
Simulation Practice
with Modelica

Alfonso Urquía Moraleda
Carla Martín Villalba

Miguel Ángel Rubio González
Victorino Sanz Prat

Editorial

http://portal.uned.es/portal/page?_pageid=93,23375984,93_23375985&_dad=portal&_schema=PORTAL

This publication was conducted within InMotion project (Innovative
teaching and learning strategies in open modelling and simulation
environment for student centered engineering education (573751 EPP 1
2016 1 DE EPPKA2 CBHE JP)).

This project has been funded with support from the European
Commission. This publication reflects the views only of the authors, and
the Commission cannot be held responsible for any use which may be
made of the information contained therein.

Simulation practice with Modelica

ALFONSO URQUÍA MORALEDA

CARLA MARTÍN VILLALBA

MIGUEL ÁNGEL RUBIO GONZÁLEZ

VICTORINO SANZ PRAT

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA
Innovative teaching and learning strategies in open
modelling and simulation environment for student

centered engineering education
573751 EPP 1 2016 1 DE EPPKA2 CBHE JP

SIMULATION PRACTICE WITH MODELICA

Quedan rigurosamente prohibidas, sin la
autorización escrita de los titulares del
Copyright, bajo las sanciones establecidas
en las leyes, la reproducción total o
parcial de esta obra por cualquier medio
o procedimiento, comprendidos la reprografía
y el tratamiento informático, y la distribución
de ejemplares de ella mediante alquiler
o préstamo públicos.

© Universidad Nacional de Educación a Distancia
Madrid 2018

www.uned.es/publicaciones

© Alfonso Urquía Moraleda, Carla Martín Villalba,

ISBN: 978-84-362-7403-5

Edición digital: octubre de 2018

Miguel Ángel Rubio González y Victorino Sanz Prat

http://portal.uned.es/portal/page?_pageid=93,23375984,93_23375985&_dad=portal&_schema=PORTAL

Contents

Modelica code

Preface

Assignment 1 Springs, damper and lever

1.1 System description
1.2 Tasks
1.3 Solution to Task 1
1.4 Solution to Task 2
1.5 Solution to Task 3

Assignment 2 Springs, pulley and load

2.1 System description
2.2 Tasks
2.3 Solution to Task 1
2.4 Solution to Task 2
2.5 Solution to Task 3
2.6 Solution to Task 4

Assignment 3 Bond graph library

3.1 System description
3.2 Tasks
3.3 Solution to Task 1
3.4 Solution to Task 2

Assignment 4 Source of liquid

4.1 System description
4.2 Tasks
4.3 Solution to Task 1
4.4 Solution to Task 2

SIMULATION PRACTICE WITH MODELICA

Assignment 5 Ideal gas in a heated container

5.1 System description
5.2 Task
5.3 Solution

Assignment 6 Hysteresis controller

6.1 System description
6.2 Task
6.3 Solution

Assignment 7 Draining of a benzene storage tank

7.1 System description
7.2 Task
7.3 Solution

Assignment 8 Heating a liquid mixture

8.1 System description
8.2 Task
8.3 Solution

Assignment 9 Double-pipe heat exchanger

9.1 System description
9.2 Tasks
9.3 Solution to Task 1
9.4 Solution to Task 2

Assignment 10 Cellular Automata – The Game of Life

10.1 System description
10.2 Tasks
10.3 Solution to Task 1
10.4 Solution to Task 2
10.5 Solution to Task 3
10.6 Solution to Task 4
10.7 Solution to Task 5

Assignment 11 Air pollution

11.1 System description
11.2 Task
11.3 Solution

Assignment 12 Simplified Tennessee Eastman model

12.1 System description
12.2 Task 1
12.3 Solution to Task 1

CONTENTS

12.4 Task 2
12.5 Solution to Task 2
12.6 Task 3
12.7 Solution to Task 3

Assignment 13 PEM fuel cell

13.1 System description
13.2 Outline of the assignment
13.3 Task 1
13.4 Solution to Task 1
13.5 Task 2
13.6 Solution to Task 2
13.7 Task 3
13.8 Solution to Task 3

Bibliography

Aquí podrá encontrar información adicional
y actualizada de esta publicación

http://portal.uned.es/portal/page?_pageid=93,65057277&_dad=portal&_schema=PORTAL

Modelica code

1.1. Springs, damper and lever system.
2.1. Springs, pulley and load system - Task 2.
2.2. Springs, pulley and load system - Task 3.
2.3. Springs, pulley and load system - Task 4.
3.1. The BondGraphLib.Interfaces package (1/2).
3.2. The BondGraphLib.Interfaces package (2/2).
3.3. The BondGraphLib.Junction0 package (1/2).
3.4. The BondGraphLib.Junction0 package (2/2).
3.5. The BondGraphLib.Junction1 package (1/2).
3.6. The BondGraphLib.Junction1 package (2/2).
3.7. The BondGraphLib.Components.Se model.
3.8. The BondGraphLib.Components.Sf model.
3.9. The BondGraphLib.Components.R model.
3.10. The BondGraphLib.Components.C model.
3.11. The BondGraphLib.Components.I model.
3.12. The BondGraphLib.Components.Bond model.
3.13. The BondGraphLib.Components.TF model.
3.14. The BondGraphLib.Components.GY model.
3.15. The TwoBodiesWithFriction model.
3.16. The ThreeBodiesWithFriction model (1/2).
3.17. The ThreeBodiesWithFriction model (2/2).
3.18. The SpringsDamperLever model (1/2).
3.19. The SpringsDamperLever model (2/2).
4.1. Source of liquid (1/3).
4.2. Source of liquid (2/3).
4.3. Source of liquid (3/3).
5.1. Monatomic ideal gas in a heated container.
6.1. SISO plant and hysteresis controller (1/3).
6.2. SISO plant and hysteresis controller (2/3).
6.3. SISO plant and hysteresis controller (3/3).
7.1. Draining of a benzene storage tank through a pipe (1/4).
7.2. Draining of a benzene storage tank through a pipe (2/4).
7.3. Draining of a benzene storage tank through a pipe (3/4).

SIMULATION PRACTICE WITH MODELICA

7.4. Draining of a benzene storage tank through a pipe (4/4).
8.1. Two-tank system (1/8).
8.2. Two-tank system (2/8).
8.3. Two-tank system (3/8).
8.4. Two-tank system (4/8).
8.5. Two-tank system (5/8).
8.6. Two-tank system (6/8).
8.7. Two-tank system (7/8).
8.8. Two-tank system (8/8).
9.1. Double-pipe heat exchanger (1/4).
9.2. Double-pipe heat exchanger (2/4).
9.3. Double-pipe heat exchanger (3/4).
9.4. Double-pipe heat exchanger (4/4).
10.1. The Game of Life model.
10.2. The Game of Life model with animation (1/2).
10.3. The Game of Life model with animation (2/2).
10.4. The Game of Life model using external functions (1/2).
10.5. The Game of Life model using external functions (2/2).
11.1. Gaussian dispersion model (1/3).
11.2. Gaussian dispersion model (2/3).
11.3. Gaussian dispersion model (3/3).
12.1. Simplified Tennessee Eastman model (1/8).
12.2. Simplified Tennessee Eastman model (2/8).
12.3. Simplified Tennessee Eastman model (3/8).
12.4. Simplified Tennessee Eastman model (4/8).
12.5. Simplified Tennessee Eastman model (5/8).
12.6. Simplified Tennessee Eastman model (6/8).
12.7. Simplified Tennessee Eastman model (7/8).
12.8. Simplified Tennessee Eastman model (8/8).
13.1. Gas diffusion in porous medium (1/2).
13.2. Gas diffusion in porous medium (2/2).
13.3. Diffusion of binary gas mixture and liquid in porous medium (1/4).
13.4. Diffusion of binary gas mixture and liquid in porous medium (2/4).
13.5. Diffusion of binary gas mixture and liquid in porous medium (3/4).
13.6. Diffusion of binary gas mixture and liquid in porous medium (4/4).
13.7. PEM fuel cell (1/22). Connector.
13.8. PEM fuel cell (2/22). Control volume of membrane.
13.9. PEM fuel cell (3/22). Control volume of membrane.
13.10. PEM fuel cell (4/22). Control volume of diffusion layer.
13.11. PEM fuel cell (5/22). Control volume of diffusion layer.
13.12. PEM fuel cell (6/22). Control volume of catalyst layer.
13.13. PEM fuel cell (7/22). Control volume of catalyst layer.
13.14. PEM fuel cell (8/22). Transport phenomena in the membrane.
13.15. PEM fuel cell (9/22). Transport phenomena in the diffusion layer.

MODELICA CODE

13.16. PEM fuel cell (10/22). Transport phenomena in the diffusion layer.
13.17. PEM fuel cell (11/22). Transport phenomena in the catalyst layer.
13.18. PEM fuel cell (12/22). Transport phenomena in the catalyst layer.
13.19. PEM fuel cell (13/22). Membrane layer.
13.20. PEM fuel cell (14/22). Diffusion layer.
13.21. PEM fuel cell (15/22). Catalyst layer.
13.22. PEM fuel cell (16/22). Standard electrical connector.
13.23. PEM fuel cell (17/22). Composed connector.
13.24. PEM fuel cell (18/22). Interface of membrane.
13.25. PEM fuel cell (19/22). Open circuit voltage connector.
13.26. PEM fuel cell (20/22). Interface of catalyst layer.
13.27. PEM fuel cell (21/22). Complete model of fuel cell.
13.28. PEM fuel cell (22/22). Polarized fuel cell.

Preface

Modeling and simulation of dynamical systems have many applications in En-

gineering, playing a fundamental role in system design, analysis, control and opti-

mization. Support decision systems and training simulators are frequently based on

mathematical modeling and computer simulation.

As simulation projects become larger and more complex, the impact of the

modeling methodology and the software tools on the project cost is more evident.

Adequate methodologies and tools are key success factors. Complex simulation pro-

jects typically require working in teams. Therefore, it is desirable that methodologies

and tools facilitate splitting the modeling task among the team members, allowing

them to work independently. Another key feature is model reusability. The object-

oriented modeling methodology suits these requirements.

Modelica is a modeling language conceived to facilitate object-oriented modeling

of cyber-physical systems, in which phenomena in different physical domains (e.g.,

electrical, mechanical, thermo-fluid, chemical and control systems) appear interrela-

ted. The target models, the so-called hybrid DAE models, are dynamic mathematical

models described in terms of ordinary differential equations with derivative with

respect to time, algebraic equations, and events.

Modelica is a free modeling language, developed by a non-profit organization –

the Modelica Association – with the aim of serving as a standard language for model

exchange among developers and tools. The website of the Modelica Association,

www.modelica.org, hosts documentation about the language (specifications, scientific

articles, tutorials, textbooks, etc.), and links to free and commercial model libraries

and software. The reader is encouraged to visit the Modelica Association website to

find out more about Modelica.

SIMULATION PRACTICE WITH MODELICA

Aim and structure of the book

As declared in the book’s title, our aim in writing this activity book is to provide

an introduction to the simulation practice with Modelica. To this end, we propose

a series of independent hands-on assignments of increasing complexity.

Each assignment contains the description of a system and a mathematical model

of the system’s behavior. The proposed task often consists in describing this mat-

hematical model in Modelica and simulate it. In some assignments, the system’s

behavior is described as an atomic model, without internal structure. Some other

assignments ask to design and implement a model library, and to compose the system

model by instantiating and connecting components from this model library.

The thirteen assignments collected in this book share a common structure: system

description, task proposal and solution. Readers are encouraged to firstly try to solve

by themselves the task, by developing and simulating the models using a Modelica

modeling environment, and, next, to compare their own results with the solution.

Before start working with this activity book, it is advisable to read its companion

theory book: a free e-book entitled “Modeling and simulation in Engineering using

Modelica”, written by Alfonso Urqúıa and Carla Mart́ın, and published by Editorial

UNED in 2018 (ISBN – PDF: 9788436273090). The theory book provides all the

previous knowledge on the Modelica language required to complete the assignments.

Learning objectives

The main learning objectives of each assignment are listed below.

Assignment 1 Springs, damper and lever

– Practice modeling of simple mechanical systems composed of springs,

dampers and levers.

– Analyze the computational causality of DAE systems.

– Describe a DAE system as an atomic model in Modelica, and simulate

the model.

Assignment 2 Springs, pulley and load

– Practice modeling of simple mechanical systems composed of springs,

pulleys and loads.

PREFACE

– Describe a DAE system as an atomic model in Modelica, setting the initial

conditions.

Assignment 3 Bond graph library

– Getting started with bond graph modeling using Modelica.

– Design and implement model libraries in Modelica.

Assignment 4 Source of liquid

– Use if expressions, if clauses, and records.

Assignment 5 Ideal gas in a heated container

– Practice modeling of variable structure systems.

– Practice the use of the unit, start and fixed attributes.

Assignment 6 Hysteresis controller

– Practice modeling of finite state machines.

– Practice the declaration and use of block classes, and matrix equations.

Assignment 7 Draining of a benzene storage tank

– Practice developing a library, and composing a model by instantiating

and connecting library components.

Assignment 8 Heating a liquid mixture

– Practice modeling of simple thermo-hydraulic systems, posing mass and

energy balances, and describing changes in the liquid flow direction.

– Describe multi-mode models in Modelica.

Assignment 9 Double-pipe heat exchanger

– Practice modeling of cocurrent and countercurrent heat exchangers, with

local variations in physical properties and heat transfer coefficients.

– Use array variables in Modelica.

– Facilitate the numerical solution of models with systems of simultaneous

nonlinear equations.

Assignment 10 Cellular Automata – The Game of Life

– Modeling and simulation of discrete-event models using Modelica.

SIMULATION PRACTICE WITH MODELICA

– Experience and practice with the external function interface of Modelica.

– Implement graphical animations for the simulations using visualizers of

the Modelica.Mechanics.Multibody library, and gnuplot.

– Analyze the simulation performance.

Assignment 11 Air pollution

– Get insight into the Gaussian plume model.

– Use arrays, for loops, and enumeration types.

– Describe a DAE system as an atomic model in Modelica.

Assignment 12 Simplified Tennessee Eastman model

– Practice modeling of hydraulic components and simple chemical reactors.

– Use records to describe fluid properties.

– Use arrays of variables and for loops.

– Embed a Modelica model into a Simulink block using FMI.

Assignment 13 PEM fuel cell

– Practice modeling PEM fuel cells, which implies modeling gas and liquid

diffusion in porous media, electrochemical reactions, and electric circuits.

– Use spatial discretization to solve PDEs in Modelica.

About the authors

The authors are professors in the Departamento de Informática y Automática, at

the Universidad Nacional de Educación a Distancia (UNED) in Madrid, Spain; and

members of the research group on Modelling & Simulation in Control Engineering

of UNED. Further information is available at: www.euclides.dia.uned.es

Acknowledgment

This book has been written during the course of the Erasmus+ project “InMo-

tion - Innovative teaching and learning strategies in open modelling and

simulation environment for student-centered engineering education”, Pro-

ject No. 573751-EPP-1-2016-1-DE-EPPKA2-CBHE-JP, co-funded by the Erasmus+

Programme of the European Union.

PREFACE

Disclaimer

The InMotion project has been funded with support from the European Com-

mission. The European Commission support for the production of this book does

not constitute an endorsement of the contents which reflects the views only of the

authors, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

1

A
ss
ig
n
m
en
t

Springs, damper and lever

Purpose of this assignment

– Practice modeling of simple mechanical systems composed of springs,

dampers and levers.

– Analyze the computational causality of DAE systems.

– Describe a DAE system as an atomic model in Modelica, and simulate

the model.

1.1 System description

A mechanical system composed of two springs, a damper, a pulley and a lever is

shown in Figure 1.1. The lever consists of a board that is allowed to rotate about a

fulcrum.

It is assumed that the masses of the pulley and the board are negligible, and the

springs and the damper behave linearly. The velocity v1 is a known function of time.

It is described by Eq. (1.1), where V1,0 and w are known parameters.

v1 =







V1,0 · sin(w · t) if 2 < t < 20

0 otherwise
(1.1)

The distances from the fulcrum to the points of the board where the forces are

applied are L2, L3 and L4 respectively. The velocities of these points are v2, v3 and v4

SIMULATION PRACTICE WITH MODELICA

()1
v t 1

k
2
k 1

b

0refv =

2
v

3
v

4
v

Figure 1.1: Mechanical system.

(see the figure). The forces exerted by the springs and the damper on the board are

named F2, F3 and F4 respectively. The sign convention for the velocities is indicated

in the figure: the arrow directions represent positive velocities.

1.2 Tasks

1. Write the equations that describe the evolution in time of the spring elonga-

tions (e1 and e2), the velocities (v1, v2, v3 and v4) and the forces (F2, F3 and

F4).

2. Analyze the computational causality of the model. Write the simulation al-

gorithm of the model, employing the explicit Euler method for solving the

ordinary differential equations.

3. Describe the model in Modelica as an atomic model. When translating the

model, generate the listing of translated Modelica code, and compare the

computational causality calculated by the modeling environment with your

solution to Task 2. Simulate the model.

SPRINGS, DAMPER AND LEVER

1.3 Solution to Task 1

The spring elongation is the difference between the actual length of the spring

and its natural length. The elongations and constants of the springs are e1 and

e2, and k1 and k2, respectively. The springs are assumed to be ideal. According to

Hooke’s Law, the restoring force of an ideal spring is proportional to its elongation.

F2 = k1 · e1 (1.2)

F3 = −k2 · e2 (1.3)

The change in the spring elongation is related to the difference in the velocities

of the spring terminals.

de1

dt
= v1 − v2 (1.4)

de2

dt
= v3 (1.5)

The force exerted by the damper is proportional to the difference in the velocities

of its terminals. In this system, one terminal is fixed. The other terminal moves with

velocity v4.

F4 = −b1 · v4 (1.6)

The board of the lever moves with a certain angular velocity ̟. The velocities

v2, v3 and v4 can be calculated from this angular velocity.

̟ =
v2

L2

=
v3

L3

=
v4

L4

(1.7)

On the other hand, as it was supposed that the mass of the board is negligi-

ble. This implies that the lever does not store energy, and the applied forces are

equilibrated instantaneously.

F2 · L2 + F3 · L3 + F4 · L4 = 0 (1.8)

SIMULATION PRACTICE WITH MODELICA

The previous 8 equations, together with Eq. (1.1), compose the model. For the

readers convenience, the complete model is written below. It has the following nine

time-dependent variables: e1, e2, v1, v2, v3, v4, F2, F3 and F4.

v1 =







V1,0 · sin(w · t) if 2 < t < 20

0 otherwise
(1.9)

F2 = k1 · e1 (1.10)

de1

dt
= v1 − v2 (1.11)

F2 · L2 + F3 · L3 + F4 · L4 = 0 (1.12)
v2

L2
=

v3

L3
(1.13)

v2

L2
=

v4

L4
(1.14)

F3 = −k2 · e2 (1.15)

de2

dt
= v3 (1.16)

F4 = −b1 · v4 (1.17)

1.4 Solution to Task 2

Let’s analyze the computational causality of the model, selecting e1 and e2 as

state variables. Firstly, the derivatives are replaced by dummy variables:

de1

dt
→ dere1

de2

dt
→ dere2 (1.18)

The unknown variables to evaluate from the model equations are dere1, dere2, v1,

v2, v3, v4, F2, F3 and F4. The original incidence matrix is shown below. The Eq. (1.9)

is represented as v1 = f(t) (see the label beside the first row of the incidence matrix)

to denote that v1 is a function of time.

SPRINGS, DAMPER AND LEVER











































dere1 dere2 v1 v2 v3 v4 F2 F3 F4

v1=f(t) 0 0 X 0 0 0 0 0 0

F2=k1·e1 0 0 0 0 0 0 X 0 0

dere1=v1−v2 X 0 X X 0 0 0 0 0

F2·L2+F3·L3+F4·L4=0 0 0 0 0 0 0 X X X
v2
L2

=
v3
L3

0 0 0 X X 0 0 0 0
v2
L2

=
v4
L4

0 0 0 X 0 X 0 0 0

F3=−k2·e2 0 0 0 0 0 0 0 X 0

dere2=v3 0 X 0 0 X 0 0 0 0

F4=−b1·v4 0 0 0 0 0 X 0 0 X











































(1.19)

The next step in the analysis of the computational causality is to check whether

the model is structurally singular. This model satisfies that:

1. The number of unknown variables and equations are equal (= 9).

2. There exists a sequence of permutations of the incidence matrix columns that

allows to obtain a permuted matrix with all the elements on the main diagonal

different from zero. This is demonstrated below.











































v1 F2 dere1 F4 v3 v2 F3 dere2 v4

v1=f(t) X 0 0 0 0 0 0 0 0

F2=k1·e1 0 X 0 0 0 0 0 0 0

dere1=v1−v2 X 0 X 0 0 X 0 0 0

F2·L2+F3·L3+F4·L4=0 0 X 0 X 0 0 X 0 0
v2
L2

=
v3
L3

0 0 0 0 X X 0 0 0
v2
L2

=
v4
L4

0 0 0 0 0 X 0 0 X

F3=−k2·e2 0 0 0 0 0 0 X 0 0

dere2=v3 0 0 0 0 X 0 0 X 0

F4=−b1·v4 0 0 0 X 0 0 0 0 X











































(1.20)

Therefore, the model is not structurally singular. The computational causality is

assigned reasoning as follows.

1. v1 is the only unknown variable that intervenes in Eq. (1.9). The same con-

dition is satisfied by F2 in Eq. (1.10), and by F3 in Eq. (1.15). Therefore,

these variables have to be calculated from these equations. As these unknown

variables intervenes in other equations, they are moved to the first columns

and the three equations to the first rows.

SIMULATION PRACTICE WITH MODELICA

The dere1 variable only intervenes in the Eq. (1.11), and dere2 in Eq. (1.16).

For this reason, these variables have to be calculated from these equations. As

these variables do not intervene in any other equation, they are moved to the

last columns, and the equations to the last rows.











































v1 F2 F3 v2 v3 v4 F4 dere1 dere2

v1=f(t) X 0 0 0 0 0 0 0 0

F2=k1·e1 0 X 0 0 0 0 0 0 0

F3=−k2·e2 0 0 X 0 0 0 0 0 0

F2·L2+F3·L3+F4·L4=0 0 X X 0 0 0 X 0 0
v2
L2

=
v3
L3

0 0 0 X X 0 0 0 0
v2
L2

=
v4
L4

0 0 0 X 0 X 0 0 0

F4=−b1·v4 0 0 0 0 0 X X 0 0

dere1=v1−v2 X 0 0 X 0 0 0 X 0

dere2=v3 0 0 0 0 X 0 0 0 X











































(1.21)

2. Assuming that F2 and F3 are calculated from Eqs. (1.10) and (1.15) respec-

tively, the Eq. (1.12) only contains one unknown variable that has not been

calculated yet: the F4 variable. Therefore, F4 is calculated from Eq. (1.12). As

this variable intervenes in other equations, it is moved to the fourth columns,

and the equation is not moved from the fourth row.











































v1 F2 F3 F4 v2 v3 v4 dere1 dere2

v1=f(t) X 0 0 0 0 0 0 0 0

F2=k1·e1 0 X 0 0 0 0 0 0 0

F3=−k2·e2 0 0 X 0 0 0 0 0 0

F2·L2+F3·L3+F4·L4=0 0 X X X 0 0 0 0 0
v2
L2

=
v3
L3

0 0 0 0 X X 0 0 0
v2
L2

=
v4
L4

0 0 0 0 X 0 X 0 0

F4=−b1·v4 0 0 0 X 0 0 X 0 0

dere1=v1−v2 X 0 0 0 X 0 0 X 0

dere2=v3 0 0 0 0 0 X 0 0 X











































(1.22)

3. Assuming that F4 is calculated from Eq. (1.12), Eq. (1.17) only contains one

unknown variable that has not been calculated yet: the v4 variable. Therefore,

v4 is calculated from Eq. (1.17).

SPRINGS, DAMPER AND LEVER











































v1 F2 F3 F4 v4 v2 v3 dere1 dere2

v1=f(t) X 0 0 0 0 0 0 0 0

F2=k1·e1 0 X 0 0 0 0 0 0 0

F3=−k2·e2 0 0 X 0 0 0 0 0 0

F2·L2+F3·L3+F4·L4=0 0 X X X 0 0 0 0 0

F4=−b1·v4 0 0 0 X X 0 0 0 0
v2
L2

=
v3
L3

0 0 0 0 0 X X 0 0
v2
L2

=
v4
L4

0 0 0 0 X X 0 0 0

dere1=v1−v2 X 0 0 0 0 X 0 X 0

dere2=v3 0 0 0 0 0 0 X 0 X











































(1.23)

4. Assuming that v4 is calculated from Eq. (1.17), Eq. (1.14) only contains one

unknown variable that has not been calculated yet: the v2 variable. Therefore,

v2 is calculated from Eq. (1.14). The incidence matrix in BLT form is shown

below.











































v1 F2 F3 F4 v4 v2 v3 dere1 dere2

v1=f(t) X 0 0 0 0 0 0 0 0

F2=k1·e1 0 X 0 0 0 0 0 0 0

F3=−k2·e2 0 0 X 0 0 0 0 0 0

F2·L2+F3·L3+F4·L4=0 0 X X X 0 0 0 0 0

F4=−b1·v4 0 0 0 X X 0 0 0 0
v2
L2

=
v4
L4

0 0 0 0 X X 0 0 0
v2
L2

=
v3
L3

0 0 0 0 0 X X 0 0

dere1=v1−v2 X 0 0 0 0 X 0 X 0

dere2=v3 0 0 0 0 0 0 X 0 X











































(1.24)

Observe that all the diagonal blocks of the BLT incidence matrix are scalar. The

model variables can be solved sequentially, this is, there are not algebraic loops. The

sorted model, with the computational causality annotated, is shown below.

[v1] =







V1,0 · sin(w · t) if 2 < t < 20

0 otherwise
(1.25)

[F2] = k1 · e1 (1.26)

[F3] = −k2 · e2 (1.27)

SIMULATION PRACTICE WITH MODELICA

F2 · L2 + F3 · L3 + [F4] · L4 = 0 (1.28)

F4 = −b1 · [v4] (1.29)

[v2]

L2
=

v4

L4
(1.30)

v2

L2
=

[v3]

L3
(1.31)

[dere1] = v1 − v2 (1.32)

[dere2] = v3 (1.33)

As the unknown variables intervene linearly in the equations, the sorted and

solved model can be obtained manipulating symbolically the equations. It is shown

below.

[v1] =







V1,0 · sin(w · t) if 2 < t < 20

0 otherwise
(1.34)

[F2] = k1 · e1 (1.35)

[F3] = −k2 · e2 (1.36)

[F4] =
−1

L4
· (F2 · L2 + F3 · L3) (1.37)

[v4] =
−F4

b1
(1.38)

[v2] =
L2

L4
· v4 (1.39)

[v3] =
L3

L2
· v2 (1.40)

[dere1] = v1 − v2 (1.41)

[dere2] = v3 (1.42)

The simulation algorithm is shown in Figure 1.2.

SPRINGS, DAMPER AND LEVERStart
0t =

0.001t∆ =

10 2 3 4 1 2 1
0.01, w 1, 1, 2, 3, 5, 10, 5V L L L k k b= = = = = = = =

() ()1 2
0 0, 0 0e e= =

() ()

() ()
() ()

() () ()()

10
1

2 1 1

3 2 2

sin if 2 20

0 otherwise

1

V w t t
v t

F t k e t

F t k e t

⋅ ⋅ < <
= 


= ⋅

= − ⋅

−

EndYes
t t t= + ∆ No25t >

() () ()
() () ()
1 1 1

2 2 2

e t t e t dere t t

e t t e t dere t t

+ ∆ = + ⋅∆

+ ∆ = + ⋅∆

() () ()()

() ()

() ()

() ()

() () ()
() ()

4 2 2 3 3

4

4 4

1

2

2 4

4

3

3 2

2

1 1 2

2 3

1

1

F t F t L F t L
L

v t F t
b

L
v t v t

L

L
v t v t

L

dere t v t v t

dere t v t

−
= ⋅ ⋅ + ⋅

−
= ⋅

= ⋅

= ⋅

= −

=

Figure 1.2: Simulation algorithm of the mechanical system.

SIMULATION PRACTICE WITH MODELICA

1.5 Solution to Task 3

The model can be described in Modelica as shown in Modelica Code 1.1. Observe

that the state variables are initialized to zero using the start and fixed attributes.

model SpringsDamperLever
import SI = Modelica.SIunits;
// Parameters of the v1 velocity
parameter SI.Velocity V10=0.01;
parameter SI.AngularFrequency w=1;
// Perpendicular distances between the forces and the fulcrum
parameter SI.Length L2=1;
parameter SI.Length L3=2;
parameter SI.Length L4=3;
// Springs and damper
parameter SI.TranslationalSpringConstant k1=5;
parameter SI.TranslationalSpringConstant k2=10;
parameter SI.TranslationalDampingConstant b1=5;
SI.Length e1(start=0, fixed=true);
SI.Length e2(start=0, fixed=true);
SI.Velocity v1;
SI.Velocity v2;
SI.Velocity v3;
SI.Velocity v4;
SI.Force F2;
SI.Force F3;
SI.Force F4;

equation
// Velocity imposed to the left terminal of spring 1
v1 = if time > 2 and time < 20 then V10*sin(w*time) else 0;
// Spring 1
F2 = k1*e1;
der(e1) = v1 - v2;
// Lever
F2*L2 + F3*L3 + F4*L4 = 0;
v2/L2 = v3/L3;
v2/L2 = v4/L4;
// Spring 2
F3 = -k2*e2;
der(e2) = v3;
// Damper
F4 = -b1*v4;
annotation (uses(Modelica(version="3.2.2")));

end SpringsDamperLever;

Modelica Code 1.1: Springs, damper and lever system.

The model is simulated using Dymola. The sorted and solved model is saved

to file during the translation if the following checkbox is checked before launching

the translation: Simulation Setup > Translation > Generate listing of translated

Modelica code in dsmodel.mof. The content of the dsmodel.mof file is listed below.

SPRINGS, DAMPER AND LEVER

// Translated Modelica model generated by Dymola from Modelica model
// SpringsDamperLever

// ---

// Initial Section

// ---

// Dynamics Section
v1 := (if time > 2 and time < 20 then V10*sin(w*time) else 0);
F2 := k1*e1;
F3 := -k2*e2;

// Linear system of equations
// Symbolic solution
/* Original equation
L4*F4 = -(F2*L2+F3*L3);
*/
F4 := -(F2*L2+F3*L3)/L4;

// End of linear system of equations

// Linear system of equations
// Symbolic solution
/* Original equation
b1*v4 = -F4;
*/
v4 := -F4/b1;

// End of linear system of equations

// Linear system of equations
// Symbolic solution
/* Original equation
v2/L2 = v4/L4;
*/
v2 := v4*L2/L4;

// End of linear system of equations

der(e1) := v1-v2;

// Linear system of equations
// Symbolic solution
/* Original equation
-der(e2)/L3 = -v2/L2;

*/
der(e2) := v2*L3/L2;

// End of linear system of equations

// ---

// Eliminated alias variables
v3 = der(e2);

The computational causality calculated by Dymola coincides with the solution

to Task 2. The simulation result is shown in Figure 1.3.

SIMULATION PRACTICE WITH MODELICA

Figure 1.3: Simulation of the mechanical system.

2

A
ss
ig
n
m
en
t

Springs, pulley and load

Purpose of this assignment

– Practice modeling of simple mechanical systems composed of springs,

pulleys and loads.

– Describe a DAE system as an atomic model in Modelica, setting the

initial conditions.

2.1 System description

A mechanical system composed of two springs, a pulley and a hanging load is

shown in Figure 2.1. The masses of the load and the pulley are mL and mp. Assuming

that the pulley behaves as a solid circular disk of radius Rp, its moment of inertia

J is calculated from Eq. (2.1).

J =
1

2
·mp · R2

p (2.1)

The two springs are supposed to be ideal, with spring constants k1 and k2

respectively. The gravitational acceleration is denoted as g (= 9.81 m/s2).

The velocities of the spring free terminals are v1 and v2. The vertical velocity of

the pulley is v3, and its angular velocity is w. The arrows in Figure 2.1 indicate the

positive directions of the velocities (v1, v2 and v3) and the angular velocity (w).

SIMULATION PRACTICE WITH MODELICA

w

1
k

2
k

cargam

polea , m J

g

1v
2v

3v

L

poleam J
p

Figure 2.1: Mass hanging from a pulley.

2.2 Tasks

1. Write the equations that describe the evolution in time of the spring elonga-

tions (e1 and e2), the velocities (v1, v2 and v3), the angular velocity (w), and

the forces exerted by the springs (F1 and F2).

2. The initial conditions of the simulation are the following: the spring elonga-

tions, the vertical velocity of the pulley and its angular velocity are zero. The

parameters have the following values: k1 = 5 N/m, k2 = 10 N/m, mp = 0.5 kg,

mL = 10 kg and Rp = 0.3 m. Pose and solve by hand the initialization problem.

Describe the model in Modelica as an atomic model, simulate it and compare

your solution with the simulation results.

3. The model is modified to describe the following experiment. The model is

initially at steady state. The mass of the load is a time-dependent variable:

initially it is equal to 10 kg, but it becomes zero at time 5 s. The spring and

pulley parameters have the values indicated in the description of the previous

task. Pose and solve by hand the initialization problem. Describe the model in

Modelica as an atomic model, simulate it and compare your solution with the

simulation results.

4. The previous model is modified, so that the spring constants are calculated

at the initialization. Initially the model is in steady state, and the spring

elongations are initially 3 m and 1.5 m. Pose and solve by hand the initialization

problem, simulate the model and check your solution.

SPRINGS, PULLEY AND LOAD

2.3 Solution to Task 1

The following convention is employed: forces pointing upward have a positive

magnitude, and pointing downward have a negative magnitude.

The behavior of the ideal springs is described by Eqs. (2.2) – (2.5), where F1 and

F2 are the forces exerted by the springs, and e1 and e2 their elongations (difference

between the actual length and the natural length of the spring).

F1 = k1 · e1 (2.2)

de1

dt
= −v1 (2.3)

F2 = k2 · e2 (2.4)

de2

dt
= −v2 (2.5)

The vertical movement of the pulley and the load is described by Eq. (2.6).

(mp + mL) · dv3

dt
= F1 + F2 − g · (mp + mL) (2.6)

The angular velocity of the pulley is related with the forces exerted by the springs,

as described by Eq. (2.7).

J · dw

dt
= Rp · (F2 − F1) (2.7)

The displacement of the spring free terminals (x1 and x2), the vertical displa-

cement of the pulley (x3), and the angle (α) rotated by the pulley are related as

described by Eqs. (2.8) and (2.9).

x1 = x3 − Rp · α (2.8)

x2 = x3 + Rp · α (2.9)

Differentiating with respect to time these two equations, it is obtained:

v1 = v3 −Rp · w (2.10)

v2 = v3 + Rp · w (2.11)

The model is composed of Eqs. (2.1) – (2.7), (2.10) and (2.11).

SIMULATION PRACTICE WITH MODELICA

2.4 Solution to Task 2

The description in Modelica of the model is shown below. The simulation results

are represented in Figure 2.2.

model SpringPulleyLoad
import SI = Modelica.SIunits;
constant SI.Acceleration g=9.81;
// Springs
parameter SI.TranslationalSpringConstant k1=5;
parameter SI.TranslationalSpringConstant k2=10;
// Pulley
parameter SI.Mass Mp=0.5;
parameter SI.Radius Rp=0.3;
parameter SI.MomentOfInertia J=0.5*Mp*Rp^2;
// Load
parameter SI.Mass ML=10;

SI.Length e1(start=0, fixed=true);
SI.Length e2(start=0, fixed=true);
SI.Velocity v1;
SI.Velocity v2;
SI.Velocity v3(start=0, fixed=true);
SI.Force F1;
SI.Force F2;
SI.AngularVelocity w(start=0, fixed=true);

equation
// Spring 1
F1 = k1*e1;
der(e1) = -v1;
// Spring 2
F2 = k2*e2;
der(e2) = -v2;
// Pulley and load
(Mp + ML)*der(v3) = F1 + F2 - g*(Mp + ML);
v1 = v3 - Rp*w;
v2 = v3 + Rp*w;
J*der(w) = Rp*(F2 - F1);
annotation (uses(Modelica(version="3.2.2")));

end SpringPulleyLoad;

Modelica Code 2.1: Springs, pulley and load system - Task 2.

SPRINGS, PULLEY AND LOAD

Figure 2.2: Simulation results of Task 2.

SIMULATION PRACTICE WITH MODELICA

The initialization problem consists in solving the variables {k1, k2, mp, mL, Rp,

e1, e2, v1, v2, v3, w, F1, F2, J , dere1, dere2, derv3, derw} from the following set of

equations. The computational causality is annotated.

[k1] = 5

[k2] = 10

[mp] = 0.5

[mL] = 10

[Rp] = 0.3

[e1] = 0

[e2] = 0

[v3] = 0

[w] = 0

[J] =
1

2
·mp · R2

p

[F1] = k1 · e1

[dere1] = −v1

[F2] = k2 · e2

[dere2] = −v2

(mp + mL) · [derv3] = F1 + F2 − g · (mp + mL)

[v1] = v3 − Rp · w
[v2] = v3 + Rp · w

J · [derw] = Rp · (F2 − F1)

(2.12)

The initial values of the variables are calculated solving the previous equations,

giving:

k1 = 5

k2 = 10

mp = 0.5

mL = 10

Rp = 0.3

e1 = 0

e2 = 0

v3 = 0

w = 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J = 1
2
· 0.5 · 0.32 = 0.0225

F1 = 5 · 0 = 0

dere1 = −v1 = 0

F2 = 10 · 0 = 0

dere2 = 0

derv3 = F1+F2−g·(mp+mL)
mp+mL

= 0+0−9.81·(0.5+10)
0.5+10

= −9.81

v1 = v3 −Rp · w = 0− 0.3 · 0 = 0

v2 = v3 + Rp · w = 0− 0.3 · 0 = 0

derw = Rp·(F2−F1)
J

= 0.3·(0−0)
0.0225

= 0

(2.13)

SPRINGS, PULLEY AND LOAD

2.5 Solution to Task 3

The description in Modelica of the model is shown below. The simulation results

are represented in Figure 2.3.

model SpringPulleyLoad1
import SI = Modelica.SIunits;
constant SI.Acceleration g=9.81;
// Springs
parameter SI.TranslationalSpringConstant k1=5;
parameter SI.TranslationalSpringConstant k2=10;
// Pulley
parameter SI.Mass Mp=0.5;
parameter SI.Radius Rp=0.3;
parameter SI.MomentOfInertia J=0.5*Mp*Rp^2;
// Load
parameter SI.Mass ML0=10;
SI.Mass ML;

SI.Length e1;
SI.Length e2;
SI.Velocity v1;
SI.Velocity v2;
SI.Velocity v3;
SI.Force F1;
SI.Force F2;
SI.AngularVelocity w;

equation
// Spring 1
F1 = k1*e1;
der(e1) = -v1;
// Spring 2
F2 = k2*e2;
der(e2) = -v2;
// Pulley and load
ML = if time < 5 then ML0 else 0;
(Mp + ML)*der(v3) = F1 + F2 - g*(Mp + ML);
v1 = v3 - Rp*w;
v2 = v3 + Rp*w;
J*der(w) = Rp*(F2 - F1);

initial equation
der(e1) = 0;
der(e2) = 0;
der(v3) = 0;
der(w) = 0;
annotation (uses(Modelica(version="3.2.2")));

end SpringPulleyLoad1;

Modelica Code 2.2: Springs, pulley and load system - Task 3.

SIMULATION PRACTICE WITH MODELICA

Figure 2.3: Simulation results of Task 3.

SPRINGS, PULLEY AND LOAD

The initialization problem consists in solving the variables {k1, k2, mp, mL, Rp,

e1, e2, v1, v2, v3, w, F1, F2, J , dere1, dere2, derv3, derw} from the following set of

equations. The sorted model, with the computational causality annotated, is shown

below.

[k1] = 5

[k2] = 10

[mp] = 0.5

[mL] = 10

[Rp] = 0.3

[dere1] = 0

[dere2] = 0

[derv3] = 0

[derw] = 0

[J] =
1

2
·mp · R2

p

dere1 = − [v1]

dere2 = − [v2]

v1 = v3 − Rp · w
v2 = v3 + Rp · w

∥

∥

∥

∥

∥

∥

→ [v3] , [w]

(mp + mL) · derv3 = F1 + F2 − g · (mp + mL)

J · derw = Rp · (F2 − F1)

∥

∥

∥

∥

∥

∥

→ [F1] , [F2]

F1 = k1 · [e1]

F2 = k2 · [e2]

(2.14)

The initial values of the variables are calculated solving the previous equations,

giving:

k1 = 5

k2 = 10

mp = 0.5

mL = 10

Rp = 0.3

dere1 = 0

dere2 = 0

derv3 = 0

derw = 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J =
1

2
· 0.5 · 0.32 = 0.0225

v1 = −0 = 0

v2 = −0 = 0

0 = v3 − 0.3 · w
0 = v3 + 0.3 · w

∥

∥

∥

∥

∥

∥

→ v3 = 0, w = 0

(0.5 + 10) · 0 = F1 + F2 − 9.81 · (0.5 + 10)

0.0225 · 0 = 0.3 · (F2 − F1)

∥

∥

∥

∥

∥

∥

→ F1 = 51.5025

F2 = 51.5025

e1 =
51.5025

5
= 10.3005

e2 =
51.5025

10
= 5.15025

(2.15)

SIMULATION PRACTICE WITH MODELICA

2.6 Solution to Task 4

The description in Modelica of the model is shown below. The simulation results

are represented in Figure 2.4.

model SpringPulleyLoad2
import SI = Modelica.SIunits;
constant SI.Acceleration g=9.81;
// Springs
parameter SI.TranslationalSpringConstant k1(start=1,fixed=false);
parameter SI.TranslationalSpringConstant k2(start=1,fixed=false);
// Pulley
parameter SI.Mass Mp=0.5;
parameter SI.Radius Rp=0.3;
parameter SI.MomentOfInertia J=0.5*Mp*Rp^2;
// Load
parameter SI.Mass ML0=10;
SI.Mass ML;

SI.Length e1;
SI.Length e2;
SI.Velocity v1;
SI.Velocity v2;
SI.Velocity v3;
SI.Force F1;
SI.Force F2;
SI.AngularVelocity w;

equation
// Spring 1
F1 = k1*e1;
der(e1) = -v1;
// Spring 2
F2 = k2*e2;
der(e2) = -v2;
// Pulley and load
ML = if time < 5 then ML0 else 0;
(Mp + ML)*der(v3) = F1 + F2 - g*(Mp + ML);
v1 = v3 - Rp*w;
v2 = v3 + Rp*w;
J*der(w) = Rp*(F2 - F1);

initial equation
der(e1) = 0;
der(e2) = 0;
der(v3) = 0;
der(w) = 0;
e1 = 3;
e2 = 1.5;
annotation (uses(Modelica(version="3.2.2")));

end SpringPulleyLoad2;

Modelica Code 2.3: Springs, pulley and load system - Task 4.

SPRINGS, PULLEY AND LOAD

Figure 2.4: Simulation results of Task 4.

SIMULATION PRACTICE WITH MODELICA

The initialization problem consists in solving the variables {k1, k2, mp, mL, Rp,

e1, e2, v1, v2, v3, w, F1, F2, J , dere1, dere2, derv3, derw} from the following set of

equations. The sorted model, with the computational causality annotated, is shown

below.

[e1] = 3

[e2] = 1.5

[mp] = 0.5

[mL] = 10

[Rp] = 0.3

[dere1] = 0

[dere2] = 0

[derv3] = 0

[derw] = 0

[J] =
1

2
·mp · R2

p

dere1 = − [v1]

dere2 = − [v2]

v1 = v3 −Rp · w
v2 = v3 + Rp · w

∥

∥

∥

∥

∥

∥

→ [v3] , [w]

(mp + mL) · derv3 = F1 + F2 − g · (mp + mL)

J · derw = Rp · (F2 − F1)

∥

∥

∥

∥

∥

∥

→ [F1] , [F2]

F1 = [k1] · e1

F2 = [k2] · e2

(2.16)

The initial values of the variables are calculated solving the previous equations,

giving:

e1 = 3

e2 = 1.5

mp = 0.5

mL = 10

Rp = 0.3

dere1 = 0

dere2 = 0

derv3 = 0

derw = 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J =
1

2
· 0.5 · 0.32 = 0.0225

v1 = −0 = 0

v2 = −0 = 0

0 = v3 − 0.3 · w
0 = v3 + 0.3 · w

∥

∥

∥

∥

∥

∥

→ v3 = 0, w = 0

(0.5 + 10) · 0 = F1 + F2 − 9.81 · (0.5 + 10)

0.0225 · 0 = 0.3 · (F2 − F1)

∥

∥

∥

∥

∥

∥

→ F1 = 51.5025

F2 = 51.5025

k1 =
51.5025

3
= 17.1675

k2 =
51.5025

1.5
= 34.335

(2.17)

3

A
ss
ig
n
m
en
t

Bond graph library

Purpose of this assignment

– Getting started with bond graph modeling using Modelica.

– Design and implement model libraries in Modelica.

3.1 System description

Three mechanical systems are shown in Figures 3.1 – 3.3. The models are posed

assuming that the friction force between two contacting surfaces is proportional to

their relative velocity, the springs and dampers are massless and behave linearly,

and the body masses are known constants. The model of the system depicted in

Figure 3.3 was discussed in Assignment 1.

3.2 Tasks

The objective is to model these three systems applying the bond graph modeling

methodology, and describe and simulate the models using Modelica.

1. A clear and concise introduction to bond graph modeling can be found in

(Broenink 1999). Read this document. Write the bond graph models of the

three systems represented in Figures 3.1, 3.2 and 3.3. Perform the causal

analysis, writing the causal bond graphs.

SIMULATION PRACTICE WITH MODELICA

2
v

1
v

Figure 3.1: Movement of two bodies with friction.

1m 2m

3
m

1b
2b

3
b

4
b

5
b

1k 2k

F

Figure 3.2: Movement of three bodies with friction, connected by damper and springs.

()1v t 1k
2k 1b

0refv =

2
v

3
v

4
v

Figure 3.3: Springs, damper and lever.

2. Develop a Modelica library containing the following bond graph elements: port,

bond, 0-junction, 1-junction, Se and Sf sources, C and I storage elements,

resistor, transformer and gyrator. Using these elements, compose the models

of the three mechanical systems shown in Figures 3.1 – 3.3.

3.3 Solution to Task 1

The bond graph model of the first system can be constructed as explained in

Figure 3.4. The causal analysis is explained in Figure 3.5. The bond graph of the

second and third systems are shown in Figures 3.6 and 3.7 respectively.

BOND GRAPH LIBRARY

1m

1
v

2m
2v

1m

1v

2
m

2v

1k

2v

1v

1
m

2m

1F 2F

1F 2F

,1fF

1
m

1
v

2
m

2
v

1
k

2
k

1 2
v v−

1
m

1
v

2
m

2
v

1
k

2
k

1 2
v v−

1
F

2
F

1
F 2

F

,2fF

,1fF

,1fF

1

1 1

dv
m F

dt
⋅ = 2

2 2

dv
m F

dt
⋅ =

,1 1 1fF k v= ⋅ ()2 2 1 2
F k v v= ⋅ −

1 ,1 2
0fF F F+ + =

Figure 3.4: Mechanical system and bond graph model, which is derived as follows: a) body
velocities are represented by 1-junctions and the body inertias by I-elements; b) energy is dissipated
by friction between the first body and ground; c) and by friction between the two bodies; and d)
the bond graph is simplified.

SIMULATION PRACTICE WITH MODELICA

I1m

1v

I 2m
2v

R
1k R

2
k

1 2v v−

1F
2
F

I1m I 2
m

2v

R
1k R

2k

1 2v v−

1v
1F 2F

,1fF

,1fF

a)

b)

Figure 3.5: The causal analysis of the bond graph model is performed as follows: a) integrating
causality is selected for the I-element that describes the inertia of the first body, which imposes
the 1-junction causality; and b) integrating causality is selected for the other I-element, which
determines the causality of the 0-junction.

1m 2m

3
m

1k 2k

1b 2b 3
b

4
b

5
b

F

1v 2v

3
v

1bF

2bF

3b
F

4b
F

5b
F

RR
4
b 5

b

R b R Rb b
I

2m
I

I
3
mSe F

1m

C

C

1

1

k
2

1

k

R
1b R R2b 3

b
I

2m

Figure 3.6: Mechanical system and causal bond graph.

BOND GRAPH LIBRARY

a)

()1v t 1
k

2
k 1b

0refv =

2
v

3
v

4
v

1:1: 1:
1
v

2
v

3
v1:
4
v

1:
refv

TFTF0
C
:

1

1

k

00 Sf
:
0

R
:

1
b

C
:

2

1

k

Sf
: ()1
v t

b) Sf
: ()1
v t

1:
2
v

TFTF0
C
:

1

1

k

C
:

2

1

k

R
:

1
b

3
v

4
v

Figure 3.7: Mechanical system (above). Below: a) bond graph; and b) simplified, causal bond
graph.

SIMULATION PRACTICE WITH MODELICA

3.4 Solution to Task 2

The architecture of the library is shown in Figure 3.8(a). The library is composed

of five packages. The Interfaces package contains the declaration of the port, and

declarations of interfaces composed of different number of ports. The Junction0 and

Junction1 packages contain the declaration of junctions with 2, 3, 4, 5, and 8 ports.

The Components package contains the declaration of the bond graph elements. The

Examples package contains the models of the three mechanical systems.

a)
b)
c)
d)

Figure 3.8: Bond graph library: a) architecture; b) Interfaces package; c) Junction0 package; and
d) Junction1 package.

The port class is a connector that contains the declaration of three real variables:

e, f and sign. The e and f variables are the effort and flow variables of the port,

respectively. The sign variable has two possible values: {+1,−1}. It is used to

indicate the orientation of the harpoon: +1 indicates the harpoon’s head and −1

the harpoon’s tail. The value of this variable is set in the elements (Se, Sf, R, C,

I, Bond, TF and GY), and employed in the junctions. This imposses the following

rule of use: the connection between two components or between two junctions is not

allowed.

The icons and the code (with the annotations hidden) of some selected classes

are shown in Figures 3.9 – 3.11. The complete code is shown in Modelica Code 3.1

– 3.19. The library has been developed using Dymola version 2017.

BOND GRAPH LIBRARY

Figure 3.9: Icon and code without annotations of selected classes (1/3).

SIMULATION PRACTICE WITH MODELICA

Figure 3.10: Icon and code without annotations of selected classes (2/3).

BOND GRAPH LIBRARY

Figure 3.11: Icon and code without annotations of selected classes (3/3).

Figure 3.12: Diagram of the BondGraphLib.Examples.TwoBodiesWithFriction model.

Figure 3.13: Simulation of the TwoBodiesWithFriction model (see Figure 3.12) with two different
initial conditions: v1(0) = 0.1 m/s, v2(0) = 0 (left); v1(0) = 0, v2(0) = 0.2 m/s (right).

SIMULATION PRACTICE WITH MODELICA

Figure 3.14: Diagram of the BondGraphLib.Examples.ThreeBodiesWithFriction model.

Figure 3.15: Diagram of the BondGraphLib.Examples.SpringsDamperLever model.

BOND GRAPH LIBRARY

package BondGraphLib

import SI = Modelica.SIunits;

package Interfaces

connector Port

Real e;
Real f;
Real sign;

annotation (Icon(coordinateSystem(preserveAspectRatio=true, extent={{-100,
-100},{100,100}}), graphics={Rectangle(

extent={{-100,100},{100,-100}},
lineColor={0,0,255},
fillColor={0,0,255},
fillPattern=FillPattern.Solid)}), Diagram(coordinateSystem(
preserveAspectRatio=true, extent={{-100,-100},{100,100}}),

graphics={Rectangle(
extent={{-40,40},{40,-40}},
lineColor={0,0,255},
fillColor={0,0,255},
fillPattern=FillPattern.Solid), Text(
extent={{-160,110},{40,50}},
lineColor={0,0,255},
textString=" %name")}));

end Port;

partial class OnePort

Port port

annotation (Placement(transformation(extent={{110,-10},{90,10}})));
end OnePort;

partial class TwoPorts

Port port1

annotation (Placement(transformation(extent={{-110,-10},{-90,10}})));
Port port2

annotation (Placement(transformation(extent={{110,-10},{90,10}})));
end TwoPorts;

partial class ThreePorts

Port port1

annotation (Placement(transformation(extent={{-110,10},{-90,-10}})));
Port port2

annotation (Placement(transformation(extent={{-10,110},{10,90}})));
Port port3

annotation (Placement(transformation(extent={{90,10},{110,-10}})));
end ThreePorts;

Modelica Code 3.1: The BondGraphLib.Interfaces package (1/2).

SIMULATION PRACTICE WITH MODELICA

partial class FourPorts

Port port1

annotation (Placement(transformation(extent={{-110,10},{-90,-10}})));
Port port2

annotation (Placement(transformation(extent={{-10,110},{10,90}})));
Port port3

annotation (Placement(transformation(extent={{90,10},{110,-10}})));
Port port4

annotation (Placement(transformation(extent={{-10,-90},{10,-110}})));
end FourPorts;

partial class FivePorts

Port port1

annotation (Placement(transformation(extent={{-110,10},{-90,-10}})));
Port port2

annotation (Placement(transformation(extent={{-110,110},{-90,90}})));
Port port3

annotation (Placement(transformation(extent={{90,110},{110,90}})));
Port port4

annotation (Placement(transformation(extent={{90,10},{110,-10}})));
Port port5

annotation (Placement(transformation(extent={{-10,-90},{10,-110}})));
end FivePorts;

partial class EightPorts

Port port1

annotation (Placement(transformation(extent={{-110,10},{-90,-10}})));
Port port2

annotation (Placement(transformation(extent={{-110,110},{-90,90}})));
Port port3

annotation (Placement(transformation(extent={{-10,110},{10,90}})));
Port port4

annotation (Placement(transformation(extent={{90,110},{110,90}})));
Port port5

annotation (Placement(transformation(extent={{90,10},{110,-10}})));
Port port6

annotation (Placement(transformation(extent={{90,-90},{110,-110}})));
Port port7

annotation (Placement(transformation(extent={{-10,-90},{10,-110}})));
Port port8

annotation (Placement(transformation(extent={{-110,-90},{-90,-110}})));
end EightPorts;

end Interfaces;

Modelica Code 3.2: The BondGraphLib.Interfaces package (2/2).

BOND GRAPH LIBRARY

package Junction0

partial model IconJ0
annotation (Icon(graphics={Text(

extent={{-62,60},{58,-60}},
lineColor={255,0,0},
lineThickness=0.5,
fillColor={0,0,255},
fillPattern=FillPattern.Solid,
textString="0")}), Diagram(graphics={Text(
extent={{-62,60},{58,-60}},
lineColor={255,0,0},
lineThickness=0.5,
fillColor={0,0,255},
fillPattern=FillPattern.Solid,
textString="0")}));

end IconJ0;

model J0_2
extends Interfaces.TwoPorts;
extends IconJ0;

equation
port1.e = port2.e;
port1.sign*port1.f + port2.sign*port2.f = 0;

end J0_2;

model J0_3
extends Interfaces.ThreePorts;
extends IconJ0;

equation
port1.e = port2.e;
port1.e = port3.e;
port1.sign*port1.f + port2.sign*port2.f + port3.sign*port3.f = 0;

end J0_3;

model J0_4
extends Interfaces.FourPorts;
extends IconJ0;

equation
port1.e = port2.e;
port1.e = port3.e;
port1.e = port4.e;
port1.sign*port1.f + port2.sign*port2.f + port3.sign*port3.f + port4.sign

*port4.f = 0;
end J0_4;

Modelica Code 3.3: The BondGraphLib.Junction0 package (1/2).

SIMULATION PRACTICE WITH MODELICA

model J0_5
extends Interfaces.FivePorts;
extends IconJ0;

equation
port1.e = port2.e;
port1.e = port3.e;
port1.e = port4.e;
port1.e = port5.e;
port1.sign*port1.f + port2.sign*port2.f + port3.sign*port3.f + port4.sign

*port4.f + port5.sign*port5.f = 0;
end J0_5;

model J0_8
extends Interfaces.EightPorts;
extends IconJ0;

equation
port1.e = port2.e;
port1.e = port3.e;
port1.e = port4.e;
port1.e = port5.e;
port1.e = port6.e;
port1.e = port7.e;
port1.e = port8.e;
port1.sign*port1.f + port2.sign*port2.f + port3.sign*port3.f + port4.sign

*port4.f + port5.sign*port5.f + port5.sign*port6.f + port7.sign*port7.f
+ port8.sign*port8.f = 0;

end J0_8;

end Junction0;

Modelica Code 3.4: The BondGraphLib.Junction0 package (2/2).

BOND GRAPH LIBRARY

package Junction1

partial model IconJ1
annotation (Icon(graphics={Text(

extent={{-62,60},{58,-60}},
lineColor={238,46,47},
lineThickness=0.5,
fillColor={0,0,255},
fillPattern=FillPattern.Solid,
textString="1")}), Diagram(graphics={Text(
extent={{-62,60},{58,-60}},
lineColor={238,46,47},
lineThickness=0.5,
fillColor={0,0,255},
fillPattern=FillPattern.Solid,
textString="1")}));

end IconJ1;

model J1_2
extends Interfaces.TwoPorts;
extends IconJ1;

equation
port1.f = port2.f;
port1.sign*port1.e + port2.sign*port2.e = 0;

end J1_2;

model J1_3
extends Interfaces.ThreePorts;
extends IconJ1;

equation
port1.f = port2.f;
port1.f = port3.f;
port1.sign*port1.e + port2.sign*port2.e + port3.sign*port3.e = 0;

end J1_3;

model J1_4
extends Interfaces.FourPorts;
extends IconJ1;

equation
port1.f = port2.f;
port1.f = port3.f;
port1.f = port4.f;
port1.sign*port1.e + port2.sign*port2.e + port3.sign*port3.e + port4.sign

*port4.e = 0;
end J1_4;

Modelica Code 3.5: The BondGraphLib.Junction1 package (1/2).

SIMULATION PRACTICE WITH MODELICA

model J1_5
extends Interfaces.FivePorts;
extends IconJ1;

equation
port1.f = port2.f;
port1.f = port3.f;
port1.f = port4.f;
port1.f = port5.f;
port1.sign*port1.e + port2.sign*port2.e + port3.sign*port3.e + port4.sign

*port4.e + port5.sign*port5.e = 0;
end J1_5;

model J1_8
extends Interfaces.EightPorts;
extends IconJ1;

equation
port1.f = port2.f;
port1.f = port3.f;
port1.f = port4.f;
port1.f = port5.f;
port1.f = port6.f;
port1.f = port7.f;
port1.f = port8.f;
port1.sign*port1.e + port2.sign*port2.e + port3.sign*port3.e + port4.sign

*port4.e + port5.sign*port5.e + port6.sign*port6.e + port7.sign*port7.e
+ port8.sign*port8.e = 0;

end J1_8;

end Junction1;

Modelica Code 3.6: The BondGraphLib.Junction1 package (2/2).

BOND GRAPH LIBRARY

package Components

model Se
extends Interfaces.OnePort;
Real s;

equation
port.e = s;
port.sign = 1;

annotation (Icon(coordinateSystem(preserveAspectRatio=true, extent={{-100,
-100},{100,100}}), graphics={Line(
points={{90,0},{70,-20}},
color={0,0,0},
thickness=0.5),Line(
points={{-20,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-100,60},{-40,-60}},
lineColor={0,0,0},
textString="Se: %name",
horizontalAlignment=TextAlignment.Left)}), Diagram(

coordinateSystem(preserveAspectRatio=true, extent={{-100,-100},{100,
100}}), graphics={Line(
points={{96,0},{76,-20}},
color={0,0,0},
thickness=0.5),Line(
points={{-20,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-260,60},{-40,-60}},
lineColor={0,0,0},
horizontalAlignment=TextAlignment.Left,
textString="Se: %name")}));

end Se;

Modelica Code 3.7: The BondGraphLib.Components.Se model.

SIMULATION PRACTICE WITH MODELICA

model Sf
extends Interfaces.OnePort;
Real s;

equation
port.f = s;
port.sign = 1;

annotation (Icon(coordinateSystem(preserveAspectRatio=true, extent={{-100,
-100},{100,100}}), graphics={Line(
points={{90,0},{70,-20}},
color={0,0,0},
thickness=0.5),Line(
points={{-20,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-100,60},{-40,-60}},
lineColor={0,0,0},
textString="Sf: %name",
horizontalAlignment=TextAlignment.Left)}), Diagram(

coordinateSystem(preserveAspectRatio=true, extent={{-100,-100},{100,
100}}), graphics={Line(
points={{96,0},{76,-20}},
color={0,0,0},
thickness=0.5),Line(
points={{-20,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-260,60},{-40,-60}},
lineColor={0,0,0},
horizontalAlignment=TextAlignment.Left,
textString="Sf: %name")}));

end Sf;

Modelica Code 3.8: The BondGraphLib.Components.Sf model.

BOND GRAPH LIBRARY

model R
extends Interfaces.OnePort;
parameter Real R=1;

equation
port.e = R*port.f;
port.sign = -1;

annotation (Icon(coordinateSystem(preserveAspectRatio=true, extent={{-100,
-100},{100,100}}), graphics={Line(
points={{-20,0},{0,-20}},
color={0,0,0},
thickness=0.5),Line(
points={{-20,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-100,60},{-40,-60}},
lineColor={0,0,0},
textString="R: %name",
horizontalAlignment=TextAlignment.Left)}), Diagram(

coordinateSystem(preserveAspectRatio=true, extent={{-100,-100},{100,
100}}), graphics={Line(
points={{-20,0},{0,-20}},
color={0,0,0},
thickness=0.5),Line(
points={{-20,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-180,60},{-40,-60}},
lineColor={0,0,0},
horizontalAlignment=TextAlignment.Left,
textString="R: %name")}));

end R;

Modelica Code 3.9: The BondGraphLib.Components.R model.

SIMULATION PRACTICE WITH MODELICA

model C
extends Interfaces.OnePort;
parameter Real C=1;

equation
C*der(port.e) = port.f;
port.sign = -1;

annotation (Icon(coordinateSystem(preserveAspectRatio=true, extent={{-100,
-100},{100,100}}), graphics={Line(
points={{-20,0},{0,-20}},
color={0,0,0},
thickness=0.5),Line(
points={{-20,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-100,60},{-40,-60}},
lineColor={0,0,0},
textString="C: %name",
horizontalAlignment=TextAlignment.Left)}), Diagram(

coordinateSystem(preserveAspectRatio=true, extent={{-100,-100},{100,
100}}), graphics={Line(
points={{-20,0},{0,-20}},
color={0,0,0},
thickness=0.5),Line(
points={{-20,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-180,60},{-40,-60}},
lineColor={0,0,0},
horizontalAlignment=TextAlignment.Left,
textString="C: %name")}));

end C;

Modelica Code 3.10: The BondGraphLib.Components.C model.

BOND GRAPH LIBRARY

model I
extends Interfaces.OnePort;
parameter Real I=1;

equation
I*der(port.f) = port.e;
port.sign = -1;

annotation (Icon(coordinateSystem(preserveAspectRatio=true, extent={{-100,
-100},{100,100}}), graphics={Line(
points={{-20,0},{0,-20}},
color={0,0,0},
thickness=0.5),Line(
points={{-20,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-100,60},{-40,-60}},
lineColor={0,0,0},
textString="I: %name",
horizontalAlignment=TextAlignment.Left)}), Diagram(

coordinateSystem(preserveAspectRatio=true, extent={{-100,-100},{100,
100}}), graphics={Line(
points={{-20,0},{0,-20}},
color={0,0,0},
thickness=0.5),Line(
points={{-20,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-180,80},{-40,-80}},
lineColor={0,0,0},
horizontalAlignment=TextAlignment.Left,
textString="I: %name")}));

end I;

Modelica Code 3.11: The BondGraphLib.Components.I model.

SIMULATION PRACTICE WITH MODELICA

model Bond
extends Interfaces.TwoPorts;

equation
port1.e = port2.e;
port1.f = port2.f;
port1.sign = -1;
port2.sign = 1;

annotation (Icon(coordinateSystem(preserveAspectRatio=true, extent={{-100,
-100},{100,100}}), graphics={Line(
points={{-80,0},{80,0}},
color={0,0,0},
thickness=0.5),Line(
points={{60,-20},{80,0}},
color={0,0,0},
thickness=0.5)}), Diagram(coordinateSystem(

preserveAspectRatio=true, extent={{-100,-100},{100,100}}),
graphics={Line(

points={{-80,0},{80,0}},
color={0,0,0},
thickness=0.5),Line(
points={{60,-20},{80,0}},
color={0,0,0},
thickness=0.5)}));

end Bond;

Modelica Code 3.12: The BondGraphLib.Components.Bond model.

BOND GRAPH LIBRARY

model TF
extends Interfaces.TwoPorts;
parameter Real m=1;

equation
m*port1.e = port2.e;
port1.f = m*port2.f;
port1.sign = -1;
port2.sign = 1;

annotation (Icon(coordinateSystem(preserveAspectRatio=true, extent={{-100,
-100},{100,100}}), graphics={Line(
points={{-60,-20},{-40,0}},
color={0,0,0},
thickness=0.5),Line(
points={{40,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-30,60},{30,-60}},
lineColor={0,0,0},
textString="TF",
horizontalAlignment=TextAlignment.Left),Line(
points={{-96,0},{-40,0}},
color={0,0,0},
thickness=0.5),Line(
points={{70,-20},{90,0}},
color={0,0,0},
thickness=0.5)}), Diagram(coordinateSystem(

preserveAspectRatio=true, extent={{-100,-100},{100,100}}),
graphics={Line(

points={{-60,-20},{-40,0}},
color={0,0,0},
thickness=0.5),Line(
points={{40,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-30,60},{30,-60}},
lineColor={0,0,0},
textString="TF",
horizontalAlignment=TextAlignment.Left),Line(
points={{-96,0},{-40,0}},
color={0,0,0},
thickness=0.5),Line(
points={{76,-20},{96,0}},
color={0,0,0},
thickness=0.5)}));

end TF;

Modelica Code 3.13: The BondGraphLib.Components.TF model.

SIMULATION PRACTICE WITH MODELICA

model GY
extends Interfaces.TwoPorts;
parameter Real r=1;

equation
port1.e = r*port2.f;
r*port1.f = port2.e;
port1.sign = -1;
port2.sign = 1;

annotation (Icon(coordinateSystem(preserveAspectRatio=true, extent={{-100,
-100},{100,100}}), graphics={Line(
points={{-60,-20},{-40,0}},
color={0,0,0},
thickness=0.5),Line(
points={{40,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-30,60},{30,-60}},
lineColor={0,0,0},
textString="GY",
horizontalAlignment=TextAlignment.Left),Line(
points={{-96,0},{-40,0}},
color={0,0,0},
thickness=0.5),Line(
points={{70,-20},{90,0}},
color={0,0,0},
thickness=0.5)}), Diagram(coordinateSystem(

preserveAspectRatio=true, extent={{-100,-100},{100,100}}),
graphics={Line(

points={{-60,-20},{-40,0}},
color={0,0,0},
thickness=0.5),Line(
points={{40,0},{96,0}},
color={0,0,0},
thickness=0.5),Text(
extent={{-30,60},{30,-60}},
lineColor={0,0,0},
textString="GY",
horizontalAlignment=TextAlignment.Left),Line(
points={{-96,0},{-40,0}},
color={0,0,0},
thickness=0.5),Line(
points={{76,-20},{96,0}},
color={0,0,0},
thickness=0.5)}));

end GY;

end Components;

Modelica Code 3.14: The BondGraphLib.Components.GY model.

BOND GRAPH LIBRARY

package Examples

model TwoBodiesWithFriction

Components.I m1(I=100)
annotation (Placement(transformation(extent={{-64,-4},{-36,24}})));

Junction1.J1_3 junction1_1

annotation (Placement(transformation(extent={{-32,0},{-12,20}})));
Components.R k1(R=1.8) annotation (Placement(transformation(

extent={{14,-14},{-14,14}},
rotation=90,
origin={-22,38})));

Junction0.J0_3 junction0_1

annotation (Placement(transformation(extent={{16,0},{36,20}})));
Components.R k2(R=1.6) annotation (Placement(transformation(

extent={{14,-14},{-14,14}},
rotation=90,
origin={26,38})));

Components.Bond bond

annotation (Placement(transformation(extent={{-8,0},{12,20}})));
Components.I m2(I=10)

annotation (Placement(transformation(extent={{72,-6},{40,26}})));

equation
connect(m1.port, junction1_1.port1) annotation (Line(points={{-36,10},{-34,

10},{-32,10}}, color={0,0,255}));
connect(junction1_1.port3, bond.port1)

annotation (Line(points={{-12,10},{-8,10}}, color={0,0,255}));
connect(bond.port2, junction0_1.port1)

annotation (Line(points={{12,10},{12,10},{16,10}}, color={0,0,255}));
connect(junction0_1.port3, m2.port)

annotation (Line(points={{36,10},{38,10},{40,10}}, color={0,0,255}));
connect(junction0_1.port2, k2.port)

annotation (Line(points={{26,20},{26,22},{26,24}}, color={0,0,255}));
connect(junction1_1.port2, k1.port) annotation (Line(points={{-22,20},{-22,

22},{-22,24}}, color={0,0,255}));
annotation (Icon(coordinateSystem(preserveAspectRatio=false)), Diagram(

coordinateSystem(preserveAspectRatio=false)));
end TwoBodiesWithFriction;

Modelica Code 3.15: The TwoBodiesWithFriction model.

SIMULATION PRACTICE WITH MODELICA

model ThreeBodiesWithFriction

BondGraphLib.Junction1.J1_4 j1_4_1

annotation (Placement(transformation(extent={{-16,40},{4,60}})));
BondGraphLib.Junction0.J0_3 j0_3_1 annotation (Placement(transformation(

extent={{-10,-10},{10,10}}, rotation=-90, origin={34,10})));
BondGraphLib.Junction1.J1_5 j1_5_1

annotation (Placement(transformation(extent={{64,-50},{84,-30}})));
BondGraphLib.Junction0.J0_3 j0_3_2

annotation (Placement(transformation(extent={{-16,-30},{4,-50}})));
BondGraphLib.Junction1.J1_5 j1_5_2

annotation (Placement(transformation(extent={{-76,-50},{-56,-30}})));
BondGraphLib.Junction0.J0_3 j0_3_3 annotation (Placement(transformation(

extent={{-10,-10},{10,10}}, rotation=90, origin={-46,10})));
BondGraphLib.Components.Se F

annotation (Placement(transformation(extent={{-64,30},{-24,70}})));
BondGraphLib.Components.I m3(I=15) annotation (Placement(transformation(

extent={{-18,-18},{18,18}}, rotation=-90, origin={-6,84})));
BondGraphLib.Components.I m2(I=10) annotation (Placement(transformation(

extent={{-19,19},{19,-19}}, rotation=180, origin={111,-43})));
BondGraphLib.Components.I m1(I=100) annotation (Placement(transformation(

extent={{18,18},{-18,-18}}, rotation=180, origin={-114,-44})));
BondGraphLib.Components.C inv_k1(C=1/1.2)

annotation (Placement(transformation(extent={{-150,-58},{-86,6}})));
BondGraphLib.Components.C inv_k2(C=1/1.2)

annotation (Placement(transformation(extent={{154,-56},{92,6}})));
BondGraphLib.Components.R b1(R=1.8) annotation (Placement(transformation(

extent={{-18,-18},{18,18}}, rotation=90, origin={-66,-76})));
BondGraphLib.Components.R b3(R=1.8) annotation (Placement(transformation(

extent={{-18,-18},{18,18}}, rotation=90, origin={74,-76})));
BondGraphLib.Components.R b2(R=3.2) annotation (Placement(transformation(

extent={{-18,-18},{18,18}}, rotation=90, origin={-6,-76})));
BondGraphLib.Components.R b5(R=1.6) annotation (Placement(transformation(

extent={{-18,18},{18,-18}}, rotation=180, origin={70,10})));
BondGraphLib.Components.R b4(R=1.6) annotation (Placement(transformation(

extent={{18,18},{-18,-18}}, rotation=180, origin={-82,10})));
BondGraphLib.Components.Bond bond3 annotation (Placement(transformation(

extent={{-10,-10},{10,10}}, rotation=-90, origin={-52,-16})));
BondGraphLib.Components.Bond bond5 annotation (Placement(transformation(

extent={{-10,-10},{10,10}}, rotation=-90, origin={-26,30})));
BondGraphLib.Components.Bond bond1 annotation (Placement(transformation(

extent={{-10,-10},{10,10}}, rotation=-90, origin={14,30})));
BondGraphLib.Components.Bond bond2 annotation (Placement(transformation(

extent={{-10,-10},{10,10}}, rotation=-90, origin={46,-16})));
BondGraphLib.Components.Bond bond4 annotation (Placement(transformation(

extent={{-10,10},{10,-10}}, rotation=180, origin={-36,-40})));
BondGraphLib.Components.Bond bond6 annotation (Placement(transformation(

extent={{-10,10},{10,-10}}, rotation=180, origin={34,-40})));
parameter SI.Force F0=10 "Amplitude of the external force";
parameter SI.AngularFrequency w=0.1 "Frequency of the external force";

Modelica Code 3.16: The ThreeBodiesWithFriction model (1/2).

BOND GRAPH LIBRARY

equation
// External force
F.s = if time < 200 then F0*sin(w*time) else 0;
connect(F.port, j1_4_1.port1) annotation (Line(points={{-24,50},{-20,50},

{-16,50}}, color={0,0,255}));
connect(m3.port, j1_4_1.port2)

annotation (Line(points={{-6,66},{-6,66},{-6,60}}, color={0,0,255}));
connect(inv_k1.port, j1_5_2.port2) annotation (Line(points={{-86,-26},{-86,

-30},{-76,-30}}, color={0,0,255}));
connect(j1_5_1.port3, inv_k2.port) annotation (Line(points={{84,-30},{92,

-30},{92,-25}}, color={0,0,255}));
connect(j1_5_1.port4, m2.port) annotation (Line(points={{84,-40},{88,-40},

{88,-43},{92,-43}}, color={0,0,255}));
connect(m1.port, j1_5_2.port1) annotation (Line(points={{-96,-44},{-86,-44},

{-86,-40},{-76,-40}}, color={0,0,255}));
connect(j1_4_1.port4, bond5.port1)

annotation (Line(points={{-6,40},{-16,40},{-26,40}}, color={0,0,255}));
connect(j1_4_1.port3, bond1.port1) annotation (Line(points={{4,50},{10,50},

{10,40},{14,40}}, color={0,0,255}));
connect(bond1.port2, j0_3_1.port1)

annotation (Line(points={{14,20},{24,20},{34,20}}, color={0,0,255}));
connect(j0_3_1.port3, bond2.port1) annotation (Line(points={{34,0},{40,0},

{40,-6},{46,-6}}, color={0,0,255}));
connect(bond2.port2, j1_5_1.port2) annotation (Line(points={{46,-26},{56,

-26},{56,-30},{64,-30}}, color={0,0,255}));
connect(bond6.port1, j1_5_1.port1) annotation (Line(points={{44,-40},{54,

-40},{64,-40}}, color={0,0,255}));
connect(j1_5_1.port5, b3.port)

annotation (Line(points={{74,-50},{74,-58}}, color={0,0,255}));
connect(j0_3_2.port3, bond6.port2)

annotation (Line(points={{4,-40},{14,-40},{24,-40}}, color={0,0,255}));
connect(j0_3_2.port2, b2.port) annotation (Line(points={{-6,-50},{-6,-54},

{-6,-58}}, color={0,0,255}));
connect(bond4.port1, j0_3_2.port1) annotation (Line(points={{-26,-40},{-22,

-40},{-16,-40}}, color={0,0,255}));
connect(j1_5_2.port4, bond4.port2) annotation (Line(points={{-56,-40},{-51,

-40},{-46,-40}}, color={0,0,255}));
connect(j1_5_2.port5, b1.port) annotation (Line(points={{-66,-50},{-66,-54},

{-66,-58}}, color={0,0,255}));
connect(j1_5_2.port3, bond3.port2) annotation (Line(points={{-56,-30},{-54,

-30},{-54,-26},{-52,-26}}, color={0,0,255}));
connect(bond3.port1, j0_3_3.port1) annotation (Line(points={{-52,-6},{-50,

-6},{-50,0},{-46,0}}, color={0,0,255}));
connect(b4.port, j0_3_3.port2) annotation (Line(points={{-64,10},{-60,10},

{-56,10}}, color={0,0,255}));
connect(j0_3_3.port3, bond5.port2) annotation (Line(points={{-46,20},{-36,

20},{-26,20}}, color={0,0,255}));
connect(j0_3_1.port2, b5.port)

annotation (Line(points={{44,10},{48,10},{52,10}}, color={0,0,255}));
annotation (Icon(coordinateSystem(preserveAspectRatio=false)), Diagram(

coordinateSystem(preserveAspectRatio=false, extent={{-160,-160},{
160,160}})));

end ThreeBodiesWithFriction;

Modelica Code 3.17: The ThreeBodiesWithFriction model (2/2).

SIMULATION PRACTICE WITH MODELICA

model SpringsDamperLever

// Parameters of the v1 velocity
parameter SI.Velocity V10=0.01;
parameter SI.AngularFrequency w=1;
// Perpendicular distances between the forces and the fulcrum
parameter SI.Length L2=1;
parameter SI.Length L3=2;
parameter SI.Length L4=3;
Components.Sf v1

annotation (Placement(transformation(extent={{-120,-40},{-80,0}})));
Junction0.J0_3 j0_3_1

annotation (Placement(transformation(extent={{-72,-30},{-52,-10}})));
Junction1.J1_3 j1_3_1

annotation (Placement(transformation(extent={{-14,-30},{6,-10}})));
Components.TF tF(m=L2/L3)

annotation (Placement(transformation(extent={{6,-6},{34,22}})));
Components.TF tF1(m=L2/L4)

annotation (Placement(transformation(extent={{14,-34},{42,-6}})));
Components.C inv_k2(C=1/10)

annotation (Placement(transformation(extent={{126,-22},{66,38}})));
Components.R b1(R=5)

annotation (Placement(transformation(extent={{118,-40},{78,0}})));
Components.C inv_k1(C=1/5) annotation (Placement(transformation(

extent={{-30,-30},{30,30}}, rotation=-90, origin={-62,26})));
Components.Bond bond

annotation (Placement(transformation(extent={{-42,-30},{-22,-10}})));
Junction0.J0_2 j0_2_1

annotation (Placement(transformation(extent={{40,-2},{60,18}})));
Junction0.J0_2 j0_2_2

annotation (Placement(transformation(extent={{50,-30},{70,-10}})));

Modelica Code 3.18: The SpringsDamperLever model (1/2).

BOND GRAPH LIBRARY

equation
// Velocity imposed to the left terminal of spring 1
v1.s = if time > 2 and time < 20 then V10*sin(w*time) else 0;
connect(v1.port, j0_3_1.port1) annotation (Line(points={{-80,-20},{-76,-20},

{-72,-20}}, color={0,0,255}));
connect(inv_k1.port, j0_3_1.port2) annotation (Line(points={{-62,-4},{-62,

-7},{-62,-10}}, color={0,0,255}));
connect(j0_3_1.port3, bond.port1) annotation (Line(points={{-52,-20},{-47,

-20},{-42,-20}}, color={0,0,255}));
connect(bond.port2, j1_3_1.port1) annotation (Line(points={{-22,-20},{-18,

-20},{-14,-20}}, color={0,0,255}));
connect(j1_3_1.port2, tF.port1) annotation (Line(points={{-4,-10},{2,-10},

{2,8},{6,8}}, color={0,0,255}));
connect(j1_3_1.port3, tF1.port1)

annotation (Line(points={{6,-20},{10,-20},{14,-20}}, color={0,0,255}));
connect(tF.port2, j0_2_1.port1)

annotation (Line(points={{34,8},{37,8},{40,8}}, color={0,0,255}));
connect(j0_2_1.port2, inv_k2.port)

annotation (Line(points={{60,8},{66,8}}, color={0,0,255}));
connect(tF1.port2, j0_2_2.port1) annotation (Line(points={{42,-20},{46,-20},

{50,-20}}, color={0,0,255}));
connect(j0_2_2.port2, b1.port) annotation (Line(points={{70,-20},{74,-20},

{78,-20}}, color={0,0,255}));
annotation (Icon(coordinateSystem(preserveAspectRatio=false)), Diagram(

coordinateSystem(preserveAspectRatio=false, extent={{-160,-160},{
160,160}})));

end SpringsDamperLever;

end Examples;

end BondGraphLib;

Modelica Code 3.19: The SpringsDamperLever model (2/2).

4

A
ss
ig
n
m
en
t

Source of liquid

Purpose of this assignment

– Use if expressions, if clauses, and records.

4.1 System description

The characteristic curve of a source of liquid is shown in Figure 4.1, where F SP

and F represent the setpoint and actual mass flow rates, respectively. The mass

flow rate is positive while the liquid flows into the source and negative while flows

out from the source. The load pressure, denoted as p, is the pressure exerted by

the environment on the source connection point. For instance, suppose that the

liquid source is connected to a liquid storage tank. The load pressure is the liquid

pressure in the tank at the connection point. The characteristic curve is defined by

the following four parameters (see again Figure 4.1):

peps Below this load pressure, the source is not able to extract liquid

from its environment.

pmin Below this load pressure, the mass flow rate extracted by the source

decreases linearly.

pelbow Above this load pressure, the mass flow rate provided by the source

decreases linearly.

pmax Above this load pressure, the source is not able to inject flow into

its environment.

SIMULATION PRACTICE WITH MODELICA

pelbow pmax

peps pmin p

F

Fsp

Fsp

Figure 4.1: Characteristic curve of a source of liquid.

Figure 4.2: Architecture of the package to be developed in Task 2.

4.2 Tasks

1. Write the equations that represent the characteristic curve shown in Figure 4.1.

2. Program a Modelica package as shown in Figure 4.2, where LSourceData is

a record that contains the declaration of the source parameters; LSCatalog is

a package that contains the declaration of records of the LSourceData type;

LSDevice is a package that contains the liquid source model; and Test is

a model where the liquid source of the LS_Type1 type is instantiated, and

values are given to the load pressure and the setpoint in order to obtain

the characteristic curve. The LS_Type1 type of liquid source has the following

parameter values: peps = 105 Pa, pmin = 3 · 105 Pa, pelbow = 8 · 105 Pa and

pmax = 106 Pa.

SOURCE OF LIQUID

4.3 Solution to Task 1

The characteristic curve can be represented by means of the following equations.

While the liquid flow exits the source (i.e., while F SP ≤ 0):

F =















F SP if p < pelbow

F SP

pmax−pelbow
(pmax − p) if pelbow ≤ p < pmax

0 if p ≥ pmax

(4.1)

and while the liquid flow goes into the source (i.e., while F SP > 0):

F =















F SP if p > pmin

F SP

pmin−peps
(p− peps) if peps < p ≤ pmin

0 if p ≤ peps

(4.2)

4.4 Solution to Task 2

Modelica Codes 4.1 – 4.3 describe the LSourceData record, and three equivalent

models of the liquid source (LiquidS1, LiquidS2 and LiquidS3). The Test model

allows to experiment with them. The evolution of the load pressure and mass flow

rate of the first of these models is shown in Figure 4.3.

package LiquidSource

record LSourceData
import SI = Modelica.SIunits;
parameter SI.Pressure peps;
parameter SI.Pressure pmin;
parameter SI.Pressure pelbow;
parameter SI.Pressure pmax;

end LSourceData;

package LSCatalog
record LS_Type1 = LSourceData(

peps = 1E5,
pmin = 3E5,
pelbow = 8E5,
pmax = 10E5);

end LSCatalog;

Modelica Code 4.1: Source of liquid (1/3).

SIMULATION PRACTICE WITH MODELICA

package LSDevice

partial model LiquidS
import SI = Modelica.SIunits;
LSourceData LSdata;
SI.MassFlowRate Fsp "Setpoint of the input flow to the source";
SI.MassFlowRate F "Input flow to the source";
SI.Pressure p "Load pressure";

end LiquidS;

model LiquidS1
extends LiquidS;

equation
if Fsp < 0 then

F = if p < LSdata.pelbow then
Fsp

elseif p >= LSdata.pelbow and p < LSdata.pmax then
Fsp*(LSdata.pmax-p)/(LSdata.pmax-LSdata.pelbow)

else
0;

else
F = if p > LSdata.pmin then

Fsp
elseif p > LSdata.peps and p <= LSdata.pmin then

Fsp*(p-LSdata.peps)/(LSdata.pmin-LSdata.peps)
else

0;
end if;

end LiquidS1;

model LiquidS2
extends LiquidS;

equation
F = if (Fsp < 0 and p < LSdata.pelbow) or (Fsp >= 0 and p > LSdata.pmin) then

Fsp
elseif Fsp < 0 and p >= LSdata.pelbow and p < LSdata.pmax then

Fsp*(LSdata.pmax-p)/(LSdata.pmax-LSdata.pelbow)
elseif Fsp >= 0 and p > LSdata.peps and p <= LSdata.pmin then

Fsp*(p-LSdata.peps)/(LSdata.pmin-LSdata.peps)
else

0;
end LiquidS2;

model LiquidS3
extends LiquidS;

equation
F = if Fsp < 0 then

if p < LSdata.pelbow then
Fsp

elseif p >= LSdata.pelbow and p < LSdata.pmax then
Fsp*(LSdata.pmax-p)/(LSdata.pmax-LSdata.pelbow)

else
0

else
if p > LSdata.pmin then

Fsp
elseif p > LSdata.peps and p <= LSdata.pmin then

Fsp*(p-LSdata.peps)/(LSdata.pmin-LSdata.peps)
else

0;
end LiquidS3;

end LSDevice;

Modelica Code 4.2: Source of liquid (2/3).

SOURCE OF LIQUID

model Test
import SI = Modelica.SIunits;
LSDevice.LiquidS1 LS1(LSdata=LSCatalog.LS_Type1());
LSDevice.LiquidS2 LS2(LSdata=LSCatalog.LS_Type1());
LSDevice.LiquidS3 LS3(LSdata=LSCatalog.LS_Type1());
Boolean FlowGoingOutFromSource;
SI.Pressure p(start=0, fixed=true) "Load pressure";
parameter SI.MassFlowRate Fsp = 10 "Setpoint of input mass flow";

equation
FlowGoingOutFromSource = sin(time) > 0;
der(p) = 4E5;
when { FlowGoingOutFromSource, not FlowGoingOutFromSource } then

reinit(p,0);
end when;
LS1.p = p;
LS1.Fsp = if FlowGoingOutFromSource then -Fsp else Fsp;
LS2.p = p;
LS2.Fsp = if FlowGoingOutFromSource then -Fsp else Fsp;
LS3.p = p;
LS3.Fsp = if FlowGoingOutFromSource then -Fsp else Fsp;

end Test;

end LiquidSource;

Modelica Code 4.3: Source of liquid (3/3).

Figure 4.3: Simulation of the Test model.

5

A
ss
ig
n
m
en
t

Ideal gas in a heated container

Purpose of this assignment

– Practice modeling of variable structure systems.

– Practice the use of the unit, start and fixed attributes.

5.1 System description

A model of an ideal gas in a heated container is shown in Figure 5.1. It has

two modes: empty and not empty. The volume of the container, V , is constant. The

quantities n, p, T , U represent the number of moles, pressure, temperature and

internal energy of the gas stored inside the container. The values of the specific heat

capacities (CP and CV) are set assuming that the ideal gas is monatomic.

The gas is injected in the container at a molar flow rate F . A negative value of

F indicates that the gas is being extracted from the container. The input gas has

a temperature Tin. The heat power Q, and F and Tin are known functions of time.

The meaning of the model quantities is described in Table 5.1.

5.2 Task

Describe the model in Modelica as an atomic model. Use the unit attribute to

specify the units of parameters and variables. Initially, there are 20 moles of gas

inside the container, at 300 K. Experiment with the model by setting the evolution

in time of Q, F and Tin.

SIMULATION PRACTICE WITH MODELICA

�� ��� � �� �	 	

��
� ��

��
���

> ���� −<

��
� ��

��
���
> ���� −<

� � � �� � � � � p · V = n ·R · T

dn
dt =

{

0 empty
F not empty

dU
dt =











0 empty
F · CP · Tin + Q not empty and F > 0
F · CP · T + Q not empty and F ≤ 0

U = n · CV · T
CP − CV = R

Figure 5.1: Model of an ideal gas in a heated container.

Table 5.1: Quantities of the model shown in Figure 5.1.

Quantity Meaning Units

n Number of moles mol

p Gas pressure Pa

V Container volume 1 m3

T Gas temperature K

U Gas internal energy J

CP Specific heat capacity at constant pressure J/(mol·K)

CV Specific heat capacity at constant volume J/(mol·K)

F Molar flow rate of gas mol/s

Tin Input gas temperature K

Q Heat power W

R Ideal gas constant 8.3145 J/(mol·K)

5.3 Solution

The model is described in Modelica Code 5.1. The IdealGas model describes the

ideal gas. This model is inherited by the Test model, where the evolution in time of

the boundary conditions is set. The result of the simulation is shown in Figure 5.2.

IDEAL GAS IN A HEATED CONTAINER

model IdealGas

constant Real R(unit="J/(mol.K)") = 8.3145 "Ideal gas constant";

parameter Real V(unit="m3") = 1 "Container volume";

// Specific heat capacities
parameter Real Cp(unit="J/(mol.K)") = 5*R/2 "Monatomic ideal gas";
parameter Real Cv(unit="J/(mol.K)") = Cp - R "Mayer’s Law";

Real n (unit="mol", start=20, fixed=true) "Number of moles";
Real p (unit="N.m-2") "Gas pressure";
Real T (unit="K", start=300, fixed=true) "Gas temperature";
Real F (unit="mol.s-1") "Input molar flow rate";
Real Tin (unit="K") "Input temperature";
Real Q (unit="J.s-1") "Heat power";
Real U (unit="J") "Internal energy";

// Modes and transition condition
Boolean empty;
parameter Real molEps = 1E-5;

equation

// State equation of ideal gases
p * V = n * R * T;

// Balance of moles
der(n) = if empty then 0 else F;

// Balance of energy
der(U) = if empty then 0 else if F>0 then F*Cp*Tin+Q else F*Cp*T+Q;

// Internal energy
U = n * Cv * T;

// Mode transition
when F > 0 and pre(empty) or n < molEps and not pre(empty) then

empty = not pre(empty);
end when;

initial equation
empty = (n < molEps);

end IdealGas;

model Test
extends IdealGas;

equation
Tin = if time < 10 then 275 else 350;
F = if time < 10 then 2

else if time < 30 then -4
else if time < 50 then 3 else 0;

Q = if time > 60 and time < 80 then 1E3 else 0;
end Test;

Modelica Code 5.1: Monatomic ideal gas in a heated container.

SIMULATION PRACTICE WITH MODELICA

Figure 5.2: Result obtained simulating Modelica Code 5.1.

6

A
ss
ig
n
m
en
t

Hysteresis controller

Purpose of this assignment

– Practice modeling of finite state machines.

– Practice the declaration and use of block classes, and matrix equations.

6.1 System description

A SISO plant (Single-Input and Single-Output) controlled by a hysteresis contro-

ller is represented in Figure 6.1. The following variables appear in the figure: r, e, u

and y. The r variable is the reference. The error variable (e) is calculated subtracting

the plant output (y) from the reference (r). The error variable is the controller input.

The controller output (u) is the plant input.

The characteristic curve in the first quadrant of the hysteresis controller is plotted

in Figure 6.2. It determines the value of the controller output (u), calculated from

the controller input (e) and the controller mode. The controller operates in four

different modes, named {s1, s2, s3, s4}, which correspond to four different parts of

the characteristic curve (see again the figure). The characteristic curve depends on

the position of the points {a, b, c, d, e, f}, and is symmetric in the first and third

quadrants, i.e., the following relationship is satisfied: u(e) = −u(−e).

The plant model is described in Figure 6.1, where A is a N×N matrix of constant

components; B and C are vectors of N constant components; and the state variable

vector x has N components. The plant input (u) and output (y) are scalar variables.

SIMULATION PRACTICE WITH MODELICA

e u

e

u
y

x = A x + B u

y = C x

SISO plant
r

+
-

Figure 6.1: Control loop.

0
a

c

b

e f
d

e

u u(e) = − u(−e)

s1
s2

s3 s4

Figure 6.2: Characteristic curve in the first quadrant of the hysteresis controller.

6.2 Task

Describe the plant model, which is composed of Eqs. (6.1) and (6.2), as a Modelica

block class. Declare A as a parameter, specifying its dimension, but not its size.

Describe the plant model so that the size of A, B and C is determined by the

modeling environment from the value assigned to A when the model is inherited or

instantiated.

ẋ = A · x + B · u (6.1)

y = C · x (6.2)

Describe the hysteresis controller as a block class. Represent its behavior using a

finite-state machine with four modes: {s1, s2, s3, s4}. Finally, compose the complete

system instantiating the controller and plant models. Simulate the model for different

values of the A matrix, and the B and C vectors. The reference variable is calculated

as shown below.

r = 15 · sin
(

t

10

)

+ sin (t) (6.3)

HYSTERESIS CONTROLLER

6.3 Solution

The finite-state machine (FSM) is plotted in Figure 6.3.

a
e x>

a
e x<

a
e x<

d
e x>

d
e x>

d
e x<

Figure 6.3: Behavior of the hysteresis controller described as a FSM.

The models of the controller, the plant and the control loop are shown in Modelica

Codes 6.1 – 6.3. The package structure is shown in Figure 6.4, and the simulation

results in Figure 6.5.

package HysteresisControlLoop

package Components

block Controller

input Real e;
output Real u;
// Coordinates of the {a,b,c,d,e,f} points
parameter Real xA,

xB,
xC, yC,
xD, yD,
xE, yE,
xF, yF;

constant Real eps = 1e-10;
protected

Real traject1 "O - a",
traject2 "a - b - d",
traject3 "a - c - d",
traject4 "d - e - f";

Boolean s1 (start=true) "traject1",
s2 (start=false) "traject2",
s3 (start=false) "traject3",
s4 (start=false) "traject4";

Real absE,
absU;

Modelica Code 6.1: SISO plant and hysteresis controller (1/3).

SIMULATION PRACTICE WITH MODELICA

equation

// --
// Parts of the characteristic curve
// --
absE = abs(e);
traject1 = 0;
traject2 = if absE < xB

then 0

else (yD * absE - xB * yD) / (abs(xD - xB) + eps);
traject3 = if absE < xC

then (yC * absE - xA * yC) / (abs(xC - xA) + eps)
else ((yD - yC) * absE + yC * xD - xC * yD) / (abs(xD - xC) + eps);

traject4 = if absE < xE

then ((yE - yD) * absE + yD * xE - xD * yE) / (abs(xE - xD) + eps)
else ((yF - yE) * absE + yE * xF - xE * yF) / (abs(xF - xE) + eps);

// --------------------------
// Characteristic curve
// --------------------------
absU = if s1

then traject1

else if s2
then traject2

else if s3
then traject3

else traject4;
u = if e > 0 then absU else -absU;

// -------------------
// Mode transition
// -------------------
s1 = pre(s3) and absE < xA or

pre(s2) and absE < xA or
pre(s1) and not absE > xA;

s2 = pre(s1) and absE > xA or
pre(s2) and not (absE < xA or absE > xD);

s3 = pre(s4) and absE < xD or
pre(s3) and not (absE < xA or absE > xD);

s4 = pre(s2) and absE > xD or
pre(s3) and absE > xD or
pre(s4) and not absE < xD;

end Controller;

Modelica Code 6.2: SISO plant and hysteresis controller (2/3).

HYSTERESIS CONTROLLER

block SISOplant

input Real u;
output Real y;

parameter Real A[:,:],
B[size(A,1)],
C[size(A,2)];

protected
Real x[size(A,2)];

equation
assert(size(A,1) == size(A,2), "A should be a square matrix");
der(x) = A * x + B * u;
y = C * x;

end SISOplant;

end Components;

model ControlLoop
Components.Controller NL(xA = 1,

xB = 2,
xC = 1.5, yC = 1,
xD = 2.5, yD = 2.1,
xE = 3, yE = 2.5,
xF = 4, yF = 5);

Components.SISOplant Plant (A = [-2, 15; 3, 1],
B = { 4, 2 },
C = { 2, 5 });

Real reference;
equation

// ------------------
// Reference variable
// ------------------
reference = 15*sin(time/10) + sin(time);
// ---------------
// Control loop
// ---------------
NL.u = Plant.u;
NL.e = reference - Plant.y;

end ControlLoop;

end HysteresisControlLoop;

Modelica Code 6.3: SISO plant and hysteresis controller (3/3).

SIMULATION PRACTICE WITH MODELICA

Figure 6.4: Architecture of the HysteresisControlLoop package.

Figure 6.5: Simulation of the ControlLoop model.

7

A
ss
ig
n
m
en
t

Draining of a benzene storage tank

Purpose of this assignment

– Practice developing a Modelica library, and composing a model by

instantiating and connecting library components.

7.1 System description

A tank used to store benzene is drained through a horizontal circular pipe

connected to the tank bottom. The other end of the pipe is connected to a liquid

sink that is at atmospheric pressure. The inner diameter (D), and length (L) of the

pipe are D = 5.08 cm and L = 2 m. The cross-sectional inner area of the pipe is

S = π ·D2/4.

The volume of the storage tank is 1 m3, and its bottom area 1 m2. The benzene

is stored at 27 ◦C. The density and dynamic viscosity of benzene at this temperature

are approximately ρ = 875 kg/m3 and µ = 56.5 · 10−5 N·s/m2.

The balance of linear momentum (P) is applied to the benzene that flows through

the pipe, as shown in Eq. (7.1). Two forces are exerted on the benzene that flows

through the pipe: (1) the force fp, produced by the pressure difference between the

pipe ends; and (2) the friction fF between the pipe wall and the benzene.

dP

dt
= fF + fp (7.1)

SIMULATION PRACTICE WITH MODELICA

Assuming that the pipe is completely filled with benzene, these forces are calcu-

lated as shown below. The area of the wetted surface is Sw.

fp = S ·∆p (7.2)

fF =







−Sw · 1
2
· ρ · v2 · κF anning if P ≥ 0

Sw · 1
2
· ρ · v2 · κF anning if P < 0

(7.3)

The linear momentum (P) of the benzene that flows through the pipe is related

to the mass flow rate (F) and the pipe length (L) as follows:

P = F · L (7.4)

The relationship among the liquid velocity (v), density (ρ) and mass flow rate

(F), and the cross-sectional inner area (S) of the pipe is:

F = S · ρ · v (7.5)

The Fanning friction factor, κF anning, is estimated in this model applying the

Blasius correlation:

κF anning =







16
Re

if Re < 2100 (laminar flow)
0.0791
Re1/4 if 2100 < Re < 105 (turbulent flow)

(7.6)

where the Reynolds number is calculated as follows:

Re =
D · v · ρ

µ
(7.7)

7.2 Task

A source of benzene is connected to the upper part of the storage tank. The

storage tank is initially empty. Benzene is introduced in the tank, at a constant

volumetric flow rate of 0.01 m3/s, during ten minutes. After this time, the input

flow is zero. The benzene is drained through the pipe. The objective is to simulate

the mass of the benzene stored in the tank, and the linear momentum, Reynolds

number and regime (laminar or turbulent flow) of the benzene that flows through

the pipe.

DRAINING OF A BENZENE STORAGE TANK

7.3 Solution

The architecture of the developed library is shown in Figure 7.1. The Modelica

description is shown in Modelica Code 7.1 – 7.4. The evolution of the stored mass

of liquid, the linear momentum of the liquid inside the pipe, the Reynolds number

and the flow regime is plotted in Figure 7.2.

Figure 7.1: Architecture of the library.

package DrainBenzeneTank

import SI = Modelica.SIunits;

package Interfaces

connector Liquid
SI.Pressure p "Pressure";
flow SI.MassFlowRate Fm "Mass flow rate";

end Liquid;

connector Signal
Real s "Setpoint signal";

end Signal;

end Interfaces;

package Components

model Source
Interfaces.Liquid liq;
Interfaces.Signal sig;

equation
liq.Fm = -sig.s;

end Source;

Modelica Code 7.1: Draining of a benzene storage tank through a pipe (1/4).

SIMULATION PRACTICE WITH MODELICA

model Pipe
constant Real PI = 2*Modelica.Math.asin(1.0);

Interfaces.Liquid liqI, liqO;

parameter SI.Length L "Length";
parameter SI.Diameter D "Inner diameter";
parameter SI.Area S = PI*D^2/4 "Cross-sectional inner area";
parameter SI.Area Sw = PI*D*L "Wetted surface area";

parameter SI.Density rho "Liquid density";
parameter SI.DynamicViscosity mu "Dynamic viscosity of liquid";

parameter Real ReC(unit="") = 2100 "Critical Reynolds number";
SI.Force fP "Force produced by pressure difference";
SI.Force fF "Friction force";
SI.Momentum P(start=0, fixed=true) "Linear momentum of liquid";
SI.Velocity v "Velocity of liquid";

Real Re(unit="") "Reynolds number";
Real Kfanning "Fanning friction factor";
Boolean laminar "Flow regime: true - laminar, false - turbulent";

equation
der(P) = fF + fP;
fP = S * (liqI.p - liqO.p);
fF = if noEvent(P<0) then 0.5*Sw*rho*v^2*Kfanning

else -0.5*Sw*rho*v^2*Kfanning;
P = liqI.Fm * L;
liqI.Fm =-liqO.Fm;
liqI.Fm = S*rho*v;
laminar = Re < ReC;
Kfanning = if noEvent(Re<ReC) then 16/Re else

0.0791/Re^0.25;
Re = if noEvent(v>0)

then D*v*rho/mu
else if noEvent(v<0)

then -D*v*rho/mu
else 1;

when fP <= 0 then
reinit(P,0);

end when;
end Pipe;

Modelica Code 7.2: Draining of a benzene storage tank through a pipe (2/4).

DRAINING OF A BENZENE STORAGE TANK

model Tank
Interfaces.Liquid liqBase, liqSuperior;

constant SI.Acceleration g= 9.81 "Gravitational acceleration";

SI.Mass m(start=0, fixed=true) "Mass of liquid";
SI.Volume V "Volume of liquid";

parameter SI.Density rho "Liquid density";
parameter SI.Area S "Bottom area of tank";
parameter SI.Volume Vmax "Maximum volume of liquid";

equation
der(m) = liqBase.Fm + liqSuperior.Fm;
V = m/rho;
liqSuperior.p = 0;
liqBase.p = if m>0 then m*g/S else 0;
when m<0 then

reinit(m,0);
end when;
assert(V<=Vmax, "Maximum volume exceeded");

end Tank;

model Sink
Interfaces.Liquid liq;

equation
liq.p = 0;

end Sink;

model Controller
Interfaces.Signal signal;
parameter SI.Time t1;
parameter SI.MassFlowRate FmSP1, FmSP2;

equation
signal.s = if time<t1 then FmSP1 else FmSP2;

end Controller;

end Components;

Modelica Code 7.3: Draining of a benzene storage tank through a pipe (3/4).

SIMULATION PRACTICE WITH MODELICA

model Plant
// Benzene
parameter SI.Density rho = 875 "Benzene density";
parameter SI.DynamicViscosity mu = 56.5e-5 "Dynamic viscosity of benzene";
// Pipe
parameter SI.Length L = 2 "Pipe length";
parameter SI.Diameter D = 5.08E-2 "Pipe diameter";
// Tank
parameter SI.Area S = 1 "Bottom area";
parameter SI.Volume Vmax = 1 "Maximum volume";

Components.Tank tank(S=S, Vmax=Vmax, rho=rho);
Components.Source source;
Components.Pipe pipe(L=L, D=D, rho=rho, mu=mu);
Components.Sink sink;
Components.Controller control(t1=600, FmSP1=0.01*rho, FmSP2=0);

equation
connect(control.signal,source.sig);
connect(tank.liqSuperior,source.liq);
connect(tank.liqBase,pipe.liqI);
connect(sink.liq,pipe.liqO);

end Plant;

end DrainBenzeneTank;

Modelica Code 7.4: Draining of a benzene storage tank through a pipe (4/4).

DRAINING OF A BENZENE STORAGE TANK

Figure 7.2: Result obtained simulating the Plant model.

8

A
ss
ig
n
m
en
t

Heating a liquid mixture

Purpose of this assignment

– Practice modeling of simple thermo-hydraulic systems, posing mass and

energy balances, and describing changes in the liquid flow direction.

– Describe multi-mode models in Modelica.

8.1 System description

The model diagram of a system composed of two liquid storage tanks, a liquid

source and a pump is shown in Figure 8.1. The tanks, named Tank 1 and Tank 2,

have a capacity of 10 m3 and 1 m3, respectively. Tank 1 is connected to the liquid

source. The pump transfers liquid between the tanks. Tank 2 is heated. The setpoint

signals of the source, the pump and the heater are provided by three controllers.

As the tanks are closed vessels, the volume of the liquid stored within a tank

cannot be greater than the tank volume. The flows of the source and pump are

determined by their setpoint signals, with the following two exceptions: (1) it is not

possible to extract liquid from an empty tank; and (2) it is not possible to introduce

liquid into a filled tank. It is assumed that a tank is empty while the mass of stored

liquid is not greater than 1 kg.

Both tanks are initially empty. The system is operated following the sequence of

steps described below.

SIMULATION PRACTICE WITH MODELICA

Figure 8.1: Diagram of the two-tank system.

1. During 3 minutes (i.e., from t = 0 to t = 180 s), the liquid source introduces

into Tank 1 a liquid mixture composed of a 25% concentration by mass of

kerosene, and a 75% concentration by mass of benzene. The liquid temperature

is 300 K. The mass flow rate is 40 kg/s.

2. At t = 240 s, the pump starts transferring liquid from Tank 1 to Tank 2.

The setpoint value of the mass flow rate is 10 kg/s during 2 minutes. Observe

that when the maximum volume of liquid is reached, no more liquid can be

introduced in Tank 2.

3. At t = 360 s, the heater is switched on. The liquid stored in Tank 2 is heated

during 6 minutes. The heat flow rate is 2.5 · 105 J/s. The heater is switched off

at t = 720 s.

4. At t = 720 s, the pump starts transferring liquid from Tank 2 to Tank 1 at a

mass flow rate of 10 kg/s. The controller sets the setpoint signal at this value

during 3 minutes (from t = 720 s to t = 900 s). Nevertheless, once Tank 2

becomes empty, no more liquid can be extracted from it.

5. At t = 840 s, the liquid source starts to drain Tank 1 at a mass flow rate of

40 kg/s. The simulation finishes at t = 1200 s.

The density of kerosene and benzene is 760 kg/m3 and 849 kg/m3, respectively.

The heat capacities of kerosene and benzene, within the temperature range of

interest, can be approximated to the following linear functions of temperature:

Cp = 446 + 5.36 · T and Cp = 325 + 4.60 · T , expressed in J/(kg·K).

HEATING A LIQUID MIXTURE

8.2 Task

Program a Modelica library named TwoTanks, composed of the following classes.

– A package named Interfaces that contains the declaration of the connectors

describing the flow of liquid, heat and information (setpoint signals). These

connectors are represented in Figure 8.1 as a blue triangle, a red triangle and

a black dot, respectively.

– A package named Components that contains the declaration of the plant unit

classes: the liquid source, the tank, the pump and the heater.

– A package named Controllers that contains the declaration of the three con-

trollers.

– A model named Plant, describing the complete system. The diagram of this

model is shown in Figure 8.1.

8.3 Solution

The library is shown in Modelica Codes 8.1 – 8.8. The annotations comply with

the syntax supported by Dymola 6.1. The structure of the library is depicted in

Figure 8.2. The simulation results are represented in Figures 8.3 – 8.5.

Figure 8.2: Structure of the TwoTanks library.

SIMULATION PRACTICE WITH MODELICA

package TwoTanks

import SI = Modelica.SIunits;

constant Integer MODE_Normal = 0;
constant Integer MODE_Empty = 1;
constant Integer MODE_Full = 2;

package Interfaces

connector Liquid

parameter Integer nComp=1;

Integer mode;

SI.Mass mass[nComp] "Mass of liquid components";
SI.Temperature temp "Temperature";

flow SI.MassFlowRate Fm[nComp] "Mass flow rate";
flow SI.EnergyFlowRate Fh "Enthapy flow";

annotation (
Coordsys(extent=[-1, -1; 1, 1]),
Documentation(info="Liquid flow"),
Icon (Polygon(points=[-1, -1; 1, 0; -1, 1],

style(color=3, fillColor=3))),
Diagram (Polygon(points=[-1, -1; 1, 0; -1, 1],

style(color=3, fillColor=3))),
Terminal(Polygon(points=[-1, -1; 1, 0; -1, 1],

style(color=3, fillColor=3))));
end Liquid;

connector Heat

Integer mode;

flow SI.EnergyFlowRate Q;

annotation (
Coordsys(extent=[-1, -1; 1, 1]),
Documentation(info="Heat flow"),
Icon (Polygon(points=[-1, -1; 1, 0; -1, 1; 0,0],

style(color=1, fillColor=1)),
Ellipse(extent=[-0.5,-0.5; 0.5,0.5],

style(color=1, fillColor=1))),
Diagram (Polygon(points=[-1, -1; 1, 0; -1, 1; 0,0],

style(color=1, fillColor=1)),
Ellipse(extent=[-0.5,-0.5; 0.5,0.5],

style(color=1, fillColor=1))),
Terminal(Polygon(points=[-1, -1; 1, 0; -1, 1; 0,0],

style(color=1, fillColor=1)),
Ellipse(extent=[-0.5,-0.5; 0.5,0.5],

style(color=1, fillColor=1))));
end Heat;

Modelica Code 8.1: Two-tank system (1/8).

HEATING A LIQUID MIXTURE

connector Signal

parameter Integer nSignal = 1;
Real s[nSignal];

annotation (
Coordsys(extent=[-1, -1; 1, 1]),
Documentation(info="Information"),
Icon (Ellipse(extent=[-1, -1; 1,1],

style(color=0, fillColor=0))),
Diagram (Ellipse(extent=[-1, -1; 1,1],

style(color=0, fillColor=0))),
Terminal(Ellipse(extent=[-1, -1; 1,1],

style(color=0, fillColor=0))));
end Signal;

end Interfaces;

package Components

model SourceHeat
Interfaces.Heat heat

annotation (extent=[-100,-10; -80,10]);
Interfaces.Signal signal(nSignal=1)

annotation (extent=[-10,-100; 10,-80]);

equation
{heat.Q} = if noEvent(heat.mode == MODE_Empty)

then {0} else signal.s;

annotation (
Coordsys(extent=[-100, -100; 100, 100]),
Documentation(info="Heat flow source"),
Icon (

Ellipse(extent=[-50,25; 0,35], style(color=0)),
Ellipse(extent=[-50,5; 0,15], style(color=0)),
Ellipse(extent=[-50,-15; 0,-5], style(color=0)),
Ellipse(extent=[-50,-35; 0,-25], style(color=0)),
Line(points=[50,50; -50,50; -60,45; -60,35; -50,30;

-60,25; -60,15; -50,10; -60,5;
-60,-5; -50,-10; -60,-15; -60,-25;
-50,-30; -60,-35; -60,-45;
-50,-50; 50,-50], style(color=0)),

Text(string="Q", extent=[30,-20; 70,20], style(color=0))));
end SourceHeat;

Modelica Code 8.2: Two-tank system (2/8).

SIMULATION PRACTICE WITH MODELICA

model SourceLiq
parameter Integer nComp = 1;

Interfaces.Liquid liq(nComp=nComp)
annotation (extent=[80,-10; 100,10], rotation=180);

Interfaces.Signal signal(nSignal=nComp+2)
annotation (extent=[-10,-100; 10,-80]);

// Control signals
Real sFracMass[nComp];
SI.MassFlowRate sTotalMassF;
SI.Temperature sTempF;
// Specific heat capacity
parameter Real CpCoefs[nComp,2];

protected
SI.SpecificHeatCapacity Cp[nComp];
SI.Temperature TempF;

equation
signal.s[1:nComp] = sFracMass;
signal.s[nComp+1] = sTotalMassF;
signal.s[nComp+2] = sTempF;

if sTotalMassF > 0 then
// Liquid enters into the source
liq.Fm = if noEvent(liq.mode == MODE_Empty)

then zeros(nComp)
else sTotalMassF*liq.mass/sum(liq.mass);

TempF = liq.temp;
else

// Liquid exits from the source
liq.Fm = if noEvent(liq.mode == MODE_Full)

then zeros(nComp)
else sTotalMassF*sFracMass;

TempF = sTempF;
end if;
for i in 1:nComp loop

Cp[i] = CpCoefs[i,1] + CpCoefs[i,2]*TempF;
end for;
liq.Fh = Cp*TempF*liq.Fm;

annotation (
Coordsys(extent=[-100, -100; 100, 100]),
Documentation(info="Liquid source"),
Icon (
Line(points=[0,0; -30,-40; 30,-40; 0,0],

style(fillColor=7, color=0, thickness=2)),
Ellipse(extent=[-30,-30; 30,30],

style(fillColor=7, color=0, thickness=2)),
Line(points=[-50,0; 0,0], style(thickness=2, color=0)),
Line(points=[0,30; 50,30], style(thickness=2, color=0))));

end SourceLiq;

Modelica Code 8.3: Two-tank system (3/8).

HEATING A LIQUID MIXTURE

model PumpLiq
parameter Integer nComp = 1;
parameter SI.Mass epsMass = 1;
Interfaces.Signal signal(nSignal=1)

annotation (extent=[-10,-100; 10,-80]);
Interfaces.Liquid liqIn(nComp=nComp)

annotation (extent=[-100,-10; -80,10]);
Interfaces.Liquid liqOut(nComp=nComp)

annotation (extent=[80,-10; 100,10], rotation=180);
// Specific heat capacity
parameter Real CpCoefs[nComp,2];
// Control signal
SI.MassFlowRate sTotalMassF;

protected
SI.SpecificHeatCapacity Cp[nComp];
SI.Temperature TempF;

equation
signal.s = {sTotalMassF};
if sTotalMassF > 0 then

// Liquid flows from liqIn to liqOut
liqIn.Fm = if noEvent(liqIn.mode == MODE_Empty or

liqOut.mode == MODE_Full)
then zeros(nComp)
else sTotalMassF*liqIn.mass/sum(liqIn.mass);

TempF = liqIn.temp;
else

// Liquid flows from liqOut to liqIn
liqIn.Fm = if noEvent(liqOut.mode == MODE_Empty or

liqIn.mode == MODE_Full)
then zeros(nComp)
else sTotalMassF*liqOut.mass/sum(liqOut.mass);

TempF = liqOut.temp;
end if;
liqOut.Fm = -liqIn.Fm;
for i in 1:nComp loop

Cp[i] = CpCoefs[i,1] + CpCoefs[i,2]*TempF;
end for;
liqIn.Fh = Cp*TempF*liqIn.Fm;
liqOut.Fh = -liqIn.Fh;

annotation (
Coordsys(extent=[-100, -100; 100, 100]),
Documentation(info="Pump"),
Icon (

Rectangle(extent=[-70,-15; 70,15],
style(color=7, fillColor=3, gradient=2)),

Line(points=[-70,-25; -70,-15; 70,-15; 70,-25]),
Line(points=[-70,25; -70,15; 70,15; 70,25]),
Line(points=[0,0; -30,-40; 30,-40; 0,0],

style(fillColor=7, color=0, thickness=2)),
Ellipse(extent=[-30,-30; 30,30],

style(fillColor=7, color=0, thickness=2))));
end PumpLiq;

Modelica Code 8.4: Two-tank system (4/8).

SIMULATION PRACTICE WITH MODELICA

model Tank
parameter Integer nComp = 1;
Interfaces.Liquid liq(nComp=nComp)

annotation (extent=[-10,-100; 10,-80], rotation=90);
Interfaces.Heat heat

annotation (extent=[80,-10; 100,10], rotation=180);
// Specific heat capacity
parameter Real CpCoefs[nComp,2];
// Density
parameter SI.Density density[nComp];

SI.Mass mass[nComp] (start=epsMass*ones(nComp)/nComp, fixed=true);
SI.Temperature temp(start=300, fixed=true);
SI.Enthalpy enthalpy;
SI.SpecificHeatCapacity Cp[nComp];
parameter SI.Volume volumeTank = 1 "Tank volume";
SI.Volume volL "Volume of liquid";
parameter SI.Mass epsMass = 1;

equation
// Modes
liq.mode = heat.mode;
liq.mode = if not sum(mass) > epsMass then MODE_Empty

else if not volL < volumeTank then MODE_Full

else MODE_Normal;
// Mass balance
der(mass) = liq.Fm;
liq.mass = mass;
volL = sum(mass[i]/density[i] for i in 1:nComp);
// Energy balance
for i in 1:nComp loop

Cp[i] = CpCoefs[i,1] + CpCoefs[i,2]*temp;
end for;
der(enthalpy) = liq.Fh + heat.Q;
enthalpy = liq.mass*Cp*temp;
liq.temp = temp;

annotation (
Coordsys(extent=[-100, -100; 100, 100]),
Documentation(info="Control volume containing a liquid mixture"),
Icon (

Rectangle(extent=[-75,-75; 25,25], style(color=0, fillColor=7)),
Rectangle(extent=[-25,-25; 75,75], style(color=0, fillColor=7)),
Polygon(points=[-75,25; -25,75; 75,75; 25,25],

style(color=0, fillColor=7)),
Polygon(points=[-75,-75; -25,-25; 75,-25; 25,-75],

style(color=0, fillColor=7)),
Polygon(points=[-75,-75; -25,-25; -25,75; -75,25],

style(color=0, fillColor=7)),
Polygon(points=[25,-75; 75,-25; 75,75; 25,25],

style(color=0, fillColor=7)),
Polygon(points=[25,-75; 75,-25; 75,25; 25,25],

style(color=0, fillColor=7)),

Modelica Code 8.5: Two-tank system (5/8).

HEATING A LIQUID MIXTURE

Rectangle(extent=[-75,-75; 25,-20],
style(color=0, fillColor=3)),

Rectangle(extent=[-25,-25; 75,30],
style(color=0, fillColor=3)),

Polygon(points=[-75,-20; -25,30; 75,30; 25,-20],
style(color=0, fillColor=3)),

Polygon(points=[25,-75; 75,-25; 75,30; 25,-20],
style(color=0, fillColor=3)),

Line(points=[-25,-25; 75,-25], style(color=7)),
Line(points=[-75,-75; -25,-25], style(color=7)),
Line(points=[-75,25; 25,25], style(color=0)),
Line(points=[-25,-25; -25,30], style(color=7)),
Line(points=[25,-20; 25,25; 75,75], style(color=0)),
Line(points=[-75,-20; 25,-20; 75,30], style(color=7)),
Line(points=[25,-75; 25,25; -31,25], style(color=7)),
Line(points=[25,25; 30,30], style(color=7))
));

end Tank;

end Components;

package Controllers

model PumpCntr
Interfaces.Signal signal(nSignal=1)

annotation (extent=[-10,80; 10,100]);
parameter SI.Time event1 = 240,

event2 = 360,
event3 = 720,
event4 = 900;

parameter SI.MassFlowRate flow1 = 10,
flow2 = 10;

SI.MassFlowRate totalMassFSP;
equation

totalMassFSP = if time > event4 then 0

else if time > event3 then -flow1
else if time > event2 then 0

else if time > event1 then flow2

else 0;
signal.s = {totalMassFSP};

annotation (
Coordsys(extent=[-100, -100; 100, 100]),
Documentation(info="Controller of the pump"),
Icon (

Rectangle(extent=[-80,-80; 80,80], style(color=0,pattern=2)),
Text(string="cntrl", extent=[-60,-60; 60,60],

style(color=0))
));

end PumpCntr;

Modelica Code 8.6: Two-tank system (6/8).

SIMULATION PRACTICE WITH MODELICA

model SourceCntr
parameter Integer nComp = 2;
Interfaces.Signal signal(nSignal=nComp+2)

annotation (extent=[-10,80; 10,100]);
parameter SI.Time event1 = 180,

event2 = 840;
parameter SI.MassFlowRate flow1 = 40,

flow2 = 40;
SI.MassFlowRate totalMassFSP;
Real massFractSP[nComp];
SI.Temperature tempFSP;

equation
totalMassFSP = if time > event2 then flow2

else if time > event1 then 0

else -flow1;
massFractSP = {0.25, 0.75};
tempFSP = 300;
signal.s[1:nComp] = massFractSP;
signal.s[nComp+1] = totalMassFSP;
signal.s[nComp+2] = tempFSP;

annotation (
Coordsys(extent=[-100, -100; 100, 100]),
Documentation(info="Controller of the liquid source"),
Icon (

Rectangle(extent=[-80,-80; 80,80], style(color=0,pattern=2)),
Text(string="cntrl", extent=[-60,-60; 60,60],

style(color=0))
));

end SourceCntr;

model HeatCntr
Interfaces.Signal signal(nSignal=1)

annotation (extent=[-10,80; 10,100]);
parameter SI.EnergyFlowRate heatFlowSP = 2.5E5;
parameter SI.Time event1 = 360,

event2 = 720;
SI.EnergyFlowRate heatFSP;

equation
heatFSP = if time > event1 and time < event2

then -heatFlowSP
else 0;

signal.s = {heatFSP};
annotation (
Coordsys(extent=[-100, -100; 100, 100]),
Documentation(info="Controller of the heat source"),
Icon (

Rectangle(extent=[-80,-80; 80,80], style(color=0,pattern=2)),
Text(string="cntrl", extent=[-60,-60; 60,60],

style(color=0))
));

end HeatCntr;

end Controllers;

Modelica Code 8.7: Two-tank system (7/8).

HEATING A LIQUID MIXTURE

model Plant
parameter Integer nComp = 2;
// Specific heat capacity. [1] Kerosene, [2] Benzene;
parameter Real CpCoefs[nComp,2] = [446, 5.36; 325, 4.60];
// Density
parameter SI.Density density[nComp] = {760,849};
// Tank volumes
parameter SI.Volume Tank1Vol = 10, Tank2Vol = 1;
Components.SourceLiq sourceL(nComp=nComp, CpCoefs=CpCoefs)

annotation(extent=[-100,-10; -60,30]);
Components.Tank tank1(nComp=nComp, CpCoefs=CpCoefs,

density=density, volumeTank=Tank1Vol)
annotation(extent=[-60,40; -20,80]);

Components.PumpLiq pumpLiq(nComp=nComp, CpCoefs=CpCoefs)
annotation(extent=[-20,-10; 20,30]);

Components.Tank tank2(nComp=nComp, CpCoefs=CpCoefs,
density=density, volumeTank=Tank2Vol)
annotation(extent=[10,40; 50,80]);

Components.SourceHeat sourceQ

annotation(extent=[60,40; 100,80]);
Controllers.SourceCntr sourceCntr

annotation(extent=[-100,-70; -60,-30]);
Controllers.PumpCntr pumpCntr

annotation(extent=[-20,-70; 20,-30]);
Controllers.HeatCntr heatCntr

annotation(extent=[60,-70; 100,-30]);
equation

connect(sourceL.liq, tank1.liq)
annotation (points=[-62,10; -52,10; -40,10; -40,42],

style(color=3, rgbcolor={0,0,255}));
connect(pumpLiq.liqIn, tank1.liq)

annotation (points=[-18,10; -40,10; -40,42],
style(color=3, rgbcolor={0,0,255}));

connect(sourceCntr.signal, sourceL.signal)
annotation (points=[-80,-32; -80,-32; -80,-8; -80,-8],

style(color=0, rgbcolor={0,0,0}));
connect(pumpCntr.signal, pumpLiq.signal)

annotation (points=[0,-32; 0,-32; 0,-8],
style(color=0, rgbcolor={0,0,0}));

connect(heatCntr.signal, sourceQ.signal)
annotation (points=[80,-32; 80,-32; 80,42],

style(color=0, rgbcolor={0,0,0}));
connect(pumpLiq.liqOut, tank2.liq)

annotation (points=[18,10; 24,10; 30,10; 30,42],
style(color=3, rgbcolor={0,0,255}));

connect(tank2.heat, sourceQ.heat)
annotation (points=[48,60; 55,60; 62,60],

style(color=1, rgbcolor={255,0,0}));

annotation (experiment(StopTime=1200), experimentSetupOutput);
end Plant;

end TwoTanks;

Modelica Code 8.8: Two-tank system (8/8).

SIMULATION PRACTICE WITH MODELICA

Figure 8.3: Setpoint and actual mass flow rate provided by the liquid source (top); mass of liquid
components stored in Tank 1 (middle); and Tank 1 mode (bottom).

HEATING A LIQUID MIXTURE

Figure 8.4: Setpoint and actual mass flow rate through the pump (top); mass of liquid components
stored in Tank 2 (middle); and Tank 2 mode (bottom).

SIMULATION PRACTICE WITH MODELICA

Figure 8.5: Heat flow rate provided by the heater (top); and temperatures of the liquid (bottom).

9

A
ss
ig
n
m
en
t

Double-pipe heat exchanger

Purpose of this assignment

– Practice modeling of cocurrent and countercurrent heat exchangers, with

local variations in physical properties and heat transfer coefficients.

– Use array variables in Modelica.

– Facilitate the numerical solution of models with systems of simultaneous

nonlinear equations.

9.1 System description

A heat exchanger is composed of two straight, concentric pipes. The inner pipe

is made of copper, with thermal conductivity kw = 381 W/(m·K), density ρw =

8950 kg/m3, and specific heat capacity Cp,w = 383 J/(kg·K). Its wall is 1.65 mm

thick: the inner and outer diameters are D1 = 18.92 mm and D2 = 22.22 mm

respectively. The outer pipe is made of steel, with inner diameter D3 = 38.1 mm. It

is assumed that it is perfectly insulated from the environment. The heat exchanger

is L meters long.

The heat exchanger is employed to cool down a gas mixture of carbon dioxide and

sulfur dioxide, using water as coolant. The gas circulates through the inner pipe and

the cooling water through the outer pipe. The mass flow rate of water is controlled

to be approximately thirty times the mass flow rate of gas. Typical values of the gas

and water input temperatures are 130 ◦C and 18 ◦C respectively.

SIMULATION PRACTICE WITH MODELICA

The water properties are the following: density ρl = 996 kg/m3, specific heat ca-

pacity Cp,l = 4185 J/(kg·K), thermal conductivity kl = 0.61 W/(m·K), and dynamic

viscosity µl = exp(−10.547 + 541.69
T −144.53

) kg/(m·s), where T is the temperature in K.

The gas is a mixture of carbon dioxide and sulfur dioxide. The specific heat

capacities are Cp,CO2
= 837 J/(kg·K) and Cp,SO2

= 657 J/(kg·K). Assuming that

the molar fractions are approximately 0.5, the average dynamic viscosity of the gas

mixture in the temperature interval of interest is µg = 1.55 · 10−5 kg/(m·s), and the

thermal conductivity is kg = 0.014 W/(m·K).

The heat transfer coefficients by convection between the inner pipe wall and the

gas (hg), and between the inner pipe wall and the water (hl), can be calculated

from the Dittus-Boelter correlations shown below. The convective heat transfer

coefficients hg and hl are expressed in W/(m2·K). The vg and vl variables represent

the velocity of the gas and water respectively, and |vg| and |vl| their absolute values.

hg ·D1

kg
= 0.023 ·

(

D1 · |vg| · ρg

µg

)0.8

·
(

Cp,g · µg

kg

)0.3

(9.1)

hl ·D2

kl

= 0.023 ·
(

D2 · |vl| · ρl

µl

)0.8

·
(

Cp,l · µl

kl

)0.4

(9.2)

The mass flow rates of gas (F mass
g) and water (F mass

l) are time-dependent quan-

tities, but independent of the spatial coordinates.

The product of the gas density and velocity (ρg ·vg), and the product of the water

density and velocity (ρl · vl), intervene in Eqs. (9.1) and (9.2) respectively. The mass

flow rates, densities and velocities are related by the following equations.

F mass
g = ρg · vg · π ·

(

D1

2

)2

(9.3)

F mass
l = ρl · vl · π ·

(

(

D3

2

)2

−
(

D2

2

)2
)

(9.4)

Replacing Eqs. (9.3) and (9.4) in Eqs. (9.1) and (9.2), it is obtained:

hg ·D1

kg
= 0.023 ·





∣

∣

∣F mass
g

∣

∣

∣

µg · π
4
·D1





0.8

·
(

Cp,g · µg

kg

)0.3

(9.5)

hl ·D2

kl

= 0.023 ·
(

D2 · |F mass
l |

µl · π
4
· (D2

3 −D2
2)

)0.8

·
(

Cp,l · µl

kl

)0.4

(9.6)

DOUBLE-PIPE HEAT EXCHANGER

9.2 Tasks

1. Write the steady-state energy balances in the control volumes obtained by

performing a spatial discretization in the flow direction of the gas and water

streams, and the inner pipe wall. The temperature of the medium (gas, liquid or

metal) contained inside each control volume is considered as a time-dependent,

homogeneous quantity. Name the quantities as in Figure 9.1.

2. Describe the model in Modelica as an atomic model. Ramp up linearly the

mass flow rate of gas from 0.002 to 0.006 kg/s, operating the exchanger both

in cocurrent and in countercurrent, for three input gas temperatures: 110, 130

and 150 ◦C (see Figure 9.2). The mass flow rate of water is 30 times the mass

flow rate of gas. The input temperature of the liquid is 18 ◦C.

SIMULATION PRACTICE WITH MODELICA

Wall of theinner pipeGas
Water

, 1g iT − ,g iT , 1g iT +

, 1l iT − , 1l iT +

,

enthalpy

l iF

,l iT

,

enthalpy

g iF , 1

enthalpy

g iF +

, 1w iQ
+,w iQ

,l iQ

,g iQ

, 1w iT − , 1w iT +,w iT

, 1

enthalpy

l iF +

x∆

Figure 9.1: Detail of the spatial discretization into control volumes.

Figure 9.2: Input temperature and mass flow rate of the gas. It is a full-factorial experiment with
2 factors. The first factor has three levels (110, 130, 150 ◦C) and the second factor has two levels
(cocurrent, countercurrent).

DOUBLE-PIPE HEAT EXCHANGER

9.3 Solution to Task 1

The steady-state energy balances on the control volumes are posed as follows.

– The water stream is divided into N equal control volumes in the flow direction.

The water temperature in the i-th control volume (Tl,i) is calculated imposing

that the input flow of enthalpy (F enthalpy
l,i), minus the output flow of enthalpy

(F enthalpy
l,i+1), plus the heat transferred from the wall of the inner pipe (Ql,i),

equals zero.

F enthalpy
l,i − F enthalpy

l,i+1 + Ql,i = 0 for i = 1, . . . , N (9.7)

– The wall of the inner pipe is divided into N equal control volumes along the

pipe length. The wall temperature in the i-th control volume (Tw,i) is calculated

imposing that the heat transfer by conduction from the wall’s adjacent control

volumes (Qw,i, Qw,i+1), plus the convective heat transfer from the gas (Qg,i),

minus the convective heat transfer to the water (Ql,i), equals zero.

Qw,i −Qw,i+1 + Qg,i −Ql,i = 0 for i = 1, . . . , N (9.8)

– The gas stream is divided into N equal control volumes in the flow direction.

The temperature of the gas in the i-th control volume (Tg,i) is calculated

imposing that the input flow of enthalpy (F enthalpy
g,i), minus the output flow of

enthalpy (F enthalpy
g,i+1), minus the heat transferred to the wall of the inner pipe

(Qg,i), equals zero.

F enthalpy
g,i − F enthalpy

g,i+1 −Qg,i = 0 for i = 1, . . . , N (9.9)

The length of the control volumes (∆x) can be calculated dividing the pipe length

by the number of control volumes.

∆x =
L

N
(9.10)

The convective heat transfer between the gas and the pipe wall, and between the

pipe wall and the water are related with the corresponding temperature differences

as shown in Eqs. (9.11) and (9.12).

SIMULATION PRACTICE WITH MODELICA

Tg,i − Tw,i =
1

hg · π ·D1 ·∆x
·Qg,i for i = 1, . . . , N (9.11)

Tw,i − Tl,i =
1

hl · π ·D2 ·∆x
·Ql,i for i = 1, . . . , N (9.12)

The heat conduction between adjacent control volumes of the inner pipe wall is

described by the following equations

Tw,i − Tw,i+1 =
∆x

kw · π · (D2
2 −D2

1)
·Qw,i+1 for i = 1, . . . , N − 1 (9.13)

The boundary conditions are:

Qw,1 = Qw,N+1 = 0 (9.14)

The flows of enthalpy can be calculated from Eqs. (9.15) and (9.16). Observe

that the temperature of the liquid or gas that flows between two control volumes is

assumed to be equal to the temperature in the control volume located upstream.

F enthalpy
l,i =







F mass
l · Cp,l · Tl,i−1 if F mass

l ≥ 0

F mass
l · Cp,l · Tl,i if F mass

l < 0
for i = 1, . . . , N + 1 (9.15)

F enthalpy
g,i =







F mass
g · Cp,g · Tg,i−1 if F mass

g ≥ 0

F mass
g · Cp,g · Tg,i if F mass

g < 0
for i = 1, . . . , N + 1 (9.16)

The Tg,0 and Tg,N+1 variables represent the input temperature of the gas while

F mass
g ≥ 0 and F mass

g < 0 respectively. Analogously, Tl,0 and Tl,N+1 represent the

input temperature of the water while F mass
l ≥ 0 and F mass

l < 0 respectively.

DOUBLE-PIPE HEAT EXCHANGER

9.4 Solution to Task 2

The Modelica description of the model and the experiment is Modelica Codes 9.1

– 9.4. Observe that the six experimental runs are executed in sequence (see again

Figure 9.2). The value of the expRun variable indicates the experimental run, as

shown in the following table.

Run Factor 1 Factor 2

1 110 ◦C cocurrent

2 110 ◦C countercurrent

3 130 ◦C cocurrent

4 130 ◦C countercurrent

5 150 ◦C cocurrent

6 150 ◦C countercurrent

The Boolean array variables levels_Tg_IN and levels_Fmass_g indicate the ac-

tual level of the corresponding factor. For example, levels_Tg_IN equals {true, false,
false} while the gas input temperature is 110◦C; and levels_Fmass_g equals {true,
false} while the heat exchanger is operated in the cocurrent configuration.

SIMULATION PRACTICE WITH MODELICA

model DoublePipeHeatExchanger

import SI = Modelica.SIunits;
import Modelica.Constants.pi;

parameter Integer N = 20 "Number of control volumes";

parameter SI.Length D_1 = 18.92e-3 "Inner diameter of inner pipe";
parameter SI.Length D_2 = 22.22e-3 "Outer diameter of inner pipe";
parameter SI.Length D_3 = 38.10e-3 "Inner diameter of outer pipe";
parameter SI.Length L = 1 "Pipe length";

// Control volume length
parameter SI.Length DeltaX = L/N "Control volume length";

// Thermal conductivities
parameter SI.ThermalConductivity k_l = 0.61 "Thermal conductivity of water";
parameter SI.ThermalConductivity k_g = 0.014 "Thermal conductivity of gas";
parameter SI.ThermalConductivity k_w = 381 "Thermal conductivity of wall pipe";

// Convective heat transfer coefficients
SI.CoefficientOfHeatTransfer h_g "Heat transfer coeff. of gas";
SI.CoefficientOfHeatTransfer h_l[N](start=50*ones(N), fixed=false)

"Heat transfer coeff. of water";

// Dynamic viscosities
SI.DynamicViscosity dVisco_l[N](start=0.001*ones(N), fixed=false)

"Dynamic viscosity of water";
parameter SI.DynamicViscosity dVisco_g = 1.55e-5

"Dynamic viscosity of gas";

// Input temperatures
SI.Temperature Tg_IN "Input temperature of gas";
SI.Temperature Tl_IN "Input temperature of water";

// Mass flow rates
SI.MassFlowRate Fmass_l "Mass flow rate of water";
SI.MassFlowRate Fmass_g "Mass flow rate of gas";

// Specific heat capacities
parameter SI.SpecificHeatCapacity Cp_l = 4185;
parameter SI.SpecificHeatCapacity Cp_w = 383;
parameter SI.SpecificHeatCapacity Cp_g = 0.5*(837+657);

// Heat flow rate
SI.HeatFlowRate Q_l[N] "Convective heat from pipe wall to water";
SI.HeatFlowRate Q_w[N+1] "Heat conduction within the inner pipe";
SI.HeatFlowRate Q_g[N] "Convective heat from gas to inner pipe";

Modelica Code 9.1: Double-pipe heat exchanger (1/4).

DOUBLE-PIPE HEAT EXCHANGER

// Temperatures
SI.Temperature T_l[N](start=(273.15+18)*ones(N), fixed=false)

"Liquid temperature";
SI.Temperature T_g[N](start=(273.15+130)*ones(N), fixed=false)

"Gas temperature";
SI.Temperature T_w[N](start=(273.15+70)*ones(N), fixed=false)

"Inner pipe wall temperature";

// EnthalpyFlowRates
SI.EnthalpyFlowRate Fenthalpy_l[N+1] "Enthalpy flow rate of water";
SI.EnthalpyFlowRate Fenthalpy_g[N+1] "Enthalpy flow rate of gas";

// Experiment
parameter SI.Time Trun = 100 "How long an experimental run takes";
SI.Time TstartedRun(start=0, fixed=true)

"Stating time of the actual experimental run";
Real expRun(start=1, fixed=true)

"Number of the actual experimental run";
Boolean levels_Tg_IN[3];
Boolean levels_Fmass_g[2];

equation

// Dynamic viscosity of water
for i in 1:N loop
dVisco_l[i] = exp(-10.547+541.69/(T_l[i]-144.53));

end for;

// Dittus-Boelter correlations
h_g*D_1/k_g = 0.023*(abs(Fmass_g)/(dVisco_g*pi/4*D_1)) ^0.8 *

(Cp_g*dVisco_g/k_g) ^0.3;
for i in 1:N loop

h_l[i]*D_2/k_l =
0.023*((D_2*abs(Fmass_l))/(dVisco_l[i]*pi/4*(D_3^2-D_2^2))) ^0.8 *

(Cp_l*dVisco_l[i]/k_l) ^0.4;
end for;

Modelica Code 9.2: Double-pipe heat exchanger (2/4).

SIMULATION PRACTICE WITH MODELICA

// Steady-state energy balances
for i in 1:N loop

Fenthalpy_l[i] - Fenthalpy_l[i+1] + Q_l[i] = 0;
Q_w[i] - Q_w[i+1] + Q_g[i] - Q_l[i] = 0;
Fenthalpy_g[i] - Fenthalpy_g[i+1] - Q_g[i] = 0;

end for;

// Convective heat transfer
for i in 1:N loop

T_g[i] - T_w[i] = Q_g[i]/(h_g*pi*D_1*DeltaX);
T_w[i] - T_l[i] = Q_l[i]/(h_l[i]*pi*D_2*DeltaX);

end for;

// Heat conduction in the wall of the inner pipe
for i in 1:(N-1) loop

T_w[i] - T_w[i+1] = Q_w[i+1]*DeltaX/(k_w*pi*(D_2^2 - D_1^2));
end for;
Q_w[1] = 0;
Q_w[N+1] = 0;

// Enthalpy flow rates of water
if Fmass_l >= 0 then
Fenthalpy_l[1] = Fmass_l*Cp_l*Tl_IN;
for i in 2:(N+1) loop

Fenthalpy_l[i] = Fmass_l*Cp_l*T_l[i-1];
end for;

else
for i in 1:N loop

Fenthalpy_l[i] = Fmass_l*Cp_l*T_l[i];
end for;
Fenthalpy_l[N+1] = Fmass_l*Cp_l*Tl_IN;

end if;

// Enthalpy flow rates of gas
if Fmass_g >= 0 then
Fenthalpy_g[1] = Fmass_g*Cp_g*Tg_IN;
for i in 2:(N+1) loop

Fenthalpy_g[i] = Fmass_g*Cp_g*T_g[i-1];
end for;

else
for i in 1:N loop

Fenthalpy_g[i] = Fmass_g*Cp_g*T_g[i];
end for;
Fenthalpy_g[N+1] = Fmass_g*Cp_g*Tg_IN;

end if;

Modelica Code 9.3: Double-pipe heat exchanger (3/4).

DOUBLE-PIPE HEAT EXCHANGER

// -------------------
// Boundary conditions
// -------------------

// Input liquid temperature and mass flow rate
Tl_IN = 273.15 + 18;
Fmass_l = 30*abs(Fmass_g);

// Experimental levels - Full factorial experiment
levels_Tg_IN = {

expRun == 1 or expRun == 2,
expRun == 3 or expRun == 4,
expRun == 5 or expRun == 6};

levels_Fmass_g = {
expRun == 1 or expRun == 3 or expRun == 5,
expRun == 2 or expRun == 4 or expRun == 6};

// Factor: Tg IN
// Levels: 110, 130, 150 degC
if levels_Tg_IN[1] then
Tg_IN = 273.15 + 110;

elseif levels_Tg_IN[2] then
Tg_IN = 273.15 + 130;

else
Tg_IN = 273.15 + 150;

end if;

// Factor: Fmass g
// Levels: cocurrent, countercurrent
if levels_Fmass_g[1] then
Fmass_g = 0.004+0.002*(-1+2*(time-TstartedRun)/Trun);

else
Fmass_g = -0.004-0.002*(-1+2*(time-TstartedRun)/Trun);

end if;

// Experiment running
when sample(Trun,Trun) then
expRun = pre(expRun) + 1;
TstartedRun = time;

end when;

annotation (experiment(StopTime=600));
end DoublePipeHeatExchanger;

Modelica Code 9.4: Double-pipe heat exchanger (4/4).

10

A
ss
ig
n
m
en
t

Cellular Automata – The Game of Life

Purpose of this assignment

– Modeling and simulation of discrete-event models using Modelica.

– Experience and practice with the external function interface of Modelica.

– Implement graphical animations for the simulations using visualizers of

the Modelica.Mechanics.Multibody library, and gnuplot.

– Analyze the simulation performance.

10.1 System description

Cellular Automata (CA) are discrete-time, dynamic models initially proposed

by John von Neumann for the study of self-reproducing automata (von Neumann

1966). These models are represented as a grid of identical volumes, named cells, that

can be in any finite number of dimensions (Ilachinski 2001).

The state of each cell in the automata is discrete, and it is updated at discrete

time steps during the simulation following a transition function or rule. This rule

constitutes a function of the current state of the cell and the state of its neighbors,

and defines the state of the cell for the next time step (Schiff 2008).

The neighborhood of a cell is usually composed of a selection of its surrounding

cells, but not necessarily. It can be defined in different ways, such as the Moore’s

neighborhood that includes all the surrounding cells; the von Neumann’s neighbor-

SIMULATION PRACTICE WITH MODELICA

(a) glider, t = 0 (b) glider, t = 1 (c) glider, t = 2 (d) glider, t = 3 (e) glider, t = 4

(f) torus, t = 0 (g) torus, t = 1 (h) torus, t = 2 (i) torus, t = 3 (j) torus, t = 4

Figure 10.1: Game of Life simulations.

hood that includes the cells adjoining the four faces of one cell; or the extended von

Neumann’s that also includes each cell just beyond one of the four adjoining cells

(Wolfram 2002).

The Game of Life is a two-dimensional cellular automata model proposed by

John H. Conway in 1970, with the purpose of studying the evolution of the different

patterns that arise from different initial configurations of the cellular space. The

behavior of the model is as follows. Each cell can be in one of two states, alive or

dead, calculated using the following rules (considering the Moore’s neighborhood,

as described above):

1. A living cell remains alive if it has two or three living neighbors.

2. A living cell dies if it has less than two living neighbors (isolation).

3. A living cell dies if it has more that three living neighbors (overpopulation).

4. A dead cell becomes alive if it has exactly three living neighbors (reproduction).

As an example of behavior, the first five steps of the simulation of two initial

states, named glider and torus, are shown in Figure 10.1.

– The glider model corresponds to the initial cells: [1,2; 2,3; 3,1; 3,2; 3,3]. This

model evolves in a periodical diagonal movement from the top-left area of the

cellular space to the bottom-right.

CELLULAR AUTOMATA – THE GAME OF LIFE

– The torus model corresponds to the initial cells: [2,2; 2,4; 3,5; 4,5; 5,5; 6,3; 6,4;

6,5; 5,2]. This model evolves in a periodical vertical movement from the top

area of the cellular space to the bottom area.

10.2 Tasks

1. Write a Modelica model that simulates the Game of Life.

2. Evaluate the maximum size of cellular space that can be simulated using the

model written in the previous task.

3. Include a graphical animation in the model.

4. Substitute the code that represents the behavior of the model by external

code written in C. The graphical animation can also be substituted by using

external libraries of programs (e.g., gnuplot).

5. Compare the performance of the models developed in Tasks 1 and 4, in terms

of size of the cellular space and execution time.

10.3 Solution to Task 1

The model, shown in Modelica Code 10.1, has been developed using Dymola. It

includes two matrices of size n × n, named state and newstate, that are used to

store the current and new state values during each iteration.

The execution is controlled using the sample() operator, performing one simu-

lation step per simulated second. The neighbors variable is used to compute the

number of living neighbors for each cell, and it is used to compute the new state

following the behavior of the model.

In order to validate the results, the evolution of the state of cells [1,1] and [2,1]

is shown in Figure 10.2.

SIMULATION PRACTICE WITH MODELICA

model GameofLife
parameter Integer n=10; //dimension of the cellular space
parameter Integer initState[:,2]= [1, 2; 2, 3; 3, 1; 3, 2; 3, 3]; //glider
Integer state[n,n]; // current state of cells
Integer newstate[n,n]; // new state of cells
Integer neighbors; // number of neighbors alive

initial algorithm
// set initial configuration for the cells
for i in 1:size(initState,1) loop
state[initState[i,1],initState[i,2]] := 1;

end for;
algorithm

when sample(1,1) then // periodic iterations or steps
for i in 0:n-1 loop // two for loops to evaluate all cells in the space

for j in 0:n-1 loop
neighbors := state[mod(i-1,n)+1,mod(j-1,n)+1]+state[i+1,mod(j-1,n)+1]+

state[mod(i+1,n)+1,mod(j-1,n)+1]+state[mod(i-1,n)+1,j+1]+
state[mod(i+1,n)+1,j+1]+state[mod(i-1,n)+1,mod(j+1,n)+1]+
state[i+1,mod(j+1,n)+1]+state[mod(i+1,n)+1,mod(j+1,n)+1];

if state[i+1,j+1] == 1 then // if alive
if neighbors < 2 or neighbors > 3 then
newstate[i+1,j+1] := 0; // dies because of isolation or overpopulation

// (less than 2 or more than 3 neighbors alive)
else
newstate[i+1,j+1] := 1; // otherwise still alive

end if;
elseif neighbors == 3 then // if not alive
newstate[i+1,j+1] := 1; // becomes alive because of reproduction

// (3 neighbors alive)
end if;

end for;
end for;
state := newstate; // update state

end when;
end GameofLife;

Modelica Code 10.1: The Game of Life model.

Figure 10.2: Game of Life simulation results (cells [1,1] and [2,1]).

CELLULAR AUTOMATA – THE GAME OF LIFE

10.4 Solution to Task 2

The goal is to evaluate the maximum size of cellular space that can be simulated

using the model written in the previous task. To this end, several runs can be

performed with an increasing cellular space size. The results obtained using Dymola

2018 on an Intel Core i7-4720HQ (2.60 GHz with 8 cores) machine, with 16 Gb of

memory, are shown in Table 10.1 and Figure 10.3.

Table 10.1: Simulation performance of Modelica Code 10.1.

Size of Cellular Space 102 502 1002 2002 3002

Size of Compiled Model 56 kb 1.3 Mb 5.2 Mb 22 Mb 49 Mb

Simulation Time 0.0313 s 12.8 s 203 s 3450 s 16600 s

Figure 10.3: Simulation performance.

SIMULATION PRACTICE WITH MODELICA

10.5 Solution to Task 3

The graphical animation of the model simulation is implemented by employing

the FixedShape, Fixed and World models of the MultiBody library of the Modelica

Standard Library (MSL). The model shown in Modelica Codes 10.2 and 10.3 has

been developed using Dymola 2018 and requires MSL version 2.2.1 or later. Screens-

hots of the automaton animation obtained simulating Modelica Codes 10.2 and 10.3

during 16 s are shown in Figure 10.4.

model GameofLifeAnim
parameter Integer n=10; // Dimension of the cellular space
parameter Integer initState[:,2] =

[1, 2; 2, 3; 3, 1; 3, 2; 3, 3]; // Glider
Integer state[n,n]; // Current state of cells
Integer newstate[n,n]; // New state of cells
Integer neighbors; // Number of neighbors alive

Modelica.Mechanics.MultiBody.Visualizers.FixedShape fixedShape[n,n](
each shapeType = "box",
each length = 0.1,
each height = 0.1,
each width = 0.1,
r_shape = {{j/10,-i/10,0} for i in 1:n, j in 1:n},
color = {{integer(state[i,j])*255,

integer(state[i,j])*255,
integer(state[i,j])*255} for i in 1:n, j in 1:n},

each specularCoefficient = 0)
annotation (Placement(transformation(

extent={{0,40},{20,60}}, rotation=0)));

Modelica.Mechanics.MultiBody.Parts.Fixed fixed

annotation (Placement(transformation(
extent={{-40,42},{-20,62}}, rotation=0)));

inner Modelica.Mechanics.MultiBody.World world

(animateWorld=false, animateGravity=false)
annotation (Placement(transformation(

extent={{-80,40},{-60,60}}, rotation=0)));

initial algorithm

// Set initial configuration for the cells
for i in 1:size(initState,1) loop
state[initState[i,1],initState[i,2]] := 1;

end for;

Modelica Code 10.2: The Game of Life model with animation (1/2).

CELLULAR AUTOMATA – THE GAME OF LIFE

algorithm
when sample(1,1) then // Periodic iterations or steps

for i in 0:n-1 loop // Two for loops to evaluate all cells in the space
for j in 0:n-1 loop
neighbors := state[mod(i-1,n)+1,mod(j-1,n)+1]+state[i+1,mod(j-1,n)+1]+

state[mod(i+1,n)+1,mod(j-1,n)+1]+state[mod(i-1,n)+1,j+1]+
state[mod(i+1,n)+1,j+1]+state[mod(i-1,n)+1,mod(j+1,n)+1]+
state[i+1,mod(j+1,n)+1]+state[mod(i+1,n)+1,mod(j+1,n)+1];

if state[i+1,j+1] == 1 then // if alive
if neighbors < 2 or neighbors > 3 then
newstate[i+1,j+1] := 0; // Dies because of isolation or overpopulation

// (less than 2 or more than 3 neighbors alive)
else
newstate[i+1,j+1] := 1; // Otherwise, still alive

end if;
elseif neighbors == 3 then // If not alive
newstate[i+1,j+1] := 1; // Becomes alive because of reproduction

// (3 neighbors alive)
end if;

end for;
end for;
state := newstate; // Update state

end when;
equation

for i in 1:n loop
for j in 1:n loop

connect(fixed.frame_b, fixedShape[i,j].frame_a);
end for;

end for;
end GameofLifeAnim;

Modelica Code 10.3: The Game of Life model with animation (2/2).

Figure 10.4: Evolution of the automaton state obtained simulating Modelica Codes 10.2 and 10.3.

SIMULATION PRACTICE WITH MODELICA

10.6 Solution to Task 4

The code that represents the automaton behavior is replaced in this task by

external code written in the C programming language. The graphical animation can

also be substituted by using external libraries (e.g., gnuplot).

The Modelica model is Modelica Codes 10.4 and 10.5. The architecture of the

package is shown in Figure 10.5.

Figure 10.5: Architecture of the ExternalGameOfLife Modelica Package.

In Modelica, the cellular space has been described as an external object (cf.

CS2D model shown in Figure 10.5). It includes two functions, constructor and

destructor, that are used to initialize and remove the object from the simulation.

These functions correspond to functions of the C code (cf. Modelica code and

annotations of the model).

The GameOfLifeExt model instantiates the mentioned external object and uses

three functions to initialize the space and perform simulation steps (cf. DefaultSta-

te, InitState and Step functions). Periodic simulation steps are performed using

the sample operator, as in the previous tasks. The Path_gnuplot variable is used

to setup the path to execute gnuplot in order to generate the graphical animation.

The C code is written in a file named gameoflifeext.c, listed after the Mode-

lica code. The developed C code is used to represent the cellular space as a two-

dimensional array of cells. In this implementation only the active cells in each step

are evaluated, which improves the performance of the simulation.

The graphical animation of the simulation is generated using gnuplot. An output

buffer is used to write the new state of the cells after every step, and then display

it in the animation.

CELLULAR AUTOMATA – THE GAME OF LIFE

package ExternalGameOfLife

//constant String Path gnuplot=”C:\\gnuplot\\bin\\gnuplot”; //WINDOWS
constant String Path_gnuplot="/usr/bin/gnuplot -persist"; // LINUX

class CS2D

extends ExternalObject;

function constructor

input Integer nrows "Number of rows";
input Integer ncols "Number of columns";
input Integer plot_animation "1 to generate animation, 0 otherwise";
input Integer plot_range "Maximum range for values in the animation";
input Integer display_delay "Time delay for the animation";
input String path "Path to GNUPlot";
input String name "Name of the space";
output CS2D s "Reference to the created space";
external "C" s = CS2D_Create(nrows,ncols,plot_animation,

plot_range,display_delay,path,name);
annotation (Include="#include \"gameoflifeext.c\"");

end constructor;

function destructor

input CS2D s;
external "C" CS2D_Delete(s);
annotation (Include="#include \"gameoflifeext.c\"");

end destructor;
end CS2D;

model GameOfLifeExt
parameter Integer nrows=10 "Number of rows";
parameter Integer ncols=10 "Number of columns";
parameter Integer plot_animation=1

"generate graphical animation (0 false / 1 true)";
parameter Integer plot_range=1

"Max range of output for the graphical output";
parameter Integer display_delay=50000

"Graphical output update delay (in microseconds)";
parameter Integer[:, 2] init_cells=[1, 2; 2, 3; 3, 1; 3, 2; 3, 3];
parameter String name="Game of Life (glider)";
Integer sumactive(start = 0); // number of active cells
Real mean; // average number of active cells over time
CS2D s = CS2D(nrows,ncols,plot_animation,plot_range,

display_delay,Path_gnuplot,name);
protected
Boolean init(start=false, fixed=true);

Modelica Code 10.4: The Game of Life model using external functions (1/2).

SIMULATION PRACTICE WITH MODELICA

algorithm
when initial() and not init then
DefaultState(s);
for i in 1:size(init_cells, 1) loop

if init_cells[i, 1] > 0 and init_cells[i, 2] > 0 then
InitState(s,init_cells[i, 1],init_cells[i, 2]);

end if;
end for;
init := true;

end when;
equation

when sample(0, 1) then
sumactive = Step(s);
mean = if time > 0 then sumactive/(time+1) else sumactive;

end when;
annotation (
Documentation(info="<html>

<p>This model represents a two-dimensional cellular space. </p>

</html>"),
Diagram(coordinateSystem(

preserveAspectRatio=false,
extent={{-100,-100},{100,100}},
initialScale=0.1),graphics),

experiment(StopTime=100),
Dymola_experimentSetupOutput,

experimentSetupOutput);
end GameOfLifeExt;

function DefaultState

input CS2D space;
external "C" CS2D_InitDefault(space);

annotation (Include="#include \"gameoflifeext.c\"");
end DefaultState;

function InitState

input CS2D space;
input Integer row;
input Integer col;
external"C" CS2D_Init(space,row,col);
annotation (Include="#include \"gameoflifeext.c\"");

end InitState;

function Step

input CS2D space;
output Integer out;

external"C" out = CS2D_Step(space);
annotation (Include="#include \"gameoflifeext.c\"");

end Step;
end ExternalGameOfLife;

Modelica Code 10.5: The Game of Life model using external functions (2/2).

CELLULAR AUTOMATA – THE GAME OF LIFE

C Code

/**
* Author:
* Victorino Sanz
* Dpto. Informatica y Automatica, UNED
* Juan del Rosal, 16
* 28040, Madrid
* Spain
* Email: vsanz@dia.uned.es
*
* Licensed by Victorino Sanz under the Modelica License 2
* Copyright 2013, Victorino Sanz.
*
**/

#ifndef CELLULARAUTOMATA
#define CELLULARAUTOMATA

#ifdef LINUX
#include <unistd.h>

#endif

#include <stdio.h>

#include <stdlib.h>

/**
2D CELLULAR AUTOMATA

**/

/**
Cell data type
This data structure is used to represent the cells that are involved in the simulation.
Each cell stores its state (dead or alive), its position in the space (row, col), if it
is active or not in the current step (only active cells are evaluted in each step), an
array of references to its neighbors (so they are easily accesible for the calculations)
and the references to the previous and next cells in the same row (this does not mean
that the cells are adjacent).
**/
typedef struct Cell2D{

int cellstate; // state of the cell
int row; // row in 2D space
int col; // column in 2D space
int active; // boolean flag to set cell as active or not
struct Cell2D **neighbors; // references to neighbors
struct Cell2D *prev; // link to previous cell in the same row
struct Cell2D *next; // link to next cell in the same row

} Cell2D;

SIMULATION PRACTICE WITH MODELICA

/**
Cellular space structure
This data structure represents the whole cellular space. Cells are arranged in rows, but
each row contains only the cells that have been active any time during the simulation witout
considering the whole size of the cellular space.
The cellular space structure stores the matrix of cells (again, only the cells that have
been involved in the simulation), the array of currently active cells (to facilitate the
simulation of the current step), some parameters like the size of the space, the display
delay for the graphical animation, the topology of the neighborhood, a boolean flag to
generate the animation or not and the file descriptor to connect with gnuplot.

**/

typedef struct CS2D{
Cell2D **M; // matrix of cells in the space
int *n_M; // number of cells in the space
Cell2D **A; // array of active cells
int n_A; // number of active cells
int max_A; // maximum number of possible active cells
int ncols; // number of columns of the space
int nrows; // number of rows of the space
int displayDelay; // delay to display animation in gnuplot
int neighborhood[8][2];// topology of the neighborhood
int n_neighbors; // number of neighbors
int plot_animation; // boolean flag to display graphical animation or not
FILE * gp; // gnuplot terminal file descriptor

}CS2D;

// function to compute de modulus of two integers
int mod (int a, int b){

int ret;

if(b < 0) //you can check for b == 0 separately and do what you want
return mod(-a, -b);

ret = a % b;
if(ret < 0)

ret+=b;
return ret;

}

CELLULAR AUTOMATA – THE GAME OF LIFE

/**
CONSTRUCTOR FOR EXTERNAL OBJECT
This function is used to construct the external object defined in Modelica.
It basically allocates memory for the data structures and initializes the values
of the parameters using the values received from Modelica as function prototype parameters

**/
void* CS2D_Create(int nrows, int ncols, int plot_animation,int plot_range,int
displayDelay, const char *path,const char *name){

CS2D *s;
int i,j;

s = (CS2D *)malloc(sizeof(CS2D));
s->M = (Cell2D **)malloc(nrows*sizeof(Cell2D*));
s->n_M = (int*)malloc(nrows*sizeof(int));
for(i=0;i<nrows;i++){

s->M[i] = NULL;
s->n_M[i] = 0;

}
s->max_A = ncols;
s->A = (Cell2D**)malloc(s->max_A*sizeof(Cell2D*));
s->n_A = 0;
s->ncols = ncols;
s->nrows = nrows;
// Moore’s neighborhood is predefined
s->neighborhood[0][0] = -1;
s->neighborhood[0][1] = -1;
s->neighborhood[1][0] = -1;
s->neighborhood[1][1] = 0;
s->neighborhood[2][0] = -1;
s->neighborhood[2][1] = 1;
s->neighborhood[3][0] = 0;
s->neighborhood[3][1] = -1;
s->neighborhood[4][0] = 0;
s->neighborhood[4][1] = 1;
s->neighborhood[5][0] = 1;
s->neighborhood[5][1] = -1;
s->neighborhood[6][0] = 1;
s->neighborhood[6][1] = 0;
s->neighborhood[7][0] = 1;
s->neighborhood[7][1] = 1;
s->n_neighbors = 8;
s->plot_animation = plot_animation;
s->displayDelay = displayDelay;

SIMULATION PRACTICE WITH MODELICA

// if animation is required, the buffer to gnuplot is configured
if (plot_animation){

#ifdef WIN32
s->gp = _popen(path, "w");

#else
s->gp = popen(path, "w");

#endif

if(s->gp == NULL){
fprintf(stderr, "Oops, I can’t find %s.", path);
exit(EXIT_FAILURE);

}
// setting parameters for gnuplot animation

#ifdef WIN32
fprintf(s->gp, "set terminal wxt persist \n");

#else
fprintf(s->gp, "set terminal x11 \n");

#endif
fprintf(s->gp, "set title \" %s\" \n",name);
fprintf(s->gp, "set yrange [%d:0] \n",nrows);
fprintf(s->gp, "set autoscale xy \n");
fprintf(s->gp, "set cbrange [0: %d] \n",plot_range);

}

return (void *)s; // void pointer is returned as required by Modelica external objects.
}

CELLULAR AUTOMATA – THE GAME OF LIFE

/**
DESTRUCTOR FOR EXTERNAL OBJECT
This function is used to delete the external object defined in Modelica. All previously
allocated memory is freed and the file descriptor used to connect with gnuplot is closed.

**/

int CS2D_Delete(void* space){
CS2D *s;
Cell2D *cell;
int i,j;

s =(CS2D *)space;
cell = s->M[0];
for(i=0;i<s->nrows;i++){

for(j=0;j<s->n_M[i];j++){
cell = s->M[i];
s->M[i] = cell->next;
free(cell);

}
}
free(s->M);
free(s->n_M);
free(s->A);
s->ncols = 0;
s->nrows = 0;
if(s->plot_animation){

#ifdef WIN32
fprintf(s->gp, "pause mouse\n");
_pclose(s->gp);

#else
pclose(s->gp);

#endif
}
free(s);
return 1;

}

SIMULATION PRACTICE WITH MODELICA

/**
FIND CELL
This function is used to find a given cell in the cellular space structure. A pointer to
the cell is returned or NULL in case it is not found in the space. The position of the
cell to be found is defined by the row and col parameters. The ref parameter indicates a
reference to use as starting point for the search (i.e., when searching a cell closely
located from another).

**/

Cell2D* CS2D_FindCell(void* space, int row, int col, Cell2D *ref){
CS2D *s;
Cell2D *cell;
int found,i;
Cell2D *pre;

s = (CS2D *)space;
cell = NULL;
found = 0;
if (s->M[row] == NULL) // no cells in row

return NULL;
if (ref == NULL){ // no reference, start searching from the beginning of the row

cell = s->M[row];
while(cell != NULL && !found){

if(cell->col == col){ // same columns, cell found!
found = 1;

}else{
cell = cell->next; // not found, go to next

}
}

}else{ // start searching from given reference cell
// search in the neighborhood of the reference
i = 0;
if (ref->row == row){ // search from reference

cell = ref;
}else{

while (i<s->n_neighbors){ // search from neighbor
if(ref->neighbors[i] != NULL) // neighbor present

if (ref->neighbors[i]->row == row){
cell = ref->neighbors[i];
i = s->n_neighbors;

}
i++;

}
if(cell == NULL) // search from the beginning of the row

cell = s->M[row];
}

CELLULAR AUTOMATA – THE GAME OF LIFE

pre = cell->prev; // pre: used to search backwards in the row.
while ((cell != NULL || pre != NULL) && !found){

if (cell != NULL && cell->col == col){
found = 1;

}else if (cell != NULL)
cell = cell->next;

if (pre != NULL && pre->col == col){
found = 2;

}else if (pre != NULL)
pre = pre->prev;

}
}

if(found == 1){
return cell;

}else if (found == 2){
return pre;

}else{
return NULL;

}
}

SIMULATION PRACTICE WITH MODELICA

/**
INSERT CELL
This function is used to insert a new cell in the cellular space (i.e., a cell that has
never been previously active).
The cellular space, the new cell and its position in the space are passed as parameters.

**/
void CS2D_InsertCell(void* space, Cell2D* cell, int row, int col){

CS2D *s;
Cell2D *n; // next cell
Cell2D *p; // previous cell

s = (CS2D *)space;
n = s->M[row];
p = s->M[row];
s->n_M[row]++;
if (s->M[row] == NULL){ // insert as first cell in the space

cell->prev = NULL;
cell->next = NULL;
s->M[row] = cell;

}else{
if (s->M[row]->col > col){ // insert before first cell in space

cell->prev = NULL;
cell->next = s->M[row];
s->M[row]->prev = cell;
s->M[row] = cell;

}else{ // find place to insert cell
n = s->M[row]->next;
p = s->M[row];
while(n != NULL && n->col < col){

p = n;
n = n->next;

}
// place found, insert cell
cell->prev = p;
cell->next = n;
if(n!=NULL)

n->prev = cell;
p->next = cell;

}
}
return;

}

CELLULAR AUTOMATA – THE GAME OF LIFE

/**
ACTIVE CELL
This function is used to set a cell as active, in order to be evaluated during the next
simulation step.
Parameters are the cellular space and the cell to be active.

**/
Cell2D* CS2D_ActiveCell(void *space, Cell2D* cell){

int i,k;
CS2D *s;

s = (CS2D *)space;
if(!cell->active){

cell->active=1; // set active flag to 1
s->n_A++; // increase number of active cells
if(s->n_A > s->max_A){ // if maximum number of active cells is reached, increase

allocated memory for s->A
s->max_A = s->max_A*2; // double maximum number of active cells
s->A = (Cell2D **)realloc(s->A,s->max_A*sizeof(Cell2D*)); // reallocate

the list of currently active cells
}s->A[s->n_A-1] = cell; // insert new active cell in the list

}
return cell;

}

/**
INIT CELL
This function is used to set the initial state for cells before starting the simulation
steps.
Parameters are the cellular space and the position of the cell to be initalized (since Modelica

start arrays at index 1, modrow and modcol need to be translated to real rows and cols).
**/
Cell2D* CS2D_Init(void* space,int modrow, int modcol){

int i,k,row,col;
CS2D *s;
Cell2D *newcell;

row = modrow-1; // C index corresponds to Modelica index -1
col = modcol-1;
s = (CS2D *)space;
newcell = CS2D_FindCell(space,row,col,NULL); // find cell in the space
newcell->cellstate = 1; // set state to 1 (alive)
CS2D_ActiveCell(space,newcell); // set cell as initially active

return newcell;
}

SIMULATION PRACTICE WITH MODELICA

/**
INIT DEFAULT
This function is used to create and set the default initial state for all the cells in the
cellular space (i.e., default state is to be dead). Pointers to neighbors are also set to
faclitate the computations during each simulation step.

**/
void CS2D_InitDefault(void *space){

int i,j,k;
int rows,cols;
CS2D *s;
Cell2D *newcell;
int nrow,ncol,en;

s = (CS2D *)space;
rows = s->nrows;
cols = s->ncols;

for(i=0;i<rows;i++){
for(j=0;j<cols;j++){

// create new cell to insert into cellular space
newcell = (Cell2D *)malloc(sizeof(Cell2D));
newcell->cellstate = 0; // default state
newcell->row = i;
newcell->col = j;
newcell->prev = NULL;
newcell->next = NULL;
newcell->active = 0;
//neighbor.update = 1;
newcell->neighbors = (Cell2D **)malloc(s->n_neighbors*sizeof(Cell2D

*)); // array of pointers to neighbors
for(k=0;k<s->n_neighbors;k++)

newcell->neighbors[k] = NULL;
CS2D_InsertCell(space,newcell,i,j); // insert new cell into space

}
}
// once all the cells are created, assign neighbors
for(i=0;i<rows;i++){

for(j=0;j<cols;j++){
newcell = CS2D_FindCell(space,i,j,NULL);
for(k=0;k<s->n_neighbors;k++){

en = s->neighborhood[k][0];
nrow = mod(i+s->neighborhood[k][0],s->nrows);
en = s->neighborhood[k][1];
ncol = mod(j+s->neighborhood[k][1],s->ncols);
newcell->neighbors[k] = CS2D_FindCell(space,nrow,ncol,newcell);

}
}

}
return;

}

CELLULAR AUTOMATA – THE GAME OF LIFE

/**
GAME OF LIFE FUNCTION
This function is used to represent the behavior of the cells as described in the Game of
Life. This function is individually applied to every active cell in each simulation step.
Function parameters are the change flag, to be set if the state of the cell changes from
its previous value (and so it remains active, or otherwise is set inactive), the current
state of the cell, the array of neighbors and the number of neighbors).

**/
int gol(int* change, int cellstate, int* neighbors, int n_neighbors){

int sum,i;
int out;

// sum number of living neighbors
sum = 0;
for(i=0;i<n_neighbors;i++){

if(neighbors[i] > 0){
sum++;;

}
}

// apply rules
out = cellstate;
if (!cellstate && sum == 3) // dead and 3 living neighbors

out = 1; // becomes alive
else if (cellstate && (sum < 2 || sum > 3)) // alive and less than 2 or more than 3

living neighbors
out = 0; // dies

*change = 1;
if(cellstate == out)
*change = 0;

return out;
}

SIMULATION PRACTICE WITH MODELICA

/**
STEP
This function is used to perform a simulation step.

**/
int CS2D_Step(void* space){

int *new_states;
int news;
int i,k,nA;
CS2D *s;
int neighbors[8];
Cell2D** new_A; // new active cells after current step
int new_n_A = 0; // number of new active cells
Cell2D* cell;
//cell list* lchange;
int change;
int active;

//struct timeval tv1, tv2;
//gettimeofday(&tv1, NULL);

s = (CS2D *)space;

// Set neighbors of current active cell also active.
nA = s->n_A;
for(i=0;i<nA;i++){

for(k=0;k<s->n_neighbors;k++){
if(s->A[i]->neighbors[k] != NULL){

CS2D_ActiveCell(space,s->A[i]->neighbors[k]);
}

}
}

// calculate new cellstates
new_states = (int*)malloc(sizeof(int)*s->n_A);
//max new A = s->max A;
new_A = (Cell2D**)malloc(s->max_A*sizeof(Cell2D*));
new_n_A = 0;
active = s->n_A; // store in active var the number active cells in this step
for(i=0;i<s->n_A;i++){

// join neighbors states in a single array
for(k=0;k<s->n_neighbors;k++){

neighbors[k] = s->A[i]->neighbors[k]->cellstate;
}
cell = s->A[i]; // cell is current active cell to be evaluated
// calculate new state using user defined rule function
news = gol(&change, cell->cellstate,neighbors,s->n_neighbors); // game of life

function
new_states[i] = news; //store new state of current cell

CELLULAR AUTOMATA – THE GAME OF LIFE

// keep cell active if state changed
if (change){

cell->active=1;
new_n_A++;
if (new_n_A > s->max_A){

s->max_A = s->max_A*2;
new_A = (Cell2D **)realloc(new_A,s->max_A*sizeof(Cell2D*));

}
new_A[new_n_A-1] = cell;

}else // otherwise, set as inactive
cell->active = 0;

}

// update cellstates after evaluating all active cells
for(i=0;i<s->n_A;i++){

cell = s->A[i];
if(cell != NULL && new_states[i] != -1){

cell->cellstate = new_states[i];
new_states[i] = -1;

}
}

// plot animation for new states
if(s->plot_animation){

fprintf(s->gp,"plot \’-\’ matrix with image\n");
for (i=0;i<s->nrows;i++){

cell = s->M[i];
for(k=0;k<s->ncols;k++){

if (cell != NULL && k == cell->col){ // cell in space, print state
fprintf(s->gp," %f ",(double)cell->cellstate);
cell = cell->next;

}else{// cell not present
fprintf(s->gp,"-1 ");

}
}
fprintf(s->gp,"\n ");

}
}

if(s->plot_animation){
// fprintf(s->gp,”\n”);
fprintf(s->gp,"\n");
fprintf(s->gp,"e\n");
//printf(”\n”);
//printf(”\n”);
//printf(”e\n”);

#ifdef WIN32
//Sleep(s->displayDelay/1000);

#else
usleep(s->displayDelay);

#endif
fflush(s->gp);

}

SIMULATION PRACTICE WITH MODELICA

free(s->A);
s->A = new_A;
s->n_A = new_n_A;
free(new_states);
return active;

}

#endif

10.7 Solution to Task 5

The objective is to compare the performance of the models developed in Tasks

1 and 4, in terms of size of the cellular space and execution time.

Equivalent simulation runs have been performed using the model developed in

Task 4. The initial configuration of the cells correspond to the glider shown in

Figure 10.1.

In this case, since the number of cells in the simulation is managed using dynamic

memory the size of the compiled model is 13 kb independently of the size of the

cellular space. Also, since the initial configuration of the model (i.e. the glider)

produces a periodic variation of the cells in the space the number of active cells is

very similar in each step and the simulation time is equal for all the experiments

performed. Independently on the size of the cellular space, the simulation takes

around 0.0022 s to execute.

11

A
ss
ig
n
m
en
t

Air pollution

Purpose of this assignment

– Get insight into the Gaussian plume model.

– Use arrays, for loops, and enumeration types.

– Describe a DAE system as an atomic model in Modelica.

11.1 System description

The pollutants emitted through a stack source enter the atmosphere and can be

transported or dispersed by meteorological conditions. The pollutant dynamics is

influenced by several phenomena, including transport, diffusion, chemical transfor-

mation, and ground deposition.

An industrial chimney (i.e. stack) emitting pollutants into the landscape is shown

in Figure 11.1. The polluted air coming from the stack is called plume. The plume

shape can be influenced by the meteorological conditions and emission factors such

as gas temperature at the stack top, stack height, pollutant mass flow rate, or wind

velocity.

The Gaussian plume model is a standard approach for studying the transport of

atmospheric pollutants (Abdel-Rahman 2008). The main assumptions made in this

model are the following (Brusca et al. 2016):

SIMULATION PRACTICE WITH MODELICA

Figure 11.1: Gaussian plume model.

– Steady-state conditions, which implies a constant emission rate of pollutants,

and constant wind speed, wind direction, temperature and mixing height.

– Dispersion is negligible in the downwind direction.

– No wind sheer in the horizontal or vertical plane.

– The pollutants are non-reactive gases or aerosol.

– There is a perfect reflection of the plume at the underlying surface, with no

deposition or reaction with the surface.

Pollutant distribution is represented by concentrations on a (regular) three-

dimensional grid of points. A Cartesian reference system is employed, with its origin

at ground level, at the chimney location. The x axis is parallel to the wind direction

and the z axis corresponds to the height measured from the ground level.

The Gaussian method employs the Gaussian normal distribution to determine

the variation of the pollutant concentrations in the plume by relatively simple

calculations. This model has a symmetry axis determined by the wind direction, as

is illustrated in Figure 11.1. The pollutant concentration in the air, at the (x, y, z)

position, is described by Eq. (11.1).

AIR POLLUTION

C(x, y, z) =
Q

2 · π · u · σy · σz
· exp

(

− y2

2 · σ2
y

)

·
{

exp

[

−1

2

(

z −H

σz

)2
]

+ exp

[

−1

2

(

z + H

σz

)2
]} (11.1)

where C(x, y, z) is the concentration of pollutant in the air in g/m3, Q is the emission

rate of the pollutant from the source in g/s, σy is the horizontal crosswind dispersion

coefficient, σz is the vertical dispersion coefficient, u is the mean speed of the wind in

m/s, and H is the effective height of the plume in m. H is computed by adding the

additional height to which the hot gases rise above the stack (∆h) to the physical

height of the stack (h).

The following equation has to be applied to compute the concentration of a

particular component in parts per million (ppm):

Ccomponent =
C · 106 ·K

MW
(11.2)

where Ccomponent is the component concentration in ppm, C is the concentration on

pollutant in the air in g/m3, K is a constant equal to 24.5 at 1 atm and 25◦ C,

and MW is the molecular weight of the component expressed in g/mol. The CO

molecular weight is 28 g/mol, and the SO2 molecular weight is 64 g/mol.

The values of the horizontal and vertical dispersion coefficients (σy and σz)

depend on the distance to the source and the atmospheric conditions. They can

be calculated by applying different theories: Martin, Briggs, Pasquill, Taylor, etc.

We will calculate these coefficients as described below (Martin 1976).

Pasquill defined the following seven classes of atmospheric stability conditions:

A, B, C, D, E and F. The parameters correspond to “very stable” (F class) to “very

unstable” (A class). The neutral atmosphere is represented by D. The equations

proposed in (Martin 1976) to compute the dispersion coefficients are the following:

σy = a · xb (11.3)

σz = c · xd + f (11.4)

where x is the distance to the source expressed in km; a, c, d and f are stability-

dependent coefficients; and b is a constant of value 0.894. The values of the c, d and

f coefficients depend on whether x is larger than one kilometer. The values of these

constants are given in Table 11.1.

SIMULATION PRACTICE WITH MODELICA

Table 11.1: Values of the a, c, d and f coefficients.

Stability class a c d f

x ≤ 1km x > 1km x ≤ 1km x > 1km x ≤ 1km x > 1km

A 213 440.8 459.7 1.941 2.094 9.27 -9.6

B 156 106.6 108.2 1.149 1.98 3.3 2.0

C 104 61 61 0.911 0.911 0 0

D 68 33.2 44.5 0.725 0.516 -1.7 -13.0

E 50.5 22.8 55.4 0.678 0.305 -1.3 -34.0

F 34 14.35 62.6 0.74 0.18 -0.35 -48.6

Table 11.2: Values of the p coefficient.

Stability class p in rural area p in urban area

A, B 0.07 0.15

C 0.10 0.20

D 0.15 0.25

E 0.35 0.40

F 0.55 0.60

We suppose that the wind speed at a height of 10 m (u10) is known. The wind

speed at the stack mouth is estimated from Eq. (11.5), where p is a coefficient that

depends on the stability class and the surface roughness (rural or urban area) as

shown in Table 11.2.

u = u10 ·
(

h

10

)p

(11.5)

11.2 Task

Suppose a stack that emits CO and SO2. Write a Modelica model to compute

the concentration of these air pollutants at the points of a rectangular mesh of size

10× 11× 11. Define the step size in the x, y and z dimensions as 100, 100 and 2 m,

respectively. Store the values of the a, c, d, f and p coefficients in constant matrices.

Describe the stability class as an enumeration type. The model has the following

parameter values: u10 = 2 m/s, H = 30 m, Q = 80 · 10−3 kg/s, urban medium, and

stability class A.

AIR POLLUTION

11.3 Solution

The model can be described in Modelica as shown in Modelica Codes 11.1 –

11.3. Observe that the model quantities are expressed in the International System of

Units. The development in Modelica of a virtual lab based on this model is described

in (Martin-Villalba et al. 2018).

model PollutantsDispersion
import SI = Modelica.SIunits;

parameter Integer Nx = 10; // deltaX, 2*deltaX, ..., Nx*deltaX
parameter Integer Ny = 11; // 0, deltaY, 2*deltaY, ..., (Ny-1)*deltaY
parameter Integer Nz = 11; // 0, deltaZ, 2*deltaZ, ..., (Nz-1)*deltaZ

// Step size in axis X, Y and Z
parameter SI.Distance deltaX = 100;
parameter SI.Distance deltaY = 100;
parameter SI.Distance deltaZ = 2;

// Spatial coordinates
parameter SI.Distance x[Nx]= deltaX: deltaX: Nx*deltaX;
parameter SI.Distance y[Ny]= 0: deltaY: (Ny-1)*deltaY;
parameter SI.Distance z[Nz]= 0: deltaZ: (Nz-1)*deltaZ;

// Pollutant concentrations
SI.MassConcentration C[Nx,Ny,Nz];
Real C_CO[Nx,Ny,Nz];
Real C_SO2[Nx,Ny,Nz];

constant Real MW_CO = 28e-3; // CO molecular weight in kg/mol
constant Real MW_SO2 = 64e-3; // SO2 molecular weight in kg/mol
constant Real K = 24.5; // Constant value at 1 atm and 25 Celsius degrees

//Wind speed at the stack mouth
SI.Velocity u;

// Dispersion coefficients
SI.Distance sigmaY[Nx];
SI.Distance sigmaZ[Nx];

// Wind speed at 10 m height
parameter SI.Velocity u10 = 2;

// Emission rate
parameter SI.MassFlowRate Q = 80e-3;

// Effective plume height (stack height + plume rise)
parameter SI.Distance H = 30;

Modelica Code 11.1: Gaussian dispersion model (1/3).

SIMULATION PRACTICE WITH MODELICA

// Stability (1=A, 2=B, ..., 6=F)
type stabilityClass = enumeration(

catEstab_A,
catEstab_B,
catEstab_C,
catEstab_D,
catEstab_E,
catEstab_F);

parameter stabilityClass stability = stabilityClass.catEstab_A;

// Medium (1=urban, 2=rural)
type mediumType = enumeration(

urban,
rural);

parameter mediumType medium = mediumType.urban;

// Parameters a, b, c, d, f
// First dimension: stability (1=A, 2=B, ..., 6=F)
// Second dimension: (x < 1000 m) = 1, (x > = 1000 m) = 2

constant Real b = 0.894;
constant Real a[6] = { 213, 156, 104, 68, 50.5, 34};
constant Real c[6,2] = { { 440.8, 459.7},

{ 106.6, 108.2},
{ 61.0, 61.0},
{ 33.2, 44.5},
{ 22.8, 55.4},
{ 14.35, 62.6}};

constant Real d[6,2] = { { 1.941, 2.094},
{ 1.149, 1.098},
{ 0.911, 0.911},
{ 0.725, 0.516},
{ 0.678, 0.305},
{ 0.740, 0.180}};

constant Real f[6,2] = { { 9.27, -9.6},
{ 3.3, 2.0},
{ 0, 0},
{ -1.7, -13},
{ -1.3, -34},
{ -0.35, -48.6}};

// Exponential coefficient of the speed
// First dimension: stability (1=A, 2=B, ..., 6=F)
// Second dimension: medium (1=urban, 2=rural)

constant Real p[6,2] = { { 0.15, 0.07},
{ 0.15, 0.07},
{ 0.20, 0.10},
{ 0.25, 0.15},
{ 0.40, 0.35},
{ 0.60, 0.55}};

Modelica Code 11.2: Gaussian dispersion model (2/3).

AIR POLLUTION

equation

// Speed wind at stack mouth
u = (H/10)^p[stability,medium];

// Pollutant concentration
for ix in 1:Nx loop

for iy in 1:Ny loop
for iz in 1:Nz loop

C[ix,iy,iz] = Q/(2*3.14159265358979*u*sigmaY[ix]*sigmaZ[ix])*
exp(-0.5*(y[iy]/sigmaY[ix])^2)*
(exp(-0.5*((z[iz]-H)/sigmaZ[ix])^2) +

exp(-0.5*((z[iz]+H)/sigmaZ[ix])^2));
C_CO[ix,iy,iz] = C[ix,iy,iz]*1e+6*K/MW_CO;
C_SO2[ix,iy,iz] = C[ix,iy,iz]*1e+6*K/MW_SO2;

end for;
end for;

end for;

// Dispersion coefficients
for ix in 1:Nx loop

sigmaY[ix] = a[stability]*(x[ix]/1000)^b;
sigmaZ[ix] = if x[ix] <= 1000 then

c[stability,1]*(x[ix]/1000)^d[stability,1]+f[stability,1] else
c[stability,2]*(x[ix]/1000)^d[stability,2]+f[stability,2];

end for;

annotation (uses(Modelica(version="3.2.2")), DymolaStoredErrors,
version="1",
conversion(noneFromVersion=""));

end PollutantsDispersion;

Modelica Code 11.3: Gaussian dispersion model (3/3).

12

A
ss
ig
n
m
en
t

Simplified Tennessee Eastman model

Purpose of this assignment

– Practice modeling of hydraulic components and simple chemical reac-

tors.

– Use records to describe fluid properties.

– Use arrays of variables and for loops.

– Embed a Modelica model into a Simulink block using FMI.

12.1 System description

The Tennessee Eastman Process model is based on a real chemical process that

was first described in (Downs & Vogel 1993). It contains a separator/reactor/recycle

arrangement involving two simultaneous gas-liquid exothermic reactions.

The Simplified Tennessee Eastman (TES) model (Ricker 1993) here described

is a simplification of the model described in (Downs & Vogel 1993), with only one

process unit and eight state variables. This process unit is a combination of a reactor

and a separator of the original TE process.

The TES model is also a well-known benchmark process. It is a multi-input multi-

output, nonlinear system, open-loop unstable, and contains fast and slow dynamics.

SIMULATION PRACTICE WITH MODELICA

Figure 12.1: Schematic diagram of the TES process.

The process unit has two input components (A and C) and an inert gas (B).

An irreversible reaction takes place in the reactor in vapor phase, generating the

product D in liquid phase. The reaction is described by the following equation:

A + C −→ D (12.1)

The process unit (see Figure 12.1) has two input flows (Feed 1 and Feed 2) and

two output flows (Purge and Stream 4). Feed 1 contains A, C, and trace amounts

of an inert gas B. Feed 2 contains only A. The purge (i.e., Stream 3) contains A, B

and C. The output flow contains the desired product D.

The following assumptions are made (Ricker 1993):

– A and C are non-condensable, and D is a non-volatile liquid.

– The vapor phase consists of A, B, and C. The liquid is pure D. This is because

the solubilities of A, B, and C in D are negligible. D has a density (ρD) equal

to 8.3 kmol/m3. The gases follow the ideal gas law:

P · V = n · R · T (12.2)

where P is the gas pressure, V is the gas volume, n is the number of gas

moles, R is the ideal gas constant (R = 8.31451 J/(mol·K)) and T is the gas

temperature.

– The reaction rate (RD) depends only on the partial pressures of A (PA) and C

(PC). Independent controls (not shown) maintain isothermal operation. The

temperature in the reactor (Tr) is then a known model parameter. RD in

kmol/h is obtained from the following equation

SIMPLIFIED TENNESSEE EASTMAN MODEL

RD = k0 · P 0.5
A · P 0.4

C (12.3)

where k0 = 0.00117 is a constant for the assumed isothermal operation.

– The molar flow rates (units: kmol/h) of streams 1 and 2 are linear functions

of valve position:

Fi = Fi,max ·
Xi

100
for i = 1, 2 (12.4)

where 0 ≤ Xi ≤ 100 is the i-th valve position (percentage open), F1,max =

330.46 kmol/h and F2,max = 22.46 kmol/h.

– The molar flow rates (units: kmol/h) of streams 3 and 4 are nonlinear functions

of the valve position (Xi) and the system pressure (P):

Fi =
Xi

100
· Cvi ·

√
P − 100 for i = 3, 4 (12.5)

where 0 ≤ Xi ≤ 100 is the i-th valve position (percentage open), Cv3 = 0.00352

and Cv4 = 0.0417.

– A valve position (Xi) responds gradually to a change in its command signal

ui as follows:

τV ·
dXi

dt
= ui −Xi for i = 1, ..., 4 (12.6)

where τV = 10/3600 (units: h) is a valve time constant, identical for all four

valves.

12.2 Task 1

Write the mathematical equations describing the process unit, which is composed

of the reactor and separator.

The liquid density of component D (ρD) is equal to 8.3 kmol/m3. The volume of

the process unit (Vr) is a model parameter of value 122 m3. The temperature of the

reactor (Tr) is a model parameter of value 373 K. The values of the initial molar

holdups of components A, B, C and D are listed in Table 12.1.

SIMULATION PRACTICE WITH MODELICA

Table 12.1: Nominal operating conditions.

Symbol Description Nominal value Units

NA Molar holdup of A 44.499999 kmol

NB Molar holdup of B 13.532996 kmol

NC Molar holdup of C 36.64788 kmol

ND Molar holdup of D 110.0 kmol

X1 Feed 1 valve position 60.953273 %

X2 Feed 2 valve position 25.0223 %

X3 Purge valve position 39.2577 %

X4 Product valve position 44.030 %

u1 Manip. var. corresponding to valve 1 60.953273 %

u2 Manip. var. corresponding to valve 2 25.0223 %

u3 Manip. var. corresponding to purge 39.2577 %

u4 Manip. var. corresponding to product valve 44.1767 %

F1.conc[1] Mole fraction A in feed 1 0.485 –

F1.conc[2] Mole fraction B in feed 1 0.005 –

12.3 Solution to Task 1

The conservation law of the chemical species gives the following four equations:

dNA

dt
= F1.concA · F1 + F2 − F3.concA · F3 −RD (12.7)

dNB

dt
= F1.concB · F1 − F3.concB · F3 (12.8)

dNC

dt
= F1.concC · F1 − F3.concC · F3 − RD (12.9)

dND

dt
= RD − F4 (12.10)

where Ni, with i = A, B, C, D, is the molar hold up in kmol of component i in the

vessel; Fj , with j = 1, 2, 3, 4, is the molar flow in kmol/h in stream j; Fj .conci is

the concentration of component i in the stream j; and RD is the production rate of

component D.

The partial pressure of components A, B and C is obtained from the ideal gas

equation:

SIMPLIFIED TENNESSEE EASTMAN MODEL

pi =
Ni · Ri · Tr

Vvap
(12.11)

where pi, i = A, B, C, is the partial pressure of component i, Ni is the molar hold

up of component i, Tr is the reactor temperature (a model parameter) and Vvap is

the vapor volume in the vessel.

The liquid volume (Vliq) is computed taking into account that D is the only liquid

with a density ρD (model parameter):

Vliq =
ND

ρD
(12.12)

The vapor volume (Vvap) is obtained from the following equation:

Vr = Vliq + Vvap (12.13)

where Vr is the vessel volume (model parameter).

The total pressure (P) is obtained from the ideal gas equation, assuming equili-

brium between the gas and liquid phase:

P =
(NA + NB + NC) ·R · Tr

Vvap
(12.14)

The molar fraction in the purge (F3.conci, i = A, B, C) is obtained from the

following equation:

F3.conci =
pi

P
(12.15)

The reaction rate (RD) will be zero if pA and pC are less or equal to zero. If it is

not the case, RD is computed from the following equation:

RD = k0 · p1.2
A · p0.4

C (12.16)

where k0 is a constant equal to 0.00117.

SIMULATION PRACTICE WITH MODELICA

12.4 Task 2

Program a library in Modelica to describe the TES model. The values of the

variables at the nominal operating conditions are listed in Table 12.1. The library

has to include the following classes:

– A record describing the fluid properties.

– A connector class.

– A class describing the input valve.

– A class describing the output valve.

– A class describing the process unit.

– A class describing the complete model. Name it ReactorOpenLoop. This model

will be exported as an FMU and has to be described accordingly. This is, the

causality of the model has to be set explicitly, declaring as input/output the

input/output variables. This model can then be embedded within a Simulink

block.

12.5 Solution to Task 2

The Modelica library is shown in Modelica Codes 12.1–12.8.

package TESimplified "The Simplified Tennessee Eastman model"

record Media "Media components"

constant Integer A = 1;
constant Integer B = 2;
constant Integer C = 3;
constant Integer D = 4;
constant Integer Vapor[:] = {1,2,3};
constant Integer Liquid[:] = {4};
constant Integer All[:] = 1:4;
constant Integer NComp = size(All,1);
constant Integer NVap = size(Vapor,1);
constant Integer NLiq = size(Liquid,1);

end Media;

Modelica Code 12.1: Simplified Tennessee Eastman model (1/8).

SIMPLIFIED TENNESSEE EASTMAN MODEL

model Reactor "Reactor-separator"

Media Component;
constant Integer NumChemReac = 1;
// Constant of perfect gases
constant Real Rkcal(unit="cal/(mol.K)") = 1.987;
constant Real RkJ(unit="J/(mol.K)") = 8.31451;
parameter Real Vr(unit="m3") = 122 "Reactor volume";
parameter Real v[Component.NComp,NumChemReac] =

[-1; 0; -1; 1] "Stoichiometric coefficients";
parameter Real rho[Component.NComp](unit="kmol/m3") =

{0,0,0,8.3} "Density of liquids";
parameter Real k0 = 0.00117 "Constant for the isothermal operation";
parameter Real Tr(unit="K") = 373 "Reactor Fixed Temperature";
Real N[Component.NComp](unit="kmol",

start={44.499999,13.5329,36.64788,110},
fixed=true) "Total molar holdup";

Real p[Component.NVap](unit="kPa") "Partial pressure";
Real P(unit="kPa") "Total pressure";
Real R[NumChemReac](unit="kmol/hour") "Reaction rate";
Real Vliq(unit="m3") "Liquid volume";
Real Vvap(unit="m3") "Vapor volume";

pCon F1(nComp = Component.NComp)
annotation (Placement(
transformation(extent={{-79.5,21.9},{-59.5,41.9}})));

pCon F2(nComp = Component.NComp)
annotation (Placement(
transformation(extent={{-79.7,-10.7},{-59.7,9.3}})));

pCon F3(nComp = Component.NComp)
annotation (Placement(
transformation(extent={{60,22},{80,42}})));

pCon F4(nComp = Component.NComp)
annotation (Placement(
transformation(extent={{60.3,-35.2},{80.3,-15.2}})));

Modelica Code 12.2: Simplified Tennessee Eastman model (2/8).

SIMULATION PRACTICE WITH MODELICA

equation
// Molar balance
for i in Component.All loop

der(N[i]) = F1.conc[i]*F1.flowM + F2.conc[i]*F2.flowM +
F3.conc[i]*F3.flowM + F4.conc[i]*F4.flowM +
sum(v[i, j]*R[j] for j in 1:NumChemReac);

end for;
// Total pressure assuming equilibrium vapor and liquid phase
P = sum(N[i] for i in Component.Vapor) * RkJ * Tr / Vvap;
// Partial pressure
for i in Component.Vapor loop

p[i] = N[i] * RkJ * Tr / Vvap;
end for;
// Liquid volume
Vliq = sum(N[i] / rho[i] for i in Component.Liquid);
// Vapor volume
Vr = Vliq + Vvap;
// Molar fraction of vapor
for i in Component.Vapor loop

F3.conc[i] = p[i] / P;
end for;
F3.conc[4] = 0;
// Reaction rate
R[1] = if noEvent(p[Component.A] > 0 and p[Component.C] > 0)

then k0 * p[Component.A]^1.2 * p[Component.C]^0.4
else 0;

F1.P = P;
F2.P = P;
F3.P = P;
F4.P = P;
F4.conc = {0, 0, 0,1};
if P > 3000 then

terminate("High reactor pressure!!!");
end if;

Modelica Code 12.3: Simplified Tennessee Eastman model (3/8).

SIMPLIFIED TENNESSEE EASTMAN MODEL

annotation (
Diagram(coordinateSystem(preserveAspectRatio=false,

extent={{-100,-100},{100,100}}), graphics),
Icon(graphics={

Line(
points={{-60,50},{-58,60},{-54,66},{-48,70},

{-44,72},{-40,72}},
color={0,0,255}, smooth=Smooth.None),

Line(
points={{-60,50},{-60,-30}},
color={0,0,255}, smooth=Smooth.None),

Line(
points={{-10,-11},{-8,-1},{-4,5},{2,9},

{6,11},{10,11}},
color={0,0,255}, smooth=Smooth.None,
origin={-49.1,-40.3}, rotation=90),

Line(
points={{60.2,50.1},{58.2,60.1},{54.2,66.1},

{48.2,70.1},{44.2,72.1},{40.2,72.1}},
color={0,0,255}, smooth=Smooth.None),

Line(
points={{59.8,-27.9},{57.8,-37.9},{54,-44},

{47.8,-47.9},{43.8,-49.9},{39.8,-49.9}},
color={0,0,255}, smooth=Smooth.None),

Line(
points={{-40,72},{40,72}},
color={0,0,255}, smooth=Smooth.None),

Line(
points={{-40,-50},{40,-50}},
color={0,0,255}, smooth=Smooth.None),

Line(
points={{60.1,51.9},{60.1,-28.1}},
color={0,0,255}, smooth=Smooth.None),

Line(
points={{-60,-4.1},{60.2,-4.1}},
color={0,0,255}, smooth=Smooth.None),

Text(
extent={{-19.8,47.7},{21.3,28.4}},
lineColor={0,0,255}, textString="Vapor"),

Text(
extent={{-18.7,-25},{22.4,-44.3}},
lineColor={0,0,255}, textString="Liquid") }));

end Reactor;

Modelica Code 12.4: Simplified Tennessee Eastman model (4/8).

SIMULATION PRACTICE WITH MODELICA

connector pCon

parameter Integer nComp = 1 "Number of components";
Real conc[nComp](unit="1") "Concentration of each component";
Real P(unit = "kPa") "Pressure";
// Output Flow negative - Input flow positive
flow Real flowM(unit="mol.t-1") "Molar flow of each component";

end pCon;

model SourceValveO "Output source valve"

//Output flow negative - input flow positive
pCon OutCon(nComp = nComp)

annotation (Placement(transformation(
extent={{-79.6,-10},{-59.6,10}}),

iconTransformation(extent={{-79.6,-10},{-59.6,10}})));
parameter Integer nComp = 1;
parameter Real Tv(unit="h") = 0.00277778;
parameter Real Cv(unit="1") = 0.352;
input Real u;
Real X;
Real P;
Real conc[nComp];

equation
der(X)*Tv = u-X;
OutCon.flowM = if noEvent(P-100>0) then X/100*Cv*sqrt(P-100) else 0;
OutCon.conc = conc;
OutCon.P = P;
annotation (

Icon(coordinateSystem(preserveAspectRatio=false,
extent={{-100,-100},{100,100}}, grid={0.1,0.1}),

graphics={
Polygon(
points={{-60,40},{-60,-40},{0,0},{-60,40}},
lineColor={0,0,255}, smooth=Smooth.None,
fillColor={0,0,255}, fillPattern=FillPattern.Solid),

Polygon(
points={{60,40},{60,-40},{0,0},{60,40}},
lineColor={0,0,255}, smooth=Smooth.None,
fillColor={0,0,255}, fillPattern=FillPattern.Solid),

Rectangle(
extent={{-22.6,56},{25.4,50}}, lineColor={0,0,255},
fillColor={0,0,255}, fillPattern=FillPattern.Solid),

Rectangle(
extent={{-2.4,56},{3.6,0}}, lineColor={0,0,255},
fillColor={0,0,255}, fillPattern=FillPattern.Solid)}),

Diagram(coordinateSystem(preserveAspectRatio=false,
extent={{-100,-100},{100,100}}, grid={0.1,0.1}),
graphics));

end SourceValveO;

Modelica Code 12.5: Simplified Tennessee Eastman model (5/8).

SIMPLIFIED TENNESSEE EASTMAN MODEL

model SourceValveI "Input source valve"

parameter Integer nComp = 1;
parameter Real Tv(unit = "h") = 0.00277778;
parameter Real Fmax(unit = "kmol/h") = 330.46;
pCon OutCon(nComp = nComp)

annotation (Placement(
transformation(extent={{59.9,-10},{79.9,10}}),
iconTransformation(extent={{59.9,-10},{79.9,10}})));

input Real u;
Real X;
Real P;
parameter Real conc[nComp];

equation
der(X)*Tv = u-X;
OutCon.flowM = -Fmax*X/100;
OutCon.conc = conc;
OutCon.P = P;
annotation (Placement(

transformation(extent={{60,-10},{80,10}}),
iconTransformation(extent={{60,-10},{80,10}})),

Icon(coordinateSystem(preserveAspectRatio=false,
extent={{-100,-100},{100,100}}, grid={1,1}),
graphics={
Polygon(
points={{-60,40},{-60,-40},{0,0},{-60,40}},
lineColor={0,0,255}, smooth=Smooth.None,
fillColor={0,0,255}, fillPattern=FillPattern.Solid),

Polygon(
points={{60,40},{60,-40},{0,0},{60,40}},
lineColor={0,0,255}, smooth=Smooth.None,
fillColor={0,0,255}, fillPattern=FillPattern.Solid),

Rectangle(
extent={{-22.6,56},{25.4,50}},
lineColor={0,0,255}, fillColor={0,0,255},
fillPattern=FillPattern.Solid),

Rectangle(
extent={{-2.4,56},{3.6,0}},
lineColor={0,0,255}, fillColor={0,0,255},
fillPattern=FillPattern.Solid)}),

Diagram(coordinateSystem(preserveAspectRatio=false,
extent={{-100,-100},{100,100}}, grid={1,1})));

end SourceValveI;

Modelica Code 12.6: Simplified Tennessee Eastman model (6/8).

SIMULATION PRACTICE WITH MODELICA

model ReactorOpenLoop
parameter Real u1S = 60.95327;
parameter Real u2S = 25.023;
parameter Real u3S = 39.25777;
parameter Real u4S = 47.030248;
input Real u1(start=60.95327);
input Real u2(start=25.023);
input Real u3(start=39.25777);
input Real u4(start=44.1767);
Real F1;
Real F2;
Real F3;
output Real F4(displayUnit="kmol/hour") "Flow in stream 4";
output Real P(displayUnit="kPa") "Total pressure";
output Real Vl;
output Real yA3;
Real yB3;
Real yC3;
Real C;
Reactor reactorSeparator

annotation (Placement(transformation(
extent={{12,2},{38,38}})));

TESimplified.SourceValveI sourceValve1(nComp=4,
conc={0.485,0.005,0.51,0}, X(start=60.953271, fixed=true))

annotation (Placement(visible = true, transformation(
extent = {{-14, 24}, {6, 44}}, rotation = 0)));

TESimplified.SourceValveI sourceValve2(nComp=4,
Fmax=22.46, conc={1,0,0,0}, X(start=25.02, fixed=true))

annotation (Placement(visible = true, transformation(
extent = {{-14, 2}, {6, 22}}, rotation = 0)));

TESimplified.SourceValveO Purge(nComp=4,
X(start=39.25777, fixed=true))

annotation (Placement(visible=true, transformation(
extent={{44,26},{64,46}}, rotation=0)));

TESimplified.SourceValveO sourceValve4(Cv=4.17, nComp=4,
X(start=47.0302048, fixed=true))

annotation (Placement(transformation(
extent={{44,2},{64,22}})));

equation
connect(reactorSeparator.F3, Purge.OutCon)

annotation (Line(points={{34.1,25.76},{43.05,25.76},
{43.05,36},{47.04,36}}));

connect(sourceValve1.OutCon, reactorSeparator.F1)
annotation (Line(points={{2.99,34},{6,34},

{6,25.742},{15.965,25.742}}));
connect(sourceValve2.OutCon, reactorSeparator.F2)

annotation (Line(points={{2.99,12},{8,12},
{8,19.874},{15.939,19.874}}));

u1 = sourceValve1.u;
u2 = sourceValve2.u;
u3 = Purge.u;
u4 = sourceValve4.u;
F1 = reactorSeparator.F1.flowM;
F2 = reactorSeparator.F2.flowM;

Modelica Code 12.7: Simplified Tennessee Eastman model (7/8).

SIMPLIFIED TENNESSEE EASTMAN MODEL

F3 = -reactorSeparator.F3.flowM;
F4 = -reactorSeparator.F4.flowM;
P = reactorSeparator.P;
Vl = 100*reactorSeparator.Vliq/30;
yA3 = reactorSeparator.F3.conc[1]*100;
yB3 = reactorSeparator.F3.conc[2]*100;
yC3 = reactorSeparator.F3.conc[3]*100;
C = F3/F4*(2.206*yA3+6.177*yC3)/100;
connect(sourceValve4.OutCon, reactorSeparator.F4)

annotation (Line(points={{47.04,12},{40,12},
{40,15.464},{34.139,15.464}}, color={0,0,0}));

annotation (
Diagram(coordinateSystem(preserveAspectRatio=false,

extent={{-100,-100},{100,100}})),
experiment(StopTime = 60, StartTime = 0, Tolerance = 1e-06,

Interval = 0.12),
__Dymola_experimentSetupOutput(textual=true, derivatives=false));

end ReactorOpenLoop;

annotation (
uses(Modelica(version="3.2.2")),
experiment(StopTime=3),
__Dymola_experimentSetupOutput,
Documentation(info="<html>

<H2 align=center>TESimplified - The Simplified Tennessee Eastman Process</H2>

Author

<i>Carla Martin</i>

Department of Computer Science and Automatic Control, UNED

Madrid, Spain

email:carla@dia.uned.es

<p>

The Simplified Tennessee Eastman (TES) model (Ricker,1993)

is a simplification of the model described in (Downs

and Vogel, 1993), with only one process unit and eight

state variables.

This process unit is a combination of a

reactor and a separator of the original TE process.

The TES model is also a well-known benchmark

process. It is a multi-input multi-output, nonlinear system,

open-loop unstable, and contains fast and low dynamics.

</p>

<p><H2 align=left>References</H4></p>

<p>Ricker, N.L. (1993): <i>Model predictive control of a continuous,

nonlinear, two-phase reactor.</i> Journal of Process Control, 2, 109-123.</p>

<p>Downs, J.J. and Vogel, E.F. (1993): <i>A plant-wide industrial

process control problem.</i> Computers and Chemical

Engineering, 17(3), 245255.</p>

</HTML> "));

end TESimplified;

Modelica Code 12.8: Simplified Tennessee Eastman model (8/8).

SIMULATION PRACTICE WITH MODELICA

12.6 Task 3

The ReactorOpenLoop model is a description of the model in open loop, this is,

without any controller. This system should be controlled in order to get the desired

response. The controller model may be described in Modelica or using another

simulation tool (e.g., Matlab/Simulink).

In this task, we are going to describe the controller using Simulink blocks and

embed the ReactorOpenLoop model within a Simulink block. To this end, we will

export the ReactorOpenLoop model as a Functional Mockup Unit (FMU).

Any Modelica model can be generated as an FMU using the OpenModelica or

Dymola environments. This FMU can be embedded into other environments, such as

Matlab/Simulink. The variables declared as inputs/outputs in the Modelica model

will be the inputs/outputs of the generated Simulink block.

Therefore, we have to declare the manipulated variables of the ReactorOpenLoop

model (u1, u2, u3 and u4) as inputs, and the controlled variables (F4, P , Vliq, and

the concentration of component A in the purge denoted by F3.concA) as outputs.

To generate the FMU using OpenModelica, the Modelica model has to be opened

in OMEdit. Then, by clicking on FMI / Export FMU, the FMU is generated in the

working directory. The working directory can be changed by clicking on Tools /

Options.

With release R2017b and beyond, Simulink supports simulation and integration

workflows using the Functional Mockup Interface (FMI). The FMI import block

allows you to import FMU version 1.0 or version 2.0 into a Simulink model and

supports the following use cases: model exchange, and co-simulation.

Finally, control the system in the nominal operating point (see Table 12.1) using

the four discrete-time PI and the proportional controller described in the paper

(Ricker 1993) (see Figure 12.2). These PI follow the following velocity form equation,

with a sampling period ∆t = 0.1 h.

∆un = un − un−1 = Kc ·
[

en − en−1 +
∆t

τ1
· en

]

(12.17)

where en is the signal error, and Kc and τn are the controller parameter. The value

of these parameters for each control loop is shown in Table 12.2.

SIMPLIFIED TENNESSEE EASTMAN MODEL

Purge (A, B, C)
Stream4 (D)

Process Unit :reactor+separator
D

A, B, C P SP_Pu3
PMAXΣ

u1
Adjusted_F4SP_F4SP_Adjusted_F4F4

u2SP_F3.concA
F3.concA

Feed 1(A, B, C)Feed 2 (A)
P

C1
C4

C2C3
C5Vliqu4

SP_Vliq
Figure 12.2: Multiloop control strategy for the TES process.

Table 12.2: Control parameters.

Control loop Manipulated variable Controlled variable Kc τ1

C1 u1 F4 0.1 1.0

C2 u3 P -0.25 1.5

C3 u2 F3.concA 2.0 3.0

C4 Adjusted set-point for F4 P 0.7 3.0

C5 u4 Vliq -1.4 –

SIMULATION PRACTICE WITH MODELICA

12.7 Solution to Task 3

The Simulink model of the controlled plant is shown in Figure 12.3 and the plots

obtained simulating the model with Matlab/Simulink are shown in Figure 12.4.

Figure 12.3: Simulink TES process in closed loop.

SIMPLIFIED TENNESSEE EASTMAN MODEL

Figure 12.4: Plots obtained simulating the closed-loop TES model.

13

A
ss
ig
n
m
en
t

PEM fuel cell

Purpose of this assignment

– Practice modeling PEM fuel cells, which implies modeling gas and liquid

diffusion in porous media, electrochemical reactions, and electric circuits.

– Use spatial discretization to solve PDEs in Modelica.

13.1 System description

Fuel cells are electrochemical devices that transform chemical energy into electric

energy. In operation, unlike batteries, fuel cells are fed continuously with fuel. A

fuel cell, which is fed with hydrogen and oxygen to obtain water and electricity as

products, is depicted in Figure 13.1.

The internal-combustion engines used in automobiles are also continuously fed

with diesel, gasoline, etc. The difference between internal-combustion engines and

fuel cells is related with the use of the chemical energy. The burning reaction in

internal-combustion engines is a fast oxidation, whose reaction heat is partially

transformed into mechanical energy. On the contrary, the reaction in hydrogen fuel

cells is performed in two separated steps, as described in (13.1) and (13.2), which

allows to transform chemical energy into electrical energy efficiently.

H2 ⇋ 2H+ + 2e− (13.1)
1

2
O2 + 2H+ + 2e−

⇋ H2O (13.2)

SIMULATION PRACTICE WITH MODELICA

Figure 13.1: Products and reactants in hydrogen fuel cells.

Figure 13.2: Hydrogen fuel cell with liquid electrolyte.

The operation scheme of the first hydrogen fuel cell is shown in Figure 13.2. The

reaction in the left electrode (anode) is H2 ⇋ 2H+ + 2e−, whereas the reaction in

the right electrode (cathode) is 1
2
O2 + 2H+ + 2e−

⇋ H2O. The electrons generated

in the reaction are conducted through an external circuit, which allows to use the

electrical energy. The protons generated in the anode are conducted to the cathode

through the aqueous electrolyte, in order to complete the electrochemical reaction.

There exist several types of fuel cells, which are classified attending to their fuel,

constitutive materials, and design. The type of fuel cell considered in this assignment

is named PEM fuel cell. PEM stands for Proton Exchange Membrane or Polymeric

Electrolyte Membrane. PEM fuel cells have a solid polymer electrolyte, and use pure

hydrogen, and oxygen (air or pure oxygen) as fuel.

Solid polymer electrolytes have some advantages over liquid electrolytes. The

most important advantage of polymeric materials in this context is their high pro-

ton conductivity. Dupont’s NAFION, and the membranes manufactured by Dow

Chemical, are examples of widely-used commercial proton exchange membranes.

The structure of a PEM fuel cell (PEMFC) is schematically represented in

Figure 13.3. The PEMFC is composed of the following fundamental parts: the active

layers, the diffusion layers, the terminals of the anode and the cathode, and the

PEM FUEL CELL

Figure 13.3: Schematic diagram of a PEM fuel cell.

polymeric membrane that separates them. The membrane, active layers and diffusion

layers are usually named MEA (Membrane Electrode Assembly). In addition, the

PEMFC is composed of a set of auxiliary components that are necessary for its

operation, such as the seals, the refrigeration system, the humidification system

and the voltage (or electrical current) control. The fundamental parts are briefly

described below.

– Membrane. The membrane is a solid polymer electrolyte, usually sulfonated

polytetrafluoroethylene (PTFE), which is placed between the catalyst layers

of the anode and cathode. The free movement of protons in the electrolyte

structure, from anode to cathode, while the electrolyte is well hydrated, is the

main property of the membrane. In addition, the membrane does not allow

the crossover of hydrogen and oxygen.

– Active layers. The active layer, also named catalyst layer, is a thin layer

where the electrochemical reactions are carried out. It is located between the

membrane and the diffusion layer. The active layer has usually three compo-

nents: catalyst (e.g., platinum), liquid electrolyte, and an electrical conductor

(usually carbon powder) used as physical support. The ink obtained of mixing

these components is deposited on the surface of the diffusion layer of the anode

and cathode, or on the membrane surfaces.

SIMULATION PRACTICE WITH MODELICA

– Diffusion layers. The gas diffusion layers (GDL) are fabricated using porous

material, which allows the diffusion of gases and water to the catalyst layer.

High electric conductivity is a very important property of the diffusion layer, as

it has to allow the movement of the electrons between the collector plates and

the catalyst layers. The diffusion layer is often fabricated on carbon, paper or

cloth, due to their good conductivity and corrosion resistance. Metallic foams

are also used for this propose.

– Collector plates. The collector plates maintain the fuel cell structure, and

distribute the gases to the MEA. They are one of the most expensive com-

ponents of the PEMFC, as they are usually made of graphite, or machined

metals. Some important physical properties of the plates are high electrical

and thermal conductivities, and impermeability to gases and liquid water.

The plates are usually designed with channels, which allow the adequate

distribution of gases and the evacuation of excess water.

Modeling and simulation have been widely employed in the analysis of PEMFC

operation. For example, the diffusion of gases and liquid water in the porous media is

extensively studied, since the access of the fuel to the catalyst layer, in the presence of

liquid water, is one of the most important topics. The dependence of the membrane

conductivity on the water concentration, and the influence of other PEMFC design

parameters on the electrical performance have also a great interest.

Further reading. Excellent references on fuel cells are (Fuel Cell Handbook 2004,

Larminie & Dicks 2000, O‘Hayre et al. 2006). Modeling of PEMFC is discussed in

(Springer & Zawodzinsky 1991, Bernardi & Verbrugge 1992, Bevers et al. 1997, Broka

& Ekdunge 1997, Rubio et al. 2010). These suggested readings are not necessary to

complete the proposed tasks.

13.2 Outline of the assignment

Since the most important phenomena of the PEMFC occur in its cathode, only

this part of the cell will be considered. The relevant species in each layer of the

cathode are shown in Figure 13.4. The transport phenomena taken into account in

each layer are summarized in Table 13.1. The physical-chemical phenomena modeled

in this assignment are itemized below.

– Transport of liquid-phase and gas-phase water in the diffusion layer and the

active layer (also referred to as catalyst layer).

PEM FUEL CELL

Figure 13.4: Species considered in the model of the PEMFC cathode.

Table 13.1: Transport phenomena considered in each layer.

Phenomenon Membrane Catalyst layer Diffusion layer

Steam water diffusion X X X

Liquid water diffusion X X X

Oxygen diffusion – X X

Protonic conduction X X –

Electronic conduction – X X

– Transport of oxygen in the diffusion layer and the active layer.

– Electrical conduction in the active layer and the diffusion layer.

– Proton conduction in the membrane and the active layer.

– Electrochemical reaction in the active layer.

The proposed modeling tasks have been arranged in order of increasing comple-

xity, as described below.

Task 1 Diffusion of a gas in a porous media. Porous materials that allow gas

diffusion are often used in making the PEMFC electrodes. The objective of

this task is to model the one-dimensional diffusion of gas in a porous material,

with the aim of analyzing the spatial distribution of the gas pressure and molar

flow rate, in response to changes in the gas pressure applied at one end of the

material. This task is an introduction to the control volume technique, which

is applied in the other tasks to model the dependence of physical quantities

with respect to the spatial coordinates.

SIMULATION PRACTICE WITH MODELICA

Task 2 Diffusion of a binary mixture of gases (oxygen, and steam water), and

a liquid (liquid water) in porous media. The model developed in Task 1 is

extended to describe the molar balances and the diffusion of oxygen, steam

water and liquid water. As in Task 1, it is assumed that the diffusion of the

species occurs only in one direction and the porous medium is divided into

control volumes along that axis. The balances of steam water and liquid water

due to the evaporation and condensation processes are taken into account.

Task 3 Electric conduction and electrochemical reaction. The objective is twofold.

Firstly, to model the electron and proton conduction in the membrane, the

catalyst layer and the diffusion layer of the cathode. Secondly, to model the

electrochemical reaction that takes place in the catalyst layer.

Combining these models with the models developed in the previous tasks, the

complete model of the PEM fuel cell is obtained. Finally, the model of the

electrical circuit to polarize the PEMFC model is developed.

13.3 Task 1

The objective is to develop a one-dimensional model of gas diffusion in a porous

material, to calculate the gas pressure and molar flow rate as a function of the spatial

coordinate (x-axis) and time. The steps to develop the model are detailed below.

1. Spatial discretization. Divide the porous material into N equal control

volumes (see the example shown in Figure 13.5). Let VV C and LV C represent

the volume, and the length in the x-direction, of the control volume.

L

N

L

N

Figure 13.5: Porous medium divided into N = 6 control volumes of equal size.

2. Stirred tank approximation. Assume that the intensive properties of the

gas are time-dependent, and spatially uniform inside each control volume.

PEM FUEL CELL

The gas is allowed to flow through the interface between contiguous control

volumes. Each interface between contiguous control volumes defines a control

plane for gas transport. The gas that flows through a control plane has the

same properties as the gas contained inside the upstream control volume.

3. Control planes. The cross-sectional area of a control plane is SV C .

VV C = SV C · LV C (13.3)

4. Mole balance. The moles of gas stored in a control volume depend on the

gas transport through the control planes of the aforesaid control volume (see

Figure 13.6).

1F 2Fn

Figure 13.6: Gas mole balance over the control volume, dn
dt = F1 + F2.

5. Equation of state of an ideal gas. Assume that the gas behaves ideally.

p · V = n · R · T (13.4)

6. Gas volume in porous media. The volume (V) occupied by the gas in a

control volume is calculated as the product of the medium porosity (ε) and

the volume of the control volume (VV C). A constant porosity of the medium

is assumed.

V = ε · VV C (13.5)

7. Isothermal behavior Assume that the temperature of the gas contained in

a control volume is a constant, T0.

T = T0 (13.6)

8. Gas transport. The gas transport through a control plane depends on the

properties in the control volumes that share that control plane (see Figu-

re 13.7).

Let’s assume that the relevant mass transfer mechanisms are Knudsen flux

and ordinary diffusion. The relationship between the gradient of gas pressure

SIMULATION PRACTICE WITH MODELICA

F

1p 2p

VCL

VC
L

Figure 13.7: Molar flow rate (F) through the control plane.

(∇p) within the porous medium and the molar gas flow rate per area unit (J)

of the porous medium, in both diffusion mechanisms, is

J = − ε

τ 2
· D

R · T · ∇p (13.7)

where the parameter τ (units: unitless) represents the tortuosity of the me-

dium, and D (units: m2/s) is the coefficient corresponding to the diffusion

mechanism or mechanisms. If only Knudsen diffusion is considered, D is the

Knudsen diffusion coefficient. Similarly for ordinary diffusion. If both diffusion

mechanisms are considered, the value of D is calculated from the following

expression:

1

D
=

1

Dord
+

1

DK
(13.8)

Eq. (13.7) is applied to calculate the gas flow rate due to diffusion through the

control plane that separates two control volumes.

F

SV C

=
ε

τ 2
· D

R · T ·
p1 − p2

LV C

(13.9)

where F (units: mol/s) is the molar flow rate that is diffused from the control

volume with the pressure p1 to the control volume with pressure p2 (see again

Figure 13.7). The cross-sectional area of the control plane through which the

gas flow occurs is SV C (units: m2).

9. Connecting control volumes and transport phenomena. The model is

formulated by discretization of the material into control volumes. Contiguous

control volumes are connected by a model of the gas flow through the control

plane. Figure 13.8 shows a model composed of control volumes (labeled as

“VC”), connected to each other by a transport phenomenon model (labeled as

“FT”). In this case, the transport phenomenon is the gas diffusion.

PEM FUEL CELL

FT FT FT

…
…

VC VC VC VC VC

Figure 13.8: Model composed connecting control volumes and transport phenomena.

In Figure 13.8, the filled squares represent the connectors. The control volume

model has a connector, while the diffusion model has two connectors. A possible

selection of the connector variables is the following:

– Across variables: pressure (p) and temperature (T) of the gas within the

control volume.

– Through variable: input molar flow rate (F).

10. Boundary conditions. The values of the gas pressure at the ends of the

medium are imposed as a boundary condition. This is modeled by connecting

pressure sources, and transport phenomena describing diffusion through a

distance LV C/2, to the control volumes located at the ends. The diagram

of the complete model is shown in Figure 13.9.

FT FT FT…
VC VC VC VC VC

P P

FT FT

Figure 13.9: Porous medium with boundary conditions.

The proposed task consists in developing the Modelica models enumerated

below.

1. The connector.

2. The control volume.

3. The transport phenomenon.

4. The pressure source.

5. The complete model, including the boundary conditions (see again Figure 13.9).

Divide the porous media into N = 20 control volumes. The model parameters are

listed in Table 13.2. Observe that, as SV C = 1 m2, the molar flow rate is calculated

per unit area.

SIMULATION PRACTICE WITH MODELICA

Table 13.2: Parameters used in Task 1.

Quantity Meaning Value

T0 Temperature 300 K

ε Porosity 0.1

R Ideal gas constant 8.31447 J/mol/K

L Total length of the layer 0.003 m

τ Tortuosity 5

D Diffusion coefficient 2.5e-2 m2/s

SV C Diffusion cross-sectional area 1 m2

Simulate the complete model to calculate the evolution of the gas pressures and

the molar flow rates. The initial pressure of the gas into the porous media is zero.

The boundary conditions for the gas pressure are 105 Pa (=1 bar) and 2 · 105 Pa

(=2 bars). Plot the pressure and the molar flow rate in the control volumes number

1, 5, 10, 15 and 20.

13.4 Solution to Task 1

The models are described in Modelica Code 13.1 and 13.2. The pressure and the

molar flow rate in the control volumes number 1, 5, 10, 15 and 20 are plotted in

Figures 13.10 – 13.12.

PEM FUEL CELL

connector P_F

Modelica.SIunits.Pressure P "Gas pressure";
Modelica.SIunits.Temperature T "Temperature";
flow Real F (unit="mol/s") "Molar flow rate of gas";

end P_F;

model VC
Modelica.SIunits.Volume V;
Modelica.SIunits.Volume Vvc "Volume of the control volume";
Real n(unit="mol");
parameter Modelica.SIunits.Length Lvc "Length of the control volume";
parameter Modelica.SIunits.Area Svc "Cross-sectional area of control volume";
parameter Modelica.SIunits.Temp_K To;
parameter Real epsilon "Porosity of the medium";
constant Real R=8.31447(unit="J/mol/K)") "Ideal gas constant";

P_F p_f;
equation
p_f.F = der(n);
p_f.P*V = n*R*p_f.T;
V = epsilon*Vvc;
Vvc = Svc*Lvc;
p_f.T = To;

end VC;

model FT
parameter Modelica.SIunits.Length Lvc "Length of the control volume";
parameter Modelica.SIunits.DiffusionCoefficient D "Diffusion coeff.";
parameter Real epsilon "Porosity of the medium";
parameter Real tau "Tortuosity of the medium";
parameter Modelica.SIunits.Area Svc "Area of the control volume";
constant Real R=8.31447(unit="J/mol/K)") "Ideal gas constant";

P_F p_f_1;
P_F p_f_2;

equation
p_f_2.F = if (p_f_2.P > p_f_1.P) and p_f_2.P > 0

then (Svc*epsilon*D*(p_f_2.P - p_f_1.P))/(tau^2*R*p_f_2.T)
else if (p_f_1.P > p_f_2.P) and p_f_1.P > 0

then (Svc*epsilon*D*(p_f_2.P - p_f_1.P))/(tau^2*R*p_f_2.T)
else 0;

p_f_1.F = -p_f_2.F;
end FT;

model Source_P
parameter Modelica.SIunits.Pressure Po;
parameter Modelica.SIunits.Temperature To;

P_F p_f;
equation
p_f.P = Po;
p_f.T = To;

end Source_P;

Modelica Code 13.1: Gas diffusion in porous medium (1/2).

SIMULATION PRACTICE WITH MODELICA

model Diffusion_Layer
parameter Integer N=20;
parameter Modelica.SIunits.Length L=0.003 "Total length of the layer";
parameter Modelica.SIunits.Temp_K To=300;
parameter Modelica.SIunits.DiffusionCoefficient D=2.5e-2 "Diffusion coeff.";
parameter Real epsilon=0.1 "Porosity of the medium";
parameter Modelica.SIunits.Area Svc =1 "Area of the control volume";
parameter Real tau=5 "Tortuosity of the medium";
parameter Modelica.SIunits.Length l=L/N;
parameter Modelica.SIunits.Pressure Pres_1 =1e5 "Boundary pressure 1";
parameter Modelica.SIunits.Pressure Pres_2 =2e5 "Boundary pressure 2";
parameter Real lv_ft[N + 1]=

{if i == 1 or i == (N + 1) then l/2 else l for i in 1:(N + 1)};

FT f_t[N + 1] (
Lvc=lv_ft,
Svc=fill(Svc, N + 1),
D=fill(D, N + 1),
epsilon=fill(epsilon, N + 1),
tau=fill(tau, N + 1));

VC v_c[N] (
Lvc=fill(l, N),
Svc=fill(Svc, N),
To=fill(To, N),
epsilon=fill(epsilon, N));

Source_P p1(Po=Pres_1, To=To);
Source_P p2(Po=Pres_2, To=To);

equation
connect(p1.p_f, f_t[1].p_f_1);

for conta in 1:N loop
connect(f_t[conta].p_f_2, v_c[conta].p_f);
connect(v_c[conta].p_f, f_t[conta + 1].p_f_1);

end for;

connect(f_t[N + 1].p_f_2, p2.p_f);

end Diffusion_Layer;

Modelica Code 13.2: Gas diffusion in porous medium (2/2).

PEM FUEL CELL

Figure 13.10: Pressure in the control volumes number 1, 5, 10, 15 and 20.

Figure 13.11: Molar flow rate in the control volumes number 1, 5, 10, 15 and 20.

SIMULATION PRACTICE WITH MODELICA

Figure 13.12: Detail of the molar flow rate in the control volumes number 1, 5, 10, 15 and 20.

13.5 Task 2

A relevant phenomenon that occurs in the PEMFC cathode is the interaction

of two gaseous species: oxygen and steam water. Also, in PEMFC operated at

temperatures below 100 0C, the presence of liquid water plays a fundamental role

that must also be taken into account.

The objective of this task is to extend the model developed in Task 1, by

considering a second gaseous species and the liquid phase. The phenomena modeled

are the diffusion of the species, and the balance of steam water and liquid water

due to evaporation and condensation processes. As in Task 1, it is assumed that

the diffusion of the species only occurs along the x axis, and the porous medium is

divided into control volumes along that axis.

The control volume represents a fraction of the porous medium, that contains

a mixture of two gaseous species (oxygen and steam water) and liquid water. The

model of the control volume comprises: the molar balances of oxygen, steam water

and liquid water; the state equation of the gas mixture; the energy balance; the

expression to calculate the volume occupied by the gas mixture; and the equations

that describe water evaporation and condensation. This is described in detail below.

1. Molar balance. The molar balance of each species in a control volume is

described as follows:

PEM FUEL CELL

dnO2

dt
= FO2

(13.10)

dnH2O,g

dt
= FH2O,g + GH2O,g (13.11)

dnH2O,l

dt
= FH2O,l + GH2O,l (13.12)

where nO2
, nH2O,g and nH2O,l represent the number of moles (units: mol) of

oxygen, steam water and liquid water contained in the control volume; FO2
,

FH2O,g and FH2O,l represent the molar flow rate (units: mol/s) of oxygen, steam

water and liquid water entering the control volume; and GH2O,g and GH2O,l

represent the moles of steam water and liquid water generated per time unit

(units: mol/s) in the control volume due to phase transition.

2. Mass and volume of liquid water. The moles (nH2O,l) and mass (mH2O,l)

of liquid water are related by Eq. (13.13), where MH2O = 18 gr/mol is the

molar mass of water.

nH2O,l =
mH2O,l

MH2O

(13.13)

The volume (VH2O,l) and mass of liquid water are related by Eq. (13.14), where

ρH2O,l represents the liquid water density.

VH2O,l =
mH2O,l

ρH2O,l

(13.14)

3. Equation of state for an ideal gas mixture. Assuming an ideal mixture,

the state equations of the gas species are the following:

pO2
· Vg = nO2

· R · Tg (13.15)

pH2O,g · Vg = nH2O,g · R · Tg (13.16)

where Vg is the total volume (units: m3) occupied by the gas mixture; Tg

is the temperature (units: K) of the gas mixture; and pO2
and pH2O,g are

the partial pressures (units: Pa) of oxygen and steam water respectively. The

partial pressure of a gas is defined as the pressure that the gas would exert if

it were alone in all the volume.

SIMULATION PRACTICE WITH MODELICA

As we are assuming that the gas mixture is ideal, the total pressure (pg) of the

gas mixture is the sum of the partial pressures of the components (Dalton’s

Law of partial pressures).

pg = pO2
+ pH2O,g (13.17)

4. Gas volume in a porous media. The porous media is composed of solid

material and pores. The volume of the solid material (Vs) plus the volume of

the pores (Vpore) is equal to the total volume (VV C) of the control volume.

The gas mixture and the liquid water can only occupy the pore volume. In

particular, the volume occupied by the gas mixture (Vg) is equal to the total

pore volume (Vpore) minus the volume occupied by liquid water (VH2O,l).

VV C = Vpore + Vs (13.18)

Vpore = Vg + VH2O,l (13.19)

Unitless parameters that describe the volume ratio occupied by pores, solid

material, the gas mixture, and liquid water are defined as follows:

εpore =
Vpore

VV C

εs =
Vs

VV C

εg =
Vg

VV C

εH2O,l =
VH2O,l

VV C

(13.20)

These parameters satisfy the following relationships:

εpore + εs = 1 (13.21)

εpore = εg + εH2O,l (13.22)

5. Water load. The water load (χ) is a unitless quantity that represents the

relationship between the masses of liquid water and solid inside the control

volume.

χ =
mH2O,l

ms
(13.23)

There is a maximum limit for the water load (χmax) in a porous medium. This

limit is reached when the pore volume is completely filled with liquid water

PEM FUEL CELL

(VH2O,l = Vpore) and, consequently, the gas volume is zero (Vg = 0). As the

maximum mass of liquid water inside the porous material is:

mH2O,l,max = ρH2O,l · Vpore (13.24)

the maximum value of the water load is:

χmax =
mH2O,l,max

ms
=

ρH2O,l · Vpore

ms
(13.25)

The relative water load (χrel) provides a good indication of the amount of

liquid water contained inside the porous medium. It is defined as the water

load (χ) divided by the maximum water load (χmax).

χrel =
χ

χmax

(13.26)

6. Mass of solid material. The mass of solid material (ms) inside the control

volume is related with the density of the porous material (ρs), as shown in

Eq. (13.27).

ms = VV C · ρs (13.27)

7. Isothermal behavior. The temperatures of the gas mixture and the liquid

water are assumed to be equal and time-independent. The constant tempera-

ture of the gas mixture and the liquid water is referred to as T0.

Tg = T0 (13.28)

TH2O,l = T0 (13.29)

8. Water evaporation and condensation. The molar flow rate of liquid water

(GH2O,l, units: mol/s) generated inside the control volume due to the conden-

sation of steam water can be calculated as follows:

GH2O,l = VV C ·
αv · β
R · Tg

·
(

pH2O,g − psat
H2O

)

(13.30)

where VV C (units: m3) is the volume of the control volume; αv (units: m2/m3)

and β (units: m/s) are two parameters referred to as specific condensation

surface and mass transfer coefficient respectively; R (units: Pa·m3/mol/K) is

SIMULATION PRACTICE WITH MODELICA

the ideal gas constant; Tg (units: K) is the gas temperature; and pH2O,g and

psat
H2O (units: Pa) are the partial pressure of steam water and the saturation

pressure of water respectively.

The saturation pressure of water (psat
H2O,g) depends mainly on temperature (Tg)

psat
H2O = psat

0H2O
· exp

[(

1

T sat
0

− 1

Tg

)

· Lv ·MH2O

R

]

(13.31)

where psat
0H2O

and T sat
0 are known parameters; and the evaporation molar ent-

halpy (Lv, units: J/mol) can be estimated by using the expression written

below, where the Tg temperature is expressed in Kelvin.

Lv = 1.73287 · 106 + 1.03001 · 10−4 · Tg − 4.47755 · 101 · T 2
g +

7.6629 · 10−2 · T 3
g − 5.5058 · 10−5 · T 4

g (13.32)

During the phase transition, each mole of steam water produces one mole of

liquid water, and vice versa. The molar flow rate of steam water generated

inside the control volume due to evaporation is:

GH2O,g = −GH2O,l (13.33)

Compiling the above equations, the complete model of the control volume

shown in Table 13.3 is obtained.

In order to assess whether this set of equations completely describes the control

volume, let’s analyze its computational causality. To this end, we set the compu-

tational causality of the interface variables and select the state variables as described

below.

– The quantities that describe the molar flow rate entering the control volume

are input variables: FO2
, FH2O,g and FH2O,l.

– The moles of the species are state variables: nO2
, nH2O,g and nH2O,l.

– The following parameters have known constant values: MH2O, ρH2O,l, ρs, R,

VV C , εpore, T0, αv, β, psat
0H2O

and T sat
0 .

– The following variables are evaluated from the model equations:
dnO2

dt
,

dnH2O,g

dt
,

dnH2O,l

dt
, GH2O,g, GH2O,l, mH2O,l, ms, VH2O,l, Vg, Vpore, εg, Tg, pO2

, pH2O,g, psat
H2O,

χ, χmáx, χrel and Lv.

PEM FUEL CELL

Table 13.3: Complete model of the control volume.

dnO2

dt
= FO2

(13.34)

dnH2O,g

dt
= FH2O,g + GH2O,g (13.35)

dnH2O,l

dt
= FH2O,l + GH2O,l (13.36)

nH2O,l =
mH2O,l

MH2O
(13.37)

VH2O,l =
mH2O,l

ρH2O,l
(13.38)

pO2
· Vg = nO2

· R · Tg (13.39)

pH2O,g · Vg = nH2O,g · R · Tg (13.40)

Tg = T0 (13.41)

εpore =
Vpore

VV C

(13.42)

εg =
Vg

VV C

(13.43)

Vpore = Vg + VH2O,l (13.44)

χ =
mH2O,l

ms
(13.45)

χmax =
ρH2O,l · Vpore

ms
(13.46)

χrel =
χ

χmax

(13.47)

ms = VV C · ρs (13.48)

GH2O,l = VV C ·
αv · β
R · Tg

·
(

pH2O,g − psat
H2O

)

(13.49)

GH2O,g = −GH2O,l (13.50)

psat
H2O = psat

0H2O
· exp

[(

1

T sat
0

− 1

Tg

)

Lv ·MH2O

R

]

(13.51)

Lv = 1.73287 · 106 + 1.03001 · 10−4 · Tg − 4.47755 · 101 · T 2
g +

7.6629 · 10−2 · T 3
g − 5.5058 · 10−5 · T 4

g (13.52)

SIMULATION PRACTICE WITH MODELICA

1 2F
→

1c

VC
L

2c

Figure 13.13: Diffusion of liquid water produced by concentration gradient.

An ordering of the model, with the variable to evaluate from each equation

written within square brackets, is shown in Table 13.4.

Once the control volume is modeled, the next step is to describe the diffusion

of liquid and gas between adjacent control volumes. This is described in detail

below.

1. Diffusion of liquid water. The molar concentration of liquid water (cH2O,l)

within a control volume is calculated by dividing the moles of liquid water

(nH2O,l) contained in the control volume by the volume of the control volume

(VV C).

cH2O,l =
nH2O,l

VV C
(13.72)

Consider a control plane with area SV C that separates two control volumes

with molar concentrations of water c1 and c2 (units: mol/m3), respectively.

The molar flow rate of liquid water (F1→2), through the control plane is (see

Figure 13.13):

F1→2 = SV C ·DH2O,l ·
c1 − c2

LV C
(13.73)

where F1→2 (units: mol/s) is positive while the flow goes from the control

volume with concentration c1 to the control volume with concentration c2.

The symbol DH2O,l represents the diffusion coefficient (units: m2/s).

2. Diffusion of the gaseous species. The following expression describes the

mass transport due to ordinary diffusion and Knudsen diffusion of two gaseous

species in a porous media

∇pj = −R · Tg
εg

τ2

· Jj ·
(

1

DjK

+
1

Dij

)

for j : 1, 2; i 6= j (13.74)

PEM FUEL CELL

Table 13.4: Sorted model of the control volume.

[Tg] = T0 (13.53)

[Lv] = 1.73287 · 106 + 1.03001 · 10−4 · Tg − 4.47755 · 101 · T 2
g +

7.6629 · 10−2 · T 3
g − 5.5058 · 10−5 · T 4

g (13.54)

nH2O,l =
[mH2O,l]

MH2O
(13.55)

[VH2O,l] =
mH2O,l

ρH2O,l
(13.56)

εpore =
[Vpore]

VV C
(13.57)

Vpore = [Vg] + VH2O,l (13.58)

[εg] =
Vg

VV C

(13.59)

[pO2
] · Vg = nO2

· R · Tg (13.60)

[pH2O,g] · Vg = nH2O,g · R · Tg (13.61)

[ms] = VV C · ρs (13.62)

[χ] =
mH2O,l

ms
(13.63)

[χmax] =
ρH2O,l · Vpore

ms
(13.64)

[χrel] =
χ

χmax

(13.65)

[

psat
H2O

]

= psat
0H2O
· exp

[(

1

T sat
0

− 1

Tg

)

Lv ·MH2O

R

]

(13.66)

[GH2O,l] = VV C ·
αv · β
R · Tg

·
(

pH2O,g − psat
H2O

)

(13.67)

[GH2O,g] = −GH2O,l (13.68)
[

dnO2

dt

]

= FO2
(13.69)

[

dnH2O,g

dt

]

= FH2O,g + GH2O,g (13.70)

[

dnH2O,l

dt

]

= FH2O,l + GH2O,l (13.71)

SIMULATION PRACTICE WITH MODELICA

1 2VC VC
F

→

2,VC1Op

VCL

H2O, ,VC1gp
2,VC2Op

H2O, ,VC2gp

Figure 13.14: Diffusion of a binary gaseous mixture between adjacent control volumes.

where τ (units: unitless) is the tortuosity of porous medium; εg (units: unitless)

is the fraction of volume that can be occupied by the gas, as described by

Eq. (13.20); pj (units: Pa) is the partial pressure of the j gaseous species; Tg

(units: K) is the temperature of the gas mixture; Jj is the molar flux (units:

mol/s/m2) of the j gaseous species; DjK (units: m2/s) is the Knudsen diffusion

coefficient of the j gaseous species; and Dij (units: m
2/s) is the binary diffusion

coefficient of the i and j gaseous species.

The temperature and pressure dependence of the Dij diffusion coefficient can

be described as shown in Eq. (13.75), where Dij is the diffusion coefficient at

the pg pressure and the Tg temperature, provided that the value of the diffusion

coefficient at the reference pressure and temperature (pref
g , T ref

g) is Dref
ij .

Dij = Dref
ij

pg

pref
g

(

Tg

T ref
g

)1.5

(13.75)

Eq. (13.74) can be particularized to the case where the mixture is composed

of oxygen and steam water:

dpO2

dx
= −R · Tg

εg

τ2

· JO2
·
(

1

DO2K

+
1

DO2/H2O,g

)

(13.76)

dpH2O,g

dx
= −R · Tg

εg

τ2

· JH2O,g ·
(

1

DH2O,gK
+

1

DO2/H2O,g

)

(13.77)

where DO2/H2O,g is the binary diffusion coefficient of oxygen and steam water;

and DO2K and DH2O,gK are the Knudsen diffusion coefficients of oxygen and

steam water, respectively.

Consider two adjacent control volumes, referred to as VC1 and VC2, as shown

in Figure 13.14. The partial pressures of oxygen are represented as pO2,V C1 and

pO2,V C2; and the partial pressures of steam water as pH2O,g,V C1 and pH2O,g,V C2.

The molar flux of oxygen, represented as FV C1→V C2,O2, is positive while the

PEM FUEL CELL

diffusion flow of oxygen exits VC1 and enters VC2. The same criterion is

applied to the molar flux of steam water, FV C1→V C2,H2O,g.

Spatial discretization of Eqs. (13.76) and (13.77) is carried out to calculate the

molar flux (number of moles per unit area per unit time) by diffusion between

adjacent control volumes. The following equations describe the diffusion of

oxygen and steam water in a porous material.

pO2 = max {pO2,V C1, pO2,V C2} (13.78)

pH2O,g = max {pH2O,g,V C1, pH2O,g,V C2} (13.79)

pg = pO2 + pH2O,g (13.80)

Tg = T0 (13.81)

DO2/H2O,g = Dref
O2/H2O,g ·

pg

pref
g

·
(

Tg

T ref
g

)1.5

(13.82)

pO2,V C1 − pO2,V C2

LV C
=

R · Tg
εg

τ2

· JO2
·
(

1

DO2K
+

1

DO2/H2O,g

)

(13.83)

pH2O,g,V C1 − pH2O,g,V C2

LV C

=
R · Tg

εg

τ2

· JH2O,g ·
(

1

DH2O,gK

+
1

DO2/H2O,g

)

(13.84)

FV C1→V C2,O2 = JO2
· SV C (13.85)

FV C1→V C2,H2O,g = JH2O,g · SV C (13.86)

Observe that, if the partial pressures in the control volumes are known va-

riables (e.g., they are calculated from the control volume model), and the

T0, Dref
O2/H2O,g, pref

g , T ref
g , DO2K , DH2O,gK, LV C , SV C , R, εg and τ parame-

ters have known values, then the pO2, pH2O,g, pg, Tg, DO2/H2O,g, JO2
, JH2O,g,

FV C1→V C2,O2 and FV C1→V C2,H2O,g variables can be calculated, one after anot-

her, from Eqs. (13.78) – (13.86).

The proposed task consists in developing the Modelica models enumerated

below.

1. The connector.

2. The control volume.

3. The species transport.

4. The boundary conditions for the diffusion layer model. This is, a model des-

cribing the evolution in time of the species pressure and concentrations.

SIMULATION PRACTICE WITH MODELICA

Table 13.5: Parameters of the model defined in Task 2.

Quantity Symbol Value

Temperature T0 300 K

Molar mass of water MH2O 18 gr/mol

Water density ρH2O,l 1000 kg/m3

Solid density ρs 727 kg/m3

Ideal gas constant R 8.31447 J/mol/K

Condensation area αv 10−9 m2

Transfer coefficient β 0.001 m/s

Binary diffusion coefficient DO2/H2O,g 2.82 · 10−3 m2/s

Knudsen diffusion coefficient of oxygen DO2K 7.853 · 10−3 m2/s

Knudsen diffusion coefficient of steam water DH2O,gK 1.047 · 10−3 m2/s

Diffusion coefficient of liquid water DH2O,l 2.5 · 10−4 m2/s

Porosity εpore 0.2

Length of the layer L 0.01 m

Tortuosity τ 5

Medium area SV C 1 m2

Saturation pressure of water T sat
0 psat

0H2O
3169 Pa

Reference temperature for saturation pressure T sat
0 298.16 K

Table 13.6: Initial conditions used in Task 2.

Quantity Boundaries Inside the layer

Oxygen pressure 1 bar / 2 bars 0 bar

Steam water pressure 1 bar / 1 bar 0 bar

Liquid water load 0 / 0 0.03

Table 13.7: Boundary conditions used in Task 2.

Quantity Left end Right end

Oxygen pressure 1 bar 2 bars

Steam water pressure 1 bar 1 bar

Liquid water load 0 0

PEM FUEL CELL

Instantiating and connecting the models previously defined, compose a model

of a layer and its terminal boundary conditions. To this end, discretize the porous

media into N = 20 control volumes. The model parameters are defined in Table 13.5.

Notice that, as SV C = 1 m2, the molar flux is equal the molar flow rate.

Simulate the model of the diffusion layer to calculate the evolution of the gas

species pressures, the liquid water load, and the molar flux of all species in each

control volume. The initial and the boundary conditions are described in Tables 13.6

and 13.7. Plot the pressures of the gas species, the liquid water load, and the molar

flux of all species at the control volumes number 1, 5, 10, 15, and 20.

13.6 Solution to Task 2

The connector is defined in Modelica Code 13.3, the control volume in Mode-

lica Code 13.4, the diffusion transport in Modelica Code 13.5, and the boundary

conditions and the complete model of the diffusion layer in Modelica Code 13.6.

The pressures of oxygen and steam water in the control volumes number 1, 5,

10, 15 and 20 are plotted in Figures 13.15 and 13.16. The liquid water load in the

control volumes number 1, 5, 10, 15 and 20 is represented in Figure 13.17. The molar

fluxes of steam water, liquid water and oxygen in the control volumes number 1, 5,

10, 15 and 20 are shown in Figures 13.18 – 13.20.

connector P_F2

Modelica.SIunits.Temperature Tg;
Modelica.SIunits.Pressure p_O2 "Pressure of oxygen";
Modelica.SIunits.Pressure p_H2O_g "Pressure of steam water";
flow Real n_H2O_l (unit="mol") "Moles of liquid water";

Real E_g "Portion of pores occupied by the gas";
flow Real F_O2 (unit="mol/s") "Molar flow rate of oxygen";
flow Real F_H2O_g (unit="mol/s") "Molar flow rate of steam water";
flow Real F_H2O_l (unit="mol/s") "Molar flow rate of liquid water";

end P_F2;

Modelica Code 13.3: Diffusion of binary gas mixture and liquid in porous medium (1/4).

SIMULATION PRACTICE WITH MODELICA

model VC2
parameter Real M_H2O=0.018 (unit="kg/mol") "Molar mass of water";

parameter Modelica.SIunits.Density rho_H2O_l=1000 "Liquid water density";
outer parameter Real R (unit="J/K/mol") "Ideal gases constant";
outer parameter Modelica.SIunits.Density rho_s "Solid density";
outer parameter Real Vvc (unit="m3") "Volume of the control volume";
outer parameter Real Epores "Porosity of the medium";
outer parameter Real To (unit="K") "Temperature";
outer parameter Real alfa_v (unit="m2") "Condensation specific surface";
outer parameter Real beta (unit="m/s") "Mass transfer coefficient";
outer parameter Real To_sat (unit="K") "Saturation temperature";
outer parameter Real P0_H2O_sat (unit="Pa")

"Water saturation pressure at To_sat";
outer parameter Real Xo "Initial liquid water load";
Real n_O2 (unit="mol") "Moles of O2";
Real n_H2O_g (unit="mol") "Moles of steam water";
Real G_H2O_g (unit="mol/s") "Steam water generated";
Real G_H2O_l (unit="mol/s") "Liquid water generated";
Real m_H2O_l (unit="kg") "Mass of steam water";
Real m_s (unit="kg") "Mass of the solid";
Real V_H2O_l (unit="m3") "Volume of liquid water";
Real V_g (unit="m3") "Volume of the gas";
Real Vpores (unit="m3") "Volume of pores";
Real X "Liquid water load";
Real Xmax "Maximum liquid water load";
Real Xrel "Relative liquid water load";
Real Lv (unit="J/mol") "Evaporation molar enthalpy";
Real P_H2O_sat (unit="Pa") "Water saturation pressure";

P_F2 p_f;
equation
p_f.F_O2 = der(n_O2);
p_f.F_H2O_g + G_H2O_g = der(n_H2O_g);
p_f.F_H2O_l + G_H2O_l = der(p_f.n_H2O_l);
p_f.n_H2O_l = m_H2O_l/M_H2O;
V_H2O_l = m_H2O_l/rho_H2O_l;
p_f.p_O2*V_g = n_O2*R*p_f.Tg;
p_f.p_H2O_g*V_g = n_H2O_g*R*p_f.Tg;
p_f.Tg = To;
Epores = Vpores/Vvc;
Vpores = V_g + V_H2O_l;
p_f.E_g = V_g/Vvc;
X = m_H2O_l/m_s;
Xmax = rho_H2O_l*Vpores/m_s;
Xrel = X/Xmax;
m_s = Vvc*rho_s;
G_H2O_l = if p_f.p_H2O_g > 0 or X > 0 then Vvc*alfa_v*beta*(p_f.p_H2O_g -

P_H2O_sat)/(R*p_f.Tg) else 0;
G_H2O_g = -G_H2O_l;
P_H2O_sat = P0_H2O_sat*exp(((1/To_sat) - (1/p_f.Tg))*Lv*M_H2O/R);
Lv = 1.73287e6 + 1.03001e-4*p_f.Tg - 4.47755e1*p_f.Tg^2 +7.6629e-2*p_f.Tg^3 -

5.5058e-5*p_f.Tg^4;
initial equation
X = Xo;

end VC2;

Modelica Code 13.4: Diffusion of binary gas mixture and liquid in porous medium (2/4).

PEM FUEL CELL

model FT2
Real pO2 (unit="Pa") "Partial pressure of oxygen";
Real pH2O_g (unit="Pa") "Partial pressure of steam water";
Real p_g (unit="Pa") "Total pressure of the gases";
Real J_O2 (unit="mol/s/m2") "Flux per area unit of oxygen";
Real J_H2O_g (unit="mol/s/m2") "Flux per area unit of steam water";
Real D_O2_H2O_g (unit="m2/s") "Binary diffusion coefficient";
Real Egmin "Free liquid portion of pores";

outer parameter Real D_O2_H2O_g_ref (unit="m2/s")
"Binary diffusion coefficient";

outer parameter Real p_g_ref (unit="Pa")
"Reference pressure for binary diffusion";

outer parameter Real Tg_ref (unit="K")
"Reference temperature for binary diffusion";

outer parameter Real To (unit="K") "Temperature of medium";
outer parameter Real D_H2O_g_k (unit="m2/s")

"Knudsen diffusion coefficient of steam water";
outer parameter Real D_O2_k (unit="m2/s")

"Knudsen diffusion coefficient of oxygen";
outer parameter Real D_H20_l (unit="m2/s")

"Diffusion coefficient of liquid water";
outer parameter Real tau "Tortuosity";
outer parameter Real Svc (unit="m2") "Control volume area";
outer parameter Real R (unit="J/K/mol") "Ideal gas constant";
parameter Real Lvc (unit="J/mol") "Evaporation molar enthalpy";

P_F2 p_f_1;
P_F2 p_f_2;

equation
p_f_1.F_H2O_l = D_H20_l*(p_f_1.n_H2O_l - p_f_2.n_H2O_l)/(Lvc^2);
pO2 = max(p_f_1.p_O2, p_f_2.p_O2);
pH2O_g = max(p_f_1.p_H2O_g, p_f_2.p_H2O_g);
p_g = pO2 + pH2O_g;
D_O2_H2O_g = D_O2_H2O_g_ref*(p_g/p_g_ref)*(p_f_2.Tg/Tg_ref)^1.5;
Egmin = max(0, min(p_f_1.E_g, p_f_2.E_g));
J_O2 = if (p_g > 0)

then (Egmin/tau^2)*(p_f_1.p_O2 - p_f_2.p_O2)/(Lvc*R*p_f_2.Tg*((1/D_O2_k)
+ (1/D_O2_H2O_g))) else 0;

J_H2O_g = if (p_g > 0)
then (Egmin/tau^2)*(p_f_1.p_H2O_g - p_f_2.p_H2O_g)/(Lvc*R*p_f_2.Tg*((1/D_O2_k)

+ (1/D_O2_H2O_g))) else 0;
p_f_2.F_O2 = -J_O2*Svc;
p_f_2.F_H2O_g = -J_H2O_g*Svc;
p_f_1.F_O2 = -p_f_2.F_O2;
p_f_1.F_H2O_g = -p_f_2.F_H2O_g;
p_f_1.F_H2O_l = -p_f_2.F_H2O_l;

end FT2;

Modelica Code 13.5: Diffusion of binary gas mixture and liquid in porous medium (3/4).

SIMULATION PRACTICE WITH MODELICA

model Source_P2
parameter Real presion_O2 (unit="Pa")

"Boundary condition of oxygen pressure";
parameter Real presion_H2O_g (unit="Pa")

"Boundary condition of steam water pressure";
outer parameter Real To (unit="K") "Boundary condition of temperature";

P_F2 p_f;
equation
p_f.p_O2 = presion_O2;
p_f.p_H2O_g = presion_H2O_g;
p_f.n_H2O_l = 0;
p_f.Tg = To;
p_f.E_g = 1;

end Source_P2;

model Diffusion_Layer2
parameter Integer N=20;
parameter Real L=0.01 (unit="m") "Length of the layer";
parameter Real l=L/(N) (unit="m") "Length of the control volume";
inner parameter Real Svc=1 "Medium area";
inner parameter Real Vvc=Svc*l "Volume of the control volume";
inner parameter Real To=300 "Temperature of the medium";
inner parameter Real rho_s=727 "Density of the solid";
inner parameter Real R=8.31447 "Ideal gas constant";
inner parameter Real alfa_v=1e-9 "Condensation specific area";
inner parameter Real beta=0.001 "Mass transfer coefficient";
inner parameter Real D_H2O_g_k=1.047e-3 "Knudsen diff. coeff. steam water";
inner parameter Real D_O2_k=7.853e-3 "Knudsen diff. coeff. of oxygen";
inner parameter Real D_O2_H2O_g_ref=2.82e-3 "Binary diffusion coefficient";
inner parameter Real p_g_ref=1e5 "Reference pressure of binary diffusion";
inner parameter Real Tg_ref=308.1 "Reference pressure of binary diffusion";
inner parameter Real D_H20_l=2.5e-4 "Diffusion coefficient of liquid water";
inner parameter Real Epores=0.2 "Porosity of the medium";
inner parameter Real tau=5 "Tortuosity";
inner parameter Real To_sat=298.16 "Saturation temperature";
inner parameter Real P0_H2O_sat=3169 "Saturation pressure of water at To_sat";
inner parameter Real Xo=0.03 "Initial liquid water load";

parameter Real lv_ft[N + 1]={if i == 1 or i == (N + 1)
then l/2 else l for i in 1:(N + 1)};

VC2 v_c[N];
FT2 f_t[N + 1](Lvc=lv_ft);
Source_P2 p1(presion_O2=1e5, presion_H2O_g=1e5);
Source_P2 p2(presion_O2=2e5, presion_H2O_g=1e5);

equation
connect(p1.p_f, f_t[1].p_f_1);
for conta in 1:N loop

connect(f_t[conta].p_f_2, v_c[conta].p_f);
connect(v_c[conta].p_f, f_t[conta + 1].p_f_1);

end for;
connect(f_t[N + 1].p_f_2, p2.p_f);

end Diffusion_Layer2;

Modelica Code 13.6: Diffusion of binary gas mixture and liquid in porous medium (4/4).

PEM FUEL CELL

Figure 13.15: Pressure of oxygen in the control volumes number 1, 5, 10, 15 and 20.

Figure 13.16: Pressure of steam water in the control volumes number 1, 5, 10, 15 and 20.

SIMULATION PRACTICE WITH MODELICA

Figure 13.17: Liquid water load in the control volumes number 1, 5, 10, 15 and 20.

Figure 13.18: Molar flux of steam water in the control volumes number 1, 5, 10, 15 and 20.

PEM FUEL CELL

Figure 13.19: Molar flux of liquid water in the control volumes number 1, 5, 10, 15 and 20.

Figure 13.20: Molar flux of oxygen in the control volumes number 1, 5, 10, 15 and 20.

SIMULATION PRACTICE WITH MODELICA

13.7 Task 3

To recap on what has been discussed so far, the most relevant phenomena in

each layer of the fuel cell are enumerated below (see again Table 13.1).

– Membrane. Water diffusion in liquid and steam phases, and protonic conduc-

tion.

– Catalyst layer of the cathode. Water diffusion in liquid and steam phases, oxy-

gen diffusion, electronic and protonic conduction, and electrochemical reaction.

– Diffusion layer of the cathode. Water diffusion in liquid and steam phases,

oxygen diffusion, and electronic conduction.

The diffusion of water in liquid and steam phases, and the diffusion of oxygen,

as well as the molar balance of these species in a control volume, were modeled in

Task 2. The objective now is to develop the following models.

1. Electronic and protonic conduction. These models, used in conjunction with

the models developed in Task 2, will allow to describe the behavior of the

membrane and the diffusion layer.

2. Electrochemical reaction that takes place in the catalyst layer. This new model

is coupled to the transport model proposed in Task 2. On the one hand, the

electrochemical reaction rate depends on the oxygen partial pressure. On the

other hand, the oxygen consumed in the reaction and the generated steam

water intervene in the molar balances of these species.

3. Membrane, and catalyst layer and diffusion layer of the cathode. Each layer

will be discretized into control volumes. A component describing the transport

phenomena will be connected between adjacent control volumes, as represented

in Figure 13.8.

4. Electrical interfaces of membrane and cathode. These interface models will

allow to connect the three-layer model to external electric components.

5. Complete PEM fuel cell. It will be composed by connecting previously defined

models, as shown in Figure 13.21.

6. PEMFC connected to external load resistance. This electrical circuit (see Fi-

gure 13.22) will allow to simulate the polarization curves of the fuel cell.

PEM FUEL CELL

Figure 13.21: Electrical model of the fuel cell.

Figure 13.22: PEMFC model connected to external load resistance.

These new models are explained in detail below.

1. Electronic and protonic transport. Electrons are transported through the

solid material, and protons through the electrolyte. In general, the voltages in

the solid material and the electrolyte are different, and depend on the spatial

coordinate. These voltages are represented as ve and vp, respectively. The e

subscript refers to the electronic conductor material and the p subscript refers

to the protonic conductor material.

The protonic current density (jp) is proportional to the voltage gradient in

the protonic conductor medium as described in Eq. (13.87), where Kp is the

protonic conductivity and εm is the volume of the protonic conductor.

jp = −Kp · εm ·
dvp

dx
(13.87)

As described in Eq. (13.88), the electronic current density (je) is proportio-

nal to the voltage gradient in the solid material, where σe is the electronic

conductivity in the solid medium and εs is its porosity.

je = −σe · εs ·
dve

dx
(13.88)

SIMULATION PRACTICE WITH MODELICA

Table 13.8: Conductivity parameters of the layers (ǫ ≈ 0).

Membrane Catalyst layer Diffusion layer

Protonic conductivity Kp,mem Kp,cat ǫ

Electronic conductivity ǫ σe,cat σe,dif

The following two assumptions are made:

a) The membrane is composed of a polymeric material that conducts pro-

tons, but does not conduct electrons.

b) The diffusion layer is a matrix of electrically conductive porous material

that does not transport protons.

The conductivity parameters of the layers are shown in Table 13.8. The ǫ

conductivity represents a small value near zero.

Eqs. (13.87) and (13.88) allow to calculate the current density of protons and

electrons through the control plane that separates two adjacent control volumes

named 1 and 2.

jp = Kp · εm ·
vp,1 − vp,2

LV C
(13.89)

je = σe · εs ·
ve,1 − ve,2

LV C
(13.90)

The currents (ip, ie) are calculated taking into account the cross-sectional area

of the control plane (SV C). They are positive while exit control volume 1 and

enter control volume 2.

ip

SV C
= Kp · εm ·

vp,1 − vp,2

LV C
(13.91)

ie

SV C
= σe · εs ·

ve,1 − ve,2

LV C
(13.92)

2. Control volume. This model describes the balances of electrons and protons,

and the generation due to the electrochemical reaction. Additional hypotheses

are made to describe the voltages of the electronic and protonic conductors.

a) Balances of electrons and protons. It is assumed that there is no

accumulation of electrons and protons in the control volume. Therefore,

PEM FUEL CELL

Figure 13.23: Solid voltage (ve) and electrolyte voltage (vp), not drawn to scale.

the net electronic current that enters through the control planes, plus

the electrons generated in the control volume per time unit, is zero. The

same applies to the net protonic current and generation inside the control

volume.

0 = ie + Ge (13.93)

0 = ip + Gp (13.94)

As there is no electrochemical reaction in the membrane and diffuser

layer, the electron or proton generation in the control volumes of these

layers is zero (Ge = Gp = 0). This implies zero net incoming protonic and

electronic currents to these control volumes (0 = ie = ip).

b) Solid and electrolyte voltages. The model should make it possible to

calculate, for each control volume, the voltage of the electronic conductor

(ve) and protonic conductor (vp). The electron and proton balances for-

mulated above are used for this purpose. The following assumptions are

also made (see Figure 13.23).

1) The voltage for electronic conduction (ve) is constant along the mem-

brane.

2) The voltage for protonic conduction (vp) is constant along the diffu-

sion layer.

3) In the external interface of the membrane (left-hand end of Figu-

re 13.23), the voltage of the electronic conductor is equal to the

voltage of the protonic conductor.

SIMULATION PRACTICE WITH MODELICA

ve = vp (13.95)

4) In the external interface of the diffusion layer (right-hand end of

Figure 13.23), it is satisfied:

ve − vp = EOC (13.96)

c) Electrochemical reaction. The following electrochemical reaction takes

place inside the catalyst layer of the cathode:

4H+ + O2 + 4e− ←→ 2H2O (13.97)

The electrons produced per unit of time can be calculated as shown in

Eq. (13.98), where aact is the specific area of the catalyst layer, and B

the Tafel slope. The reference partial pressure of oxygen is represented as

p0
O2
. The number of protons and electrons generated per unit of time are

equal, as described in Eq. (13.99).

Ge = −aact · iref
0 · pO2

p0
O2

· e
EOC−ve+vp

B (13.98)

Gp = Ge (13.99)

The moles of oxygen (Greac,O2
) and steam water (Greac,H2O,g) generated

per unit of time are related with the electrons produced per unit of time

as described below, where F represents the Faraday constant (96.485

C/mol).

Greac,O2
=

1

4 · F ·Ge (13.100)

Greac,H2O,g = − 1

2 · F ·Ge (13.101)

d) Molar balances of oxygen and steam water. The balances, taking

into account the component of generation due to the electrochemical

reaction, are written as follows.

dnO2

dt
= FO2

+ Greac,O2
(13.102)

dnH2O,g

dt
= FH2O,g + GH2O,g + Greac,H2O,g (13.103)

PEM FUEL CELL

L

N

L

N

2

L

N 2

L

N

VC VC VC VC

FTFT FT

VC

FTFT FT

Figure 13.24: Spatial discretization and layer model.

3. Model of the PEM fuel cell. The model diagram is shown in Figure 13.21.

It is composed of the layer models (membrane, catalyst and diffusion layers),

and the interface models of membrane and cathode.

a) Connectors. Two classes of connectors have been used in the model

shown in Figure 13.21.

– Standard electrical connector of Modelica. The connector represented

as a empty square is the standard electrical connector of Modelica,

which defines an across variable (voltage, v) and a through variable

(current, i).

– Connector of layer models. The connector represented as a filled

square describes the solid and electrolyte voltages (ve and vp), the

electronic and protonic currents (ie and ip), the partial pressures of

oxygen and steam water, the load of liquid water, the molar flow

rates of oxygen, steam water and liquid water, and the portion of

pores occupied by the gas.

The through variables (currents and molar flow rates) have positive sign

while enter into the component.

b) Layer models. The layers are discretized following the same procedure

as in the previous tasks. An example of spatial discretization of a layer is

shown in the upper part of Figure 13.24. The layer, of length L, is divided

into N = 5 control volumes of equal size. The corresponding model, shown

in the lower part of the figure, is composed of the connection of control

volumes (labeled as VC) and transport phenomena (labeled as FT).

SIMULATION PRACTICE WITH MODELICA

c) Membrane and cathode interfaces. These models describe the rela-

tionships among the terminal variables of the Modelica electrical connec-

tor (v, i) and the layer model connector (ve, vp, ie, ip).

– Membrane interface (see Figure 13.23):

v = ve (13.104)

ve = vp (13.105)

i + ie + ip = 0 (13.106)

– Cathode interface:

v = ve (13.107)

ve − vp = EOC (13.108)

i + ie + ip = 0 (13.109)

In addition, these interface models impose the boundary conditions

on the partial pressure of oxygen, and the molar flow rates of liquid

and steam water.

The proposed modeling tasks consist in developing the Modelica models enu-

merated below.

1. The connector of the layer models.

2. Control volumes of the membrane, catalyst and diffusion layers.

3. Transport phenomena in the membrane, catalyst and diffusion layers. As oxy-

gen diffusion is not considered in the membrane, there will be no binary gas

diffusion in this layer.

4. Membrane, catalyst and diffusion layers. Discretize each layer into 20 equal

control volumes.

5. Interface models to connect the membrane and the diffusion layer to external

electrical components, which have the standard electrical connectors of Mode-

lica. These interfaces also impose boundary conditions to the partial pressure

of oxygen, and the molar fluxes of steam and liquid water. See Tables 13.9 and

13.10.

PEM FUEL CELL

Table 13.9: Boundary conditions at the end of the membrane.

Quantity Symbol Value

Partial pressure of oxygen pO2
1 Pa

Steam water flux jH2O,g 0 mol·m−2·s−1

Liquid water flux jH2O,l 0 mol·m−2·s−1

Table 13.10: Boundary conditions at the end of the catalyst layer.

Quantity Symbol Value

Partial pressure of oxygen pO2
1 · 105 Pa

Molar flux of steam water jH2O,g 0 mol·m−2·s−1

Molar flux of liquid water jH2O,l 0 mol·m−2·s−1

Table 13.11: Initial value of state variables in connectors.

Quantity Symbol Value

Pressure of oxygen pO2
1 · 105 Pa

Pressure of steam water pH2O,g 1 · 103 Pa

Load of liquid water χ 1 · 10−2 kgH2O/kgsolid

Electronic voltage ve 0.5 V

Protonic voltage vp -0.5 V

SIMULATION PRACTICE WITH MODELICA

6. Complete model of the fuel cell. Suggested initial values for the state variables

of the connectors are given in Table 13.11. The parameter values are specified

in Table 13.12 (catalyst layer), Table 13.13 (diffusion layer) and Table 13.14

(membrane).

7. Connect the fuel cell model in series with an electrical resistor. Select the

membrane interface as the ground node. The circuit diagram is shown in

Figure 13.22.

The following three simulation tasks are proposed.

1. Simulate the polarization curve of the fuel cell to analyze the effect of the

parameters shown in Table 13.15 on the electrical behavior of the fuel cell.

The polarization curve, also known as I/V curve, is obtained by simulating the

fuel cell voltage and current for different values of the external resistance. The

polarization curve should show the maximum current range. In our case, the

curve must reach a minimum voltage value of 0.3 − 0.4 V. The value of each

point of the polarization curve (voltage and current) will be obtained after

simulating during 10 s.

2. When the current produced by the fuel cell and the oxygen consumption are

high, the phenomenon known as mass transport defect represents a problem in

the fuel cell operation. When it occurs, the oxygen pressure drops significantly

in the catalytic layer, causing the voltage and current to drop.

To study this phenomenon, analyze the effect of the design parameters listed in

Table 13.16 on the oxygen pressure along the spatial dimension perpendicular

to the catalyst layer, once the stationary state is reached for a high current.

3. Another relevant phenomenon is the flooding of the fuel cell cathode. In this

case, the liquid water generated by the electrochemical reaction is accumulated

in the porous material, making difficult for the oxygen to enter the catalyst

layer. This phenomenon produces a mass defect that decreases the fuel cell

performance.

To study this phenomenon, analyze the effect of the parameters shown in

Table 13.17 on the dynamics of the flooding process. Plot the time evolution

of the fuel cell voltage, under high-current operating conditions.

PEM FUEL CELL

Table 13.12: Parameters of the catalyst layer.

Quantity Symbol Value

Temperature Tg 340 K

Total length of the layer L 4 · 10−5 m

Tortuosity τ 5

Area of the control volume SV C 1 m2

Molar mass of water MH2O 0.018 kg/mol

Liquid water density ρH2O,l 972 kg/m3

Solid density ρs 4000 kg/m3

Electrolyte density ρe 2000 kg/m3

Ideal gas constant R 8.31447 J/mol/K

Condensation specific surface αv 10−2 m2

Mass transfer coefficient β 0.001 m/s

Binary diffusion coefficient DO2/H2O,g 2.82 · 10−3 m2/s

Reference pressure for binary diffusion pref
g 1 · 105 Pa

Reference temperature for binary diffusion T ref
g 308.1 K

Diffusion coefficient of liquid water DH2O,l 2.5 · 10−11 m2/s

Knudsen diffusion coefficient of oxygen DO2K 7.853 · 10−3 m2/s

Knudsen diffusion coefficient of steam water DH2O,gK 1.047 · 10−3 m2/s

Volume rate of the solid εs 0.6

Volume rate of the electrolyte εe 0.2

Water saturation pressure at T sat
0 psat

0H2O
3169 Pa

Saturation temperature T sat
0 298.16 K

Specific area of catalyst × Ref. exchange current aact · iref
0 1.2 A/m3

Tafel slope B 0.04 V

Reference partial pressure of oxygen p0
O2

1 · 105 Pa

Solid conductivity σe,cat 1 S·m−1

Protonic conductivity of electrolyte Kp,cat 0.1 S·m−1

SIMULATION PRACTICE WITH MODELICA

Table 13.13: Parameters of the diffusion layer.

Quantity Symbol Value

Temperature Tg 340 K

Total length of the layer L 1.6 · 10−3 m

Tortuosity τ 1

Area of the control volume SV C 1 m2

Molar mass of water MH2O 0.018 kg/mol

Liquid water density ρH2O,l 972 kg/m3

Solid density ρs 4000 kg/m3

Ideal gas constant R 8.31447 J/mol/K

Condensation specific surface αv 10−2 m2

Mass transfer coefficient β 0.001 m/s

Binary diffusion coefficient DO2/H2O,g 2.82 · 10−3 m2/s

Reference pressure for binary diffusion pref
g 1 · 105 Pa

Reference temperature for binary diffusion T ref
g 308.1 K

Diffusion coefficient of liquid water DH2O,l 3.5 · 10−11 m2/s

Knudsen diffusion coefficient of oxygen DO2K 7.853 · 10−3 m2/s

Knudsen diffusion coefficient of steam water DH2O,gK 1.047 · 10−3 m2/s

Volume rate of the solid εs 0.4

Water saturation pressure at T sat
0 psat

0H2O
3169 Pa

Saturation temperature T sat
0 298.16 K

Solid conductivity σe,dif 1·104 S·m−1

Protonic conductivity of electrolyte Kp,dif 1·10−7 S·m−1

PEM FUEL CELL

Table 13.14: Parameters of the membrane.

Quantity Symbol Value

Temperature Tg 340 K

Total length of the layer L 8 · 10−5 m

Tortuosity τ 1

Area of the control volume SV C 1 m2

Molar mass of water MH2O 0.018 kg/mol

Liquid water density ρH2O,l 972 kg/m3

Electrolyte density ρe 2000 kg/m3

Ideal gas constant R 8.31447 J/mol/K

Condensation specific surface αv 10−2 m2

Mass transfer coefficient β 0.001 m/s

Diffusion coefficient of liquid water DH2O,l 5.5 · 10−6 m2/s

Knudsen diffusion coefficient of steam water DH2O,gK 1 · 10−6 m2/s

Volume rate of the electrolyte εe 0.72

Water saturation pressure at T sat
0 psat

0H2O
3169 Pa

Saturation temperature T sat
0 298.16 K

Solid conductivity σe,mem 1·10−6 S·m−1

Protonic conductivity of electrolyte Kp,mem 10 S·m−1

SIMULATION PRACTICE WITH MODELICA

Table 13.15: Parameters to analyze in the Simulation Task 1.

Quantity Symbol Layer

Layer length L 3 layers

Cat. area × exchange current aact · iref
0 Catalyst layer

Tafel slope B Catalyst layer

Conductivity of the solid σe Catalyst and diffusion layers

Protonic conductivity Kp Catalyst layer and membrane

Table 13.16: Parameters to analyze in the Simulation Task 2.

Quantity Symbol Layer

Layer length L Catalyst layer

Oxygen pressure pO2
Cathode interface

Porosity of the solid εs Catalyst layer

Electrolyte porosity εe Catalyst layer

Binary diffusion coeff. DO2/H2O,g Catalyst layer

Knudsen diffusion coeff. of oxygen DO2K Catalyst layer

Knudsen diffusion coeff. of steam water DH2O,gK Catalyst layer

Table 13.17: Parameters to analyze in the Simulation Task 3.

Quantity Symbol Layer

Layer length L 3 layers

Porosity of the solid εs Diffusion layer

Temperature Tg Complete cell

PEM FUEL CELL

13.8 Solution to Task 3

The proposed modeling tanks are solved in Modelica Code 13.7 – 13.28. The

results of the three simulation tasks are plotted in Figures 13.25 – 13.45.

connector P_F3

Modelica.SIunits.Pressure p_O2(start=1e5) "Pressure of oxygen";
Modelica.SIunits.Pressure p_H2O_g(start=1e3) "Pressure of steam water";
Real X(start=1e-2) "Liquid water load";
Modelica.SIunits.Voltage ve(start=0.5) "Solid voltage";
Modelica.SIunits.Voltage vp(start=-0.5) "Electrolyte voltage";
flow Real F_O2(unit="mol/s") "Molar flow rate of oxygen";
flow Real F_H2O_g(unit="mol/s") "Molar flow rate of steam water";
flow Real F_H2O_l(unit="mol/s") "Molar flow rate of liquid water";
flow Modelica.SIunits.Current ie "Electronic current";
flow Modelica.SIunits.Current ip "Protonic current";

Real E_g "Portion of pores occupied by the gas";
end P_F3;

Modelica Code 13.7: PEM fuel cell (1/22). Connector.

model VC_m
Connectors.P_F3 p;

parameter Real Vvc = Svc * Lvc (unit="m3") "Volume of the control volume";
parameter Real M_H2O = 0.018 (unit="kg/mol") "Molar mass of water";
parameter Real rho_H2O_l = 972 (unit="kg/m3") "Liquid water density";
parameter Real Lvc (unit="m") "Length of the control volume";
parameter Real P0_H2O_sat = 3169 (unit="Pa")

"Water saturation pressure at To_sat";
parameter Real To_sat = 298.16 (unit="K") "Saturation temperature";
parameter Real alfa_v = 1e3 (unit="m2") "Condensation specific surface";
parameter Real beta = 0.001 (unit="m/s") "Mass transfer coefficient";
parameter Real LIM_XREL = 0.997 "Flooding limit";

outer parameter Real Svc (unit="m2") "Area of control plane ";
outer parameter Real R (unit="J/mol/K") "Ideal gas constant";
outer parameter Real Tg (unit="K") "Temperature";
outer parameter Real rho_e (unit="kg/m3") "Electrolyte density";
outer parameter Real Ee "Volume fraction occupied by electrolyte";

Modelica Code 13.8: PEM fuel cell (2/22). Control volume of membrane.

SIMULATION PRACTICE WITH MODELICA

Real Epores "Volume ratio occupied by pores";
Real Vpores (unit="m3") "Volume of the pores";
Real G_H2O_g (unit="mol/s")

"Moles of steam water generated per unit of time";
Real G_H2O_l (unit="mol/s")

"Moles of liquid water generated per unit of time";
Real m_H2O_l (unit="kg") "Mass of liquid water";
Real m_s (unit="kg") "Mass of the solid";
Real V_H2O_l (unit="m3") "Volume of liquid water";
Real V_g (unit="m3") "Volume of the gas";
Real Xmax "Maximum liquid water load";
Real Lv (unit="J/mol") "Evaporation molar enthalpy";
Real P_H2O_sat (unit="Pa") "Water saturation pressure at To_sat";
Real n_H2O_g (unit="mol") "Moles of steam water";
Real n_H2O_l (unit="mol") "Moles of liquid water";
Real Xrel "Relative liquid water load";

equation
der(n_H2O_g) = p.F_H2O_g + G_H2O_g;
m_s / M_H2O * der(p.X) = p.F_H2O_l + G_H2O_l;
n_H2O_l = m_H2O_l / M_H2O;
V_H2O_l = m_H2O_l / rho_H2O_l;
p.p_O2 = 1e-3;
p.p_H2O_g * V_g = n_H2O_g * R * Tg;
Epores = 1 - Ee;
Epores = Vpores / Vvc;
Vpores = V_g + V_H2O_l;
p.E_g = V_g / Vvc;
p.X = m_H2O_l / m_s;
Xmax = rho_H2O_l * Vpores / m_s;
Xrel = p.X / Xmax;
m_s = Vvc * rho_e * Ee;
G_H2O_l = Vvc * alfa_v * beta * (p.p_H2O_g - P_H2O_sat) / (R * Tg);
G_H2O_g = -G_H2O_l;
P_H2O_sat = P0_H2O_sat * exp((1 / To_sat - 1 / Tg) * Lv * M_H2O / R);
Lv = 1.73287e6 + 1.03001e-4 * Tg - 4.47755e1 * Tg ^ 2 + 7.6629e-2 * Tg ^ 3

- 5.5058e-5 * Tg ^ 4;
p.ve = 0;
p.ip = 0;

initial equation
p.p_H2O_g = 1e3;
p.X = 1e-2;

end VC_m;

Modelica Code 13.9: PEM fuel cell (3/22). Control volume of membrane.

PEM FUEL CELL

model VC_dif
Connectors.P_F3 p;

parameter Real Vvc = Svc * Lvc (unit="m3") "Volume of the control volume";
parameter Real M_H2O = 0.018 (unit="kg/mol") "Molar mass of water";
parameter Real rho_H2O_l = 972 (unit="kg/m3") "Liquid water density";
parameter Real Lvc (unit="m") "Length of control volume";
parameter Real P0_H2O_sat = 3169 (unit="Pa")

"Water saturation pressure at To_sat";
parameter Real To_sat = 298.16 (unit="K") "Saturation temperature";
parameter Real alfa_v = 1e3 (unit="m2") "Condensation specific surface";
parameter Real beta = 0.001 (unit="m/s") M̈ass transfer coefficient";
parameter Real LIM_XREL = 0.997 "Limit rate of flooding";

outer parameter Real Svc (unit="m2") "Control plane area";
outer parameter Real R (unit="J/mol/K") Ïdeal gas constant";
outer parameter Real Tg (unit="K") "Temperature";
outer parameter Real rho_s (unit="kg/m3") "Solid density";
outer parameter Real Es "Fraction of volume occupied by the solid";

Real Epores "Rate of volume of porous media vs volume of control volume";
Real Vpores (unit="m3") "Volume of the pores";
Real G_H2O_g (unit="mol/s")

"Moles of steam water generated per unit of time";
Real G_H2O_l (unit="mol/s")

"Moles of liquid water generated per unit of time";
Real m_H2O_l (unit="kg") "Mass of liquid water";
Real m_s (unit="kg") "Mass of the solid";
Real V_H2O_l (unit="m3") "Volume of liquid water";
Real V_g (unit="m3") "Volume of the gas";
Real Xmax "Maximum liquid water load";
Real Lv (unit="J/mol") "Evaporation molar enthalpy";
Real P_H2O_sat (unit="Pa") "Water saturation pressure at To_sat";
Real n_H2O_g (unit="mol") "Moles of steam water";
Real n_H2O_l (unit="mol") "Moles of liquid water";
Real n_O2 (unit="mol") "Moles of oxygen";
Real Xrel "Relative liquid water load";

Modelica Code 13.10: PEM fuel cell (4/22). Control volume of diffusion layer.

SIMULATION PRACTICE WITH MODELICA

equation
der(p.p_O2) * V_g - p.p_O2 * m_s / rho_H2O_l * der(p.X) = p.F_O2 * R * Tg;
der(p.p_H2O_g) * V_g - p.p_H2O_g * m_s / rho_H2O_l * der(p.X) =

(p.F_H2O_g + G_H2O_g) * R * Tg;
m_s / M_H2O * der(p.X) = p.F_H2O_l + G_H2O_l;
n_H2O_l = m_H2O_l / M_H2O;
V_H2O_l = m_H2O_l / rho_H2O_l;
p.p_O2 * V_g = n_O2 * R * Tg;
p.p_H2O_g * V_g = n_H2O_g * R * Tg;
Epores = 1 - Es;
Epores = Vpores / Vvc;
Vpores = V_g + V_H2O_l;
p.E_g = V_g / Vvc;
p.X = m_H2O_l / m_s;
Xmax = rho_H2O_l * Vpores / m_s;
Xrel = p.X / Xmax;
m_s = Vvc * (rho_s * Es);
G_H2O_l = Vvc * alfa_v * beta * (p.p_H2O_g - P_H2O_sat) / (R * Tg);
G_H2O_g = -G_H2O_l;
P_H2O_sat = P0_H2O_sat * exp((1 / To_sat - 1 / Tg) * Lv * M_H2O / R);
Lv = 1.73287e6 + 1.03001e-4 * Tg - 4.47755e1 * Tg ^ 2 + 7.6629e-2 * Tg ^ 3

- 5.5058e-5 * Tg ^ 4;
p.ie = 0;
p.ip = 0;

when Xrel > LIM_XREL then
reinit(p.X, Xmax);
reinit(p.p_O2, 0);
reinit(p.p_H2O_g, 0);

end when;

initial equation
p.p_O2 = 1e5;
p.p_H2O_g = 1e3;
p.X = 1e-2;

end VC_dif;

Modelica Code 13.11: PEM fuel cell (5/22). Control volume of diffusion layer.

PEM FUEL CELL

model VC_cat
Connectors.P_F3 p;

parameter Real Vvc = Svc * Lvc (unit="m3") "Volume of the control volume";
parameter Real M_H2O = 0.018 (unit="kg/mol") "Molar mass of water";
parameter Real rho_H2O_l = 972 (unit="kg/m3") "Liquid water density";
parameter Real Lvc (unit="m") "Length of the control volume";
parameter Real P0_H2O_sat = 3169 (unit="Pa")

"Water saturation pressure at To_sat";
parameter Real To_sat = 298.16 (unit="K") "Saturation temperature";
parameter Real alfa_v = 1e3 (unit="m2") "Condensation specific surface";
parameter Real beta = 0.001 (unit="m/s") "Mass transfer coefficient";
parameter Real a_act_i0ref = 1.2 (unit="A/m3")

"Specific area of catalytic surface * Reference exchange current";
parameter Real p0_O2 = 1e5 (unit="Pa")

"Reference partial pressure of oxygen";
parameter Real F = 96485 (unit="A*s/mol") "Faraday constant";
parameter Real B = 0.04 (unit="V") "Tafel slope";
parameter Real LIM_XREL = 0.997 "Flooding maximum limit";

outer parameter Real Svc (unit="m2") "Area of control plane";
outer parameter Real R (unit="J/mol/K") "Ideal gas constant";
outer parameter Real Tg (unit="K") "Temperature";
outer parameter Real rho_s (unit="kg/m3") "Solid density";
outer parameter Real Es "Volume fraction occupied by the solid";
outer parameter Real rho_e (unit="kg/m3") "Electrolyte density";
outer parameter Real Ee "Volume fraction occupied by electrolyte";
outer Real Eoc_ (unit="V") "Voltage difference Vp-Ve";

Real Epores "Volume fraction occupied by pores";
Real Vpores (unit="m3") "Volume of the pores";
Real G_H2O_g (unit="mol/s")

"Moles of steam water generated per unit of time";
Real G_H2O_l (unit="mol/s")

"Moles of liquid water generated per unit of time";
Real m_H2O_l (unit="kg") "Mass of liquid water";
Real m_s (unit="kg") "Mass of solid";
Real V_H2O_l (unit="m3") "Volume of liquid water";
Real V_g (unit="m3") "Volume of the gas";
Real Xmax "Maximum liquid water load";
Real Lv (unit="J/mol") "Evaporation molar enthalpy";
Real P_H2O_sat (unit="Pa") "Water saturation pressure at To_sat";
Real n_H2O_g (unit="mol") "Moles of steam water";
Real n_H2O_l (unit="mol") "Moles of liquid water";
Real n_O2 (unit="mol") "Moles of oxygen";
Real Xrel "Relative liquid water load";
Real Ge (unit="A") "Electrons generated per unit of time in the reaction";
Real Gp (unit="A") "Protons generated per unit of time in reaction";
Real G_reac_H2O_g (unit="mol/s")

"Moles of steam water generated in the reaction per unit of time";
Real G_reac_O2 (unit="mol/s")

"Moles of oxygen generated in the reaction per unit of time";

Modelica Code 13.12: PEM fuel cell (6/22). Control volume of catalyst layer.

SIMULATION PRACTICE WITH MODELICA

equation
der(p.p_O2) * V_g - p.p_O2 * m_s / rho_H2O_l * der(p.X) =

(p.F_O2 + G_reac_O2) * R * Tg;
der(p.p_H2O_g) * V_g - p.p_H2O_g * m_s / rho_H2O_l * der(p.X) =

(p.F_H2O_g + G_H2O_g + G_reac_H2O_g) * R * Tg;
m_s / M_H2O * der(p.X) = p.F_H2O_l + G_H2O_l;
n_H2O_l = m_H2O_l / M_H2O;
V_H2O_l = m_H2O_l / rho_H2O_l;
p.p_O2 * V_g = n_O2 * R * Tg;
p.p_H2O_g * V_g = n_H2O_g * R * Tg;
Epores = 1 - Ee - Es;
Epores = Vpores / Vvc;
Vpores = V_g + V_H2O_l;
p.E_g = V_g / Vvc;
p.X = m_H2O_l / m_s;
Xmax = rho_H2O_l * Vpores / m_s;
Xrel = p.X / Xmax;
m_s = Vvc * (rho_e * Ee + rho_s * Es);
G_H2O_l = if p.p_H2O_g > 0 or p.X > 0

then Vvc * alfa_v * beta * (p.p_H2O_g - P_H2O_sat) / (R * Tg)
else 0;

G_H2O_g = -G_H2O_l;
P_H2O_sat = P0_H2O_sat * exp((1 / To_sat - 1 / Tg) * Lv * M_H2O / R);
Lv = 1.73287e6 + 1.03001e-4 * Tg - 4.47755e1 * Tg ^ 2 + 7.6629e-2 * Tg ^ 3

- 5.5058e-5 * Tg ^ 4;
Ge = -a_act_i0ref * (p.p_O2 / p0_O2) * exp((Eoc_ - p.ve + p.vp) / B);
Gp = Ge;
p.ie - Ge = 0;
p.ip + Gp = 0;
G_reac_O2 = Ge / (4 * F);
G_reac_H2O_g = -Ge / (2 * F);

when Xrel > LIM_XREL then
reinit(p.X, Xmax);
reinit(p.p_O2, 0);
reinit(p.p_H2O_g, 0);

end when;

initial equation
p.p_O2 = 1e5;
p.p_H2O_g = 1e3;
p.X = 1e-2;

end VC_cat;

Modelica Code 13.13: PEM fuel cell (7/22). Control volume of catalyst layer.

PEM FUEL CELL

model FT_m
Connectors.P_F3 p1;
Connectors.P_F3 p2;

parameter Real Lvc (unit="m") "Length of control volume";
parameter Real Vvc = Svc * Lvc (unit="m3") "Volume of control volume";
parameter Real M_H2O = 0.018 (unit="kg/mol") "Molar mass of water";
parameter Real rho_H2O_l = 972 (unit="kg/m3") "Liquid water density";
parameter Real D_H20_l = 5.5e-7 (unit="m2/s")

"Diffusion coefficient of liquid water";
parameter Real D_H2O_g_k = 1e-11 (unit="m2/s")

"Knudsen diffusion coefficient of steam water";
parameter Real tau = 1 "Tortuosity";
parameter Real sigma_e = 1e-6 (unit="S/m") "Solid conductivity";
parameter Real Kp = 10 (unit="S/m") "Protonic conductivity of electrolyte";
outer parameter Real Svc (unit="m2") "Area of the control volume";
outer parameter Real R (unit="J/mol/K") "Ideal gas constant";
outer parameter Real Tg (unit="K") "Temperature of the medium";
outer parameter Real rho_e (unit="kg/m3") "Electrolyte density";
outer parameter Real Ee "Volume fraction of the electrolyte";

Real J_H2O_g (unit="mol/s/m2") "Flux per area unit of steam water";
Real Egmin "Minimum volume of gas transport";

equation
Egmin = max(min(p1.E_g, p2.E_g), 0);
J_H2O_g = if p1.p_H2O_g > 0 or p2.p_H2O_g > 0

then Egmin * (p1.p_H2O_g - p2.p_H2O_g) * D_H2O_g_k / (Lvc * R * Tg * tau ^ 2)
else 0;

p2.F_H2O_g = -J_H2O_g * Svc;
p1.F_H2O_l = if p1.X > 0 or p2.X > 0

then D_H20_l * rho_e * Svc * (p1.X - p2.X) / (Lvc * M_H2O)
else 0;

p1.F_O2 = 0;
p1.F_H2O_g = -p2.F_H2O_g;
p1.F_H2O_l = -p2.F_H2O_l;
p1.F_O2 = -p2.F_O2;
p1.ie = 0;
p1.ip = Svc * Kp * Ee * (p1.vp - p2.vp) / Lvc;
p1.ie = -p2.ie;
p1.ip = -p2.ip;

end FT_m;

Modelica Code 13.14: PEM fuel cell (8/22). Transport phenomena in the membrane.

SIMULATION PRACTICE WITH MODELICA

model FT_dif
Connectors.P_F3 p1;
Connectors.P_F3 p2;
parameter Real Lvc (unit="m") "Length of control volume";
parameter Real Vvc = Svc * Lvc (unit="m3") "Volume of control volume";
parameter Real M_H2O = 0.018 (unit="kg/mol") "Molar mass of water";
parameter Real rho_H2O_l = 972 (unit="kg/m3") "Liquid water density";
parameter Real D_H20_l = 3.5e-7 (unit="m2/s")

"Diffusion coefficient of liquid water";
parameter Real D_O2_H2O_g_ref = 2.82e-5 (unit="m2/s")

"Binary diffusion coefficient";
parameter Real D_H2O_g_k = 1.047e-6 (unit="m2/s")

"Knudsen diff. coeff. of steam water";
parameter Real D_O2_k = 7.853e-7 (unit="m2/s")

"Knudsen diffusion coefficient of oxygen";
parameter Real p_g_ref = 1e5 (unit="Pa")

"Reference pressure for binary diffusion";
parameter Real Tg_ref = 308.1 (unit="K")

"Reference temperature for binary diffusion";
parameter Real tau = 1 "Tortuosity";
parameter Real sigma_e = 1e4 (unit="S/m") "Solid conductivity";
parameter Real Kp = 1e-7 (unit="S/m")

"Protonic conductivity of electrolyte";
outer parameter Real Svc (unit="m2") "Area of the control volume";
outer parameter Real R (unit="J/mol/K") "Ideal gas constant";
outer parameter Real Tg (unit="K") "Temperature of the medium";
outer parameter Real rho_s (unit="kg/m3") "Solid density";
outer parameter Real Es "Volume rate of the solid";
Real pH2O_g (unit="Pa") "Partial pressure of steam water";
Real pO2 (unit="Pa") "Partial pressure of oxygen";
Real p_g (unit="Pa") "Total pressure of the gases";
Real J_H2O_g (unit="mol/s/m2") "Flux per area unit of steam water";
Real J_O2 (unit="mol/s/m2") "Flux per area unit of oxygen";
Real D_O2_H2O_g (unit="m2/s") "Binary diffusion coefficient";
Real Egmin "Minimum volume of gas transport";

Modelica Code 13.15: PEM fuel cell (9/22). Transport phenomena in the diffusion layer.

PEM FUEL CELL

equation
pO2 = max(p1.p_O2, p2.p_O2);
pH2O_g = max(p1.p_H2O_g, p2.p_H2O_g);
p_g = pO2 + pH2O_g;
Egmin = max(min(p1.E_g, p2.E_g), 0);
D_O2_H2O_g = D_O2_H2O_g_ref * (p_g / p_g_ref) * (Tg / Tg_ref) ^ 1.5;
J_O2 = if p_g > 0

then Egmin / tau ^ 2 * (p1.p_O2 - p2.p_O2) /
(Lvc * R * Tg * (1 / D_O2_k + 1 / D_O2_H2O_g))

else 0;
J_H2O_g = if p_g > 0

then Egmin / tau ^ 2 * (p1.p_H2O_g - p2.p_H2O_g) /
(Lvc * R * Tg * (1 / D_H2O_g_k + 1 / D_O2_H2O_g))

else 0;
p2.F_H2O_g = -J_H2O_g * Svc;
p2.F_O2 = -J_O2 * Svc;
p1.F_H2O_l = if p1.X > 0 or p2.X > 0

then D_H20_l * rho_s * Svc * (p1.X - p2.X) / (Lvc * M_H2O)
else 0;

p1.F_H2O_g = -p2.F_H2O_g;
p1.F_H2O_l = -p2.F_H2O_l;
p1.F_O2 = -p2.F_O2;
p1.ie = Svc * sigma_e * Es * (p1.ve - p2.ve) / Lvc;
p1.ip = Svc * Kp * Es * (p1.vp - p2.vp) / Lvc;
p1.ie = -p2.ie;
p1.ip = -p2.ip;

end FT_dif;

Modelica Code 13.16: PEM fuel cell (10/22). Transport phenomena in the diffusion layer.

SIMULATION PRACTICE WITH MODELICA

model FT_cat
Connectors.P_F3 p1;
Connectors.P_F3 p2;
parameter Real Lvc (unit="m") "Length of control volume";
parameter Real Vvc = Svc * Lvc (unit="m3") "Volume of control volume";
parameter Real M_H2O = 0.018 (unit="kg/mol") "Molar mass of water";
parameter Real rho_H2O_l = 972 (unit="kg/m3") "Liquid water density";
parameter Real D_H20_l = 2.5e-7 (unit="m2/s")

"Diffusion coefficient of liquid water";
parameter Real D_O2_H2O_g_ref = 2.82e-5 (unit="m2/s")

"Binary diffusion coefficient";
parameter Real D_H2O_g_k = 1.047e-6 (unit="m2/s")

"Knudsen diff. coeff. of steam water";
parameter Real D_O2_k = 7.853e-7 (unit="m2/s")

"Knudsen diffusion coefficient of oxygen";
parameter Real p_g_ref = 1e5 (unit="Pa")

"Reference pressure for binary diffusion";
parameter Real Tg_ref = 308.1 (unit="K")

"Reference temperature for binary diffusion";
parameter Real tau = 5 "Tortuosity";
parameter Real sigma_e = 1 (unit="S/m") "Solid conductivity";
parameter Real Kp = 0.1 (unit="S/m")

"Protonic conductivity of electrolyte";
outer parameter Real Svc (unit="m2") "Area of the control plane";
outer parameter Real R (unit="J/mol/K") "Ideal gas constant";
outer parameter Real Tg (unit="K") "Temperature of the medium";
outer parameter Real rho_e (unit="kg/m3")"Electrolyte density";
outer parameter Real rho_s (unit="kg/m3")"Solid density";
outer parameter Real Ee "Volume rate of the electrolyte";
outer parameter Real Es "Volume rate of the solid";
Real pH2O_g (unit="Pa") "Partial pressure of steam water";
Real pO2 (unit="Pa") "Partial pressure of oxygen";
Real p_g (unit="Pa") "Total pressure of the gases";
Real J_H2O_g (unit="mol/s/m2") "Flux per area unit of steam water";
Real J_O2 (unit="mol/s/m2") "Flux per area unit of oxygen";
Real D_O2_H2O_g (unit="m2/s") "Binary diffusion coefficient";
Real Egmin "Minimum volume of gas transport";

Modelica Code 13.17: PEM fuel cell (11/22). Transport phenomena in the catalyst layer.

PEM FUEL CELL

equation
pO2 = max(p1.p_O2, p2.p_O2);
pH2O_g = max(p1.p_H2O_g, p2.p_H2O_g);
p_g = pO2 + pH2O_g;
Egmin = max(min(p1.E_g, p2.E_g), 0);
D_O2_H2O_g = D_O2_H2O_g_ref * (p_g / p_g_ref) * (Tg / Tg_ref) ^ 1.5;
J_O2 = if p_g > 0 then Egmin / tau ^ 2 * (p1.p_O2 - p2.p_O2) /

(Lvc * R * Tg * (1 / D_O2_k + 1 / D_O2_H2O_g)) else 0;
J_H2O_g = if p_g > 0 then Egmin / tau ^ 2 * (p1.p_H2O_g - p2.p_H2O_g) /

(Lvc * R * Tg * (1 / D_H2O_g_k + 1 / D_O2_H2O_g)) else 0;
p2.F_H2O_g = -J_H2O_g * Svc;
p2.F_O2 = -J_O2 * Svc;
p1.F_H2O_l = if p1.X > 0 or p2.X > 0 then D_H20_l * (rho_s + rho_e) * Svc *

(p1.X - p2.X) / (Lvc * M_H2O) else 0;
p1.F_H2O_g = -p2.F_H2O_g;
p1.F_H2O_l = -p2.F_H2O_l;
p1.F_O2 = -p2.F_O2;
p1.ie = Svc * sigma_e * Es * (p1.ve - p2.ve) / Lvc;
p1.ip = Svc * Kp * Ee * (p1.vp - p2.vp) / Lvc;
p1.ie = -p2.ie;
p1.ip = -p2.ip;

end FT_cat;

Modelica Code 13.18: PEM fuel cell (12/22). Transport phenomena in the catalyst layer.

SIMULATION PRACTICE WITH MODELICA

model membrane
Connectors.P_F3 p1;
Connectors.P_F3 p2;

parameter Integer N = 20 "Number of control volumes";
parameter Real L_mem = 8e-5 (unit="m") "Total length of the layer";
parameter Real l_mem = L_mem / N (unit="m") "Length of the control volume";
parameter Real dimension_mem[N + 1] =

{if i == 1 then l_mem / 2 else l_mem for i in 1:N + 1};

inner parameter Real Svc = 1 "Area of the control volume";
inner parameter Real R = 8.31447 "Ideal gas constant";
inner parameter Real Tg = 340 "Temperature of the medium";
inner parameter Real rho_e = 2000 "Electrolyte density";
inner parameter Real Ee = 0.72 "Volume rate of the electrolyte";

VC_m v_c_mem[N](Lvc = fill(l_mem, N));
FT_m f_t_mem[N + 1](Lvc = dimension_mem);

equation
connect(f_t_mem[1].p1, p1);

for conta in 1:N loop
connect(f_t_mem[conta].p2, v_c_mem[conta].p);
connect(v_c_mem[conta].p, f_t_mem[conta + 1].p1);

end for;

connect(f_t_mem[N + 1].p2, p2);
end membrane;

Modelica Code 13.19: PEM fuel cell (13/22). Membrane layer.

PEM FUEL CELL

model diffusion
Connectors.P_F3 p1;
Connectors.P_F3 p2;

parameter Integer N = 20 "Number of control volumes";
parameter Real L_dif = 1.6e-3 (unit="m") "Total length of the layer";
parameter Real l_dif = L_dif / N (unit="m") "Length of the control volume";
parameter Real dimension_dif[N] =

{if i == N then l_dif / 2 else l_dif for i in 1:N};

inner parameter Real Svc = 1 "Area of the control plane";
inner parameter Real R = 8.31447 "Ideal gas constant";
inner parameter Real Tg = 340 "Temperature of the medium";
inner parameter Real rho_s = 4000 "Solid density";
inner parameter Real Es = 0.1 "Volume rate of the solid";

VC_dif v_c_dif[N](Lvc = fill(l_dif, N));
FT_dif f_t_dif[N](Lvc = dimension_dif);

equation
connect(f_t_dif[1].p1, p1);

for conta in 1:N - 1 loop
connect(v_c_dif[conta].p, f_t_dif[conta].p1);
connect(f_t_dif[conta].p2, v_c_dif[conta + 1].p);

end for;

connect(v_c_dif[N].p, f_t_dif[N].p1);
connect(f_t_dif[N].p2, p2);

end diffusion;

Modelica Code 13.20: PEM fuel cell (14/22). Diffusion layer.

SIMULATION PRACTICE WITH MODELICA

model catalyst
Connectors.P_F3 p1;
Connectors.P_F3 p2;
Connectors.pin_Eoc pin_Eoc;

parameter Integer N = 20 "Number of control volumes";
parameter Real L_cat = 4e-5 (unit="m") "Total length of the layer";
parameter Real l_cat = L_cat / N (unit="m") "Length of the control volume";
parameter Real dimension_cat[N + 1] =

{if i == 1 or i == N + 1 then l_cat / 2 else l_cat for i in 1:N + 1};

inner parameter Real Svc = 1 "Area of the control plane";
inner parameter Real R = 8.31447 "Ideal gas constant";
inner parameter Real Tg = 340 "Temperature of the medium";
inner parameter Real rho_e = 2000 "Electrolyte density";
inner parameter Real rho_s = 4000 "Solid density";
inner parameter Real Ee = 0.2 "Volume rate of the electrolyte";
inner parameter Real Es = 0.6 "Volume rate of the solid";
inner Real Eoc_ "Voltage difference Vp-Ve";

VC_cat v_c_cat[N](Lvc = fill(l_cat, N));
FT_cat f_t_cat[N](Lvc = fill(l_cat, N));

equation
connect(v_c_cat[1].p, p1);

for conta in 1:N - 1 loop
connect(v_c_cat[conta].p, f_t_cat[conta].p1);
connect(f_t_cat[conta].p2, v_c_cat[conta + 1].p);

end for;

connect(v_c_cat[N].p, f_t_cat[N].p1);
connect(f_t_cat[N].p2, p2);

Eoc_ = pin_Eoc.Eoc;
end catalyst;

Modelica Code 13.21: PEM fuel cell (15/22). Catalyst layer.

PEM FUEL CELL

connector Pin

Modelica.SIunits.Voltage v;
flow Modelica.SIunits.Current i;

end Pin;

Modelica Code 13.22: PEM fuel cell (16/22). Standard electrical connector.

partial model Ext_Inter
Connectors.Pin p1;
Connectors.P_F3 p2;

end Ext_Inter;

Modelica Code 13.23: PEM fuel cell (17/22). Composed connector.

model IntMembrane
extends Interfaces.Ext_Inter;

equation
p1.v = p2.ve;
p2.ve = p2.vp;
p1.i + p2.ie + p2.ip = 0;
p2.p_O2 = 1;
p2.F_H2O_g = 0;
p2.F_H2O_l = 0;
p2.E_g = 1;

end IntMembrane;

Modelica Code 13.24: PEM fuel cell (18/22). Interface of membrane.

SIMULATION PRACTICE WITH MODELICA

connector pin_Eoc

Modelica.SIunits.Voltage Eoc "Open circuit voltage";
end pin_Eoc;

Modelica Code 13.25: PEM fuel cell (19/22). Open circuit voltage connector.

model IntCathode
extends Interfaces.Ext_Inter;
Connectors.pin_Eoc pin_Eoc;

parameter Real R = 8.31447 (unit="J/mol/K") "Ideal gas constant";
parameter Real F = 96485 (unit="A*s/mol") "Faraday constant";
parameter Real Tg = 340 (unit="K") "Temperature of the medium";
parameter Real p_H2 = 100000 (unit="Pa") "Hydrogen pressure";
parameter Real p_O2 = 100000 (unit="Pa") "Oxygen pressure";

equation
p1.v = p2.ve;
p2.ve - p2.vp = pin_Eoc.Eoc;
p1.i + p2.ie + p2.ip = 0;
p2.p_O2 = p_O2 ;
p2.F_H2O_g = 0;
p2.F_H2O_l = 0;
p2.E_g = 1;
pin_Eoc.Eoc=1.1-0.9e-3*(Tg - 298)+R * Tg /(2 * F) *

log(p_H2/100000*(p2.p_O2/1000)^ 0.5/(p2.p_H2O_g/100000));
end IntCathode;

Modelica Code 13.26: PEM fuel cell (20/22). Interface of catalyst layer.

PEM FUEL CELL

model FC
Components.Layers.membrane m;
Components.Layers.catalyst c;
Components.Layers.diffusion d;
Interfaces.External_interface.IntMembrane intm;
Interfaces.External_interface.IntCathode intc;
Connectors.Pin p1;
Connectors.Pin p2;

equation
connect(p1, intm.p1);
connect(p2, intc.p1);
connect(intm.p2, m.p1);
connect(m.p2, c.p1);
connect(c.p2, d.p1);
connect(d.p2, intc.p2);
connect(c.pin_Eoc, intc.pin_Eoc);

end FC;

Modelica Code 13.27: PEM fuel cell (21/22). Complete model of fuel cell.

model FC_polar
Components.Resistance R;
Components.Ground GND;

FC FC1;
equation

connect(FC1.p1, GND.p);
connect(R.p, FC1.p2);
connect(R.n, FC1.p1);

end FC_polar;

Modelica Code 13.28: PEM fuel cell (22/22). Polarized fuel cell.

SIMULATION PRACTICE WITH MODELICA

Figure 13.25: Simulation Task 1. Effect of the catalyst layer length (Lcat) on the polarization
curve: [. . .] 6e-5 m, [—–] 4e-5 m and [- - -] 2e-6 m.

Figure 13.26: Simulation Task 1. Effect of the diffusion layer length (Ldif) on the polarization
curve: [- - -] 4e-3 m, [—–] 1.6e-3 m and [. . .] 0.5e-3 m.

PEM FUEL CELL

Figure 13.27: Simulation Task 1. Effect of the membrane length (Lmem) on the polarization
curve: [- - -] 4e-5 m, [—–] 8e-5 m and [. . .] 16e-5 m.

Figure 13.28: Simulation Task 1. Effect of the catalyst area and exchange current (aact · iref
0

) on
the polarization curve: [- - -] 2 A/m3, [—–] 1.2 A/m3 and [. . .] 0.5 A/m3.

SIMULATION PRACTICE WITH MODELICA

Figure 13.29: Simulation Task 1. Effect of the Tafel slope (B) on the polarization curve: [- -
-] 0.15 V, [—–] 0.04 V and [. . .] 0.01 V.

Figure 13.30: Simulation Task 1. Effect of the solid conductivity of the catalyst layer (σe,cat) on
the polarization curve: [- - -] 0.01 S/m, [—–] 1 S/m and [. . .] 100 S/m.

PEM FUEL CELL

Figure 13.31: Simulation Task 1. Effect of the solid conductivity of the diffusion layer (σe,dif) on
the polarization curve: [- - -] 100 S/m, [—–] 1e4 S/m and [. . .] 1e5 S/m.

Figure 13.32: Simulation Task 1. Effect of the protonic conductivity of the catalyst layer (kp,cat)
on the polarization curve: [- - -] 0.05 S/m, [—–] 0.1 S/m and [. . .] 1 S/m.

SIMULATION PRACTICE WITH MODELICA

Figure 13.33: Simulation Task 1. Effect of the protonic conductivity of the membrane (kp,mem)
on the polarization curve: [- - -] 1 S/m, [—–] 10 S/m and [. . .] 100 S/m.

Figure 13.34: Simulation Task 2. Effect of the catalyst layer length (Lcat) on the oxygen pressure
along the catalyst layer for high current: [- - -] 2e-5 m, [—–] 4e-5 m and [. . .] 8e-5 m.

PEM FUEL CELL

Figure 13.35: Simulation Task 2. Effect of the oxygen pressure used as boundary condition at
the cathode interface (pO2

) on the oxygen pressure along the catalyst layer for high current: [- -
-] 2e5 Pa, [—–] 1e5 Pa and [. . .] 7.5e4 Pa.

Figure 13.36: Simulation Task 2. Effect of the solid porosity of the catalyst layer (εs) on the
oxygen pressure along the catalyst layer for high current: [- - -] 0.4, [—–] 0.6 and [. . .] 0.3.

SIMULATION PRACTICE WITH MODELICA

Figure 13.37: Simulation Task 2. Effect of the electrolyte porosity of the catalyst layer (εe) on
the oxygen pressure along the catalyst layer for high current: [- - -] 0.05, [—–] 0.2 and [. . .] 0.1.

Figure 13.38: Simulation Task 2. Effect of the binary diffusion coefficient (DO2/H2O,g) on the
oxygen pressure along the catalyst layer for high current: [- - -] 5e-6 m2/s, [—–] 2.82e-5 m2/s and
[. . .] 1e-4 m2/s.

PEM FUEL CELL

Figure 13.39: Simulation Task 2. Effect of the Knudsen diffusion coefficient of oxygen (DO2K) on
the oxygen pressure along the catalyst layer for high current: [- - -] 1e-6 m2/s, [—–] 7.853e-7 m2/s
and [. . .] 6e-7 m2/s.

Figure 13.40: Simulation Task 2. Effect of the Knudsen diffusion coefficient of steam water
(DH2O,lK) on the oxygen pressure along the catalyst layer for high current: [- - -] 1e-5 m2/s,
[—–] 1.047e-6 m2/s and [. . .] 1e-7 m2/s.

SIMULATION PRACTICE WITH MODELICA

Figure 13.41: Simulation Task 3. Effect of the diffusion layer length (Ldif) on the transient
response of the fuel cell voltage for high current: [- - -] 0.01 m, [—–] 0.0016 m and [. . .] 0.0005 m.

Figure 13.42: Simulation Task 3. Effect of the membrane length (Lmem) on the transient response
of the fuel cell voltage for high current: [- - -] 8e-4 m, [—–] 8e-5 m and [. . .] 8e-6 m.

PEM FUEL CELL

Figure 13.43: Simulation Task 3. Effect of the catalyst layer length (Lcat) on the transient
response of the fuel cell voltage for high current: [- - -] 4e-4 m, [—–] 4e-5 m and [. . .] 4e-6 m.

Figure 13.44: Simulation Task 3. Effect of the solid porosity of the diffusion layer (εs) on the
transient response of the fuel cell voltage for high current: [- - -] 0.7, [. . .] 0.5 and [—–] 0.1.

SIMULATION PRACTICE WITH MODELICA

Figure 13.45: Simulation Task 3. Effect of temperature of the three layers (Tg) on the transient
response of the fuel cell voltage for high current: [- - -] 390 K, [. . .] 370 K and [—–] 340 K.

Bibliography

Abdel-Rahman, A. (2008), On the atmospheric dispersion and gaussian plume mo-

del, in ‘2nd Intl. Conference on waste management, water-pollution air pollution,

indoor climate, WWA’08’.

Bernardi, D. M. & Verbrugge, M. W. (1992), ‘A mathematical model of the solid-

polymer-electrolyte fuel cell’, J. Electrochem. Soc. (139), 2477–2491.

Bevers, D., Wöhr, M. & Yasuda, K. (1997), ‘Simulation of polymer electrolyte fuel

cell electrode’, J. Appl. Electrochem. Soc. (27), 1254–1264.

Broenink, J. F. (1999), Introduction to Physical Systems Modelling with Bond

Graphs. Accessed January, 2018.

URL: www.ram.ewi.utwente.nl/bnk/papers/BondGraphsV2.pdf

Broka, K. & Ekdunge, P. (1997), ‘Modelling the PEM fuel cell cathode’, J.Appl.

Electrochem. Soc. (27), 281–289.

Brusca, S., Famoso, F., Lanzafame, R., Mauro, S., Marino, A. & Monforte, P. (2016),

Theoretical and experimental study of gaussian plume model in small scale system,

in ‘71st Conference of the Italian Thermal Machines Engineering Association,

ATI2016’.

Cutlip, M. B. & Shacham, M. (1999), Problem Solving in Chemical Engineering with

Numerical Methods, Prentice-Hall.

Downs, J. J. & Vogel, E. F. (1993), ‘A plant-wide industrial process control problem’,

Computers and Chemical Engineering 17(3), 245–255.

Fuel Cell Handbook (2004), U.S. Department of Energy. Free download:

https://www.netl.doe.gov.

SIMULATION PRACTICE WITH MODELICA

Ilachinski, A. (2001), Cellular Automata: A Discrete Universe, World Scientific,

Singapore.

Karnopp, D., Margolis, D. & Rosenberg, R. (1990), System Dynamics: A Unified

Approach, John Wiley & Sons. Second edition.

Larminie, J. & Dicks, A. (2000), Fuel cell systems explained, John Wiley and Sons.

Martin, D. O. (1976), ‘The change of concentration standard deviations with

distance’, J. Air Pollution Control Assoc. 26(2), 145–147.

Martin-Villalba, C., Manzur, M. & Urquia, A. (2018), ‘Virtual lab in Modelica for

air pollution control’, Computer Tools in Education (1), 5–15.

O‘Hayre, R., Colella, W., Prinz, F. B. & Cha, S. W. (2006), Fuel cell fundamentals,

John Wiley and Sons.

Ricker, N. L. (1993), ‘Model predictive control of a continuous, nonlinear, two-phase

reactor.’, Journal of Process Control 3, 109–123.

Rubio, M. A., Urquia, A. & Dormido, S. (2010), ‘Dynamic modelling of PEM

fuel cells using the FuelCellLib Modelica library’, Mathematical and Computer

Modelling of Dynamical Systems (16), 165–194.

Schiff, J. L. (2008), Cellular Automata: A Discrete View of the World, Wiley-

Interscience, New York, USA.

Springer, T. E. & Zawodzinsky, T. A. (1991), ‘Polymer electrolyte fuel cell model’,

J. Electrochem. Soc. (138), 2334–2342.

Urquia, A. (2000),Modelado Orientado a Objetos y Simulación de Sistemas Hı́bridos

en el Ámbito del Control de Procesos Qúımicos, PhD Diss., UNED, Madrid, Spain.

Urquia, A. & Martin-Villaba, C. (2018), Modeling and simulation in Engineering

using Modelica, Editorial UNED.

von Neumann, J. (1966), Theory of self-reproducing automata, Univ. of Illinois Press,

Urbana and London.

Wolfram, S. (2002), A New Kind of Science, Wolfram Media Inc., Champain, IL,

USA.

This activity book is aimed to provide an introduction to the simulation practice in Engineering using Modelica. To this
end, we propose a series of thirteen independent hands-on assignments of increasing complexity. Each assignment
contains the description of a system and a mathematical model of the system's behavior. The proposed task often
consists in describing this mathematical model in the Modelica language and simulate it. In some assignments, the
system's behavior is described as an atomic model, without internal structure. Some other assignments ask to design
and implement a model library, and to compose the system model by instantiating and connecting components from
this model library.
Before start working with this activity book, it is advisable to read its companion theory book: a free e-book entitled Mo-
deling and simulation in Engineering using Modelica, written by Alfonso Urquía and Carla Martín, and published by
Editorial UNED in 2018 (ISBN: 9788436273090). The theory book provides all the previous knowledge on the Modelica
language required to complete the assignments.

Alfonso Urquía, Carla Martín, Miguel Ángel Rubio and Victorino Sanz are professors in the Departamento
de Informática y Automática, at the Universidad Nacional de Educación a Distancia (UNED) in Madrid, Spain; and
members of the research group on Modelling & Simulation in Control Engineering of UNED. Further information is
available at www.euclides.dia.uned.es

This book has been written during the course of the Erasmus+ project "InMotion - Innovative teaching and learning
strategies in open modelling and simulation environment for student-centered engineering education'', Project No.
573751-EPP-1-2016-1-DE-EPPKA2-CBHE-JP, co-funded by the Erasmus+ Programme of the European Union. The
European Commission support for the production of this book does not constitute an endorsement of the contents,
which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Editorial
Juan del Rosal, 14
28040 MADRID
Tel. Dirección Editorial: 913 987 521

http://portal.uned.es/portal/page?_pageid=93,23375984,93_23375985&_dad=portal&_schema=PORTAL

	PORTADA
	ÍNDICE
	CONTENIDOS
	Modelica code
	Preface
	1 Springs, damper and lever
	1.1 System description
	1.2 Tasks
	1.3 Solution to Task 1
	1.4 Solution to Task 2
	1.5 Solution to Task 3

	2 Springs, pulley and load
	2.1 System description
	2.2 Tasks
	2.3 Solution to Task 1
	2.4 Solution to Task 2
	2.5 Solution to Task 3
	2.6 Solution to Task 4

	3 Bond graph library
	3.1 System description
	3.2 Tasks
	3.3 Solution to Task 1
	3.4 Solution to Task 2

	4 Source of liquid
	4.1 System description
	4.2 Tasks
	4.3 Solution to Task 1
	4.4 Solution to Task 2

	5 Ideal gas in a heated container
	5.1 System description
	5.2 Task
	5.3 Solution

	6 Hysteresis controller
	6.1 System description
	6.2 Task
	6.3 Solution

	7 Draining of a benzene storage tank
	7.1 System description
	7.2 Task
	7.3 Solution

	8 Heating a liquid mixture
	8.1 System description
	8.2 Task
	8.3 Solution

	9 Double-pipe heat exchanger
	9.1 System description
	9.2 Tasks
	9.3 Solution to Task 1
	9.4 Solution to Task 2

	10 Cellular Automata – The Game of Life
	10.1 System description
	10.2 Tasks
	10.3 Solution to Task 1
	10.4 Solution to Task 2
	10.5 Solution to Task 3
	10.6 Solution to Task 4
	10.7 Solution to Task 5

	11 Air pollution
	11.1 System description
	11.2 Task
	11.3 Solution

	12 Simplified Tennessee Eastman model
	12.1 System description
	12.2 Task 1
	12.3 Solution to Task 1
	12.4 Task 2
	12.5 Solution to Task 2
	12.6 Task 3
	12.7 Solution to Task 3

	13 PEM fuel cell
	13.1 System description
	13.2 Outline of the assignment
	13.3 Task 1
	13.4 Solution to Task 1
	13.5 Task 2
	13.6 Solution to Task 2
	13.7 Task 3
	13.8 Solution to Task 3

	Bibliography

	CONTRAPORTADA

