime} 20^{\prime \prime}$, and the next Day $64^{\circ} 2^{\prime} 25^{\prime \prime}$. And on Decemb. 14. (three Days after the Solitice, wherein the Sun was got two Minutes higher) he found the Meridian Altitude $17^{\circ} 9^{\prime} 10^{\prime \prime \prime}$. wherefore the folftitial Altitude was $17^{\circ} 7^{\prime} 10^{\prime \prime}$. Thefe Heights were taken by an Inftrument of 6 Foot Radius of Brafs; and the Skill and Diligence of the Obferver is not to be doubted.

To compare with thefe, I find among Bernard Waltber's Obfervations, made in the fame City of Nuremberg two hundred Years before, viz. in the Year 1487 . that the Meridian Altitude of the Sun in the Summer Solftice was: obferved by the parallactick Inftrument of Ptolemy, whereby the Chord of the Sun's Diftance from the Zenith was obferved 44890 Parts of 100000 Radius; the fame being obferved by the Concurrence of the Obfervations of feveral Years both before and after. The Arch anfwering to this Chord gives the Sun's Diftance from the Zenith $25^{\circ} 5^{6^{\prime}} 30^{\prime \prime}$, and confequently the Meridian Altirude, its Complement to a Quadrant, $64^{\circ} 33^{\prime} 30^{\prime \prime}$. Again, the fame Year 1487. the Chord of the Meridian Diftance of the Sun from the Zenith, on the Day of the Winter Solftice, was found 118790 , confirmed likewife by many fubfequent Obfervations; the Arch anfwering to this Chord is $72^{\circ} 52^{\prime} 40^{\prime \prime}$. and its Complement $17^{\circ} 7^{\prime} 20^{\prime \prime}$, the Meridian Height of the Sun in the Winter Solftice.

(*264)

Hence it appears, That the Solftitial Heights were very nearly the fame at Nuremberg 200 Years ago as now they are; that of the Summer Solltice being but one Minute differing, the other only 10'; both which may poffibly arife from the Defecis of the Inftruments of thefe Obfervers, being made with Plane Sights : But what I fhall neceflarily conclude from hence, is, That if there be fuch a Motion of the Poles, it is either very flow, or elfe nearly at Right Angles to the Meridian of Nuremberg; in which latter cafe, the Latitudes of Places about Tunking, Siam, Malacca, and Fara, on the one Side, and in our American Plantations of New-Englaid, Virginia, Famaica, \&rc. on the other, ought to change fafteft: But I have never yet heard of any fuch thing obferved by any of our Navigators; whence, if there be fuch a Change of the Earch's Poles, it munt neceffarily require a long time to become fenfible.

Befides, from thefe Obfervations, it appears, That the Obliquity of the Ecliptick has continued unaltered for thefe 200 Years laft paft; that is to fay, that the Angle which the Earth's Axis makes with the Plane of the Eclip. tick or Orb wherein the moves annually round the Sun, has been without fenfible Change in all that Time; which will be very hard to conceive, if we allow a Tranflation of the Earth's Poles; for the Direction of the Axis being perfectly at Liberty, it muft be purely cafual, if it fo hit, that after fuch Change, it make the fame Angle with the Ecliptick as before.

A farther Argument of this Slownefs of the Change of the Poles, is the Latitude of Alexandria, the Habitation of thofe famous Aftronomers of Antiquity, Eralostbenes, Timocbaris, Hipparcbus, and Ptolemy; and for that Reafon it may be concluded, that this, of all the Latitudes the Ancients have left us, ought to be one of the moft Correct. This by Ptolemy is faid to be $30^{\circ} 58^{\prime}$ North, (which he ufes in all his Computations in his Almagist, and feems derived from the Proportion of the Gnomon to its Equinoctial Shadow, as 5 to 3, but in his Geography, 31° juft.) In the Year 1638, the curious and ingenious Mr. Graves, when he went to vifit the Egyptian Pyramids, of which he has given fo good an Account, did, with a fufficient Inftrument, obferve the Latitude of Alexandria, and found it $3 \mathrm{I}^{\circ} 4$ or 6 Minutes more than it is reputed by Ptolemy, and before him by Eratothenes; fo that in about 2000 Years, the Latitude of Alexandria has altered only a few Minutes; and fo few, that the Accuracy of the Obfervations of the Ancients may well be queftioned: But, both being granted, this Motion will amount to no more than a Degree in 20000 Years.

This is not faid with intent to invalidate what Mr. Hook hath from fo good Grounds advanced, viz. That the Ball of the Earth, at leaft the Fluids thereof, being neceffarily of the Figure of a Spheroides prolatus, or flat Oval, whofe fhorteft Diameter is the Axis, and greateft Circle the Equinoctial; if the Poles be fuppofed changed, the Equinoctial will be fo too ; and confequently the Water mult rife and cover thofe Parts from which the Poles recede, and fall off and leave bare thofe Places towards which the Poles approach. By this Means it may be accounted for, how fuch flrange Marine things are found on the Tops of Hills, and fo deep under Ground; and fcarce

(265)

any other Way. But from thefe, and the like Obfervations, it will follow, That if thefe Inundations are produced by any regular Motion of the Poles, it would require a prodigious number of Ages to effect the Changes we may be certain have been. Befides, if the Accels and Recefs of the Sea were after fuch a gradual manner, as when produced by fuch an ealy Tran!ation of the Poles, as can by Obfervation be admitted, thofe Inundations could never be fatal to the Inhabitants ; for that they would always give notice of their coming, fo that the People might provide for their Satety. But the Holy Siriptures, and Pagan Tradition, do unanimoully agree, That the laft great D_{i-} luge was brought to pafs in a few Days, with no previous Notice; fo that the Account we have thereof, could not, by this Hypo:bsis, be made olit, without the Suppofition of a great and fudden Alteration in the Poles of the Earth's Diurnal Revolution: For which, whether we fhould have recourfe to the intelligent Powers, that firft imprefs'd this whirling Motion on the Ball, or leave it to be performed naturally, by the cafual Shock of fome tranfient Body, fuch as a Comet, or the like, whereby the former Axis might be Ioft, and a New Revolution produced, differing both in Time and Pofition from the Old ; I hall not undertake to difpute : Such a Suppofition would include likewife a Change of the Length of the Year, and Eccentricity of the Earth's Orb; for which we have no fort of Authority.

1. As I was wondering how an ordinary Mathematician could mifs fo eafy A fuppord $A l-$ a thing as the drawing a true Meridian, fo far as in the inftance of the old Meridian of Line; Meridian in the Church of St. Potronio in Banonia, which is found by M. Caf. fini to vary 8 or 9 Degrees from the true Meridian of the Place; and in that Jun. An. 1699. of the Meridian of Uraniburge, which is found by M. Picart, and others, to vary 18^{\prime}; I hit upon this Thought, that Meridians muft needs vary. For you know, that (taking it for granted that the Earth moves, \mathcal{E}°.) befides the Diurnal and Annual Revolutions, there muft be alfo a third to account for that Now Motion of the Fixed Stars upon the Pole of the Ecliptick, in about 25000 Years; which is folved by the Direction of the Earth's Axis from one Point to another of the polar Circle. And that Direction being nothing but a certain Wabble in the Earth's Motion, muft needs make the Noon-thade of a Perpendicular not lie always in the fame Line.
2. This being a new Suggeftion, deferves to be confidered: For it is not Confidered by probable that fo careful a Man as Tycho, and thofe concerned in the Church $\begin{aligned} & \text { Drid. . Wallis. } 299 .\end{aligned}$ of St. Petronio, fhould be fo much miftaken in the Meridian Line. But if there be ought of this Nature, it muft arife from a Change of the Terreftrial Poles (here on Earth) of the Earth's Diurnal Motion; (not of their pointing to this or that of the Fixed Stars:) For if the Poles of this Diurnal Motion remain fixed to the fame Place on the Earth, the Meridians, (which pais thro' thefe Poles) mutt remain the fame.
XVIII. I have had the good hap to meafure the Diftances of Mars from The Parallas of two Stars the fame Night; whereby I find, that his Parallax was very fmall, Fhe Samp ${ }^{\text {thed }}$ certainly not $30^{\prime \prime}$: So that I believe the Sun's Parallax is not more than $10^{\prime \prime \prime}$. N 89. . p. 1599.

(266)

To. find the surn's XIX. It may perhaps pafs for a Paradox, if I thould affert, That it is an Tnrrff
Tropical sige surs ,eafier. Matter to be affured of the Moments of the Tropicks, or of the Times by Mrs. Edmund of the Sun's Entrance into Cancer and Capricorn, than it is to obferve the true Halley.
N 215 . p. 12. actnefs the moft accurate can defire; and that without any Confideration of the Parallax of the Sun, of the Refractions of the Air, of the greatelt Obliquity of the Ecliptick, or Latitude of the Place; all which are required to atcertain the Times of the Equinoctial, from Obfervation; and which, being faultily affumed, have occafioned an Error of near three Hours in the Times of the Equinoctials deduced from the Tables of the Noble Tycho Brabe and Kepler, the Vernal being fo much later, and the Autumnal fo much earlier than by the Calculus of thefe famous Authors.

Now before we proceed, it will be neceffary to premife the following Lemmata, ferving to demonftrate this Method ; viz.
I. That the Motion of the Sun in the Ecliptick, about the Time of the Tropicks, is fo nearly equable, that the Difference from Equality is not fenfible, from ${ }_{5}$ Days before the Tropick to 5 Days after, by reafon of the nearnefs of the Apogicon of the Sun to the Tropick of Cancer.
2. That for 5 Deg. before and after the Tropicks, the Differences whereby the Sun falls fhort of the Tropicks, are as the Verfed Sines of the Sun's Diftance in Longitude from the Tropicks; which Verfed Sines in Arches under 5 Degrees, are beyond the utmonft Nicety of Senfe, as the Squares of thofe Arches. From thefe two follows a third;
3. That for 5 Days before and after the Tropicks, the Declination of the Sun falls fhort of the utmoft Tropical Declination, by Spaces which are in Duplicate Proportion, or as the Squares of the Times by which the Sun is wanting of, or paft, the Moment of the Tropick.

Hence it is evident, That if the Shadows of the Sun, either in the Meridian, or any other Azimuth, be carefully obferved about the time of the Tropicks, the Spaces whereby the tropical Shade falls fhort of, or exceeds, thofe at other times, are always proportionable to the Squares of the Intervals of Time between thofe Obfervations and the true Time of the Tropick; and confequently if the Line, on which the Limits of the Shade is taken, be made the Axis, and the correfpondent Times from the Tropick, Expounded by Lines, be erected on their refpective Points in the Axis as Ordinates, the Extremities of thofe Lines fhall touch the Curve of a Parabola. Thus, a, b, c, e, being fuppofed Points obferved, the Lines $a \mathrm{~B}, b \mathrm{C}, c \mathrm{~A}, e \mathrm{~F}$, are refpectively proportional to the Times of each Obfervation before or after the tropical Moment in Cancer.

This premifed, we fhall be able to bring the Problem of finding the true Time of the Tropic by three Obfervations, to this Geometrical one : Having three Points in a Parabola, A, B, C, or A, F, C, given, togetber with the Direction of the Axis; to find the Diftance of thofe Points from the Axis.

(267)

Of this there are two Cafes; the one, when the Time of the fecond Obfervation B is precifely in the Middle between A and C : In this Cafe, putting ${ }^{t}$ for the whole Time between A and C, we Thall have $A c$, the Interval of the remoteft Obfervation A, from the Tropick, by the following Analogy.

As $2 a c-b c$ to $2 a c-\frac{1}{2} b c$, fo is $\frac{1}{2} t$, or $A E$, to $A c$, the Time of the remoteft Obfervation A, from the Tropick.

But the other Cafe, when the middle Obfervation is not exactly in the Middle between the other two Times, as at F , is fomething more operofe, and the whole Time from A to C, being put $=t$, and from A to F, $=s$, $c e=c$, and $b c=b$, the Theorem will ftand thus, $\frac{t t c-b s s}{2 t c-2 b s}=A c$ the Time fought.

To illuftrate this Method of Calculation, it may, perhaps, be requifite to give you one or two Examples.

Ann 1500. Bernard Walter, in the Month of fune, at Nuremberg, obferv'd the Chord of the Diftance of the Sun trom the Zenith, by a large Parallaftick Inftrument of Ptolemy, as follows;

In both thefe Cafes the middle Term is exactly in the middle between the Extremes, and therefore in the former three, $a c=533, b c=477$, and t, the Time between, being 14 Days, by the firf Rule, the Time of the Tropick will be found by this Proportion; as 589 to $827 \frac{1}{2}$, fo $\frac{1}{2} t$, or 7 Days, to 9 Days, $20^{\mathrm{h}} .2^{\prime}$. Whence the Tropick, $A n .1500$. is concluded to have fallen Fune $11.20^{n} \cdot 2^{\prime}$. In the latter three $a c$ is $=107$, and $b c=15$, and the whole Interval of Time is 8 Days $=t$; whence, as 199 to $206 \frac{1}{2}$, fo is 4 Days to $4^{\text {d }} \cdot 3^{\text {h }} \cdot 37^{\text {t }}$; which, taken from the 16 th Day at Noon, leaves $11^{\text {d }}$. $20^{\text {b }} .23^{\prime}$. for the Time of the Tropick, agreeing with the former to the third Part of an Hour.

Again; Ann. 1636. Gafendus at Marfeilles obferved the Summer Solftice by a Gnomon of 55 Feet high, in order to determine the Proportion of the Gnomon to the Solftitial Shade, and he hath left us thefe Obfervations, which may ferve for an Example for the Second Rule.

Fune $\left.\begin{array}{l}19 \\ 20 \\ 21 \\ 22\end{array}\right\}$ St. N. Shadow $\left\{\begin{array}{l}31766 \\ 31753 \\ 31751 \\ 31759\end{array}\right\}$ Parts, whereof the Gnomon was 89428.

Thefe being divided into two Setts, of three Obfervations, each, viz. The 19 th, 20 th, and 22 d , and the 19 th, 2 Ift , and 22 d , we fhall have in the firf three, $c=13$, and $b=7, t=3$ Days, $s=1$; and in the fecond, $c=$ 15 , and $b=7, t=3$, and $s=2$. Whence, according to the Rule, the r ${ }^{\text {th }}$ Day at Noon the Sun wanted of the Tropick a Time proportionate to one Day, as $t t c-s s b$ to $2 t c-2 b s$; that is, as roo to 64 in the firft Sett, or 105 to 62 in the fecond Sett; that is, $1^{d} \cdot 17^{\text {h }} \cdot 15^{\text {d }}$. in the firft, or $1^{\text {d }}$. $17^{\text {h. }}$. 25^{\prime}. in the fecond Sett: So that we may conclude the Moment of the Tropick to have been \mathcal{F} une $10^{d} \cdot 17^{\mathrm{h}} \cdot 20^{\prime}$. in the Meridian of Marjeilles.

Now that thefe two Tropical Times thus obtained, will be found to confirm each other's Exactnefs from their near Agreement, appears by the Interval of Time between them, viz. $1^{\mathrm{d}} \cdot 2^{\mathrm{h}} \cdot 30^{\prime}$. lefs than 13^{6} Ffulian Years, whereof $1^{\text {d }} \cdot 1^{\mathrm{b}} \cdot 8^{\prime}$. arifes from the Defect of the Length of the Tropical Year from the Julian, and the reft from the Progreffion of the Sun's Apggron in that Time; fo that no two Obfervations made by the fame Obferver in the fame Place can better anfwer each other, and that without any the leaft Artifice or Force in the Management of them.

What were the Methods uifed by the Ancients to conclude the Hour of the Tropicks, Ptolemy has no where deliver'd; but it were to have been wifhed that they had been aware of this, that fo we might have been more certain of the Moments of the Tropicks we have received from them ; which would have been of fingular Ufe to determine the Queftion, Whether the Sun's Apogaon be fixed in the Starry Heaven; or, if it move, What is the true Motion thereof? It is certain, that if we take the Account of Ptolemy, the Tropick faid to be obferved by EuECcmon and Meton, funii 27 Mane, Ann. 432. ante Cbrifum, can no ways be reconciled, without fuppofing the Ob fervation made the next Day, or fune 28 in the Morning. And Ptolemy's own Tropick, obferved in the 3 d Year of Antoninus, Anr. Cbrijf. 140. was certainly on the 23d, and not on the 24th Day of Yune, as will appear to thofe that fhall duly confider and compare them with the Length of the Year deduced from the diligent and concordant Obfervations of thofe two great Aftronomical Genii, Hifparcbus and Albatani; eftablifhed and confirmed by the Concurrence of all the Modern Accuracy. For the Obfervations give the Length of the Tropical Year, fuch as to anticipate the Fulian Account only one Day in 300 Years; but we are now fecure, that the faid Period of the Sun's Revolution does anticipate very nearly 3 Days in 400 Years; fo that the Tables of Piolemy, founded on that Suppofition, do err about a whole Day in the Sun's Place for every 240 Years. Which principal Error in fo fundamental a Point, does vitiate the whole Superftructure of the Almageft, and ferves to corivict its Autbor of want of Diligence, or Fidelity, or both.

But to return to our Method: The great Advantage we have hereby, is, That any very high Building ferves for an Inftrument, or the Top of any high Tower or Steeple, or even any high Wall whatfoever, that may be fut-

(269)

ficient to intercept the Sun, and caft a true Shade, and make the Spaces large and fair; though the Heighth and Diftance of the Building, and Pofition of the Plane upon which you receive the Shade, and of the Line on which you meafure the Spaces, be not exactly known. But it is convenient that the Plane on which you take the Shade be not far from perpendicular to the Sun, at leaft not very oblique, and that the Wall which cafts the Shade, be ftreight and fmooth at the Top, and its Direction nearly Eaft and Weft. The principal Objection is, That the Penumbra, or Partile Shade of the Sun, is, in its Extremes, very difficult to diftinguifh from the true Shade; which will render this Obfervation hard to determine nicely. But if the Sun be tranfmitted through a Telefcope, after the Manner ufed to take his Species in a Solar Eclipfe, and the upper Half of the Object-Glafs be cut off by a Paper pafted thereon, and the exact upper Limb of the Sun be feen juft emerging out of it, or rather continging the Species of the Wall, (the Pofition of the Telefcope being regulated by a fine Hair extended in the Focus of the EyeGlafs) I am affured, that the Limit of the Shade may be obtained to the utmoft Exactnefs. I fhall only further advertife, That the Winter 'Tropick by this Method may be more certainly obtained than the Summer's; by reafon that the fame Gnomon does afford a much larger Radius for this manner of Obfervation.
XX. I have found it neceffary to make new Solar Numbers, becaufe in my old I have neglected to apply Refractions in all the Altitudes above ${ }_{30}$ Degrees; wherein yet Reafon and fome little Experience hath fhewed me, they are not infenfible. I found S. Cafini's Obfervations, which I

The Solar Nusm. bers correCfed;
by M. J. Flamby M.
fteed.
N. IIO. P. 2200 Jan. An. 1675° took from Ricciolus his Aftronomia Reformata, much more accurate than Tycbu's, and therefore fought out Numbers that might anfwer them. The Apogaum I found it neceffary to promote 44 Minutes; fo that Anno Ineunte 1655 , it might be in 7.30 . co. and to make the greateft Equation only $1^{\circ} \cdot 54^{\prime} \cdot 13^{\prime \prime}$. whereby I found the Pbonomena would be anfwered much more accurately than I expected, and as near, all things confidered, as I could defire.

But ftill I was uncertain, whether the Refractions in the faid Cafini's Tables were juft Meafures or not, and I had no Conveniencies for making Trial. At laft I thought on this Expedient, which fully fatisfied me; viz.

I confidered, That if fome of thofe Obfervations of the Diftances of \& from the © by Day, and from the Stars in the Night preceding or following, were fkilfully examined, they might fhew me the true Quantity of the Equations of the Sun's Orb, or rather the Difference of his Mean and Equal Motion. I turned over his Progymnafmata, and pitched on two: The firt made Ann. 1585, March 5. $4^{6^{\circ}} \cdot 4^{\prime}$. and $7^{\text {h. }} 12^{\prime}$. poft Meridiem: whereby I found the © at $4^{\mathrm{h}} \cdot 42^{\prime}$. was $94^{\circ} \cdot 47^{\prime}$. in the Antecedence of the Lucida Calcis II; the fecond made Ann. 1585, September 15. 5^{h}. 15^{\prime}. and $6^{\text {b }}$. 55°. Mane. Where-from (applying and confidering the Re-

(270)

fractions in both) I found the Sun at $6^{\circ} \cdot 35^{\mathrm{h}}$. to be $74^{\circ} \cdot 30^{\prime}$. in Confequence of the Lower Head of II. The Difference of Longitude betwixt thefe two Stars is $17^{\circ} .59^{\prime}$: And therefore, now the Sun, in Confequence of the Lucida Calcis II. 9°. 29°. So that the Sun's apparent Motion betwixt the Year 1582. Mar. 5. $4^{\mathrm{h}} \cdot 42^{\prime}$. and the Year 15 8 $^{\circ}$. Stptemb. 15. 6^{h}. 55°. Mane, (befides the whole Revolutions) was $187^{\circ} \cdot 16^{\prime}$. but the Mean Motion is $191^{\circ} \cdot 2^{\prime}$. greater than the Apparent by $3^{\circ} \cdot 46^{\prime}$. which parted in proportion to the Equation of the Earth's Motion, collêted for thofe Times from my New Tables, gives the greateft Equation of the Orb, $1^{\circ} \cdot 54^{\prime} \cdot 15^{\prime \prime}$. confenting, to my wonder, without any wrefting of the Obfervations, with that, which I deduced from Caffizi's correct Meridional Altitudes.

The Sun's Motion, by the Tables which I now ufe, grounded on this E. quation, is leis than Tycbo's by no lefs than 9. That great Equation made him commit no fimall Errors, and put him upon ftrange Shifts to hide and folve them. So that all his Obfervations of the Planets in their Oppofitions to the Sun are to be corrected before we attempt to reprefent them by Numbers; for his Errors in the Sun's Place made him err fometimes 5 or 6 Hours in the Time of the Oppofition; which muft be reformed.

The Equality of
Nusseral Days;
by.
Proffflor of M_{a} thematicks at Seville.
N. 118 . p. 426.
XXI. There is ftill no fmall Difagreement among Aftronomers, how great the Prolthaphærefis is in equating Time; fo that Longcmontanus confeffes, that he has found no greater difficulty in all his Aftronomical Labours : Which when I took notice of, I confidered in fome Obfervations of the Heavens Det. An. 1676. Clock, with a Meridian Line artificially contrived, I obferved the Sun's Tranfit over the Meridian every Day, with which my Clock agreed exactly, and if at any time it difagreed, it very feldom difagreed two Minutes, which I rectified when there was occafion. So that perfifting for three Years, and duly obferving the Sun in the Meridian, whenever it could be done, (which in this part of the World is very often,) I was fatisfied at laft, that no natural Day, at this or that Seafon of the Year, had a longer Revolution than another Day; whence I can boldly pronounce, that all natural Days are equal, and that if there fhould be any minute Difference among them, it is quite infenfble. This I was willing to make known, that I might releafe Aftronomers from this Scruple, which has perplexed fo many, and ftill perplexes them every Day; though the Equation of Tycbo, becaufe of the Obliquity of the Ecliptick, muft not be rejected.
Refuted; by Mr . Flam F eed. ibia. p. 430.
2. How Natural Days can be equal, and yet Tycho's Equation be admitted, I confefs I cannot comprehend. For becaufe of the unequal Right Afcenfions of equal Parts of the Ecliptick, one Equinoctial Day will be fhorter than a Tropical Day, by 40 Seconds of an Hour ; and 14 Tropical Days are longer than fo many Equinoctial ones by the fixth Part of an Hour, or ten Minutes. But this Difference I think mult be greater than that the Profeffor of Seville fhould not perceive it in his Obfervations; and therefore in examining them, I imagine he admitted Tycho's Equation.

(271)

Now if we fuppofe that the Revolutions of the Primum Mobile are all equal, (which was never denied by any that received the Ptolemaick Hypotbefis,) it will however neceffary follow, that the Equation of Time is not to be rejected, which proceeds from the unequal Motion of the Sun in his Orbit; for whereas the Apogee advances daily only $57^{\prime \prime} .10^{\prime \prime}$. but the Perigee $61^{\prime} .15^{\prime \prime}$; the Apogee will return fooner by $16^{\prime \prime}$ (or in the Time in which the Primum Mobile revolves $4^{\prime} .5^{\prime \prime}$.) from Noon to the Noon of the Day following, than the Perigee can. Yet fometimes the Equation proceeding from this Caufe admits of a llower daily increafe, that is, $8^{\prime \prime}$ daily at moft when it is fwifteft, and in 15 Days it hardly amounts to the Quantity of two Scruples, which I believe is taken away in his Clock, by that Correction of two Scruples which he mentions: Which therefore this learned Man hould confider.

But laftly, if he is more inclined to admit the Copernican Hypotbefis than the plolemaick, in that alfo the fame Equations will follow, fuppofing the Revolutions of the Earth to be Ifochronal. Indeed I confers, that the Equation of Time proceding from the unequal Motion of the Sun in its Orbit, may be removed, and directed the contrary Way, if we fuppofe the Earth, or the Primum Mobile, to make unequal Revolutions: But if he will confider the Nature of Time, he will eafily underfand, that it is impoffible all its Inequality fhould be removed.

A Table of the Equation of Days, to be
entered with the Place of the Sun.

	r	8	II	σ	Ω	m
G	'Sub.'	Add."	'Add."	'Sub."	'Sub."	'Sub."
o	745	1 II	43	59	43	
I	$\begin{array}{lll}7 & 26\end{array}$	I $\quad 24$	4 0	11 15	45	53
2	$7 \quad 7$	I 37	$\begin{array}{ll}3 & 56\end{array}$		$\begin{array}{ll}5 & 46\end{array}$	37
3	$6 \quad 48$	$1 \begin{array}{ll}1 & 49\end{array}$	$\begin{array}{ll}3 & 51\end{array}$	I 42	5	21
4	$6 \quad 29$		3.45			15
5	$6 \quad 10$	12	$3 \quad 39$		48	
6	$5 \quad 51$	$2 \quad 23$	$\begin{array}{lll}3 & 32\end{array}$	$2 \quad 19$		30
7	$5 \quad 31$	$2 \begin{array}{ll}2 & 33\end{array}$	$\begin{array}{ll}3 & 25\end{array}$		5.46	- 12
8	511	243	$3 \begin{array}{ll}3 & 17\end{array}$		5	oAdd 7
9	$4 \quad 51$	53				
10	431	33	30	38	36	35
11	4 II	313	2 51			
12	3.52	322	$2 \begin{array}{ll}21\end{array}$	$3 \quad 32$	$\begin{array}{ll}5 & 25\end{array}$	
13	$3 \quad 33$	$3 \quad 30$	$2 \quad 31$		5 19	40
14	314	$3 \quad 37$	21		13	59
15	255	343	10	44		19
16	$2 \quad 37$	348	20	414	458	40
17	$2 \quad 19$	353	I 49		$4 \quad 49$	31
18		57	I 37	34	439	22
19	43	4	25		430	44
20	126	35	1 I 3		20	6
21	19	4	-	459	49	$4 \quad 29$
22	- 5^{2}	410	- 49		357	45^{1}
23	- 35	$4 \quad 12$	- 37	513	345	513
24	- 19		- 24	19	32	35
25				24	19	57
26	OAdI2	4	OSub. 3		35	19
27	- 27	4	- 16	533	51	41
28	- 42	4	- 29	$5 \quad 37$	37	2
29	- 57		- 44		$2 \quad 23$	23
130	111	4	- 59	543	28	744

Tabula

A Table of the Equation of Days, to be entered with the Place of the Sun.

		m				*
G	'Add.	'Add."	'Add."	'Add."	'Sub	'Sub."
-	744	1534	$13 \quad 25$	- 59	II 48	$14 \quad 36$
I	85	15	13	- 27	12	$14 \quad 22$
2	25	15	1248	OSub. 5	$12 \quad 19$	$14 \quad 21$
3	45	15	$12 \quad 29$	- 35	$12 \quad 35$	14 13
4	95	$15 \quad 57$	$12 \quad 10$	14	$12 \quad 50$	$14 \quad 4$
5	25		11		13	$13 \quad 55$
6	9844	16	II 30	3	$13 \quad 19$	1346
7	10 3	16	11 Io	3^{2}	13 32	$13 \quad 37$
8	$10 \quad 22$	16	$10 \quad 49$	31	13	1327
9	IO 41	16	$10 \quad 28$		$13 \quad 55$	1317
10	11			57	14	I3
11	II 19		942	$4 \quad 25$	1414	12
12	II ${ }^{88}$	16	$9 \quad 17$	$4 \quad 53$	$14 \quad 22$	1244
13	1157		5^{1}	$5 \quad 20$	$14 \quad 29$	1232
14	1215	16	25	5	$14 \quad 35$	$12 \quad 19$
15	1233				14	126
16	$12 \quad 50$	15	$\begin{array}{ll}7 & 3 \mathrm{I}\end{array}$		14.45	II 52
17	13	15	7	$7 \quad 9$	$14 \quad 50$	11137
18	13	15	$\begin{array}{lll}6 & 38\end{array}$	$\begin{array}{ll}7 & 34\end{array}$	14	II 21
19	13	15	12	77 8	$14 \quad 56$	II
20	I3 49	15	45		14	1046
21	$14 \quad 2$	15	$\begin{array}{ll}5 & 19\end{array}$		$14 \quad 59$	1028
22	1414	15	52	9	1500	1010
23	14	I5	26	931	15	52
24	$14 \quad 37$	$14 \quad 52$		$9 \quad 53$	1500	34
25	$14 \quad 47$	$14 \quad 40$		10	$14 \quad 58$	1
26	$14 \quad 57$	$14 \quad 27$	3	10	14	
	15	14	231	$10{ }^{1} 1$	14 51	8 80
28	15 16	13		II 10	14	8 22 8
29	$15 \quad 25$	$13 \quad 42$			$14 \quad 42$	
30	$15 \quad 34$	132			14.26	$7 \quad 45$

Vol. I.
XXIII.

(274)

Spots obferved in the Sunn ; by Mr. Boyle. N. 74-p 2216. appear'd a Spot in the lower Limb of the Sun a little towards the Southe its Equator, which was entered about $\frac{1}{50}$ of the Diameter of the Sun itfelf, being about $\frac{\frac{r}{0} 0}{}$ in its fhorteft Diameter, of that of the Sun ; its longeft, about $\frac{1}{40}$ of the fame. It difappeared upon Wednelday Morning, May 9 . though we faw it the Day before about io in the Morning, to be near about the fame Diftance from the Weftward Limb, a little South alfo of its Equator, that it firft appeared to be from the Ealtward Limb, a little South alfo of its Equator. Ir feem'd to move fafter in the middle of the Sun than towards the Limb. It was a very dark Spot, almoft of a Quadrangular Form, and was enclofed round with a kind of dufkilh Cloud.

We firft obferved this very fame Spot both for Figure, Colour, and Bulk, to be re-entered the Sun, May 25 , when it appeared to be in a Part of the fame Line it had formerly traced; and was entered about $\frac{4}{33}$ of its Diameter about 70^{\prime} Clock in the Afternoon. At the fame time there appear'd another Spot, which was juft entered, and appear'd to be entered not above $-\frac{1}{3}$. Part of the Sun's Dianieter. It appeared to be longeft towards the North and South, and fhorteft towards the Eaft and Weft. There Seem'd to be difpers'd about it divers fmall Clouds here and there.

Spots oblerved

in the $S_{x m} ;$ by M. Picard.
N. 74 p. 2238 . N. 74. p. 2238.
N. 75.
p. 2253.

By M. Calfini.
N. 74. p. 223^{8}.
N. 75. p. 2250.
XXIV. 1. Arn. 1671. M. Picard, at Sea near the Texel, obferved a Spot in the Sun from Aug. 3. S. N. to the 1gth. It appear'd at firft like the Tail of a Scorpion, but on the 19th Day refembling a Melon-Seed.
2. Aug ir. (S. N.) 1671. About 60^{\prime} Clock at Night, M. Cafnini, with a three-foot Glats, remark'd in the Sun's Difk, two Spots very dark, diftant from its apparent Center about the third Part of his Semidiameter. 'They were in the Southern Part of the Sun, and their Elongation trom the Parallal of the Equator paffing through the Center of the Sun, was about $\frac{1}{60}$ part of his Diameter. The Time which lapfed between the Tranfit of the Sun's Center and that of the firft of thefe Spots, was $22^{\prime \prime}$. or $23^{\prime \prime}$. the Semidiameter of the Sun then paffing in 66". The firft of thefe Spots, being looked upon with a Telefcope of 17 Feet long, appeared with a fomewhat Oval Eigure; the other was oblong and a little curved, like the Hebrew Letter Fod; and both together were furrounded by a Corolla, or Coronet, made up of little dark Points, which conformed itfelf to the Figure of the Spots, confidered as they were join'd together.

Aug. 12. He perceived that they were nearer his Center. The Time between the Paffage of the Sun's Center, and that of the interior Edige of the Coronet which encompaffed them buth, was then of $16^{\prime \prime}$. At 70^{\prime} Cock it was but of " 5 ". and the Southern Limb of the Coronet touched the Parallel paffing through the Sun's Center. The firft Spot was compofed of two others almoft round, and conjoined. The fecond reprefented the Shape of a Scorpion. The third was round. And they were all three environed with a Coronet, which was compofed, as we faid above, of abundance of little obfcure Pricks. This Coronet appear'd to be clearer than the reft of the Sun, when looked
looked upon with the fhort Glafs, and darker when feen with the long. Without it there were other Points, but very black ones; viz. Five near the round Spot on the South-Side, and another near the Scorpion's Tail on the North-fide.

At 80° Clock 48^{\prime}. the Figure of the Scorpion was feen divided into feveral Pieces, as if the Tail and Arms had been cut off. The Northern Point appear'd no more, there remaining none but thofe on the South-Side; and the Length of the Inciofure of all the Spois, comprehended between the Extremities, was of 1^{\prime}. $15^{\prime \prime}$. and the Breadth of $30^{\prime \prime}$.

The fame 12 th Day at 6 in the Evening, he found no great Change in the firft Spot. The other two were fevered into 5 diftinct ones, compars'd about with a Coronet, together with 5 black Points, which flood in a ffrait Row, and after another Manner than they did in the Morning. From 6 at Night unto 7, the Time when the Paffage of the Sun's Center, and that of the Coronet's Limb, was found to be at one time of $8^{\prime \prime}$. and another time of $7 \frac{\pi}{2}$, the Diftance of the Snots unto the Parallel paffing through the Sun's Center, was near the fame on the North-fide with what it had been obferved to be in the Morning on the South-fide.

Aug. 13. Between the Rifing of the Sun, and half an Hour paft 6 in the Morning, the Edge of the Coronet was turned to a Point on the South fide, and was diftant from the Equator on the North-fide, half a Minute; and there was but a Second of Time from the Paffage of the Sun's Center unto the Paffage of the fame anterior Edge of the Coronet.

At 80° Clock 30^{\prime}. the fore Edge was in the fame Horary Circle with the Center of the Sun: So that in one Day and Half, thefe Spots have run thro' very near the third Part of the Sun's apparent Semidiameter, which giveth an Arch of 19 Degrees and a Half of the Circumference of the Sun's Body; and confequently their Diurnal Motion about the Sun's Axe hath been of 13 Degrecs; and the time of their Periodical Revolution, as far as we could conjecture in fo little time, mult be about 27 Days and a Half.

Ang. 14. At 6 in the Morning, there paffed 15". of Time between the Paffage of the anterior Limb of the Croum, and the Paffage of the Sun's Center through the fame Horary Circle: And then the Southern Limb of the Crown was a Minute and an half diftant toward the North from the Parallel of the Fquator, paffing through the fame Center of the Sun. The Figure of the firf Spot was almoft the fame with that of the Day before. The fecond had taken the Form of an Heart, the Point of which was turned to the North-fide, and its Bafe between the South and the Eaft. Three other finall Spots, difpofed triangle-wife, fond over the faid Bafe, and were accompanied with two others upon a Line turned Southward. And they were all encompaffed by a Crown running out into a Point on the South-fide; and on the North-fide, Eaftward, it had an Appondix.

Aug. 15 At 6 in the Morning, there paffed $27^{\prime \prime}$. butween the Paffage of the anterior Limb of the Crown, and that of the Sun's Center through the fame Horary Circle. The Southern Limb of the fame Crown was two Minutes and an half diftant from the Parallel of the $\nVdash q u a t o r$, paffing through $\mathrm{N} \mathrm{n}_{2}$
the Center of the Sun, whofe Diameter paffed in $2^{\prime} .9^{\prime \prime}$. through the fame Horary Circle. The firt Spot had a little changed the Figure; the fecond was quadrangular, longer from Eait to Weit than from North to South: It appeared bigger than ordinary, and had witlal on its fides, within the compafs of the Crowen, three other fmall Spots. There were alfo feen four more without the faid Crown on the South-fide.

Aug. 16. At 6 in the Morning, there was $27^{\prime \prime}$. between the Paffage of the Sun's anterior Limb, and the Paflage of the anterior Limb of the Crown through the fame Horary Circle; and $3^{8^{\prime \prime}}$. between the Paffage of the anterior Limb of the Crowon, unto the Paffage of the Sun's Center. The Southern Limb of the Crozon was $3 \frac{1^{\prime}}{2}$ off from the Parallel of the Equator, paffing thro' the Center of the Sun towards the North: And the Obfervation having been made yet more exactly at half an Hour paft 7 of the fame Morning, this Diftance was found of $3^{\prime} 33^{\prime \prime}$. The Figure of the firt Spot in the Beginning of the Obfervation, differ'd not much from that of the precedent Day; but afterwards it was feen divided into two. The fecond, whtch likewife feemed to be the fame in the Beginning, was afterwards divided into three, accompanied with black and dark Points without the Crowen on the South-fide. The fame Day at 60^{\prime} Clock, and ${ }^{15}$ '. at Night, the Figures of thefe Spots were much changed. There were 5 Spots enclofed in the Crown; The two foremoft were Part of that which had been feen in the Morning as one; the two others following thofe two firf, were Part of the fecond in the Morning; and without there were 5 Points on the South-fide, and two more a little further to the North; which Points were ranged as in another Area made up of other Points, fo finall that they could fcarely be perceived.

Aug. 17. in the Morning, immediately after the Rifing of the Sun, there appeared three very dark Spots, which form'd in a manner thefe Letters $F n$ Of, pofited from Eaft to Weft, and included in their wonted Crown, which fretched out, as 'twere, two Arms, or two Handles, one to the South, and the other to the North. There paffed $18^{\prime \prime}$. between the Paffage of the foremoft Limb of the Sun, and that of the foremoft Limb of the Crown, and $47 \frac{2^{\prime \prime}}{2}$. between the Paffage of the anterior Limb of the Crown, unto the Paffage of the Sun's Center. The Southern Limb of the fame Croren was diftant 11^{\prime}. $1 \eta^{\prime \prime}$. from the Parallel that touched the Sun on the North-fide, and $4^{\prime} .38^{\prime \prime}$. from the Parallel that pafs'd through the Center.

Aug. 18. at η in the Morning, the Spots, which appear'd through fome Clouds, had almoft the fame Shape with thofe of the Day before, only with this Difference, that they were a little clofer together, drawing from Eaft to Weft. There lapfed $13^{\prime \prime}$. between the Paffage of the anterior Limb of the Sun, and that of the anterior Limb of the Spot, through the fame Horary Circle, and $52 \frac{1}{\frac{1}{2}}$. of the foremoft Limb of the Spot unto the Paffage of the Center. The Southern Limb of the Spot was $9^{\prime} .13^{\prime \prime}$. diftant from the Parallel that touched the Northern Limb of the Sun, and $6^{\prime} .41^{\prime \prime}$. from the Parallel that paffed through his Center. At 50^{\prime} Clock and 55^{\prime}. at Night of the fame Day, there lapfed $1 \mathrm{I}^{\prime \prime}$. between the Paffage of the anterior Limb of the Sun through the fame Horary Circle, and the Paffage of the anterior

(277)

Limb of the Crown; and from thence unto the Paffage of the Sun's Center $54^{\frac{1}{2}}{ }^{\prime \prime}$. The Limb of the Croren next the Parallel paffing through the Center of the Sun, was diftant from the fame Parallel $7^{\prime} \cdot 40^{\prime \prime}$.

Avg. 19. from 4 to 5 in the Evening, the Spot appear'd oblong near the Sun's Circumference, from which it was diftant about the Breadth of the fame Spot.

Alug. 20. in the Morning, which was not the full feventh from the Day that they were arriv'd to the middle of the Difk, they difappear'd.

The apparent Velocity nigh the Center was fuch, that if it had continued the fame, the Spots would have arrived almoft in 4 Days to the Limb of the Difk; but in this Hypothefis, that the Spots were adherent to the Sun's Surface, or at lealt very nigh to it, this apparent Velocity was to leffen according as they fhould remove from the Center; as hath come to pafs in effect. The Diminution of the Length of the Mifty Crown was in a manner proportionable to the Diminution of the apparent Velocity; fince that, when this Crown was in the Middle, and in a Situation wherein its true Figure could be beft feen, it appear'd oblong, and of the Form of an human Ear, its greateft Diameter refpecting Eaft and Weft; but being nigh the Limb, the fame Diameter feemed to fhorten; and having appeared greateft in its firf Situation, it appear'd leaft in this, becaufe it was almoft in a Circle that pafs'd through the Center of the Sun, whofe equal Arches are by fo much the more oblique, by how much they approach more to the Limb of his Difk, and confequently appear lefs, according to the Rules of Opticks : mean time, the Diameter, that was turned from South to North, apparently kept the fame Bignefs it had near the Center, becaufe it was in a Circle almoft Parallel to the Horizon of the Sun, which formed the Reprefentation of its Limb, and whofe equal Arches (by the fame Optical Reafons) do not appear contracted.
3. Several curious Obfervers at London, have feen one of thefe Spots recurr'd to the Sun's Eaftern Limb, about Aug. ${ }^{2}$ 5. St. N. as M. Caffini predicted they fhould return.
4. Aug. 30. 1671. I faw a large Spot in the Center of the Sun's Face about By Dr. Hook. Noon.

Sept. r. At 30^{\prime} Clock, I faw the fame Spot moved about a Quarter of the Diameter of the Sun Weftward; it confifted of one greater and two leffer black Spots, with a dufky Cloud encompaffing them: The Diameter of the whole Phænomenon was about $\frac{1}{10}$. of the Diameter of the Sun, and it was diftant from the next adjoining Limb $\frac{18}{72}$ (that is, exactly one Quarter) of the Diameter of the Sur.
5. The folar Spot's have been obferved by us at Hamburg, from Aug. 26, By Mr. Hen. Old Style, (almoft the firf Day on which they began again to appear) as far siferus. as Sept. 5. on which they approached very near to the Limb.
XXV. An. 1676. Jun. 26. St. N. we have in the Sun a pretty large Spot, Spors oberved in: which was in the middle of the Sun at Four in the Afternoon, with South 'he Sum; by Latitude $4^{\frac{1^{\prime}}{4}}$. Its Diftance from the fouthern Pole of the Sun by many Ob-N. 127.0 . 665 , fervations I determined to be $78 \frac{1}{\ddagger}$ Degrees. If it is of a fufficient Confiftence to compleat its Circle, its Reftitution may be expected at the Middle, in the Evening of $\mathcal{F} u l y$ 25, with greater South Latitude.

Mr. Halley faith, That he daw a Spot again on the fifth Day, $\delta^{\text {h }} \cdot 20^{\prime}$. mane, very near the Limb of the Sun, fo that it appeared only as a fine Line; but by reafon of its Finenefs and the too great Height of the Sun, he could not take any Meafures to determine its Place and Latitude by; and that while the Spot continued one, as it was July 25 . he measured to the middle of it; as alfo when the Pieces were divided, but not far disjoined: Afterwards, when they were feparated confiderably, he obferved the middle of the bigger Spot, which was to the South, apparently I fuppofe, but readily North : for fo only his Observations will agree with thole of Mr. Flamsteed exactly.

Hence it feems very evident, (faith Mr. Flamfteed) that the Spot's Way was not inclined to the Ecliptick fix or feven Degrees, as Scheiner and lome others make it, but much lefs, by the joint Confent of the Obfervations of both our Obfervers. Mr. Halley adds, That confidering the Motion of the Spot crofs the Sun's Dirk, as both their Obfervations give it, it appears that the Latitude was not fo great at its Entrance into the Sun as in the middle of him. And by Mr. Flamfeed's Observation, it was greatest on the first of Auguf, and then again inclining towards the Ecliptick. If you grant this, it will follow, (inters Mr. Flambeed) that the Sun's Axis was inclined to the Plane of the Orbis magus; but the quantity of this Inclination mut not be very
great. The Nodes of the Sun's Equinox and Ecliptick he gueffes to be not farfrom the beginning of Conetr and Capricorn; and that from Cancer to Capricorn the Earth is North of the Sun's Equator ; from Capricorn to Cancer, South of the fame: And the Period of the Sun's Revolution in refpect of the fixed Stars 25 Days $9^{ \pm}$Hours, fufficiently exact. Of which things thefe two Obfervators fay they might have been more certain, had not the Spot in its Paffage broken into fo many Parts, and thofe often varied their Pofitions to each other.
2. We here obferved the Solar Spot, from Aug. 6. to 14. and by com- Ty Mr. Canfini, paring our Cbfervations we have found, that it was in the middle of its courfe ${ }^{\text {1bid. p. } 689 \text {. }}$ in the apparent Difk of the Sun about Midnight after the 8th Day of August, at the apparent Diftance of 3 Minutes from the Center towards the South. It is feparated into feveral Parts, which are disjoin'd from one another at a confiderable Ditance, daily towards the North and South; fo that befides their common Mocion about the Sun's Axis, each of the Parts have a direct Motion of their own among one another I think this Spot to be different from that which we obferved in the preceding Month of fune. For fince that had the midalle of its Courfe in the apparent Difk of the Sun on the 28th Day of the fame Nonth, it muit have return'd nearly to the fame Situation, if it had been ftill in Being, in the Night following the 25 of $\mathcal{F}^{\prime \prime} l y$; as is deduced both from its Velocity, the obferved Time of its Appearance, and alfo from the Courfe of the other Spots which we faw to finifh their Period about the Sun in the Space of $27^{\frac{1}{3}}$ Diays, or $27^{\frac{1}{2}}$. Befides its Path is different from the foregoing; for the firf was fomething more remote from the Equator of the Spots than the latter. And this, if it had Confiftence enough, return'd to the middle of the Sun on $S p^{\prime} .5$. in the Morning.
XXVII. Ann. 1684. Apr.25. About an Hour before Noon I difcover'd spots obfroved in a large Spot entred within the Sun's Difk, a little diftant from his following the Sun; by Limb. Thefe Appearances, however frequent in the Days of Scheiner and Go- N. 157. R. 535 lileo, have been fo rare of late, that this is the only one I have feen in his Face fince December 1676 . By the cbferved Meridional Diftances of it, and the Sun's Southern Limb from the Veriex at Noon, I found it to have $3^{\prime}, 40^{\prime \prime}$. more North Declination than the Sun's Center; and at $3^{\mathrm{h}} \cdot 35^{\prime} \cdot$ after Noon, I meafured its Diftance from his next Limb $40^{\prime \prime}$.

Next Morning, April 26. I faw it more remote from his Limb, and by the Obfervations then made (at $8^{\text {b }}$. Wane) determined its Longitude from the Sun's Axis $66^{\frac{3}{7}}$ Deg. and its Declination from the Solar Æquator $9^{\frac{2}{s}}$ Deg. South. Whence, fuppofing the Revolution of any Point of the Sun to the fame fixed Star to be performed in 25 Days, 6 Hours, the Angle of his Equalcr and our Ecliptick 7 Deg. and the Longitude of his Northern Pole ry 16 Deg. I defigned the Line of its Way or Trace over the Sun, and the Points in it where the Spot would appear every Morning after at the fame Hour, till i:s Egrefs on the 8 th of May; which I found altogether confirmed by fuch Obfervationsas I made till then; fo that I had no reafon to doubt of the Theory.

(280)

When the Spot was near the Midale of the Sun, it appear'd very broad, and almoft Square, the Nucleis of the fame Figure about $40^{\prime \prime}$ Diameter; but when it was near the Limb, much narrower, and almoft oval: It feemed to have Confiftence enough to endure a fecond Return; if it fhall, it will enter the vifible Difk of the Sun on the 2 Ift of May in the Evening, and in its Paffage over him defcribe a Line neary ftreight, with greater Latitude from the Ecliptick.

To find in what Proportion the Planets are enlighened by the Sun; by M. Auzout. N. 4 . p. 68.
XXVIII. One of the Means ufed by M. Auzout to enlighten an Object in what Proportion one pleafeth, is by fome great Object-Glafs, by him called a Planetary one, becaufe that by it he fhews the Difference of Light, which all the Planets receive from the Sun, by making ufe of feveral Apertures, proportionate to their Diftances from the Sun, provided that for every 9 Feet Draught, or thereabout, an Inch of Aperture be given for the Earth. Doing this, one fees (faith he) that the Light which Mercury receives, is far enough from being able to burn Bodies, and yet that the fame Light is great enough in Saturn to fee clear there, feeing that (to him) it appears greater in Saturn than it doth upon the Earth, when it is over-caft with Clouds; which (he adds) would fearce be believed, if, by means of the Glafs, it did not fenfibly appear fo.
XXIX. The Equinoxes of this Year, 1699, according to the Obfervations

The efiguinoxes;
by M. Wortzelbaur.
N. 265 . p. 623. of M. Wortzelbaur at Nurenberg, happened March 9. $20^{\mathrm{h}} \cdot 35^{\prime} \cdot 27^{\prime \prime}$. and Sept. 12. $10^{\text {h }} .22^{\prime}$. $42^{\prime \prime}$. which, by his Tables, ought to have been March 9 . $20^{\text {h }} \cdot 40^{\prime} \cdot 30^{\prime \prime}$. and Sept. 12. $10^{\text {h }} \cdot 32^{\prime} \cdot 52^{\prime \prime}$.

To abfere Solar XXX. For the well obferving of Solar Eclipfes, caft the Species of the

Eslippes; by
Mr. Flamfeed.
N. 55. P. 1104. Sun through a good Telefcope of a competent Length, on an extended Paper, placed behind the Eye-Glafs fo far, as that the faid Species may appear at leaft 6 Inches over; then divide both his Peripbery into 360 Degrees for the better obferving the Inclination of the CuJps of each Phafis, and his Diameter into Digits, and their Parts, by concentrick Circles, for meafuring the Quantities of the obfcured Parts.

An Eclipfe of the
Sun, An. 3666.
June 22. at
London;
by Mr. Wil-
loughby,
Dr. Pope,
Dr. Hook, ant
Mr. Phillips.
N. 15. P. 895°
XXXI. 1. The Eclipfe began at $5^{\text {h }} \cdot 43^{\circ}$.

It was darkned
h.

Its Duration hence appears to have been one Hour and 54^{\prime}. Its greateft $O b f$ curity fomewhat more than 7 Digits. About the middle, between the Perpendicular and Weftward Horizontal Radius of the Sun, viewing it thro'

Mr. Boyle's 60 foot Telefcope, there was perceived a little of the Limb of the Moon without the Difk of the Sun; which feemed to fome of the Obfervers to come from fome fhining Atmofphere about the Body cither of the Sua or Moon. They affirm to have obferved the Figure of this Ecclipfe, and meafured the Digits, by cafting the Figure through a 5 Foot Telefcope on an extended Paper, fix'd at a certain Diftance from the Eye-Glafs, and having a round Figure; all whofe Diameters were divided by 6 concentrick Circles, into 12 Digits.
2. The Eclipje began at $5^{\mathrm{h}} \cdot 44^{\prime} \cdot 52^{\prime \prime}$. mane. It ended at $7^{\mathrm{h}} \cdot 43^{\prime} \cdot 6^{\prime \prime}$. So that its whole Duration was $1^{\mathrm{h}} \cdot 58^{\prime} \cdot 14^{\prime \prime}$. The greateft Obfcuration was 7 Dig. $5^{0^{\prime}}$. but it feemed to have been greater by 3^{\prime}. which Mr. Payen imputes to a particular Motion or Libration of the Sun's Globe, which entertained that Luminary in the fame Phafis for the fpace of 8^{\prime}. and fome Seconds, as if it had been ftopped in the midft of its Courfe, rather than to a tremulous Motion of the Atmofphere, as Scheiner would have it. The apparent Diameters were almoft equal; for in the Phafis of 6 Digits, the Circumference of the Moon's Difk paffed through the Center of that of the Sun, fo as that two Lines drawn through the two Horns of the Sun, made, with the common Semidiameter, two Equilateral Triangles.

The Beginning and Middle of the Eclipfe happened to be in the NorthEaftern Hemifphere, and the End in the South-Eaftern. The firt Contact (as 'twere) of the two Difks, was obferved in the fuperior Limb of the Sun's Difk, in refpect to the Vertical Line; and in the inferior, in refpect to the Ecliptick. But the Middle and the End were feen in the fuperior Limb, in refpect both to the Vertical and the Ecliptick : And, what to M. Payen feems extraordinary, both the Beginning and the End of this Eclipfe happen'd to be in the Oriental Part of the Sun's Dink.
3. The Eclipfe began about 50° Clock in the Morning, at 5^{h}. 15^{\prime}. The At Madrid by the Earl of Sun's Altitude was $6^{\circ} \cdot 55^{\circ}$.

The Middle of it was at $6^{h} \cdot 2^{\prime}$. The Sun's Altitude $15^{\circ} \cdot 5^{\prime}$.
The End was exactly at $7^{n} \cdot 5^{\prime}$. The Sun's Altitude $25^{\circ} \cdot 24^{\prime}$.
The Duration $2^{\mathrm{h}} \cdot 4^{\prime}$.
Thirty-feven Parts of the Sun's Diameter remained light, and 63 were darken'd.
4. In this Eclipfe it is chiefly obfervable, That the Semidiametcr of the ai Dannzide Moon, from the very Beginning to about 5 or 6 Digits of the increafing $\begin{gathered}\text { by M. Meverius. } \\ \text { N. } 19 . ~ P .1347 . ~\end{gathered}$ Phatis, was almoft equal to the Semidiameter of the Sun; but, after the greateit Obfcuration, when I again contemplated the Moon's Semidiameter, I found it $8^{\prime \prime}$. or $9^{\prime \prime}$. bigger than that of the Sun; fo that the Semidiameter of the Moon was not always, during the Eclipfe, conflant to itfelf. Of this Variation the excellent Ifmael Bullialuus hath alfo oblerv'd fomething at Paris : For he hath written to me, That in this fame Eclippe, the Semidiameter of the Sun to the Semidiameter of the Moon was, as $16^{\prime \prime} \cdot 9^{\prime \prime}$. to $16^{\prime} \cdot 22^{\prime \prime}$. but that in another Phafis of 6 Digits, the Semidiameters appeared equal.

	Quantity of the Pbajes.	Time eftimated by a Watch.	Time by a Sun-dial.	Alitit. of the Sun.	Time corrected.	Obfervations.
\%		h. "	h. "		h. '"	
		$\begin{array}{lll} 5 & 51 & 11 \\ 5 & 57 & 05 \\ 6 & 00 & 00 \end{array}$	$\begin{array}{lll} 5 & 51 & 00 \\ 5 & 57 & 00 \\ 6 & 00 & 00 \end{array}$	$\begin{array}{ll} 17 & 45 \\ 18 & 37 \\ 18 & 55 \end{array}$	$\begin{array}{rrr} 5 & 53 & 12 \\ 5 & 59 & 28 \\ 6 & 1 & 28 \end{array}$	That the Sun-dial does not intirely agree with the corrected Time, is to be imputed onlyto the MeridianLine.
	Beginning. ${ }_{1} \mathrm{O}_{\frac{3}{8}} \mathrm{Dig}$. $20{ }^{\frac{3}{4}}$ $31 \frac{7}{8}$	$\begin{array}{rrr}6 & 55 & 30 \\ 8 & 57 & 30 \\ 7 & 0 & 23 \\ 7 & 2 & 30\end{array}$	$\begin{array}{lll}7 & 0 & 0 \\ 7 & 2 & 0\end{array}$		$\begin{array}{rrr} 6 & 57 & 30 \\ 6 & 59 & 30 \\ 7 & 2 & 23 \\ 7 & 4 & 30 \end{array}$	The Beginning hap pen'd about 79 Degrees from the Zenith towards
		$\begin{array}{crr}7 & 4 & 50 \\ 7 & 10 & 57 \\ 7 & 14 & 59 \\ 7 & 17 & 50\end{array}$	75 near. 710 715 7 I 8 near.		$\begin{array}{rrr} 7 & 6 & 50 \\ 7 & 12 & 57 \\ 7 & 16 & 59 \\ 7 & 19 & 50 \end{array}$	
	4 Digits.	72135	721		$\begin{array}{llll}7 & 23 & 35\end{array}$	
9	$94^{\frac{2}{3}}$	$7 \begin{array}{llll}7 & 23 & 43\end{array}$	723 near.		$\begin{array}{llll}7 & 25 & 43\end{array}$	
10	$05^{\frac{1}{4}}$	$\begin{array}{llll}7 & 27 & 53\end{array}$	728		$\begin{array}{lllllllllllll}7 & 29 & 53\end{array}$	Hitherto the Semi-
11	I 6	73150	732		$7 \begin{array}{llll}7 & 3 & 50\end{array}$	diameter of the
12	$26 \frac{3}{4}$	$7 \quad 3655$	737		$73^{8} 55$	Moon was equal to that of the Sun.
13	3 6 $\frac{7}{\frac{7}{8}}$ fomet.mo.	$\begin{array}{llll}7 & 3^{8} & 5\end{array}$	73^{8}		7400	
14	477	$\begin{array}{llll}5 & 39 & 45\end{array}$	739		74145	
15	$57 \frac{1}{4}$ fomet.mo.	$7.423 C$	742		74430	
16	$67^{\frac{8}{2}}$	7.446	744		7466	
17	$77^{\frac{3}{3}}$	746	746		7. 4.80	
18	88 nearly.	74825	748 near.		$\therefore \quad 5025$	
19	98-	$7 \begin{array}{lll}1 & 15\end{array}$	75.1		$\begin{array}{llll}7 & 53 & 15\end{array}$	
	$8 \frac{1}{4}$ fomet.mo.	$753 \quad 37$				
$\left\|\begin{array}{ll} 2 & 1 \\ 0 & 0 \end{array}\right\|$	$\begin{array}{l\|l\|} 1 & 8 \frac{3}{4} \\ 2 & 8 \frac{3}{3} \text { fomet. lefs } \end{array}$	$7 \begin{array}{llll}7 & 55 & 45\end{array}$	756 near.		75745	ration was Dig. 8.
22	$2 \frac{3}{8}$ fomet. lefs	759	759		$\begin{array}{llll}8 & 1 & 5\end{array}$	25^{\prime}. The Hour
$123 \mid$	$38 \frac{1}{3}$	$8 \quad 63018$	86		$\begin{array}{llll}8 & 8 & 3\end{array}$	$\text { 8. } 2^{\prime} \text {. }$

(283)

$\left.\begin{array}{\|c\|} \hline 8 \\ 2 \\ 3 \\ 3 \\ 2 \\ 2 \end{array} \right\rvert\,$	2uantity of the Phajes.	Time efti- mated by a Watcb. h., "	$\|$Time by a Sun-dial.	Altit. of the Sun. \qquad	$\left\|\begin{array}{c}\text { Time cor- } \\ \text { rected. }\end{array}\right\|$	Obfervations.
$\begin{aligned} & 24 \\ & 25 \\ & 26 \\ & 27 \\ & \hline \end{aligned}$	$\left\{\begin{array}{l} 7^{\frac{1}{4}} \\ 7^{\frac{1}{4}} \text { nearly } \\ 7^{4} \text { nearly } \\ 5^{\frac{7}{8}} \end{array}\right.$	$\begin{array}{llll} 8 & 11 & 25 \\ 8 & 17 & 30 \\ 8 & 19 & 30 \\ 8 & 28 & 41 \end{array}$	$\begin{array}{ll} 8 & 12 \\ 8 & 18 \\ 8 & 19 \\ 8 & 28 \end{array}$		$\begin{array}{lll} 8 & 1 & 2 \end{array} 250$	Here the Semidiameter of the Moon appeared greater by $8^{\prime \prime}$ or $9^{\prime \prime}$.
$\left\|\begin{array}{l} 28 \\ 29 \\ 30 \\ 31 \end{array}\right\|$	$\left\{\begin{array}{l} 5^{\frac{1}{2} \text { nearly }} \\ 4 \frac{3}{4} \\ 33^{\frac{5}{8}} \\ 3 \frac{1}{4} \end{array}\right.$	$\begin{array}{llll}8 & 30 & 14 \\ 8 & 36 & 25 \\ 8 & 43 & 19 \\ 8 & 46 & 12\end{array}$	8 30 8 36 8 43 8 46 near.		8 22 14 8 38 2 5 8 45 19 8 48 12	
$\left\|\begin{array}{l} 32 \\ 33 \\ 34 \\ 35 \end{array}\right\|$		$\begin{array}{lll} 8 & 47 & 32 \\ 8 & 50 & 57 \\ 8 & 54 & 15 \\ 8 & 58 & 24 \end{array}$	8 47 8 50 8 54 858 8		$\begin{array}{lll} 8 & 49 \\ 8 & 49 & 32 \\ 8 & 52 & 57 \\ 8 & 56 & 15 \\ 9 & 0 & 24 \end{array}$	
$\left\|\begin{array}{l} 36 \\ 37 \\ 38 \\ 39 \end{array}\right\|$	$\left\{\begin{array}{l} 1 \frac{1}{\frac{1}{5}} \\ 0 \frac{1}{6} \\ 0 \frac{1}{2} \\ \text { The End. } \end{array}\right.$	$\begin{array}{lll} 8 & 59 & 35 \\ 9 & 1 & 38 \\ 9 & 3 & 20 \\ 9 & 6 & 53 \end{array}$	$\begin{array}{ll}8 & 59 \\ 9 & 1 \\ 9 & 3 \\ 9 & 6\end{array}$			
		9 23 6 9 24 16 9 28 29 9 30 36			$\left[\begin{array}{lll} 9 & 25 & 28 \\ 9 & 26 & 45 \\ 9 & 30 & 42 \\ 9 & 33 & 12 \end{array}\right]$	Yertical 143° to the Eaft.

XXXII.

An Eclipse of the Sumo, June 23. (S60 N.) 1675° at Dantrick; by II. Hevelius. N. 127. p. 660 .

An Ellipse of the Sin; June 1. 2676. as Weft minter; by MT. Francis smeth- The Time was obierved by a Pendulum Clock, corrected by Obfervations.
${ }_{2 \times 1}^{\text {wick. }} 637$. ${ }^{\text {N. }}{ }^{126 .}$ The Telescope made fe of was a very good one, of $7 \frac{1}{2}$ Feet.
XXXIII. r. The Beginning of Obfcuration

The End
The Duration of the whole Eclipfe
(285)

The Time accord. ing to a Pendulum Clock.	The Pbajes.	TheSuns Altitude	The Time cor. rected by the Allitude.	
h.		\bigcirc	h. \quad	
$\begin{array}{llll}7 & 34 & 50\end{array}$		2246	$\begin{array}{lll}7 & 36 & 0\end{array}$	
$\begin{array}{lll}7 & 37 & 14\end{array}$		$33^{\circ} 10$	$\begin{array}{lllll}7 & 38\end{array}$	
$\begin{array}{lll}7 & 39 & 10\end{array}$		$33 \quad 30$	$\begin{array}{llll}7 & 40 & 48\end{array}$	
$\begin{array}{lll}7 & 50 & 40\end{array}$	- ${ }^{\frac{x}{2} \text { Digit. }}$		$\begin{array}{llll}7 & 51 & 51\end{array}$	Eftimated
$\begin{array}{llll}8 & 8 & 34\end{array}$	${ }^{1}{ }^{\frac{1}{4}}$		8 8 $\quad 98$	fcope.
$\begin{array}{llll}8 & 17 & 25 \\ 8 & 27 & 10\end{array}$	${ }^{2 \frac{2}{8}}$ Digits.	cres	$\begin{array}{llll}8 & 18 & 36\end{array}$	Meafured
$8=27$ $9=39$			$8.28 \quad 21$	
9 9 9	$\begin{array}{ll}1 \times \frac{1}{2} & \text { Digits. } \\ { }_{1}^{\frac{4}{4}} & \text { Digits. }\end{array}$		$\begin{array}{ll}9 & 40 \\ 9 & 44\end{array}$	Eftimated
9 9			$\begin{array}{ll}9 & 44 \\ 9 & 49\end{array}$	
$\begin{array}{lll}9 & 54 & 25\end{array}$	Not ended.		$\begin{array}{lllll}9 & 55 & 36\end{array}$	
$9 \quad 55 \quad 55$	Ended.		$\begin{array}{llll}9 & 57 & 6\end{array}$	
4.265		$32 \quad 10$	$4 \begin{array}{lll}4 & 26 & 56\end{array}$	
$4 \quad 28 \quad 58$		3153	$4.29 \quad 52$	
431		131	$4 \quad 3216$	

At Wapping; by M. Colfon.

 laid.For performing thefe Obfervations I had the Affiftance of my Friend Mr. Halley. We had prepared two Tubes, one was $196 \frac{1}{2}$ Inches long, which had one of Towemley's Micrometers. I took myfelf the Meafures of the eight firft Phafes. The other was only $103 \frac{1}{2}$ Inches long, with which, and with my Micrometer, Mr. Halley took the Meafures affigned to them. But in the laft two Obfervations, with the leffer Tube and my Micrometer, (fitter for this Ufe than the other, I took the Diftance of the Azimuths falling by the lucid Limb of the Sun, and the neareft Cufpid of the Eclipfe; while Mr. Halley in the mean time meafured the lucid Parts, and the Diftance of the Cufpids with the greater Tube. A little before the Beginning came the moft noble Lord Vifcount Brouncker, Prefident of the Royal Sociely, who proved by his own Judgment the Meafure of the Sun's Diameter taken with the longer Tube. At the Hour 7. 45'. the Sun firft appeared through the Clouds. The Obfervations were thus.

Fig. 152.

Whence it appears, that the Clock kept an even Motion, and was duly corrected in the Eclipfe.

$\begin{gathered} \text { Tbe Hour } \\ \text { of the Pend. } \\ \text { Clock. } \end{gathered}$	Correeted by a Merid. Line.	Meafures.	Pbajes.
h. ' "	h. " "		, "
80645	$\begin{array}{llll}8 & 8 & 27\end{array}$	I C I190	1009 perhaps II Og $=14$
8 II 00	$8 \quad 1242$	PL 1935	2615
$8 \quad 1800$	81942	IC 1405	1904
82100	$8 \quad 2242$	PL 1805	2430
882614	$\begin{array}{llll}8 & 27 & 56\end{array}$	IC 1504	2047
83400	83542	PL 1711	2313
$8 \quad 4215$	84357	IC 155I	2 I 03 exactly.
$84^{6} 30$	$8-4812$	PL 1702	2320 or --1720 $=23$
85145	85337	I C I553	2004 precifely.
90000	9 OI 42	PL 1801	2433
912124	$9 \begin{array}{llll}9 & 14 & 16\end{array}$	I C 1357	1825
93055	$\begin{array}{llll}9 & 32 & 37\end{array}$	[C 872	150

Fig. 125. becaufe of the Air's tremulous Motion. The Place of the Exit was fo near the Vertex, that I could not well determine which way it inclined from it ; though at 9^{h}. 29^{\prime}. by the Clock, the Cufpids appear'd parallel to the Horizon.

At 9^{4}. 10'. the Sun's Diameter was 2334 , exactly enough as I thought.
Afterwards when the Sun came to the Meridian, by a long Meridian Line, the Clock was found tooflow by $\mathbf{I}^{\prime} \cdot 4^{2^{\prime \prime}}$. But by a great Equinoctial Dial, by which I could diftinguifh to half Minutes or lefs, the Clock was too flow all this Morning only $45^{\prime \prime}$. Yet I rather truft to that Correction by the Meridian Line, than by the Sun-dial.
$7^{\text {h }} \cdot 50^{\prime}$. Nothing under the Sun.
$750 \frac{1}{2}$ The beginning exactly.
752 The Defect was obfervable
9 oo Digits $3 \frac{1}{2}$.
6. When the Sun appear'd out of the Clouds, approaching to an Altitude of 48 Degrees, I directed my Quadrant to him, and held it immoveable at this Altitude. From the Time that the upper Limb of the Sun a, touched the horizontal Thread $c d$ in the Focus of the Telefcope, to the coming of the Center b, there pafs'd $104^{\prime \prime}=n b$ or $b r$. From the Paffage of the Center b, to that of the upper Limb of the Moon o, were $11^{\prime \prime}=b s$. From the Tranfit of the Center b to that of the upperWeitern Horn e, were $25^{\prime \prime} \frac{1}{2}=e b$. From the Tranfit of the Center b to that of the lower Eaftern Horn i, were $93^{\prime \prime}=i k$. Hence is determin'd the Line of the Horns $i e$, (fetting afide the Variation) and its Inclination to the Horizon $l k$; and the Point of Concourfe p of a Tangent to the Moon with the Secant $i e p$, and the Tangent it felf $p o$, being a meân Proportional between $p i$ and $p c$. Alfo the Angles noe, toi; and hence the Angle ioe, and the Triangle ioe infcribed in the Circumference of the Moon.

From thefe and other Aftronomical Principles I have deduced, that the begiming at Paris ought to be $7^{\text {h }} .55^{\prime}$. The Find about $10^{\text {h }} .12^{\prime}$.

Ibid. Fig. 126
5.

At Wing Geld, near Derby; by M. Imman. Halton. Ibid. p. 664. At Paris. by M, Caffini.
(288)

8. On the preceding Days we chofe a very fit Place, in which we enjoy'd At Avienon; a clear open Air; which was at the Convent of the Barefoot Cormelites, which by M. Gallet. in refpect of the City of Avignon inclines to the Eaft, and being clofe to the Walls enjoys a good Air, free from the Smoak and Vapours of the City. In the middle of the Garden we erected an Apartment, which we made dark with Tapeftry Hangings, and in this we fixt our Inftruments neceffary for Obfervation.

We fitted our Telefcope with a concave ocular Lens, and convex Objectglafs, having a double Motion with a firm Support, that is, vertical and horizontal, carrying about with it a little Board made immovable by frong Skrews, cover'd over with a white Paper that was always parallel to the Eye-glafs, on which we defcribed the folar Image determin'd by the Diftance of the Telefcope. The Diameter of this we divided into twelve Digits by concentric Circles, and every Digit into 60 Parts.

Inftead of a Quadrant, which requires much Caution, and is liable to wavering, we placed a Gnomon very well divided into 100 Parts, for taking the Sun's Shadow; fo that it might freely move, and yet keep its vertical Situation by means of a Perpendicular. Laftly, we prepared a Clock that fhew'd Minutes and Seconds, and went with a Pendulum vibrating in a Cycloid.
On the isth of 7une, which was the Day of the Eclipfe, at about an Hour after Sun rifing, to the beginning and end of the Eclipfe, we received his bright Image upon the Paper without Intermiffion; and every one of us watch'd it with an Inftrument appointed for him. M. de Beaucbamps, the great Mizcenas of the Mufes at Avignoi, and my felf were at the Telefcope; the quick-fighted M. de St. Florent was at the Gnomon ; M. Moutonier was at the Clock, along with M. Marin, a Prieft, who was vety converfant in Mathematicks, but particularly in Clock-work.
Prefently and fenfibly the Shadow began to enter the Difk; over againft the firt Phafis I put down the Quantity of the Parts obfcured, the Shadow in the Parts of the Gnomon, and the Hour told by the Clock; and thus I collected 39 Phafes, which are contain'd in the following Tables.

Vol. I.
290)

The Proportion of the Diameters appear'd equal, in the Eclipfe of fix Digits; for then the vertical Horns of the Sun were diftant on each Side from the Sun's Vertical about 30 Degrees. Whence it appears the Center of the Moon was then found in the Sun's Periphery, and that the Line through the Center was equal to the Sun's Semidiameter. But after the middle of the Eclipfe we found fome Change in the Diameter of the Shadow; for the Shadow appear'd a little more convex, and therefore the Diameter was fhorter, but almoft infenfibly.

$\begin{array}{\|c} \text { Time by the } \\ \text { Pendulum } \\ \text { Clock. } \end{array}$	Time corrested by Obfervation.	Obfervations.	Parts obblisal rad, rf rubich 32 revere qual Sun's to the Siam.	Parts fre in the M_{i} crometer.
h.				"
$2123{ }^{\circ}$	20345	The Sun was perfect; then Clouds.		
2212	21217	The S. eclipred very lit. at low. Limb		
22125	21240	Parts obfcured above the Shadow	$\mathrm{O}_{\frac{1}{2}}$	
23220	22335	-	4	$22 \quad 19$
24640	23755	- - - - - -		
25137	$24^{2} 52$		11	
$35^{3} \quad 23$	${ }^{2} 5^{6} 3^{8}$	Center	15	
3 l	30020	The Center.	16	
3104	3.119	- - - - - - -		$15 \quad 07$
$\begin{array}{lllll}3 & 11 & 47\end{array}$	$\left[\begin{array}{lll}3 & 3 & 2\end{array}\right.$	- - - - - - - - -		$14 \quad 36$
$\begin{array}{lllll}3 & 12 & 15 \\ 3 & 13 & 23\end{array}$	3 303130	The Horns were horizontal.	17	
$\begin{array}{lllll}3 & 17 & 43\end{array}$	$\begin{array}{llll} \\ 3 & 8 & 58\end{array}$	-	18	
$\begin{array}{lllll}3 & 21 & 48\end{array}$	$\begin{array}{lllll}3 & 1 & 3\end{array}$	- - - - - -		1230
$\begin{array}{llll} & 2 & 3\end{array}$	31415	- - - - -	19	
32540	31655	- - - -		12 II
$\begin{array}{llll}3 & 29 & 51 \\ 3 & 3\end{array}$	3206	- - - - - - -	$19 \frac{1}{2}$	
$\begin{array}{lllll}3 & 33 & 54 \\ 3\end{array}$	$\begin{array}{llll}3 & 25 & 5 \\ 3 & 9\end{array}$	-	$19 \frac{1}{2}$	
3 40 3 43 16		- - - - - - - -	${ }_{18}^{19}$	
34535	33650	,	18	
34915	34030	The low. Cufp. was at the S.'s Nadir		
$350 \quad 2$	34117	- - - - - - -	17	
35420	34535	The Center.	16	
35645	34800	-	15	
$4{ }_{4}^{4} 58$	$3 \begin{array}{llll} & 54 & 13\end{array}$	-	13	
$\begin{array}{lll}4 & 6 \\ 4 & 8 \\ 4\end{array}$	3 4 4 4 4 15	almot	12	
4845	40000	- - - - - - -	$1{ }_{8}^{11}$	
41632	4747		8	
41744	4900	Vertical Cufpids were diffant 84°.		
$\begin{array}{llll}4 & 24 & 8 \\ 4 & 24 & 20\end{array}$	41523	Between the Culpids		$17 \quad 32$
	41829	Between the Curpids	5	$15 \quad 35$
42936	42051 -	- - - -	$2 \frac{1}{2}$	
43032	42147	Between the Cufpids -		1222
43306	42421 -	- - - - -	I	
43622	427371	The End exactly - -		

XXXIV.

An Eclipfe of the Sun. July 2d. 1684. at Greenwich; by M. Flamfted. N. 162 . p. 69 :.

$$
\left(29^{2}\right)
$$

Then to find the Error of the Clock.

$\begin{aligned} & \text { Hour by } \\ & \text { the Clock. } \end{aligned}$	Dijtances from Vertex.			ompr		Erro	orraiy ror.
h.			h.				
44338	the lower 60		04	34		8	$+^{2}$
44548	Limb of the 60		0				41
44656	Sun. 60	4I	504	38		8	43
4493	61	1	4	40	22	8	

1t Paris; by M. Bullialdus.
N. 162. p. 693.
2. The Altitude of the Sun was 50°. The beginning was elapfed, the Sun being cover'd with Clouds, and about a Digit was eclipled.

The Sun's Altitude was 41°. 15^{\prime}. a little more than 7 Digits. It reached 8 Digits.

The Altitude of the Sun was $29^{\circ} \cdot 30^{\prime}$. The End.
3. The Beginning of the Eclipfe could not be feen, but was deduced from

At the Obfervatory; by M. | Caffinit N. 162. |
| :--- |
| 8. |
| 123. | p. $7^{1} 5$. the following Phafes. The apparent Diameter of the Moon appeared lefs than that of the Sun. It was judged that the Dilatation of the Sun's Light, might make the Moon's Diameter feem lefs.

	,		
Begin.	22530		3.35
	22555	7 Digits	355
1 Digit	23250	6 Digits	44
2 Digit	24000	5 Digi	412
3 Dig	24740	+ Dig	4
4 Digi	$\begin{array}{llll}2 & 54 & 10\end{array}$	3 Digits	425
5 Digi	$3 \quad 200$, Digits	432
6 D	3105	it	437
Dig	$\begin{array}{llll}3 & 20 & 10\end{array}$		443

Begin- h.		
ning. $\quad 2 \begin{array}{lll}25 & 24\end{array}$	7 Dig	$353 \quad 34$
1 Digit 2331	6 Dig	$4 \quad 353$
2 Digits 24030	5 Dig	411
3 Digits 24747	4 Dig	417.4
4 Digits 25441	3 Digits	42514
5 Digits 30241	2 Digits	43150
$6 \text { Digits } 3126$		43811
$7 \text { Digits } 3$	End.	44327
7 Dig. $5^{\prime} 13 \begin{array}{llll}3 & 3 & 27\end{array}$		

By M. $\stackrel{4}{\text { de }}$ Hire and Pothenot. Ybid. p. 726.

(293)

The Beginning was deduced from many Obfervations made foon after it: The Moon's Diameter appear'd then not to be more than about 30^{\prime}; though by the Obfervations of her Diameter fome Days before and after, it was judged to be $3 I^{\prime} \cdot 30^{\prime \prime}$. But the Extremities of the Horns, on which depended the Exactnefs of the Determination, appear'd a little blunted.

Pbajes.	Time.	Pbajes.	Time.
Lefs than	h.		h.
	$\begin{array}{lll}2 & 29 & 30 \\ 2 & 37 & 40\end{array}$	7 Digits	35120
2 Digits	$\begin{array}{llll}2 \\ 2 & 40 & 25\end{array}$	5 Digits	$\begin{array}{llll}4 & 2 & 25 \\ 4 & 10 & 50\end{array}$
3 Digits	$2 \begin{array}{llll}2 & 48 & 34\end{array}$	3 Digits	42431
4 Digits	25430	2 Digits	42954
5 Digits	$3 \quad 300$	$0 \frac{1}{3}$ almoft.	44100
6 Digits	$\begin{array}{llll}3 & 12 & 40\end{array}$		
7 Digits	$\begin{array}{llll}3 & 22 & 18\end{array}$		
$7 \frac{3}{4}$ Digits	$\begin{array}{llll}3 & 38 & 4\end{array}$		

5.

At tbe College of Lewis the P. Fontenay. 16.p. 717.
6. The Beginning was at $2^{\mathrm{h}} \cdot 54^{\prime} \cdot 30^{\prime \prime}$. The End at $5^{\mathrm{h}} \cdot 9^{\prime} \cdot 9^{\prime \prime}$. The Great- At Aix; by. M. nefs of the Eclipfe $8 \frac{1}{2}$ Digits. 718.

At ${ }^{\text {n }} .26^{\prime}$. 14". (by the Stars) the Diameter of the Sun and Moon 30^{\prime}. $58^{\prime \prime}$. But at $4^{\text {h }} \cdot 20^{\prime} \cdot 34^{\prime \prime}$. the Diameter of the Sun $30^{\prime} \cdot 5^{8^{\prime \prime}}$. of the Moon $3^{\prime \prime} \cdot 5^{\prime \prime}$.

The Greatnefs of the Eclipfe about $\frac{3}{4}$ of the Sun's Diameter, at which Time Venus might be feen without Pain.

At Honfitur; , The Beginning was at $2^{\text {b }}$. $15^{\prime} \cdot 2^{\prime \prime}$, the End, at $4^{\text {h }} \cdot 34^{\prime} \cdot 35^{\prime \prime}$. Ty by M. de Gloss. ${ }_{i} \mathrm{~B}_{\mathrm{B}} \mathrm{d}$. At Pan; by R. 1. Richaud. ib. Greatnefs more than 8 Digits, but leis than 9 .
10. At $5^{\frac{3 \mathrm{~h}}{4}}$. the Ecliple was not begun : At $3^{\frac{\mathrm{rb}}{4}}$. at no Digits : The Er at $4^{\frac{3}{4}}$.

II.

At Avignon ; by R. P. Bonfa. ibid.

The Sun's Diameter $31^{\prime} .38^{\prime \prime \prime}$: The Moon's 30^{\prime}. $6^{\prime \prime}$.
At oxford; by 12. The careful Hand of Dr. Wallis determined the 40 Phafes of this Dr. Ed Gernard.
N. 164. p. 747 Eclipfe. Alfo the learned Mr. Cafwell, and Dr. Rook obferved the true Time of the fame, by taking fome Altitudes of the Sun, where our Clocks and Pendulums were deficient.

$\left|\begin{array}{rr|rrr}5 & 5 & \text { h. } & \prime & \prime \prime \\ 3 & 44 & 29 \\ 5 & 0 & 3 & 47 & 59 \\ 4 & 4 & 3 & 50 & 34 \\ 3 & 9 & 3 & 53 & 54 \\ 2 & 9 & 4 & 2 & 49 \\ 2 & 5 & 4 & 4 & 39 \\ 2 & 2 & 4 & 6 & 19 \\ 2 & 0 & 4 & 7 & 54 \\ 1 & 4 & 4 & 1 & 3 \\ 1 & 0 & 4 & 15 & 4 \\ 0 & 7 & 4 & 16 & 49 \\ 0 & 3 & 4 & 19 & 39 \\ & 4 & 21 & 14\end{array}\right|$ The End of the Eclipfe.
13. Mr. Facobs at Libon noted

A1 Lisbon, is
The Beginning of the Eclipfe at $\mathrm{I}^{\mathrm{d}} \cdot 30^{\prime}$ exactly.
The Ending at - - - - 412 .
14. Mr. $A j$ and Molyneux, toward the middle of the Eclipfe, having $a_{\text {In I Ireland. } i s, ~}^{\text {a }}$ fhort View of the Sun, they judged that about 8 Digits were covered; at the Ending alfo having a faint View thereof, they affigned its End at $3^{\text {h }} \cdot 5^{6^{\prime}}$. p. m.

The fame Eclipfe was obferved by one Mr. Ofburn, nigh Tredagh. The Beginning $\mathrm{I}^{\mathrm{h}} \cdot 37^{\prime} \cdot 30^{\prime \prime}$. The End $3^{\mathrm{h}} \cdot 56^{\prime} \cdot 20^{\prime \prime}$.
15. Fo. Ludovicus Donellus, and Nic. Ign. Foanettus, meafured the Sun's at Bononia; Diftances from the Zenith; we were three of us employ'd in determining the bys. Domin. Phafes, D. Fo. Galeatius Manzius, Hercules Vanottus, and myfelf. The Obfer- N. $203 . p .858$. vations were wrote down by D. Greg. Malifardus. And the Time was obferv'd at the Clock by D. Bart. Ferrarius.

It was to be obferved, when the Quantity of the Eclipfe was Dig. 7.20^{\prime}. which ought to have brought on no fmall Obfufcation of the Air, (as hath been often obferved in fuch Eclipfes,) yet the State of the Air was not fenfibly changed from what it ufed to be when the Sun is at Liberty. When many that didnot view the Sun had a Sufpicion, either that the Sun was not at all eclipfed; or but very little. Of this it feems to me that no other Caufe can were notwery far from him. For the Rays of the Sun being multiply'd by the Reflexion and Refraction of thefe, and thereby become more intenfe, might eafily make amends for the Light that was intercepted.
An Eclipfe of the
XXXV. 1. Dr. Wallis writes from Oxford, that this Eclipfe of the Sun was Sin, Moy 1 . 1687 at Cxford. N. 87. P. 329.

In ivers oiber
Places. N. 189. p. 370.
obferv'd there about $\frac{1}{2}$ a Digit, between one and two o'Clock after Noon.
2. This Eclipfe, tho' it was but a fmall one, and could not be perceived by the naked Eye, yet feems to be very convenient for the accurate Determination of the Parallax, and Latitude of the Moon.

At London, by the feparate Obfervations of Meff. Hook and Hallew, tho' the Heavens were very clear, yet becaufe of the oblique Incidence of the Moon, the Moment of the beginning could not be rightly determined: But at $1^{\text {b. }}$ 16'. the Eclipfe had begun very remarkably. The middle of the Eclipfe was about $1^{\mathrm{h}} \cdot 40^{\prime}$. The Chord of the Part eclipfed, or that between the Horns, was found to be $9^{\prime} \cdot 30^{\prime \prime}$. to which anfwers an Arch of 36°; but in the Diameter only 1^{\prime}. $30^{\prime \prime}$. By the Agreement of both Obfervators the End happen'd exactly at $2^{n} \cdot 3^{\prime} \cdot 0^{\prime \prime}$.

At Greenzich, at the Royal Obfervatory, Mr. Flamfeeed, for the fame Reafon, did not fee the beginning. But he determined the End at $2^{\mathrm{h}} \cdot 4^{\prime} \cdot 15^{\prime \prime}$. In the middle of the Eclipfe, or at the greatef Obfcuration, the Chord of the eclipfed Part was $9^{\prime} \cdot 54^{\prime \prime}$.
At Toticridge near London, Weftwardly, Mr. Haines, F. R. S. faw the End at $2^{\mathrm{b}} .2^{\prime}$. And the greateft Quantity was half a Digit from the South.

In the Inand of Barbados, at Bridg-town, Mr. Frank found the End at $\boldsymbol{1}^{\prime} \cdot 30^{\prime \prime}$. before the Sun's height was $31^{\circ} \cdot 47^{\circ}$. to the Eaft; that is, $7^{\mathrm{h}} \cdot 56^{\prime} \cdot 45^{\prime \prime}$. By Eftimation he judged the greateft Quantity to be two Digits from the South.

At Nuremberg 7. P. Wurtzelbaur obferved the fame Eclipfe. The Beginning was exactly $1^{\mathrm{h}} \cdot 58_{\frac{1^{\prime}}{2}}$. About the Middle, that is at $2^{\mathrm{h}} \cdot 36^{\frac{1_{2}^{\prime}}{2}}$. he faw the greateft Quantity to be two Digits exactly. The End was at $3^{h^{h}} \cdot 13^{\prime} \cdot 33^{\prime \prime}$.

At Ulm in Suevic, the Beginning was obferved by Honoldus at $1^{\text {h }} .48^{\prime}$. The greateft Quantity $2 \frac{1}{3}$ Dig. The End at $3^{b} \cdot 16^{\prime}$.
At Leipfic by Kirchius, the Eclipfe was obfervable at $2^{\mathrm{b}} \cdot 20^{\circ} \cdot 10^{\prime \prime \prime}$. At $2^{\mathrm{n}} \cdot 47^{\frac{7^{\prime}}{2}}$. the Digits were about $1 \frac{1}{3}$. The End exactly at $3^{\text {b }} \cdot 15^{\prime}$.

At Wratilaw in Silefia, D. G. Scbultzius obferved the greatef Obfcuration to have been fomething fooner than $3^{\text {b }} \cdot 12^{\prime}: 1 \frac{1}{2}$ Dig. Eclip. The End was $3^{h} \cdot 1^{\prime}$.
XXXVI. I. I did not fee the Beginning of the late Eclipfe, but the End an Ectipfeof tho
 Time: The greateft Obfcuration, which was 10 Digits and a Quarter, was ford by bry. about 7 Min. after 9 .

Pbafis.	$\begin{aligned} & \text { Quant. } \\ & \text { ecclipjed. } \end{aligned}$	Times by a Penáulum.	Pbajes.	$\begin{aligned} & \text { Quant. } \\ & \text { ecclipfed. } \end{aligned}$	Times by a Pendulum.
	Dig.	h. ' \quad		Dig.	h.
Begin.		85714	20	989	$10 \quad 3010$
1		$9{ }^{9} 326$	21	921	1033 II
2	32	$9{ }_{9}^{9} 823$	22	$8 \quad 52$	103553
3	$2 \quad 28$	91414	23	$8 \quad 30$	10 3846
	$\begin{array}{lll}3 & 19\end{array}$	91940	24	$7 \quad 38$	10.4242
5		93557	25	$7{ }^{7} 14$	1046
6	515	$93^{8} 57$	26	633	104942
7		9242	27		$10 \quad 5322$
8		93143	28	$5 \quad 27$	$10 \quad 56$
9	53	94036	29	59	If 0000
10	$7 \begin{aligned} & 7 \\ & 7\end{aligned} 20$	$\begin{array}{lllll}9 & 43 & 47\end{array}$	30	433	II 114824
11	$\begin{array}{ll}7 & 56\end{array}$	95039	31	357	
12	30	9559	3^{2}	3 13	111 133
13	$\begin{array}{ll}9 & 23\end{array}$	$10 \quad 144$	33		$\begin{array}{llll}11 & 18 & 3\end{array}$
14	985	$10 \quad 546$	34	211	
15	IO 24	1010	35	I 32	11253^{8}
16	$1 \begin{array}{ll}10 & 38\end{array}$	$10 \quad 1437$	36	12	II 2827
17	1045	1017	End.	- 00	II 335^{6}
18	10 45	$1022 \begin{array}{lll}10 & 22\end{array}$			
19	$1 \begin{array}{ll}10 & 12\end{array}$	$1{ }^{10} 2731$			

Vol. I.
Qq
From

298)

From the 8th to the 12th Phafis, the opake Limb of the Moon on the South-fide was a little rough; but about the Northern Horn, to near a 4 th part of the Segment, it was more fmooth: But when the Horns of the Eclipfe were almoft parallel to the Horizon, before and after the 15 th Phafis, the Extremity of the gibbous Limb of the Moon looking downward, was fumewhat enlightned, and of a kind of Saffron Colour; but though the Sky was free from Clouds, yet no Stars were vifible. Nor was even Venus itfelf vifible in the open Air, unlefs by fome more fharp-fighted than ordinary.

Amongft many round Plates cut out of thick Paper of divers Magnitudes, differing from one another $5^{\prime \prime}$. about the firft Phafis, and after, none agreed to the Limb of the Moon but that which was cut to a Radius or Semidiameter of $15^{\prime} .30^{\prime \prime}$. (taking the Radius or Semidiameter of that of the Sun to be $16^{\prime} .4^{\prime \prime}$.) and that gradually fo fwelled or augmented, that larger Plates were neceffary to be made ufe of; and about the 36th Phafis, none lefs than one defrribed of a Radius of $16^{\prime} .5^{\prime \prime}$. would agree with, or equal the Appearance; and confequently, that the Diameter of the Moon, about the End of the Eclipfe, did equalize, if not exceed, that of the Sun. Befides, in the 27 th Phafis (when the obfcure Part was 6 Dig. 6'.) the Body of the Moon did obfcure more than two 3 ds of the Sun's Limb; which is an Argument that its Semidiameter at that time was equal to that of the Sun.

By o'hers, io. p. 623.

Changes likely to be difcovered in the Manon, by II. Auzout. N. 7. F. 120. Dec.Ann. 1655.
3. This Eclipfe, by the Obfervations of Mr. Godfred Tuber at Ciza, began at 9. . and ended at $11^{\mathrm{h}} \cdot 35^{\text {, }}$. and increas'd to II Dig. By the Obfervations of Mr. Facob Honold at Harvelfing near Ulm of Suevia, it began at $8^{\mathrm{h}} \cdot 55^{\prime}$. and ended at $11^{h} \cdot 3 I^{\prime}$. and its greateft Defect was 10 Dig. And by Obfervations at Leip $\delta c k$, it began at $9^{\mathrm{h}} .11^{\prime}$. and ended at $12^{\mathrm{h}} 38^{\prime} \cdot 30^{\prime \prime}$. The greateft Ob fcurity was in Dig. 20^{\prime}. which lafted from $10^{\text {h }}$. $16^{\prime} \cdot 45^{\prime \prime}$. for 6^{\prime}. Ten Digits being obfcured, the Sky (being otherwife very clear) began to appear of a more livid or wan Complexion, and more fad than it ufually looks with a clear Sky when the Sun is fet, or below the Horizon. The Cocks alfo, which had hitherto crowed very frequently, as if filenc'd, going to Rooft, left off crowing, and did not renew it, till, by the Recovery of the Sun's Light, they had recover'd their former Gaiety and Mirth: However, we cannot learn that any Star, befides that of Venus, was difcover'd by thofe who were Spectators of it in the open Air.
XXXVII. I fometimes think that the Earth muft appear, to the fuppofed Inhabitants of the Moon, to have a different Face in the feveral. Seafons of the Year ; and to have another Appearance in Winter, when there is almoft nothing green in a very great Part of the Earth; when there are Countries all cover'd with Snow, others all cover'd with Water, others all obfcur'd with Clouds, and that for many Weeks together; another in Spring, when the Forefts and Fields are green; another in Summer, when the whole Fields are Yellow, \mho_{i}. Methinks, I fay, that thefe Changes are confiderable enough in the Force of the Reflections of Light to be obferv'd, fince we fee fo many Differences of Lights in the Moon. We have Rivers confiderable enough to be feen, and they enter far enough into the Land, and have Breadth capable to be obferved. There are Fluxes in certain Places that reach into large Countries, enough to make there fome apparent Change; and in fome of our Seas there float fometimes

(299)

fuch bulky Maffes of Ice, as are far greater than the Objects which we are affured we can fee in the Moon. Again ; we cut down whole Forefts, and drain Marfhes, of an Extent large enough to caufe a notable Alteration; and Men have made fuch Works as have produced Changes great enough to be perceived. In many Places alfo are Vulcano's that feem big enough to be diftinguifh'd, efpecially in the Shadow. And when Fire lights upon Forefts of great Extent, or upon Towns, it can hardly be doubted, but thefe luminous Objects would appear either in an Eclipfe of the Earth, or when fuch Parts of the Earth are not illuminated by the Sun : But yet, I know no Man, who hath yet obferved fuch things in the Moon; and one may be rationally affured, that no Vulcano's are there, or that none of them burn at this time. This it is which all curious Men that have good Telefcopes ought well to attend ; and I doubt not, but if we had a very particular Map of the Moon, as I had defigned to make one, with a Topography, as it were, of all the confiderable Places therein, that we or our Pofterity would find fome Change in her. And if the Maps of the Moon of Hevelius, Divini, and Riccioli, are exact, I can fay that I have feen there fome Places confiderable enough, where they put Parts that are clear, whereas I there fee dark ones. 'Tis true, that if there be Seas in the Moon, it can hardly fall out otherwife than it doth upon our Earth, where Alluviums are made in fome Places, and the Sea gains upon the Land in others; I fay, if thofe Spots we fee in the Moon are Seas, as moft believe them to be, whereas I have many Reafons that make me doubt whether they be fo. And I have fometimes thought, whether it might not be, that all the Seas of the Moon, if there mult be Seas, were on the Side of the other Hemifphere, and that for this Caufe it might be, that the Moon turns not upon its Axis, as our Earth, wherein the Lands and Seas are as it were balanced: That thence alfo may proceed the Non-appearance of any Clouds rais'd there, or of any Vapours confiderable enough to be feen, as there are rais'd upon this Earth; and that this Abfence of Vapours is, perhaps, the Caufe that no Crepufcle is there, as it feems there is none, my felf, at leaft, not having been hitherto able to difcern any Mark thereof: For, methinks, it is not to be doubted but that the reputed Citizens of the Moon might fee our Crepufcle, fince we fae that the fame is without Comparifon ftronger than the Light afforded us by the Moon, even when flee is full; for a little after Sun-fet, when we receive no more the firft Light of the Sun, the Sky is far clearer than it is in the faireft Night of the Full-Moon. Mean while, fince we fee in the Moon, when the is increafing or decreafing, the Light fhe receives from the Earth; we cannot doubt but that the People of the Moon fhould likewife fee in the Earth that Light wherewith the Moon illuminates it, with, perhaps, the Difference there is betwixt their Bignefs. Much rather therefore fliould they fee the Light of the Crepufcle, being, as we have faid, incomparably greater. In the mean time, we fee not any faint Light beyond the Section of the Light, which is every where almoft equally itrong, and we there diftinguifh nothing at all, not fo much as that cleareft Part which is call'd Arifarcbus or Porpbrrites, as I have often tried; although one may there fee the Light which the Earth fends thither, which is fometimes fo ftrong, that in the Moon's Decreafe, I have often diftinctly feen all the Parts of the Moon that were not enlighten'd by the Sun, together with the Difference of the

To find the Pas yallax of the Niem: by N. in p. $_{151 .}$ Feb As. 1666.

1 Alribod for obferving Lanar Eclipfes; by Mr. Rook.
N. 22. p. 388.

Feb. An. 1666
clear Parts and the Spots, fo far as to be able to difcern them all. The Shadows alfo of all the Cavities of the Moon feem to be ftronger than they would be, if there were a fecond Light. For although afar olf the Shadows of our Bodies, environed with Light, feem to us almoft dark, yet they do not fo appear fo much as the Shadows of the Moon do ; and thofe that are upon the Edge of the Section, fhould not appear in the like manner. But I will determine nothing of any of thefe Things.
XXXVIII. At certain Times agreed on by two Obfervers, making ufe of Telefcopes, large, good, and well-fitted for this Purpofe, by a MeafuringRod placed within the Eye-Glafs at a convenient Diftance, that it may be diftinctly feen, and ferve for meafuring fmall Diftarces by Minutes and Seconds, (which is eafy enough in large Telefcopes). Let each of fuch Oblervers, thus furnifhed, obferve the vifible Way of the Moon among the fix'd Stars (by taking her exact Diftance from any fix'd Star that lies in or very near her Way, together with the exact Time of her fo appearing) and the then apparent Diameter of her Difk; continuing thefe Obfervations, every time for two or three Hours; that fo, if pofible, two exact Obfervations of her apparent Place among the fix'd Stars being made at two Places thus diftart in Latitude, and, as near as may be, under the fame Meridian, by thefe Obfervations concurring at the fame time, her true and exact Diftance may be hence collected, not only for that time, but at all other times, by any fingle Obfervator's viewing her with a Telefcope, and meafuring exactly her apparent Diameter. It were likewife defirable, that as often as there happens any confiderable E clipfe of the Sun, that this alfo might be obferv'd by them, noting therein the exact Meafure of the greateft Obfcuration compared with the then apparent Diameter of his Difk. For by this means, after the Diftance of the Moon hath been exactly found, the Diftance of the Sun will eafily be deduced.

As for the Time fitteft for making Obfervations of the Moon, that will be when fhe is about a Quarter, or fomewhat lefs illuminated; becaufe then her Light is not fo bright but that with a good Telefcope fhe may be obferv'd to pafs clofe by, and fometimes over feveral fix'd Stars, which is about four or five Days before or after the Change: Or elfe at any other time, when the Moon paffes near or over fome of the bigger fort of fix'd Stars, fuch as of the firft and fecond Magnitude ; which may be eafily calculated and forefeen: Or, beft of all, when there is any total Eclipfe of the Moon; for then the fmalleft Telefcopical Stars may be feen clufe adjoining to the very Body of the Moon.
XXXIX. r. Eclipfes of the Moon are obferved for two principal Ends : One Aftronomical, that by comparing Obfervations with Calculations, the Theory of the Moon's Motion may be perfected, and the Tables thereof reformed; the other Geographical, that by comparing among themfelves the Obfervations of the fame Ecliptick Phafes, made in divers Places, the Difference of the Meridians or Longitudes of thofe Places may be difcerned.

The Knowledge of the Eclipfes Quantity and Duration, the Shadow's Curvity and Inclination, $\delta^{\rho} c$. conduce only to the former of thefe Ends. The exact Time of the Beginning, Middle, and End of the Eclipfes, as alfo in total Ones, the Beginning and End of total Darknefs, is ufeful for both of them.

But becaufe in Obfervations made by the bare Eye thefe Times confiderably differ from thofe with a Telefcope ; and becaufe the Beginning of Eclipfes, and the End of total Darknefs, are fcarce to be obferved exactly, even with Glaffes (none being able clearly to diftinguifh between the true Shadow and Penumbra, unlefs he hath feen, for fome time before, the Line feparating them pafs along upon the Surface of the Moon); and laftly, becaufe in fmall partial Eclipfes, the Begimning and End, and in total ones of fmall Continuance in the Shadow, the Beginning and End of total Darknefs are unfit for nice Obfervations, by reafon of the flow Change of Appearances, which the oblique Motion of the Shadow then caufeth : For thefe Reafons I fhall propound a Method peculiarly defign'd for the Accomplifhment of the Geographical End in obferving Lunar Eclipfes, free (as far as is poffible) from all the mention'd Inconveniencies.

For, Firft, It fhall not be practicable without a Telefcope. Secondly, The Obferver flall always have Opportunity, before his principal Obfervation, to note the Diftinction between the true Shadow and the Yenumbra. And, Thirdly, It fhall be applicable to thofe Seafons of the Eclipfe when there is the fuddeneft Alteration in the Appearances. To fatisfy all which Intents,

Let there be of the eminenteft Spots, difpers'd over all Quarters of the: Moon's Surface, a felect Number generally agreed on, to be conftantly made uife of to this purpofe, in all Parts of the World. As for Example, thofe which M. Hevelius calleth M. Sinai, M. Etna, M. Porpbyrites, M. Serorum, Inf. Brfoicus, Inf. Creta, Palus Meotis, Palus Mareotis, Lacus Niger Major.

Let in each Eclipfe, not all, but (for Inftance) three of thefe Spots, which then lie neareft to the Ecliptick, be exactly obferv'd when they are firft touch'd by the true Shadow; and again, when they are juft compleatly entred into it; and (if you pleafe) alfo in the Decreafe of the Eclipfe, when they are firft fully clear from the true Shadow. For the accurate Determinations of which Moments of Time (that being in this Bufinefs of main Importance) let there be taken. Altitudes of remarkable fix'd Stars; on this Side of the Line, of fuch as lie between the Equator and Tropick of Cancer; but beyond the Line, of fuch is are fituate towards the other Tropick; and in all Places, of fuch as at the Time of Obfervation are about four Hours diftant from the Meridian.
2. The Eclipfe of the Moon, OEIob. 29. An. 1697, was obferved at Ro- 3y M. Ja. Cafo terdam with a Telefcope of almoft four Paris Feet, with a convex Eye-Glafs, $\begin{aligned} & \text { ini. } 236 \text {. p. } 15 \text {. }\end{aligned}$ in whofe Focus were four Threads croffing in the Axis at right Angles and half right Angles, for meafuring the Phafes, and determining the fituation of the Lunar Spots. This Telefcope was fupported by a Fulcrum having its Axis in a parallel Situation to the Axis of the World, that after it was directed to the Moon for the Obfervation of one Phafis, for obferving other Phafes it might turn about to the Weft along the Path of the Moon. So it was firft directed to the Moon, that continuing immoveable the Northern Limb of the Moon, by its Motion to the Weft, might touch one of there Threads, which therefore we faid was parallel; tho' becaufe of the Motion of the Moon in Declination, blended with the much fwifter Motion of the Moon to the Weft, it declined fomething from the Equator, whilft the Difk of the Moon fell fucceffively upon the three other Threads. The middle one of thefe
thefe three Threads, making right Angles with the Parallel, we may call the ftrait, perpendicular, and vertical Thread ; the ather two oblique onécs, of which we call that the firft, upon which the Moon falls firft, the fecond oblique one upon which the Moon falls afterwards. At the beginning of the Eclipfe, when the moft Northerly Point of the Moon was not yet immerfed in the Shadow, we adapted it to the parallel Thread. Then after this Point was immerfed in the Shadow, we adapted the moft Southern Point of the
Fig. 127. Moon to the fame Thread. Whence it is that the Thread which at the beginning was firt, in the determining the other Phafes was laft, and that became the firft which before was laft. Now when the Limb of the Moon de, fcribed the parallel Thread, the Center of the Moon muft be fuppofed to defcribe the Lunar Path parallel to this Thread, which was cut by the other three Threads. And the Portions of this Path are fuppofed proportional to the times in which the Center of the Moon paffes over them; for the inequality of the proper Motion blended with the univerfal Motion in a fmall time is not perceivable. Therefore when the Limb of the Moon defcribed the Parallel, by the help of a:Pendulum-Clock which beforehand had been fet to the Sun, the Time of the approach of fome of the Lunar Spots was obferved, and alfo of the Lunar Horns, to any of thefe three Threads; and it was found, that at the time of the faid Eclipfe the Moon's Difk paffed through the upright Thread in $2^{\prime} \cdot 24^{\prime \prime}$. and through the oblique Threads in $3^{\prime} \cdot 24^{\prime \prime}$. and therefore the Semidiameter of the Moon paffed through the upright Thread in $\mathrm{T}^{\prime} .12^{\prime \prime}$., but through the oblique in $1^{\prime} .42^{\prime \prime}$; the difference of each
Fis. 128. Tranfit being $30^{\prime \prime}$. Hence one Appulfe of the Moon being obferved to any of thefe Threads, or one Egrefs, all the others are given to the other Threads. The Semediameter of the Moon AB, lying in the Lunar Path ABCDEF, paffes through any one of its Points while the Center A runs over a Space AB equal to it; as another Semidiameter AK, making a right Angle with another Line NCK at the Point K, in which therefore it will touch the Moon in K, declining from its Path by the Angle KCA, paffes through the Thread CK, while the Center of the Moon paffes through the Line AC, which is the Hypothenufe of the right-angled Triangle AKC. And the time of the
210 it ar Tranfit of the Semidiameter AB through the Perpendicular Thread that touches the Moon in B, to the Tranfit of the Semidiamer AK through the oblique Thread NCK, as AB or AK, the Sine of the Angle ACK, to AC the Sine of the right Angle or Radius, Therefore the Thread NCK making half a right Angle KCA with the Path of the Moon, alfo the Angle KAC in the right-angled Triangle will be half a right Angle, and therefore the Sides CK and KA will be equal; the right Tranfit according to AB will be to the Tranfit of the Semidiameter AK, through the oblique Thread NK, as the Sine of half a right Angle to the Sine of a right Angle, as 707 to 1000, or as $72^{\prime \prime \prime}$ to $102^{\prime \prime}$, or $1^{\prime} .42^{\prime \prime}$ nearly, as was obierved. The Path of the Center of the Moon being AH, to the Semidiameter of the Moon perpendicular to AM, MNO being drawn parallel to AH, it will be congruous to the Thread which the Limb of the Moon touches by its Motion to the Weft, which will be cut by the oblique Threads NCK and NGI, and by the up. right
right Thread NEP in the Point N, where the Axis of the Telefcope paffes. And with thefe Threads the Lunar Orbit will make two right-angled Triangles NEC, NEG, which are fuppofed to have half right Angles at the Points N, C, G; they are therefore like and equal, and have their Sides CE, EG, EN, equal to the Semidiater of the Moon AM. If on each fide of the Interfections C and G , be taken in the Threads $\mathrm{CK}, \mathrm{CS}, \mathrm{GI}, \mathrm{GR}$, equal to the Semidiameter, and CA, CF, GD, GH, in the Orbit equal to CN, and AK, FS, DR, HI, are joined; thefe will all be equal to one another, and at the Threads will make right Angles, at $\mathrm{K}, \mathrm{S}, \mathrm{R}, \mathrm{I}$. Wherefore the Center of the Moon being in A , the Moon will touch the firtt oblique Thread in K , and after the Center of the Moon comes from A to C , its Semidiameter will coincide with the Line CE, and therefore the Moon will touch the upright Thread in E. But after the Center of the Moon fhall come from A to D, it will touch the fecond oblique Thread in R. But AD is equal to the Moon's Diameter; for fince $G D$ is equal to $C A$, adding $D C$ we fhall have $A D$ equal to GC, which is equal to the Moon's Diameter. And fince GD is equal to CF , if from thefe are taken Equals, GE and EC, then FE will be equal to ED , and will be the double of DF; and will be only from the firt Contact of the fecond oblique Thread in R , to the laft Contact of the firft oblique Thread in S; and after the Center of the Moon has gone on to G, at the diftance of one Semidiameter EG, the Moon will finally touch the upright Thread in E. The Center going on from G to H , the Moon herfelf will finally touch the fecond oblique Thread in I. Suppofing therefore the upright Tranfit of the Moon to be $2^{\prime} .24^{\prime \prime}$. as it is obferved to be; and,

Suppofing the Center at A, and the Contact of the firtt oblique Thread at K
The Center of the Moon will be at C , and will touch (firft) the upright Thread at $\mathrm{E}, \ldots,-\quad-\quad$ -
The Center will arrive at D , and will touch (firtt) the fecond oblique Thread at R
The Center of the Moon will be at E, the intermediate perpendicular Thread
The Center will arrive at F , and will touch (lafty) the firtt oblique Thread at S
The Center will be at G, and will touch (laftly) the upright Thread at E
Finally it will be at H , and will touch (laftly) the fecond upright Thread at I

1	1	Diff: Contact.	
0	0	1	42
1	42	0	42
2	24	0	30
2	54	0	30
3	24	0	42
4	6	1	42
5	48		

Hence the Obrervations in this Eclipfe generally correfponded with theCalculation within one Second. Therefore it was fufficient in one Phafis to obferve two of thefe Tranfits, in the reft one, that all the reft might be known, As to the Lunar Spots, the Tranfit of the preceding Limb of the Moon and of the Spot through the upright Thread, is compared, to have what

(304)

is called the Difference of the Longitudes of the Spot from the preceding Limb. And the upright Tranfit of the Spot is compared with the Oblique, to lave the Difference which is equal to the Diftance of the Way of the Spot from the Path of the moft Northern or Southern Point touching the parallel Thread. For fince the Way of the Spot ABC is paraillel to the Way of the Limb DEF, it makes the fame half right Angles at A and C with the fame Threads, and right Angles at B; whence the Angle at A is equal to the Angle at C, and the Side BA equal to the Side BE, which is the Latitude of the Spot B from the Thread FED. But the Longitude and Latitude of the Spot being given, its Situation in the Moon is given alio. For a Square being deficribed about it whofe Side is AB, let it be fuppofed to become congruous to the parallel Thread, and let it be divided into fo many equial Parts, as the Moon pafles through the upright Thread in Seconds; and let the Sides AC, B D, perpendicular to the Thread, be divided in like manner into as many equal Parts. The Longitude AE, CF, being taken in the Parallels, and FE being drawn, and in the Perpendiculars the Latitude A G, B H, which we fay is equal to the way intercepted between the upright and oblique Threads ; the Situation of the Spot M is determin'd by the common Interfection of thefe right Lincs.

As to what concerns the Horns of the Moon in the Eclipfe, they may be determin'd by their Longitude alone, if it be but known in what Semicircle North or South they are. As the Horn I by the Longitude A E or CF, For the right Line FE cuts the Moon's Limb in two Points L and I, one of which is in the Northern Semicircle, the other in the Southern. It may alfo be determin'd by the Latitude alone AK or B M, if it be but known in what Semicircle Eaftern or Weftern the Point I is fituate. But of the Lines of Longitude and Latitude, that will determine the Situation of the Horn more exactly, which is nearer to the Center; as there the Point I is more exactly determin'd by the Longitude than by the Latitude. And on the contrary, the Point O is more exactly determin'd by the Latitude than by the Longitude; and that becaufe of the leffer Obliquity of the right Line to the Circumference, by which it is brought about, that a fmall Variation of Diftance is more fenfible in the Circumference. In another manner the Situation of the Spots and Horns of the Moon may be determin'd by the oblique Tranfits, if the Line AD, parallel to the Moon's Path PQ touching its Limb, be made the Diameter of a Square circumfrribed about the Moon, which is divided into fo many equal Parts as the Moon paffes through the oblique Thread in Seconds ; as in this Eclipfe into 204. Of this Square the two Sides AC, BD, will reprefent the firt oblique Thread, as being parallel to it ; the others A B, CD , will reprefent the fecond oblique Thread. Now the Difference being taken between the Tranfit of the preceding Limb of the Moon and Spor M through the oblique Thread, in horary Seconds from the preceding Angle from A to T, and through T the right Line EF being drawn parallel to the Side AC; and in like manner from the fame Angle A taking the Difference between the Tranfit of the preceding Limb K and the Spot M , through the

(305)

recond oblique Thread AB, as AV ; through the Point V let the right Line GVH be drawn parallel to the Side AB; it will reprefent the fecond oblique Thread cutting the former in the Point M , and will there determine the Situation of the Spot. In the fame manner will be determin'd the Situation of the Horn E, by the Difference of its Tranfit and of the Limb, through the firf oblique Thread, taken in the Diagonal as A T; the Situation of the Horn H, by the Difference of its Tranfit along the fecond oblique Thread AB , as A V , and drawing through V a right Line GH parallel to the Side AD ; if it be known whether the Horn be in the precedent or fubfequent Semicircle.
XL. The Tables did not indicate an Eclipfe of the Moon, July 2\%. (N. S.) 1665. but tho' the Sky here was very clear, yet the Moon was not at all obictred by the true Shadow, but entred only a little into the Penumbra, wherein it continued 50°. The Beginning of its touching the Penumbra did then almoft happen, when Aquila was elevated $36^{\circ} .18^{\prime}$.

XLI; In the Eclipse of fune 16, (N.S.) 1666 , the firft Pbafis of 1 Dig. 45^{\prime}. appear'd in the Moon's Altitude of $2^{\circ}-30^{\prime}$. when the greateft Obfcuraration was already paft. The End fell out $9^{h^{\prime}} \cdot 27^{\prime}$. about 120°. from the Ze nith Weftward.
XLII. On the 29th of September new Style, An. 1670. in the Morning, the Beginning of this Eclipfe happened at $2^{b} .22^{\prime}$. tho' this could hardly be obferved very accurately, becaufe of the very thin Shadow of the Earth. For during the Eclipfe the Shadow of the Earth was fo very thin and dilute, that I could fee very well through it all the principal Spots, with my twenty-foot Tube, and even with fhorter.

The greatef Obfcuration fell at $3^{\mathrm{h}} \cdot 50^{\prime}$. The End at $5^{\mathrm{h}} \cdot 22^{\prime}$. So that the whole Duration was $2^{\text {b }} .59^{\prime}$, and the Quantity hardly more than 9 Digits. About the Middle of this Eclipfe, at $3^{h} \cdot 40^{\prime}$. I faw very plainly a certain unknown little Star, which could be feen only with the Tube, covered by the Moon near the greater black Lake ; but I could not fee it come out again. When the Eclipfe was ended it was a very pleafant Sight to fee the two Luminaries both above the Horizon together: For the Sun arofe before the Moon was fet. The other Things that were remarkable may be found in the following Table.

XLIII. i. On $S_{\epsilon p t}$ 8. 1671. about fix in the Evening, the Moon rofe to- A_{n} Ectipfe of the tally obfcured at EEton in Nortbamptonfaire.

It began to emerge out of the Shadow, the Center of the Moon being 9°. 35^{\prime} high, or at $7^{\mathrm{h}} .18^{\prime}$.

Moen, Sept 8. 1671. at Eaton; by Mr. Yalmer. N. j6.p.2272。

At the End Arilurus was $16^{\circ} \cdot 30^{\circ}$. high, or at $8^{\mathrm{h}} \cdot 16^{\prime} \cdot 20^{\prime \prime}$. Whence the middle of the Eelipfe is computed to be at $6^{n} \cdot 28^{\prime} \cdot 16^{\prime \prime \prime}$.
2. The Emerfion: Alt. of the upper Edge of the Moon The End of the Eclipfe: Alt. of Arcturus

3. $7^{\mathrm{h}} \cdot 27 \frac{\frac{1}{2}^{\prime}}{}$, I firft obferved the Moon eclipfed when it began to be en $-B_{y} D_{r}$. Hook. lightned, the total Darknefs being already paft. The Shadow paffed through the middle of the Spot called by Hevelius, M. Porphyrius.

(308))

$7^{\prime \prime} \cdot 49^{\prime}$. The Shadow paffed through the middle of M Sinai, through the middle of the Eaftermoft of the three Lakes called Mare Airiaticum; and juiz touched the Ridge of the Apennine Mountains.
$7^{\mathrm{h}} \cdot 54^{\prime}$. It paffed the middle of the I. Bifficus in the Propontis.
8^{h}. $\mathrm{O}^{\frac{1}{2}}$. It paffed through the Streights of the Pontus Euxinus, at the Promontories Acberufia and Arifes.
$8^{h} \cdot 6_{=}^{\prime}$. It touched the Palus Meetit, which Palus Maotis was then diffant from the L imb of the Moon, next adjacent, one third part of its frorter Diameter or Breadth.
$8^{\text {h }}$. 17^{\prime}. The Shadow went off the Bocly of the Moon upon the innermoft Limb-line of Hevelius's large Chart of the Moon at the 2gth Divifion, juft without the I. Major of the Cafpian Sea. The dufkifh Pcnumbra left not the Limb of the Moon quite without fome kind of Darknefs till $8^{\text {b }}$. 29^{\prime}; at which time I found that that fide of the Moon which the Shadow lafl left, was full as light and clear as the other.
About four or five Minutes after the Shadow was gone off, I perceived a faint Reprefentation of Colours upon that Part of the Body of the Moon which was moft affected with the Penumbra, fomewhat refembling the Colours of a faint Halo about the Moon ; this grew fainter and fainter, and after a few Minutes was no more vifible. It did not feem to be caufed by any Clouds or Exhalations in the Air, the Sky near the Moon being very clear, and the faid Colours not appearing any where but upon the dufky part of its Phafis. Poffibly it might be caufed by the Refraction of the Light of the Sun through the Atmofphere about the Earth.

At Paris ; by M. Bullialdus.
 N. 75. p. 2273.

5. At $8^{\mathrm{h}} \cdot 30^{\circ}$ a-Clock, through the opening Clouds, which were pretty

A: Dantzick: by M. Hevelius. N. 78. p. 3028 thick, we perceived the Moon fomething obfcurely, and fo much enlightned, that one would have thought the Eclipfe had been over already. Thence it was certain, that the total Obfcuration was then pafs'd at leaft, or rather fomething fooner. For that the Moon was come again, we could all perceive plainly enough through the Clouds. So that the Eclipfe muft have appear'd in the Heavens above half an Hour fooner, than Kepler's Calculation made it. At $8^{\mathrm{h}} \cdot 34^{\prime}$. I obferved the Moon had freed herfelf from the Shadow a whole Digit at leaft ; and again at $9^{\mathrm{h}} \cdot 4 \mathrm{I}^{\prime}$. the Light of the Moon had increafed to $1^{\frac{1}{2}} \mathrm{Di}-$ git, as near as we could judge.
6. We
6. We found here, as Mr. Hevelius had done at Dantzick, that the Rudol- A_{t} Hamburg ; phine Tables were out in the late Eclipfe. We found here alfo, that the Moon bly Dr. Fogelius. emerged out of the Shadow of the Earth before nine a-Clock.
XLIV. I. The beginning of the true Shadow The Immerfion
The Emerfion
The End of the true Shadow
$\left|\begin{array}{cc}\text { h. } & \\ 5 & 22 \\ 6 & 19 \\ 7 & 58 \\ 8 & 58\end{array}\right|$

The Penumbra was feen to continue near half an Hour before it wholly quitted the Body of the Moon.
2. Mr. Flamfeed obferved the Beginning of the Entrance of the true Sha- At Derby; by dow h. 5 . and 19 '.
M. Flamftecd.
lbid.

At Paris; by M. Bullialdus. 1bid. p. 23^{8}

The Immerfion, Height of Capella
The Emerfion, Height of Cap. Polizc. End of the true Shadow, Height of Sirius

4. At 5^{b}. 12^{\prime}. in the Evening, in the Royal Obfervatory, they began to $M t$ Paris, by perceive that the Oriental Part of the Moon, by little and little loft its Light; M Picard, and M. fo that at $5^{\mathrm{h}} \cdot 25^{\prime}$ they faw a manifeft Penumbra: Then at $5^{\mathrm{h}} \cdot 32^{\prime} \cdot 50^{\prime \prime}$. the Roermer. Limb over-againft the Spot called Hevelius grew fo dark that they all agreed $\begin{aligned} & \text { Iid. } 112.2, p .257 \text {. } 12 .\end{aligned}$ that this was the true Beginning of the Eclipje. At $8^{\text {b }} \cdot 7^{\prime}$. one of the Obfervers believed the Emerfion, another at $8^{\mathrm{h}} \cdot 8^{\prime}$. and the third at $8^{\mathrm{h}} \cdot 9^{\prime} \cdot 30^{\prime \prime}$. but afterwards confidering the Emerfion of the firt Spots, they all efteemed it at $8^{\text {h }} \cdot 8^{\prime}$. At $7^{\text {h. }} 21^{\prime}$. the Southern Limb of the Moon was come clofe to a Telefcopick Star: At $8^{\mathrm{h}} \cdot 9^{\prime} \cdot 20^{\prime \prime \prime}$. another Star yet lefs than the former, came out of the darkeft Side, almoft over-againft the Spot Langrenus. At $9^{\text {b }} \cdot 9^{\text {º }}$. $40^{\prime \prime}$. all the three Obfervers agreed, that the Moon then came out of the Shadow. The Diameter of the Moon, being meafured before the Eclipfe, was of 32^{\prime}. $15^{\prime \prime}$.

The Times were noted by great Pindulum Watches that had been adjufted by the Sun the fame Day, and that were afterwards verified the next Day: Befides that, before the Eclipfe, at $4^{h} \cdot 45^{\prime} \cdot 1^{\prime \prime}$. by the Watches, the Star Capella was 45 Degrees high towards the Eaft.

Time.	Pbafes.	Het.
h. ' "		9
$34 \quad 5$	The ${ }^{7}$ middle of Copercrius.	
3535	The fecond Limb of Copernicus.	dest
3^{6} 10	Pitbeas.	
$83^{6} 30$	Heraclides.	
840 o	The firft Limb of Timocharis.	
84235	The firft Limb of Plato.	
84345	The fecond Limb of Plato.	
84930	The middle of Manilius.	
85^{2} 10	Menelaus and Dionys. Areopag.	
8550	Polvidonius.	
856	Vitruvius.	
85930	Endymion.	
9620	The firft Limb of the Cafpian Sea.	
9710	The middle of the Cafpian Sea.	
198840	The other Limb of the Cajpian Sea.	
$19 \quad 940$	The End, between the Cajpian Sea and Langrenus.	

5. Through the whole Duration of the Eclipfe, with a Tube of 20 Feet, At Dantrick; by M. Hevelius. and others better than that, I directed my watchful Eyes to four fixt Stars, N. $113 . p .289$. neglecting others that were lefs, (which however I faw very well,) among which the Moon was at that Time. It was diftant from the little Star a hardly 4 Minuutes, with its lower Limb in Conjunction with it: And the three other Stars b, c, d, the Moon cover'd entirely with her Body. Now of all thefe four remarkable little Stars, only one of them e has been hitherto taken notice of by Aftronomers, and infcribed upon the Globes; it is call'd the uppermoft of the unform'd Stars between II and 厅, at the Back of Pollux: whofe Courfe with its Ingrefs, Progrefs, and Egrefs, is chiefly to be well obferved. For from this kind of Obfervations efpecially it may be eafief to perfect the Theory of the Moon's Motion, and to fix its Nodes and Latitude, than in my Judgment can be done from mere Solar Eclipfes. The little Star b was cover'd nearly at Mount Eous, and d at the inferior Limb of the Moon itfelf. This pafs'd through the Sinus Sirbonis, the Ine of Rbodes, and S. Atbeniehfos, the other through the Defert of Mingui.
(352)

The Time according to Pend. Clock, cor rect. by All.	The Altitudes of the fixed Stars, with things woorithy to be noted.	Through what Spots the Sections of ibe Shudoric paffed.
$\begin{array}{ccc} \hline \text { h. } & & \prime \prime \\ 6 & 22 & 18 \\ 6 & 25 & 4 \end{array}$	The height of the Swan's Tail $39^{\circ} \cdot 3^{\prime} \cdot 0^{\prime \prime}$ The height of the fame $4 \mathrm{I}^{\prime} . \mathrm{O}^{\prime \prime}$.	
$\begin{array}{lll} \hline 6 & 35 & 0 \\ 6 & 41 & 50 \\ 6 & 43 & 45 \\ 6 & 44 & 55 \end{array}$	Moon enter'd the Penuin. Beginning of the Eclipfe. ${ }_{1}$ It reach'd the Palus Mareotis. ${ }_{2}$ Palus Marcotis quite obfcured.	It began about 50° from the Na dir, towards the Eaft. Juft at the Beginning Sinus Sigaricus, the Inands of Befbica and Melos were in one right Line.
$\begin{array}{lll} 6 & 49 & 0 \\ 6 & 52 & 30 \\ 6 & 57 & 35 \end{array}$	4 Mons Porphyrites cover'd.	The Section of the Shadow pafs'd by Mounts Pentadait. and Eous. By the Loca Paludofa and M. CataraEt. To M. Baronius, thro' M. Petri, Athor, and M. Troicus.
$\begin{array}{llll} 7 & 2 & 15 \\ & & & \\ 7 & 2 & 55 \\ 7 & 7 & 40 \\ 7 & 7 \end{array}$	6 It began to cover Mount Etna. 7 Mount /Etna quite cover'd.	To the Bay of Apollo, the Inand Ficaria, to the bot. of M. Etna, the In. Didyma, and the S. Lake. To the Ifle of Sardinia, by the Ines Hiera and Crete. By the greater Ailantic Mountains, the Ine Vulcania, Rbodes, and Mount Ann.
$\begin{array}{llll} 7 & 10 & 40 \\ 7 & 14 & 0 \\ 7 & 16 & 40 \end{array}$	9 Mount Sinai cover'd. o The greater black Lake cover'd.	By the Ines Opbiufa, Cyprus, and Mount Sinai. By greater black lake, by the M. Sipylus, Libanus, and Seir. By leff. black lake, the Ine Befbica, Mounts Olympus and Didymus.

$\left\lvert\, \begin{array}{lll\|l\|} \hline 7 & 20 & 20 \\ 7 & 25 & 0 & 13 \end{array}\right.$	The Star ${ }^{c}$ was diftant The Section of the Shadow pafs'd from the Limb of the by M. Carpatbus, Byzantius, Moon towards the Eaft and Taurus. almof 30^{\prime}. By the Lake Boryftenes, the Ine Apollonia, Mount Mofchus, and Sogdianus.
	By the Mountains Macrocemnios, Promontory of Aries, of Hercules, by the utmoft Bay of Pontus, and Mount Parapremifus. By the Palud. Hyperborere, the Ine Corocondametis, and M. Caucafus. By the Riplrean Mountains, the Palus Maotis, and the lower Bay of the Cafpian Sea.
$\left\|\begin{array}{ccc} 7 & 42 & 44 \\ 7 & 55 & 30 \\ 8 & 0 & 50 \\ 8 & 35 & 20 \\ 8 & 51 & 20 \\ 9 & 9 & 10 \end{array}\right\|$	The total Immerfion happen'd about 50°. of the Limb from the Zenith towards the Weft. The little Star α, in its Conjunction with the Moon, was diftant from its lower Limb about 4 Minutes. The little Star b cover'd at Mount Eous. The little Star center'd at the Southern Lake. The little Star d was hid at the lower Limb. The little Star cemerged again under Mount Nevofus ; fo that it enter'd the Moon at $3^{\prime} \cdot 20^{\prime \prime}$. It was truly a very pleafant Sight, to find all thefe very bright, even almoit under the greateft Obfcuration, and the M's Conjunction.
91213	Emerfion of the Moon out of the Shadow happen'd almoft at 30°. of the M's Limb, from the Nadir towards the Eaft.
$\begin{array}{llll:l} 9 & 20 & 20 & 17 \\ 9 & 25 & 0 & 18 \\ 9 & 30 & 20 & 19 \end{array}$	Shadow pafs'd by Pal. Mareotis, Fontes Amari, and Mount Eous. By Mount Audus, Ajax, and Troicus. By M. Pentadacilus, Carpatbus, S. Sirbonis, and Mount Lion.

Vol. I.

$932.40{ }^{20}$	Mount Porpbrrites came out of the Shadow.	By Mount Porplayrites, Cadrus, and Didymus.
$93^{6} \quad 521$	Mount Sinai began to be	By M. Baror. at the Ine of Sicily,
	illuminated.	byCrete, at the bottom of Sinai.
942.1522	Mount AEma under the very Section of the Shadow	By the Promontory of Apollo, M. EEtra, by Rbodes, and the Mountains of Seir.
$9 \quad 47 \quad 10.23$		By the Ine Vulcania, M. Maficytus,
		ragus, and Antiliba
$51 \quad 024$		By the greater black Lake, Bay
		and Mount Coibacaroni.
9565025		By the leffer blackLake, at the Ine
	again into the Light.	Besbica, by the Mount Uxerii.
$959-35126$		By the LakeSalmider Ja, M.
		nium, Mofchus, and lake Thofpitis.
027		By Pontus, Ine Cyanea, Bay of
$10 \begin{array}{lll}10 & 7 & 28\end{array}$		By Lake Boryjbenes, at the
		Apollonia, by Heracleum, and M. Tancon.
	The Shadow was not yet quite gone.	
10200	The End of the Eclipfe.	
10230	The Penumbra.	
10 5258	Alt. of Mars. $37^{\circ} \cdot 12^{\prime}$	
105835	Alt. Star Aries. ${ }_{28} 8152$	
$\left.\left\lvert\, \begin{array}{llll}11 & 11 & 33\end{array}\right.\right]$	Alt. of Capella. $y_{70} 1$ I	

At Seville; by S fefor of Matbematicks.
maticks.
N. 128. p. 428 .
6. The Obfervation of this Eclipfe was very exact ; for the Sun being near the Horizon, by the Latitude of this Place the Minutes were eafily found. I obferved the reft by my Clock, which that Day did not differ fo much as a Minute; fo that there is no Room for Doubt in the Obfervation.

	h.'	
The Beginning of the true Shadow	4	5^{6}
The Immerfion	6	1
The Emerfion	7	33
The End	$8 \quad 39$ or fomething longer.	

	$\begin{array}{\|c\|} \hline \text { Hour of } \\ \text { the Pend. } \\ \text { Clock. } \end{array}$	The Pbajes.
	$\begin{array}{lll} \text { h. } & 1 & \prime \prime \\ \text { I } & \text { I } & 00 \end{array}$	Moon's Diam. $\left.3^{1} 9^{\circ}=3 \mathrm{I}^{\prime} 40^{\prime \prime}.\right\}_{\text {The Meafures were often re- }}^{\text {peated, both by my felf, }}$
	I II OO	Moon's Diam. $3191=3146 \int \begin{aligned} & \text { and my Affiftant Mr. Hal- } \\ & \text { ley. }\end{aligned}$
		No Appearance of the Penumbra; and now the Moon went under fome flying Clouds, under which fhe ftill lay hid.
	14640	Till a denfe Penumbra appear'd through their Openings, or perhaps the Beginning itfelf; but I could not be fure.
	I 5140	The Moon's Limb being now raifed out of the Clouds, was feen to labour under a very notable Defect, a fixth Part, or at leaft an eighth Part of her Circumference being obfcured.
	15515	Pentadactylus was cover'd.
	$2 \quad 20$	Porphyrites was cover'd.
10	$2 \quad 5 \quad 30$	The firt Limb of Sinai.
	2600	The next Limb of Eina.
	$2 \quad 8 \quad 40$	The remaining Parts illuminated were $2071=20^{\circ} \cdot 38^{\prime \prime}$.
	21200	A fmall Telefcope Star, that was not vifible with the leffer Tube, in the greater appear'd to be of almoft half the Capacity of the fame, or diftant 15^{\prime} apparently from the lower Limb.
	21745	The remaining Parts illuminated $1655=16^{\prime} \cdot 27^{\prime \prime}$.
15	2235	The firft Limb of Befbicus.
16	2263	Horminius cover'd.
	22900	Etmus cover'd.
	23045	The remaining Parts illuftrated $1047=10^{\prime}$.
19	23500	The remaining bright Parts $865=8^{\prime} \cdot 38^{\prime \prime}$. And now in the longer Tube another fmall fixt Star appear'd, being diftant from the Limb of the Moon the Long. of the Cajp. Spot, its Lat: from the line drawn thro, the Cufpids towards the right Hand.
20	23715	The Shadow cover'd the Weftern Shore of Pontus.
21	23930	It touched the firt Limb of Corocondometis.
22	24500	It touched the Palus Meotis.
23	25045	Mreotis was wholly cover'd.
	25610	Doubtful whether any true Light remain'd.
25	$25^{6} 55$	Immerfion: For furely the primary Light had intirely left the Moon, for over againft, or a little above the Ripbsan Moun tains, and about a Deg. of the Limb of Hevelius 330, $2^{\text {h }} .57$ 30'. the Limb appear'd thro' the Tube of a kind of Afh-colour

XLV..

An Eclipfe of the Moon, June 27. 1675. at London; by M r.
Flamfteed, and Mr. Halley. N. 116. p. 371. N. 118. p. 43^{20}

The Air was very ferene from the feventh Obfervation to the Immerfion. And a certain faint whitifh Light feem'd to take Poffeffion of the Cufpids of Si_{2}
the
the darkned Moon through the whole Time of the Eclipfe, which made the Moon confpicuous after the Immerfion, on that Side which fell laft into the Shadow. The Penumbra of this Eclipfe was very thin, nor was its breadth greater than that of Sinai or Atna. The Palus Meotis appear'd very broad, and removed as far as it could be from the Limb of the Moon. On the contrary, Marcookis was very much contracted, nor farther diftant from the Moon's Limb than half its Length.

At Paris; by M. Bullialdus. Ibid. P. 372.
3. By M. Calinin, M. Picart, and A. Roemer. N. $117 \cdot$ P. 388
2. Beginning of true Shadow, Capella's height to Eaft 18 45 Shadow reach'd Palus Maot. Lyra's Alt. to Weft 5051 Total Immerfion, Lyra's Alt. to the Weft

Time.	Tranjit of the Shadow.
h. ${ }^{\prime}$	
I 5645	The Beginning below Grimaldus.
5720	Through the firt Limb of Grimaldus.
I 5850	The fecond Limb of Grimaldus.
145	Galilcus.
215	The firft Limb of Merfennus.
415	The Beginning of Gaflendus.
2440	The middle of Gaffendus.
$2 \quad 530$	The other Limb of Gaflendus.
2.615	Herigon and Seleucus.
745	Morinus.
$2 \quad 818$	The middle of Kepler.
1135	Aritarcbus and Bullialdus.
21240	Ariftarchus difappears.
21625	The Beginning of Tycho.
21640	The Beginning of Copernicus.
21725	The middle of Tycbo and Coperriicus.
21812	The other Limb of Tycho.
22145	Pytben, and the firt of the three Sin. Medii
2240	The middle of the fecond Sinus Medii.
22453	Heraclides or Virgo.
22610	The firt Limb of Timocbaris.
22640	The middle of Timocbaris.
23140	The Promontory between Virgoand Plato.
23220	Abulfeda.
23415	The Beginning of Manilius.
23615	Dionysus the Areopagite.
23810	The Shore of the Sea of Tranquillity.
23845	The firtt Limb of Menelous and Plato.
23920	Fracafor.
23953	The middle of Plato.

Time.	Tranfit of the Sbadow.
h. '"	
4115	Through the other Limb of Plato.
24415	Promontory between Conforinus and Beda.
25020	The firft Limb of Palus Somnit.
25045	The Horns were vertical.
25355	The beginning of Langrenus.
25520	The firtt Limb of Mare Caspium.
3110	The other Limb of Mare Cafpium.
3 1 45	Endymion.
$\begin{array}{llll}3 & 3 & 15\end{array}$	Mefbala.
3745	End, or tot. Immerf. above Mare Cafpium

The Cafpian Sea was then diftant from the Weftern Limb about $\frac{3}{4}$ of its Breadth. After the total Immerfion the whole Body of the Moon was ftill diftinguifhable.

Correct. H.	Pbafes.
h.'	
22930	Between the Cufpids $2085=17^{\prime} \cdot 16^{\prime \prime \prime}$.
25545	The Shadow almoft touch'd Hemus.
$3 \begin{array}{llll}3 & 0 & 30\end{array}$	It had certainly touch'd Hamus.
31130	The right Cufpid from Mareotis $1235=10^{\prime} .14^{\prime \prime}$.
335	The lucid Parts were about $2800=23^{\circ}$. $11^{\prime \prime}$. or perhaps fomething more; for it was very difficult to diftinguifh the Limits of the true Shadow, becaufe the Air was foul with Vapours.
34230	The Shadow near Macra.
$35^{3} 45$	Between the Cufpids about $2288=18^{\prime} .57^{\prime \prime}$.
$\begin{array}{lllll}4 & 7 & 15\end{array}$	The End : For the Limb appear'd, and there feem'd nothing to be wanting in the Roundnefs of the Moon.
480	The Limb very plainly feen through the Tube.
41530	The Penumbra, which to the naked Eye refembled an Eclipfe.
41930	The Diameter of the Moon taken $3757=31^{\prime} \cdot 5^{\prime \prime}$. but not much confided in, tho' I think it not far from Truth.
$423 \quad \mathrm{c}$	Still and afterwards, the Limb forfaken by the Eclipfe feem'd fomething obfcure, and as it were another Eclipfe.

XLVI. 1. An Eclipfe of tine Moon, Decemb. 22. 1675 . at Gresnwich; by Mr. Flamfteed. N. 12ฐ. \%. 435 .

The Diftance of Corfica from the remote Limb of the Moon $273^{2}=22^{\prime} .37^{\prime \prime}$. Its neareft Limb from the neareft of the Moon $1045=8^{\prime} .39^{\prime \prime \prime}$.
The remoter Limb of Sinai from the neareft of the Moon $599=4^{\prime} \cdot 5^{\prime \prime}$. good. The Middle of the greater black Lake from the neareft Limb $45^{2}=3^{\prime} \cdot 45^{\prime \prime}$.

I took notice befides, that the Shadow always appear'd far more diftinct at the Horns than elfewhere, in the Face of the Moon. In the firft Obfervation, or a little before, the Horns were parallel to the Horizon.

Then alfo Porpbyrites, and the greater black Lake, were equally out of the Shadow, about the Length of Mareootis.

Yet it never went beyond Porphyrites in this Eclipfe, yet I faw it deeply immerfed in the Penumbra.

In the Height of the Eclipfe the Shadow alnnoft reached Corficn; yet I never faw it extinct, but immerfed fo deeply in the l'enumbra, that I could hardly perceive it.

Neither did the true Shadow ever goover the Ine Macra, but only a denfe Penumbra, through which it was difficult to fee it.

At $4^{\mathrm{h}} \cdot 5^{\frac{1^{\prime}}{2}}$. I could not fee the Limb, nor at $4^{\mathrm{h}} \cdot 6^{\frac{1}{2}}$. But at $4^{\mathrm{h}} \cdot 7^{\prime}$ I thought I faw the Light of the Limb very faint, but with much Difficulty. At $4^{\text {b }}$. 7^{\prime}. $15^{\prime \prime}$. I was fure it had emerged out of the Shadow, nor was any thing wanting to its Roundnefs. Therefore there I placed the End.

The Shadow went out near the upper Lacus Hyperboreus, the Penumbra remaining, which exhibited the Eclipfe to the naked Eye as far as $4^{\mathrm{h}} .15^{\frac{1_{2}^{2}}{2}}$. But the Limb left by the Eclipfe recover'd the Brightnefs of the other Limb noi till $4^{h} \cdot 28^{\prime}$. or later.

The Fimes of the Phafes were corrected by the Altitudes of Arciurus, and the bright Star of the Crown, taken by a Telefcopic Quadrant of above three Feet Radius. To the taking of which Altitudes I apply'd my folf, whenever the Clouds came over the Moon, Thofe Stars fometimes fhone out very bright in the other Quarter of the Heavens.

Ae Inndon; by Mr. Edm. Halley.
Tbid. p. 49^{3}.
2. The Eclipfe was begun before I came to my Inftruments. But this was obferved at Loidon in Winchester-ftrect by Mr. Halley, when the upper Limb of the Moon was diftant from the Vertex.

from the fame $\left.$	39	51
41	1	
54	12	\(\left

The Horns parallel to the Horizon\end{array}\right|\)| 2 | 16 |
| :--- | :--- |
| 2 | 25 |
| 3 | 58 | \right\rvert\,

By Mr. Colfon. 3. Fobn Colfon at Wapping, near the Hermilage, faw the Limb of the Moon lbid. fomething deficient at 2^{h}. $17^{\frac{5^{\prime}}{4}}$. But at $4^{\mathrm{h}} \cdot 9^{\prime} \cdot 25^{\prime \prime}$. he found it had come out of the true Shadow, and that there was only a denfe Penumbra remaining.

At Paris ; by M. Caffini.
N. 123. P. 56 r.
4. In this Eclipfe two of the chief things have been exactly determin'd by us, that is, the middle Time of the Eclipfe, and its Magnitude. The middle is deduced not only from a Comparifon of the Beginning and End, but alio of two equal Phafes, which are very eafily determin'd, that is, when the Diftance of the Horns was equal to the Semidiameter of the Moon, taken before the Eclipfe, $15^{\prime} 28^{\prime \prime}$. That is, when the beginning of the Eclipfe was eftimated at $2^{\mathrm{h}} \cdot 24^{\prime} \cdot 35^{\prime \prime}$.
End of the total Eclipfe, a like Penumbra being left as was in the Determination of the Beginning
The Duration of the whole Eclipfe comes out The Half
And the middle of the Eclipfe
A fixth Part of the Circumference is cut off

(319)

And again
The Interval
The Haif
Hence the middle of the Eclipfe 31015
Agreeing to the former Determination within a fourth part of a Minute.
We agree entirely with Mr. Flamfeed in the Situation of the Shadow, and the Magnitude of the Eclipfe. For it is obferved by both of us, the Shadow never went beyond Porpbyrites, tho' it was deeply immerfed in the Penumbra.

Next to Porphyrites is a little whitih Mountain, which we then call'd the Componion of Aritarcbus, becaufe it is hardly dittant from Porpbyrites its own Diameter. That little Mountain was immerfed in the Shadow at $2^{\mathrm{h}} .51^{\prime} .15^{\prime \prime}$. And it emerged at $3^{\mathrm{t}} \cdot 8^{\mathrm{\prime}} \cdot 25^{\prime \prime}$, and all the Time between was in the Shadow next to Porpbyrites.
We both of us obferved alfo, that in the Height of the Eclipfe the Shadow almoft reached to Corfjca, yet it was never cover'd by it, but a fmall Diftance was left ; the Diftance of which Limit being taken from the neareft Limb of the - Aoon was $8^{\prime} \cdot 17^{\prime \prime}$. Whereas Flamfleed found the Diftance of the Inand itfelf a little more remote from the fame Limb, to be $8^{\prime} \cdot 39^{\prime \prime}$. We alfo obferved the Ifland Macra, or rather Peninfula, to be very long adjacent to both the Shadows. We took notice this begun at $3^{\mathrm{h}} \cdot 28^{\prime} \cdot 15^{\prime \prime}$. and that it continued at the fame Diftance for a quarter of an Hour.

$\left\|\begin{array}{l} \text { Capella } \\ \text { lijt. from } \\ \text { be Vert. } \end{array}\right\|$	Pbajes.	Mean Time.
- "		h. '"
	The Penumbra thin.	$2 \quad 612$
$40 \quad 42$	The Penumbra more denfe.	212.7
4230	Senfible Begin. over againft Sinus Hyperb. about 70°.	2.233^{2}
$42 \quad 50$	Almoft $\frac{1}{8}$ of a Digit.	22548
$44 \quad 25$	The Shadow touch'd the leffer Atlas.	$23^{6} 11$
	The Shadow a little above Baronius, above Ligufinus, it had feized M. Macr.	
$48 \quad 56$	The Shadow had almoft reached Catena Mundi.	$\begin{array}{lll}3 & 622\end{array}$
49	The Shadow touch'd Montunial.	31254
	Touch'd Sin.Peront. M. Pyra, and middle of Pal.Hyper.	31741
52	It feiz'd Sinus Sagaricus, and Peronticus, and the Pro-	329 I
	etra was out of the Shadow.	

$$
\begin{aligned}
& \text { By M. Builial- } \\
& \text { dus. } \\
& \text { N. } 125 . p .610
\end{aligned}
$$

The Shadow did not reach Corfica, nor Lacus Tbrafymenus; wherefore the Eclipfe did not exceed 3 dig. $3^{0^{\prime}}$. or rather lefs. The Beginning was fooner by a Minute or $45^{\prime \prime}$ than what is fet down, fo that it may be fixt more exadly at $2^{\mathrm{h}} \cdot 22^{\prime} \cdot 30^{\prime \prime}$. Hence the whole Duration exactly enough was $1^{\mathrm{n}} \cdot 5^{1} \cdot 24^{\prime}$. So that the greateft Obfcuration happen'd at 3^{n}. $18^{\prime \prime} .14^{\prime \prime}$.

At Strataurg:	$\begin{aligned} & \overline{\text { All. of }} \\ & \text { Arciur. } \end{aligned}$	Mean Time.	Pbajes.
	$\left\|\begin{array}{ll} 0 & 1 \\ 30 & 30 \\ 36 & 0 \\ 39 & 50 \end{array}\right\|$	$\begin{array}{ccc} \text { h. } & \prime \\ 2 & 48 & 48 \\ 3 & 20 & 8 \\ 3 & 45 & 44 \end{array}$	Beginning. Shad. thro' M. Porpbyrites, and Promont. of the Moon. The Shadow fkim'd by Lacus Tbrafimenus, Mount Ba ronius, and Sinus Cercinites.
ATMe9	$\left\|\begin{array}{ll} 44 & 15 \\ 46 & 25 \\ 48 & 30 \end{array}\right\|$	$\begin{array}{l\|lll} 4 & 13 & 20 \\ 4 & 27 & 36 \\ 4 & 41 & 44 \end{array}$	Shadow pafs'd by Promont. of the Moon, and M.Cimmerius Shadow touch'd the leffer black Lake, and M. Carparibus. It ended in the middle Region of Sinus Hyperboreus.
		Therefore	the whole Duration was $1^{\text {h }} \cdot 52^{\prime} \cdot 56^{\prime \prime \prime}$.

Al Dantzick ; by M. Hevelius. N. 124 . ${ }^{\circ}$. 589.
7. In this Eclipfe it is to be well obferved, that all the Sections never intirely cover'd Mount Porphyrites, but it remain'd perfpicuous in the very Limit of the Shadow, even in the greateft Obfcuration.

(325)

Iime by the Pendulum Clock.	Tins: corrected by Defirvat.	Obfervations.
h. ${ }^{\prime}$		
1500	10000	The Moon's Diameter 6ı91 $=30^{\prime} \cdot 53^{\prime \prime}$.
14630	14130	The Penumbra oblervable.
I 5340	14840	The Penumbra denfe.
15540	15040	The beginning.
15800	I 5300	The Shadow at Mount Climax.
$2 \quad 320$	15820	Sinus Sirbonis begins.
2550	20050	Lacus Maraotis begins.
2730	$2 \quad 230$	Mons Cateractes begins.
2816	$2 \quad 316$	Nar cotis wholly cover'd.
.21050	2550	Sinai begins.
21256	2756	Sinai wholly cover'd.
$\begin{array}{llll}2 & 18 & 00\end{array}$	$2 \begin{array}{lllll} & 1 & 3 & 00\end{array}$	Audus.
$27^{2} 724$	$2 \begin{array}{lllll}2 & 2 & 2\end{array}$	Circinna.
231000	22600	Abrlficia according to Ric
$\begin{array}{llll}2 & 32 & 30\end{array}$	$\begin{array}{llll}2 & 27 & 30\end{array}$	Pentadact lus begins.
23332	$2 \begin{array}{llll}28 & 32\end{array}$	The firft Limb of Fina.
23426	22926	The whole of Pentadactylus.
2356	2306	The middle of Eina.
23600	23100	Aitna wholly cover'd.
24000	23500	The Shadow thro' the middle of Porphyrites.
24450	23950	Ine Hiera and Ficaria together at the Shadow.
$2 \begin{array}{llll}2 & 46 & 10\end{array}$	24110	The Shadow at Horminius.
25010	24510	Mons Hercules begins.
$25^{1} 110$	$24^{6} 10$	Mons Hercules within the Shadow.
$25^{2} 10$	24710	The Shadow through the middle of Beficus.
25400	24900	Through the middle of Infula Major.
255	25030	Through the middle of Bizantium.
25740	25240	Through the middle of the Ine Cyanea.
3150	25650	At the firt Limb of Corocondometes.
$3 \quad 430$	25930	At the fint Limb of Mrotis.
31300	38800	Macra begins to be obfcured : Doub
31400	$3 \quad 900$	Meolis wholly cover'd.
$\begin{array}{llll}3 & 19 & 12\end{array}$	$\begin{array}{llll}3 & 14 & 12\end{array}$	The remaining lucid parts were $1092=5^{\prime} \cdot 27^{\prime \prime}$.

XLVIII. 1.

An Eclipfe of the Moon, Aug. 19. m. 1681. at Greenwich; by M_{r}. Flamfted. Pb. Coll. N. ${ }^{2}$ p. 67 .
(326)

Digits cclipped.	not Pbajes.	Time.
d. ${ }^{2}$		h. ${ }^{\text {, }}$
	The Beginning at	I $5^{8} \quad 30$
	The Arrival of the Shadow at Grimaldes	2 I 30
	At Tycho	2.800
	At the Center of the Moons	$2 \begin{array}{lllll}27 & 30\end{array}$
	At the middle of Copernicus	23939
	At Ariftarchus	2.4000
81600	At the middle of Manilizes	25430
	At Plinius .	3 1 00
$9 \quad 200$	At the lower part of the Caspicm Sea	$\begin{array}{lll} 3 & 7 & 30 \end{array}$
93120	At the upper fide of the Cajpian Sea	$\begin{array}{lll} 3 & 18 & 30 \end{array}$
10	The greateft Obfourity	35545
44600	The Return of the Shadow to Arifarc.bus	3.4700
	To the Center of the Moon	42900
	To Tycho	44130
	The End of the Eclipse	51300
	The Whole Duration	

At 5°. $13^{\prime} 5^{\prime \prime \prime}$. the Apparent Alitude of the upper edge of the Sun, was 17^{\prime}. 10". and that of the Moon, $1^{\circ}, 11^{\prime} \cdot 30^{\prime \prime}$.

(327)

The Colour of this Eclipfe was Afh-colour, or dufky. At the Time of Obfervation Mons Porpbyrites, and Mount Etna were ncarly in the fame Perpendicular.

Phafes I. The Shadow pafs'd over Mount Eous.
II. It came to the Lakes of Arabia.
III. It touch'd the lower Bank of Palus Marcootis, and the Extremity of Sinus Sirbonis.
IV. It pafs'd over the Ifland Letoa as far as M. Sinci, but the whole Mountain was yet vifible and uncover'd.
V. It feem'd to pafs over Sinus Syrticus, fo that the Shadow now cover'd all Mount Sinai.
VI. It went above Sinus Syrticus, beyond the Inand Crete, and over Mare Mortutum.
XLIX. 1. An. $168 \frac{1}{2}$. Feb. II. Hour 8. I^{\prime}. with a Tube of 16 Feet I took An Eclipfe of the the Nioon's Diameter $6702=33^{\prime} \cdot 25^{\prime \prime}$. Then the Diftance of its neareft ${ }_{1682.2}$ Mob, 11. Limb from the neareft Limb of Mareotis $145=0^{\prime} .43^{\prime \prime}$. But the Diftance ${ }_{\text {Nr. Flameed. }}$ N. 145.89. of the Limb of the fame Spot from the remoter Limb of the Moon was 6575 $=32^{\prime} .48^{\prime \prime}$. Alfo by the Help of the fame Tube I obtain'd the Times, when the Obfcuration reach'd the Center of the Moon, and when the Radius fubtended its Arches in the Periphery that were either deficient or after they were reftored: From whence the middle may be derived, perhaps not lefs accurately, than from the compared Obfervations of the Beginning and End, the Immerfion and Emerfion.
328)

Pbajes.	The Times of the Pbafes corrected by Penduluir Clocks.	
	$\frac{B y}{} \text { my gelf. } \frac{B y \text { Halley. }}{h .}$	h.'"
Famus at the lower Limb; by our naked E.yes	$\begin{array}{llll}8 & 48 & 38\end{array}$	
The Shadow - - - - -	$9 \begin{array}{llll}9 & 4\end{array}$	
A denfe Penumbra	9 Ir 14	
The Beginning	9 12 32 9 13 0	
The middle of Palus Mariootis cover'd	91402	erh.foon.
The whole of Marcotis cover'd -	18 9	91348
A fixth part of the Periphery was obfcured	91810	
Circinna within the Shadow	92010	
The middle of Porpbyrites	921	
The Shadow fkims by Syrbo	921	
Firlt Limb of Mons Cataractes, or of Gafend	92132	
The Eye of the Dragon	$9^{2} 2758$	
It fkim'd by the nearer limbs of Crete and /Etna	92882292844	92819
Mount Etna wholly cover'd; Hiera begins	9294893016	9.30 I2
Hiera wholly cover'd -	93044	
The Beginning of Corfica	93346	
The middle of Corfica	93448	
Mount Sinai begins	9 3 38 9 37 10	93620
The middle of Sinai	93722	
All Sinai cover'd - - - -	$\begin{array}{lllllllll}9 & 38 & 0 & 4 & 9 & 38 & 10\end{array}$	3820
The Center of the Moon, or 6 Digits	938848	
The greater black Lake begins	$\begin{array}{lllllllllll}9 & 39 & 58 & 9 & 40 & 36\end{array}$	
The middle of the greater black Lake		48
The whole is cover'd	94140	
The beginning of Belocus		
The middle of Befbicus -	94342	944×3
Whole of Befoicu, it glides by the Euxine Sea Byzantium begins	9 46 58 9 44 36	94413
Byzzininus begins	$\begin{array}{llll}9 & 46 & 58 \\ 9 & 47 & 22\end{array}$	
Carpatbes	$\begin{array}{llll}9 & 47 & 22 \\ 9 & 47 & 50\end{array}$	
Mions Serroruin	$\begin{array}{llll}9 & 47 & 50 \\ 9 & 48 & 30\end{array}$	
Apollonia -	$\begin{array}{llllll}9 & 40 & 30 \\ 9 & 50 & 24\end{array} 9051-21$	
Niacra	9 50 24 9 51 21 9 52 44 9 53 33	
Mount of Hercules	9 52 44 9 54 26 9 53 33	
Macra cover ${ }^{\text {d }}$		
All Mount Hercules co		
Corocondometes Palus -	95910	
Thro' the middle of the upperLacus Hyperbor.	9 5953	
Corocondometes wholly cover'd	100038	
The Shadow over Mount Corax -	1017	
It glides by Maotis	Io 220 İO 238	

Through

329)

Vol. I.
U u
During

(330)

During the Eclipfe Mr. Halley, together with Thomas Smith, took the following Diftances of the Moon from the fixed Stars with a Sextant.

(334)

(335)

In the Progrefs of the Eclipfe the Shadow was very dilute, and its Limb was uneven and ill terminated, fo that it was very difficult to determine the Phafes from the Beginning, nor could it be exactly diftinguifh'd thro' what Spots the Shadow paffed; yet in procefs of Time as the Eclipfe went on, all things became more diftinct. The Colour from the Beginning was fufficiently dull, obfcure, and gloomy, as if the Eclipfe would fhew itfelf about the greateft Obfcuration, like that in the Month of April in the Year 1642, fo overfhadow'd as hardly to be perceived. But the thing fell out otherwife; for when the Moon was quite eclipfed, its whole Difk was perfpicuous enough to the Eye. For then its Colour was quite ruddy, bloody, or like Ruft, which continued till the Moon had half recover'd her Light, and then again it appear'd pretty dark and dufkifh.
L. The Obfervation of this fmall Eclipfe was very difficult, becaufe of the A_{n} Ecripfe oftbt oblique Incidence of the Moon into the Earth's Shadow, and the Thinnefs of $M_{m \text { on }} 1684$ the Shadow, through which we could very plainly perceive the Limb of the $\begin{gathered}m .1684 . a t \\ \text { Grenwich ; by }\end{gathered}$ Moon, even in the middle of the Eclipfe. We could not accurately define ${ }_{N .}^{M_{r} . \text { Framfeed. }}$ the Parts of the Diameter, which were then deficient from the true Shadow, becaufe the Limits were fo confufed. I therefore took the Diftance between the Cufpids tho' ill defined, about the middle of the Eclipfe, from whence the faid Parts might be eafily deduced, and with lefs Danger of Error.

Time by the Pendulum Clock.	True Times correct. by Obfervat.	Obfervations.	
		Tendency to an Eclipfe	
1 40 40 2 4 30	$\begin{array}{llll}1 & 51 \\ 2 & 58\end{array}$	Diam. of the M. by a Tube of 16 feet was $1605=$	57
$\begin{array}{llll}2 & 6 & 40\end{array}$	2578	- - - - - - repeated $6430=$	32
2120	2220	A denfe Penumbra, perhaps the beginning	
${ }_{2}^{2} 1600$	$2 \quad 628$	The Shadow had defaced the limb above M. Sinai	
218 co	2828	The Shadow was certainly within the Dink	
22136	$2 \begin{array}{lll}12 & 4\end{array}$	The Chord of the darkned Periphery - $1670=$	28
22600	21628	- - - - . - - repeated 2010	
23000	22628	Again 2290=	125
24200	$23^{2} 28$	The Eclipfe fenfibly decreafed	
24300	23328	Between the darkned Cufpids again $1895=$	20
${ }^{2} 5000$	24028	The End, but doubtful to me	
25400	24428	Certainly ended, my Affiftant Smith agreei	
257 oc	24728	A denfe Penumbra	
3110	$\begin{array}{lll}3 & 1 & 28\end{array}$	And fill	
32000	31028	The fouthern Limb had hardly yet recover'd the Brightnefs of the northern Limb: But its Light was duller than in the northern Limb, as it appear'd in the firft Obfervation.	

An Ectipre of she LI. It required no little Skill and Labour to manage our Tubes, tho' they M oon, Nov. ${ }^{30}$. were but hort, of 5,6 , and 7 Feet, and to keep them fo fteady to the Moon,
$(S t . N.){ }^{1685}$. at Dantrick; fo that we might truly diftinguifh the Penumbra, and exactly mark out all the by M. Hevelius. Phafes, through what Spots they pals'd, or what they arrived at in every par-
N. 178. . 12.16 . ticular Inftant of Time. But I perform'd this as weil as I was able, and as far as the fevere Seafon and floating little Clouds would allow. Finf it may be obferved, that a very dente Penumbra went before the true Beginning of the Eclipfe, fo that I could hardly, if at all, diftinguilh the Beginning. As to the Colour, it is chiefly to be noted in this Eclipfe; for I have very rarely found fo great a Diverfity in Colour. Sometimes it was rufty, or of the Colour of a Weefel; but when the total Obfcuration came on, the Limb of the Moon was up and down fomething livid, and partly brightifh and ruddy. But in the middle of the Moon a denfe and obfcure little Cloud was feen, fo that we could not well diftinguifh the Spots in the Moon. This blackith Cloud advanced by degrees towards the Right Hand, and to the Palus Maotis; fo that about the Beginning of the Recovery of Light, the whole genuine Shadow appear'd very dark and black; and about the laft Phafis taken Notice of, the remaining part of the Moon ftill obfcured, or its Limb, could not be feen at all.

By Mons Petri, between the Ine Circinna, and Ine Terracinnia, by Sinus Sirbonis, and the Marfhes of Arabia.
To the Inland Ficaria, Malta, M. Athos, by Mount Pbaran, and Mount Troicus.
To the Bay of Apollo, by the Ine of Error, by Mount $E t n a$, the Inles Letoa and Didyma.
Above the Bay of Apollo, to the Lake of Hercules, the Ine of Sicily, by M. Partbenius and Taigetus, Ine Melos, and M. Lion.
To the Ifle Minorca, thro' the Bay of Paftanus, M. Micalo, Ine of Cyprus, M. Hor. to M. Sinai, and the Defert of Rapbidim.
To Mount Ligufinus, Panyaus, between M. Sipulus and Didymus, by M. Libanus and Seir.
Above Mount Niger the Lefs, by Mount Apennine, Ifle Befoica, Mount Cimaus, and Mount Calcbaftan.
At M. Serrorum, and Carpathos, at Byzantium, by Mounts Horminius, Taurus, and Delanguer.
By Mounts Macrocemnii, the Ifland Cyanea, Mount Amanus, and Antitaurus.
By the Ifland Macra, by the Ericbtenian Rocks, Albenian Bay, and Palus Arcefa.
By the upper Hyperborean Lake, Palus Byce, Ifle Aca, Mount of Hercules, the utmoft Bay of Ponius, and M. Parapomis.
At the lower Hyperborean Lake, Mount Immerius, by M. Corax, Taucan, the lower Bay of the Cafpian Sea.
By the Riphean Mounts, Palus Mrootis, the greater Caspian Inand, and Mons Nerofus.
X x The

The Beginning of the Eclipfe was a little above Palus Marcoitis.
The total Obfcuration was at Mons Sanclus, below Polus Maraotis.
The Recovery of Light happen'd nearly in the fame Place where it was loft.

(339)

$\begin{array}{lll}\text { h. } & \prime \prime \\ 9 & 19 & 00\end{array}$
The Penumbra was very obfcure, and the Beginning of the Eclipfe was at hand.
 the Diftance between the Cufps was about 42 Degrees of the N: 182, p. 146. Moon's Limb, and Palus Marcootis was juft all eclipfed; hence we may conclude the Beginning about $9^{\mathrm{h}} \cdot 2 \mathrm{I}^{\mathrm{l}} \cdot 30^{\prime \prime}$.
102330 As near as I can collect, was the time of the Total Immerfion into the Shadow, to verify which, the Azimuth of the Moon's Center was obferved to the Eaft, $4 \mathrm{I}^{\circ} \cdot 18,2^{\prime \prime} 12^{\prime \prime}$ of Time after the frid Immerfion.
12130 Or 10' $13^{\prime \prime}$ before the Cftmination of the Right Sboulder of Orion, was the Emerfion, or firft Appearance of the Moon out of the totat Darknefs.
I 14 alm Was the juft Eud of the Eclipfe; being $22_{2 \prime \prime \prime} 2^{\prime \prime}$ before the Culmination of Syrius.

Whence the Middle of this Eclippe fhould have happened at $11^{\mathrm{h}} .18^{\prime} \mathrm{p} . \mathrm{m}$. at Nuremburg: the Total Duration $3^{\mathrm{h}} \cdot 5^{2^{\prime}} 4^{\prime \prime \prime}$; and the Fotel Darknefs 1^{h}. $49^{\prime} 30^{\prime \prime}$.

The Meridian Altitude of the Moon's upper Limb was obferved $63^{\circ} \cdot 23^{\circ}$ $50^{\prime \prime}$, and the Moon's apparent Diameter while totally eclipfed was found $30^{\prime} 07^{\prime \prime}$.
3. M. Wurtzelbaur made ufe of a Pendulum Clock, corrected by Altitudes: According to his Obfervation,

W/urizelbaur. Ibid. p. 147.
h.

92330
Was the Beginning of the Eclipfe; at about in Degrees of the Limb of the Moon in Hevelius's Selenograpby.
92450 Palus Mar cotis was all covered.
10-25-20 The Tosal Immerfrom, about the 299th Degree of the Limb of the Moon.
12 II 30 The Moon began to emerge out of the Shadow, about the 112 th Degree of her Limb.
I 1430 The Eid of the Eclipfe, about the 295th Degree of the Limb.
By thefe Obfervations, the Middle of the Eclipfe ought to have been abont nompmanm

Obfervation.
The Duration will be $3^{\text {h. }} \cdot 5 \mathrm{I}^{\prime}$, and the Total Darkne/s. $1^{\text {h. }} \cdot 4^{6^{\prime \prime}}$.
4. The Beginning
Immerfion
Emerfion
End
E
(340)

An Eelipfo of sse Moan, Nov. 19. 1686. as Dubin; by Mr. w. Molineux. N. $385.9 .23^{6 .}$

Observables. The Times were those of a Pendulum Clock, rectified by the fixed Stars.

The Obfervations marked with an Afterifm were taken through the Openings of the Clouds, and therefore I cannot account them as exact. I he Quintity of this Eclipfe I think was fix Digits.

An Esliff of the LIII. Half a Quarter of an Hour after η in the Evening, the Moon arofe Moon, Apr.
1688. at Mors
. clear, but of a deep Red Colour without any Sign of Eclipfe: At $\eta^{\text {h }} \frac{1}{2}$ the cow; by M. Timmerman. N. 192. p. 453. Moon went into a thick Cloud, but was again clear at $7^{n} .3^{8^{\prime}}$. when the Under file of the Body of the Moon was began to be obscured, in a clear Sky; The being then in the 25 th Degree of Libra, and $6 \frac{1}{2}$ above the Horizon. (Suppofe the Center.) At $9^{\text {h }}$. the whole Under Side of the Moon was eclipsed; and about 8^{\prime} after $9^{\text {h }}$ it was at the Height, or rather feemed to decreafe. At $9^{\frac{h}{2}}$ there was fill a third Part of the Moon eclipfed. (Suppofe of her Circumference.) About 10^{b}. it decreafed apace, and at $10^{\mathrm{n} \frac{1}{2}}$ there was but little to be feen: At $10^{\mathrm{h}} \cdot 45^{\prime}$. it was certainly ended, the Moon being then about 22° high.

Immerfions.	Times.	Emec.jons.	Times.
The Beginning	h. 6 '	Porphyrites, and the middle	h.
Porpbyrites immerged	616	of M. 座tna	$8 \quad 700$
North part of Mar cotis	$621 \frac{1}{2}$	Horminius -	81730
Lacus Niger Maj. and South		Mons Herculis	8 18 30
End of Marcotis	626	Befbicus	82100
Befbicus	$6.46 \frac{2}{3}$	Apollonia - -	82615
Apollonia	$649{ }^{\frac{2}{2}}$	Byzantium	82900
Byzantium	653	Lacus Niger Major	$832 \frac{1}{2}$
Horminius	659	South part of Mrootis	835
North-part of Meotis	$7 \quad 2 \frac{1}{2}$	North part of Mreotis	843
Mons Corax	$7 \quad 3{ }^{\frac{1}{2}}$	The End	$849^{\frac{1}{2}}$
Mons Herculis -	710		
South part of Meotis	$17 \times 12 \frac{1}{2}$		

LIV. 1. An Eeclipf of the
$M_{\text {oon }}$ UE. 19. 1697. at Che fter ; by $M \mathrm{Mr}$. N. 235. P. 784.

About the Middle there remained $9^{\prime} 26^{\prime \prime}$ of the luminous Part, and confequently the Digits eclipfed $8 \frac{2}{3}$.

	Time correEted.	Objervations.
A	$620 \quad 36$	The acute Promontory at the firft oblique Thread.
${ }_{\text {C }}$	$\begin{array}{llll} 6 & 21 & 27 \\ 6 & 22 & 3 \end{array}$	The preceding Limb of the Moon at the perpendic. Thread The acute Promontory at the perpendicular Thread.
$C-B$	$\begin{array}{llll} 0 & 00 & 36 \end{array}$	The Difference of the Tranfit over the perpendicular Thread, which is the Longitude of the acute Promontory from the preceding Limb.
$\mathrm{C}-\mathrm{A}$		The Difference of the Tranfit of the acute Promontory between the firt oblique Thread and the Perpendicular, which is its Latitude from the Northern Limb. The Moon feen among the Clouds feem'd as yet intire.

In the firft Pbafe.

In the fecond Phafis.

In the third Pbafis.

	h.	
A	19.30	The preceding Horn to the firft Oblique.
B		The preceding Margin to the Vertical.
C	2119	The preceding Horn to the Vertical.
D	72151	The preceding Margin to the fecond Oblique.
	72224	The fubfequent Horn to the firft Oblique.
	72247	The fubfequent Margin to the firft Oblique.
	723	The preceding Horn to the fecond Oblique.
	72331	The fubfequent Horn to the Vertical.
	72440	The fubfequent Horn to the fecond Oblique.
	726	The Shadow to Dionysus.
	- BO_{0}	Long. of the prec
	- 10149	Lat. of the preceding Horn from the Southern Margin.
	-Co 150	The fame Latitude.
	- Bo 222	Long. of the fubfequent Horn from the preceding Margin.
	- Eo	Lat. of the fubfequent Horn from the Southern Margin.
	- Ho	The fame Latitude.

In the fourtb Pbafis.

In the fifth Pbafis.

In the fixth Pbafis.

In the feventh Pbafis.

Vol. I.

In the eightb Pbajs.

In the ninth Pbafis.

In the tenth Pbafis.

- LV.

A Tranfit of che Monn aboze Ve. nus, OEt. It. (St. N.) 1670. es Dantzick; by M. Hevelius. N. 66. P. 2026.

LVI. The Beginning of the Occultation happen'd at $3^{h} \cdot 3^{8^{\prime}} 27^{\prime \prime}$. in the of Saurn by the Moon, June (St. N.) 167 I . at Dantzick; by M. Hevelius. N. 78. p. 3027. Morning, about the Mountain Germanicianus. The Line of Paffage, as far as could be collected from the Ingrefs alone, was through Mount , Etna, the Center of the Moon nearly, by Mount Horminium, the Mount of Hercules, and the upper Part of Mare Cafpiums As far as I remember, excepting this Year's Obfervation, within 41 Years I have feen Saturn cover'd by the Moon only twice. Firft in the Year 1630, Jun. 29, 11^{4}. in the Evening, when I was at the Inand Huenna in the Danilh Sea. And again in the Year 1661, Aug. 3, $7^{\text {h. }}$. $5^{8^{\prime}} .20^{\prime \prime}$. in the Evening, here at Dantzick.

ATranft of the Moon above Jupiter, Sept. 3°. (St. N.) 1671 . at Dantzick; by M. Hevelius. 1oid. p. 303 t.
LVII. In a very clear Sky, with a Tube of 20 Feet, with great Eagernefs we received the rifing Moon, and fopiter a little after. We found by our great brazen Octant, of almoft 9 Feet Radius, that Fupiter was yet $1^{\circ} \cdot 23^{\prime \prime} \cdot 40^{\prime \prime}$. remote from the Eaftern Limb of the Moon, and that all his four Satellites were there to the Right Hand, from whence the Moon approached. An unlook'd for and unhappy Accident prevented us from taking the very Moment of Conjunction. For when Fupiter now approached to the Eaftern Limb of the Moon, at 3^{\prime}, and was diftant only 6^{\prime} from the Line of Conjunction drawn through
through both Horns ; fome little Clouds intervening deprived us of the Sight both of 'fupiter and the Moon. The Rudolphine Tables promis'd us an Occultation, and much fooner than it could happen; yet there was none at all, but only a very clofe Tranfit, at almoft two Digits; the Time of which was γ^{h}. 26^{\prime}. o"
LVIII. The Altitude of the Moon being $20^{\circ} .50^{\prime}$, I took its Diameter 32^{\prime}. An ocerrlations $4^{\prime} 8^{\prime \prime}$; and when its Altitude was $19^{\circ}:{ }^{2} 3^{\prime}$, I took it again $32^{\prime} .47^{\prime \prime}$. Therefore of the Pliades the true Semidiameter of the Moon in the Horizon was $16^{\prime} .19^{\prime \prime}$. Yet it was $\begin{aligned} & \text { by the Moon, } \\ & \text { reb } 23 \cdot 167 \mathrm{~T}-2\end{aligned}$ ftill at a greater Diftance from the Weftern Star of the Pleiades, than the Telefcope could conveniently take in. Now at $1 I^{\mathrm{n}} \cdot 19^{\frac{1^{\prime}}{2}}$ after Noon, when the At Derby; by Altitude of the Star b, the more Weftern of the Pleiades, was $9^{\circ} \cdot 50^{\prime}$, I took the Mr. Flamfteed. Diftance of the fame Star from the neareft Horn of the Moon $11^{\prime} \cdot 58^{\prime \prime}$; then fuddenly turning to obferve the Stars Altitude, (which was fhewn by a Quadrant of 20 Inches Radius fixt to the fide of the Tube,) and immediately returning back again, I could not find the Star, being then cover'd by the Moon. In the mean'wlile the Moon had defeended io Minutes, and the Star as much, which from the following Phafis I guels had gone under the Moon at 11^{h}. $20 \frac{\frac{1}{2}^{\prime}}{}$. For at $11^{\mathrm{h}} \cdot 30^{1^{\prime}}$, when the Altitude of the Star e was $8^{\circ} \cdot 43^{\prime}$, I faw the Star c cover'd by the Moon. When I had taken its Diftance $16^{\prime} .35^{\prime \prime}$ from the neareft Horn, by my Computations I found the Space of Time between the Occultation of this and of the foregoing to be $9^{\prime} \cdot 37^{\prime \prime}$, which being taken from the Time of this Phafis, gives the Time of the foregoing Occultation as I have made it.

At $11^{\mathrm{b}} .37 \frac{\frac{1}{2}_{2}^{2}}{}$, when the Altitude of the $\operatorname{Star} \mathrm{c}$ was $\mathrm{II} .{ }^{\circ} \cdot 37 \frac{\frac{1}{2}^{\prime}}{}$, it went under the Moon, as in the mean time I was meafuring its Diftance $22^{\prime} \cdot 36^{\prime \prime \prime}$, from the Horn of the Moon, which was apparently the inferior, but really the fupe-rior. When the Star vanifh'd, the apparent Semidiameter of the Moon was [6'. $21^{\prime \prime \prime}$; and therefore its Occultation was at $87^{\circ} \cdot 25^{\prime}$ of the Moon's Periphery from the upper Cufp, whofe Reclination was $\mathrm{I}^{\circ} 37^{\prime}$ from a Line drawn through its Center perpendicular to the Ecliptic. Thus the Ingrefs of the Star was $4^{\circ} 12^{\prime}$ above a Line drawn through the ${ }^{\prime}$ Center of the Moon parallel to the Ecliptic, and the Center of the Moon was antecedent of the Star 16^{\prime}. $18^{\prime \prime}$, with lefs Latitude $\mathbf{1}^{\prime}$. $12^{\prime \prime}$.

According to the Author of the Caroline Tables, the Place of the fixt Star is $25^{\circ} \cdot 1^{\prime} \cdot 24^{\prime \prime}$ in Taurus, and its perpetual Latitude $4^{\circ} \cdot 20^{\prime} \cdot 39^{\prime \prime}$; fo that at the apparent Hour at Derly $11^{\mathrm{h}} .37 \frac{1^{\prime}}{2}$ after Noon, the apparent Place of the Moon was $24^{\circ} \cdot 45 \cdot 6^{\prime \prime}$ in Taurus, and its Latitude obferved $4^{\circ} \cdot 19^{\prime} \cdot 27^{\prime \prime}$ North.

Moreover it well deferves to be remarked, that though almoft all the Hypothefes of all Aftronomers afcribe a greater Diameter to the Perigee full Moon in the Quadratures, and therefore a lefs Diftance from the Earth than in the Syzygees or Oppofitions; yet the contrary obtains in the Heavens. For the Perigean full Moon pafing near the Pleiades, Nov. 6, 1671, had a greater Dia-
i

meter than in this Tranfit, when in alnoft the fame Place it was diftant from the Sun 70 Degrees. The Moon's horizontal Diameter according to

	Bullialdus.	Street.	by Obfervations.
Nov. 6. 1671.	$17^{\prime} 00^{\prime \prime}$	$16^{\prime} 30^{\prime \prime}$	$17^{\prime} 00^{\prime \prime}$
Feb.23.1672.	1750	1713	1619
	+50	+43	-41

We can no longer wonder, that the Moon fhould fo long refufe the Confinement of Numbers, and that the Times of Appearances, when computed from the Tables, fhould hitherto fo far deceive our Expectations ; fince it appears thofe Tables are generally computed from erroneous Hypothefes.

The Moon's Place, Mar. 23. 1671-2; by M.] Cafini.
N. S2. p. 4047
LIX. April 2. (St. N.) $6^{\text {h }} \cdot 50^{\prime}$ v. A Line drawn through the Horns of the Moon paffed through the Star that is at the Point of the Northern Horn of Taurus; and the Diftance of this Star to the Nortbern Horn of the Moon, was by a Minute greater than the Semidiameter of the Moon.

An Occalcation of a fixed Star by the Moon, Feb. 29. (St. N.) 1676. at Paris; by M. Caltini.
N. 323.9 .564.
LX. An Immerfion of the fubfequent Star of the two in the Left hinder Foot of the Lion, was at $1^{\mathrm{h}} \cdot 19^{\prime} .34$." $^{\prime \prime}$ The Coaft of the Immerfion was near the End of Schicard towards Pbocilides in the Selenography of Ricciolus.

The Emerfion was at $11^{\mathrm{h}} 16^{\prime} 40^{\prime \prime}$, in an equal Diftance from the Right Line between Vendelinus and Petavius.

A Right Line being drawn through the Points of Immerfion and Emerfion, when carefully obferved, will divide a Diameter perpendicular to it in the Ratio of $6^{\prime} \cdot 45^{\prime \prime}$. to $26^{\prime} \cdot 5^{\prime \prime}$.

But the Diameter of the Moon approaching to the Meridian was $32^{\prime} .50^{\prime \prime}$.
At $12^{\text {h }}$. 29^{\prime} the upper Margin of the Moon was in the fame Parallel with the Star, which then preceded the Moon by $\mathbf{I}^{\prime} \cdot 50^{\prime \prime}$ in time.

At $12^{\text {h }} \cdot 40^{\prime} .18^{\prime \prime}$ the Star preceded the Weftern Margin of the Moon by 2'. $11^{\prime \prime}$ in time. The Diameter of the Moon pafs'd through $2^{\prime} .14^{\prime \prime}$.

At $12^{\circ} \cdot 52^{\prime} .35^{\prime \prime}$ the Star preceded the fame Margin $2^{\prime} .25^{\prime \prime}$.
The Meridian Altitude of the inferior Limb of the Moon was taken 39°. $25^{\prime} \cdot 25^{\prime \prime}$.

Hour of the Clock cor.	Alitudes and Diftances.	
d		
420157	Iupiter from the bright Limb of the Moon	
447 9T	The Diameter of the Moon was taken	
449307	fupiter from the neareft Cufp	
$\begin{array}{lll} 4 & 5^{2} & 15 \end{array}{ }^{7}$	Fupiter had pass'd over a Right Line drawn through the Cufps, by a tenth Part of the Diftance, or about 3', making a Conjecture by the Eye through the Tube	
56	upiter from the Cufp	
5 I 15	From a Right Line thro' the Cufps	
$\begin{array}{llll}5 & 3 & 30 \mathrm{~F}\end{array}$	From the Cufp	
$5{ }_{5}^{5} 7825$	From the Right Line	958
$51050 \mid \mathrm{F}$	From the fame	I 155
$51550 \mid \mathrm{F}$	From the Cufp	
52120 F	From the remoter Limb, dubious	
526 of	From the neareft Cufp	
$\begin{array}{llllll}5 & 31 & 25\end{array}$	From the Right Line thro' the Cufps	
537 OF	From the Cufp	$\begin{array}{lll}36 & 15\end{array}$
$\begin{array}{llll} 5 & 41 & 10 \end{array}$	The Altitude of the Moon being $10 \frac{1}{2} \mathrm{De}-$ grees, the Diameter was about	3153
$\begin{array}{lll} 5 & 4^{8} & 30 \mathrm{D} \end{array}$	Diff. of the Alt. of the lower Limb of the Moon and of fupiter	
52407	Fupiter was diftant from the neareft Cufp	4140
$6 \quad 9401 \mathrm{~F}$	From the Cufp, dubious.	47

LXI. ATranfit of the Moon above Jupiter, Feb. 28. m. 1675-6. as Greenwich; by Mr. Flamiteed. 2bid. p. 566 .
LXII. 1. Aug. 21. A. 1676. before Noon. For the Correction of my an orsurtation Clock, I took thefe Altitudes of the Sun's Limb.

Then after Noon, the Sky being exceeding clear.

	Corrected.		
		Mars from the bright Limb of the M. The fame Diftance Again Over again δ from Zen. Diff.Alt. inf. lim. and of ${ }^{3}$ With tube of 16 feet, Mars from Limb Planet could no longer be perceived with the naked Eye Light of Mars confounded with the Light of the M. Mars from Zen. Mars intirely cover'd by North. Cufp ${ }^{4} 4$ in Taurus appear'd in a right Line drawn thro' the Cufps 41 in Tourus from the Limb or Cufp; with a fhorter Tube 4I in Taurus from the Cufp, again with the fame Tube Diam. of the Moon with a longer tube Again with the fame Tube Mars's Emerf. perhaps $4^{\prime \prime}$ or $5^{\prime \prime}$ fooner Mars from the Northern Cufp The fame Diftance The Moon's Altitude 23°, with the longer Tube. Her Diameter Moon's Diameter with a fhorter Tubel $3645=\begin{array}{ll}5988 & =29 \\ 29 & 55 \\ 29\end{array}$	
II $06 \begin{array}{ll}\text { II }\end{array}$			
12			
10	$1 \begin{array}{lll}10 & 51\end{array}$		
$\begin{array}{llll}1 & 13 & 29 \\ 1 & 18 & 1\end{array}$	I 18		
$1 \begin{aligned} & 18 \\ & 1 \\ & 1\end{aligned} 2$			

s 41 in Taurus. According to Tycho its Place is now $\begin{array}{r} \\ 17^{\circ} \\ \hline\end{array} 58^{\frac{1}{2}}$ Latitude $\mathbf{1}^{\circ}$. 20'. South. Therefore the Places both of the Moon and Mars may be exactly deduced.

	D	
	The Center of Mars from the neareft Limb of the Micon Again Again The Center of Mars from the North Cufp of the Moon The gibbous part of Mar's touched the Moon's Limb Mars was wholly covered, being diftant from the Cuif Mars did emerge, I fuppofe, his Center Mars diftant fiom the North. Horn of the Moon Mars paffed over a Point noted in the Telefcope The Southern Limb of AEne paffed by the fame Point The lucid Limb paffed over the fame Point The Moon's Diameter obferved $1698=30^{\prime} 1^{\prime \prime}$ All. Moon 31° circ. Mcis from the Northern Horn of the Moon Mars from the Southern Horn of the Moon	
12		
1245		

2.

VoL. I.

(354)

Mays was cover'd about Mount Audus, proceeding as it were through the Loca Paludefa of the Moon, by Mount Eina, below the Inand Befoica, above the Palus Acherufia, above Mount Corax, by the Palus Maotis, and a little above the Ine Alopecia, and the very Center of the Moon. And thus again going out at the greater Weftern Lake.

If you afk from whence I could thus exactly mark out his Paffage, and that at the obfcure Part of the Moon, you are to know it proceeded from hence, that by thole Tubes of mine I could very diftinctly perceive the chief greater Spots in the Thaded part of the Moon; and thus I could obferve very plainly, that Nars emerged near the middle of Palus Maotis.

An Constations of Sarurn ky she Monn, Feb. 270 ft. n. 1678 , ar Paris; by M. Bullialdus. n. 139 . P. 969 .
LXIII. Bullialdus obferved the Beginning, when the Altitude of Andromeda's Head above the 'Weftern Horizon was 18°. 11^{\prime} '; whence the Aftronomical Time from Noon is given $7^{\mathrm{h}} 20^{\prime}$; but the mean Time was $7^{\mathrm{h}} 29^{\prime} 55^{\prime \prime}$. And he faw the End when the more Southern Star of Andromeda's Girdle of the fecond Magnitude was $21^{\circ} 17^{\prime}$ high to the Weft. Whence the Aftronomical Time from Noon will be found to be $8^{\mathrm{h}} 30^{\prime} 22^{\prime}$.

Here we are obliged to take notice, that the Pbilolaic Tables make Saturn farther advanced in Longitude, by at leaft 19 Minutes, than he really is by Obfervation; fo that Saturn was then in II $3^{\circ} 28^{\prime}$, with South Latitude $1^{\circ} 38^{\prime}$.

Farther, in this Obfervation if we have Recourfe to the Defcription of the Lunar Dink, as defcribed by the illuftrious Mr. Hevelius; we found Saturn to emerge in that part of the Limb, which is fituated in a Right Line drawn from the middle of Mount Berofus through the Riphaan Mountains, a little above Mount Alanus, and below the Southern Limits of the Hyperoorean Marfhes.

An Occultation

 of Jupiter, Jun. 5. ((f. n.) 1679. at Dantzick; by M. Hevelius.Pb. Coll. n. 8. p. 29.
LXIV. I. Tho' I have apply'd my felf to the Obfervation of the Heavens now for 50 Years, (for which I ought to give, and do give, all poffible Thanks to Almighty God,) yet I have only once feen Fupiser cover'd by the Moon, which was in the Year 1646, Decemb. 24. (new Style) in the Evening, when the Sun was under the Horizon. Therefore I very much congratulate with my felf, that I could make this Obfervation, not only with a very ferene Sky, but alfo according to my Wifh, in the Prefence of my moit wellcome Gueft, the famous and moft learned Mr. Edmund Halley.

It entered the Moon at Mount Audus, and as far as could be expected from its Exit, it pafs'd through the Loca Paludofa of the Inand Cercinna, over Mount Atma, through the Inand Befoica, through Byzantium, the Illand Apolloinia, and the upper Part of Palus Meotis; fo that it went a little above the Center of the Moon; the Moon having then fome South Latitude. Thert, which is very rare, we very accurately meafured (as it feems to me) the apparent Diameter of Fupiter in this Obfervation. I remember that I have feveral Times obferved the Diameter of Fupiter by the Lunar Spots, and found that it came to 55 Seconds more or lefs. But now the Diameter of Fupiter came out much lefs. For the whole Duration of this Occultation being known to be $58^{\prime} 10^{\prime \prime}$, and at the fame time the Diameter of the Moon being given $32^{\prime} 40^{\prime \prime}$; it prefently becomes known from that Mora of Time, when firft Fupiter with his Limb touch'd the Limb of the Moon, and when again it was hid, (which was done in the fame Space of 55 Seconds, that the Diameter of Fupiter is $30^{\prime \prime} 53^{\prime \prime \prime}$.

2. At $3^{\mathrm{h}} \mathrm{o}^{\prime} \mathrm{II}^{\prime \prime}$, the firft Satellite was hid by the Eaft Limb of the Moon. At Paris, by At $3^{\mathrm{h}} 2^{\prime} 0^{\prime \prime \prime} \frac{1}{2}$ the Eaft Side of the Moon touched the Weft-fide of Fupiter: M. Carinin then I took the Height of $\mathcal{F} u p i t e r$, which was $8^{\circ} 01^{\prime}$, at $3^{\mathrm{b}} 2^{\prime} 51^{\prime \prime}$. At $3^{\mathrm{h}} 2^{i \mathrm{ib}_{2} \mathrm{P} .33 \text {. }}$ $57^{\prime \prime}$, Jupiter was intirely hid by the Moon. It entered at equal Diftance from the two Spots Grimaldi and Arifarcbus; the laft of which was in the Section of the Moon, which diftinguifhed the Light from the Dark Part. At $3^{\mathrm{h}} 5^{\prime} 1^{\prime \prime}$, the fecond Satellite was hid by the Eaft-fide of the Moon, At $3^{\mathrm{b}} 5^{\prime \prime}$ $48^{\prime \prime}$, the third Satellite was hid. At $3^{\mathrm{h}} 56^{\prime \prime}$, we perceived by the Eye that $\mathrm{J}^{\prime} u$ piter was parted from the obfcure Side of the Moon.
M. De la Hire took the Height of $\mathcal{F} u p i t e r$ two Minutes after parting, and found it $17^{\circ} 17^{\prime}$.
LXV. An Octultasion of she Lull's Eye, at Creenwich, Sept. 4. 1680. b) Alr. Flamsteed Pr. Co!! д. 4 P. 99.

$3^{\mathrm{b}} 05^{\prime} 40^{\prime \prime}$, the fixt Star feem'd to adhere to the bright Limb of the Moon, and after two Seconds of Time nothing appear'd in the Limb. The Place of Immerfion was near the moft Southern of three fmall Spots lying in the middle between Palus Marcotis and Mount Climex.

At $4^{h} 13^{\prime} 45^{\prime \prime}$, the firt Star was not yet emerged ; then, or a little afterwards, I know not on what Occafion, I removed my Eye from the Telefcope, and when I apply'd it again at $4^{\prime \prime} 14^{\prime} 2^{\prime \prime}$, I faw the Star emerged, and fhining with full Light.

LXVI. An Uccultasions of the Buil's Eye at Greenwich, OC3. 28. 1680. by Mir. Flamsteed. Ph. Coll. a. 4. p. 100.

The Northem Limb of Meotis, alfo of Atna, had the fame Declination with the Place of Ingreis.

The Difference of the Declinations of the Place of Immerfion, and of the Northern Limb of the Moon, was $2770=13^{\prime} \cdot 49^{\prime \prime}$.

At $9^{h} 2^{\prime} 58^{\prime \prime}$, it emerged from the obfcure Limb, at the Longitude of Injula Major, from its Northern Limit.

Its Paffage was thioigh the Place of Emerfion, to its Diameter North from Crele, through the North Limb of Sirboin, and Mount Climax.

At $9^{\prime \prime} 10^{\prime} 20^{\prime \prime}$, the Moon's Diameter was $6791=33^{\prime} 52^{\prime \prime}$.
2. At Loniton, we noted the Immerfion at $8^{\prime \prime} 6^{\prime} 00^{\prime \prime \prime}$, and that Star was newly emerged at $9^{h} 2^{\prime} 52^{\prime \prime}$.
3. Nir. Binj. Horry, Mafter of the Berkley Caftle, riding at Anchor in Bolligjore Road, about 20 Miles E. S. E. from the Town, obferved that the Moon paffed to the Northward of the Bull's Eye, about 24 or 25 Min . and by his Pendulum. Watch, rectify'd' by Altitudes and the Rifing and Setting of the Sun, he noted, that precifely at $16^{\text {h }} 00^{\prime}$ the Bull's Eye was in equal Altitude with the Micon's Center, and that at $16^{\mathrm{h}} 30^{\prime}$ the Star was in equal Altitude with the lower Limb of the Moon, and at $17^{h} 12^{\prime}$ the Occidental Limb of the Moon was in a Right Line with the Bull's Eye and Capella.

Times.	Obfervations.	Alti- tudes.
h. ' "		
64700	The Bull's Eye was fo far diftant from the Confine of Light and Shadow, as the Mount of Cbrift is removed from the lower Limb of the Moon.	
73700	The Star was hid at Mare Syrticrom, under the Iland Cercinna, the Altitude of Andromeda's Head being then	
74600	The Altitude of Audrcincdr's Head -	
74930	The fame Altitude	
84600	The Bull's Eye again hone out at the greater Inand of the Cafirion Sea.	
	Therefore its Paflage, in refpect of the lunar Spots, was through Mare Syrticum, Mount Atbos, under the Inand Lemnos, and Mount Didymus, under the Atbenian Bay, through the Pontic Sea, and the greater Inand of Mare Cafpium.	
$51^{\prime} 00$	The Altitude of Andromeda's Head.	$40 \quad 22$

2. Mr .

At Ballafore ; by Mr. Ben. Harry. Ph. Coll. n. 5. P. 125.

At Avignon; by M. Gallet. ib.

A Tranfit of the Moon beloro the three Superior ilaneis, and Re . gulus, 1682 .
at Dantzick; by M. Heve. lius. n. 143.
p. 17. 7.15 I . P. 325.
n. 143 - 9.18 . win. 3^{1}. Sec. 37. 5 . 151. p. 326. min.
$3^{1 .}$ Sec. 55.
2. Mr. Benj. Harry in Ballafore Road obferved, that the Moon paft to the Northward of the Bull's Eye, and that the Star and the Moon's under-Limb were in equal Altitucle when they were both $13^{\circ} 45^{\prime}$ high to the Weft, which gives the Time $14^{\mathrm{h}} 49^{\prime}$; and when the Soutb Horn of Taurus was ${ }^{2} 3^{\circ} 30^{\prime}$ high, which makes the Time $15^{\text {h }} 13^{\prime}$, the Weftern Limb of the Moon was in a Line with Capella and the Bull's Eye.
3. The correct Time of the Immerfion was $6^{h} 18^{\prime} 22^{\prime \prime}$, and the Emerfion at $7^{3^{\circ}} 19^{\prime} 46^{\prime \prime}$.
LXVIII. Sept. 27. N. S. 1682, at Three in the Morning, I faw with my naked Eye the Moon and the three other Planets; but the Mioon at that Time was ftill diftant about 9 Degrees, according to the Order of the Signs, towards the Weft.

But as far as may be collected from the Inclination of the Horns of the Moon in refpect of the Tendency of the Planets, I prefently concluded, that there would be no Occultations but only Tranfits ; fo as that the Moon would proceed below thofe fuperior Planets. In this Opinion I was more and more confirmed, when the following Day, Sept. 28, in the Morning, Regulus was not cover'd by the Moon, which Star, in refpect of the Latitude of each, fhould rather have undergone an Occultation. For Regulus in the Conjunction, at $4^{\text {h }} 6^{\prime}$, was diftant $31^{\prime} 17^{\prime \prime}$ towards the North from the upper Horn of the Moon; as 1 oblerved exactly with an excellent Tube and a very good Micrometer; fo that there was no Occultation at all of Regulus, but only a Tranfit of the Moon. The fame alfo happen'd Ocrob. 25. And fupiter and Saturn, as alfo Mars, on OEF. 26. were not at all cover'd by the Moon, but the Moon pafs'd far enough beneath the faid Planets.

An Occultiation of Regulus by the Nieon, Feb. II. A. . 1683. at Dantzick; by M. Hevelias. n. 351. P. 337.
LXIX. Feb. II. N.S. 1683 , at $9^{\text {h }}$. When firt the Moon approached my Eye, Regulus was at a fufficient Diftance towards the Eaft. So that the Conjunction itfelf (as far as I could make a rude Eftimate) happen'd at the Rifing of the Moon at Five or Six a-Clock. But whether Regulus had been cover'd, or whether it was only a Tranfit, I could not be intirely fatisfied. wher wa dor

Time by the Watch.	Thatikx	Diftances and All.
$\left\lvert\, \begin{array}{ccc} \hline \text { h. } & 1 & \prime \prime \\ 9 & 53 & 30 \end{array}\right.$	The beginning of the Occultation of the greater little Star A, of the 5 Magnitude	
100830	The Conjunction of the Moon and the little Star C was diftant from the lower Horn of the Moon	00400
102936	The beginning of the Occultation of the little Star B of the fixth Magnitude	
105250	The end of the Occultation of the Star A.	
$\left.\begin{array}{\|ccc\|} \text { II } & 45 & 30 \\ \text { II } & 46 & 30 \\ \text { II } & 47 & 50 \end{array} \right\rvert\,$	The Altitude of Lyra \qquad \qquad The fame Again \qquad \qquad	

LXX. An Ocsultasion of $t 500$ fixed Stars by the Moon, and a Tranfit above of a Third, Apr. 2. f. n. $168_{\mathfrak{3}}$, at Dantzick; by M. Hevelius. ib.

The Section of the Light and Shade this Day fell upon the Mounts Serrorum and Carpathos, through the Sinus Peronticus, between Byzontium and the Ine Cyanea, through the Mountains Amanus and Taurus, and the Urian Mountains.

The firft little Star A is not to be found in Tycbo's Catalogue, but in my new one it is call'd, The Subfequent under the Bull's Horn of the fifth Magnitude. At this Time it is II $19^{\circ} 11^{\prime} 35^{\prime \prime}$, and in $4^{\circ} 43^{\prime} 44^{\prime \prime}$ of Southern Latitude. The other B , as far as I could collect from this Obfervation, is in II $19^{\circ} 17^{\prime} \mathrm{O}^{\prime \prime}$, and in South Latitude $4^{\circ} 47^{\prime} 0^{\prime \prime}$. But the third C, which is hardly to be feen with the naked Eye, is now to be found in II $19^{\circ} 9^{\prime} 0^{\prime \prime}$, and in Latitude $5^{\circ} 2^{\prime} 0^{\prime \prime}$ South. Now the Star A entered the Moon at Mount Audus, pafs'd over the Ifland Cercinna, Mount Neptane, the Adriatick Sea, between Mount Horminium and Mount Amanus, over Mount Hercules. So that it emerged again between Palus Meotis and the greater Inand of the Cajpion. Whence it is plain that this little Star A was nearly in a central Conjunction with the Moon.

The other Star B of the fixth Magnitude entered the Moon at Palus Marcootis, pafs'd through Sinus Syrticus, to Mount Atbos, by Mount Latmus, betweên the Mountains Sipylus and Macyitus, below the Center of the Moon, by the upper Mount Mofcbus, through the Pontic Sea, and fo below the greater Inand of the Cofpian Sea.

An Occultation of a fixed Star, and er Transit above another, May 2, [f, n. 1683. at Dart mick; by M. Hevelius. ib.

An Occultation of Regulus by the Moon, May 4. ft. n. 1683. at Dentrick; by M. Hevelius. ib.

An Occrelcation of Jupiter by the Moon, no man, a: London; by
Dr. Hook, and
M. Halley.

ภ. 181 - 8.85 .
LXXI. May 2. 2. A. 168 3, at $I^{11^{h}} \mathrm{O}^{\prime} \mathrm{O}^{\prime \prime}$ in the Evening. The Moon paffed above the little Star at the Root of the Tail of Cancer, which then was in 5 $27^{\circ} 53^{\prime} 37^{\prime \prime}$, in South Latitude $2^{\circ} 1 S^{\prime} 42^{\prime \prime}$; fo that in the very Conjunction it was not diftant from the lower Horn of the Moon above 12^{\prime}.

At $12^{h} 0^{\prime} 0^{\prime \prime}$, another fixt Star, but a very fall one, was cover' d, which otherwife is not in the Catalogue. As far as can be guefs'd it was in of 28° 30^{\prime}, and in South Latitude $I^{\circ} 54^{\prime}$.
LXXII. I observed mont exactly the very Moment of Immerfion, which happen'd at $11^{11} 17^{\prime} 20^{\prime \prime}$, in the Evening, according to my Watch. The Line of Paffage went through Mare Pampbilium, below the Inland Cerpatbos, the Inf of Cyprus, below the utmoft Bay of Pontus, and the lower Bay of Mare Caffplum. At $11^{1} 24^{\prime}-42^{\prime \prime}$, according to my Watch, the Altitude of the bright Star of the Harp was observed to be $44^{\circ} 39^{\prime} 00^{\prime \prime \prime}$; from whence the beginning of the Occultation may be corrected. The Section of Light and Shade was through the greater black Lake, at the Inland Corsica, Mount Niconius, tho' the Sirymonic Lake, and the Int of Rhodes; by Mount Sinai, and Mount Tecbijandam.
LXXIII. I. At $9^{h} 26^{\prime \prime \prime}$ the under Limb of the Moon was jut rifer, and foo after Jupiter appeared near the Eaftern Limb of the aVon, within a few Mimutes of being eclipsed.
$9^{\text {h }} 33^{\prime}$, as near as could be gueffed, was the Time of the Central Immerfion, which was very difficult to be obferved by reafon of the Afperity of the Moon's Limb, which undulated and fparkled very much, as it appeared through the Vapours near the Horizon: The Ingress happened much about the length of the Spot, called by Herclius, Palus Maraotis, to the North of the fail Spot, or about the $124^{\text {th }}$ Degree of the outer Limb of his Selenography, nearly in the fame Latitude with the Moon's Center. $10^{\text {h }} 30^{\prime}$. The Weftern Edge of Jupiter began to emerge out of the dark Limb of the Moon.
$10^{\text {h }} 31^{\prime} 20^{\prime \prime}$. The whole Dink of Jupiter was entire, fo that he was about a Minute and a Third in coming out from behind the Moon.

The Emersion was exactly in a right Line with the Moon's Center and the Northern Part of Palus Maotis, or about the 324 th Degree of the inner Limb of the Selenograpbick Table of Hevelius.

(36r)

3. At $10^{\text {b }} 19^{\prime} 56^{\prime \prime}, M . I . \mathcal{F} a$. Zimmerman obferved the firft Contacit of the $A t$ NuremLimbs of Yupiter and the Moon, and at $10^{\text {h }} 20^{\prime} 47^{\prime \prime}$, Jupiter was all eclipfed. At $1^{1{ }^{1}} 22^{\prime} 51^{\prime \prime}$, fupiter was wholly clear from the Eclipfe. Zimmerman.

The Immerrion was about the in 1 th, the Emerfion at the 32 Ift Degree of the Limb, in the Cbart of Hevelius.

At $1^{1}{ }^{\text {b }} 31^{\prime} 06^{\prime \prime}$, the third Satellite of Fupiter emerged. Thefe Times were collected from the Culminations of fixed Stars, and the Vibrations of a Pendulum.
4. At $10^{b} 20^{\prime} 50^{\prime \prime}$, Fupiter applied to the Limb of the Moon, over-againft By, M, wurrthe Lora Paludofa Infula Cercinnce.

At $10^{\text {h }} 22^{\prime} 00^{\prime \prime}$, he appeared about half eclipfed.
At $10^{\prime \prime} 22^{\prime} 30^{\prime \prime}$, he was wholly bid.
At in 19'40", Fupiter began to emerge.
At $11^{h} 21^{\prime} 20^{\prime \prime}$, he was quite free from the Interpofition of the Moon. The Point of the Emerfion was fomewhat to the North of the Palus Meotis. No Spot in the Moon was fo near the apparent Magnitude of $\mathcal{F} u$ piter's Dink as the Infula Befoicus Hevelii.
At II ${ }^{\text {h }} 40^{\prime} 00^{\prime \prime}$, the Altitude of Procyon was $8^{\circ} 37^{\prime}$; whence the Pendulum Clock, which had been fet by Altitudes of the Sun the Afternoon preceding, may be examined.
VoL. I.
A a a
5. Tha
A) Dantrick, by M. Hevelius. ib. p. 17^{8}.
5. Tho hitherto for 5^{6} Years I have neglected no Obfervation of any Moment, yet I have not been able rightly to take and note down above three Eclipfes of fupiter. The firt was An. 1646. Dec. 24. in the Evening; but then I could only obferve the End. The fecond was An. 1679. Fune 5. in the Forenoon; at which Time the whole fucceeded as I could wifh. The third was this prefent Year 1686. Apr. 10. in the Evening.

Among other things this is to be noted, that this Occultation did not happen when the Moon was quite in the full, but about a Day after the full Moon, in the Evening. And likewife at the fame time, (which is very wonderful, and is a Coincidence which hardly ever happens) and with the fame Appearance, as was feen in that Occultation An. 1646. Dec. 24. in the Evening. At which Time the Moon had now decreafed for two Days, and without coubt it exhibited the fame Libration alfo, as in this our laft Obfervation. For the Section of Light and Shadow was juft the fame, and pafs'd through the fame Spots, which I cannot fufficiently admire ; that is, at the greater and leffer Hyperborean Lake, alfo at the Ripbean Mountains, through Palus Maotis, by the greater Lake of the Cafpion Sea, and its lower Bay to Mount Nerofus.

On the contrary, the Occultation of Fupiter obferved by me An. 1679. was very different, as it happen'd not about the full Moon, but the new Moon, about three Days before the Conjunction.

Hour by tbe Watcb.		Altitudes taken with a Quadrant	Time corrected by the Alt.
h. $510 \quad 10$	The Sun's Altitude.	$\text { Gr. } \quad "$	
$\begin{array}{llll}5 & 12 & 30\end{array}$	The Sun's Altitude.	$\begin{array}{llll}13 & 28 & 0 \\ 12 & \end{array}$	$\begin{array}{llll}5 & 11 & 43 \\ 5 & 13 & 55 \\ 5\end{array}$
51740	The Sun's Altitude.	$1 \begin{array}{llll}12 & 41 & 0\end{array}$	$\begin{array}{llll}5 & 19 & 21\end{array}$
52350	The Sun's Altitude.	II 46	52543
$8 \quad 710$	The Altitude of ArEturus.	2955	81250
881115	The Altitude of Ar cturus.	30320	817
81510	The Altitude of Arcturus.	3059	8205^{1}
450	The Moon rifes about \qquad fupiter was diftant from about 43 Minutes.	C Cercinia	$95^{2} 50$
102130 'fupiter's Diftance was fuch, as the Diftance of M. Sinoi from Palus Mareotis. 104035 fupiter's Diftance was nearly equal to the Diftance between Mount A tina and Mount Porphyrites.			103130

(363)

Firft it is plain from the Obfervation itfelf, that the Path or Line of Jupiter's Paffage was by Mount Alabafrinus, by the Mount of Cbrif, Mount Carpatbos, below Mount Macrocemnios, and by the lower Ityperborean Lake. Secondly, that the Inand Befoica and the Ine of Rbodes were under the fame Perpendicular, at the Time of the Occultation, about $11^{\mathrm{h}} 30^{\prime}$; fo that 35 Degrees of the Moon's Limb culminated. Therefore 'fupiter enter'd the bright Limb of

(364)

the Moon about the 61 Degree, that is, from the Perpendicular Line of the Nonagefm and the Point of the Zenith, towards the Eaft. And he went out about the 3^{1} Degree from the faid perpendicular Line of the Nonagefm towards the Weft, at the obfcure Limb of the Moon. Therefore ${ }^{\text {fupiter's Path- }}$ Line was a Subtenfe of almoft 104 Degrees, in the North Part of the Moon.

Befides it is very well worth obferving, that from this Obfervation I could derive the Diameter of fupiter exactly; which was $51^{\prime \prime} 42^{\prime \prime \prime}$. And of this Magnitude was the Diameter of 7upiter, or about $50^{\prime \prime}$, whenever I meafured it by the Spots of the Moon. But in the Year 1679, on the $5^{\text {th }}$ of Yune, when I obferved a like Eclipfe of $\mathfrak{F} u$ piter, it was much lefs than this, being only $30^{\prime \prime} 53^{\prime \prime \prime}$. Which I imagine to proceed from hence, becaufe that Obfervation was made in the Day-time, and while the Sun hined, when the adventitious Rays of the Stars and Planets are more difpell'd by the Sun's Light, than in a dark Night. Now if you fhould inquire which of thefe apparent Diameters I take to be the truer, I fhould anfwer that which was obferved on the 5 th of 7 une in the Year 1679, when the Sun fhined. Not becaufe the laft was not obferved with the fame Diligence and Exactnefs ; but becaufe, as I faid before, the adventitious Rays in the Night-time are a greater Hindrance than in full Day-light.

Ait Paris; by M. Caflini.
a. 183. P. 175.
6. At $9^{h} 3 \mathbf{I}^{\prime} 6^{\prime \prime}$, Fupiter was in a Perpendicular falling on the Limb of the Moon over-againft the Northern-part of the Spot Grimaldi, (Marcotis) near to Riccioli (Stag. Miris) and diftant from the Limb about 4 Times as much as the faid Spot.
$9^{\text {b }} 40^{\prime} 21^{\prime \prime}$, $\mathcal{F} u p i t e r$ touched the Circumference of the Moon, which undulated by reafon of the Vapours near the Horizon.
$9^{h} 41^{\prime} 20^{\prime \prime}$, He quite difappeared in the Inequalities of the Moon's Limb, the Total Immerfion might be fome Seconds later. So the Central Immerfion was at $9^{\mathrm{h}} 40^{\prime} 5 \mathrm{I}^{\prime \prime}$. Jupiter entered over-againft that Part of Grimaldi next Riccioli.
$10^{1} 30^{\prime} 2^{\prime \prime}$, The outermast Satellite which preceded $\mathcal{F} u p i l e r$ appeared overagainft the Middle of the Cafpian Spot (Pal. Meotis) through which the Seriion of Ligbt and Darknefs paffed, and made nearly an Equilateral Triangle, with the Extremities of that Spot.
$10^{\text {h }} 40^{\prime} 24^{\prime \prime}$, The firt Limb of Fupiter began to come out of the dark Side of the Moon, over-againft the North-part of the Cajpian Spot, about Cleomedes, (ad Montes Ripbeos.)
$10^{\text {b }} 40^{\prime} 56^{\prime \prime \prime}$, The Center of Jupiter did cmerge. It was difficult to diftinguifh the Moment when Jupiter's Difk was fully clear, but at $10^{\text {h }} 41^{\prime} 36^{\prime \prime}$, the Eclipfe was certainly paft.

At the Emerfion of the Center, the Altitude of $\mathcal{F u p i t e r}$ was $1 I^{\circ} 31^{\prime}$.
At $10^{\text {b }} 42^{\prime} .49^{\prime \prime}$, The Second Satellite, being the nearelt of the three that followed the Planet, emerged.

At $10^{11} 45^{\prime} 1^{\prime \prime}$, The Imermoft Satellite, being near its greateft Elongation, emerged.

At $10^{h} 50^{\prime} 40^{\prime \prime}$, The Tbird, or Penextimus Satellites, being likewife near its greateft Elongation, began to appear over-againft the Northern-Edge of the Cafpian Spot.

(365)

At $11^{\circ} 45^{\prime}$. The Diameter of the Moon was $32^{\prime} 27^{\prime \prime}$; and according to the Calculus of M. Calini, her Parallax was 61 Min.
7. The Central Iinmerfion was at $9^{b} 42^{\prime} 1^{\prime \prime}$; and the Central Emerfion at at Avignon; by $10^{\prime \prime} 45^{\prime} 26^{\prime \prime}$, over-againtt the Southern part of the Cafpian Spot.
LXXIV. 1. The Immerfion was feen at Totteridge (which Place is about 9 An ocuculation Miles from London, and nearly $25^{\prime \prime}$ of Time to the Weftward thereof) by of Jupiter h the Mr. Ed. Haines, who between a Gap of the Clouds obferved the Contact of 1688. the Moon's Limb and $\mathcal{F} u p i t e r ' s$, at $3^{\mathrm{h}} 3^{\prime \frac{1}{2}}$.

The Clouds clofing again permitted him to obferve no more: however From this we may conclude the Central Immerfon at London, to have been $3^{\text {b }}$ $4^{\frac{1}{2}}$, mane.
The Emerfion was obferved at London, by Mr. Edm. Halley, to fall out at $3^{\mathrm{h}} 49^{\text {' }}$: for at $3^{\mathrm{h}} 50^{\text {' }}$, Fupiter was all out, and the Limbs fo little feparated, that he judged, that a Minute before, the Center of Jupiter had been upon the Moon's Edge: The Point of the Emerfion was over-againft the Southernpart of the Spot, call'd by Hevelius Infula Macra, or at the 342 d Divifion of the inner Limb of his Map of the Moon.
2. The Immerfion of the Center happened at $3^{\mathrm{b}} 37^{\prime} 23^{\prime \prime}$, on the Eaft-fide of the Spot Xenophanes. The Emerfion was at $4^{\mathrm{h}} 28^{\prime} 24^{\prime \prime}$, between Seneca and Berofus, according to Riccioli, or ad Montes Alanos Hevelii, a little to the Northward of the Palus Meotis.

By the Watch.		Time corrected.
h. ${ }^{\prime}{ }^{\prime}$		h.' "
$\begin{array}{llll}3 & 23 & 20 \\ 3 & 24 & 25\end{array}$	Altitude of Arcturus. 31 16 0 The fame Altitude. 31 31 04 0	3 20 3 21 12
344301.	fupiter was diftant from the M.'s Limb by a greater Interval than that of Mount Sinai from Mount 压tna.	
		34130
34700	Fupiter's Diftance was as much as that of Mount Porphyrites from Byzantium.	
35200	phyrites from Byzantium. Diftance of 7 upiter from the Limb of the M. was equal	34900
35900	Fupiter was diftant from the Limb of the Moon fomething more than Palus Marcotis from Etna.	35600
41640	Dift. of Jupiter from the Limb of the Moon was almoft equal to that of M. Porpbyr. from the Inand Cercinna. The Planets were now fet.	$\left\|\begin{array}{lll} 0 & 1 & \\ 4 & 13 & 40 \\ 4 & 17 & 00 \end{array}\right\|$

At Aviznon; by
R. P. Bonfa R. P. Bonfa. n. 183. P. 177.

In Ireland ; by Dr. Alh, Bijhos of Cloyn.
25.243. P. 293.

Pbafes of Sarurn, An. 1665. as Mainhead near Exeter; by Mr. William Ball. *. 9. P. 152.

Fig. $\mathrm{I}^{2} \mathrm{j}^{2}$. Ais. 1665 . as London; by Dr. Finok. 8. ${ }^{14} 4$. p. 246.

Fig. 133.

An. 1668. at Paris; by M. Nugens and M. Yiccart. n. 45. p. 900.

An. 1670. as Dantzick; by M. Hevelius. n. 65. P. 2089.

2. March 18. At Night I obferved here the Occultation of Saturn by the Moon, which happened at $12^{\mathrm{b}} 13^{\prime} 55^{\prime \prime}$: it paffed directly under the Midft of the Moon's Difcus.
LXXVI. 1. Oft. 13. 1665 . at fix of the Clock, with a very good Telefcope near 38 Foot long, and a double Eye-glafs, Saturn appeared to me fomewhat otherwife than I expected, thinking it would have been decreafing, but I found it as full as ever, and a little hollow above and below.
2. June 29. 1666. between II and i2 at Night, I obferved the Body of Saturn thro' a 60 Foot Telefrope, and found it exactly of the Shape reprefented in the Figure. The Ring appeared of a fomewhat brighter Light than the Body; and the black Lines $a a$, croffing the Ring, and $b b$, crofling the Body (whether Shadows or not I difpute not) were plainly vifible; whence I could manifefly fee, that the Southernmoft part of the Ring was on this fide of the Body, and the Northern-part behind or covered by the Body.
3. Aug. 17. 1668. at $1 \frac{1}{2}^{\frac{1}{2}}$ thefe Parifian Obfervers, imploying a Telefcope of 21 Foot, faw the Globe of Saturn in the Middle manifeftly appearing above and below, beyond the Oval of his Anjes; which was hardly difcernible the laft Year. They meafured divers ways the Inclination of the greater Diameter of the Oval to the Aquator, and found it of about 9 Degrees. By this Obfervation and other like ones of this and the preceding Year, M. Huygens finds, that, inftead of $23^{\circ} 30^{\prime}$, the Angle of the Planes of the Ring and of the Ecliplick muft be of 31°, or thereabouts.
4. Aug. 26. New Style, 1670 . That Telefcope of 50 Foot long, which you lately fent me, fhew'd me the Face of Saturn very plainly and clearly, notwithitanding the Prefence of the Moon. Now how it appear'd to me may be feen by this Delineation. It had a very different Appearance from what was feen by Mr. Huygens, and you alfo, An. 1666. and likewife by the Paris

Obfervers in 1668. For the Ring which encompaffes Saturn was now found to be much narrower and clofer than at that Time, its Path now being much more oblique in refpect of the Earth.
5. This Summer Mr. Huygens obferved Saturn with his Telefcope of 22 At Paus; by M. Feet, and faw his Figure to be very conformable to what it flould be accord- Huygens. 1 o. ing to his Hypotbefis; viz. the Anje or Arms to be very narrow, infomuch that their Opening appeared not but very obfcurely.
6. Sept. 16. Dr. Hook obferved the Phafe of Saturn as here reprefented, At London; br Fig. 135°
7. Saturn, according to the Hypotbefis of Mr. Huygens, was to have retaken An. 167r. at
 ance hath been perceived ever fince the End of May, at a Time when he was pr. joz2. "
diftant enough from the Sun and the Horizon, to be well obferved. He hath remained in this Figure unto the in th of Ausuft, and Mr. Calfini did then obferve him thus; but three Days after he faw him with Arms, though very narrow ones.
8. Our Pbilofophers here know very well, that as foon as Mr. Cafini had 3y M. Huygers. told me that the Arms of Saturn were returned in Auguf, I faid that affiredly they would difappear before the End of this Year. I ftill obferved them, Nov. 6. J. n. in the Evening, but they were fo faint and obfcure, that it was hard to difcern them; fo that within a few Days they will appear no more at all. This confirms altogether my Hypothefs of the Ring, which now difappears in proportion as the Rays of the Sun do obliquely illuminate the flat Surface of it, obverted to our Sight.
9. How it appear'd lately, on Sept. If. New Style, I have delineated very At Danteick; by truly and carefully, and have here fent you the Scheme. But in the Months of fune, Fuly, and Auguf, that you fhould fee it quite round, as the Parifans affirm, I can hardly imagine. For tho' the Arms of Saturn might appear very clofe at the Sides, even in a Tube of 60 or 70 Feet, yet I can hardly think they could quite vanifh, fo that no Remains of them could be feen. Yerhaps the Parijans might view Saturn in Phort Telefcopes, during the Twilight, when the Moon was up.
10. OEt. 12. with my lefs Tube I thought I faw fomething on each Side of $A \in$ Derby by M. Saturn, amidft the Colours of my Glafs, and the fpurious Rays of his Body. Directing my longer Tube (of 14 Feet) to him, I could fee his Anfe fomewhat more diftinctly, but very flender, and to one, that thought not of them, fcarce difcernible.

Nov. 30. I obferved him with my 14 Foot Telefcope, the Aperture being ${ }^{\frac{1}{2}}$ Inch, and its Eye-Glafs drawing two Inches. He appeared perfectly rouid, free from Rays and Colours, and no Anfe to be feen. Mr. Townley in his laft (Nov. 20.) tells me, that he looked at him one Night, and could hardly diftinguifh his Line of the Anfula, but plainly faw a dark Line through him near his upper Part.
11. Dec. 16. we found that Saturn had retaken his round Figure.
12. June 27. in the Morning 1675. We faw Saturn improved with his wide and open Anse.
13. In Auguft, the Figure of Saturn appear'd, as Fig. 137.

Aก. 1676. at taris ; by M. Casfini. n. 128. P. 690
$\mathrm{Fiz}_{\text {ig }}$. 137 .
Fig. ${ }_{3}{ }^{3}$.

Places of Sacura abferved An. 1670, at Dant. zick; by M. Hevelius. $n, 63$. p. 2089.

An. 1677. at Paris ; by M. Bullialdus. n. 39. P. 973.

The ostermof Sasellite of Sa turn dijccover'd by M. Caffini. 3.92. p. 5178.
14. From the Scheme of Saturn, as obferved by Mr. Hevelius a Year ago, I perceived that he made ufe of Telefcopes which were much inferior to ours. For at that Time, as alfo now Aug. 1676 . in the Globe of Saturn, an obfcure Zone was feen by us, a little to the South of the Center, not unlike the Zones of Fupiter. Moreover the breadth of the Annulus was divided into two Parts, by an obfcure Line thit to appearance was elliptical, but was really circular, as it were into two concentrick Rings, the Interval of which was brighter than the External. I faw this Phafis immediately after the Emerfion of Saturn out of the Sun's Rays through the whole Year quite to his Immerfion; firt with a Telefcope of 35 Feet, and afterwards with a lefs of 20 Feet.
LXXVII. 1. Aug. 26. At. n. 1670. I faw Saturn, the Altitude of Aquila being $24^{\circ} 32^{\prime} 0^{\prime \prime}$, at the Diftance of $33^{\circ} 48^{\prime} 0^{\prime \prime}$, from the utmof Wing of $P_{e^{\prime}}$ gajus, and $24^{\circ} 51^{\prime} 40^{\prime \prime}$ from his Mouth ; in $4^{\circ} 11^{\prime}$ of Pijces, and in $1^{\circ} 53^{\prime \prime}$ of South Latitude, being then in Oppofition to the Sun.
2. Dec. 29. new Style, 1677 . at $\delta^{\text {h }} 58^{\prime}$. In the fame Azimuth, and in the nonagefm Degree of the Ecliptick from the Horizon, we faw Saturn and the Northern Eye of the Bull, which was below Saturn. Whence we found that the Planet and the fixt Star had the fame Longitude in the Zodiack ; that is, III $3^{\circ} 58^{\prime} 53^{\prime \prime}$, according to $7 y c h o$.
LXXVIII. i. About the End of OEFober 1671 . we difcovered, by a Telefcope of 17 Feet, 1 I fmall Stars near Saturn, one of which by its particular Motion fhew'd itfelf to be a true Planet; which we found, by comparing it not only to Saturn and his ordinary Satellite, difcovered 1655 by M. Huygens, but alfo to the Fix'd Stars. The Motion of it was very manifeft in refpect of the Fix'd Stars, but lefs fenfible in refpect of Saturn; yet it appear'd, that from Oefober 25, unto November 1, his Diftance from Saturn increafed Weftward, and from that time unto Novem. 6. it diminifhed: So that his greateft Digreffion from Saturn happened in the Beginning of November.

Dec. 16. We found that on the Eaft of Saturn, there was a fmall Star, far diftant, in a ftreight Line to Saturn, and to his ordinary Satellile, which was Oriental alfo, but little diftant from Saturn. And Dcc. 24 tb. we faw this Satellite in the Weft, and a Star, Oriental likewife, lefs diftant from Saturn than that we had feen the 16 th.

Dec. 13. and 17.1672. We perceived, with an excellent Telefcope, (of 35 Feet, made by Campani) an Occidental Star, remote from Saturn, which in both thofe Obfervations had a Southern Latitude in refpect of the Line of his Wings; but in the firft it was further diftant from Saturn than in the fecond: fo that, if this was the fame Star, as I fuppos'd it to be, it mov'd towards Saturn on the Eaft, and confequently (fuppofing it to be his Satellite) it was in the fuperior Part of his Circle.

Feb. 6. 1673 . We began to fee him again, and we obferved him almoft all the Days following till the 20th. This new Planet did more and more remove from Saturn till the 19th of Feb . when we meafured the Difference between his Paffage and that of the Center of Saturn to be $30^{\prime \prime}$ of an Hour, which gave at leaft 10 Diameters of Saturn, and on the 20th the Diftance was judged by Eftimate to be yet greater.

(369)

This Digreffion, being treble to that of the Ordinary Satellite, enabled us 16. p. 5179, at firft to judge the Time of this Revolution to be Quintuple, applying to ${ }^{5184 .}$ the Satellites that Proportion, which Kepler hath noted in the Principal Planets, between the Periodical Times and their Diffances. We were afterwards confirmed in this Opinion; for by the apparent Swiftnefs of his Motion, it was eafy to fee that this Planet had been in Conjunction with Saturn Feb. 3. 1673. and by his Motion on the Weft, it appears, that he was in the inferior part of his Circle: And becaufe during this time of 17 Days he remov'd more and more from Saturn, 'tis certain that he remained in the fame Quadrant of the inferior Occidental Circle above 17 Days, and that his whole Revolution is more than 68 Days. He was thefe laft Days at a Diftance almoft equal to that which he had about the end of OEFober 1671 ; fo that in 480 Days or thereabout he made a certain Number of Intire Reciolutions, which can be no more than 7 ; fince each of them is without Queftion of more than 68 Days. If you fhould count 7 of them, each would be $68 \frac{1}{2}$ Days; if you count 6 , each would be 80 Days; and it you count but 5 , each would be 96 Days. But this laft Suppofition can by no means be made to agree with the two Oblervations of Dec. 1672 ; and the firt doth not agree fo well with them as the fecond.

Mr . Cafimi has fince found, that this outermof Satellite is diftant from the $n . \mathrm{s}_{3}$. p. 8_{3} r. Center of Saturn $10 \frac{1}{2}$ Diameters of his Ring; that the Period of his Revolution in 80 Days is fo juft, that he doth not anticipate 9 Revolutions, which are made in two Years, but by one whole Day; and that in the Conjunctions with Saturn, his Latitude encreafes according as the Ring of Saturn enlargeth itfelf; though the Line of his Motion is not parallel to the Circumference of the Ring.

Mr. Caffini hath alfo difcovered, after many Revolutions, that this Satellite hath a Period of Apparent Augmentation and Diminution, by which Period he becomes vifible in his greatelt Occidental Digreffion, and invifible in his greateft Oriental Digreffion; he begins to appear two or three Days before his Conjunction in the inferior part, and to difappear two or three Days afte: his Conjunction in the fuperior part: So that he remains invifible in every Revolution of 80 Days for a whole Month together.

This Viciffitude of Pbafes makes it feem probable, that one part of his Surface is not fo capable of Reflecting to us the Light of the Sun, which maketh it vifible, as the other part is. Whence we may conjecture, that the Globe of the Satellite hath fome Diverfity of Parts analogous to that of the Earth, the one part of whofe Surface is cover'd by the Sea; which is not fo fit to reflect from all parts the Light of the Sun, as the Continent which maketh up the other part: So that this Planer by a Converfion about his Axis, or by an Expofition of the fame Hemifphere to Saiurn (much after the manner of the Hemifphere of the Moon to the Earth) fometimes turns to us the part analogous to the Continent, fometimes that part which anfwers to the Sea.

Vol. I.
B b b
LXXIX.

370)

The Tuird Satellite of $S_{\text {aturn }}$ difeover'd; by M. Caffini, n. 92. P. 5^{1810}
LXXIX. Dec. 23. 1672. We found a fmall Star Weftward of Salurn, between him and his Ordinary Satellite, which was on the Weft alfo, almof at a double Diftance. Dec. 30 . we faw a little Star, on the Eaft of him and his Ordinary Satellite, which had paffed alfo to the Eaft of him.

Fan. 10. 1673. This little Star appeared to have returned almoft to the fame Pofition in refpect of Salurn and his Ordinary Satellite, where it had been Dec. 23. Yain. 15. the Ordinary Sacrllite was Oriental, and the New one Occidental, as it had been in the precedent, but a little nearer to Salurnt: We had that Evening time enough attentively to obferve this Planet for a whole Hour together, during which we perceived, it approached to Salurn on the Weft, and confequently was in the fuperior part of his Circle: Which did fully confirm us in the Suppofition we were inclined to, that it was an Interior Satellite.
Comparing the Obfervations together, we began to find the Ruie of the Motion of the new Interior Satellite. For the two laft fhewed us, that in 5 Days he had made more than a whole Revolution. The firt Obfervation compared with the third made us judge, that in 18 Days he had made a Number of Revolutions, almoft whole ones, which certainly were 4 ; each of them was of $4 \frac{1}{2}$ Days: So that between the rorb and 15 th it might be, that there had been one Revolution of $4 \frac{1}{2}$ Days, or two Revolutions of $2 \frac{1}{4}$ Days each. But the Combination of the firt with the fecond, made us feclude the Period of $2 \frac{1}{4}$ Days. We therefore judged by thefe Obfervations, that this latt Planet finifhes his Refolution about Soturn in $4 \frac{1}{2}$ Days ; that the Semidiameter of his Circle is $1 \frac{5}{5}$ of the Diameter of Saturn's Ring; and that he was towards his greateft Occidental Digreffion the 23d of December, and Fan. 1. about 7 a Clock in the Evening. We have fince found, that his greateft Digrefion from the Center of Saiurn is only $1 \frac{2}{3}$ of his Ring, and the Period of his Revolution is 4 Days $12^{\text {b }}$ and 27°. His Latitude augmens alfo according as the Ring enlargeth, and at the prefent that the largenefs of the Ring is greater than the Diameter of the Globe of Saturn, he is to pafs in the Conjunctions without touching either Saurrn or his Ring. Yet notwithftanding we have not yet been able to diftinguifh him in the Conjunstions either in the upper or lower part of his Circle; but only in his greatett, as well Oriental as Occidental, Digreffions.

Two Interior S_{3} rellites of Saturn difroven'd; by M. Caffini. n. 181. p. 79.

IXXX. Thefe two Satellites were firft of all feen in Mar. An. 1684, by two excellent Object Glaffes of 100 and 136 Feet ; and afterwards by two others of 93 and 70 Feet; all made by S. Campani, after the Difcovery of the 3d and $5^{\text {th }}$ Satellites, which had been made by others of his Glaffes of 47 and 34 Feet. We have fince feen all thefe Satellites with that of 34 Feet, and continued to obferve them with Glaffes of M. Borelli of 40 and 70 Feet, and by thofe which M. Ariouquel hath lately made, of 80,155 , and 220 Feet. It was eafy for us to fee thefe two Satellites by thefe different forts of Glaffes, after having found the Rules of their Motion, whereby we might with more particular Attention look upon the Places where they ought to be.

(371)

The Firyt Satellite was obferved 45° diftant from its Perigee, moving toward the Weft, Mar. 11. 1686. A. n. at $10^{\text {h }} 40^{\prime}$ at Night, and returned to the fame Pofition on the 14th of April at the fame Hour.

The Second was 36° diftant from the Perigee to the Weft, the $30 / b$ of Mar. 1686. ft. n. at 8 a Clock in the Evening.

The Firft or Innermof Satellite, is never diftant from Saturn's Ring above $\frac{2}{3}$ of the apparent Length of the fame Ring; it makes one Revolution in r^{d} $21^{1} 19^{\prime}$; and the Circle of its Orb is nearly in the fame Plane with the Ring.

The Second or Penintime Satellite is $\frac{3}{4}$ of the Length of the Ririg diftant therefrom, and makes his Revolution in $2^{\mathrm{d}} 17^{\mathrm{h}} 43^{\prime}$:

After a great Number of choice Obfervations, it was concluded, that the Proportion of the Digrefions of the Second to that of the Firft, (counting both from the Centre of Saturn) is as 22 to 17 ; and of its Revolution as $24^{\frac{3}{4}}$ to 17 . This is that very fame Proportion which Kepler obferves between the Diftances and Period of the Primary Planets, and which we have found between the other Satellites of Saturn, and is verified in the Satellites of Fupiter. There is nothing that better fhews the admirable Harmony of the particular Syjtems with the great Syitem of the World.

The antient Aftronomers having tranीated the Names of their Heroes among the Stars, whofe Names have continued down to us unchanged, notwithiftanding the Endeavour of the following Ages to alter then ; and Galileo after their Example, having honoured the Houfe of the Medici with the Difcovery of the Satellites of Fupiter, made by him under the Protection of Cofmus II. (which Stars will be always known by the Name of the Sidera Midicea.) Wherefore the Difcoverer concludes that the Satellites of Saturn, being much more exalted and more difficult to difcover, are not unworthy to bear the Name of Louis Le Grand, under whofe Reign, and in whofe Obfirvatory the fame have been detected; which therefore he calls Sidera Lodoicea, not doubting but to have perpetuated the Name of that King, by a Monument much more lafting than thofe of Brafs and Marble, which hall be erected to his Memory.
LXXXI. The Fourth or Penextime Satellite of Saturn, firft difcover'd by M. Huygens 1655 , I have of late frequently obferv'd with a 24 Foot Telefcope: And I perceiv'd that M. Huggens's Numbers were confiderably run out, and about 15° in 20 Years two fwift; this made me refolve more nicely to enquire into it's Period, and accordingly I waited till I had gotten a competent Number of Obfervations, the moft confiderable whereof are thefe.
1612. Nov. 13. $13^{\text {b }} 00^{\prime}$ p. m. the Satellite appear'd on the North fide of Saturn, and a Perpendicular let fall from it on the tranfverfe Diameter of the Ring, fell upon the middle of the dark Space of the following Anfe; and the fame Night $19^{\circ} \mathrm{O} 0^{\prime}$, it had paft the Conjunction, and the Perpendicular fell exactly on the Weftern Edge of the Globe of Saturn : the Northern Latitude and Retrograde Motion made it evident, that the Satellite was then in P_{e} rigcio.
M. Huygens's Tbeory of sise. Fourth Satellise of Siturn correcsed ; by Mr. Ld. Halley. n. 145. P. 82. May, An. 1683.

Again, Nov. 2 I. $16^{\text {h }}{ }^{1} 5^{\prime}$, this Satellite of Saturn was on his South-fide; the Perpendicular on the Line of the Anfa fell on the Middle of the dark Space of the Weftern Anfe, and the fame Night $19^{h} 00^{\prime}$, the Perpendicular fell precifely on the Center of Saturn, and the Diftance therefrom was fomewhat lefs than one Diameter of the Ring. By this it was evident that the Satellite was in Apogreo.

I obferved it in Apag.00 again on the $24^{2 t h}$ of $7 a n$. 1683 . at $8^{\mathrm{h}} 00^{\prime} p$. m. the Perpendicular on the Line of the Anfoc fell exactly on the Weftern Limb of the Globe of Saturn, and at $9^{h} 30^{\prime}, p$. m. the faid Perpendicular fell within the Gilobe more than half way to the Center, and the Diftance from the Line of the Anfa towards the South, feemed much about one Diameter of the Ring.

Laftly, Feb. 9. 1683. 8h 10^{\prime}, p. m. it was again in Apogeo, and I could by no means difcern towards which fide it inclined moft, nor whether the Tranfverfe Diameter of the Ring, or the Diftance of the Satellite therefrom, were the greater; fo that at that time it was precifely $A p o g$ con.

To compare with thefe, I chofe two out of thofe of Huygens, which feemed the moft to be confided in ; the firft made 1659. March 14. J. $n .12^{\mathrm{h}} 00^{\prime}$ at the Hague; when the Satellite appeared about one Diameter of the Ring under Saturn; but it was gone fo far to the Weftward, that he concluded, that about 4 Hours before, or $7^{\natural} 40^{\prime}$ at London, it had been in Perigreo.

Again, March 22. $1659.10^{\mathrm{h}} 45^{\prime}$, the Satellite was a whole Diameter above the Line of the Anfe, and the Perpendicular thereon fell nearly upon the Extremity of the Eaftern Anfa.

By the Firft of my Obfervations it appears that the Satellite was in Perigeo 1682. Nov. 13. $17^{\text {h }} 00^{\prime}$, circiler, at which time Saturn was $30^{\circ} 29^{\circ} 39^{\prime}$ from the firf Star of Aries in the Ecliptick, but the Earth reduced to Saturn's Equinocitial, and the Satellite was $9^{9} 23^{\circ} 46^{\prime}$, à $1^{2} * r$. And March 4. 1659. $7^{\text {h }} 40^{\prime}$, Saturn's Place in the Ecliptic was $6^{s} 0^{\circ} 41^{\prime}$; but the Earth reduced, and confequently the Satellite, in $11^{\prime} 28^{\circ} 18^{\prime}$, a Prima Stella Arietis. The Interval of Time is 8655 Days, $9^{\circ} 20^{\prime}$; in which the Satellite had made a certain Number of Revolutions to the Fix'd Stars, and befides $9^{\circ} 25^{\circ} 28^{\prime}$, or 295 Degrees 28^{\prime}, whofe Complement to a Circle $64^{\circ} 32^{\prime}$ is 2 Days 20^{6} 36^{\prime} Motion of the Satellite, according to Huygens. So that 8655 Days $5^{\mathrm{h}} 5^{\prime \prime}$, or 12467846 Minutes of Time, is the Time of fome Number of intire Revolutions; and dividing that Interval by 15 Days $22^{\text {n }} 39^{\prime}$, or 22959^{\prime} (the Period of Huygens) the Quotient 543 fhews the Number of Revolutions; and again dividing 12467876 by 543, the Quotient $229^{61} \frac{1}{T_{0}^{\prime}}$ min. or 15 Days, $22^{\text {h }} 41^{\prime} 6^{\prime \prime}$, appears to be the true Time of this Satellite's Period. Hence the Diurnal Motion will be $22^{\circ} 34^{\prime} 38^{\prime \prime} 18^{\prime \prime \prime}$, and the Annual, befides 22 Revolutions, $10^{\circ} 20^{\circ} 43^{\prime}$. Having made Tables to this Period, I found that in the Apogeon Obfervation of Huygens, the Satellite was above 3 Degrees fafter than by my Calculus, and that in the three other Obfervations of my own, being likewife in the fuperior part, it was $2 \frac{1}{2} \mathrm{Deg}$. nower than by the fame Calculation. Now 'tis evident, that the Differences muft arife from fome Eiccentricily

(373)

Eccentricity in the Orbit of this Satellite, and that in Mar. 1659. the Apocronion (as I may call it) was fomewhere in the Oriental Semicircle, and that in Nov. 1682. it was in the Weftern Semicircle; and fuppofing the Apocronion fix d , it muft neceffarily be between $9^{\circ} 23^{\circ} 46^{\prime}$, and $11^{\prime} 28^{\circ} 18^{\prime}$, à $1^{2} * r$, that being the common Part between thofe two Semicircles; and becaufe the Difference was greater in Huygens's Obfervation than in mine, 'twill follow that the Linea Absidum, or Apocronion, , hould be nearer to $9^{5} 23^{\circ} 46^{\prime}$, than to $1 I^{\circ} 28^{\circ}$ 18'. I will fuppofe $10^{\circ} 22^{\circ} 00^{\prime}$ à Prima Stella Arietis, (which happens to be alfo the Place of Saturn's Equinox) and the greateft Equation about $2 \frac{1}{2}$ Degrees. Upon the Score of this Inequality the mean Motion of the Satellite will be found about $2^{\circ} 45^{\prime}$ nower in $23^{\frac{1}{2}}$ Years, or 7 Minutes in a Year, whence I ftate the Annual Motion $10^{5} 20^{\circ} 36^{\prime}$, above 22 Revolutions, and the correct Epocba for the laft Day of December 1682, at Noon in the Meridian of London $9^{3} 10^{\circ} 15^{\prime}$ à $1^{2} * r$; from which Elements I compofe the following Table.

(374)

Tab. of the Mean Mot. of the Satel. of Sat. found by Huygers, from the firf $* r$

I here fuppofe the Linea Apfidum fix'd, as having no Argument from Ob fervation to prove the contrary, though it be very probable that as the Apogeon of our Moon has a Motion about the Earth in about 9 Years, fo that of this Satellite ought to have about Saturi, but with a much longer Period, which future Obfervation may difcover.

The Diftance of this Satelite from the Center of Saturn feems to be much about 4 Diameters of the Ring, or 9 of the Globe, and the Plane wherein it moves, very little or nothing differing from that of the Ring, that is to fay, interfecting the Orb of Saturn $4^{3} 22^{\circ}$, and $10^{3} 22^{\circ}$ à $1^{2} * V$, with an Angle of $23^{\frac{1}{2}}$ Degrees, fo as to be nearly parallel to the Eartb's Equator; whence the Latitude of the Apogaon Semicircle from $4^{3} 22^{\circ}$ to $10^{\circ} 22^{\circ}$ of Saturn's Longitude from the firft Star of r, will be Northern, and of the other Semicircle Southern; and the contrary in the other half of Saturn's Longitude, to wit, from $10^{3} 22^{\circ}$ to $4^{5} 22^{\circ}$ of his diftance from the firt Star of r.

It follows now to thew how by the help of this Table to compute the place of this Satellite, to any Time required.

Firlt we mult have the true Longitude of Saturn from the Earth, and numbred from the firft Star of r, (or rather the Place of the Earth viewed from Saturn, together with its Latitude from the Orb of Saturn; but that being never fully $\frac{1}{2}$ of a Degree we neglect it as a Nicety) and therefrom fubtract $10^{3} 22^{\circ}$, there remains the Diftance of Saturn from this Equinoctial Point, with which Diftance with the Longitude of the Sun, take out the Rigbt Afcenfion and Diclination thereto ($23 \frac{1}{2}$ Degrees being the Obliquity common to both) and to the Rigbt Afcenfion adding $10^{\circ} 22^{\circ}$, the Sum fhall be the Longitude of the Satellite's Apogroon. Then fay, as Radius to Sine of the Declination, fo 8 to the greateft Latitude in Apogeo, or Perigao in the parts of the Semidiameter of the Ring.

Next collect the Middle Motion of the Satellite, and from it fubtract $10^{\circ} 22^{\circ}$, the Remainder fhall be the mean Anomaly, with which in the Table of the Moon's primary Equation, take out the Equation anfwering thereto, and the half thereof added or fubtracted to or from the Middle Motion, according to the Table, gives the true Motion of the Satellite; from which fubtract the Apogroon, and if the Remainder be more than 6 Signs, the Satellite is Occidental, if lefs, Oriental; and as Radius to Sine of the Remainder, fo 8 to the Semidiameters of the Ring, or 18 to the Semidiameters of the Globe, that the Satellite is to the Eaftward or Weftward of the Center of Saturn, according to the foregoing Precept.

Laftly, as Radius to Coosine of the faid Remainder, fo is the greateft Latitude from the Line of the Anfe, to the Latitude fought.

Here note, that I purpofely neglect the Inequality of the Diftance arifing from the Eccentricity, as being too fmall to be any way obfervable.
Laftly, to clear all Difficulties that may arife to them that are but little verfed in this fort of Calculation, I have added an Example of the Work, that where the Precept may feem obficure it may be thereby illuftrated.

An. 1657. May 9, ft. n. M. Huygens obferved the Satellite very near Saturn on the Weftern Side, and very littie above the Line of the Anfa. I fuppofe this about $10^{h} p . m$. Let us now calculate to that time.

1657, May $9^{d} 9^{\text {h }} 10^{\prime}$, at London. The Place of Saturn	L.ondon.		
Sat. from firft Star of Aries	5^{5} O 3^{2}		
Equinoct. fubtract.	10	22	00
Saturn from the Equinox	6	8	32
Right Afcenfion	6	7	50
Apogron	4	29	50
Declination South.			23

Therefore it is $2 \frac{7}{10}$ Semidiameters of the Ring, and $\frac{0}{20}$ to the North, agreeing exactly with the Defcription and Figure of M. Huygens.

1 here call the Plane of this Satellite's Orb, which hitherto I fuppofe the fame with that of the Ring, Saturn's Equinoctial; not that any Difcovery hath been able to prove that the Axis of that Globe is at right Angles thereto, but becaufe it hath pleafed M. Huygens to call it fo, and likewife becaufe it is fo nearly parallel to our Globe's EquinoEZial; neverthelefs, to fpeak my Opinion, I believe that the Axis is inclined, and that not a little, to the Plane of the Ring : for as the Reflection of the Sun's Light from the Ring is a great Convenience to that Hemifphere of Saturn, which beholds its illuminate Side; fo the other Hemifphere is very much incommoded by the Shadow of the Ring, which for many Months, and in fome Parallels for feveral Years, occafions a continual Night by the Interception of the Sun's Beams, which is a Confequence that demonftratively follows the Pofition of the Ring, in the Plane of Saturn's /Equator. Now this great Inconvenience would be in fome meafure relieved by the oblique Pofition of the $A x i s$; for then the Parallels of Latitude interfecting the Plane of the Ring, many, and in moft cafes all of them, might for fome time in every diurnal Revolution of the Globe, free themfelves from this Eclipfe, which otherwife were fufficient to render this Globe of Saturn unfit for any fettled Habitation; but this is but Conjecture.

(377)

The other two Satellites of Saturn difcovered by S. Cafini at Paris, An. 1672. and 1673 . I muft confefs I could never yet fee; I have been told that they difappear for about $3^{\frac{2}{3}}$ of Saturn's Revolution, and were only to be feen when the $A n f e$ were very fmall, it being fuppofed that the Light which proceeds from the Anfe, when confiderably opened, might hide thefe Satellites.

IXXXII. I. The Diftance of the firlt Satellite from the Center of Saturn, appears to me to be variable, and its Motion is fenfibly unequal, fwifter at this Time in the Weftern Semicircle than in the Eaftern. I have finally determin'd its mean Diftance to be ${ }^{39}$. of the Diameter of Saturn's Ring, its n. 187. . P. 209 . daily Motion to be $6^{\circ} 10^{\circ} 41^{\prime} 31^{\prime \prime}$. So that if its Motion were equal, the Duration of its Conjunction with Saturn, that is to fay, all the Time it takes up in paffing through the Ring, would be $7^{\text {h }} 46^{\text { }}$. It appear'd greater to me by immediate Obfervations; but it is to be obferved, that as yet I have not been able to fee this Satellite nearer to Saturn than a quarter part of an Anfa.

I have calculated the Epoque of its Motion, for the lat of December 1685 , at Noon, at the Meridian of Paris, to be in $v^{5} 24^{\circ} 50^{\prime}$.

The Diftance of the fecond Satellite from the Center of Saturn has feem'd to me to be more uniform. I have determined it to be 1^{*} ㅇiameter of the Ring. Its Motion alfo feems to be more equal. I have calculated the daily Motion, and find it $4^{\circ} 11^{\circ} 31^{\prime} 30^{\prime \prime}$. Therefore the Duration of its Conjunction fhould be $8^{\text {h }} 36^{\prime}$. Nor have I yet been able to fee this Satellite nearer the Ring of Saturn than $\frac{1}{7}$ of an Anfa. As this Satellite was feen, for the greateft part of its Time, within the Confines of the Diftance of the firft, to which it is equal in Magnitude, and like to it in Colour ; the Difficulty to diftinguifh one from the other was very great; fo that without a conftant Application to Obfervations, and a great Multitude of Combinations, I could by no means perform it.

I have determin'd the Epoque of this Satellite, for the 3 Ift of December 1685 , at Noon, to be my $9^{\circ} 10^{\prime}$.

The Diftance of the Third from the Center of Saturn feems to be $1^{\frac{3}{4}}$ Diameters of the Ring. Its daily Motion is $2^{\circ} 18^{\circ} 41^{\prime} 50^{\prime \prime}$. Therefore its Conjunction muft continue 10 Hours. The Epoque of its Motion for the laft Day of the Year 1685 at Noon is $m^{\prime} 9^{\circ} 39^{\prime}$.

The Diftance of the fourth Satellite from the Center of Saturn feems to be 4 Diameters of the Ring. Its daily Motion is $22^{\circ} 34^{\prime} 38^{\prime \prime}$ The Duration of its Conjunction is $15^{\text {a }} 6^{\prime}$. The Epoque of its Motion in the fame Time and Place as the others, in $\neq 16^{\circ} 19^{\prime}$. On thefe Principles Tables and Ephemeris's may be conftructed.
2. The following Tables are calculated from thefe Elements, and reduced By..... is. to the Meridian of London.

Yol. I.
Ccc
Table

(378)

A Table of the Mean Motion of the inmoft Satellite of Saturn, difcover'd by Mr. Cafini, An. 1686.

Current Year of Chrift.	Epoques.	$\left\lvert\, \begin{gathered}\text { Mean Mot. } \\ \text { S }\end{gathered}\right.$		$\left\|\begin{array}{ccc}\text { Mean Mot }\end{array}\right\|$		MeanMot.	
1681	$\cdots 19341$	$1{ }^{1} 4$	1	61042	- $\quad 75731$	4	
1685	ve 10 302			- 2123	- 15 53/32	414	
1686	¢ 13134	30741	3	$\begin{array}{llll}7 & 2 & 5\end{array}$	- 235033	422	
1687		$410 \quad 205^{6}$	4	$1{ }^{1} 24^{6}$	- 314734	430	
1688	w9 181115	$5{ }^{5} 22330$		72328	- 394435	5438	
1689	$7{ }^{7}$ 1 266	6.6264	6	$\begin{array}{llll}2 & 4 & 9\end{array}$	- 474036	6 46	
1701	$\begin{array}{llllll}\Omega & 4 & 14\end{array}$	7102838		81415	- 543737	7454	
	-	91152	8	22532	13343		
common		11426	9	14	1113139	9510	
Year.		51700	10	3 16 55 10	1192840	- 518	
		1934	11	9273611	1272441	1526	
Jan.	$0{ }^{-12}$	281848	12	$\begin{array}{llllllll}4 & 8 & 18 & 12\end{array}$	$135^{21} 4^{2}$	$2 \quad 534$	
March	$\begin{array}{llll}5 & 1 & 27 \\ 3 & 0 & 49 \\ 8 & 13\end{array}$	300512	131	10190013	$1{ }^{1} 431843$	$3 \quad 542$	
April	8 \% 216114	$4{ }^{4}$	14	$42942{ }^{1} 4$	$1 \begin{array}{llll}1 & 1544\end{array}$	450	
		$5 \begin{array}{llll}8 & 10 & 29\end{array}$		$11 \begin{array}{lll}10 & 23 \\ 15\end{array}$	159 1145	$5 \quad 55^{8}$	
May	$\begin{array}{lllll}6 & 23 & 216\end{array}$	662343	16		$\begin{array}{llll}2 & 7 & 8 / 46\end{array}$		
Fune	II 2429						
Fuly	10 15 15	7102617				7613	
Auguft	3 16 42	822851	18		$2 \begin{array}{llll}2 & 23 & 1\end{array}$	$8 \quad 621$	
	$8-119$	97125	19	- 23 9 19	$\begin{array}{lllllllllll}2 & 30 & 58\end{array}$	9629	
Sept. Oetober	$\begin{array}{llll}8 & 18 & 9 \\ 7 & 8 & 50\end{array}$	20 51439	20	$7 \quad 35020$	$23^{8} 5550$	- 637	
Nov.	(10 $\begin{array}{ccc}7 & 8 & 54 \\ 0 & 10 & 21\end{array}$		21	1143221	$24^{6} 5^{2} 5^{\prime}$	645	
	$1 \begin{array}{lll}1 & 1 & 7\end{array}$			$\begin{array}{lllll}7 & 2 & 5 & 1\end{array}$	$2{ }^{2} 54495^{2}$	2653	
				2 5 55 23 8 16 36 24	$\begin{array}{llll}3 & 2 & 45\end{array}$		
				8163624	310425		
				22718	31839		
			26	9759	3.263556	6725	
			27	31841		7733	
				92922	$34^{2} 2858$	741	
In Leap-Year after Fibruary add one Day, and the Motion belonging to it.				$\begin{array}{rrr\|r} 4 & 10 & 3 & 29 \\ 10 & 20 & 45 & 30 \end{array}$	$\begin{array}{llll} 3 & 50 & 2559 \\ 3 & 58 & 22 & 60 \end{array}$	979	
			757				

A Table of the Mean Motion of Saturn's Satellite the inmof but one, difcover'd by Mr. Cafini, An. 1686.

A Table of the Mean Motion of the middlemoft Satellite of Saturn, difover'd by Cafinin, An. 1686.

(3^{82})

A Table of the Mean Motion of the outmof Satellite of Saturn, difcover'd by Caffini, An. 1671.

($3^{8} 3$)

I Thall only add, that the Proportion of the Squares of the Times of the P_{c-} riods to the Cubes of the Diftances (which is propofed as probable by Kepler, but how demonftratively found true by Mr. Nereton) gives us nicely the Proportion of the Diftances of thefe Planets from the Center of Saturn; and fuppofing the Satellite of Huygens four Diameters of Saturn's Ring diftant from him, we fhall find by the Periods the Diftances as follows.

Thefe Diftances may be ufed, as more accurate than thofe obtained by Obfervation, which yet differ but little therefrom.
LXXXIII. An. 1666. Fune 26, between 3 and 4 of the Clock in the Morn- The Phafis of ing, I obferved the Body of Fupiter through a 60 Foot Glafs, and found the ${ }_{D}$ Jupiter Hook. ${ }^{\text {b }}$, apparent Diameter of it through the Tube, to be fomewhat more than two n. it. p. 245 . Degrees, that is about 4 Times as big as the Diameter of the Moon appears Fig. 139. to the naked Eye.

I faw the Limb pretty round, and very well defined without Radiation. The Parts of the Pbafis of it had various Degrees of Light; about a and f, the North and South Poles of it, fomewhat darker, and by degrees it grew brighter; towards b and e, two Belts or Zones, the one of which, b, was a fmall dark Belt croffing the Body fouthward; adjoining to which was a fmall Line of a fomewhat lighter part; and below that again. fouthwards, was the great black Belt, c. Between that, and e, the other fmaller black Belt, was a pretty large and bright Zone ; but the Middle, d, was fomewhat darker than the Edges.
LXXXIV.. 1 . S. Campani affirms, that, by the Goodnefs of his Glaffes, he The Revolution of hath obferved certain Protuberances and Inequalities of Fupiter: and he is now obferving whether they do not change their Situation.
2. An. 1664. May 9. about 9 a Clock at Night, Mr. Hook with an ex- by Dr.Hook. ib, cellent 12 Foot Telefcope obferved a fmall Spot in the biggeft of the three obscurer Belts of Fupiter; and obferving it from time to time, he found that within two Hours after, the faid Spot had moved from Eaft to Weft, about half the Length of the Diameter of \mathcal{F} upiter.
3. Euftacbio de Divinis pretends, that the Pirmanent Spot in Fupiter hath zys. Divini. been firt of all difcover'd with his Glaffes ; that P. Gotignies is the firt that ${ }^{\text {n. 22. p.209. }}$

(3^{84})

hath thence deduced the Motion of $\mathfrak{F u p i t e r}$ about his Axis and that M. CaSini at firit oppofed it: But that Spot was obferved in England a good while before.
 p.687, n, 82.p. 4039.
4. There are two Sorts of Spots at certain times to be feen in the Difk of Fupiter. One Sore are nothing but the Shadows of his Satellites; but the other have fome refemblance to thofe that are feen in the Moon; and they are perhaps of the fame Nature with thofe that are called Belts. They move from the Eaftern to the Weftern Limb; their apparent Motion is unequal, and fwifter near the Center than the Circumference; and they never are fo well as when they approach to the Center, they being very narrow and almont imperceptible when they approach to the Circumference ; which makes us believe, that they are flat and fuperficial to $f u p i t e r$.

Among thele Spots there is none fo fenfible, as that which is fituated in the Northern-part of the Soutbern-Belt. Its Diameter is about the tenth part of that of Jupiter; and at the Time that its Center is neareft to that of fupiter, it is diftant from it about the third part of the Semidiameter of that Planet.
M. Caflini, after he had made many Obfervations of this Spot during the Summer of the Year 1665 , found, that the Period of its apparent Revolution is of $9^{\mathrm{b}} 56^{\prime}$. He continued to obferve it till the Beginning of 1666 , when Fupiter approach'd to the Beams of the Sun ; but after he was got free of the Sun-Beams, it was difficuit to be difcern'd. This giving grounds to think that it might be of the Nature of the Spols of the Sun, (which after appearing for a while, difappear for ever) M. Calfini ceafed at length to obferve them.
But Fan. 19. 1672. ($f . n$.) when he obferv'd Fupiter, at $4{ }^{\frac{3}{4} h}$. in the Morning, he perceived in the fame Place of his Difk the Figure of the fame Spot, adhering to the fame Soutbern-Belt. It was already gone beyond the Moiety of this Belt, and he faw it advance little by little towards the Weftern Limb, to which it feemed to be very near at $6 \frac{1^{\mathrm{b}}}{}{ }^{\mathrm{b}}$.

By the Celerity of its Motion near the Center, and by the Place where he had begun to fee it, he judged that it might have been in the midft of the Belt at $4^{\mathrm{h}} 35^{\prime}$ in the Morning. And as he prepared himfelf to make Ephemerides of its Motion for that Year 1672, he perceived that in thofe he made for the Year 1666, this Spot had been in the midft of Fupiter the fame Day, namely the 19th of fanuary at the fame Hour. So that in fix Years, of which one is a Bijextile, it is found to have made, in relpect of the Earth, at leaft 5294 Revolutions, each of $9^{h} 55^{\prime} 85^{\prime \prime}$, compenfating one Revolution by another; and at moft $529+$ Revolutions of $9^{\text {h }} 55^{\prime} 51^{\prime \prime}$; forafmuch as he was affured of the Precifenefs of one Mean Revolution to one eighth of a Minute.

Until then he had never feen an immediate Return of this Spot after 9 Hours and 56 Minutes; becaufe it had not happened, that Fupiter after the Apparition of the Spot had ftayed, in one and the fame Night, long enough above the Horizon, at leaft a fufficient Height, to obferve him with due Diftinctnefs. He had only concluded the Time of this Revolution by Returns obferved after about 20, 30, and 50 Hours; and he had more precifely limited it by Obfervations more diftant. But the Night after March 1, at $7_{\frac{1}{2}}{ }^{\mathrm{h}}$ in the Evening, he faw this Spot in the midft of the Belt ; and the fame

Night at $5^{\mathrm{b}} 26^{\prime}$, in the Morning, he faw it again returned precifely to the fame Place. Mar. 3. He together with M. Buot and M. Mariotte, began to fee at $8^{\text {h }} 4^{\prime}$ the Spot already fomewhat removed from the Oriental Limb, but yet obfcure and fmall. At $8^{\mathrm{h}} 47^{\prime}$, they faw it very diftinctly advancing towards the middle of the Belt. At $9^{\mathrm{h}} 15^{\prime} 40^{\prime \prime}$, until $9^{\mathrm{h}} 8^{\prime}$, they faw it in the midft of the Belt. At $9^{\prime \prime} 15^{\prime}$, it was paft the middle, and was come nearer to the Occidental Lim's. And a little after the Heavens being over-caft, he could obferve it no further.
LXXXV. I. An. $16 \% \frac{1}{2}$. Fcb. 16. $7^{\text {h }} 44^{\frac{1}{2}}$. The Alcitude of Fupiter was 18° Elaces of Jupiter
 Magnitude, and found it $16^{\prime} 33^{\prime \prime}$. The Latitude of this Star was $1^{\circ} 40^{\prime}$ Derby, n. 82.p. northerly. Its Place according to me was $\mathrm{m} 10^{\circ} 7^{\prime} 16^{\prime \prime \prime}$: But according to Street it was $14^{\circ} 3^{\prime} 54^{\prime \prime}$. The Difference of the Altitudes of the Centers of Fupiter and the fix'd Star was $1^{\prime} 1^{\prime \prime}$.
${ }_{17}$ Feb. $7^{\text {h }} 25^{\prime}$. After Noon, the Altitude of 7upiter being $15^{\circ} 54^{\prime}$, he was diftant from the fix'd Star $21^{\prime} 50^{\prime \prime \prime}$; the Difference of Altitudes was $8^{\prime} 40^{\prime \prime}$.

18 Fib. $7^{5} 0^{\prime}$. The Diftance of the fix'd Star from the Center of fupiter was $28^{\prime} 15^{\prime \prime}$. The Difference of Altitudes was about $15^{\prime}-29^{\prime \prime}$. In each Ob fervation the Planet was higher than the fix'd Star, from whence it always ftood towards the Meridian.

Hence making a Calculation for every Day and Hour of the Obfervations; I found

2. March 15 in the Evening, I undertook to obferve the Diftances and Pofitions of $\mathcal{F u p i t e r}^{\text {fur }}$ from the $\operatorname{Star} \Omega 3^{8}$, whofe Latitude is $1^{\circ} 20^{\frac{1}{2}}$ North; its Place according to Street $\mathrm{m} 9^{\circ} 54^{\prime} 0^{\prime \prime \prime}$; but according to me is 奴 $9^{\circ} 57^{\prime} 20^{\prime \prime}$. At $7^{h} 25^{\prime}$ afternoon, the Altitude of 'yupiter was $32^{\circ} 5^{2^{\prime}}$. The Diftance of its Center from the fix'd Star was $33^{\circ} 50^{\prime}$.The Difference of Altitudes was about $20^{\prime} 2^{\prime}$.

March ${ }_{1} 6$. At $7^{n} 8^{\prime}$. The Altitude of the fix'd Star being 36°, the Diftance of Jupiter from it was $27^{\prime} 7^{\prime \prime}$. The leffer Altitude $16^{\prime} 3^{\prime \prime \prime}$.

March 19, at $6^{\mathrm{h}} 45^{\prime}$, the Altitude of $7 u p i t e r$ was $29^{\circ} 35^{\prime}$. The fix ${ }^{\circ}$ Star was $2^{\prime} 24^{\prime \prime}$ higher than the Planet; from which at $6^{k} 55^{\prime}$, its Diftance was $10^{\prime} 2 \mathrm{I}^{\prime \prime}$.

At $7^{\text {b }} 11^{\prime}$, the fourth Satellite was diftant $\eta^{\prime} 28^{\prime \prime}$ from the fix' d Star. Tho' the Planet always appear'd to be higher than the fix'd Star, yet it was really lower; afterwards it feem'd to be lower, but was really higher.

VoL. I.
D d d
March

(386)

March 20. The Micrometer being better adapted to the taking of the Differences of Altitudes, I made the following Obfervations, which I take to be very exact

For obtaining the Place of fupiter from thefe Obfervations, I computed

| | h. | " | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 51 | 30 | 8 | 18 | |

38. 86. p. 5037.

Thofe Obfervations which are mark'd with an Afterifk I look upon as the moft certain. I imagine the Differences of Azimuths, which were obferved on the 27 and 28 Days, were taken rather too fmall, becaufe of the fhaking of the Tube ; therefore fince I could not meafure them as accurately as I defired, I took care not to take them too large.

To obtain fupiter's Place from three Obfervations, I have computed

3. An. 1673. Marcb 13: in the Evening. Fupiser in his Aphelion, going to his Acronical Phafis, having pals'd a little the Northern Limit of his Orbic, proceeded retrograde towards the $g^{\text {th }}$ Star of पP of the fourth Magnitude, from which (his Altitude beirg about 6 Degrees) I took the Diftance of his remoseft Limb, with a feven-fout Tubc, and Townlet's Micrometer, $4560=$ $52^{\prime} 34^{\prime \prime}$.

Aturch 17. About half an Hour after fuppitu arofe, with the fame Tube I again took the Dittance of his remotet Limb from the fix'd Star, 2073= ${ }^{2} 3^{\prime} 54^{\prime \prime}$.

Marib 20. I made the following Obfervations; the firft with a fhorter Tube of 85 Inches, the reft with a longer of $16+$ Inches.

Marcb 26. in the Evening. The Altitude of Fupiter being $15^{\circ} 50^{\prime}$, I meafured the Diftance of his remoter Limb from the fix'd Star with the fame leffer Tube, $4205=48^{\prime} 30^{\prime \prime}$.

For finding the Place of the Planet from thefe Obfervations, I made the following Calculations.

According to me the Place of the fix $x^{\prime} d$ Star was $\bumpeq 13^{\circ} 37^{\prime} 11^{\prime \prime}$ (taking the arnual Motion at $50^{\prime \prime}$, which the Author of the Carawise Tables takes to be $13^{\circ} 33^{\prime} 47^{\prime \prime}$. Its North Latitude $1^{\circ} 45^{\prime}$. Therefore according to me the
true Place of Fupiter will be true Hace of fupiter will be

UIED

[^0]: 2 1 am indebted for thefe Experiments to the Reverend and very accurate Aftronomer Mr. Flamficad; who copied them, zogether with many other Obfervations and feveral Pafages relating to them, from Mr. Gafcoigne's Letter to Mr. Crabtree: They were happily preferved, in the Time of our Civil War, by the Jate Sir Jonas Moor, and Mr. Cbr. Tocumly; and they are now in the Hands of Mr. Rich. Tozunley, of Tazunley in Lansafliire, by whom they were imparted fome Time ago to Mr. Flamfiead.

[^1]: - He agrees with Piolemy as to Latitude.

