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Preface

The important advances made in the fields of computer hardware and numerical

methods in the 1980s paved the way for the development of general-purpose (i.e.,

not tied to any specific physical domain), equation-based, object-oriented modeling

languages in the early 1990s. These languages were intended to facilitate the des-

cription of physical system models, where phenomena in different physical domains

(e.g., electrical, mechanical, thermo-fluid and chemical) appear interrelated. The

target models, the so-called hybrid DAE models, were dynamic mathematical models

described in terms of ordinary differential equations with derivative with respect to

time, algebraic equations, and events.

In those first years, the use of object-oriented modeling languages was restricted

to some academic groups, mainly in the field of Control Engineering. The coexistence

of a plethora of modeling languages led to dispersion of the efforts in the development

of software tools and model repositories. Similar model libraries were programmed by

different developers from scratch, being unfeasible to reuse code previously made by

others because the models were written in different languages. Likewise, as dedicated

modeling environments (i.e., software tools for editing and simulating models) were

developed for each modeling language, improvements in a software tool were not

easily applicable to other tools and only a reduced number of users were benefited

by them.

The advisability of having a standard object-oriented modeling language that

facilitates the exchange of models among different developers and tools was recog-

nized, and a design group was established in 1996 to propose such a language.

The design group was composed of people who already have been involved in the

design of other modeling languages or the programming of model libraries, and of

people from industry. The proposed modeling language, which was named Modelica,
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incorporated ideas from existing modeling languages such as ALLAN, Dymola,

NMF, ObjectMath, Omola, SIDOPS+ and Smile, and also introduced some new

features.

Successive versions of the Modelica language have been released since 1997. An

important milestone for the Modelica development happened in the year 2000: the

foundation of the Modelica Association, a non-profit, non-governmental organization

with the aim of developing and promoting Modelica for modeling, simulation and

programming of physical and technical systems and processes. The website of the

Modelica Association, www.modelica.org, hosts documentation about the language

(specifications, scientific articles, tutorials, textbooks, etc.), and links to free model

libraries and software. Among the free Modelica libraries, it is worth noting the

Modelica Standard Library (MSL): a library that is developed and maintained

directly by the Modelica Association.

This standardization effort, that ended up in the proposal of Modelica, also

contributed to the popularization of the object-oriented modeling methodology,

which is nowadays widely used in academia and industry. Many free and commercial

model libraries written in the Modelica language are available. The easiness of

reusing model components is one of the strong points of Modelica. A number of

commercial and free software tools, that support the Modelica language or a part of

it, are available. Some of these tools are CATIA, Dymola, JModelica.org, LMS Ima-

gine.Lab AMESim, MapleSim, MathModelica, Modelicac, MWorks, SimulationX,

OpenModelica, Scicos and Wolfram SystemModeler.

The research oriented to the improvement of the Modelica language, and the

development of its software tools and model libraries, has aroused great interest

over the last few years. As an example, the European projects EUROSYSLIB (Ad-

vanced Modelica Libraries), MODELISAR (Modelica-AUTOSAR Interoperability

and Vehicle Functional Mock-up) and OPENPROD (Open Model-Driven Whole-

Product Development and Simulation Environment) were awarded around 54 million

euros during the 2009-12 period, and the work amount was 370 person-years. The

MODRIO (Model Driven Physical Systems Operation) project, in which participate

38 industrial and academic partners, was awarded around 21 million euros during

the 2012-16 period.

https://www.modelica.org/


PREFACE

Aim and structure of the book

This book offers an introduction to the development and simulation of Modelica

models for engineering applications. It has been written in the context of the Eras-

mus+ CBHE action “InMotion - Innovative teaching and learning strategies

in open modelling and simulation environment for student-centered engi-

neering education”, Project No. “573751-EPP-1-2016-1-DE-EPPKA2-CBHE-JP”,

funded by the European Commission.

The target audience is bachelor’s or master’s level students, interested in mode-

ling and simulation, and with a background in both physics and numerical methods.

The modeling methodology, the Modelica language features, and the use of mo-

deling environments are explained through examples. This facilitates the use of this

book in the context of student-centered learning strategies, such as problem-

based learning, and project-based learning. In any case, readers are encouraged to

install a Modelica modeling environment and simulate by themselves the models

described in the book.

The book is structured into three parts: (i) continuous-time modeling; (ii) simu-

lation of continuous-time models; and (iii) hybrid system modeling and simulation.

The modeling methodology and the Modelica features for continuous-time mo-

deling are discussed in the first part of the book. The modeling methodology

supported by Modelica, named object-oriented modeling, is discussed in Lesson 1.

The mathematical formalism underlying the Modelica language and algorithms for

simulating this type of model, named hybrid DAE system, are also discussed in the

first lesson, and the use of Dymola and OpenModelica is introduced. The description

of atomic models and model libraries in Modelica is discussed in Lessons 2 and 3.

The simulation of continuous-time Modelica models is addressed in the second

part of the book. We have favored simplicity, clarity and readability over mathemati-

cal rigor. The main objective is to provide the reader with the minimum knowledge

required for understanding the messages generated by the modeling environment

(e.g., Dymola and OpenModelica) during the model translation and simulation. A

broad range of topics are introduced: computational causality assignment, DAE

index reduction, DAE initialization, state variable selection, and numerical methods

for DAE systems. The analyses and symbolic manipulations that modeling envi-

ronments perform on Modelica models are discussed in Lessons 4 and 5, and the

numerical methods in Lesson 6.
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The third part of the book is devoted to discuss hybrid modeling and simulation

in Modelica. The formal specification of hybrid models, and the relationship of

this specification with the simulation algorithm and the Modelica description, are

described in Lesson 7. Numerical methods for event detection and handling are

discussed in Lesson 8. Once again, simplicity has been favored over mathematical

rigor. The objective is to provide the reader with the minimum knowledge required

to understand the issues associated with the description of events, and variable

structure models in Modelica. The goal is not to explain how to implement a

simulator, but to explain how to design and implement models that can be simulated

efficiently, without causing errors. Finally, the language features for describing time

and state events, and runtime changes in the model mathematical description, are

illustrated by a series of examples in Lesson 9.

Learning objectives

After studying the lessons and completing the proposed activities, students should

be able to:

– Design model libraries applying the object-oriented modeling methodology.

– Develop and use model libraries in Modelica.

– Relate modeling hypotheses and numerical behavior of DAE hybrid models,

including stiffness, algebraic loops, chattering, and high index.

– Formulate manually the simulation algorithm of small-dimension DAE-hybrid

models, which includes assigning the computational causality, reducing the

DAE index, applying numerical methods, and handling the events.

– Use Dymola and OpenModelica for editing, debugging and translating Mo-

delica models, experimenting with the models and analyzing the simulation

results.

About the authors

The authors are professors in the Departamento de Informática y Automática, at

the Universidad Nacional de Educación a Distancia (UNED) in Madrid, Spain; and

members of the research group on Modelling & Simulation in Control Engineering

of UNED. Further information is available at: www.euclides.dia.uned.es

http://www.euclides.dia.uned.es/


Part I

Continuous-time modeling



1

L
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so
n

Modeling methodology and tools

1.1 Introduction 
1.2 Physical modeling paradigm 
1.3 Object-oriented modeling 
1.4 Modeling environments 
1.5 Getting started with Modelica
1.6 Further reading

Learning objectives

After studying the lesson, students should be able to:

– Relate the following concepts: physical modeling paradigm; equation-based

modeling languages; computational causality of the model; non-causal mode-

ling; causal modeling; object-oriented modeling methodology; object-oriented

modeling language.

– Discuss features of the Modelica modeling language.

– Discuss the sequence of stages performed by the Modelica modeling environ-

ments for translating the Modelica model into executable code.

– Discuss the simulation algorithm for hybrid DAE systems implemented by the

Modelica modeling environments.

– Use Dymola and OpenModelica for editing, debugging and translating Mode-

lica models, experimenting with them, and analyzing the simulation results.
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1.1 Introduction

Modeling and simulation of dynamical systems have many applications in En-

gineering, playing a fundamental role in system design, analysis, control and opti-

mization. Support decision systems and training simulators are frequently based on

mathematical modeling and computer simulation.

As simulation projects become larger and more complex, the impact of the

modeling methodology and the software tools on the project cost is more evident.

Adequate methodologies and tools are key success factors. Complex simulation

projects typically require working in teams. Therefore, it is desirable that metho-

dologies and tools facilitate splitting the modeling task among the team members,

allowing them to work independently. Another key feature is model reusability.

The modeling methodology presented in this lesson, named object-oriented

modeling, facilitates the model design, development, maintenance and reuse. The

fundamentals of a modeling paradigm named physical modeling are also discussed,

as it constitutes the conceptual foundation for the object-oriented modeling metho-

dology and languages, including the Modelica language. The use of two of the most

advanced and widely-used Modelica tools is introduced: Dymola and OpenModelica.

1.2 Physical modeling paradigm

Modelica is a modeling language designed to facilitate the application of the

physical modeling paradigm. According to this paradigm, the model of a physical

system is developed following three steps:

1. Analyze the system structure and divide the system into parts.

2. Analyze and describe the interaction among the parts.

3. Describe the internal behavior of each part, independently of the others, in

terms of equations such as mass, energy and momentum balances, constitutive

relationships, etc.

The model typically obtained by applying this paradigm is a hybrid DAE mo-

del, composed of algebraic equations, ordinary differential equations with derivatives

with respect to time, and events. DAE stands for Differential-Algebraic Equation.

The languages conceived to support the physical modeling paradigm allow the

model developer to describe the continuous-time part of the model using equations.
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For this reason, these modeling languages are known as equation-based langua-

ges. Modelica belong to this type of modeling language.

An equation states an equality relationship between two expressions (i.e., ex-

pression_1 = expression_2) in which one or several model variables intervene.

During the model simulation, the equation is employed to calculate the value of

one of these variables.

In equation-based languages, the way in which the model developer writes an

equation does not determine the variable to be calculated from the equation. Like-

wise, the order in which the model developer writes the model equations does not

determine the evaluation order of the equations during the model simulation.

To illustrate this point, let’s suppose that the constitutive relationship of an ideal

resistor is described using an equation-based modeling language. The resistance has

a constant, known value, R. The voltage drop (v) across the resistor pins and the

electric current that flows through the resistor satisfy a linear relationship: the Ohm’s

Law. This equation can equivalently be written as:

v = i · R i = v/R R = v/i

v/i = R v − i · R = 0 0 = v −R · i

The computational causality of a model indicates which equation is used

to evaluate each variable, or equivalently, which variable is evaluated from each

equation. In equation-based modeling languages, the way in which the equations are

written does not condition or inform about their computational causality. For this

reason, equation-based modeling is also known as non-causal modeling.

In equation-based languages, the assignment of computational causality, and the

symbolic manipulation and sorting of the model equations, are not carried out by

the model developer. The modeling environment performs automatically these tasks.

This feature greatly facilitates model development and reuse, reducing the time and

effort required for completing simulation projects.

The computational causality of each equation does not only depend on itself, but

also on the other model equations. For this reason, the computational causality of

a model described by equations is a global property of the model.

Following up with the previous example, the computational causality of the

resistor’s constitutive relationship differs if the resistor is connected to a voltage

or current generator. The models of the two circuits are shown below.

[v] = fv(time) [i] = fi(time)

v = [i] · R [v] = i · R
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Each model is composed of two equations: the constitutive relationships of the

generator and the resistor. The computational causality has been annotated writing

within square brackets the variable that will be evaluated from each equation during

the model simulation. Note that the equation that describes the resistor is the same

in both models, but its computational causality is different.

In addition to using equations, Modelica allows to use algorithms for describing

the model. An algorithm is a sorted sequence of assignments. An assignment has the

following form: variable := expression.

The computational causality is explicitly indicated in assignments: the variable

written on the left-hand side is the variable to calculate from the assignment, which

is performed by evaluating the expression written on the right-hand side. The way of

writing an algorithm indicates the assignment to be used for evaluating each variable

and also the order in evaluating the variables. The modeling environment does not

manipulate or sort the assignments of an algorithm. As the computational causality

is explicitly indicated by the model developer, modeling using algorithms is referred

to as causal modeling.

Modelica allows to encapsulate algorithms within functions, which can be in-

voked in any part of the model. A function has a well defined interface: output

arguments, which are variables calculated from the algorithm, and input arguments,

which are variables intervening in the right-hand expressions of the algorithm as-

signments.

Modelica also supports external functions. An external function is a Modelica

function that encapsulates a call to a C, Fortran or Java function.

Modelica allows to define discrete-time variables and events. The trigger condi-

tion of an event is specified as a change in the value of a logical expression. Events can

produce instantaneous changes in the value of the continuous-time and discrete-time

state variables, and modify the mathematical description of the model.

Hybrid modeling in Modelica is based on the synchronous data flow princi-

ple. At any time, the active equations and algorithms describe relationships among

variables that must be satisfied concurrently. The set of active equations can be

composed of continuous-time equations (during the solution of the continuous-time

problem), and by a combination of continuous-time and discrete-time equations

(at the event execution). The evaluation order of the equations is automatically

calculated by the modeling environment, so that it is unequivocally defined from

which equation or algorithm has to be calculated each variable at every instant.
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1.3 Object-oriented modeling

Object-oriented modeling is based on principles of modular and hierarchical

modeling such as model reuse by composition; distinction between model interface

and internal description; and information encapsulation. In addition, object-oriented

modeling introduces new concepts such as model class; and model reuse by inheri-

tance.

Modelica supports the object-oriented modeling methodology, facilitating model

reuse both by composition and inheritance. Some of the language features are

summarized below.

– Modular and hierarchical modeling. In the definition of the model classes,

Modelica allows to distinguish between interface and internal description, and

to encapsulate the information. The variables that don’t belong to the interface

can be declared as protected variables, so that they cannot be accessed from

outside the class.

To facilitate the component connection, Modelica allows to group the interface

variables in connectors, and provides the syntax to define the connection

between connectors.

Likewise, Modelica establishes rules (inspired in the energy conservation prin-

ciple) to relate the connector variables in the connection point. To this end,

the connector variables are classified into the following two types:

• Across variables, also known as effort variables, are those variables

that are set equal at the connection point.

• Through variables, also known as flow variables, are those variables

whose sum is set equal to zero at the connection point.

– Inheritance. Modelica supports multiple inheritance, and the definition

of partial classes, which define general properties of the class but cannot be

instantiated. Partial classes facilitate the description of characteristics common

to several classes.

– Parametrization. Modelica allows to modify the class parameters when the

class is instantiated and inherited. The parameters can be time-independent

variables. Also, the class of components or superclasses can be a parameter.

This feature simplifies experimenting with models.
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Table 1.1: Classes of the Modelica language.

Name Usage

type Definition of new variable types by extending the types predefined in
the language.

connector Definition of connectors (i.e., sets of interface variables) with the purpose
of facilitating the description of component connections. Connectors
cannot contain equations.

model Definition of model classes.

block Definition of model classes whose interface variables have the compu-
tational causality explicitly defined.

record Definition of sets of variables and parameters. The purpose is facilitating
the model parametrization. Records cannot contain equations.

function Definition of functions that can encapsulate a Modelica algorithm, or a
call to an external function written in C or Fortran.

package Definition of model libraries. A package is a class that only can contain
classes.

– Annotations. Modelica allows to include annotations in the class model,

whose purpose is to define the graphical properties of the class icon and

diagram, the model documentation, etc. The capability of incorporating this

information in the model facilitates the model composition using a model

graphical editor.

The definition of the model classes, packages, variable types, data records and

functions is made using the seven classes provided by the Modelica language, which

are shown in Table 1.1.

As discussed previously, the interaction among the components is described in

terms of variables that are grouped in connectors, and classified in each connector

into across and through, depending on whether they are equal at the connection

point or their sum is equal to zero.

The connector variables can be selected in a way that component connections

satisfy the conservation laws. For instance, suppose that the connector variables

are selected as shown in Table 1.2, where the product of the across and through

variable of each connector has power units. The across variables describe physical

quantities that determine whether equilibrium exists, whereas the through variables

describe physical quantities that restore the equilibrium. This selection guaranties
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Table 1.2: Connector variables in different energy domains (across × through has power units).

Domain Across variable Through variable

Electrical Voltage (V) Current (A)

Mechanical translation Velocity (m/s) Force (N)

Mechanical rotation Angular velocity (rad/s) Torque (N·m)

Hydraulic Pressure (N/m2) Volume flow rate (m3/s)

Thermal Temperature (K) Entropy flow rate (W/K)

Chemical Chemical potential (J/mol) Molar flow rate (mol/s)

1
C

2
C

3
C

4
C

1
i 2

i

3
i

4
i

1
u

2
u

3
u

4
u

1 2 3 4

1 2 3 4
0

u u u u

i i i i

= = =

+ + + =

Figure 1.1: Connection among four components (C1, C2, C3 and C4). Connectors (filled
rectangles) are composed of an across variable (u) and a through variable (i).

that if several connectors of the same domain are connected, then the power is

conserved at the connection point.

Other selections that guarantee the energy conservation are possible. For ins-

tance, the heat flow rate is more frequently used than the entropy flow rate as

through variable of the thermal domain. As the heat flow rate has power units, the

energy conservation is described by the equation stating that the sum of the through

variables at the connection point is zero.

Suppose that we want to model an electric circuit composed of current and

voltage sources, resistors, capacitors, inductances, diodes, transistors, etc. The con-

nection terminals of the electric components are named pins. The connection point

of two or more pins is named circuit node. Let’s consider a connection node of four

components C1, C2, C3 and C4, as shown in Figure 1.1. Pins are represented in the

figure as filled rectangles.
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Selecting the electric connector variables as suggested in Table 1.2, the pin is

modeled as a connector composed of an across variable and a through variable: the

voltage (u) and current (i), respectively. Let’s adopt the following sign convention

for through variables: the through variable is defined as entering the connector.

In other words, positive current enters the component. The connection among the

four components is translated by the modeling environment into four equations:

three equations stating the equality of the voltages (u1 = u2 = u3 = u4) and one

equations stating the current conservation (i1 + i2 + i3 + i4 = 0).

1.4 Modeling environments

A modeling environment is a computer program aimed to edit, check, debug,

translate into executable code, and simulate models described using a certain mo-

deling language. Modeling environments typically include a graphic model editor,

that allows to compose models from model libraries by dragging, dropping and

connecting components, facilitating setting parameter values, accessing the code

and documentation of the components, and navigating through the model hierarchy.

Modeling environments also facilitate plotting the simulation results and exporting

them to file.

The translation of the Modelica model into executable code is performed th-

rough a sequence of stages. The first set of operations are intended to translate

the Modelica model into a flat model. The operations of this translation stage

include performing lexical, syntactic and semantic analyses, type checking, undoing

inheritance and composition, and generating connection equations.

The flat model is equivalent to the object-oriented model, but with the hie-

rarchy, composition and inheritance undone. A flat model is composed by declara-

tions of constants, parameters and variables, and equations and algorithms. The flat-

model variables are named using dot notation, in accordance with the hierarchical

structure of the Modelica model.

Connection among components is described in Modelica using connect senten-

ces. These sentences are replaced by equations in the translation stage. At each

connection node, the across variables are set equal and the sum of the through

variables is set to zero.

Equations that state equality between two variables are named trivial equa-

tions, and the variables are named alias variables. The across variables of the

connected connectors are alias variables. The equations that relate them are tri-
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vial equations, which are added to the model as a result of the connect-sentence

translation.

The set of operations that is performed next on the flat model constitutes the

analysis and optimization stage. An obvious optimization consists in substitu-

ting the alias variables, removing the trivial equations from the simulation model.

Equations don’t contain explicit information on their computational causality,

which is calculated by the modeling environment from analyzing the complete model.

As a result of this analysis, named assignment of the computational causality,

the evaluation order of the equations and algorithms is obtained, and also which

variable has to be evaluated from each equation.

In addition to the assignment of the computational causality, other analyses and

manipulations performed on the model are reduction of the DAE index, symbolic

manipulation of linear equations and systems of simultaneous equations, tearing

of non-linear systems of simultaneous equations, and optimization of expression

evaluations.

The model obtained of performing these operations is named the sorted and

solved model. Its simulation algorithm (typically programmed in C language) is

automatically generated by the modeling environment, and compiled and linked with

libraries of numerical methods, to obtain the simulation executable file.

As Modelica models are hybrid, the simulation algorithm implemented by the

Modelica modeling environments combines the solution of the continuous-time part

of the model, with the detection and handling of the events. The algorithm basically

works as follows:

1. The continuous-time part of the model is solved using numerical integra-

tion methods for DAE systems. As discrete-time variables only change their

values at event instants, these variables are assumed to be constant during the

integration of the continuous-time part of the model. The model is evaluated

at time instants determined by the step size of the integration algorithm. After

each evaluation, the event conditions are checked.

2. If an event condition is satisfied, it means that the associated event has been

triggered within the last time step of the integration algorithm. Then, the

integration is halted and an iterative method to accurately locate the event

trigger time is started. A small interval that includes the trigger time is

found. The interval length is smaller than a predefined value that depends on
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the precision of the event-location method. It is assumed that the trigger time

is the right endpoint of the calculated interval.

3. Once the event trigger time has been calculated, the integration method is used

to evaluate the model at the event instant, prior to executing the event actions.

Next, the event actions are executed: the continuous-time part of the model

and the active discrete-time equations are solved simultaneously. This is known

as solving the restart problem. If several events are triggered simultaneously,

the discrete-time equations of all these triggered events are considered in the

restart problem. Observe that two model evaluations are performed at the

event time, one prior to the event execution and the other when executing the

event (for solving the restart problem), resulting in two values of the model

state: the previous value and new value, respectively.

4. Once the restart problem has been solved, the event conditions are checked

again. If one or several events are triggered, then the new restart problem,

which is composed of the continuous-time part of the model and the discrete-

time equations of the triggered events, is posed, solved, and the event condi-

tions are checked again. This process, named execution of an event chain,

continues until no more events are triggered. Then, the numerical integration

of the continuous-time part of the model is resumed, using as initial condition

the values calculated from solving the last restart problem.

The state of hybrid models evolves by continuous change over time of the continuous-

time state variables, and by instantaneous changes in the total state, described by the

continuous-time and discrete-time state variables, known as events. The description

of an event has two parts:

1. The trigger condition, also known as activation condition or simply event

condition. Depending on the activation condition, events are classified into

state and time events.

– State events are those whose condition depends on any continuous-time

variable.

– Time events are those whose condition does not depend on continuous-

time variables. The condition of time events may depend on time and

discrete-time variables.

2. The action to perform. It typically consists in producing an instantaneous

change in the total state of the model or the equations that describe the model
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behavior. The model is said to have a variable structure if its mathematical

description may change during the simulation.

As time-event conditions don’t depend on continuous-time variables, the trigger

instant of time events can be scheduled in advance during the simulation. The

handling of this type of events is typically performed using an event calendar,

where future events are stored in order. When the first scheduled event is within the

next time-step of the integration algorithm, the length of the time step is reduced,

so that the model is evaluated precisely at the event instant.

In general, state events cannot be scheduled in advance and for this reason are

detected by checking their event conditions during the solution of the continuous-

time problem. The event condition of each state event is expressed as a logical

expression, so that the event condition is fulfilled when the value associated to the

logical expression changes.

Dymola and OpenModelica are two widely-used Modelica modeling environments

that constitute the state of the art. Dymola is commercial software. However, there

is a free demonstration version, limited to models up to 10 state variables, that

allows to simulate most of the models described in this text. OpenModelica is free

software. The use of Dymola and OpenModelica is introduced in the next section.

1.5 Getting started with Modelica

A simple, plane pendulum is modeled by the following two equations

dϕ

dt
= w (1.1)

L · dw

dt
= −g · sin (ϕ) (1.2)

were ϕ represents the pendulum angle with respect to the vertical, w the angular

velocity, L the pendulum length, and g the gravitational acceleration.

This model is described in Modelica as shown in Modelica Code 1.1. The Modelica

description of the model has two sections, containing the variable declaration and

the equations respectively. The variables are declared first. The equation keyword

signals the beginning of the equation section.

The model has two continuous-time variables of real type that represent the

angle (phi) and the angular velocity (w); a parameter of real type that represents
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model pendulum
constant Real g = 9.81 "Gravitational acceleration";
parameter Real L = 1 "Length of the rigid rod";
Real phi(start=0.1, fixed=true) "Angle";
Real w(start=0, fixed=true) "Angular velocity";

equation
der(phi) = w;
// Equation of motion
L*der(w) = -g*sin(phi);

end pendulum;

Modelica Code 1.1: Model of a simple plane pendulum.

the pendulum length (L); and a constant of real type that represents the gravitational

acceleration (g).

The values of constants and parameters don’t change during the simulation.

The parameter values may be changed between simulation runs. The setting of

parameter values is a part of the simulation experiment definition. On the contrary,

the constant values cannot be changed at the experiment definition. In this exam-

ple, the parameter and constant values are set in the variable declaration: L = 1,

g = 9.81. The value of L may be modified between simulation runs.

The continuous-time variables phi and w appear differentiated in the model. Both

are selected by-default as continuous-time state variables. In that way, their time

derivatives are calculated from the model equations, and phi and w are calculated

by numerical integration of their time derivatives.

The initial values of phi and w are specified by setting the value of the attribute

start to the variable initial value, and setting the fixed attribute to true. The initial

value of phi is 0.1 radians and the initial value of the angular velocity is zero.

It is possible to include comments in the Modelica code. Comments associated

to a declaration are written within double quotation marks ", before the semicolon

that signals the end of the sentence. These comments are typically shown by the

model editor, accompanying the variable name, as an aid for understanding the

variable meaning.

Modelica allows also to include comments intended only for model developers.

The text written in a line after two slashes // will be ignored by the model editor. It

is also possible to include multi-line comments: the text written between the symbols

/* and */ will be ignored.

The model equations are written after the equation keyword. Observe that the

time derivatives of the phi and w variables are der(phi) and der(w), respectively.

The way of writing the equations and their order are irrelevant. The modeling
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environment will analyze the model to find out which variable has to be evaluated

from each equation and in which order these evaluations have to be made, and will

manipulate symbolically the equations.

1.5.1 Dymola

Firstly, let’s edit and simulate this model using Dymola. The graphic user inter-

face (GUI) of Dymola version 2017 is shown in Figure 1.2. The modeling view of the

GUI is displayed on launch. The main window is divided into three windows: the

upper left window (Packages) allows to navigate through the model libraries, the

lower left window (Component Browser) shows the components of the model that is

being edited, and the right window allows to edit the model. The library named

Modelica shown in the Packages window is the Modelica Standard Library

(MSL). It is opened by-default when Dymola is launched.

The menu and button bars located at the top of the main window allow to open

files containing Modelica models (text files with .mo extension), save models to file,

and model editing (defining graphic attributes, connecting components, etc.) and

checking. The two buttons at the lower-right part of the main window, labeled as

Modeling and Simulation respectively, allow to switch between the modeling view

(displayed by-default on launch), which allows to load, save, edit and check models,

and the simulation view, which allows to translate and simulate the model, define

the experiment, and plot the results.

The pendulum model can be edited and simulated following these steps:

1. Create a new model. Choose File > New > Model in the menu bar, and

write the name of the new model: pendulum. Dymola asks whether the new

model has to be included within any of the libraries shown in the Packages

window. As our answer is negative in this case, the new model is created in the

upper hierarchical level of the library tree displayed in the Packages window.

2. Write the Modelica code of the model. Choosing Window > View >

Modelica Text or pressing the Modelica Text button, the right window changes

to the code editing mode. Then, we can write the Modelica description of the

model (see Figure 1.3). Choosing File > Save saves the model to file. Modelica

classes are written in text files with .mo extension. The directory where the file

is saved is selected as the working directory for the session. It can be changed

choosing File > Change directory.
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Figure 1.2: Model edition window of Dymola version 2017.

Figure 1.3: Edition of the pendulum model.
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Figure 1.4: Checking of the pendulum model.

3. Check the model. Choosing Edit > Check > Normal or pressing the Check

button, Dymola checks that the model being edited does not contain syntax

errors. Also, Dymola displays the number of unknown variables and the number

of equations (see Figure 1.4). Both numbers have to be equal for the model to

be simulated.

4. Translate the model. Clicking the Simulation button, located at the lower

part of the main window, Dymola changes to the simulation view (see

Figure 1.5). The name of the model to be translated and simulated is shown

in the upper border of the main window: pendulum. The translation of the

model is performed selecting Simulation > Translate > Normal or pressing

the Translate button. Dymola translates the Modelica model into C language.

The generated C-file, named dsmodel.c, is compiled and an executable file

named dymosim.exe is created. Both files are saved in the working directory.

The Dymola Messages window displays information on the model, including

the number of unknown variables, equations, number and size of the systems

of simultaneous equations, and also lists the variables that have been selected

as continuous-time state variables (see Figure 1.6).
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Figure 1.5: Simulation window.

5. Initialize the model. After translating the model, the Variable Browser

window (see Figure 1.6) shows the variables whose value can be set to initialize

the model. In the pendulum model, these are the angle and the angular

velocity (state variables), and the length (parameter). The values shown are the

values assigned to these quantities in the model, being now possible to change

these values. From the value of these quantities and the model equations,

Dymola will be able to solve the model at the initial time of the simulation.

The parameter value will be kept constant during all the simulation. The

derivatives of the angle and the angular velocity will be calculated solving the

model equations, and the angular velocity and the angle will be calculated by

numerical integration of their derivatives.

6. Define the experiment. Choosing Simulation > Setup or clicking on the

Setup button, the Simulation setup window opens. The initial and final si-

mulation time, the length or number of output intervals, and the integration

method and its tolerance or step size, are specified in the General tab. In this

example, the final time is set to 5 (see Figure 1.7).
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Figure 1.6: Model translation.
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Figure 1.7: Experiment setup.

The Translation tab allows to specify additional information to be generated

by Dymola on the translation, for instance, the flat model, or the sorted and

solved model.

The Output tab allows to configure the type and amount of data to store during

the simulation. Typically, the value of all variables not declared as reserved is

saved at equispaced communication instants, and at events.

The Debug tab allows to specify additional information on the model numerical

solution to be reported. The Realtime tab allows to synchronize the simulated

time with real time.

The Store in Model button, located at the bottom of the Simulation Setup

window, writes in the model an annotation describing the actual experimental

configuration.

The experiment can also be described using the Modelica script language: the

commands are written in a text file with .mos extension that is opened and

executed selecting Simulation > Open Script.
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Figure 1.8: Model simulation.

7. Run the simulation and plot the results. The simulation run starts choo-

sing Simulation > Simulate or pressing the Simulate button (see Figure 1.8).

Dymola automatically generates a text file named dsin.txt with the experiment

description, including the information to initialize the model and configure the

numerical methods, a list of all the model variables, and the initial and final

time. The experiment description file can be also obtained by executing the

following command from a Windows shell: dymosim -i

Dymola launches the simulation by executing dymosim.exe, which reads the

experiment file (dsin.txt by-default). The final state of the model is stored in

a file named dsfinal.txt, which has the same form as the file describing the

experiment.

The results can be plotted during the simulation run and once the simulation

is finished. The variable names are displayed in the Variable Browser window.

Click on a variable to visualize it in the Plot window. By default, the horizontal

axis represents time, but any other variable can be selected as independent

variable. The simulation results are saved to a Matlab format file, whose name
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is the model name with .mat extension. If the option Textual data format

is selected in the Output tab of the Simulation Setup window (see again

Figure 1.7), then the simulation results are also written to a text file. Dymola

writes these files in the working directory.

1.5.2 OpenModelica

Some guidelines to use the modeling and simulation environment OpenModelica

are provided below. To this end, the steps required to edit, check and simulate a

model using OpenModelica are described. We use the same example employed to

describe Dymola: the pendulum shown in Modelica Code 1.1.

The OpenModelica environment has been developed by the Open Source Mo-

delica Consortium (OSMC), it can be freely downloaded and there exist versions

for Windows, Linux and Mac Operating Systems. The core of this environment

is the Modelica Compiler, named OpenModelica Compiler, that transforms the

Modelica code into C code. This environment includes many tools to interface

between the compiler and the user. These tools are the OpenModelica Connection

Editor (OMEdit), the Interactive OpenModelica Shell (OMShell), OpenModelica

Notebook (OMNotebook), DrControl, OpenModelica Equation Model Debugger,

OMOptim, Modelica Development Tooling (MDT), OpenModelica Python Interface

(OMPython). We are going to use OMEdit as the user interface.

After installing OpenModelica in a Windows computer, OMEdit can be opened

by simply executing OMEdit.exe, located in the bin directory of the OpenMode-

lica installation. After executing it, the window shown in Figure 1.9 is displayed.

This windows has the following three tabs: “Welcome”, “Modeling”, “Plotting” and

“Debugging”. The “Welcome” tab is divided into three areas: an area to navigate

in the model libraries (Libraries Browser), an area showing the Modelica files that

have been opened recently (Recent Files) and an area with the last news about

OpenModelica (Latest News). There are buttons in the top of the window, which

allow the user to open new models stored in files, save models to a file, define

graphical attributes, and perform operations in the models such as the syntactic

checking of models, simulation, etc. The “Modeling” tab allows to edit models and

the “Plotting” tab allows to visualize the simulation results.

The steps required to edit, check and simulate the pendulum example are briefly

described below.
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Figure 1.9: Window obtained after executing OMEdit.exe.

1. Create a new model. Choose File > New Modelica class in the menu bar.

Then, a window is displayed (see Figure 1.10). The user can set the name

of the new class in the Name box, and the type of the Modelica class in the

Specialization box. By clicking on the Partial box, we are specifying that this

new class is partial. This means that this new class can be inherited but not

instantiated . If the new model inherits from other models, we can specify the

name of the superclasses in the Extends box. Additionally, if the new model is

part of an existing library, in the Insert in class box we can specify where it

has to be included. In this example, we only fill in the first box with the name

of the model.

2. Write the Modelica code of the model. By clicking on the button Text

View (see Figure 1.11), a window is displayed where the Modelica code of the

new pendulum model can be written. In this window we can choose to show

the model icon, diagram or documentation by clicking the Icon View, Diagram

View or Documentation View buttons, respectively. By clicking on the Check

Model button, OpenModelica checks that the model has no errors, and shows a

dialog window with information about the number of variables and equations.
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Figure 1.10: Setting a new Modelica class in OMEdit.

Figure 1.11: Editing a new model in OMEdit.
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Figure 1.12: Defining an experiment in OMEdit.

Figure 1.13: Running the simulation and plotting the results with OMEdit.
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3. Define the experiment. By clicking on the Simulation Setup button (see the

Figure 1.11), the window Simulation Setup is opened (see the Figure 1.12). In

the General tab of this window, the user can set the initial and final time of

the simulation, the length or number of output intervals, and the integration

method and its tolerance. In this example, the final time is set to 5. The format

of the file where the simulation results are stored can be set in the Output tab.

Additionally, we can choose to store or not the protected type variables, the

variable values at the event instants and the variable values at equidistant time

grid.

4. Run the simulation and plot the results. The simulation starts by clicking

on the button Simulate (see Figure 1.11). If an error occurs during the simu-

lation run, OMEdit shows an error message in the message window. OMEdit

shows the output variables in the window Variables Browser (see Figure 1.13).

By clicking on one or several of these output variables, their graphical re-

presentation is displayed. Additionally, simulation results are stored in a file.

OMEdit stores the output file in its working directory. The working directory

can be changed in the Options window that is displayed by clicking on Tools

> Options.

1.6 Further reading

Some of the ideas that motivated the Modelica standardization effort are ex-

plained by Åström et al. (1998), placing them in the context of the evolution of

continuous-time modeling and simulation, since the mid 1920s until the late 1990s.

We strongly recommend reading this article.

An outstanding book on the principles and techniques of continuous-time mode-

ling is (Cellier 1991).

A selection of the connector variables was shown in Table 1.2, so that component

connection satisfies power conservation. This concept is fully developed in the bond

graph modeling formalism, according to which the system is modeled describing the

flow, storage, dissipation and transformation of the energy that takes place in it. As

these concepts are common to all physical domains, the bond graph formalism is

well suited for mixed-domain modeling. Bond graph models reflects simultaneously

the physical structure of the modeled system, and the computational causality of

the model. Some excellent books on bond graph modeling are (Karnopp et al. 1990),

(Thoma 1990) and (Hogan & Breedveld 1995).
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The use of Dymola and OpenModelica was introduced in Section 1.5. Further

information is provided in the Dymola documentation (Dynasim AB 2004, Dassault

Systèmes AB 2016) and the OpenModelica website (OpenModelica 2017).

It is recommended to navigate around the Modelica Association website (Mo-

delicaWebSite 2017), where there is plenty of information available: the successive

Modelica language specifications, tutorials on the use of the language, conference

papers, links to software tools, books, model libraries, etc.
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Learning objectives

After studying the lesson, students should be able to:

– Declare scalar and array variables in Modelica.

– Relate basic types and attributes.

– Use the Modelica.SIunits and Modelica.Constants packages of the MSL.

– Declare and call functions in Modelica.

– Describe the continuous-time behavior using equations, algorithms and fun-

ctions, involving scalar and array variables.

– Develop continuous-time atomic models in Modelica.
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2.1 Introduction

This lesson provides an introduction to the description of continuous-time atomic

models in Modelica. Atomic models are those models that are not composed of sma-

ller components. The system behavior is described using equations and algorithms.

Only the description of continuous-time behavior is addressed in this lesson.

Modeling of events will be discussed in the third part of the book, which is dedicated

to hybrid system modeling and simulation.

Modeling examples in the electrical, mechanical and thermal domains are emplo-

yed to explain and illustrate the concepts.

The rectifier circuit models described in Section 2.2 and the mechanical systems

described in Section 2.3 are used to explain the declaration of scalar variables and

their types; the meaning of the variable’s attributes; the use of the standard types

declared in the Modelica.SIunits package; and the basic structure of an atomic model,

consisting in variable declarations and an equation section.

The declaration and use of vectors and matrices of variables is introduced in

Section 2.4. To this end, a simplistic model of the Earth’s motion around the Sun is

developed. Two ways of describing the model behavior in terms of vector and matrix

variables are discussed: employing vector and matrix equations, and for loops. The

use of algorithms is introduced.

The example described in Section 2.5 is used to explain the definition and use of

functions, which may facilitate the reuse of Modelica algorithms, and encapsulate

calls to external functions. The example consists in modeling the stationary heat

transfer in the radial direction of an insulated steel pipe.

2.2 Rectifier circuit

Consider the circuit shown in Figure 2.1, which is composed of a sinusoidal volta-

ge generator, two resistors, a capacitor and a diode. These electronic components can

be modeled with different level of detail, employing different types of mathematical

model. We will model them using the constitutive relationships shown in Figure 2.2.

This is, assuming that the generator, resistors and capacitor are ideal components,

and the diode obeys the Shockley equation. Their parameter values are shown in

Table 2.1. The circuit model can be built following the next steps.
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Figure 2.2: Constitutive relationships of the components.

Table 2.1: Parameters of the circuit shown in Figure 2.1.

Component Parameter Value

Voltage generator Amplitude U0 = 5 V

Angular frequency w = 200π rad/s ( = 100 Hz)

Phase angle ϕ = 0 rad

Resistors Resistance R1 = 100 ohm

R2 = 100 ohm

Capacitor Capacitance C = 10−6 F

Diode Saturation current Is = 10−9 A

Thermal voltage Vt = 0.025 V
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Figure 2.3: Assign names to the voltage nodes, and names and directions to the currents.

1. Select a circuit node as reference for voltage. This node is named

ground node and by convention its voltage is zero. Voltage at the other

circuit nodes is calculated relative to ground. The ground node has already

been selected in the circuit shown in Figure 2.1.

2. Assign names to the voltage in the remaining nodes. Nodes are repre-

sented as filled circles in Figure 2.3. The names assigned are u1 and u2. The

u0 node is the ground node.

3. Assign directions and names to the currents. For each two-pin compo-

nent, a name is given to the current that flows through the component with

an arbitrarily chosen reference direction. In components with three or more

pins, a name is assigned to the current in each pin and the current directions

are chosen to be pointing towards the component. In this example, the names

and directions given to the currents are shown in Figure 2.3. The names are:

igen, iR1, iD, iR2, iC .

4. Impose the current conservation in every node, except the ground

node. As charge is conserved in each node, the sum of currents at each node

is zero. The equations at the nodes labeled as u1 and u2 are:

igen = iR1 (2.1)

iR1 = iD + iR2 + iC (2.2)

Observe that the equation that states the current conservation at the ground

node does not provide any additional information and for this reason is not

included in the model. This equation is always a linear combination of the

equations that state the current conservation at the other nodes. For example,
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the equation at the ground node of this circuit is Eq. (2.3), which can be

obtained adding Eqs. (2.1) and (2.2).

igen = iD + iR2 + iC (2.3)

5. Write the constitutive relationships of the components. The constitu-

tive relationships of the components that intervene in this circuit are shown

in Figure 2.2, where u represents the voltage drop across the component. This

is, the voltage at the pin labeled “+”minus the voltage at the pin labeled “-”.

The equations describing the five components of the circuit are:

u1 − u0 = U0 · sin(w · t + ϕ) (2.4)

u1 − u2 = iR1 · R1 (2.5)

iD = Is ·
(

exp
(

u2 − u0

Vt

)

− 1
)

(2.6)

u2 − u0 = iR2 · R2 (2.7)

C · d

dt
(u2 − u0) = iC (2.8)

Replacing the ground node voltage (u0) by zero, it is obtained:

u1 = U0 · sin(w · t + ϕ) (2.9)

u1 − u2 = iR1 · R1 (2.10)

iD = Is ·
(

exp
(

u2

Vt

)

− 1
)

(2.11)

u2 = iR2 · R2 (2.12)

C · du2

dt
= iC (2.13)

The model is composed by the equations describing the current conservation at

the nodes, Eqs. (2.1) and (2.2), and the constitutive relationships of the components,

Eqs. (2.9) – (2.13). These seven equations describe the time evolution of the voltages

(u1, u2) and currents (igen, iR1, iD, iR2, iC). The parameter values are given in

Table 2.1.

The circuit model can be described in Modelica as shown in Modelica Code 2.1.

Observe the following::
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model circuit1
Real i_gen(unit="A") "Current of the generator";
Real i_R1(unit="A") "Current of R1";
Real i_R2(unit="A") "Current of R2";
Real i_C(unit="A") "Current of the capacitor";
Real i_D(unit="A") "Current of the diode";
Real u_1(unit="V") "Voltage of generator";
Real u_2(start=0, fixed=true, unit="V") "Output voltage";
// Voltage generator
constant Real PI = 3.1415926536;
parameter Real U0( unit="V") = 5;
parameter Real frec( unit="Hz") = 100;
parameter Real w( unit="rad/s") = 2*PI*frec;
parameter Real phi( unit="rad") = 0;
// Resistors
parameter Real R1( unit="ohm") = 100;
parameter Real R2( unit="ohm") = 100;
// Capacitor
parameter Real C( unit="F") = 1e-6;
// Diode
parameter Real Is( unit="A") = 1e-9;
parameter Real Vt( unit="V") = 0.025;

equation
// Node equations
i_gen = i_R1;
i_R1 = i_D + i_R2 + i_C;
// Constitutive relationships
u_1 = U0 * sin( w * time + phi);
u_1 - u_2 = i_R1 * R1;
i_D = Is * ( exp(u_2 / Vt) - 1);
u_2 = i_R2 * R2;
C * der(u_2) = i_C;

end circuit1;

Modelica Code 2.1: Circuit of Figure 2.1, with the parameters of Table 2.1.

– Declaring a variable implies specifying its data type (Real, Integer, Boolean,

etc.), its variability (see Table 2.2), name and dimensionality (scalar, n-dimensional

matrix). Optionally, values can be assigned to the variable attributes at the

variable declaration. The attributes associated to a variable depends on the

variable data type (see Tables 2.3 and 2.4).

– The constitutive relationship of the generator describes a sinusoidal voltage

waveform, in which time appears explicitly. Time is represented by a built-in

Modelica variable named time.

– The start and fixed attributes have been employed to specify the initial value

of the u2 variable. This initial value specified in the variable declaration can

be later modified in the experiment definition.

– The units have been indicated in the variable declarations, using the unit

attribute.
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Table 2.2: Variability of variables.

Keyword Meaning

constant The value of a constant variable cannot be modified at the experiment
definition and does not change during the simulation.

parameter The value of a parameter can be modified when the component is ins-
tantiated or inherited, and at the experiment definition, but parameter
values don’t change during the simulation.

discrete It is optional and indicates that the variable is a discrete-time variable.
As modeling environments are able to automatically deduce whether a
variable is continuous-time or discrete-time, this keyword is seldom used.
Variables of Integer, Boolean or String type are discrete-time, and the use
of Real variables indicates whether are continuous-time or discrete-time.

(no keyword) Continuous-time or discrete-time variables.

Table 2.3: Attributes of variables.

Attribute Meaning

quantity Physical quantity (e.g., quantity = "Time", quantity="Mass").

unit Units of the physical quantity (e.g., unit = "s", unit = "kg").

min, max Minimum and maximum values allowed for the variable. The variable
value going out of this range indicates that the model is not repro-
ducing the behavior of the real system. Some modeling environments
generate warning messages during the simulation when variables go
out of their range. The assert sentence can be used for the same
purpose.

start, fixed The start and fixed attributes are related. If fixed is true, the start
value is the variable initial value. If fixed is false and the variable
is calculated at the initial time solving a system of simultaneous
equations, then the start value is used by the numerical iterative
method as initial guess for calculating the variable at the initial time.

displayUnit Units employed by the graphical user interface of the modeling
environment for displaying the results.

Table 2.4: Attributes of the built-in types of variable.

Real Integer Boolean String

quantity × × × ×
unit ×
min, max × ×
start, fixed × × × ×
displayUnit ×
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package SIunits "Type definitions based on SI units, ISO 31-1992"
...

// Space and Time (chapter 1 of ISO 31-1992)
type Angle = Real(final quantity="Angle",final unit="rad",displayUnit="deg");
type Frequency = Real(final quantity="Frequency", final unit="Hz");
type AngularFrequency = Real(final quantity="AngularFrequency",final unit="s-1");
...
// Electricity and Magnetism (chapter 5 of ISO 31-1992)
type ElectricCurrent = Real(final quantity="ElectricCurrent", final unit="A");
type Current = ElectricCurrent;
type ElectricPotential = Real(final quantity="ElectricPotential", final unit="V");
type Voltage = ElectricPotential;
type Capacitance = Real(final quantity="Capacitance",final unit="F",min=0);
type Resistance = Real(final quantity="Resistance",final unit="Ohm");
...

end SIunits;

Modelica Code 2.2: Fragment of the Modelica.SIunits package.

Modelica facilitates declaring new variable types, based on the built-in types, by

setting attribute values. For instance, two new types named Voltage and Current

can be declared as follows:

type Voltage = Real( unit = "V" );
type Current = Real( unit = "A" );

The Modelica Standard Library (MSL) includes the Modelica.SIunits package

that contains type declarations following the International System of Units. This

package is intended to standardize the declaration of physical quantity types and

therefore the use of these types is recommended. A fragment of this package is shown

in Modelica Code 2.2. The final keyword written before an attribute indicates that

further modifications in the value of this attribute are not allowed.

Dot notation is used for accessing to the classes defined within a package. The

model shown in Modelica Code 2.1 can be rewritten using the types of the Mo-

delica.SIunits package as shown in Modelica Code 2.3. Observe that, instead of

declaring the PI constant, it has been used a constant named pi that is declared in

the Modelica.Constants package of the MSL. The evolution of the node voltages

shown in Figure 2.4 is obtained simulating Modelica Code 2.3 from time 0 s until

time 0.05 s.

Connecting three additional diodes to the circuit in Figure 2.1 and removing one

resistor, it is obtained the rectifier circuit shown in Figure 2.5. The ground node

has been selected, names have been assigned to the node voltages, and names and

directions have been assigned to the currents that flow through the components.
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model circuit1
Modelica.SIunits.Current i_gen "Current of the generator";
Modelica.SIunits.Current i_R1 "Current of R1";
Modelica.SIunits.Current i_R2 "Current of R2";
Modelica.SIunits.Current i_C "Current of the capacitor";
Modelica.SIunits.Current i_D "Current of the diode";
Modelica.SIunits.Voltage u_1 "Voltage of generator";
Modelica.SIunits.Voltage u_2(start=0, fixed=true) "Output voltage";
// Voltage generator
parameter Modelica.SIunits.Voltage U0 = 5;
parameter Modelica.SIunits.Frequency frec = 100;
parameter Modelica.SIunits.AngularFrequency w = 2*Modelica.Constants.pi*frec;
parameter Modelica.SIunits.Angle phi = 0;
// Resistors
parameter Modelica.SIunits.Resistance R1 = 100;
parameter Modelica.SIunits.Resistance R2 = 100;
// Capacitor
parameter Modelica.SIunits.Capacitance C = 1e-6;
// Diode
parameter Modelica.SIunits.Current Is = 1e-9;
parameter Modelica.SIunits.Voltage Vt = 0.025;

equation
// Node equations
i_gen = i_R1;
i_R1 = i_D + i_R2 + i_C;
// Constitutive relationships
u_1 = U0 * sin( w * time + phi);
u_1 - u_2 = i_R1 * R1;
i_D = Is * ( exp(u_2 / Vt) - 1);
u_2 = i_R2 * R2;
C * der(u_2) = i_C;

end circuit1;

Modelica Code 2.3: Circuit of Figure 2.1, described using the Modelica.SIunits types.

Figure 2.4: Voltages of the circuit shown in Figure 2.1 obtained simulating the Modelica Code 2.3.
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Figure 2.5: Rectifier circuit with diode bridge.

The model is composed of the current conservation equations and the constitutive

relationships of the components. Assuming that the ground node voltage is zero, the

model is described by Eqs. (2.14) – (2.24).

igen + iD2 = iD1 (2.14)

iR + iC = iD2 + iD3 (2.15)

iD1 + iD4 = iR + iC (2.16)

u1 = U0 · sin(w · t + ϕ) (2.17)

iD1 = Is ·
(

exp
(

u1 − u3

Vt

)

− 1
)

(2.18)

iD2 = Is ·
(

exp
(

u2 − u1

Vt

)

− 1
)

(2.19)

iD3 = Is ·
(

exp
(

u2

Vt

)

− 1
)

(2.20)

iD4 = Is ·
(

exp
(−u3

Vt

)

− 1
)

(2.21)

u3 − u2 = iR · R (2.22)

uC = u3 − u2 (2.23)

C · duC

dt
= iC (2.24)

The model description is shown in Modelica Code 2.4. The generator (u1) and

output (uC) voltages obtained simulating the model during 0.05 s are displayed in

Figure 2.6.
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model circRectifier
Modelica.SIunits.Current i_gen "Current of the generator";
Modelica.SIunits.Current i_R "Current through the resistor";
Modelica.SIunits.Current i_C "Capacitor current";
Modelica.SIunits.Current i_D1 "Current through diode 1";
Modelica.SIunits.Current i_D2 "Current through diode 2";
Modelica.SIunits.Current i_D3 "Current through diode 3";
Modelica.SIunits.Current i_D4 "Current through diode 4";
Modelica.SIunits.Voltage u_1 "Voltage of generator";
Modelica.SIunits.Voltage u_2 "Voltage at node u2";
Modelica.SIunits.Voltage u_3 "Voltage at node u3";
Modelica.SIunits.Voltage u_C(start=0, fixed=true) "Capacitor voltage";
// Generator parameters
parameter Modelica.SIunits.Voltage U0=5;
parameter Modelica.SIunits.Frequency frec=100;
parameter Modelica.SIunits.AngularFrequency w=2*Modelica.Constants.pi*frec;
parameter Modelica.SIunits.Angle phi=0;
// Resistor
parameter Modelica.SIunits.Resistance R=100;
// Capacitor
parameter Modelica.SIunits.Capacitance C=1e-6;
// Diodes
parameter Modelica.SIunits.Current Is=1e-9;
parameter Modelica.SIunits.Voltage Vt=0.025;

equation
// Current conservation equations
i_gen + i_D2 = i_D1;
i_R + i_C = i_D2 + i_D3;
i_D1 + i_D4 = i_R + i_C;
// Constitutive relationships
u_1 = U0*sin(w*time + phi);
i_D1 = Is*(exp((u_1 - u_3)/Vt) - 1);
i_D2 = Is*(exp((u_2 - u_1)/Vt) - 1);
i_D3 = Is*(exp(u_2/Vt) - 1);
i_D4 = Is*(exp(-u_3/Vt) - 1);
u_3 - u_2 = i_R*R;
u_C = u_3 - u_2;
C*der(u_C) = i_C;

end circRectifier;

Modelica Code 2.4: Model of the rectifier circuit shown in Figure 2.5.

Figure 2.6: Result obtained of simulating Modelica Code 2.4.
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2.3 Translation in one dimension

Let’s consider the system represented in Figure 2.7. It is composed of a first body

that slides on a horizontal surface, and a second body that slides on the first one.

The two movements are one dimensional and have the same direction. There exists a

friction force between the first body and the surface, and between the two bodies. It

is assumed that this friction force is proportional to the relative velocity of the two

contacting materials. The body masses, m1 and m2, are constant. The objective is

to develop a model that describes the evolution of the body positions and velocities.

The first step in developing the model is to choose a reference and sign convention

for velocity. We choose the velocity of the horizontal surface as reference, and assign

it the zero value. The body velocities with respect to the horizontal surface are v1

and v2, respectively. We choose the following sign convention for velocity: positive

if the body moves towards right, and negative if moves towards left.

The evolution of the body velocities can be calculated applying the second Law

of Newton. According to this law, the change in the linear momentum of a body

produced by a net force is directly proportional to the magnitude of the net force

F , in the same direction as the net force.

d

dt
(m · v) = F (2.25)

When the mass of the body is constant, Eq. (2.25) can be written as follows:

m · dv

dt
= F (2.26)

Let’s write Eq. (2.26) particularized for each of the two bodies that compose our

system. Forces of friction are exerted on the first body by the horizontal surface and

the second body. The force exerted on the second body is due to the friction with

the first body.

m1 ·
dv1

dt
= −bs,1 · v1

︸ ︷︷ ︸

Force exerted by the
horizontal surface on body 1

−b1,2 · (v1 − v2)
︸ ︷︷ ︸

Force exerted by
body 2 on body 1

(2.27)

m2 ·
dv2

dt
= −b1,2 · (v2 − v1)

︸ ︷︷ ︸

Force exerted by
body 1 on body 2

(2.28)
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Figure 2.7: Movement of two bodies with friction.

model TwoBodiesWithFriction
import SI = Modelica.SIunits;
parameter SI.Mass m1=100 "Mass of body 1";
parameter SI.Mass m2=10 "Mass of body 2";
parameter SI.TranslationalDampingConstant b_s1=1.8
"Friction coefficient of surface-body 1";

parameter SI.TranslationalDampingConstant b_12=1.6
"Friction coefficient of body 1-body 2";

SI.Position x1(start=0, fixed=true) "Position of body 1";
SI.Position x2(start=0, fixed=true) "Position of body 2";
SI.Velocity v1(start=0.1, fixed=true) "Velocity of body 1";
SI.Velocity v2(start=0, fixed=true) "Velocity of body 2";

equation
// Body 1
der(x1) = v1;
m1*der(v1) = -b_s1*v1 - b_12*(v1 - v2);
// Body 2
der(x2) = v2;
m2*der(v2) = -b_12*(v2 - v1);

end TwoBodiesWithFriction;

Modelica Code 2.5: Model of the two-body system shown in Figure 2.7.

Figure 2.8: Simulation of Modelica Code 2.5 with two different initial conditions: v1(0) = 0.1 m/s,
v2(0) = 0 (left); v1(0) = 0, v2(0) = 0.2 m/s (right).
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The bs,1 and b1,2 parameters are the proportionality coefficients that relate the

force of friction and the relative velocities.

Observe that, if the body velocities are known at the initial time, Eqs. (2.27) and

(2.28) allow to calculate the velocities in the successive time instants.

The next step in developing the model is to include the equations that relate

the body positions with their velocities. To this end, we have to choose a reference

and a sign convention for the spatial coordinate. The sign criterion for position is

usually chosen in consonance with the sign criterion for velocity, so that the value of

the spatial coordinate increases if the velocity is positive, and decreases if negative.

As the velocity is positive if the body moves towards right, the spatial coordinate

of our model increases towards right. In this way, the following relationships hold

between velocities (v1, v2) and positions (x1, x2):

dx1

dt
= v1 (2.29)

dx2

dt
= v2 (2.30)

Known the body positions at the initial time, the evolution of the positions can

be calculated from Eqs. (2.29) and (2.30).

Setting an initial value for the body position implies choosing the origin of the

coordinate system. This should be done in a way that facilitates as much as possible

the interpretation of the simulation results. For instance, the origin of the coordinate

system for both bodies could be a certain location in the horizontal surface. Other

option would be to assign the zero value to the initial position of the body, so that the

position of each body measures its displacement with respect to its initial position.

The system model is described by Eqs. (2.27)–(2.30). Setting the constant va-

lues of the body masses (m1, m2) and the friction coefficients (bs,1, b1,2), and the

initial values of the body positions and velocities, the model allows to calculate the

evolution of the body positions and velocities.

The Modelica description of the model is shown in Modelica Code 2.5. The

evolutions of the body velocities for two different initial conditions are shown in

Figure 2.8. The observed behavior is explained considering that the force of friction

exerted by the horizontal surface makes the velocity of the first body to tend to

zero, and the force of friction between the two bodies makes their relative velocity

to tend to zero.
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In the first simulation run, the first body is initially moving and the second body

is at rest. The force of friction between the bodies makes the second body to start

moving, increasing its velocity. When the relative velocity between the bodies is zero,

the friction force between them vanishes. However, the horizontal surface continues

braking the first body and consequently reducing its velocity. When the velocity of

the first body becomes smaller than the velocity of the second body, the force of

friction between the bodies acts again, but in this case reducing the velocity of the

second body.

In the second simulation run, the first body is initially at rest and is accelerated

by the force of friction exerted by the second body.

Let’s make the system a little more complex by adding some components. Con-

sider the system depicted in Figure 2.9. It consists of two bodies with constant

masses, m1 and m2, moving on a horizontal surface, and a third body, with constant

mass m3, that moves on them. There is friction between all contacting materials. A

damper connects the first and second bodies, which are connected by springs to the

lateral walls. A given sinusoidal force, F , is applied to the third body. The horizontal

surface and the lateral walls remain at rest. The model should describe the evolution

of the velocity and position of the three bodies.

The first step in developing the model consists in choosing the reference and

sign convention for velocity. We choose as a reference the velocity of the horizontal

surface and the lateral walls, and assign to this velocity the value zero. In addition,

we consider that a body moving towards right has positive velocity. We adopt the

same sign convention for the force: it is positive if is pointing towards right.

The second Newton’s Law allows to relate the changes in the linear momentum

of each body with the net force applied on it.

m1 ·
dv1

dt
= −b1 · v1

︸ ︷︷ ︸

Force of friction exerted
by horizontal surface

−b4 · (v1 − v3)
︸ ︷︷ ︸

Force of friction
exerted by body 3

−b2 · (v1 − v2)
︸ ︷︷ ︸

Force of
dumper

−k1 · e1
︸ ︷︷ ︸

Force of
spring 1

(2.31)

m2 ·
dv2

dt
= −b3 · v2

︸ ︷︷ ︸

Force of friction exerted
by horizontal surface

−b5 · (v2 − v3)
︸ ︷︷ ︸

Force of friction
exerted by body 3

−b2 · (v2 − v1)
︸ ︷︷ ︸

Force of
dumper

+k2 · e2
︸ ︷︷ ︸

Force of
spring 2

(2.32)

m3 ·
dv3

dt
= −b4 · (v3 − v1)

︸ ︷︷ ︸

Force of friction
exerted by body 1

−b5 · (v3 − v2)
︸ ︷︷ ︸

Force of friction
exerted by body 2

+F
︸︷︷︸

External
force

(2.33)
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Figure 2.9: Movement of three bodies with friction, connected by dumper and springs.

model ThreeBodiesWithFriction
import SI = Modelica.SIunits;
parameter SI.Mass m1=100 "Mass of body 1";
parameter SI.Mass m2=10 "Mass of body 2";
parameter SI.Mass m3=15 "Mass of body 3";
parameter SI.TranslationalDampingConstant b1=1.8 "Body 1 - Surface";
parameter SI.TranslationalDampingConstant b2=3.2 "Body 1 - Body 2";
parameter SI.TranslationalDampingConstant b3=1.8 "Body 2 - Surface";
parameter SI.TranslationalDampingConstant b4=1.6 "Body 1 - Body 3";
parameter SI.TranslationalDampingConstant b5=1.6 "Body 2 - Body 3";
parameter SI.TranslationalSpringConstant k1=1.2 "Spring 1";
parameter SI.TranslationalSpringConstant k2=1.2 "Spring 2";
parameter SI.Force F0=10 "Amplitude of the external force";
parameter SI.AngularFrequency w=0.1 "Frequency of the external force";
SI.Position x1(start=0, fixed=true) "Position of body 1";
SI.Position x2(start=0, fixed=true) "Position of body 2";
SI.Position x3(start=0, fixed=true) "Position of body 3";
SI.Velocity v1(start=0, fixed=true) "Velocity of body 1";
SI.Velocity v2(start=0, fixed=true) "Velocity of body 2";
SI.Velocity v3(start=0, fixed=true) "Velocity of body 3";
SI.Length e1(start=1, fixed=true) "Elongation of spring 1";
SI.Length e2(start=0, fixed=true) "Elongation of spring 2";
SI.Force F "External force applied on body 3";

equation
// Body 1
der(x1) = v1;
m1*der(v1) = -b1*v1 - b4*(v1 - v3) - b2*(v1 - v2) - k1*e1;
// Body 2
der(x2) = v2;
m2*der(v2) = -b3*v2 - b5*(v2 - v3) - b2*(v2 - v1) + k2*e2;
// Body 3
der(x3) = v3;
m3*der(v3) = -b4*(v3 - v1) - b5*(v3 - v2) + F;
// Spring 1
der(e1) = v1;
// Spring 2
der(e2) = -v2;
// External force
F = F0*sin(w*time);

end ThreeBodiesWithFriction;

Modelica Code 2.6: Model of the system depicted in Figure 2.9.
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where e represents the difference between the actual length of the spring and its

natural length. The left end of the first spring is at rest, while the right end moves

with velocity v1. The right end of the second spring is at rest and the left end moves

with velocity v2. Therefore:

de1

dt
= v1 (2.34)

de2

dt
= −v2 (2.35)

The relationship between the position and velocity of each body can be expressed

as follows:

dx1

dt
= v1 (2.36)

dx2

dt
= v2 (2.37)

dx3

dt
= v3 (2.38)

The system model consists of Eqs. (2.31) – (2.38), and the constant known

values of the body masses (m1, m2, m3), the spring coefficients (k1, k2), the dumper

coefficient (b2) and the friction coefficients (b1, b3, b4, b5).

For setting the initial state of the system, we will give an initial value to the

position and velocity of each body, and to the difference between the actual length

and the natural length of each spring.

As origin of the coordinate system for the displacement of each body, we chose

the body position at the initial time. Therefore, the initial position of the three

bodies is zero. In this way, the x variable of each body indicates its displacement

with respect to its initial position. The Modelica description of the model is listed

in Modelica Code 2.6.

2.4 Translation in two dimensions

A simplistic model of the Earth’s motion around the Sun will allow us to intro-

duce the use of vectors and matrices in Modelica. Let’s assume that the Earth orbits

in a plane. In this plane, we define a two-dimensional rectangular coordinate system.
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The origin of this coordinate system is at the center of the Sun. We represent the

position and velocity of the Earth using two two-dimensional vectors named x and

v respectively (see Figure 2.10).

The attractive force between two bodies with masses M and m can be calculated

by applying Eq. (2.39), where G is the gravitational constant. This equation is known

as the Newton’s law of universal gravitation. The second Newton’s Law relates the

force of gravity and the acceleration of the Earth around the Sun, as shown in

Eq. (2.40). The relationship between velocity and position is given by Eq. (2.41).

F = −G · M ·m
x · x ·

x

|x| (2.39)

m · dv

dt
= F (2.40)

dx

dt
= v (2.41)

Let’s give the following values to the Earth’s mass (m) and Sun’s mass (M):

m = 5.976 · 1024 kg and M = 1.989 · 1030 kg. The initial state of the system is

specified by setting the initial position and velocity of the Earth. Let’s suppose that

the Earth is initially at the x(0) = {152.1 · 109, 0} m position and is moving with a

velocity of v(0) = {0, 29.29 · 103} m/s.

The model is described in Modelica Code 2.7. Two-component vectors (one-

dimensional arrays) are employed to represent the position, velocity and force.

The model equations, Eqs. (2.39) – (2.41), are described in Modelica using vector

equations. The Earth trajectory obtained simulating this model during one year

(=3.1536e7 s) is shown in Figure 2.11.

An array variable is declared indicating between square brackets the number of

its components in each dimension. This size declaration can be indistinctly written

after the variable type or after the variable name. For instance,

Real[2] x, v, F; Real x[2], v[2], F[2];

Real[6,2,10] tabla; Real tabla[6,2,10];

where r, v and F are vector variables (one-dimensional arrays) with two compo-

nents, and tabla is a three-dimensional matrix variable (array with dimension

greater than one), with 6-by-2-by-10 components. The declaration of array variables

can also be made indicating only the number of dimensions, for instance,
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Figure 2.10: Position and velocity of the Earth (left); and gravitational force exerted by the Sun
on the Earth (right).

model SunEarthSystem
import SI = Modelica.SIunits;
SI.Position x[2](start={152.1e9,0}, fixed=true) "Earth position";
SI.Velocity v[2](start={0,29.29e3}, fixed=true) "Earth velocity";
SI.Force F[2] "Gravitational force";
parameter SI.Mass m=5.976e24 "Mass of the Earth";
parameter SI.Mass M=1.989e30 "Mass of the Sun";

equation
// Gravitational force exerted by the Sun on the Earth
F = -(Modelica.Constants.G*m*M/(x*x))*(x/sqrt(x*x));
// Position and velocity of the Earth
m*der(v) = F;
der(x) = v;

end SunEarthSystem;

Modelica Code 2.7: Model of the Sun-Earth system.

Figure 2.11: Earth’s orbit obtained simulating the Modelica Code 2.7.
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Real[:] x, v, F; Real x[:], v[:], F[:];

Real[:,:,:] tabla; Real tabla[:,:,:];

nevertheless, the model must contain the necessary information for the modeling

environment to calculate the number of components. The modeling environment

calculates the number of components by analyzing the equations in which the array

variables intervene.

In any case, the number of dimensions and the number of components in each

dimension cannot change during the simulation run.

An array component can be referenced specifying its index, whose numbering

starts at one. For instance, x[i] is the i-th component of the vector. If x has two

components, these are x[1] and x[2].

Sub-arrays can be specified indicating a range of indexes. For instance, A[i1:i2,

j1:j2] is an array composed of the i1-to-i2 rows and the j1-to-j2 columns of A.

Some built-in functions useful for working with arrays are listed in Table 2.5.

Examples of array equations are provided in Table 2.6.

Observe in Modelica Code 2.7 that the initial values have been set by giving value

to the start attributes. Vectors are written in this example as comma-separated lists

inside curly braces. Some examples showing how to assign the value of vectors and

matrices can be found in Table 2.7. The array value can also be specified using a for

expression with iterators, whose syntax is basically: { expression for iterators }.

See the examples in Table 2.8.

As shown in Modelica Code 2.7, the model of the Sun-Earth system has been

written using vector equations:

F = −G · m·M
x·x
· x

|x|
→ F = - Modelica.Constants.G * m * M / (x*x) *

x / sqrt(x*x);

m · dv
dt

= F → m * der(v) = F;
dx
dt

= v → der(x) = v;

For-clauses and if-clauses can also be employed for writing array equations and

assignments. The for-clauses are translated by the modeling environment into a

set of equations or a sequence of assignments. The for-clause syntax is basically (see

examples in Tables 2.9 and 2.10):

for for_indices loop
...

end for;
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Table 2.5: Some built-in functions for arrays.

Function call Returned value

ndims(A) Number of dimensions of A.

size(A, i) Number of components of A in the i-th dimension.

size(A) Vector of length ndims(A) whose components are the size of
A in each dimension.

diagonal(v) Square diagonal matrix with the elements of vector v on the
main diagonal.

fill(s,n1,n2,...) n1 × n2 × . . . matrix filled with the s value.

transpose(A) Array obtained by permuting the two first dimensions of A.

zeros(n1,n2,...) n1 × n2 × . . . array filled with zeros.

ones(n1,n2,...) n1 × n2 × . . . array filled with ones.

identity(n) n× n identity matrix.

linspace(x1,x2,n) n-component vector with evenly spaced values between x1

and x2.

min(A), max(A) Lowest/Largest value in A.

sum(A), product(A) Sum/Product of the components of A.

cross(x,y) Cross product of the 3-component vectors x and y.

Table 2.6: Examples of array equations.

Fragment of Modelica code Comment to the code

Real A[3,2], B[2,4]; As A, B and C are matrices,
Real C[3,4]; the ∗ operator is interpreted

equation as matrix multiplication.
C = A * B;

Real x[3], y[3]; As x and y are vectors,
Real z; and z is scalar, the ∗

equation operator is interpreted as
z = x * y; dot product.

Real x[3], y[3]; The cross function returns
Real z[3]; the cross product of the two

equation 3-component vectors x and y
z = cross (x,y); (see Table 2.5).
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Table 2.7: Examples showing how to declare and assign value to parameter arrays.

parameter Real z[:] = {0.1, 0.3, 0.5, 0.7, 0.9};
parameter Real z[:] = 0.1 : 0.2 : 0.9;

parameter Integer puntos[:] = 2:2:10;

parameter Real x[2,3] = { {1,2,3} , {4,5,6} };
parameter Real x[2,3] = { 1:3 , 4:6 };
parameter Real x[2,3] = [ 1, 2, 3 ; 4, 5, 6 ];

parameter Real y[2,3,4] =
{ { {10,20,30,40},{50,60,70,80},{90,10,11,12} },

{ {11,21,31,41},{51,61,71,81},{91,11,12,13} } };

Table 2.8: Examples of array constructors with iterators.

Fragment of Modelica code Comment to the code

parameter Real x[:] =
{ i^2
for i in 1:5 }; The vector assigned to x is:

{1, 4, 9, 16, 25}

parameter Real A[:,:] =
{ i^2
for i in 1:n,

j in 1:m }; The matrix assigned to A is:









1 ... 1

4 ... 4

... ... ...

n2 ... n2










n×m

parameter Real B[:,:] =
{ if i == j then i else 0

for i in 1:n,
j in 1:n }; The matrix assigned to B is:













1 0 0 ... 0

0 2 0 ... 0

0 0 3 ... 0

... ...

0 0 0 ... n













n×n
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Table 2.9: Example of for-clause in equation section.

Equation Fragment of Modelica code

y =
n∑

i=0
ci+1 · xi

parameter Real c[:];
Real x, y;
parameter Integer n = size(c,1) - 1;
Real a[n+1];

equation
a[1] = 1;
for i in 1:n loop

a[i+1] = a[i] * x;
end for;
y = c * a;

Table 2.10: Examples of array equations and algorithms. Note that the computational causality
of equations is calculated by the modeling environment, whereas the computational causality of
assignments is explicitly defined by the model developer.

Array equation For clause in algorithm section

Real x[3], y[3]; Real x[3], y[3];
Real z; Real z;

equation algorithm
y = z * x; for i in 1:size(x,1) loop

y[i] := z * x[i];
end for;

Real x[3], y[3]; Real x[3], y[3];
Real z; Real z;

equation algorithm
z = x * y; z := 0;

for i in 1:size(x,1) loop
z := z + y[i] * x[i];

end for;

Real x[3], y[4]; Real x[3], y[4], A[3,4];
Real A[3,4]; algorithm

equation for i in 1:size(A,1) loop
x = A * y; x[i] := 0;

for j in 1:size(A,2) loop
x[i] = x[i] + A[i,j]*y[j];

end for;
end for;
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An algorithm section is composed of a sequence of assignments that is evalua-

ted by the modeling environment in the same order as written. A variable can be

evaluated more than once within an algorithm section. However, a variable evaluated

in an algorithm section cannot be evaluated in other algorithm section or equation.

The modeling environment analyzes the computational causality of the complete

model, and sorts the equations and algorithm sections attending to the evaluation

order of the variables. During the computational causality analysis and the model

sorting, each algorithm section is handled as an indivisible block, with explicitly

defined computational inputs and outputs.

The treatment of algorithm sections in the causality analysis is as follows. Suppo-

se that n variables are evaluated (appear on the left-hand side of the assignments)

from the algorithm section. Then, the algorithm section is replaced by n dummy

equations. In each of these dummy equations intervene the n variables evaluated

from the algorithm section, and also all the input variables to the algorithm section.

This is, the variables that appear only on the right-hand side expressions of the

algorithm section assignments. For instance, let’s consider the following algorithm

section:

algorithm
x1 := g1(y1,...,ym);
...
xn := gn(y1,...,ym);

The computational inputs are y1, . . . , ym, and the computational outputs are

x1, . . . , xn. In analyzing the computational causality of the model, this algorithm

section is replaced by the following n dummy equations:

f1 (x1, ..., xn, y1, ..., ym) = 0

...

fn (x1, ..., xn, y1, ..., ym) = 0

(2.42)

As x1, . . . , xn appear in all the equations, these n equations form an algebraic loop

(system of simultaneous equations) and will stay together during the model sorting

(in the same diagonal block of the BLT matrix, as will be explained in Lesson 4). In

the sorted model, this algebraic loop will be placed at a point in which the value of

the variables y1, . . . , ym has already been calculated, or can be calculated together

with x1, . . . , xn. Once the computational causality analysis is finished and the model

has been sorted, the set of dummy equations is replaced by the algorithm section.
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2.5 Radial heat transfer in a pipe

In this section, we will analyze the stationary heat transfer in the radial direction

of an insulated steel pipe. The materials have constant thermal conductivities and

there is convection at the boundaries. The system is depicted in Figure 2.12.

The pipe is cylindrical, made of steel, and has a length L = 1 m. The steam that

circulates inside the pipe is at a constant temperature T1 = 418 K. To reduce the

heat loss to the ambient air, the steel pipe is surrounded by an insulation material.

The ambient air temperature oscillates between 283 K and 300 K during the day.

The physical parameters of the system are listed in Table 2.11.

The thermal equivalent circuit model of the system is shown in the lower part of

Figure 2.12. Observe the analogy between the temperature and the voltage; the heat

flow and the electric current; and the thermal resistance and the electric resistance.

Denoting by q the heat power (units: W) that circulates from the steam to the

ambient air, the system model is composed by Eqs. (2.43) – (2.48), and the physical

parameters listed in Table 2.11. The temperatures are expressed in Kelvin.

T1 = 418 (2.43)

T1 − T2 = q · 1

h1 · 2 · π · r1 · L
(2.44)

T2 − T3 = q · ln (r2/r1)

2 · π · κ1 · L
(2.45)

T3 − T4 = q · ln (r3/r2)

2 · π · κ2 · L
(2.46)

T4 − T5 = q · 1

h2 · 2 · π · r3 · L
(2.47)

T5 = 291.5− 8.5 · sin
(

2 · π · t
86400

)

(2.48)

The model can be described as shown in Modelica Code 2.8. The variables

that represent temperatures are of the Modelica.SIunits.Temperature type, which

is declared in the MSL as follows:

type Temperature = ThermodynamicTemperature;
type ThermodynamicTemperature = Real (

final quantity = "ThermodynamicTemperature",
final unit = "K",
min = 0.0,
start = 288.15,
nominal = 300,
displayUnit = "degC" );
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B

A

Figure 2.12: Temperature profiles for radial heat transfer in an insulated pipe (above) and
equivalent thermal circuit (below). There is heat conduction in material A (the steel pipe) and
material B (the insulation), and convection on the boundaries (the steam inside the pipe and the
surrounding ambient air).

Table 2.11: Physical parameters of the system in Figure 2.12.

Component Quantity Value Units

Steam Heat transfer coefficient h1 = 11350 W/(m2·K)

Steel pipe Inner radius r1 = 0.025 m

Outer radius r2 = 0.035 m

Thermal conductivity κ1 = 45 W/(m·K)

Insulation Outer radius r3 = 0.06 m

Thermal conductivity κ2 = 0.087 W/(m·K)

Ambient air Heat transfer coefficient h2 = 1.32
(

|T4−T5|
2·r3

)0.25
W/(m2·K)
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The unit attribute specifies the units employed in the model equations, whereas

the displayUnit attribute indicates the units that the modeling environment should

use when displaying the simulation results of this variable (performing automatically

the operations for units conversion). In this case, the temperature is expressed in

Kelvins when intervening in the model equations and is displayed in Celsius degrees.

The simulated evolution of the temperatures during 86400 s (one day) is dis-

played in Figure 2.13. Observe that the plots have different vertical-axis (ordinate)

scales: the larger drops in temperature are produced in the insulating layer and the

surrounding ambient air.

Let’s elaborate on this model a bit more. Suppose now that the air temperature

(T5) is not described by a known function of time, but it has to be interpolated

from the temperature readings recorded at specific times in a day. We will program

a Modelica function to calculate the temperature at any time of the day by linear

interpolation between the available time-temperature recordings. To this end, firstly

we will introduce the declaration and use of functions in Modelica.

Certain functions are built into the Modelica language. Some examples of built-

in functions are abs (absolute value function); sign (sign function); sqrt(v) (square

root function); and div(x,y) and rem(x,y) (quotient and remainder of the division

x/y). The arguments of the built-in functions can be scalars or arrays. In the latter

case, the function is applied to each of the array components, returning an array.

For instance, sqrt( {1,2,3} ) is equivalent to { sqrt(1), sqrt(2), sqrt(3) }; and

rem( {10,20,30}, {2,3,4} ) is equivalent to { rem(10,2), rem(20,3), rem(30,4) }.

In addition, Modelica provides the function class to create user-defined fun-

ctions. The declaration of a function can consist of:

– The function interface, containing the declaration of the function arguments

(input variables) and returned values (output variables). The input and out-

put keywords are used to distinguish between input and output variables.

– The local variables employed in the function algorithm, declared within a

protected section.

– The body of the function, consisting of an algorithm section or a call to

an external function written in a programming language (typically, C or

Fortran 77).

User-defined functions must fulfill the following rule: functions cannot have in-

ternal memory. This means that given the same input, the function always must

return the same output.
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model HeatTransferPipe
import SI = Modelica.SIunits;
import Modelica.Constants.pi;
import Modelica.Math.log;

parameter SI.Radius r1=0.025 "Inner radius of steel pipe";
parameter SI.Radius r2=0.035 "Outer radius of steel pipe";
parameter SI.Radius r3=0.06 "Outer radius of insulation";
parameter SI.Length L=1 "Pipe length";

constant SI.ThermalConductivity k1=45 "Thermal conductivity of steel pipe";
constant SI.ThermalConductivity k2=0.087 "Thermal conductivity of insulation";

constant SI.CoefficientOfHeatTransfer h1=11350
"Heat transfer coefficient of steam";

SI.CoefficientOfHeatTransfer h2 "Heat transfer coefficient of ambient air";

parameter SI.Temperature T1=418 "Steam temperature";
SI.Temperature T2 "Temperature of pipe inner surface";
SI.Temperature T3 "Temperature of pipe outer surface";
SI.Temperature T4 "Temperature of insulation outer surface";
SI.Temperature T5 "Temperature of ambient air";

SI.HeatFlowRate q "Heat power from the steam to the ambient air";
equation
h2 = 1.32*(abs(T4 - T5)/(2*r3))^0.25;
T1 - T2 = q/(h1*2*pi*r1*L);
T2 - T3 = q*log(r2/r1)/(2*pi*k1*L);
T3 - T4 = q*log(r3/r2)/(2*pi*k2*L);
T4 - T5 = q/(h2*2*pi*r3*L);
T5 = 291.5 - 8.5*sin(2*pi*time/86400);

end HeatTransferPipe;

Modelica Code 2.8: Radial heat transfer in an insulated steel pipe.

Figure 2.13: Result obtained of simulating the Modelica Code 2.8 during 86400 s.
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x
t ableX[:]
tableY[:]

yf

x

y

tableY[2]

t ableY[4]
tableY[1]

tableY[3]

tableX[1]              tableX[3]
tableX[2]          tableX[4]

Figure 2.14: Function interface (above) and example of linear interpolation (below).

Let’s return to the problem of programming a function that performs linear in-

terpolation. The function interface is depicted in Figure 2.14. The function computes

an output value (y) by interpolating the input value (x) against a set of data points

(tableX and tableY vectors). The function definition and a fragment of the heat

transfer model are shown in Modelica Code 2.9. The air temperature calculated by

interpolation is shown in Figure 2.15.

The assert sentence is employed in the LinearInterpolation function (see Mo-

delica Code 2.9). This sentence allows to specify conditions that must be satisfied du-

ring the simulation run. Its syntax is: assert( logical_expression, error_message );

The logical expression should be true at any time. If it becomes false, the simulation

run is aborted and the error message is shown in the log window.

The LinearInterpolation function returns one value. The definition of functions

that returns more than one value is illustrated by the following example:

function Polar2Cartesian
// Convert from Polar Coordinates to Cartesian Coordinates

input Real ang, r;
output Real x, y;

algorithm
x := r * cos(ang);
y := r * sin(ang);

end Polar2Cartesian;

This function can be called as follows:

(x1,y1) = Polar2Cartesian(ang1, rad1);
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function LinearInterpolation
input Real x "Independent variable";
input Real tableX[:] "Independent variable points";
input Real tableY[:] "Dependent variable points";
output Real y "Interpolated value";

protected
Integer n;
Real slope;

algorithm
n := size(tableX, 1);
assert(size(tableX, 1) == size(tableY, 1),
"Error: tableX and tableY with different size");

assert(x >= tableX[1] and x <= tableX[n],
"Error: independent variable is out of range");

for i in 1:n - 1 loop
if x >= tableX[i] and x <= tableX[i + 1] then
slope := (tableY[i + 1] - tableY[i])/(tableX[i + 1] - tableX[i]);
y := tableY[i] + slope*(x - tableX[i]);

end if;
end for;

end LinearInterpolation;

model HeatTransferPipeInterp

parameter SI.Time valTime[:]=0:3600:86400;
parameter SI.Temperature valTemp[:]={291.5,293.0,295.5,300.0,302.5,305.5,

306.0,306.5,308.5,310.0,312.5,313.5,313.5,312.5,310.0,309.0,305.5,300.5,
298.5,293.5,290.5,286.0,280.5,275.5,273.0};

...
equation
...
// T5 = 291.5 - 8.5*sin(2*pi*time/86400);
T5 = LinearInterpolation(x=time, tableX=valTime, tableY=valTemp);

end HeatTransferPipeInterp;

Modelica Code 2.9: Linear interpolation funcion and its invocation.

Figure 2.15: Air temperature calculated by linear interpolation.
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By-default values of the inputs can be specified in the function declaration. These

values will be employed if the inputs are not present in the function call. For instance,

given this declaration

function Polar2Cartesian
input Real ang = 0, r = 1;
output Real x, y;

algorithm
x := r * cos(ang);
y := r * sin(ang);

end Polar2Cartesian;

the following calls are equivalent:

(x1,y1) = Polar2Cartesian(0, 1);
(x1,y1) = Polar2Cartesian();
(x1,y1) = Polar2Cartesian(0);
(x1,y1) = Polar2Cartesian(r=1);

2.6 Further reading

The description of continuous-time atomic models in Modelica was introduced in

this lesson, using a series of examples. Additional examples, and the description

of other Modelica features, can be found in (ModelicaTM 2000), (Otter 2009),

(Fritzson 2011) and (Tiller 2001). These books provide a didactic introduction

to Modelica. Readers interested in a deeper description of the Modelica language

can find more complete information in (Fritzson 2015). On the other hand, the

most recent language specification is available on the Modelica Association website

(ModelicaWebSite 2017). The use of these references is recommended to complement

the explanations provided in Lessons 2, 3 and 7.

Problem solving by modeling and simulation in the Chemical Engineering domain

is introduced in (Cutlip & Shacham 1999). The models of the radial heat transfer

in a pipe and the heat conduction in a wall (cf. Sections 2.5 and 9.7) have been

extracted from this excellent book.
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Learning objectives

After studying the lesson, students should be able to:

– Design model libraries applying the object-oriented modeling methodology.

– Define connectors, components and compound models in Modelica.

– Use class inheritance in Modelica.

– Use replaceable classes in Modelica.

– Describe in Modelica models with a regular structure, using both arrays of

components and arrays of variables.

– Define and use record classes in Modelica.

– Use the if-clause and for-clause of Modelica.

– Use the inner/outer construct of Modelica.

– Develop and use libraries of continuous-time models in Modelica.
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3.1 Introduction

The design and implementation of Modelica libraries are discussed, as in the

previous lesson, through a series of examples.

The rectifier circuit shown in Figure 2.1 is modeled in Section 3.2 from a different

perspective. Instead of describing the circuit as an atomic model, a Modelica library

of electrical components is developed, and the circuit is composed instantiating and

connecting model classes from the library. This example serves to illustrate the

declaration of connectors, the modeling of component interfaces, the definition of

compound models by instantiating and connecting model classes, the definition of

derived classes, the definition of Modelica libraries, the access to library components,

and alternative ways of saving libraries to disk. The example of the electrical library

also allows to introduce the concept of replaceable classes.

A model to analyze the longitudinal vibrations of a bar is described in Section 3.3.

This example allows to introduce the use of record classes and illustrates the use of

for-loops for describing equations involving arrays of variables.

The example in Section 3.4 is intended to introduce the declaration of vectors of

components and the use of for-loops for describing the connection of their connectors.

The example consists in modeling the longitudinal heat conduction in a bar. The

model is described in two different ways. Firstly, as an atomic model, using vectors

of variables and for-loops containing equations. Secondly, a Modelica library is im-

plemented, and the bar model is composed from it, declaring vectors of components

and writing the connection sentences within for-loops.

The control of level and temperature in a tank is addressed in Section 3.5. Firstly,

an atomic model of the system is developed. Next, the system is decomposed into

parts, and a model library is designed and implemented. This example tries to

illustrate the application of the object-oriented methodology and its implementation

in Modelica.

Finally, the inner/outer construct of Modelica is explained in Section 3.6. The

example consists in modeling the dissipation of heat generated by an electric circuit.

3.2 Electrical library

Let’s revisit the modeling of the rectifier circuit shown in Figure 2.1. Instead of

describing the circuit as an atomic model, now we will apply the object-oriented
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modeling methodology. To this end, we are going to decompose the circuit into

its components, analyze how to model the interaction among these components,

program model classes describing the components, arrange the classes into a model

library, and finally use the library to compose the circuit model.

The rectified circuit is composed of four different classes of electric component:

voltage source, diode, resistor and capacitor. Their symbols and constitutive rela-

tionships were displayed in Figure 2.2. The components are connected by connecting

their electric pins. The pins connected at a connection point (circuit node) have the

same voltage and the sum of all the currents is zero. The connector class of Modelica

can be used for modeling the electric pin as shown below.

connector Pin
Modelica.SIunits.Voltage u;
flow Modelica.SIunits.Current i;

end Pin;

The class definition starts with the connector keyword followed by the class

name (Pin), and ends with the end keyword followed by the class name and a

semicolon. The class body contains the declaration of the connector’s variables.

The flow keyword allows to distinguish between across and through variables. It is

written preceding the declaration of the through variables, as is the electric current

in this case.

The component interface is composed of the variables that describe the com-

ponent interaction with the rest of the system, and the parameters. A model class

describes a type of system. By setting the value of the model class parameters, an

element in particular (a particular instance) of the model class is specified.

When developing model libraries, it is often a good practice to define the com-

ponents’ interfaces separately. This facilitates the reuse of the interface definitions

and makes easier to tell whether two model classes have the same interface. In this

way, it can be reasoned that two model classes have the same interface if they have a

superclass in common: the interface definition. The interest in knowing whether two

classes have the same interface comes from the fact that having the same interface is

a necessary condition (but not sufficient) for a component of a class to be replaceable

by a component of the other class.

The rectifier circuit components, this is, the voltage source, diode, resistor and

capacitor, are two-pin components. The two pins can be declared in a class that

will be inherited by the four component classes. On the other hand, the physical

quantity describing the voltage drop between the pins intervenes in the constitutive
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relationships of the four components. The two pins and the voltage drop are declared

in the following class.

partial model TwoPins
Pin p, n;

protected
Modelica.SIunits.Voltage u "Voltage drop (= p.u - n.u)";

equation
u = p.u - n.u;

end TwoPins;

Observe that the dot notation is used to reference the variables of the connectors

(e.g., p.u is the u variable of the p connector). The partial keyword indicates that

TwoPins is a partial class, this is, a class that describes the system partially. As a

partial class does not completely describe the system behavior, it is intended to be

inherited, not instantiated.

The protected keyword indicates the beginning of a section in which the decla-

red variables, inherited classes and instantiated components are protected elements.

This means that is not possible to access them from outside the class using dot nota-

tion. By-default, it is assumed that the elements are public. The u variable has been

declared as protected, and the p and n connectors are public. The public keyword

allows to explicitly signal the beginning of a section where public components are

declared. An arbitrary number of public and protected sections can be declared in

a class.

Two-pin components such as resistor, capacitor, induction and diode, have the

following property: the current entering a pin is equal to the current leaving the

other pin. In addition, the sign convention for passive components says that the

current arrow points into the positive voltage terminal of the element. The following

class inherits TwoPins and describes the additional behavior.

partial model OnePort
extends TwoPins;

protected
Modelica.SIunits.Current i "Current entering p and leaving n";

equation
i = p.i;
i = -n.i;

end OnePort;

Inheritance is declared writing the extends keyword followed by the name of the

superclass, and optionally by the assignation of values to the superclass parameters.

As Modelica supports multiple inheritance, a class can contain an arbitrary

number of extends clauses.
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The classes that describe the resistor, diode and capacitor are subclasses of

OnePort. They are defined below.

model Resistor "Ideal resistor"
extends OnePort;
parameter Modelica.SIunits.Resistance R "Resistance";

equation
u = R*i;

end Resistor;

model Diode "Ideal diode"
extends OnePort;
parameter Modelica.SIunits.Current Is = 1e-9

"Saturation current";
parameter Modelica.SIunits.Voltage Vt = 0.025 "Thermal voltage";

equation
i = Is * ( exp(u / Vt) - 1);;

end Diode;

model Capacitor "Ideal capacitor"
extends OnePort;
parameter Modelica.SIunits.Capacitance C "Capacitance";

equation
C*der(u) = i;

end Capacitor;

Observe that we have not assigned a value to the parameters of the Resistor and

Capacitor classes (the R and C parameters). In this situation, the by-default value

is zero if the parameter is of Real or Integer type, and false if Boolean. Parameter

values can be set and modified when declaring instances of the classes or inheriting

them, and at the experiment definition.

The sign convention for the voltage source is the opposite of the sign convention

for passive components. For power sources (active components), the current arrow

points outward the positive voltage terminal (see Figure 2.2). Let’s modify the

OnePort class as shown below, so that the sign convention depends on the value

assigned to the active Boolean parameter. On the other hand, remember the sign

convention for the through variables of connectors: the through variable is positive

while flows into the component.

partial model OnePort
extends TwoPins;
parameter Boolean active = false;

protected
Modelica.SIunits.Current i "Current through the component";

equation
if ( active ) then
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i = n.i;
else

i = p.i;
end if;
p.i = - n.i;

end OnePort;

The if-clause allows to specify conditional equations. This is, equations that form

part of the model only while certain condition is satisfied. If the active parameter

is true, the current through the component is equal to the current at the negative

terminal (i = n.i;). If active is false, the current through the component is equal

to the current at the positive terminal (i = p.i;).

In general, the logical condition of an if-clause is a Boolean expression that

may be dependent or independent of time. The latter condition is equivalent to state

that the if-clause condition is a Boolean expression that depends only on constants

and parameters. The numerical treatment of the if-clause depends on it, as described

below.

– If the value of the if-clause condition can change during the simulation run,

then it must be monitored during the simulation run. The switching of the

if-clause can be considered an event. In this case, an event condition (see

Section 1.4) is associated to the change in the value of the if-clause condition.

It is also possible to make a treatment of the if-clause that is not based on

events. This will be explained in Lesson 8.

– If the value of the if-clause condition cannot change during the simulation

run, then it is possible to calculate it before starting the dynamical solution

of the model, replacing the if-clause by the equations of its enabled branch.

Modeling environments typically perform this substitution during the model

translation process, before analyzing the computational causality of the model,

and generating the sorted and solved model. As a consequence, the values of

the parameters that intervene in time-independent if-clause conditions can be

changed when the components are inherited or instantiated, but cannot be

changed at the experiment definition.

The voltage source can be defined as shown below. Observe that the OnePort

class is inherited modifying the value of its active parameter.

model VsourceAC "Sinusoidal voltage source"
extends OnePort ( active = true );
parameter Modelica.SIunits.Voltage U0;
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Figure 3.1: Architecture of the electrical library.

parameter Modelica.SIunits.Frequency frec;
parameter Modelica.SIunits.Angle phi;

protected
parameter Modelica.SIunits.AngularFrequency w =

2*Modelica.Constants.pi*frec;
equation

u = U0 * sin( w * time + phi);
end VsourceAC;

The Ground component is declared below. By connecting this component to a

node circuit, the node is selected as the reference node for the voltage.

model Ground "Voltage reference"
Pin p;

equation
p.u = 0;

end Ground;

Modelica provides the package class to facilitate structuring the definition of

types, connectors, models, etc. into libraries. Packages can be declared inside other

packages, allowing to define hierarchically structured libraries.

Let’s arrange the classes of the electrical components into a model library. The

complete content of the library will be defined within a package named ElectricLib.

Within this package, the following three packages are defined (see Figure 3.1):

Interfaces contains the component interfaces, Components the electric components,

and Examples the rectifier circuit model. The library is defined in Modelica Code 3.1–

3.3).

Dot notation allows to reference classes defined within packages. For instance,

the Resistor class, defined within the Components package of the electrical library

(see Figure 3.1), can be accessed from outside the electrical library specifying the
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encapsulated package ElectricLib

import SI = Modelica.SIunits;
import Modelica.Constants;

package Interfaces

connector Pin

SI.Voltage u;
flow SI.Current i;

end Pin;

partial model TwoPins
Pin p, n;

protected
SI.Voltage u "Voltage drop (= p.u - n.u)";

equation
u = p.u - n.u;

end TwoPins;

partial model OnePort
extends TwoPins;
parameter Boolean active = false;

protected
SI.Current i "Current through the component";

equation
if ( active ) then
i = n.i;

else
i = p.i;

end if;
p.i = -n.i;

end OnePort;

end Interfaces;

Modelica Code 3.1: Electrical library (1/3).
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package Components

model Resistor "Ideal resistor"

extends Interfaces.OnePort;
parameter SI.Resistance R "Resistance";

equation
u = R*i;

end Resistor;

model Diode "Ideal diode"

extends Interfaces.OnePort;
parameter SI.Current Is=1e-9 "Saturation current";
parameter SI.Voltage Vt=0.025 "Thermal voltage";

equation
i = Is*(exp(u/Vt) - 1);

end Diode;

model Capacitor "Ideal capacitor"

extends Interfaces.OnePort;
parameter SI.Capacitance C "Capacitance";

equation
C*der(u) = i;

end Capacitor;

model VsourceAC "AC voltage source"

extends Interfaces.OnePort( active=true );
parameter SI.Voltage U0;
parameter SI.Frequency frec;
parameter SI.Angle phi;

protected
parameter SI.AngularFrequency w=2*Constants.pi*frec;

equation
u = U0*sin(w*time + phi);

end VsourceAC;

model Ground "Voltage reference"

Interfaces.Pin p;
equation
p.u = 0;

end Ground;

end Components;

Modelica Code 3.2: Electrical library (2/3).
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package Examples

model Circuit1
// Voltage source
parameter SI.Voltage U0=5;
parameter SI.Frequency frec=100;
parameter SI.Angle phi=0;
// Resistors
parameter SI.Resistance R1=100;
parameter SI.Resistance R2=100;
// Capacitor
parameter SI.Capacitance C=1e-6;
// Diode
parameter SI.Current Is=1e-9;
parameter SI.Voltage Vt=0.025;

// Components
Components.Resistor Resist1(R=R1);
Components.Resistor Resist2(R=R2);
Components.Capacitor Cond(C=C);
Components.Diode Diode(Is=Is, Vt=Vt);
Components.VsourceAC VS(U0=U0, frec=frec, phi=phi);
Components.Ground ground;

equation
connect(VS.p, Resist1.p);
connect(Resist1.n, Diode.p);
connect(Resist1.n, Resist2.p);
connect(Resist1.n, Cond.p);
connect(VS.n, ground.p);
connect(Diode.n, ground.p);
connect(Resist2.n, ground.p);
connect(Cond.n, ground.p);

end Circuit1;

end Examples;

end ElectricLib;

Modelica Code 3.3: Electrical library (3/3).
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complete path: ElectricLib.Components.Resistor. The name in dot notation con-

sists of a sequence of dot-separated identifiers. The last identifier is the class name.

The identifiers before the last one designate the path in the library hierarchical

structure to reach the class.

Class names in dot notation represent relative paths. The starting point of the

relative path is described by the first identifier of the name. The search of the class

designated by the first identifier is firstly conducted at the hierarchical level where

the referencing class is. If not found, the search continues ascending through the

hierarchical structure.

Therefore, if referencing and referenced classes are in same library, it is not

necessary to write the complete path of the referenced class. As shown in Modelica

Code 3.3, the Resistor class can be referenced from the Circuit1 class simply by

writing Components.Resistor.

Observe in Modelica Code 3.1 that the electrical library has been declared as

an encapsulated package. The concept of encapsulating a package is intended to

facilitate its portability and the class maintenance. From within an encapsulated

package, it is not possible to reference directly classes located outside the package.

The objective is to minimize the number of changes required when adapting the

package to changes in the class hierarchy. Modelica provides the import sentence

to allow accessing classes external to the encapsulated package. When a class is

imported, it becomes “visible” from within the encapsulated package.

The following two sentences, extracted fromModelica Code 3.1, allow to illustrate

two different ways of using the import sentence:

import SI = Modelica.SIunits;
import Modelica.Constants;

The first one makes the Modelica.SIunits class visible from within ElectricLib

and also declares SI as an abbreviation of Modelica.SIunits. Abbreviations such

as SI.Voltage and SI.Current can be used to reference Modelica.SIunits.Voltage

and Modelica.SIunits.Current respectively.

The second sentence makes visible the Modelica.Constants class from within

ElectricLib. This implies that Modelica.Constants can be the starting point of

relative paths. For instance, the Constants.pi constant is employed in the definition

of the VsourceAC class (see Modelica Code 3.2).

The import sentence can be used in a third way, as illustrated by the following

line of code.
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import Modelica.Math.*;

This import sentence makes visible all the classes declared within Modelica.Math

and allows to reference them directly. For instance, the sin function declared within

the Modelica.Math package can be referenced as sin.

In any case, in order to avoid hidden dependencies, the import sentences are

not inherited.

It can be observed in Modelica Code 3.3 that the connection of the component

connectors is described using connect sentences. As was explained, these sentences

are translated into equations by the modeling environment. It is worthy of mention

that if a connector is left unconnected, the modeling environment assumes that

its through variables are zero, adding automatically the corresponding equations to

the model.

It can also be observed in Modelica Code 3.3 how the parameter values are set

when the components are instantiated. If a component is itself a composed class, the

dot notation can be employed for referencing the parameters. This is illustrated

in the following example.

model Resistor
parameter Modelica.SIunits.Resistance R;
...

end Resistor;

model SubCircuit
Resistor R1( R=1 ), R2( R=10 );
...

end SubCircuit;

model Circuit
SubCircuit SC ( R1.R=3, R2.R=30 );
...

end Circuit;

Concerning how packages are saved to file, there are basically the two follo-

wing options.

– Save the entire package to a single file. This has typically the name of the

package and the .mo extension. In this way, the ElectricLib package would

be saved to a file named ElectricLib.mo.

– Save the package in several files, structured in a directory hierarchy that

mimics the package structure. The procedure is as follows.
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1. Create a directory for each package, maintaining the same hierarchical

structure as the packages. Give to each directory the same name as the

corresponding package.

2. Create a file named package.mo within each directory. Write to this file

the package declaration, but excluding the classes declared within the

package.

3. Declare each class in a separate file, saved into the corresponding di-

rectory. The file name has to be the same as the class name, with .mo

extension. The first sentence in each of these files must be a within

sentence specifying the class path in the package hierarchy. For instance,

the first sentence in the Resistor.mo file should be:

within ElectricLib.Components;

The MODELICAPATH environment variable of the operative system allows

the user to specify the directories (as a list separated by semicolons) where the

modeling environment has to search for packages.

Returning to our discussion on the electrical library, observe that the parameters

of the library models are time-independent variables, whose value can be modified

at instantiation and inheritance, and at the experiment definition. Modelica not

only supports the parametrization of time-independent variables. It also supports

the declaration of replaceable classes. The following example is used to illustrate

this feature.

Suppose that we have developed two different models of an electric resistor. The

first one is the Resistor class shown in Modelica Code 3.2. In the second model,

which is defined below, the effect of temperature on the resistance is considered.

model ResistorTemp "Resistor with temperature dependence"
extends Interfaces.OnePort;
parameter SI.Resistance R = 1 "Resistance at reference temperature";
parameter Real alpha(unit="K-1") = 5e-05 "Temperature coefficient";
parameter SI.Temperature Tref = 298.15 "Reference temperature";
SI.Temperature Temp "Resistor temperature";

equation
u = R*( 1 + alpha*(Temp-Tref) )*i;

end ResistorTemp;

Depending on the study objective, we will need to use Resistor or ResistorTemp

to describe the circuit’s resistors. Modelica allows to declare the object classes as

replaceable, and redeclare them. For instance, the R1 and R2 resistors are declared

as replaceable components in the model shown below.
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model Circuit
replaceable Resistor R1(R=100), R2(R=200);
Resistor R3(R=300), R4(final R=400);
...

end Circuit;

The class of R1 and R2 can be redeclared when the Circuit class is instantiated

and inherited. For instance, R1 and R2 are redeclared as objects of the ResistorTemp

class in the CircuitT model defined below.

model CircuitT
extends Circuit (

redeclare ResistorTemp R1(alpha=1e-4),
redeclare ResistorTemp R2 );

end CircuitT;

When declaring an object of replaceable class, Modelica allows to impose a

condition on the replacing class: to have a specific superclass, which typically is

the class where the component interface is defined. For instance, it can be specified

that the classes of the R1 and R2 components must be derived classes of the OnePort

class.

model Circuit
replaceable Resistor R1(R=100) extends Interfaces.OnePort;
replaceable Resistor R2(R=200) extends Interfaces.OnePort;
Resistor R3(R=300), R4(final R=400);
...

end Circuit;

Modelica allows to redeclare the class of several objects without naming them

one by one. Consider the following example.

model CircuitA
replaceable model Device = Resistor;
Device R1, R2;
Resistor R3(R=300), R4(final R=400);
...

end CircuitA;

A replaceable model named Device is defined within CircuitA. As stated in

its declaration sentence, Device is equal to the Resistor class. The R1 and R2

components are objects of the Device class. If not explicitly stated otherwise, R1

and R2 components are of the Resistor class. However, as Device has been declared

as replaceable, it can be redeclared when CircuitA is instantiated or inherited. For

instance, redeclaring Device as equal to the Capacitor class (see the declaration

below), R1 and R2 are capacitors in CircuitB.
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model CircuitB
extends CircuitA ( redeclare model Device = Capacitor );

end CircuitB;

In addition to replaceable models, Modelica allows to declare replaceable con-

nectors, types, records, blocks, functions and packages. The syntax is analogous,

replacing the model keyword after replaceable and redeclare by the corresponding

keyword: connector, type, etc. The declaration and redeclaration of a replaceable

type is illustrated in the following example.

Consider the definition of a model that describes an exponential waveform. This

model will be used to describe two different generators: a voltage source and a

current source. As the units of the variable that describes the waveform can be

Volts or Amperes, the type of the variable is declared as of replaceable type. It is

shown in the following fragment of code.

partial model EXP
replaceable type SignalType = Real;
parameter SignalType S1;
parameter SignalType S2;
parameter Modelica.SIunits.Time TD1(min=0);
...

protected
parameter SignalType TRANS_INITIAL = S1;
SignalType signal;
Modelica.SIunits.Time timeStartTran;

equation
...

end EXP;

The exponential waveform can be used in the definition of voltage and current

sources, as shown below.

model Vsource
extends EXP ( redeclare type SignalType=Modelica.SIunits.Voltage );
...

end Vsource;

model Isource
extends EXP ( redeclare type SignalType=Modelica.SIunits.Current );
...

end Isource;
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3.3 Longitudinal vibrations of a bar

Consider a uniform bar of length L, cross section A, mass M and Young’s

modulus E. The left end of the bar is fixed and the right end is free. An external

force F (t) is applied at the free end in the longitudinal direction. The system is

depicted in Figure 3.2, where ξ (x, t) represents the longitudinal displacement from

its equilibrium position at a distance x from the left end and at time t.

The objective is to analyze the resulting vibration of the bar in the axial (lon-

gitudinal) direction. The model is developed by dividing the bar into n elements of

equal length ∆x = L/n, each of mass ∆m = M/n. The linear momentum of the

i-th element is:

pi = ∆m · dξi

dt
with i = 1, . . . , n (3.1)

The stress on each element is modeled as the force exerted by strings connected to

the element, as shown is Figure 3.3. Therefore, the bar is described as the connection

of n masses and n strings. Applying the Newton’s law to each element, it is obtained:

dpi

dt
= Fi+1 − Fi with i = 1, . . . , n− 1 (3.2)

dpn

dt
= F − Fn (3.3)

The force exerted by the strings can be calculated using Eqs. (3.4) and (3.5), and

k can be calculated from Eq. (3.6).

F1 = k · ξ1 (3.4)

Fi = k · (ξi − ξi−1) with i = 2, . . . , n (3.5)

k =
E · A
∆x

(3.6)

The bar model is composed of Eqs. (3.1) – (3.6), and the parameter values shown

in Table 3.1. Initially, the external force is zero and the bar is at equilibrium.

At time equals 0.001 s, the external force changes abruptly to 2000 N, and this

value is maintained constant during all the simulation time. The bar model and the

experimental setup (Testmodel) are shown in Modelica Code 3.4. The displacements
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Figure 3.2: External force F (t) applied at the free end of a uniform bar.
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Figure 3.3: Model to analyze longitudinal vibrations of a uniform bar.

Table 3.1: Physical parameters of the bar.

Parameter Value Units

Cross section (A) 8.636E − 005 m2

Length (L) 1.0 m

Mass (M) 0.233172 kg

Young’s modulus (E) 6.9E + 10 Pa

of the elements i = 10, 30 and 100 obtained simulating the Testmodel during 0.006 s

are shown in Figure 3.4.

Vector variables have been employed in the LVib_UnifBar model to describe the

element displacements and linear momenta, and spring forces. For-clauses have been

employed to describe the equations.

Modelica provides the record class to facilitate grouping the declaration of

related parameters and setting their values. A record class cannot contain equations

or protected sections.

The separation between model equations and parameter values is a guiding

principle in other simulators. An example is the SPICE circuit simulator. The

mathematical equations that describe the supported devices (resistors, capacitors,

inductors, switches, voltage and current sources, transmission lines, diodes, BJT,

JFETs, MOSFETS, MESFETs, etc.) are built into the SPICE simulator. Each of
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record BarData

import SI = Modelica.SIunits;
parameter SI.Area section;
parameter SI.Length length;
parameter SI.Mass mass;
parameter SI.Pressure Young;

end BarData;

package BarCatalog

record Bar21 = BarData (
section = 8.636e-005,
length = 1,
mass = 0.233172,
Young = 6.9e10 );

end BarCatalog;

partial model LVib_UnifBar
import SI = Modelica.SIunits;
constant Integer n = 100 "Number of elements";
BarData dBar;
parameter SI.Length delta_x = dBar.length/n;
parameter SI.Mass delta_m = dBar.mass/n;
parameter SI.TranslationalSpringConstant k = dBar.Young*dBar.section/delta_x;
SI.Position eps[n] "Longitudinal displacement";
SI.Force F[n] "Force of springs";
SI.Momentum p[n] "Linear momentum";
SI.Force Fext "External force";

equation
// Linear momentum of elements
for i in 1:n loop
p[i] = delta_m*der(eps[i]);

end for;
// Newton’s law on elements
for i in 1:(n - 1) loop

der(p[i]) = F[i + 1] - F[i];
end for;
der(p[n]) = Fext - F[n];
// Force exerted by springs
F[1] = k*eps[1];
for i in 2:n loop
F[i] = k*(eps[i] - eps[i - 1]);

end for;
end LVib_UnifBar;

model Test
extends LVib_UnifBar( dBar = BarCatalog.Bar21() );

equation
// External force in the longitudinal direction
Fext = if time < 1e-3 then 0 else 2e3;

end Test;

Modelica Code 3.4: Longitudinal vibration of a uniform bar.
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Figure 3.4: Displacement of the elements i = 10, 30 and 100 obtained simulating the Test model
shown in Modelica Code 3.4 during 0.006 s.

these models contains a set of parameters. Specifying the value of these parameters,

the generic behavior described by the device model is particularized for describing

the behavior of a particular device. The values of the SPICE parameters are typically

provided by the device manufacturers, grouped into model parameter libraries.

The Modelica’s record class provides support to this principle. An example of

use can be found in Modelica Code 3.4. The BarData record contains the declaration

of the bar parameters. An instance of BarData, named dBar, has been declared within

the LVib_UnifBar partial model. The content of dBar is accessed using dot notation

(e.g., dBar.section).

The sets of parameters that describe different bar types can be arranged into a

package. The BarCatalog package is declared in Modelica Code 3.4 for this purpose.

The declaration of the Bar21 class contains the parameter values of the particular

bar that is going to be analyzed in this simulation study. Other records describing

other bar types can be included within BarCatalog.

Observe the Test class defined in Modelica Code 3.4. Test inherits LVib_UnifBar,

and BarCatalog.Bar21 is assigned to dBar. The external force exerted on the bar is

also described.

The values declared in BarCatalog.Bar21 could have been modified when assigned

to dBar. For instance, declaring

model Test
extends LVib_UnifBar( dBar = BarCatalog.Bar21(length=2) );
...

the bar length takes the value 2 m, while the other parameters take the values

specified in BarCatalog.Bar21.
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3.4 Longitudinal heat conduction in a bar

Another feature of Modelica will be described in this section: the vectors of

components. The concept is illustrated in Figure 3.5. In the upper part of it, the

series connection of n components of the same class is depicted. This class, named

Device, is a model with two connectors, named p and n. The connection is made so

that the p connector of the i-th component is connected to the n connector of the

(i + 1)-th component.

The fragment of Modelica code written in the lower part of Figure 3.5 describes

the model depicted in the upper part of the figure. The code contains the declaration

of a component vector, and connect sentences within a for clause. The component

vector, named part, is composed of n components of the Device class: part[1],

part[2], . . . , part[n]. The value of the n parameter can be changed when the

SeriesParts class is inherited and instantiated. As the number of model equations

depends on n, its value cannot be changed after translating the model and, therefore,

cannot be changed at the experiment definition.

The use of vectors is illustrated in the following example. Suppose that we want

to model the longitudinal heat conduction in a bar. The objective is to analyze

the evolution of the temperature distribution along the bar under the following

conditions: the temperature at one end of the bar (Ta) changes abruptly, while the

temperature at the other end (Tb) is maintained at a constant value of 300 K. We

will develop two different models of this system, employing vectors of variables in

the first model and vectors of components in the second one.

Let’s define N equidistant points along the bar, so that the first and last points

are located at the bar ends. If the bar length is L, the distance between two

consecutive point is ∆x = L/(N − 1). The temperature at the first point is Ta

and the temperature at the N -th point is Tb. Both are known. The temperatures at

the inner points are named T [1], . . . , T [N − 2].

Now, let’s divide the bar into N elements (control volumes) as follows: the

elements located at the bar ends have length ∆x/2, and the inner elements have

length ∆x. The points with temperatures T [1], . . . , T [N−2] are located at the center

of the inner elements. Let’s assume that the first element is at Ta temperature, the

second element at T [1], the third element at T [2], . . . , the (N − 1)-th element is

at T [N − 2] and the N -th element is at Tb temperature. The rate of heat transfer

between consecutive elements is represented as qi. The discretization for N = 7 is

shown in Figure 3.6.
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...

part[1] part[2] part[3] part[n]

n p

part[n-1]

model SeriesParts
parameter Integer n = 10;
Device part[n];

equation
for i in 1:n-1 loop

connect( part[i].p, part[i+1].n );
end for;

...

Figure 3.5: Model with a regular structure and Modelica code.

The model is described in Modelica Code 3.5. It is composed of the equations

that describe the energy conservation of the inner elements, the heat conduction

between adjacent elements, and the equations describing the evolution of Ta and Tb.

The temperatures of the inner elements and the heat transfer rates are represented

by the T and q vectors of real variables.

The initial temperature of the inner elements is set in an initial equation

section. The equations written in this section are initial conditions. Therefore, the

initial value of T[1], . . . , T[N-2] is Tstep1. Modelica provides complementary ways of

setting the initial conditions: using the start and fixed attributes at the variable de-

clarations; and writing equations within initial equation sections and assignments

within initial algorithm sections. This will be explained in Section 7.6.

An equivalent model is obtained representing the boundary conditions as tempe-

rature sources, and the bar as a connection of thermal resistors and capacitors (see

an example in Figure 3.7). Thermal resistors represent the heat conduction between

adjacent control volumes and thermal capacitors describe the energy balances of

control volumes. The model is described in Modelica Code 3.6 and 3.7.
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Ta  T[1]  T[2]  T[3]  T[4]  T[5]  Tb
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Figure 3.6: Discretization of the spatial coordinate with N = 7.

model HeatConductionA
parameter Integer N = 7;
Real Ta (unit="K");
Real Tb (unit="K");
Real T[N-2] (unit="K");
Real q[N-1] (unit="W");
parameter Real L (unit="m") = 1;
parameter Real S (unit="m2") = 0.01;
parameter Real rho (unit="kg/m3") = 7870;
parameter Real Cp (unit="J/(kg.K)") = 449;
parameter Real k (unit="W/(m.K)") = 80;
parameter Real Tstep1 (unit="K") = 300;
parameter Real Tstep2 (unit="K") = 350;
parameter Real tstep (unit="s") = 50;
parameter Real Deltax = L / (N-1);

equation
// Boundary conditions
Ta = if time < tstep then Tstep1 else Tstep2;
Tb = Tstep1;
// Bar
for i in 1:N-2 loop

S*Deltax*rho*Cp*der(T[i]) = q[i] - q[i+1];
end for;
q[1] = S*k*(Ta-T[1])/Deltax;
for i in 2:N-2 loop

q[i] = S*k*(T[i-1]-T[i])/Deltax;
end for;
q[N-1] = S*k*(T[N-2]-Tb)/Deltax;

initial equation
for i in 1:N-2 loop

T[i] = Tstep1;
end for;

end HeatConductionA;

Modelica Code 3.5: Atomic model of the longitudinal heat conduction in a bar.

T[1] T[2] T[3] T[4] T[5]

q[1] q[2] q[3] q[4] q[5] q[6]Ta Tb

Figure 3.7: Heat conduction in a bar modeled connecting temperature sources, and thermal
resistors and capacitors.
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package ThermalLib

connector ThermalPin

Real T (unit="K");
flow Real q (unit="W");

end ThermalPin;

model ThermalResistor
ThermalPin p1, p2;
parameter Real S (unit="m2");
parameter Real k (unit="W/(m.K)");
parameter Real Deltax (unit="m");

equation
p1.q = S*k*(p1.T-p2.T)/Deltax;
p2.q = -p1.q;

end ThermalResistor;

model ThermalCapacitor
parameter Real S (unit="m2");
parameter Real rho (unit="kg/m3");
parameter Real Cp (unit="J/(kg.K)");
parameter Real Deltax (unit="m");
parameter Real Tinitial (unit="K");
ThermalPin p;

equation
S*Deltax*rho*Cp*der(p.T) = p.q;

initial equation
p.T = Tinitial;

end ThermalCapacitor;

model SourceT
parameter Real Tstep1 (unit="K");
parameter Real Tstep2 (unit="K");
parameter Real tstep (unit="s");
ThermalPin p;

equation
p.T = if time < tstep

then Tstep1

else Tstep2;
end SourceT;

end ThermalLib;

Modelica Code 3.6: Thermal library to model the heat conduction in a bar.



MODELING AND SIMULATION IN ENGINEERING USING MODELICA

model HeatConductionB
parameter Integer N = 7;
parameter Real L (unit="m") = 1;
parameter Real S (unit="m2") = 0.01;
parameter Real rho (unit="kg/m3") = 7870;
parameter Real Cp (unit="J/(kg.K)") = 449;
parameter Real k (unit="W/(m.K)") = 80;
parameter Real Tstep1 (unit="K") = 300;
parameter Real Tstep2 (unit="K") = 350;
parameter Real tstep (unit="s") = 50;
parameter Real Deltax = L / (N-1);
ThermalLib.SourceT Ta(Tstep1=Tstep1,Tstep2=Tstep2,tstep=tstep);
ThermalLib.SourceT Tb(Tstep1=Tstep1,Tstep2=Tstep1,tstep=tstep);
ThermalLib.ThermalResistor Rth[N-1] (S=fill(S,N-1), k=fill(k,N-1),

Deltax=fill(Deltax,N-1));
ThermalLib.ThermalCapacitor Cth[N-2] (S=fill(S,N-2), rho=fill(rho,N-2),

Cp=fill(Cp,N-2), Deltax=fill(Deltax,N-2),
Tinitial=fill(Tstep1,N-2));

equation
connect (Ta.p, Rth[1].p1);
for i in 1:N-2 loop

connect (Rth[i].p2, Cth[i].p);
connect (Cth[i].p, Rth[i+1].p1);

end for;
connect (Rth[N-1].p2, Tb.p);

end HeatConductionB;

Modelica Code 3.7: Composed model of the longitudinal heat conduction in a bar.
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3.5 Control of level and temperature in a tank

Consider the system depicted in Figure 3.8. It is composed of a liquid storage tank

with a hole in the bottom, a source of liquid and a level control system (labeled as

“LC” in the figure). The tank is filled by the source, and drained by gravity through

the hole in the bottom. The control system measures the height of liquid in the

tank (h) and generates a voltage (uh) that is applied to the source of liquid. The

mass flow of liquid produced by the source (Fin) is proportional to the applied input

voltage (uh) if the voltage is positive, and is zero if the voltage is negative.

The liquid level (h) is controlled using a PI controller, this is, a controller with

both proportional and integral control. The controller has two inputs: the setpoint

(desired or target value for the controlled variable) and the actual value of the

controlled variable. The controller calculates the error signal (e), defined as the

difference between the setpoint (href) and the actual value of the controlled variable

(h). The controller output (uh) is calculated as the sum of two terms: one directly

proportional to the error signal, and the other proportional to the integral of the

error signal. The PI controller is described by the following equations:

e = href − h (3.7)

uh = kP · e
︸ ︷︷ ︸

Proportional
term

+
1

kI
·
∫ t

0
e · dt

︸ ︷︷ ︸

Integral
term

(3.8)

Let I denote the integral of the error signal. Eqs. (3.7) and (3.8) can be written

as follows:

e = href − h (3.9)

dI

dt
= e (3.10)

uh = kP · e +
1

kI
· I (3.11)

The relevant physical quantities of the system are listed in Table 3.2. The gravita-

tional acceleration (g), the cross-sectional area of the tank (A) and the hole (a), the

parameters of the source (kf) and the PI controller (kP , kI), and the liquid density
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Figure 3.8: Level control in a tank with a hole in the bottom.

Table 3.2: Physical quantities of the system depicted in Figure 3.8.

Symbol Quantity Units Value

a Cross-sectional area of the hole m2 0.1

A Cross-sectional area of the tank m2 2.0

e Error signal of level controller m

Fin, Fout Mass flow rates kg/s

g Gravitational acceleration m/s2 9.81

h Height of liquid in the tank m

href Liquid level setpoint m

I Integral of the e error signal m·s
kf Source’s coefficient of proportionality kg/(s·V) 100

kI Integral parameter of PI controller m·s/V 15

kP Proportional parameter of PI controller V/m 2

m Mass of the liquid inside the tank kg

uh Controller output V

ρ Liquid density kg/m3 760
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(ρ) have constant known values. The time-dependent quantities of the system (m,

h, Fout, Fin, e, I, uh, href) can be calculated from Eqs. (3.12) – (3.19).

dm

dt
= Fin − Fout (3.12)

m = ρ · A · h (3.13)

Fout = a · ρ ·
√

2 · g · h (3.14)

Fin = max (0, kf · uh) (3.15)

e = href − h (3.16)

dI

dt
= e (3.17)

uh = kP · e +
1

kI
· I (3.18)

href =







5 m si t < 300 s

3 m si 300 s ≤ t < 600 s

7 m si t ≥ 600 s

(3.19)

The mass balance in the tank is described by Eq. (3.12). The relationship between

the liquid mass and height is described by Eq. (3.13). The mass flow rate of liquid

flowing out of the orifice depends on the liquid height as described by Eq. (3.14).

The constitutive relationship of the liquid source is Eq. (3.15), and Eqs. (3.16) –

(3.18) describe the PI controller. The liquid level setpoint is given by Eq. (3.19).

The initial state of the system is determined by setting the initial value of the

mass of liquid inside the tank and the integral of the error signal. The model is

described in Modelica Code 3.8. The result obtained simulating the model during

1000 s is shown in Figure 3.9.

Suppose that we connect to the tank a heating system composed of a heater and

a temperature controller. The system is depicted in Figure 3.10. The temperature

control system (labeled as TC in the figure) measures the liquid temperature (T )

and generates a voltage (uT ) that is applied to the heater input. If uT is positive,

then the thermal power (Q) produced by the heater is proportional to uT . If uT is

negative, Q is zero.

Q = max(0, kc · uT ) (3.20)

The temperature of the liquid stored inside the tank can be calculated from the

energy balance equation for the stored liquid. We assume that the liquid is perfectly
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model ControlTank1
import SI = Modelica.SIunits;
import Modelica.Math.*;
parameter SI.Area a=0.1 "Cross-sectional area of the hole";
parameter SI.Area A=2 "Cross-sectional area of the tank";
SI.Height e "Controller error signal";
SI.MassFlowRate Fin "Input mass flow rate";
SI.MassFlowRate Fout "Output mass flow rate";
constant SI.Acceleration g=9.81 "Gravitational acceleration";
SI.Height h "Height of liquid in the tank";
SI.Height href "Liquid level setpoint";
Real I(unit="m.s", start=0, fixed=true) "Integral of error signal";
parameter Real kf(unit="kg/(s.V)") = 100 "Source coefficient";
parameter Real kI(unit="m.s/V") = 15 "Integral parameter of PI controller";
parameter Real kP(unit="V/m") = 2 "Proportional parameter of PI controller";
SI.Mass m(start=1e3, fixed=true) "Mass of the liquid inside the tank";
SI.Voltage uh "Controller output";
parameter SI.Density rho=760 "Density of the liquid";

equation
der(m) = Fin - Fout;
m = rho*A*h;
Fout = a*rho*sqrt(2*g*h);
Fin = max(0, kf*uh);
e = href - h;
der(I) = e;
uh = kP*e + I/kI;
href = if time < 300 then 5 else if time < 600 then 3 else 7;

end ControlTank1;

Modelica Code 3.8: Tank with level control shown in Figure 3.8.

Figure 3.9: Setpoint (href ) and level (h) obtained simulating Modelica Code 3.8.
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Figure 3.10: Level and temperature control in a tank with a hole in the bottom.

Table 3.3: Physical quantities needed to describe the thermal behavior.

Symbol Quantity Units Value

Cp Heat capacity of the liquid J/(kg·K)

Cp,0 Zero-order term of Cp J/(kg·K) 446

Cp,1 First-order term of Cp J/(kg·K2) 5.36

FH,in, FH,out Enthalpy flow rates W

H Enthalpy of the liquid stored in the tank J

eT Error signal of temperature controller K

IT Integral of error signal eT K·s
kc Heater’s coefficient W/V 8E+6

kT,I Integral parameter of temp. controller K·s/V 50

kT,P Proportional parameter of temp. controller V/K 0.3

Q Thermal power produced by the heater W

T Temperature of the liquid inside the tank K

Tin Temperature of the input liquid K 300

Tref Setpoint of liquid temperature K

uT Control input to the heater V
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stirred in the tank, being at uniform temperature T . The temperature of the liquid

produced by the source is Tin. The liquid exists the tank at temperature T . The

energy balance is described in Eq. (3.21).

dH

dt
︸︷︷︸

Change in enthalpy
of the stored liquid

= FH,in
︸ ︷︷ ︸

Input enthalpy
flow rate

− FH,out
︸ ︷︷ ︸

Output enthalpy
flow rate

+ Q
︸︷︷︸

Input heat
flow rate

(3.21)

The total enthalpy (H) of the liquid stored in the tank is proportional to the

liquid mass (m), temperature (T ) and heat capacity at constant pressure (Cp).

H = m · Cp · T (3.22)

Let’s suppose that the heat capacity of the liquid has a linear dependence with

the temperature,

Cp = Cp,0 + Cp,1 · T (3.23)

where Cp,0 and Cp,1 are known constants. The enthalpy of the stored liquid and the

enthalpy flow rates can be calculated as follows:

H = m · (Cp,0 + Cp,1 · T ) · T (3.24)

FH,in = Fin · (Cp,0 + Cp,1 · Tin) · Tin (3.25)

FH,out = Fout · (Cp,0 + Cp,1 · T ) · T (3.26)

The PI controller and the temperature setpoint are described as follows:

eT = Tref − T (3.27)

dIT

dt
= eT (3.28)

uT = kT,P · eT +
1

kT,I
· IT (3.29)

Tref =







340 K if t < 500 s

320 K if t ≥ 500 s
(3.30)
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model ControlTank2

import SI = Modelica.SIunits;
import Modelica.Math.*;

constant SI.Acceleration g=9.81 "Gravitational acceleration";

// Liquid
parameter SI.Density rho=760 "Density";
parameter SI.SpecificHeatCapacity Cp0=446 "Zero-order term of Cp";
parameter Real Cp1(unit="J/(kg.K2)") = 5.36 "1st-order coeff. of Cp";

// Tank
parameter SI.Area a=0.1 "Cross-sectional area of the hole";
parameter SI.Area A=2 "Cross-sectional area of the tank";

// Level controller
parameter Real kI(unit="m.s/V") = 15 "Integral parameter";
parameter Real kP(unit="V/m") = 2 "Proportional parameter";

// Source of liquid
parameter Real kf(unit="kg/(s.V)") = 100 "Proportionality coefficient";

// Heater
parameter Real kc(unit="W/V") = 8E+6 "Proportionality coefficient";

// Temperature controller
parameter Real kT_I(unit="K.s/V") = 50 "Integral parameter";
parameter Real kT_P(unit="V/K") = 0.3 "Proportional parameter";

SI.Height e "Error signal of level controller";
SI.MassFlowRate Fin "Input mass flow rate";
SI.MassFlowRate Fout "Output mass flow rate";
SI.Height h "Level of liquid";
SI.Height href "Setpoint of liquid level";
Real I(unit="m.s", start=0, fixed=true) "Integral of e";
SI.Mass m(start=1e3, fixed=true) "Mass of stored liquid";
SI.Voltage uh "Output of level controller";
SI.EnthalpyFlowRate FHin "Input enthalpy flow rate";
SI.EnthalpyFlowRate FHout "Output enthalpy flow rate";
SI.Enthalpy H "Enthalpy of stored liquid";
SI.Temperature eT "Error signal of temperature controller";
Real IT(unit="K.s", start=0, fixed=true) "Integral of eT";
SI.HeatFlowRate Q "Heat flow rate from the heater";
SI.Temperature T(start=300, fixed=true) "Temperature of stored liquid";
parameter SI.Temperature Tin=300 "Temperature of input liquid";
SI.Temperature Tref "Temperature setpoint";
SI.Voltage uT "Output of temperature controller";

Modelica Code 3.9: Atomic model of level and temperature control in a tank (1/2).
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equation

// Tank
der(m) = Fin - Fout;
der(H) = FHin - FHout + Q;
m = rho*A*h;
H = m*(Cp0 + Cp1*T)*T;
Fout = a*rho*sqrt(2*g*h);
FHout = Fout*(Cp0 + Cp1*T)*T;

// Source of liquid
Fin = max(0, kf*uh);
FHin = Fin*(Cp0 + Cp1*Tin)*Tin;

// Level controller
e = href - h;
der(I) = e;
uh = kP*e + I/kI;
href = if time < 300 then 5 else if time < 600 then 3 else 7;

// Temperature controller
eT = Tref - T;
der(IT) = eT;
uT = kT_P*eT + IT/kT_I;
Tref = if time < 500 then 340 else 320;

// Heater
Q = max(0,kc*uT);

end ControlTank2;

Modelica Code 3.10: Atomic model of level and temperature control in a tank (2/2).

Figure 3.11: Liquid temperature (T ) and its setpoint (Tref ) obtained simulating Modelica
Code 3.9 and 3.10. The liquid level and its setpoint are shown in Figure 3.9.
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Figure 3.12: System decomposition into parts (left) and library architecture (right).

The initial state of the thermal model is defined by setting the initial temperature

of the liquid stored in the tank, and setting IT to zero. The physical quantities

employed to describe the thermal behavior are listed in Table 3.3. The model is

described in Modelica Code 3.9 and 3.10. Simulating the model during 1000 s, the

temperature of the stored liquid evolves as shown in Figure 3.11.

Let’s adopt now another approach. Instead of describing the model equations

as an atomic Modelica model, we are going to model the system by applying the

object-oriented modeling methodology. The first step is to decompose the system

into its parts, deciding which model classes need to be programmed. The system

can be decomposed into the following components (see the left side of Figure 3.12):

a tank, two PI controllers (LC and TC in the figure), a source of liquid, a heater

and two setpoint signal generators (href and Tref in the figure), and a sink.

There are three classes of interaction among the system components: liquid flow,

heat transfer and signal transmission. A different symbol has been used in Figu-

re 3.12 to represent the connectors describing each class of interaction. Connectors

describing liquid flow are filled squares, connectors describing heat transfer are filled

triangles, and connectors describing signal transmission are hollow circles.

We define a library named TankControl, whose architecture is shown on the right

side of Figure 3.12. Within the TankControl package, two packages (Interface and

ProcessUnits) and the model of the complete system (ControlledTank) are defined.

The library is described in Modelica Code 3.11 – 3.13.



MODELING AND SIMULATION IN ENGINEERING USING MODELICA

encapsulated package TankControl

import SI = Modelica.SIunits;
import Modelica.Math.*;

package Interface

connector Liquid

flow SI.MassFlowRate Fm "Mass flow rate";
flow SI.EnthalpyFlowRate FH "Enthalpy flow rate";

end Liquid;

connector Heat

flow SI.HeatFlowRate Q "Heat flow rate";
end Heat;

connector Signal

Real s;
end Signal;

end Interface;

package ProcessUnits

model PIcontroller
Interface.Signal y;
Interface.Signal ref;
Interface.Signal u;
parameter Real kI "Integral parameter";
parameter Real kP "Proportional parameter";

protected
Real e;
Real I(start=0, fixed=true) "Integral of e";

equation
e = ref.s - y.s;
der(I) = e;
u.s = kP*e + I/kI;

end PIcontroller;

model SourceLiq
Interface.Signal u;
Interface.Liquid portLiq;
parameter SI.Temperature T "Temperature of liquid";
parameter Real kf(unit="kg/(s.V)") "Coefficient of proportionality";
parameter SI.SpecificHeatCapacity Cp0 "Zero-order term of Cp";
parameter Real Cp1(unit="J/(kg.K2)") "First-order coeff. of Cp";

equation
portLiq.Fm = -max(0, kf*u.s);
portLiq.FH = portLiq.Fm*(Cp0 + Cp1*T)*T;

end SourceLiq;

Modelica Code 3.11: Composed model of level and temperature control in a tank (1/3).



MODEL LIBRARIES

model Tank
Interface.Liquid portLiqSup;
Interface.Liquid portLiqBase;
Interface.Heat portCalor;

Interface.Signal signal_h;
Interface.Signal signal_T;

constant SI.Acceleration g=9.81 "Gravitational acceleration";
parameter SI.Area a "Cross-sectional area of the hole";
parameter SI.Area A "Cross-sectional area of the tank";
parameter SI.Density rho "Density of the liquid";
parameter SI.SpecificHeatCapacity Cp0 "Zero-order term of Cp";
parameter Real Cp1(unit="J/(kg.K2)") "First-order coeff. of Cp";

SI.Temperature T(start=300, fixed=true) "Temperature of stored liquid";
SI.Height h "Level of stored liquid";
SI.Mass m(start=1e3, fixed=true) "Mass of stored liquid";
SI.Enthalpy H "Enthalpy of stored liquid";

equation
der(m) = portLiqSup.Fm + portLiqBase.Fm;
der(H) = portLiqSup.FH + portLiqBase.FH + portCalor.Q;
m = rho*A*h;
H = m*(Cp0 + Cp1*T)*T;
portLiqBase.Fm = -a*rho*sqrt(2*g*h);
portLiqBase.FH = portLiqBase.Fm*(Cp0 + Cp1*T)*T;
signal_h.s = h;
signal_T.s = T;

end Tank;

model Sink
Interface.Liquid portLiq;

end Sink;

model Heater
Interface.Signal cntrl;
Interface.Heat portCalor;
parameter Real kc(unit="W/V") "Coefficient of proportionality";

equation
portCalor.Q = -max(0, kc*cntrl.s);

end Heater;

model SetpointLevel
Interface.Signal ref;

equation
ref.s = if time < 300 then 5

else if time < 600 then 3 else 7;
end SetpointLevel;

Modelica Code 3.12: Composed model of level and temperature control in a tank (2/3).
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model SetpointTemp
Interface.Signal ref;

equation
ref.s = if time < 500 then 340 else 320;

end SetpointTemp;

end ProcessUnits;

model ControlledTank
import TankControl.ProcessUnits.*;
// Liquid
parameter SI.Density rho=760 "Density of liquid";
parameter SI.SpecificHeatCapacity Cp0=446 "Zero-order term of Cp";
parameter Real Cp1(unit="J/(kg.K2)") = 5.36 "First-order coeff. of Cp";
// Tank
parameter SI.Area a=0.1 "Cross-sectional area of the hole";
parameter SI.Area A=2 "Cross-sectional area of the tank";
// Source
parameter SI.Temperature Tin=300 "Temperature of input liquid";
parameter Real kf(unit="kg/(s.V)") = 100 "Coeff. of source";
// Heater
parameter Real kc(unit="W/V") = 8E+6 "Coeff. of heater";
// Level controller
parameter Real kI(unit="m.s/V") = 15 "Integral parameter of LC";
parameter Real kP(unit="V/m") = 2 "Proportional parameter of LC";
// Temperature controller
parameter Real kT_I(unit="K.s/V") = 50 "Integral parameter of TC";
parameter Real kT_P(unit="V/K") = 0.3 "Proportional parameter of TC";

// Declaration of components
SourceLiq source(kf=kf,Cp0=Cp0,Cp1=Cp1,T=Tin);
Heater heater(kc=kc);
Tank tank(a=a,A=A,rho=rho,Cp0=Cp0,Cp1=Cp1);
PIcontroller LC(kI=kI, kP=kP);
PIcontroller TC(kI=kT_I, kP=kT_P);
Sink sink;
SetpointLevel levelSP;
SetpointTemp tempSP;

equation
connect (tank.portLiqSup, source.portLiq); // (1)
connect (tank.portLiqBase, sink.portLiq); // (2)
connect (tank.signal_h, LC.y); // (3)
connect (LC.u, source.u); // (4)
connect (levelSP.ref, LC.ref); // (5)
connect (tempSP.ref, TC.ref); // (6)
connect (tank.signal_T, TC.y); // (7)
connect (heater.cntrl, TC.u); // (8)
connect (heater.portCalor, tank.portCalor); // (9)

end ControlledTank;

end TankControl;

Modelica Code 3.13: Composed model of level and temperature control in a tank (3/3).
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If you compare Figure 3.10 with Figure 3.12, you may wonder why the Sink

component is included in the composed model. The reason is that if a connector

is left unconnected, the modeling environment automatically adds to the model

equations setting to zero the through variables of this connector. In this system in

particular, if the liquid flow connector at the tank bottom is left unconnected, the

modeling environment includes in the model two equations setting to zero the mass

and enthalpy flow rates through the tank hole.

This rule (i.e., flow variables of unconnected connectors are automatically set to

zero) is applied by the modeling environment not only when translates a model, but

also when checks it. For instance, if you ask Dymola to check the SourceLiq model

(see Modelica Code 3.11), you get a message indicating that the model contains

3 unknown variables (portLiq.Fm, portLiq.FH and u.s) and 4 equations: the two

equations written in the equation section of the class

portLiq.Fm = -max(0, kf*u.s);
portLiq.FH = portLiq.Fm*(Cp0 + Cp1*T)*T;

and the two equations that Dymola has automatically added:

portLiq.Fm = 0;
portLiq.FH = 0;

If a model is conceived to be used in a computational causality context different

to the context imposed during the check test, obtaining a message indicating that

the model is structurally singular should not be understood as indication of an error.

In the case of the SourceLiq model, it was designed assuming that both connectors

will be connected, the two equations of the model will be employed to calculate

portLiq.Fm and portLiq.FH, and u.s will be calculated from the connection equation

of the u connector.

A final comment on a different topic. Modelica models usually contain annota-

tion sentences, where the model developer includes the definition of the graphical

properties of the icon and the diagram of the model, documentation in HTML

format, etc. Although standardization has been achieved in the annotation syntax,

the actual support to annotations depends on the modeling environment. The use of

annotations will not be discussed in this text. The interested reader may find useful

to inspect the documentation of the modeling environment and the source code of

the libraries provided by the modeling environment.
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3.6 Dissipation of heat generated in a circuit

Up to this point, we have seen two ways of accessing the variables of a component.

Interface variables, this is, variables declared within connectors, can be accessed by

connecting connectors. On the other hand, dot notation allows to access inter-

face variables, and local variables not declared as protected. As will be explained in

this section, Modelica provides a third way of accessing a component: the inner/outer

construct.

Consider the following example. The Circuit class is composed of three compo-

nents of the Capacitor class, named C1, C2 and C3.

model Circuit
Capacitor C1, C2, C3;
...

end Circuit;

It is assumed that all circuit components are at the same temperature as the

ambient air, T0. Assuming that the T0 variable is declared in the Circuit and

Capacitor classes, the condition on temperature can be described using dot notation

as follows.

model Capacitor
Real T0; // Capacitor temperature
...

end Capacitor;

model Circuit
Real T0; // Environment temperature
Capacitor C1, C2, C3;
...

equation
C1.T0 = T0;
C2.T0 = T0;
C3.T0 = T0;

end Circuit;

The use of dot notation implies in this case writing as many equations as compo-

nents. If an additional capacitor is connected to the circuit, an additional equation

equaling the capacitor and environment temperatures has to be written in the circuit

model. This does not facilitate the graphical model edition, dragging and dropping

components from a model library.

The inner/outer construct was introduced in Modelica to facilitate equaling

variables of a class with variables of its inner components. Taking advantage of this

feature, the circuit model can be described as follows.



MODEL LIBRARIES

model Capacitor
outer Real T0; // Capacitor temperature
...

end Capacitor;

model Circuit
inner Real T0; // Environment temperature
Capacitor C1, C2, C3;
...

end Circuit;

An inner variable named T0 is declared in Circuit. Outer variables named T0 are

declared in the components of Circuit. The modeling environment recognizes that

all these variables are alias and automatically writes the equations equaling them.

The same principle can be applied to connectors, so that inner/outer connec-

tors are automatically recognized as alias. Consider the following example.

connector HeatTransfer
...

end HeatTransfer;

model Capacitor
outer HeatTransfer Qenv;
HeatTransfer Qcomp;
...

equation
connect(Qcomp, Qenv);
...

end Capacitor;

model Circuit
inner HeatTransfer Qenv;
Capacitor C1, C2, C3;
...

end Circuit;

A connector named Qenv has been declared as outer in Capacitor, and as inner in

Circuit. Therefore, the modeling environment recognizes that the Qenv connectors

of C1, C2 and C3 are alias of the Qenv connector of Circuit. As the connect sentence is

written in the Capacitor class, declaring a component of the Capacitor class implies

establishing the connection.

Modelica also supports inner/outer functions. Let’s see an example. Suppose

that the temperature T0 of the ambient air that surrounds the circuit depends on

position. It is described by a function that, given the three-dimensional coordinates

of a point, returns the temperature at that point. The interface of the function is

defined as follows.
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partial function InterfTempAmbient
input Real r[3];
output Real T;

end InterfTempAmbient;

Suppose that N different functions describing the spatial dependence of the am-

bient temperature are defined. These functions are subclasses of InterfTempAmbient.

function TempAmbient1 . . . function TempAmbientN
extends InterfTempAmbient; extends InterfTempAmbient;

algorithm algorithm
T := ... T := ...

end TempAmbient1; end TempAmbientN;

The function that describes the ambient temperature is the same for all circuit

components. A convenient way of specifying the function as follows.

model Capacitor
outer function AmbientTemp = InterfTempAmbient;
Real r[3]; // Capacitor position
Real T0; // Temperature at the capacitor position
...

equation
r = ...
T0 = AmbientTemp(r);
...

end Capacitor;

model Circuit
inner function AmbientTemp = TempAmbient1;
Capacitor C1, C2, C3;
...

end Circuit;

The AmbientTemp function is defined as outer in Capacitor, and as inner in

Circuit. Therefore, for the Capacitor components defined within Circuit, the mo-

deling environment recognizes that these functions are alias.

In the declaration of AmbientTemp in Capacitor, InterfTempAmbient is written on

the right hand side of the equal symbol. Writing this, the model developer imposes a

condition to be fulfilled by any function assigned to AmbientTemp: the function must

be a subclass of InterfTempAmbient. In this example, TempAmbient1 is assigned to

AmbientTemp (see the declaration of AmbientTemp in Circuit).
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3.7 Further reading

The development and use of Modelica libraries are discussed in (ModelicaTM

2000), (Otter 2009), (Fritzson 2011) and (Tiller 2001). The reading of these books

is strongly recommended.

Modelica stream connectors have not been explained in this lesson. Readers are

referred to (Franke et al. 2009).

Excellent references on modeling of transport phenomena, matter and energy

balances, and chemical processes are (Froment & Bischoff 1979), (Bird et al. 1975),

(Incropera & DeWitt 1996), (Ramirez 1989) and (Luyben 1990).

The level and temperature in a tank are controlled in Section 3.5 using PI

controllers. An excellent reference on this topic is (Åström & Hagglund 1995).
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Learning objectives

After studying the lesson, students should be able to:

– Relate the following two concepts: equation-based modeling language, and

assignment of computational causality.

– Analyze manually the computational causality of small-dimension models.

– Analyze the computational structure of overdetermined and underdetermined

DAE systems.

– Write the simulation algorithm of small-dimension, non-singular DAE systems.
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4.1 Introduction

As was explained in previous lessons, model behavior may be described in Mo-

delica using equations and algorithms.

An algorithm is a sorted sequence of assignments. An assignment has the form

variable := expression. The computational causality of an algorithm is specified

in the algorithm itself: the variables calculated from the algorithm (computational

outputs) are all those written on the left hand side of the assignments, and the rest

of variables intervening in the algorithm are computational inputs.

An equation consists of two expressions separated by the equal sign. The way of

writing an equation does not determine its computational causality. In general, the

computational causality of an equation depends on the equation itself, and also on

the other equations and algorithms of the model. For this reason, the computational

causality of models described using equations is a global property of the model,

which has to be analyzed by considering the complete model.

The assignment of computational causality is automatically performed by the

Modelica modeling environments, which determine the variable to evaluate from

each equation, and also the evaluation order of the model equations and algorithms.

The objective of this lesson is to discuss the concepts behind the assignment

of computational causality. The description of the efficient algorithms that are

implemented in the Modelica modeling environments is out of the scope of this

introductory textbook. These algorithms typically employ bipartite graphs for repre-

senting the model computational structure. For the sake of simplicity, we will employ

incidence matrices for representing the model computational structure, instead of

bipartite graphs.

The procedure for analyzing the computational causality consists of a sequence

of steps that are described in Sections 4.2, 4.3 and 4.4. A method for analyzing

overdetermined and underdetermined systems is describe in Section 4.5. Finally, an

example of computational causality assignment is discussed in Section 4.6.

4.2 Classification of the model variables

The two following actions are performed before starting the analysis of the

computational causality.
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1. Replace derivatives by dummy variables. Along this book, dummy varia-

ble names are constructed by concatenating the “der” prefix and the variable

names. For instance, dx
dt

would be replaced in all the model equations by a

dummy variable named derx.

2. Classify model variables into known and unknown variables. Unknown

variables are those that have to be calculated from the model equations.

Therefore, the objective of assigning the computational causality is to find

out which equation has to be employed to evaluate each unknown variable.

The following variables are classified as known variables:

– The time variable.

– The constants and parameters. Their values are computed at the

beginning of the simulation and don’t change during the simulation.

– The state variables. They are not calculated from the model equations.

The state variables are calculated by numerical integration of their deri-

vatives.

The following variables are classified as unknown variables:

– The dummy variables introduced for replacing the derivatives.

– The remaining variables. This is, the time-dependent model variables

that are not selected as state variables.

For the sake of simplicity, let’s suppose by now (we will eliminate this assumption

in the next lesson) that all variables that appear differentiated can be selected as

state variables. This is equivalent to assume that the model has an equal number of

degrees of freedom, and differentiated variables.

Attending to this classification of the model variables, we can represent the set

of model equations as

F (x, y) = 0 (4.1)

where the x and y vectors represent the known and unknown variables respectively.

On the basis of this representation of the model, the incidence matrix of the

model, also known as structural Jacobian matrix, is a matrix of Boolean elements

that indicates which unknown variables intervene in each equation. The incidence

matrix can be defined as follows.
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If the j-th unknown variable does not appear in the i-th equation of the

model, then the (i, j) element of the incidence matrix is zero. Otherwise,

the element is one, and it is represented by a cross (X).

The following example allows to illustrate the construction of the incidence

matrix. Suppose a model composed of three equations, and three variables named

x, y and z. The computational structure of the model is as follows:

– x, y and z intervene in the first equation.

– x and y, and the derivative of x, intervene in the second equation.

– x and z intervene in the third equation.

The computational structure of this model is represented as shown below, where

ẋ represents the derivative of x.

f1(x, y, z) = 0 (4.2)

f2(x, ẋ, y) = 0 (4.3)

f3(x, z) = 0 (4.4)

Replacing ẋ by derx, it is obtained:

f1(x, y, z) = 0 (4.5)

f2(x, derx, y) = 0 (4.6)

f3(x, z) = 0 (4.7)

As the derivative of x appears in the model, let’s assume that x can be selected

as state variable. Selecting x as state variable, the model has the following three

unknown variables: derx, y and z. The incidence matrix is:







derx y z

f1 0 X X

f2 X X 0

f3 0 0 X







(4.8)

The incidence matrix obtained directly from the model, before any manipulation

is applied, is named the original incidence matrix of the model.
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4.3 Structural singularity

The next step in the analysis of the model computational causality is to check

whether the model is structurally singular. To this end, it is checked whether:

1. The number of unknown variables is the same as the number of equations.

2. Each unknown variable can be associated with an equation that satisfies the

following two conditions simultaneously: the variable intervenes in the equa-

tion, and another unknown variable has not been associated to this equation

previously.

This latter condition is checked by finding a sequence of permutations of the

matrix columns (unknown variables) that allows to obtain a permuted matrix with

all the elements on the main diagonal different from zero. If such a sequence of

permutations does not exist, then the model is said to be structurally singular.

For instance, permuting the order of the two first columns of the incidence matrix

shown in (4.8), it is obtained a matrix with all diagonal elements different from zero.

Therefore, the model represented by the matrix is not structurally singular.







derx y z

f1 0 X X

f2 X X 0

f3 0 0 X







→







y derx z

f1 X 0 X

f2 X X 0

f3 0 0 X







(4.9)

The following incidence matrix corresponds to a structurally singular model.

f1(x, z) = 0

f2(x, ẋ, y) = 0

f3(x) = 0

→
f1(x, z) = 0

f2(x, derx, y) = 0

f3(x) = 0

→







derx y z

f1 0 0 X

f2 X X 0

f3 0 0 0







(4.10)

This model contains only one equation (the equation named f2) to calculate two

variables (derx and y), and one equation (the equation named f3) does not contain

any unknown variable. As x appears differentiated in the model, we have assumed

that x is a state variable and, therefore, it is classified as a known variable: it is not

calculated from the model equations, but by numerical integration of derx.
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In general, models are structurally singular due to the following reasons:

1. The number of equations (E) is equal to the number of unknown variables

(V ), but it is not possible to obtain a matrix with zero-free main diagonal

by permuting the columns of the incidence matrix. An example of structurally

singular model with E = V is shown in (4.10). Given this situation, there exist

two possibilities:

a) The model is mathematically incorrect.

b) The model is mathematically correct, but the number of its degrees of

freedom is smaller than the number of variables that appear differentiated

in the model. This will be explained in Lesson 5.

2. The number of equations (E) and the number of unknown variables (V ) are

not equal. In this case, the model is said to be overdetermined (E > V )

or underdetermined (E < V ). The analysis of these types of model will be

discussed in Section 4.5.

4.4 Partition algorithm

Let’s suppose that the model is not structurally singular. This is equivalent to

suppose that, by permuting the columns of the incidence matrix, it is possible to

obtain a matrix with no zeros in the main diagonal. The next step is to transform the

incidence matrix into a block lower triangular (BLT) matrix, with diagonal blocks

as smaller as possible. This transformation, known as partitioning the model,

is made by permuting rows and permuting columns of the incidence matrix. The

incidence matrix written in BLT form is named the sorted incidence matrix of

the model.

The incidence matrix in BLT form has the following property. The unknown

variables that intervene in the equations of each diagonal block are calculated from

the equations in this block, or from the equations in previous blocks.

In the particular case in which the sorted incidence matrix has all its diagonal

blocks with dimension 1× 1, the model variables can be calculated in sequence, one

after another, using one equation to calculate each unknown variable. A diagonal

block with one element, (Ei, Vi), indicates that the Vi variable has to be calculated

from the Ei equation. The other variables that intervene in the Ei equation (in

general, V1, . . . , Vi−1) are calculated from the E1, . . . , Ei−1 equations. If the variable
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Vi intervenes linearly in Ei, this equation can be manipulated symbolically to obtain

an explicit expression for Vi. If Vi intervenes non-linearly in Ei, a root-finding

algorithm (e.g., the Newton’s method) needs to be used.

Diagonal blocks of size N ×N indicate that the corresponding set of N variables

(those represented by the block’s columns) is calculated solving a system of N

simultaneous equations (those represented by the block’s rows). The symbolic or

numerical method employed for solving the system of simultaneous equations does

not concern to the partition algorithm.

Several algorithms have been proposed to transform the incidence matrix into its

BLT form. For example, a widely-used algorithm is the Tarjan’s algorithm, which

employs bipartite graphs to represent the computational structure of the model. The

description of the Tarjan’s algorithm is out of the scope of this text.

For the sake of simplicity, we will describe a procedure well-suited for partitioning

manually models with a small number of equations. The procedure consists in

repeatedly applying the following rules:

Rule 1. Suppose that one or more unknown variables appear in an equation, and

only one of these variables has not been evaluated yet. Then, the equation

must be employed to calculate this unevaluated unknown variable.

Rule 2. Suppose that an unknown variable has not been evaluated yet, and this

variable only appears in one of the equations whose computational causality

has not been assigned yet. Then, the unevaluated unknown variable must be

calculated from this equation.

The following example allows to illustrate this procedure for partitioning the

model. Let’s consider again the model with incidence matrix (4.8). The model and

the original incidence matrix are shown again for the reader’s convenience.

f1(x, y, z) = 0

f2(x, ẋ, y) = 0

f3(x, z) = 0

→
f1(x, y, z) = 0

f2(x, derx, y) = 0

f3(x, z) = 0

→







derx y z

f1 0 X X

f2 X X 0

f3 0 0 X







(4.11)

1. The f3 equation contains only one unknown variable: the z variable. Therefore,

f3 must to be employed to evaluate z (Rule 1). As z not only appears in f3, but
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it also appears in f1, the value of z is required for calculating other unevaluated

variables. So, f3 is moved to the first row and z to the first column.

The derx variable appears in only one equation: the f2 equation. Therefore,

derx must be evaluated from f2 (Rule 2). As derx does not intervene in any

other equation, the value of derx is not employed for calculating other unknown

variables. So, f2 is moved to the last row and derx to the last column.







z y derx

f3 X 0 0

f1 X X 0

f2 0 X X







(4.12)

2. As z is evaluated from f3, f1 contains only one unevaluated variable: y. The-

refore, y must be evaluated from f1 (Rule 1).







z y derx

f3 X 0 0

f1 X X 0

f2 0 X X







(4.13)

The sorted model, with the computational causality annotated, is shown below.

Observe that the variable to be evaluated from each equation is signaled by including

the variable within square brackets.

f3(x, [z]) = 0 (4.14)

f1(x, [y], z) = 0 (4.15)

f2(x, [derx], y) = 0 (4.16)

4.5 Overdetermined and underdetermined systems

If the model is underdetermined, it is useful to find out which variables can

be solved and which ones cannot. To this end, a set of dummy equations is included

in the model, satisfying that: the resultant number of equations is equal to the total

number of unknown variables; and each dummy equation contains all the unknown

variables. This is equivalent to add as many rows filled with ones as required to

make the incidence matrix square.
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Then, this extended matrix is partitioned. As all the unknown variables intervene

in each dummy equation, all these dummy equations will be in the last diagonal

block of the sorted incidence matrix. All diagonal blocks except the last one define

the unknown variables that can be calculated from the model equations, and the

sequence in which these calculations must be performed.

An example is shown below. Let’s consider a model composed of two equations,

and three variables: x, y, z. The computational structure is as follows. The x, y and z

variables, and the derivative of x, appear in the first equation. The x and y variables

appear in the second equation. Therefore, the model has three unknown variables

(derx, y, z) and two equations. In order to analyze which unknown variables can be

calculated from the model, a dummy equation is added to the model.

f1(x, ẋ, y, z) = 0

f2(x, y) = 0
→







derx y z

f1 X X X

f2 0 X 0

dummy eq. X X X







(4.17)

Next, the extended incidence matrix is partitioned. As f2 only contains one

unknown variable (y), f2 is moved to the first row and y to the first column. The

incidence matrix in its BLT form is (4.18). As the derx and z variables are calculated

in the last diagonal block, one additional equation is needed to calculate these two

variables.







y derx z

f2 X 0 0

f1 X X X

dummy eq. X X X







(4.18)

Overdetermined models can be analyzed analogously. Let’s denote the diffe-

rence between the number of equations and unknown variables as E−V . In order to

analyze the overdetermined model, E − V dummy variables are introduced, so that

all intervene in every model equation. This is equivalent to add as many columns

filled with ones as required to make the incidence matrix square.

Partitioning this extended incidence matrix, the obtained BLT matrix will have

some unknown variables, and all the dummy variables, in the first diagonal block.

The reason why the dummy variables appear in the first diagonal block is the

following. As all the dummy variables have been included in all the model equations,
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it is necessary to know the value of the dummy variables for calculating all the

unknown variables of the model.

The E − V redundant equations (as many as dummy variables) are among the

equations of the first diagonal block. The variables of the first diagonal block are

all the dummy variables, and the unknown variables that appear in the redundant

equations.

An example is shown below. The model is composed of four equations, and has

three variables: x, y, z. The computational structure of the model equations, and

the extended incidence matrix, are shown in (4.19). Observe that a dummy variable

named α has been included in all equations.

f1(y) = 0

f2(y, z) = 0

f3(x, y, z) = 0

f4(ẋ, x, z) = 0

→










derx y z α

f1 0 X 0 X

f2 0 X X X

f3 0 X X X

f4 X 0 X X










(4.19)

As derx only appears in f4, f4 must be employed to calculate derx. The f4

equation stays in the last row and derx is moved to the last column. The other

three unknown variables are evaluated in the first diagonal block. In conclusion, one

equation among f1, f2 and f3 is redundant.










y z α derx

f1 X 0 X 0

f2 X X X 0

f3 X X X 0

f4 0 X X X










(4.20)

4.6 Example: simulation of an electrical circuit

The example discussed in this section allows to illustrate the assignment of

computational causality. The diagram of an electrical circuit is shown in Figure 4.1.

It is composed of a sinusoidal voltage source, two resistors and two capacitors. Names

have been assigned to the currents, and the node voltages. It is assumed that the

resistances (R1, R2), capacitances (C1, C2), and the amplitude (U) and frequency
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Figure 4.1: Diagram of the electrical circuit.

(w) of the source, are known parameters. The circuit model is composed of the

following six equations:

u = U · sin(w · t) (4.21)

u− u1 = i ·R1 (4.22)

C1 ·
du1

dt
= i1 (4.23)

u1 − u2 = i2 · R2 (4.24)

C2 ·
du2

dt
= i2 (4.25)

i = i1 + i2 (4.26)

Eqs. (4.21) – (4.25) are the constitutive relationships of the five components, and

Eq. (4.26) imposes the current conservation at node u1.

The first step is to replace in the model the derivatives by dummy variables:
du1

dt
→ deru1,

du2

dt
→ deru2. Making these substitutions, it is obtained:

u = U · sin(w · t) (4.27)

u− u1 = i · R1 (4.28)

C1 · deru1 = i1 (4.29)

u1 − u2 = i2 · R2 (4.30)

C2 · deru2 = i2 (4.31)

i = i1 + i2 (4.32)
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The next step is to classify the model variables into known variables (time, para-

meters and state variables) and unknown variables (remaining model variables and

dummy variables introduced by replacing the derivatives). Assuming that the two

variables that appear differentiated can be selected as state variables, the variables

are classified as follows.

– Known: t

U , w, R1, C1, R2, C2

u1, u2

– Unknown: i, i1, i2, u

deru1, deru2

The original incidence matrix of the model is built from Eqs. (4.27) – (4.32),

taking into account the previous classification of the variables.















deru1 deru2 i i1 i2 u

u=U ·sin(w·t) 0 0 0 0 0 X

u−u1=i·R1 0 0 X 0 0 X

C1·deru1=i1 X 0 0 X 0 0

u1−u2=i2·R2 0 0 0 0 X 0

C2·deru2=i2 0 X 0 0 X 0

i=i1+i2 0 0 X X X 0















(4.33)

With the purpose of analyzing whether the model is structurally singular, it is

checked that:

1. The number of equations and the number of unknown variables are equal. This

model has six equations, and six unknown variables: deru1, deru2, i, i1, i2, u.

2. A one-to-one relationship can be established between the unknown variables

and the model equations, satisfying that: each unknown variable is associated

with an equation in which the variable appears, and each equation is associa-

ted with only one variable. This is equivalent to find a sequence of column

permutations that transforms the original incidence matrix into a matrix with

no zeros in the diagonal. The obtained matrix is shown below.
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u i deru1 i2 deru2 i1

u=U ·sin(w·t) X 0 0 0 0 0

u−u1=i·R1 X X 0 0 0 0

C1·deru1=i1 0 0 X 0 0 X

u1−u2=i2·R2 0 0 0 X 0 0

C2·deru2=i2 0 0 0 X X 0

i=i1+i2 0 X 0 X 0 X















(4.34)

The sorted incidence matrix can be obtained by applying the two rules, as is

described next.

1. The constitutive relationship of the voltage source contains only one unknown

variable: u. The constitutive relationship of the R2 resistor contains only one

unknown variable: i2. Therefore, these variables must be calculated from these

equations. As these unknown variables intervene in other equations, these two

equations are moved to the firsts rows, and these variables to the firsts columns.

The deru1 variable only appears in one equation: the constitutive relationship

of the C1 capacitor. The deru2 variable only appears in one equation: the

constitutive relationship of the C2 capacitor. As the values of these variables

are not employed in calculating other variables, these two equations are moved

to the lasts rows and these variables to the lasts columns.















u i2 i i1 deru1 deru2

u=U ·sin(w·t) X 0 0 0 0 0

u1−u2=i2·R2 0 X 0 0 0 0

i=i1+i2 0 X X X 0 0

u−u1=i·R1 X 0 X 0 0 0

C1·deru1=i1 0 0 0 X X 0

C2·deru2=i2 0 X 0 0 0 X















(4.35)

2. Assuming that u and i2 have already been evaluated, the constitutive rela-

tionship of the R1 resistor has only one unevaluated variable: i. Moving this

equation to the third row and i to the third column, the following incidence

matrix is obtained.
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u i2 i i1 deru1 deru2

u=U ·sin(w·t) X 0 0 0 0 0

u1−u2=i2·R2 0 X 0 0 0 0

u−u1=i·R1 X 0 X 0 0 0

i=i1+i2 0 X X X 0 0

C1·deru1=i1 0 0 0 X X 0

C2·deru2=i2 0 X 0 0 0 X















(4.36)

3. Assuming that u, i2 and i have already been evaluated, the current conserva-

tion equation contains only one unevaluated variable: i1. Therefore, i1 must

be calculated from the current conservation equation. The incidence matrix is

now written in BLT form.















u i2 i i1 deru1 deru2

u=U ·sin(w·t) X 0 0 0 0 0

u1−u2=i2·R2 0 X 0 0 0 0

u−u1=i·R1 X 0 X 0 0 0

i=i1+i2 0 X X X 0 0

C1·deru1=i1 0 0 0 X X 0

C2·deru2=i2 0 X 0 0 0 X















(4.37)

Therefore, the sorted model equations, with the computational causality anno-

tated, are the following:

[u] = U · sin(w · t) (4.38)

u1 − u2 = [i2] · R2 (4.39)

u− u1 = [i] ·R1 (4.40)

i = [i1] + i2 (4.41)

C1 · [deru1] = i1 (4.42)

C2 · [deru2] = i2 (4.43)

Manipulating the equations, the variable to calculate from each equation is

isolated on one side of the equation. The sorted and solved model is obtained:

[u] = U · sin(w · t) (4.44)
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[i2] =
u1 − u2

R2

(4.45)

[i] =
u− u1

R1

(4.46)

[i1] = i− i2 (4.47)

[deru1] =
i1

C1

(4.48)

[deru2] =
i2

C2
(4.49)

Observe that the decision on which variable to evaluate from each equation is

unique in this model. However, the equations can be sorted in several equivalent

ways. For instance, the order of Eqs. (4.44) and (4.45) can be exchanged. The same

applies to Eqs. (4.48) and (4.49).

An algorithm to simulate the circuit model is shown in Figure 4.2. The numerical

integration is performed applying the forward Euler method. Observe that the

classification of the model variables into parameters (time-independent variables),

state variables, and algebraic variables (time-dependent variables not selected as

state variables) is used as the basis for writing the simulation algorithm.

– The parameter values are set at the starting of the algorithm and are kept

constant during all the simulation.

– Initial values are given to the state variables.

– The state variables are calculated by numerical integration of their deriva-

tives. Given the following ordinary differential equation,

dx

dt
= f (x, t) (4.50)

the step formula of the forward Euler method is:

xi+1 = xi + f (xi, ti) ·∆t (4.51)

where xi and xi+1 represent the value of the x variable at time ti and ti + ∆t

respectively, and f (xi, ti) represents the derivative value (i.e., dx
dt
) at time ti.

– The values of the algebraic variables are calculated from the sorted and

solved model, which was obtained by applying the partition algorithm.
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Figure 4.2: Simulation algorithm for the circuit shown in Figure 4.1.

4.7 Further reading

The analysis of the model computational causality is discussed in (Elmqvist

1978). We have used this PhD thesis as main reference in preparing this lesson.

The reading of this thesis is strongly recommended. The system structure analysis

in other contexts is explained in (Steward 1981).

The analysis of computational causality using bipartite graphs is explained in

Chapter 7 of (Cellier & Kofman 2006).

We have not discussed the concept of balanced model in this lesson. The reader

is referred to (Olsson et al. 2008).
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Learning objectives

After studying the lesson, students should be able to:

– Discuss how high-index DAE systems are manipulated to reduce their index

by Modelica tools such as Dymola and OpenModelica.

– Calculate the index of small-dimension DAE systems.

– Discuss the difficulties associated to the numerical solution of high-index DAE

systems.

– Formulate the initialization problem of small-dimension DAE systems, making

explicit (if any) the hidden constraints.

– Manipulate small-dimension DAE systems for selecting the state variables.

– Select the state variables in Modelica.

– Discuss the principles of the dynamic state selection supported by Dymola.
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5.1 Introduction

A step in the analysis of the model computational causality is to check whether

the model is structurally singular. As explained in Section 4.3, some structurally

singular models are mathematically incorrect. However, this is not always the case.

The classification of the model variables into known and unknown variables (see

Section 4.2) is made assuming that all the variables that appear differentiated can be

selected as state variables. This assumption is incorrect for models with a number of

degrees of freedom smaller than the number of variables that appear differentiated.

When analyzing the computational causality of these models, it is erroneous to

classify as known variables all the variables that appear differentiated.

In this context, the number of degrees of freedom (DoF) of a model is the

number of time-dependent variables of the model whose initial value can be set

independently. For instance, the model depicted in Figure 4.1, whose simulation

algorithm is shown in Figure 4.2, has two DoF: the initial value of u1 and the initial

value of u2 can be set independently. Observe that, known the initial value of these

two variables and the value of the parameters, it is possible to calculate, from the

model equations, the initial value of the other time-dependent variables (u, i, i1, i2,

deru1, deru2).

An example is used in Section 5.2 to explain different approaches for solving

structurally singular DAE systems, including the approach implemented in Dymola

and OpenModelica. The definition of index, and its relationship with the numerical

properties of the DAE system, are discussed in Section 5.3. The initialization of

DAE systems is discussed in Section 5.4 and the selection of the state variables in

Section 5.5.

5.2 Structurally singular DAE systems

The system shown in Figure 5.1 is composed of two liquid storage tanks, con-

nected in parallel to a source of liquid. The symbols p and FV represent the bottom

pressure and the volumetric flow rate respectively, and f(t) is a known function of

time. The liquid density (ρ) and the cross-sectional area of the tanks (S1, S2) have

known constant values. The model parameters C1 and C2 are calculated as shown

below, where g represents the gravitational acceleration.

C1 =
S1

ρ · g C2 =
S2

ρ · g (5.1)
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Figure 5.1: Two tanks connected in parallel to a liquid source.

Let’s analyze the computational causality of the model. Firstly, we replace the

derivatives by dummy variables:

dp1

dt
→ derp1

dp2

dt
→ derp2 (5.2)

The model shown in Figure 5.1, with the derivatives replaced by dummy varia-

bles, is the following:

C1 · derp1 = FV,1 (5.3)

C2 · derp2 = FV,2 (5.4)

pS = p1 (5.5)

p1 = p2 (5.6)

FV = FV,1 + FV,2 (5.7)

FV = f (t) (5.8)

Assuming that the two variables that appear differentiated (p1 and p2) can be

selected as state variables, the model variables are classified as follows:

– Known: t

C1, C2

p1, p2

– Unknown: FV,1, FV,2, FV , pS

derp1, derp2

The original incidence matrix is shown below.
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FV,1 FV,2 FV pS derp1 derp2

C1·derp1=FV,1 X 0 0 0 X 0

C2·derp2=FV,2 0 X 0 0 0 X

pS=p1 0 0 0 X 0 0

p1=p2 0 0 0 0 0 0

FV =FV,1+FV,2 X X X 0 0 0

FV =f(t) 0 0 X 0 0 0















(5.9)

As all the elements of the fourth row are zero, the model is structurally singu-

lar. Let’s analyze the computational causality applying the rules of the partition

algorithm.

1. Eq. (5.5) contains one unknown variable: pS. Eq. (5.8) contains one unknown

variable: FV . These variables have to be evaluated from these equations. The

variables are moved to the first columns and the equations to the first rows.

derp1 only appears in Eq. (5.3). derp2 only appears in Eq. (5.4). Therefore,

these variables have to be calculated from these equations. As the values of

derp1 and derp2 are not employed in calculating other unknown variables

(derp1 and derp2 only intervene in one equation), the variables are moved

to the last columns, and the equations Eqs. (5.3) and (5.4) to the last rows.















pS FV FV,1 FV,2 derp1 derp2

pS=p1 X 0 0 0 0 0

FV =f(t) 0 X 0 0 0 0

p1=p2 0 0 0 0 0 0

FV =FV,1+FV,2 0 X X X 0 0

C1·derp1=FV,1 0 0 X 0 X 0

C2·derp2=FV,2 0 0 0 X 0 X















(5.10)

2. There are two equations, Eqs. (5.6) and (5.7), and two unknown variables, FV,1

and FV,2, without annotated computational causality. However, the partition

algorithm cannot proceed: Eq. (5.6) does not contain any unknown variable,

and there is only one equation, Eq. (5.7), to calculate two unknown variables

(FV,1 and FV,2).

The partition algorithm fails in this case because we have supposed that the

model has two DoF, and we have selected p1 and p2 as state variables, but the

two-tank model does not have two DoF, but only one.
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The model of each tank, considered individually, has one DoF. Its initial state is

set by specifying the amount of liquid stored initially, for instance, giving an initial

value to the bottom pressure.

However, connecting the two tanks imposes their bottom pressures to be equal

(p1 = p2), and this constraint reduces the number of DoF. The initial value of one

pressure determines the initial value of the other pressure.

As the two-tank model has only 1 DoF, let’s select as state variable only one of

the pressures, for instance p1. In this way, p2 is not state variable. It is classified

as unknown variable and has to be calculated from the model variables. The model

with the computational causality annotated is shown below.

p1 state variable (5.11)

[FV ] = f (t) (5.12)

[pS] = p1 (5.13)

p1 = [p2] (5.14)

C2 ·
dp2

dt
= [FV,2] ← numerical differentiation (5.15)

FV = [FV,1] + FV,2 (5.16)

C1 · [derp1] = FV,1 (5.17)

This computational causality implies numerical differentiation and, for this reason,

it is not a good method from the numerical solution standpoint. Let’s explore a

different approach.

Eq. (5.6), this is, p1 = p2, is the constraint that reduces the number of DoF. A

solution could be to replace this equation by its derivative (over-dot notation is

used to represent derivative with respect to time):

p1 = p2 → ṗ1 = ṗ2 (5.18)

In this way, the model has 2 DoF and both pressures can be selected as state

variables.

C1 · ṗ1 = FV,1 (5.19)

C2 · ṗ2 = FV,2 (5.20)
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pS = p1 (5.21)

ṗ1 = ṗ2 ← derivative of the constraint (5.22)

FV = FV,1 + FV,2 (5.23)

FV = f (t) (5.24)

For this model to have the same solution as the original one, the initial values of

the pressures must satisfy the original constraint: the initial value of p1 must be equal

to the initial value of p2. The model, with the computational causality annotated,

is shown below.

p1, p2 state variables (5.25)

[FV ] = f (t) (5.26)

[pS] = p1 (5.27)

C1 · derp1 = FV,1 (5.28)

C2 · derp2 = FV,2 (5.29)

FV = FV,1 + FV,2 (5.30)

derp1 = derp2 (5.31)

where derp1, derp2, FV,1 and FV,2 are calculated by solving the system of simulta-

neous equations composed of the four last equations.

By reasoning as previously, we are assuming that p1(t) = p2(t) is equivalent to

impose both the equality of the initial values, p1(t0) = p2(t0), and the equality of

the derivatives, ṗ1(t) = ṗ2(t).

This assumption is mathematically correct, but it can be lead to erroneous results

if the model is solved numerically. If the numerical integrations of derp1 and derp2

are performed separately, the obtained values of p1 and p2 can be slightly different,

due to the numerical errors. This difference in the values of p1 and p2, which is a

numerical artifice that does not correspond to the behavior described by the original

model, can be non-negligible in some applications of the model. In consequence, the

method consisting in replacing the constraint by its derivative is not adequate for

our purposes.

Let’s explore another approach. It consists in adding to the model (instead of

replacing) the derivative of the constraint that reduces the number of DoF, this is,

including the equation ṗ1 = ṗ2 in the model; and selecting only one of the pressures as



INDEX AND INITIALIZATION OF DAE SYSTEMS

state variable, for instance, p1. In this way, the model has 7 equations and 7 unknown

variables: p2, FV,1, FV,2, FV , pS, derp1, derp2. The model, with the computational

causality annotated, is shown below.

p1 state variable (5.32)

[FV ] = f (t) (5.33)

[pS] = p1 (5.34)

p1 = [p2] ← constraint (5.35)

C1 · derp1 = FV,1 (5.36)

C2 · derp2 = FV,2 (5.37)

derp1 = derp2 ← derivative of the constraint (5.38)

FV = FV,1 + FV,2 (5.39)

where derp1, derp2, FV,1 and FV,2 are calculated by solving the system of simultaneo-

us equations formed by the last four equations. This approach produces a satisfactory

result. In fact, this is the procedure employed by Modelica modeling environments

such as Dymola and OpenModelica. The procedure for simulating structurally

singular DAE systems is based on the following principles:

– The time derivatives are replaced by dummy variables. These dummy varia-

bles are classified as unknown variables for the assignment of computational

causality and have to be calculated from the model equations.

– Certain model equations are differentiated symbolically a certain number of

times, and these differentiated equations are added to the model. No equation

is removed from the model.

– The number of variables selected as state variables is equal to the number of

DoF of the model.

– The variables selected as state variables are calculated by numerical integration

of their derivatives. Therefore, the state variables are classified as known

variables for the assignment of computational causality.

– The variables that appear differentiated in the model and have not been selec-

ted as state variables are classified as unknown variables for the assignment of

computational causality. These variables have to be calculated from the model

equations.
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The following question arises: is there a criteria to decide which model equations

to differentiate, and how many times? Essentially, the answer to this question is:

equations are differentiated if the new equations obtained by differentiating provide

additional useful information. Another question arises: is there a criteria to calculate

the number of DoF of a DAE system?

There are algorithms that automatically provide answers to these questions. One

of these algorithms is the Pantelides algorithm. By analyzing the computational

structure of the model, the Pantelides algorithm allows to determine which model

equations have to be differentiated and how many times.

Dymola and OpenModelica implement variants of the Pantelides algorithm, sym-

bolic formula manipulation and simplification algorithms, and algorithms for selec-

ting the state variables. As a result, the complete process is performed automatically.

An example is shown below.

The model of the system depicted in Figure 5.1 is described in Modelica Code 5.1.

Before translating the model, we can ask Dymola to write the differentiated

equations in the log window. This is accomplished by selecting Output informa-

tion when differentiating for index reduction in the Simulation Setup window (see the

option (3) in Figure 5.2). In this way, during the translation of Modelica Code 5.1,

Dymola shows the following message in the log window:

Differentiated the equation
p2 = p1;

giving
der(p2) = der(p1);

Selected continuous time states
Statically selected continuous time states
p1

Dymola has differentiated symbolically the p2 = p1 equation, has included in

the model the obtained equation (der(p2) = der(p1)), and has selected p1 as state

variable. The initial value of the state variables can be modified in the Variable

Browser window. As shown in Figure 5.3, Dymola allows to modify the initial value

of p1.

Selecting before the model translation the options signaled as (1) and (2) in

Figure 5.2, Dymola saves to file the flat model, and the sorted and solved

model. These are saved in the working directory to files named TwoTanks.mof and

dsmodel.mof, respectively.
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model TwoTanks
import SI = Modelica.SIunits;
SI.Pressure p1;
SI.Pressure p2;
SI.Pressure pS;
SI.VolumeFlowRate Fv;
SI.VolumeFlowRate Fv1;
SI.VolumeFlowRate Fv2;
parameter Real C1(unit="m3/Pa") = 1e-5;
parameter Real C2(unit="m3/Pa") = 3e-5;

equation
C1*der(p1) = Fv1;
C2*der(p2) = Fv2;
pS = p1;
p1 = p2;
Fv = Fv1 + Fv2;
Fv = sin(time);

end TwoTanks;

Modelica Code 5.1: Two-tank and source system shown in Figure 5.1.

(1) (2)
(3)

Figure 5.2: Simulation Setup window of Dymola. (1): save to text file the flat model; (2): save to
text file the solved and sorted model; and (3): show the differentiated equations in the log window.

Figure 5.3: Model initialization.
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As will be explained in Section 5.5, Modelica allows the model developer to select

the state variables. This is accomplished through the stateSelect attribute of Real

variables. If the StateSelect.always value is assigned to this attribute, the modeling

environment selects this variable as state variable. For instance, by declaring the p2

variable as shown below, it is selected as state variable.

SI.Pressure p2 ( stateSelect = StateSelect.always );

5.3 Index of DAE systems

The index is a property of DAE systems that is related to their computational

causality. DAE systems with index larger than one are called high-index DAE

systems, and exhibit the following property: the assignment of computational cau-

sality has not any solution that allows to select as state variables all the variables

that appear differentiated.

As shown in the previous section, this type of systems arises, for instance, when

the component connections reduce the number of DoF. In other words, when the

DoF of the complete system is smaller than the sum of the DoF of the components

taken separately.

The concept of index will be defined in this section, and the difficulties associated

to the numerical solution of high-index DAE systems will be explained. These

difficulties are the reason why Modelica modeling environments such as Dymola and

OpenModelica manipulate symbolically the high-index DAE systems, performing

index reduction before computing the numerical solution.

5.3.1 Definition of index

The index of a DAE system

F(t, x, ẋ) = 0 (5.40)

is defined as

the minimum number of times that all or part of (5.40) must be differen-

tiated with respect to t in order to determine ẋ as a continuous function

of x, t.
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The following examples illustrate index calculations.

Example 1. The explicit system of ordinary differential equations (ODE) shown in

Eq. (5.41) has index-0, because ẋ is already written as a continuous function

of x, t.

ẋ = F (t, x) (5.41)

Example 2. The semi-explicit DAE shown in Eqs. (5.42) – (5.43) has index-1 if

and only if the Jacobian matrix of F2 with respect to x2 is non-singular, this

is, the Jacobian matrix has a non-zero determinant and, consequently, has an

inverse.

ẋ1 = F1 (x1, x2, t) (5.42)

0 = F2 (x1, x2, t) (5.43)

Observe that differentiating with respect to t the algebraic equations of the

DAE system, this is, Eqs. (5.43), it is obtained:

0 =
∂F2 (x1, x2, t)

∂x1
· ẋ1 +

∂F2 (x1, x2, t)

∂x2
· ẋ2 +

∂F2 (x1, x2, t)

∂t
(5.44)

If ∂F2

∂x2
is non-singular, then ẋ2 can be calculated from Eq. (5.44). Replacing ẋ1

with F1 (x1, x2, t), then ẋ2 is obtained as a continuous function of x1, x2, t.

Example 3. As a particular case of Example 2, let’s consider the following DAE

system

ẋ = x + y (5.45)

0 = x + 2 · y + a(t) (5.46)

where a (t) is a continuously differentiable function of t. Differentiating Eq. (5.46)

with respect to t, and solving ẏ from the obtained equation, it is obtained

ẋ = x + y (5.47)

ẏ = − ẋ + ȧ(t)

2
(5.48)
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and replacing Eq. (5.47) in (5.48), the explicit ODE shown below is obtained.

Therefore, the DAE system shown in Eqs. (5.45) and (5.46) has index-1.

ẋ = x + y (5.49)

ẏ = −x + y + ȧ(t)

2
(5.50)

Example 4. The DAE system shown in Eqs. (5.51) – (5.52) has index-2 if and

only if the Jacobian matrix of F1 with respect to x2, and the Jacobian matrix

of F2 with respect to x1 are non-singular. Observe that, in order to obtain

the system as an explicit ODE, Eq. (5.51) has to be differentiated once and

Eq. (5.52) has to be differentiated twice.

ẋ1 = F1 (x1, x2, t) (5.51)

0 = F2 (x1, t) (5.52)

Example 5. Let’s consider the DAE system composed by Eqs. (5.53) and (5.54).

ẋ1 = x2 (5.53)

x1 = t2 + t + 2 (5.54)

The second equation contains only one variable: x1. Therefore, the derivative

of x1 has to be obtained from this equation, and the derivative of x2 has to be

obtained from the first equation. Differentiating the system, it is obtained:

ẍ1 = ẋ2 (5.55)

ẋ1 = 2 · t + 1 (5.56)

Differentiating the second equation, it is obtained:

ẍ1 = 2 (5.57)

Replacing (5.57) in (5.55), the system is written as an explicit ODE:
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ẋ1 = 2 · t + 1 (5.58)

ẋ2 = 2 (5.59)

As we needed to differentiate twice, the DAE system composed by Eqs. (5.53)

and (5.54) has index-2.

Example 6. Let’s consider the following DAE system:

ẋ1 = f1(t)− x3 (5.60)

ẋ2 = f2(t)− x1 (5.61)

x2 = f3(t) (5.62)

As x3 only appears in Eq. (5.60), it is necessary to differentiate this equation

to calculate ẋ3. On the other hand, Eq. (5.62) contains only one variable, x2,

and consequently it is necessary to differentiate this equation to calculate ẋ2.

Finally, ẋ1 is obtained by differentiating Eq. (5.61). Differentiating Eqs. (5.60)

– (5.62), it is obtained:

ẍ1 = ḟ1(t)− ẋ3 (5.63)

ẍ2 = ḟ2(t)− ẋ1 (5.64)

ẋ2 = ḟ3(t) (5.65)

Observe that ẍ1 and ẍ2 appear in Eqs. (5.63) and (5.64), respectively.

To obtain these second-order derivatives as a function of the variables (x1,

x2, x3), the first-order derivatives (ẋ1, ẋ2, ẋ3) and time (t), Eq. (5.64) is

differentiated:

...
x 2 = f̈2(t)− ẍ1 (5.66)

The second-order and third-order derivatives of x2 are obtained differentiating

twice Eq. (5.65):
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ẍ2 = f̈3(t) (5.67)
...
x 2 =

...
f 3(t) (5.68)

Replacing, it is obtained:

f̈2(t)−
...
f 3(t) = ḟ1(t)− ẋ3 (5.69)

f̈3(t) = ḟ2(t)− ẋ1 (5.70)

ẋ2 = ḟ3(t) (5.71)

Manipulating these equations, the ODE shown below is obtained. As it has

been necessary to differentiate three times, the DAE system has index-3.

ẋ1 = ḟ2(t)− f̈3(t) (5.72)

ẋ2 = ḟ3(t) (5.73)

ẋ3 = ḟ1(t)− f̈2(t) +
...
f 3(t) (5.74)

Example 7. The following property may be useful for calculating the index of DAE

systems. If the DAE system

F (t, x, ẋ) = 0 (5.75)

has index-n, then the semi-explicit DAE

ẋ = z (5.76)

F (t, x, z) = 0 (5.77)

has index-(n+1).

If the DAE shown in Eq. (5.75) has index-n, then ẋ is obtained as a function

of x, t by differentiating n times part or all the system. On the other hand,

as described by Eq. (5.76), ẋ is equal to z. In consequence, z is obtained as a

function of x, t by differentiating n times part or all the system. Therefore, ż

is obtained by differentiating one more time.
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Example 8. Let’s revisit the two-tank model described in Section 5.2. The model

equations are as follows.

C1 · ṗ1 = FV,1 (5.78)

C2 · ṗ2 = FV,2 (5.79)

pS = p1 (5.80)

p1 = p2 (5.81)

FV = FV,1 + FV,2 (5.82)

FV = f (t) (5.83)

In order to calculate the index of the DAE system composed of Eqs. (5.78)

– (5.83), we analyze what equations have to be differentiated to obtain an

explicit ODE

ẋ = g (x, t) (5.84)

where

x = {p1, p2, pS, FV , FV,1, FV,2} (5.85)

Differentiating the algebraic equations of the DAE system, it is obtained:

C1 · ṗ1 = FV,1 (5.86)

C2 · ṗ2 = FV,2 (5.87)

ṗS = ṗ1 (5.88)

ṗ1 = ṗ2 (5.89)

ḞV = ḞV,1 + ḞV,2 (5.90)

ḞV = ḟ (t) (5.91)

Let’s analyze whether ẋ can be obtained from Eqs. (5.86) – (5.91). To this end,

we calculate the computational causality of these equations, assuming that the

unknown variables are ẋ. The original incidence matrix is shown below.
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ṗ1 ṗ2 ḞV ṗS ḞV,1 ḞV,2

C1·ṗ1=FV,1 X 0 0 0 0 0

C2·ṗ2=FV,2 0 X 0 0 0 0

ṗS=ṗ1 X 0 0 X 0 0

ṗ1=ṗ2 X X 0 0 0 0

ḞV =ḞV,1+ḞV,2 0 0 X 0 X X

ḞV =ḟ(t) 0 0 X 0 0 0















(5.92)

1. There are three equations that contain only one unknown variable. These

are: Eq. (5.86) – ṗ1; Eq. (5.87) – ṗ2; and Eq. (5.91) – ḞV . Therefore, these

equations have to be employed to calculate these unknown variables.

These equations are moved to the firsts rows of the matrix and the

variables to the firsts columns.

The ṗS variable only appears in one equation: Eq. (5.88). Therefore, this

variable has to be calculated from this equation. As this variable does

not intervene in any other equation, it is moved to the last column and

Eq. (5.88) is moved to the last row.















ṗ1 ṗ2 ḞV ḞV,1 ḞV,2 ṗS

C1·ṗ1=FV,1 X 0 0 0 0 0

C2·ṗ2=FV,2 0 X 0 0 0 0

ḞV =ḟ(t) 0 0 X 0 0 0

ṗ1=ṗ2 X X 0 0 0 0

ḞV =ḞV,1+ḞV,2 0 0 X X X 0

ṗS=ṗ1 X 0 0 0 0 X















(5.93)

2. Eq. (5.89) is redundant, given that ṗ1 and ṗ2 are evaluated from other

equations. On the other hand, there is only one equation, Eq. (5.90), to

calculate two unknown variables: ḞV,1 and ḞV,2.

The conclusion is that Eqs. (5.86) – (5.91) are not a well-defined ODE system.

We proceed differentiating. The equations to be differentiated are selected

attending to the following reasoning.

– ṗS appears in only one equation: Eq. (5.88). This is the reason because

Eq. (5.88) has to be employed for evaluating ṗS. If Eq. (5.88) is differen-

tiated, a new variable is introduced, p̈S, which has to be evaluated from

this new equation. As differentiation of Eq. (5.88) does not impose an

additional constraint on the unknown variables, Eq. (5.88) is not selected

for differentiation.
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– The same reasoning applies to Eqs. (5.90) and (5.91), whose differentia-

tion introduces new unknown variables: F̈V , F̈V,1 and F̈V,2.

– In consequence, we select to differentiate Eqs. (5.86), (5.87) and (5.89).

It is obtained:

C1 · p̈1 = ḞV,1 (5.94)

C2 · p̈2 = ḞV,2 (5.95)

p̈1 = p̈2 (5.96)

Adding these three equations to the system, and removing from the system

the redundant equation (5.89), it is obtained:

C1 · ṗ1 = FV,1 (5.97)

C2 · ṗ2 = FV,2 (5.98)

ṗS = ṗ1 (5.99)

ḞV = ḞV,1 + ḞV,2 (5.100)

ḞV = ḟ (t) (5.101)

C1 · p̈1 = ḞV,1 (5.102)

C2 · p̈2 = ḞV,2 (5.103)

p̈1 = p̈2 (5.104)

Considering that the unknown variables are {ṗ1, ṗ2, ṗS, ḞV , ḞV,1, ḞV,2, p̈1, p̈2},
the computational causality can be assigned as described below.

– Eq. (5.97) contains only one unknown variable: ṗ1. Therefore, this equa-

tion has to be employed to evaluate ṗ1. For the same reason, ṗ2 has to be

evaluated from Eq. (5.98) and ḞV from Eq. (5.101).

– ṗS has to be evaluated from Eq. (5.99), where ṗ1 can be replaced with
FV,1

C1

.

– Finally, ḞV,1, ḞV,2, p̈1 and p̈2 can be calculated from solving the following

linear system of simultaneous equations
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ḞV = ḞV,1 + ḞV,2 (5.105)

C1 · p̈1 = ḞV,1 (5.106)

C2 · p̈2 = ḞV,2 (5.107)

p̈1 = p̈2 (5.108)

The BLT incidence matrix is shown below.





















ṗ1 ṗ2 ḞV ṗS ḞV,1 ḞV,2 p̈1 p̈2

C1·ṗ1=FV,1 X 0 0 0 0 0 0 0

C2·ṗ2=FV,2 0 X 0 0 0 0 0 0

ḞV =ḟ(t) 0 0 X 0 0 0 0 0

ṗS=ṗ1 X 0 0 X 0 0 0 0

ḞV =ḞV,1+ḞV,2 0 0 X 0 X X 0 0

C1·p̈1=ḞV,1 0 0 0 0 X 0 X 0

C2·p̈2=ḞV,2 0 0 0 0 0 X 0 X

p̈1=p̈2 0 0 0 0 0 0 X X





















(5.109)

The expressions to calculate ḞV,1 and ḞV,2 can be obtained by eliminating p̈1

and p̈2 in Eqs. (5.105) – (5.108)

ḞV,1 = C1 ·
ḞV

C1 + C2

(5.110)

ḞV,2 = C2 ·
ḞV

C1 + C2

(5.111)

and by replacing ḞV with ḟ (t),

ḞV,1 = C1 ·
ḟ (t)

C1 + C2

(5.112)

ḞV,2 = C2 ·
ḟ (t)

C1 + C2
(5.113)

The explicit ODE system shown below is obtained. In consequence, the original

DAE system has index-2.
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ṗ1 =
FV,1

C1
(5.114)

ṗ2 =
FV,2

C2
(5.115)

ḞV = ḟ (t) (5.116)

ṗS =
FV,1

C1
(5.117)

ḞV,1 = C1 ·
ḟ (t)

C1 + C2
(5.118)

ḞV,2 = C2 ·
ḟ (t)

C1 + C2

(5.119)

5.3.2 Difficulties in the numerical solution of high-index DAE systems

The index is not an intrinsic property of the modeled physical system, but a

property of the equations employed to describe the model. In fact, we have seen

that the index can be reduced by differentiating a number of times certain equations

of the model.

Numerical algorithms work well for solving index-0 and index-1 DAE systems,

and in some cases, also for solving index-2 DAE systems. However, they usually

don’t work well for DAE systems whose index is higher than 2. The reason is that

the numerical solution of high-index (larger than one) DAE systems typically implies

numerical differentiation. High-index DAE systems are symbolically manipulated by

the Modelica modeling environments in order to reduce their index, before computing

their numerical solution.

To illustrate this point, let’s consider the following index-2 DAE system:

ẋ1 = x2 (5.120)

x1 = t2 + t + 2 (5.121)

Applying the implicit trapezoidal rule to the first equation, the following discre-

tized system is obtained:
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x1 (tk+1) = x1 (tk) + h · x2 (tk+1) + x2 (tk)

2
+ O

(

h2
)

(5.122)

x1 (tk+1) = t2
k+1 + tk+1 + 2 (5.123)

where h is the time step of the integration method. The second equation can be

employed to calculate x1 (tk+1), and then the first equation can be employed to

calculate x2 (tk+1). Solving, it is obtained that x2 (tk+1) is calculated by numerical

differentiation, and the error term is not O (h2), but O (h):

x2 (tk+1) = 2 · x1 (tk+1)− x1 (tk)

h
︸ ︷︷ ︸

Numerical differentiation

−x2 (tk) + O (h) (5.124)

The determination of the optimal step size is problematic in numerical differen-

tiation: too small values of h produce large round-off error, while too large values of

h produce large discretization error.

Let’s apply a different integration method to the first equation, for instance, the

explicit Euler method. The discretized system is shown below.

x1 (tk+1) = x1 (tk) + h · x2 (tk) (5.125)

x1 (tk+1) = t2
k+1 + tk+1 + 2 (5.126)

As x2 (tk+1) does not appear in the equations, the system cannot be solved em-

ploying the explicit Euler method and, for the same reason, any explicit integration

method.

On the other hand, let’s consider the initialization of the DAE system (5.120) –

(5.121). If x1 can be selected as state variable, then an arbitrary initial value, x1 (t0),

can be assigned to this variable at the initial time t0. However, the initial value of

x1 must satisfy Eq. (5.121): the value of x1 (t0) is t2
0 + t0 + 2. Therefore, the initial

value of x1 cannot be assigned arbitrarily. The number of initial values that can be

assigned arbitrarily in this system (i.e., the number of DoF) is zero, and the number

of variables that appear differentiated is one. The number of DoF is smaller than the

number of differentiated variables. This is a common property to high-index DAE

systems.
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5.4 Initialization of DAE systems

In order to analyze the initialization problem, let’s represent the DAE system in

the form shown in Eq. (5.127), where an explicit distinction is made between those

variables that appear differentiated (x ∈ ℜn) and those that don’t (y ∈ ℜm).

F (x, ẋ, y, t) = 0 (5.127)

F : G ⊆ ℜn × ℜn × ℜm × ℜ → ℜn+m are n + m real functions that, in general,

are non-linear with respect to ẋ.

A necessary condition for (x0, ẋ0, y0) to be a consistent set of initial conditions

is that these initial values satisfy the original DAE system (5.127) at the initial

time t0. In other words, consistency requires that:

F (x0, ẋ0, y0, t0) = 0 (5.128)

However, satisfying the original system is not, in general, a sufficient condition.

This is the case when additional constraints on the initial values (x0, ẋ0, y0) are

obtained from differentiating a number of times certain equations of the original

DAE system. These equations, that impose additional constraints on the initial

values and are obtained by differentiating a number of times certain equations of

the original DAE system, are named hidden constraints.

There exist DAE systems that don’t include hidden constraints. In these systems,

differentiating the original equations introduces new variables, so that the new

equations are satisfied by all possible values of (x0, ẋ0, y0) and appropriate values

of the new variables. In consequence, differentiation does not impose in these DAE

systems additional constraints on the initial values (x0, ẋ0, y0).

The existence of hidden constraints is related to the structural singularity of the

original DAE system. Let’s suppose that the computational causality of the original

DAE system is assigned by assuming that all variables that appear differentiated

are selected as state variables.

– If the original DAE system contains hidden constraints, then it is structu-

rally singular. The objective of the symbolic differentiations performed by the

Modelica modeling environments on structurally singular DAE systems is to

obtain the hidden constraints and add them to the system. The index of the

DAE system is reduced by adding the hidden constraints.

– If the original DAE system does not contain hidden constraints, then it is

structurally non-singular and its BLT incidence matrix can be obtained.
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5.4.1 Hidden constraints and index reduction

The examples shown in this section try to illustrate the search of hidden cons-

traints, the index reduction and the assignment of computational causality. The

applied procedure is as follows. Firstly, we analyze whether the original DAE system

has hidden constraints. Then, we proceed in one of two ways.

– If the DAE system has not hidden constraints, then the computational causa-

lity is assigned selecting as state variables the variables that appear differen-

tiated in the model.

– If the DAE system has hidden constraints:

1. The hidden constraints are added to the system. The resultant system,

composed of the original equations and the hidden constraints, is named

extended DAE system. The extended and original systems have the

same mathematical solution and the same number of DoF, but the index

of the extended DAE system is lower and the extended system is less

difficult numerically.

2. The number of DoF of the extended DAE system is calculated. This num-

ber will be smaller than the number of variables that appear differentiated

in the original DAE system.

3. The computational causality of the extended DAE system is assigned,

selecting as many state variables as DoF has the DAE system.

Example 1. Consider again the DAE system discussed in the previous section.

ẋ1 = x2 (5.129)

x1 = t2 + t + 2 (5.130)

Let’s analyze if the equations obtained by differentiating (5.129) and (5.130)

impose additional constraints on the initial value of (x1, ẋ1, x2). Differentiating

both equations, it is obtained:

ẍ1 = ẋ2 (5.131)

ẋ1 = 2 · t + 1 (5.132)
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As Eq. (5.131) contains only the ẍ1 and ẋ2 variables, this equation does not

impose a constraint on the initial value of (x1, ẋ1, x2).

Eq. (5.132) imposes a constraint on the initial value of ẋ1, which must be equal

to 2 · t0 + 1.

The equations obtained by differentiating Eqs. (5.131) and (5.132) contain

new variables, not imposing any additional constraint of the initial values of

(x1, ẋ1, x2).

The extended DAE system is:

ẋ1 = x2 (5.133)

x1 = t2 + t + 2 (5.134)

ẋ1 = 2 · t + 1 (5.135)

Let’s name (x10
, ẋ10

, x20
) the initial value of (x1, ẋ1, x2), and t0 the initial time.

The following three equations have to be satisfied:

x10
= t2

0 + t0 + 2 (5.136)

x20
= 2 · t0 + 1 (5.137)

ẋ10
= 2 · t0 + 1 (5.138)

The initial values are completely determined by the equations of the extended

DAE system. The model has zero DoF, this is, zero state variables. Observe

that the extended DAE system, composed of Eqs. (5.133) – (5.135), is equiva-

lent to the original DAE system, and the numerical solution of the extended

DAE system does not represent any difficulty. The extended model, sorted and

solved, is shown below.

[x1] = t2 + t + 2 (5.139)

[derx1] = 2 · t + 1 (5.140)

[x2] = derx1 (5.141)
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Example 2. This example illustrates the case in which the differentiation of the

DAE system equations does not bring up any additional constraint. Let’s

consider the following DAE system

ẋ = x + y (5.142)

0 = x + 2 · y + a(t) (5.143)

where a (t) is a continuously differentiable function of time. Differentiating

these two equations with respect to time, the following two equations are

obtained, which contain two new variables: ẏ and ẍ.

ẍ = ẋ + ẏ (5.144)

0 = ẋ + 2 · ẏ + ȧ(t) (5.145)

If the initial values of the new variables are selected as shown below, then these

two new equations are satisfied by all initial values (x0,ẋ0,y0) of the original

variables (x, ẋ, y). In consequence, differentiating the equations with respect

to time does not produce additional constraints on the original variables.

ẏ0 = − ẋ0 + ȧ(t0)

2
(5.146)

ẍ0 = ẋ0 + ẏ0 (5.147)

Differentiating again with respect to time, we are in the same situation. Suc-

cessive differentiation introduces new variables: the successive derivatives of ẋ,

y. In consequence, the equations obtained by differentiating successively don’t

introduce additional constraints on the original variables (x, ẋ, y).

For this reason, the initial values (x0,ẋ0,y0) only have to satisfy the original

DAE system. The vector of initial values has three components, which have to

satisfy two equations. Therefore, the DAE system has one DoF. One variable

can be selected as state variable. Selecting x as state variable and assigning the

computational causality, the following sorted and solved model is obtained:

[y] = −x + a(t)

2
(5.148)

[derx] = x + y (5.149)
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Example 3. Let’s consider the following DAE system

ẋ1 + ẋ2 = a(t) (5.150)

x1 + x2
2 = b(t) (5.151)

where a (t) and b (t) are continuously differentiable functions of time.

In order to analyze whether the initial conditions (x10
, x20

, ẋ10
, ẋ20

) have to

satisfy additional constraints, let’s differentiate the system with respect to

time:

ẍ1 + ẍ2 = ȧ(t) (5.152)

ẋ1 + 2 · x2 · ẋ2 = ḃ(t) (5.153)

The first equation introduces two new variables (ẍ1, ẍ2) and does not con-

tain the original variables (x1, x2, ẋ1, ẋ2). The second equation is an addi-

tional constraint on the original variables. Therefore, the initial conditions

(x10
, x20

, ẋ10
, ẋ20

) must satisfy:

ẋ1 + ẋ2 = a(t) (5.154)

x1 + x2
2 = b(t) (5.155)

ẋ1 + 2 · x2 · ẋ2 = ḃ(t) (5.156)

The second-order derivative of the original system is:

d3x1

dt3
+

d3x2

dt3
= ä(t) (5.157)

ẍ1 + 2 · ẋ2
2 + 2 · x2ẍ2 = b̈(t) (5.158)

The first equation introduces two new variables (d3x1

dt3 , d3x2

dt3 ). The second equa-

tion contains ẋ2 and x2, but it does not impose an additional constraint if, for

any initial value of ẋ2 and x2, it is possible to find initial values of ẍ1, ẍ2 that

satisfy the system
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ẍ1 + ẍ2 = ȧ(t) (5.159)

ẍ1 + 2 · ẋ2
2 + 2 · x2 · ẍ2 = b̈(t) (5.160)

or equivalently

ẍ1 + ẍ2 = ȧ(t) (5.161)

ẍ1 + 2 · x2 · ẍ2 = b̈(t)− 2 · ẋ2
2 (5.162)

The determinant of this 2× 2 system of linear equations is (2 · x2 − 1). There-

fore, if the initial value of x2 is not equal to 0.5, then it is possible to find an

initial value of ẍ1, ẍ2 that satisfies the system. Observe that if x20
= 0.5, then

the left-hand expressions of the first and third equations

ẋ1 + ẋ2 = a(t) (5.163)

x1 + x2
2 = b(t) (5.164)

ẋ1 + 2 · x2 · ẋ2 = ḃ(t) (5.165)

are identical.

Differentiating again, it is obtained:

d4x1

dt4
+

d4x2

dt4
=

d3a(t)

dt3
(5.166)

d3x1

dt3
+ 4 · ẋ2 · ẍ2 + 2 · ẋ2 · ẍ2 + 2 · x2 ·

d3x2

dt3
=

d3b(t)

dt3
(5.167)

The first equation introduces two new variables
(

d4x1

dt4 , d4x2

dt4

)

. The second equa-

tion contains ẋ2 and ẍ2, but it does not represent an additional constraint. For

any initial value of ẋ2 and ẍ2, and assuming that x2 6= 0.5, it is possible to

obtain an initial value of
(

d3x1

dt3 , d3x2

dt3

)

that satisfies the system
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d3x1

dt3
+

d3x2

dt3
= ä(t) (5.168)

d3x1

dt3
+ 6 · ẋ2 · ẍ2 + 2 · x2 ·

d3x2

dt3
=

d3b(t)

dt3
(5.169)

or equivalently,

d3x1

dt3
+

d3x2

dt3
= ä(t) (5.170)

d3x1

dt3
+ 2 · x2 ·

d3x2

dt3
=

d3b(t)

dt3
− 6 · ẋ2 · ẍ2 (5.171)

And so on. Therefore, the initial value vector (x10
, x20

, ẋ10
, ẋ20

) must satisfy

the following extended DAE system, which is mathematically equivalent to the

original DAE system:

ẋ1 + ẋ2 = a(t) (5.172)

x1 + x2
2 = b(t) (5.173)

ẋ1 + 2 · x2 · ẋ2 = ḃ(t) (5.174)

As the initial value vector has four components and must satisfy three equa-

tions, the DAE system has one DoF. Selecting x2 as state variable and assigning

the computational causality, the following sorted and solved model is obtained:

[x1] = b(t)− x2
2 (5.175)

[derx2] =
ḃ(t)− a(t)

2 · x2 − 1
(5.176)

[derx1] = a(t)− derx2 (5.177)
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5.4.2 The Pantelides algorithm

The Pantelides algorithm analyzes the structure of the DAE system to find the

minimum subset of equations whose differentiation introduces additional constraints

on the initial value vector. These constraints, together with the original equations,

must be satisfied by the initial value vector.

The algorithm employs bipartite graphs for representing the computational struc-

ture of the DAE system, and it does not require performing arithmetic operations

or symbolic differentiation.

The algorithm converges if the DAE system is well posed. The following two

examples illustrate the algorithm application to a well-posed and an ill-posed DAE

system. Both examples are based on the following model of a dynamical system:

0 = f1 (x, u1, u2) (5.178)

0 = f2 (x, ẋ, y1) (5.179)

0 = f3 (x, y2) (5.180)

where u1 and u2 are the manipulated variables of the system (inputs); y1 and y2

are the observed variables (outputs); and x is an internal variable that appears

differentiated in the model. The objective is to simulate the system for the following

two computational causalities (see Figure 5.4).

– Direct problem: the evolution of the input variables is known, and the objective

is to calculate the evolution of the output variables.

– Inverse problem: the desired evolution of the output variables is known, and

the objective is to calculate the inputs that have to be applied for obtaining

these outputs.

Let’s analyze the direct problem firstly. Assuming that u1 and u2 are known

variables, and x is state variable, the computational causality is as follows

x state variable (5.181)

0 = f1 (x, u1, u2) ← redundant equation (5.182)

0 = f2 (x, derx, y1) ← unknown variables: derx, y1 (5.183)

0 = f3 (x, [y2]) (5.184)
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Figure 5.4: Computational causality of the direct (left) and inverse (right) problems.

This DAE system is structurally singular. Let’s analyze whether the DAE system

has high index or is mathematically incorrect. To this end, let’s search for hidden

constraints on the initial value of (x, ẋ, y1, y2) by differentiating the system equa-

tions. Differentiating with respect to time, it is obtained:

0 =
∂f1

∂x
· ẋ +

∂f1

∂u1
· u̇1 +

∂f1

∂u2
· u̇2 (5.185)

0 =
∂f2

∂x
· ẋ +

∂f2

∂ẋ
· ẍ +

∂f2

∂y1
· ẏ1 (5.186)

0 =
∂f3

∂x
· ẋ +

∂f3

∂y2

· ẏ2 (5.187)

where:

– Eq. (5.185) is an additional constraint.

– Eq. (5.186) introduces two new variables: ẍ and ẏ.

– Eq. (5.187) introduces a new variable: ẏ2.

Differentiating Eq. (5.185), a new variable appears, ẍ. The initial value of this

new variable can be selected so that the equation is satisfied for the given initial

values of x, ẋ, y1 and y2.

Once the initial values of x, ẋ, ẍ, y1 and y2 have been determined, the initial

values of ẏ1 and ẏ2 can be selected so that Eqs. (5.186) and (5.187) are satisfied,

respectively.

Differentiating the equations again, the new variables
...
x , ÿ1 and ÿ2 appear.

Therefore, new constraints on the original variables are not introduced.

Adding Eq. (5.185) to the system and assuming that x is an algebraic variable,

the computational causality of the extended DAE system is:
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0 = f1 ([x] , u1, u2) (5.188)

0 =
∂f1

∂x
· [derx] +

∂f1

∂u1

· u̇1 +
∂f1

∂u2

· u̇2 (5.189)

0 = f2 (x, derx, [y1]) (5.190)

0 = f3 (x, [y2]) (5.191)

Observe that x and its derivative (derx) are algebraic variables, which are cal-

culated from the system equations. The system has zero DoF.

Now, let’s analyze the inverse problem. The y1 and y2 variables are known,

and the objective is to calculate u1 and u2. However, observe that u1 and u2 only

appear in the first equation of the system:

0 = f1 (x, u1, u2) (5.192)

This indicates that the system does not contain enough information to calculate

both u1 and u2. The DAE system is ill-posed for the inverse problem. It is not

possible to calculate the input trajectories that allow to obtain the desired outputs.

Let’s search for additional constraints on the initial values of (x, ẋ, u1, u2). The

Pantelides algorithm analyzes which variables intervene in the successive derivatives

of the system equations, with the purpose of identifying if any of these derivatives

is an additional constraint.

Observe that the first equation of the system,

0 = f1 (x, u1, u2) (5.193)

depends on x, u1 and u2. If this equation is differentiated, the obtained equation

0 =
∂f1

∂x
· ẋ +

∂f1

∂u1

· u̇1 +
∂f1

∂u2

· u̇2 (5.194)

depends, in general, on x, u1, u2, ẋ, u̇1 and u̇2. Two new unknown variables are

introduced, which don’t appear in any other equation: u̇1 and u̇2. Each of the

successive derivatives of this equation introduces two new variables that only appear

in it: the successive derivatives of u1 and u2. Therefore, differentiating the first

equation does not introduce an additional constraint.
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Let’s analyze the second and third equations of the DAE system:

0 = f2 (x, ẋ, y1) (5.195)

0 = f3 (x, y2) (5.196)

The second equation depends on x, ẋ. Differentiating, the obtained equation

depends in general on x, ẋ and ẍ. Differentiating again, the obtained equation

depends on x, ẋ, ẍ and
...
x . And so on.

On the other hand, the third equation depends on x. Differentiating, the obtained

equation depends on x and ẋ. Differentiating again, the obtained equation depends

on x, ẋ and ẍ. And so on.

Observe that the second equation, its derivative, the third equation and its

derivative form a system of four equations with three unknown variables: x, ẋ and

ẍ. If the second and third equations of the DAE are independents, then there does

not exist a solution. From the point of view of the automatic control theory, this

system is considered uncontrollable: it is not possible to calculate the inputs (u1 and

u2) that make the system to produce the desired outputs (y1 and y2).

As the successive derivatives of the second and third equations impose additional

constraints, the Pantelides algorithm does not converge for the inverse problem. The

algorithm differentiates these two equations indefinitely.

5.5 Selection of the state variables

In general, the selection of the state variables is not unique. Different sets of

variables can be selected as state variables. This is equivalent to say that it is

possible to write the system in different ways, so that different sets of variables

appear differentiated.

An adequate selection of the state variables can, in some models, improve the

precision and reduce the computational load of the simulation. The state variables

can be selected by the model developer and the modeling environment. In the latter

case, the modeling environment can modify during the simulation the selection of

the state variables. This feature is known as dynamic selection of the states.

This section is structured into three parts. A symbolic manipulation technique

for selecting the state variables is described in Section 5.5.1. Dynamic selection of

the states is addressed in Section 5.5.2. Finally, the state variable selection by the

model developer in Modelica is discussed in Section 5.5.3.
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5.5.1 Manipulation of the DAE system

Let’s consider the following DAE system

F (x, ẋ, y, t) = 0 (5.197)

where x represents the variables that appear differentiated and y the variables that

don’t. Suppose that we want to select as state variables the variables (x1, y1). The

technique described below allows to manipulate the system so that only (x1, y1)

appear differentiated. The resultant system is:

G (x1, y1, ẋ1, ẏ1, x2, y2, t) = 0 (5.198)

where x = (x1, x2), y = (y1, y2). The technique consists of the following steps:

1. The following dummy equations are added to the system

ẏ1 = a (5.199)

where a is a vector of dummy variables. The a and y1 vectors have the same

number of components. Observe that these dummy equations don’t modify

the system solution. As the dummy variables only intervene in the dummy

equations, the dummy equations must be employed to calculate the dummy

variables.

2. The extended system, composed of the original system and the dummy equa-

tions,

F (x, ẋ, y, t) = 0 (5.200)

ẏ1 = a (5.201)

is a high-index DAE system. Therefore, the next step is to reduce its index,

selecting (x1, y1) as state variables.

The following example illustrates the application of this technique. Consider a

control volume that contains a perfectly mixed gas. Establishing an energy balance

for the control volume, the obtained model has the following form
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E = f(T ) (5.202)

dE

dt
= g(T, Q) (5.203)

Q = h(T ) (5.204)

where E is the internal energy of the gas stored within the control volume, T is the

gas temperature, and Q is the heat flow rate exchanged with the environment. The

f function, which relates the temperature and internal energy of the stored gas, is

in general a non-linear function.

The internal energy (E) of the gas appears differentiated in the model. Selecting

E as state variable, the model has the following computational causality:

E = f([T ]) (5.205)
[

dE

dt

]

= g(T, Q) (5.206)

[Q] = h(T ) (5.207)

Observe that the gas temperature is calculated from solving the first equation.

If f is a non-linear function, this computation can be computationally expensive.

Another approach is to select the temperature (T ) as state variable, instead of the

energy (E). In this way, the first equation is employed for calculating the energy,

which is given explicitly.

Let’s manipulate the model for obtaining the temperature as the only differen-

tiated variable. A dummy equation, Eq. (5.211), is included in the model.

E = f(T ) (5.208)

dE

dt
= g(T, Q) (5.209)

Q = h(T ) (5.210)

dT

dt
= a (5.211)
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As the dummy variable a only intervenes in the dummy equation, Eq. (5.211)

must be employed for calculating a. Including the dummy equation does not modify

the value of the E, T and Q variables.

The extended DAE system is structurally singular: two variables appear diffe-

rentiated (E, T ) and the system has only one DoF. Let’s replace the derivatives by

dummy variables:

dE

dt
→ derE

dT

dt
→ derT (5.212)

and reduce the DAE system index. To this end, the derivative of Eq. (5.208) is added

to the system. It is obtained:

E = f(T ) (5.213)

derE = g(T, Q) (5.214)

Q = h(T ) (5.215)

derT = a (5.216)

derE =
df(T )

dT
· derT (5.217)

Selecting the temperature as state variable, assigning the computational causality

and sorting the equations, it is obtained:

T state variable (5.218)

[E] = f(T ) (5.219)

[Q] = h(T ) (5.220)

[derE] = g(T, Q) (5.221)

derE =
df(T )

dT
· [derT ] (5.222)

derT = [a] (5.223)

The dummy equation has already served its purpose and can be removed from the

model. The obtained model is composed of Eqs. (5.219) – (5.222), with T selected

as state variable.
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5.5.2 Dynamic selection of state variables

The example discussed in this section illustrates the necessity of using different

sets of variables as state variables in different parts of the simulated trajectory. This

implies modifying the selection of state variables during the simulation run.

An ideal pendulum oscillating in a vertical plane is depicted in Figure 5.5. The

model is described employing Cartesian coordinates x-y. Two forces are exerted on

the mass: gravity force (m · g) and tension force (F ). The pendulum length is L.

The string has negligible mass. The model is shown below. The equations have been

labeled as (a), (b), etc. to facilitate referencing them.

m · v̇x = − x
L
· F (a)

m · v̇y = − y
L
· F −m · g (b)

x2 + y2 = L2 (c)

ẋ = vx (d)

ẏ = vy (e)

Four variables (x, y, vx, vy) appear differentiated in this model, which has two

DoF and index-3. In order to reduce the index, Eq. (c) is differentiated twice, and

Eqs. (d) and (e) are differentiated once. Adding these equations to the model and

simplifying, it is obtained:

m · v̇x = − x
L
· F (a)

m · v̇y = − y
L
· F −m · g (b)

x2 + y2 = L2 (c)

ẋ = vx (d)

ẏ = vy (e)

x · ẋ + y · ẏ = 0 (c’)

x · v̇x + ẋ2 + y · v̇y + ẏ2 = 0 (c”,d’,e’)

Let’s consider the four alternative selections of state variables:

{x, vx} {x, vy} {y, vx} {y, vy}

The computational causality depends on the state variable selection. In the four

cases, the {F , dervx, dervy} variables are evaluated from Eqs. (a), (b) and (c”,d’e’).

As this is common to the four cases, it is omitted in the following discussion. The

computational causality of the equations employed to evaluate {y, vy, derx, dery}

is as follows:
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1. State variables: {x, vx}

[derx] = vx (d)

x2 + [y]2 = L2 (c)

x · derx + y · [dery] = 0 (c’)

dery = [vy] (e)

If y equals zero, the simulation crashes with a divide-by-zero error when

evaluating Eq. (c’).

2. State variables: {y, vx}

[derx] = vx (d)

[x]2 + y2 = L2 (c)

x · derx + y · [dery] = 0 (c’)

dery = [vy] (e)

If y equals zero, a divide-by-zero error is produced with this selection of the

state variables when evaluating Eq. (c’).

3. State variables: {x, vy}

[dery] = vy (e)

x2 + [y]2 = L2 (c)

x · [derx] + y · dery = 0 (c’)

derx = [vx] (d)

If x equals zero, the simulation crashes with a divide-by-zero error when

Eq. (c’) is evaluated.

4. State variables: {y, vy}

[dery] = vy (e)

[x]2 + y2 = L2 (c)

x · [derx] + y · dery = 0 (c’)

derx = [vx] (d)

If x equals zero, divide-by-zero error is produced when Eq. (c’) is evaluated.
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Figure 5.5: Ideal pendulum oscillating in a vertical plane.

r

r

v

v

[ ]

0,  ,   state variable

0  0

y x L dery

x derx y dery derx

= =

⋅ + ⋅ = → =

[ ]

,  0,   state variable

0  0

y L x derx

x derx y dery dery

= − =

⋅ + ⋅ = → =

Figure 5.6: Mandatory causality of pendulum at vertical and horizontal positions.

Therefore, the four selections of the state variables are able to produce a divide-

by-zero error when evaluating Eq. (c’). The physical interpretation of Eq. (c’) is that

the position and velocity vectors are perpendicular. The computational causality

that Eq. (c’) should have, when the pendulum is in the vertical or horizontal position,

is shown in Figure 5.6.

x · derx + y · dery = 0 ↔ r · v= 0 ↔ r⊥v

1. When the pendulum is in the vertical position, the perpendicularity condition

imposes that the vertical component of the velocity is zero, and does not

impose any restriction on the horizontal component of the velocity. For this

reason, when the pendulum is in the vertical position, trying to calculate the

horizontal component of the velocity from Eq. (c’) does not make sense.

2. When the pendulum is in the horizontal position, the perpendicularity condi-

tion imposes that the horizontal component of the velocity is zero, and does

not impose any restriction on the vertical component of the velocity. Therefore,

attempting to calculate the vertical component of the velocity from Eq. (c’),

when the pendulum is in the horizontal position, does not make sense.
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It is obvious that this difficulty does not appear when the pendulum is modeled

using polar coordinates. However, this example illustrates the need of selecting the

state variables dynamically during the simulation run.

Dymola supports the dynamic selection of the state variables. To illustrate this

feature, let’s translate and simulate the model of the pendulum. The model is shown

in Modelica Code 5.2. Observe that the initial values of x and vy are specified when

the variables are declared:

Real x (unit="m", start=0.9, fixed=true);
Real vy(unit="m/s", start=0, fixed=true);

The initial values are the following: x0 = 0.9, vy0 = 0. The initial value of y is

calculated from solving Eq. (c) numerically. The equation admits two solutions:

y0 = ±
√

L2 − x2
0 = ±

√
12 − 0.92 = ±0.43589 (5.224)

Depending on the initial value given to the iterative method employed for solving

Eq. (c), the method converges to the positive or negative solution. The initial value

for the iterative method is specified in the declaration of the y variable:

Real y(unit="m", start=0.5, fixed=false);

Setting fixed to false indicates that the value assigned to the start attribute is

the initial value of the iterative method employed for calculating the variable at the

initial time. Using 0.5 as initial value for the iterative method, it converges to the

solution with positive sign. This is, y0 = 0.43589.

It is shown in Figure 5.7 how to configure the options in the Simulation Setup

window so that Dymola displays: (1) the equations differentiated and added to the

model when the DAE index is reduced; and (2) the state variable selection during

the simulation run.

During the translation of the model shown in Modelica Code 5.2, Dymola writes

the following text in the log window:

Differentiated the equation
x^2+y^2 = L^2;
giving
2.0*(x*der(x)+y*der(y)) = 0.0;

Differentiated the equation
2.0*(x*vx+y*vy) = 0.0;
giving
2.0*(der(x)*vx+x*der(vx)+der(y)*vy+y*der(vy)) = 0.0;
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model pendulumSelecDinVE
constant Real g(unit="m/s2") = 9.81 ;
parameter Real L(unit="m") = 1 ;
parameter Real m(unit="kg") = 5 ;
Real x(unit="m", start=0.9, fixed=true) ;
Real y(unit="m", start=0.5, fixed=false) ;
Real vx(unit="m/s") ;
Real vy(unit="m/s", start=0, fixed=true) ;
Real F(unit="N") ;

equation
m*der(vx) = -x/L*F;
m*der(vy) = -y/L*F - m*g;
x^2 + y^2 = L^2;
der(x) = vx;
der(y) = vy;

end pendulumSelecDinVE;

Modelica Code 5.2: Simple pendulum using Cartesian coordinates.

(1) (2)
Figure 5.7: Simulation Setup window of Dymola, where the user configures the information to be
written in the log window during the translation and simulation. (1): equations differentiated and
added to the model for reducing the DAE index; and (2): state variable selection made during the
simulation run.
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Figure 5.8: Variable Browser window after translating the model shown in Modelica Code 5.2.

In addition, Dymola writes to the log window the message shown below, indica-

ting that one state variable will be selected from {x, y}, and one from {vx, vy}.

Selected continuous time states
Dynamically selected continuous time states
There are 2 sets of dynamic state selection.
From set 1 there is 1 state to be selected from:
x
y

From set 2 there is 1 state to be selected from:
vx
vy

Once the model translation is completed, the variables whose value can be

modified are displayed in the Variable Browser window (see Figure 5.8).

The model is simulated during during 3 s. The following report about the state

variable selection is written to the Dymola log window.

Selected at 0:
y.stateSelect=StateSelect.always

Selected at 0:
vy.stateSelect=StateSelect.always

Integration started at T = 0 using integration method DASSL
(DAE multi-step solver (dassl/dasslrt of Petzold modified by Dynasim))

Selected at 0.534:
x.stateSelect=StateSelect.always

Selected at 0.534:
vx.stateSelect=StateSelect.always

Selected at 0.84:
y.stateSelect=StateSelect.always

Selected at 0.84:
vy.stateSelect=StateSelect.always

Selected at 1.872:
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x.stateSelect=StateSelect.always
Selected at 1.872:

vx.stateSelect=StateSelect.always

Selected at 2.184:
y.stateSelect=StateSelect.always

Selected at 2.184:
vy.stateSelect=StateSelect.always

Integration terminated successfully at T = 3

From time equals zero to 0.534 s, {y, vy} have been selected as state variables;

from time 0.534 s to 0.84 s, {x, vx} have been selected as state variables; etc. Dymola

alternates during the simulation run between two state variable selections: {y, vy}
and {x, vx}. Dymola employs the first selection when the pendulum trajectory is

near the horizontal axis, and the second selection when the trajectory is near the

vertical axis.

Dymola names stateSelect.set1.x[1] to the state variable that selects from set1

= {x, y}, and stateSelect.set2.x[1] to the state variable that selects from set2 =

{vx, vy}. The evolution of stateSelect.set1.x[1] and stateSelect.set2.x[1] is shown

in Figure 5.9. It can be observed that stateSelect.set1.x[1] is equal to x in part of the

trajectory, and equal to y in the rest of the trajectory; and that stateSelect.set2.x[1]

is equal to vx in part of the trajectory and equal to vy in the rest of the trajectory.

5.5.3 Selection by the model developer

There exist several reasons why a model developer may be interested in selecting

the model state variables. Some of these reasons may be:

– Improve the accuracy of the model numerical solution.

– Avoid numerical function inversion and, in consequence, increase performance.

– Reduce the number of equations that are nonlinear with respect to the variables

to evaluate from them.

– Describe events, given that only the state variables can be reinitialized at event

instants using the reinit operator (this will be explained in later lessons).

– Avoid dynamic state selection.
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x

y
vy vx

Figure 5.9: Simulation of the pendulum model using Cartesian coordinates, with dynamic
selection of the state variables. Dymola defines two sets of variables: set1 = {x, y}, set2
= {vx, vy}. The model has two state variables, which Dymola name {stateSelect.set1.x[1],
stateSelect.set2.x[1]}. The stateSelect.set1.x[1] variable is selected among the variables of set1
= {x, y}, and stateSelect.set2.x[1] among the variables of set2 = {vx, vy}. During part of the
trajectory, {stateSelect.set1.x[1], stateSelect.set2.x[1]} is equal to {x, vx}, and it is equal to {y, vy}
during the rest of the trajectory. The selection of the state variables is automatically performed by
Dymola during the simulation run.
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Table 5.1: Possible values of the stateSelect attribute of the Real variables.

Value Meaning

StateSelect.never Don’t select it as state variable.

StateSelect.avoid Avoid it as state variable in favor of the variables
having the default value.

StateSelect.default If the variable does not appear differentiated in the
model, then don’t select it as state variable.

StateSelect.prefer Prefer it as state over those having the default value.

StateSelect.always Select it as state variable.

The stateSelect attribute of the Real variables facilitates the model developer to

select the state variables. This is referred to as static selection of the state variables,

because the selection cannot be changed during the simulation run. The possible

values of the attribute are shown in Table 5.1. For instance:

Real w ( stateSelect = StateSelect.prefer );

A key point is that the state variable selection in Modelica does not

depend on how the model initial conditions are specified. The value assigned

to the fixed attribute does not affect the state variable selection. For instance, the

initialization of the pendulum model has been performed by setting the value of the

{x, vy} variables (see Modelica Code 5.2 and Figure 5.8), and the initial selection of

the state variables made by Dymola was {y, vy}.

5.6 Further reading

The definition of DAE index and examples of its calculation can be found in

(Brenan et al. 1996).

The Pantelides algorithm is proposed in (Pantelides 1988), and the technique for

solving high-index DAE using dummy derivatives in (Mattsson & Söderlind 1992)

and (Mattsson & Söderlind 1993).

The structural analysis of DAE systems and the DAE index reduction are ex-

plained in Chapter 7 of (Cellier & Kofman 2006).

The selection of state variables in Modelica is discussed in (Mattsson et al. 2000)

and (Otter & Olsson 2002), and their dynamic selection by the modeling environment

in (Mattsson et al. 2000).
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Learning objectives

After studying the lesson, students should be able to:

– Relate modeling hypotheses to algebraic loops, and stiffness.

– Discuss difficulties associated to the symbolic manipulation and the numerical

solution of non-linear algebraic loops.

– Perform tearing of small-dimension algebraic loops.

– Classify ODE integration methods attending to the following criteria: explicit

and implicit; single-step and multi-step; order; and fixed and variable step size.

– Discuss the principles of the DASSL integration algorithm, and the inline and

mixed-mode integration methods.
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6.1 Introduction

Once the model has been transformed into an efficiently solvable form, numerical

methods are automatically applied to simulate its evolution over time. Some basic

concepts related to these numerical methods are introduced in this lesson. The

discussion is structured into three parts: solution of algebraic loops, and numerical

integration of ODE and DAE.

A rigorous discussion on numerical methods for DAE systems requires of a solid

mathematical background and, therefore, is out of the scope of this introductory

book. The approach adopted for selecting which material to include in this lesson has

been to introduce only those concepts that we consider useful for model developers,

in order to use the Modelica modeling environments, and understand the diagnosis

and error messages generated by them.

6.2 Systems of simultaneous equations

A set of equations that form a main diagonal block of size greater than 1× 1 in

the BLT incidence matrix is known as a system of simultaneous equations, or

equivalently, an algebraic loop. Algebraic loops may be linear and non-linear. In

the first case, the unknown variables (i.e., the variables that are evaluated from the

algebraic loop) intervene linearly in the algebraic loop. In the second case, at least

one of the unknown variables intervene non-linearly.

Algebraic loops typically arise of making the simplification that a fast dynamic

phenomenon occurs instantaneously. Let’s consider, for instance, a system composed

of pipes, liquid storage tanks and valves, which is controlled using electronic circuits.

This system has hydraulic, mechanical and electronic parts, whose time constants

are very different. The response time of the electronic circuits is typically in the

order of microseconds, while the response times of the mechanical and hydraulic

parts are in the order of 0.1 and 10 seconds, respectively. The time constants of the

mechanical and hydraulic parts differ in two orders of magnitude. However, these

parts are approximately six orders of magnitude slower than the electronic part.

Systems involving phenomena whose response times differ in three or more orders

of magnitude are known as stiff systems. If the response times differ in six or more

orders of magnitude, then the system is said to be strongly stiff.

The slowest time-constant of the system typically determines the time scale of the

system’s global response, while its fastest time-constant affects the maximum time
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step length of the numerical integration method. If an explicit integration method is

applied for simulating the hydro-electro-mechanical system described previously, the

time step should be below one microsecond, while the total simulated time should

be in the order of minutes. The number of integration steps is in the order of one

hundred million. For this reason, explicit integration methods are not efficient

for simulating stiff models.

Implicit integration methods are computationally expensive, because they

require solving a system of simultaneous equations for each time step. However,

implicit methods can allow significantly larger time steps than explicit methods.

For stiff systems, implicit methods involve less computational work than explicit

methods. For this reason, implicit methods are preferred for solving stiff systems.

As numerical integration of stiff systems is computationally expensive, in some

cases it is advantageous to make a modeling hyphothesis consisting in neglecting the

fastest dynamics. In this way, stiffness is avoided, but at the expense of establishing

an algebraic loop. In other cases, the situation is just the opposite: from a compu-

tational cost standpoint, it is more advantageous to describe the dynamics than to

assume that the dynamics is instantaneous. This is typically the case when, as a

result of the presence of discontinuities, it is not possible to provide adequate initial

values for iterating the algebraic loop at certain instants of the simulation.

Observe that it is possible to calculate a solution of the scalar algebraic equation

0 = f (x) (6.1)

by solving the ODE

ε · dx

dt
= f (x) (6.2)

where a small value is given to ε, and the sign that makes the equation to have a

stable solution.

Some basic concepts about the numerical solution of algebraic loops, that need to

be known by model developers, are explained in this section. The detailed description

of symbolic and numerical algorithms for solving algebraic loops is out of the scope

of this text.



MODELING AND SIMULATION IN ENGINEERING USING MODELICA

6.2.1 Symbolic manipulation of algebraic loops

Linear algebraic loops (i.e., those in which all unknown variables intervene li-

nearly) can be solved automatically by symbolic manipulation. However, if the num-

ber of unknown variables is large, it is typically more efficient to employ numerical

methods for solving the algebraic loop, than to evaluate the expressions obtained

from the symbolic manipulation of the algebraic loop.

Non-linear algebraic loops (i.e., those in which at least one unknown variable

intervenes non-linearly), and non-linear scalar equations, are solved using numerical

methods. In some simple cases, it is possible to manipulate the non-linear equation

in order to obtain explicitly the unknown variable. For instance, y can be obtained

explicitly from the equation:

x2 + y2 = 1 (6.3)

Manipulating the equation, the following two solutions for y are obtained:







y =
√

1− x2

y = −
√

1− x2
(6.4)

The problem in this case is that the symbolic manipulator does not known

which of these two expressions to employ for calculating y. When Eq. (6.3) is solved

numerically, depending on the root-finding algorithm employed, the value used as

the initial guess, and how the mathematical problem is formulated, the algorithm

may converge to the positive root, to the negative root, or may not converge if

started too far away from a root.

6.2.2 Algebraic loops during simulation initialization

As discussed in Section 5.4, the values of all unknown variables need to be

calculated at the simulation initial time. This calculation, named model initia-

lization, may require the numerical solution of algebraic loops, employing root-

finding algorithms. In this case, it is important to provide initial iteration values

(initial guess of the solution) as close as possible to the desired solution, so that the

iterative algorithm quickly converges to it.
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Modelica allows the model developer to provide initial values for iterating the

algebraic loops of the model initialization problem. The start and fixed attributes

can be used for this purpose. If the fixed attribute is set to false, the value assigned

to the start attribute is used as initial guess by the root-finding algorithm for solving

the initialization problem. As the simulation progresses, the variable value at a time

instant is used as initial guess for calculating the solution at the next time instant.

In the Modelica models, only continuous-time variables can be calculated by

solving algebraic loops. This implies that only variables of the Real type or a type

derived from Real can be calculated from an algebraic loop. Discrete-time variables,

such as variables of Integer or Boolean types, can not be calculated from algebraic

loops.

The solution of the initialization problem is, in some models, problematic. For

this reason, some specific-purpose simulation tools implement numerical techniques

dedicated to solve the initialization problem. An example is the SPICE electronic

circuit simulator. In electronic circuit simulation, one of the challenges is convergence

of the root-finding algorithms employed in calculating the circuit operating point.

The reason is that, if the initial value of the iterative method is not selected adequa-

tely, there is no guarantee that the algorithm converges. The method implemented

in SPICE is described below.

Firstly, SPICE assumes that all independent current and voltage sources of

the circuit are at zero, and all active devices are in cut-off mode. The circuit

operating point is trivial: the voltage at all nodes is zero. Next, a transient analysis

is performed, ramping the sources up to their initial values and maintaining these

values for a while, so that the circuit is allowed to approach its steady state. Finally,

the obtained voltages are employed as initial values for computing the operating

point by Newton iteration.

The underlying idea of the SPICE method for solving the initialization problem

is of general application. Suppose that solving the model at an initial state I is

problematic, but there is another state, T , in which the model can be trivially

calculated. Then, the model is simulated, starting from the trivial state T , ramping

up the model inputs to their values at the initial state I. Once these values have

been reached, they are kept for a while, allowing the model to evolve towards the

corresponding steady state. Finally, the state obtained from this simulation is used

as initial guess for iterating the initialization problem, this is, calculating the initial

state I.
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6.2.3 Tearing of non-linear algebraic loops

Tearing is a technique for solving non-linear algebraic loops in which at least one

unknown variable appears linearly in one equation. The objective of this technique

is to reduce the number of iterated variables.

Let’s consider the following system of simultaneous equations.

G (y) = 0 (6.5)

Tearing this algebraic loop consists in writing it in the following form:







G1 (y1, y2) = 0

G2 (y1, y2) = 0
(6.6)

so that the following two conditions are satisfied:

1. The Jacobian matrix ∂G1

∂y1

is a lower triangular matrix or a block lower triangu-

lar (BLT) matrix, where all diagonal blocks represent linear equations or linear

systems of simultaneous equations with respect to the unknown variables that

are evaluated from them.

2. The dimension of y2 is as small as possible.

The y2 variables are known as tearing variables and the G2 (y1, y2) = 0

equations are known as residue equations. The tearing variables intervene non-

linearly in the residue equations and, in consequence, are calculated from the residue

equations employing root-finding algorithms for non-linear equations.

Given an initial value of the tearing variables (y2), the y1 variables can be

calculated from G1 (y1, y2) = 0 employing methods for solving linear equations.

Using these calculated values of y1, a new value of y2 is computed from G2 (y1, y2) =

0, and so on.

Modelica modeling environments typically support a restricted form of tearing, in

which the Jacobian matrix ∂G1

∂y1

must be lower triangular. Therefore, assuming that

y2 are known, y1 can be calculated sequentially from the G1 (y1, y2) = 0 equations,

where each unknown variable appears linearly in the equation employed to calculate

it.
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In general, an algebraic loop admits several possible selections of residue equa-

tions and tearing variables. In this case, the tearing variables should be selected

among those variables whose initial guess is closer to the solution. Residue equa-

tions should be selected attending to their good numerical properties. The tearing

algorithms implemented by the Modelica modeling environments select the tearing

variables and residue equations by applying heuristic rules.

6.3 Numerical solution of ODE

A distinctive characteristic of continuous-time models is that the state variables

can change continuously over time. In any time interval of finite length, there are

infinite time instants. As it is impossible to calculate the value of the model variables

at infinite time instants, the simulation of continuous-time models is performed by

applying algorithms that compute the model variables only at certain time instants.

It is performed a temporal discretization.

The numerical solution of ordinary differential equations (ODE) is calculated by

applying numerical integration methods. Let’s consider the following explicit ODE:

dx

dt
= f (x, t) (6.7)

The value of the x variable is calculated at predefined instants t0, t1, t2, . . . , where

t0 is the initial time of the simulation (see Figure 6.1). The time-interval between two

consecutive instants is the integration step length: ∆t = ti−ti−1 with i = 1, 2, . . .

As x is a continuous-time variable, its evolution is typically represented interpolating

between the calculated values.

Let’s suppose that the simulation has been computed until the instant ti. This

implies that the values of x at the time instants t0, . . . , ti are known. These are x0,

. . . , xi. The numerical integration method has, in general, the following form:

xi+1 = F{f(xi+1), f(xi), f(xi−1), . . . , xi, xi−1, xi−2, . . . } (6.8)

This equation in differences indicates that the value of x at time i + 1 (xi+1) is

calculated from the variable values at previous time instants (xi, xi−1, xi−2, . . . ),

from the value of the derivative at time i + 1 (f(xi+1)), and from the value of the

derivative at previous time instants (f(xi), f(xi−1), f(xi−2), . . . ).
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Figure 6.1: Temporal discretization.

The numerical integration methods differ in the form of the F function. They

are classified according to the form of F .

– Explicit and implicit method. The method is explicit if f(xi+1) does not

intervene in F . Otherwise, the method is implicit. For instance, the implicit

and explicit versions of the Euler’s method are shown in Table 6.1.

Table 6.1: Euler’s methods.

Explicit xi+1 = xi + ∆t · f(xi)

Implicit xi+1 = xi + ∆t · f(xi+1)

– Single-step and multi-step methods. If values of the variable or its deri-

vative at instants previous to i intervene in F , then it is a multi-step method.

If only xi, f(xi+1) and f(xi) intervene in F , it is a single-step method.

– Order of the method. The order of the integration method is the maximum

order of the polynomial x(t) that can be exactly represented by xi. Let’s

suppose, for instance, that f is a constant value c. The exact solution of the

equation

dx

dt
= c (6.9)

is

x = x0 + c · t (6.10)

that is a polynomial of degree one in t. An integration method of order

one would give exact results. However, an integration method of order one

introduces errors if f = a + b · t. The exact solution of the equation

dx

dt
= a + b · t (6.11)
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is a polynomial of second order

x = x0 + a · t +
1

2
· b · t2 (6.12)

An integration method of second order would give precise results in this case.

A rigorous description of the ODE integration methods is out of the scope of

this textbook. Nevertheless, it is worthwhile to mention that there are basically two

ways of obtaining adequate expressions for F .

1. Approximating x with the first few terms of a Taylor series. The number

of terms corresponds to the order of the method. An example is the Runge-

Kutta methods. Some are shown in Table 6.2. Observe that these are explicit,

single-step methods.

2. Approximating f with a polynomial, using the values of f calculated in pre-

vious instants and, in implicit methods, also the value calculated in the actual

instant. Examples of this type of methods are the Adams-Bashforth met-

hods and the Adams-Moulton methods (see Table 6.3).

The higher the order of the integration method, the more accurate the results

and also the faster the simulation, because larger time steps can be used. Integration

methods most commonly used in Engineering have order four and five.

The time step length ∆t is selected searching a compromise between accuracy

and computational cost. The smaller the time step ∆t, the more accuracy and

stability, at the expense of increased computational cost and longer simulation run-

times.

The error associated to a certain value of ∆t can be estimated by comparing

the results obtained using this value with the results obtained using a smaller time

step, for instance, ∆t
2
. If the difference is negligible for the purpose of the study,

then the value of ∆t is adequate. Otherwise, the results obtained using ∆t
2

and ∆t
4

are compared. If the error is negligible, then ∆t
2

is used. If the error is too large. the

results obtained using ∆t
4

and ∆t
8

are compared, and so on.

This automatic method of step size adjustment is conceptually simple, but it is

not efficient from the computational standpoint. For this reason, the variable step

size methods don’t employ it.

A more efficient procedure is to employ two embedded integration algorithms,

one with higher precision (higher order) than the other. The difference between the
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Table 6.2: Some integration methods of Runge-Kutta.

Runge-Kutta 1st order
(explicit Euler)

xi+1 = xi + ∆t · f (xi, ti)

Runge-Kutta 2nd order

k1 = ∆t · f (xi, ti)

k2 = ∆t · f (xi + k1, ti + ∆t)

xi+1 = xi + 1
2 · (k1 + k2)

Runge-Kutta 4th order

k1 = ∆t · f (xi, ti)

k2 = ∆t · f
(

xi + k1

2 , ti + ∆t
2

)

k3 = ∆t · f
(

xi + k2

2 , ti + ∆t
2

)

k4 = ∆t · f (xi + k3, ti + ∆t)

xi+1 = xi + k1

6 + k2

3 + k3

3 + k4

6

Table 6.3: Some integration methods based on polynomial approximations. Note that f (xi, ti) is
abbreviated as fi.

Order Adams-Bashforth

1 xi+1 = xi + ∆t · fi

2 xi+1 = xi + ∆t
2 · (3 · fi − fi−1)

3 xi+1 = xi + ∆t
12 · (23 · fi − 16 · fi−1 + 5 · fi−2)

4 xi+1 = xi + ∆t
24 · (55 · fi − 59 · fi−1 + 37 · fi−2 − 9 · fi−3)

Order Adams-Moulton

1 xi+1 = xi + ∆t · fi+1

2 xi+1 = xi + ∆t
2 · (fi+1 + fi)

3 xi+1 = xi + ∆t
12 · (5 · fi+1 + 8 · fi − fi−1)

4 xi+1 = xi + ∆t
24 · (9 · fi+1 + 19 · fi − 5 · fi−1 + fi−2)
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Table 6.4: Runge-Kutta-Fehlberg method(4th-5th order).

k1 = ∆t · f (xi, ti)

k2 = ∆t · f
(

xi + k1

4 , ti + ∆t
4

)

k3 = ∆t · f
(

xi + 3
32 · k1 + 9

32 · k2, ti + 3
8 ·∆t

)

k4 = ∆t · f
(

xi + 1932
2197 · k1 − 7200

2197 · k2 + 7296
2197 · k3, ti + 12

13 ·∆t
)

k5 = ∆t · f
(

xi + 439
216 · k1 − 8 · k2 + 3680

513 · k3 − 845
4104 · k4, ti + ∆t

)

k6 = ∆t · f
(

xi − 8
27 · k1 + 2 · k2 − 3544

2565 · k3 + 1859
4104 · k4

−11
40 · k5, ti + ∆t

2

)

4th order xi+1 = xi + 25
216 · k1 + 1408

2565 · k3 + 2197
4104 · k4 − k5

5

5th order xi+1 = xi + 16
135 · k1 + 6656

12825 · k3 + 28561
56430 · k4 − 9

50 · k5 + 2
55 · k6

results obtained from these two algorithms can be considered as an estimation of

the error made by the algorithm of lower order.

This strategy can be employed for programming a variable step size algorithm:

the error is estimated in each integration step, and if the maximum error is exceeded,

then the algorithm steps back and reduces the step size. A strategy to increment the

step size can also be implemented. For instance, if the error is below a certain limit

during a predefined number of consecutive steps, then the step size is doubled.

For instance, the Runge-Kutta-Fehlberg method (RKF45) is a fourth-order

method embedded within a fifth-order method (see Table 6.4). The error of the

fourth-order method is estimated subtracting the results obtained of both methods.

The method can be implemented with a variable step size: the algorithm estimates

the error, and consequently reduces or increments the step size.

The BDF methods (Backward Differentiation Formula) have the following

equation:

xi+1 =
q−1
∑

k=0

αk · xi−k + β0 · f (xi+1, ti+1) ·∆t (6.13)

where q is the order of the method, and αk, β0 are constants, dependent on the

order, selected so that the resulting algorithm has good numerical properties. At

the beginning of the simulation, only the initial value x0 is known. Therefore, the

algorithm starts with order one. As the solution is being calculated at successive

instants, the order may be incremented. As the method also adjusts the time step

size, this is a variable order and variable step size integration method.
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6.4 Numerical solution of DAE

Some basic concepts of an integration algorithm named DASSL are introdu-

ced in this section. DASSL is recognized as one of the most robust methods for

numerical solution of DAE systems and variants of DASSL are supported by most

Modelica modeling environments. In particular, a variant of DASSL is the by-default

integration algorithm of Dymola.

In addition, a summary of the ideas behind two numerical integration techniques

named inline integration and mixed-mode integration is provided in this sec-

tion. These techniques may improve the simulation efficiency, taking advantage of

the available knowledge about the computational structure of the model, and the

time constants of its state variables.

6.4.1 DASSL

DASSL is a BDF (Backward Difference Formulae) method, with variable order

and step size. Newton’s iteration method is applied by DASSL for solving the

obtained nonlinear system of simultaneous equations.

Let’s consider the following DAE system, where y (t) is the vector of unknown

variables,

f (ẏ, y, t) = 0 (6.14)

and the following discretization scheme, which is employed by many implicit inte-

gration algorithms (e.g., BDF methods),

y = h · ẏ + old (y) (6.15)

where the y and ẏ vectors represent the values at the new instant; and h is a known

scalar. The dependence of h with respect to the time step length varies from one

algorithm to another. old (y) is a function of the known values of y, calculated at the

previous time instants. For instance, the third order BDF discretization falls within

this category:

yn+1 =
6

11
· h̄

︸ ︷︷ ︸

h

·ẏn+1 +
(

18

11
· yn −

9

11
· yn−1 +

2

11
· yn−2

)

︸ ︷︷ ︸

old(y)

(6.16)
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where h̄ is the time step length.

Applying the discretization (6.15) to the DAE system (6.14), it is obtained:

f

(

y− old (y)

h
, y, t

)

= 0 (6.17)

Newton’s method is used in DASSL for solving y from the nonlinear system of

simultaneous equations (6.17). The Newton’s method iterates over the index k:

yk+1 = yk − J−1 · f
(

yk − old (y)

h
, yk, t

)

(6.18)

J−1 represents the matrix inverse of the Jacobian matrix. The Jacobian matrix

of f is defined as:

J =
df

dy
=

∂f

∂y
+

1

h

∂f

∂ẏ
(6.19)

As evaluating the inverse of the Jacobian matrix is computationally expensive,

the inverse matrix calculated at a time instant is employed in as many successive

time steps as possible, before being recalculated. This calculation can be performed

by applying symbolic manipulation techniques or numerically.

6.4.2 Inline integration

Inline integration is a technique aimed to improve the simulation performance.

The step equations of the integration method are explicitly included in the model. As

a result, a discretized version of the model is obtained. The computational causality

is analyzed, considering as unknown variables the variable values at the new instant.

The BLT incidence matrix is obtained and the model is evaluated according to it.

The linear equations are manipulated, to obtain explicitly the unknown variables.

The tearing technique is applied to the nonlinear algebraic loops. The Newton’s

method is applied for solving the nonlinear equations. In general, this technique

avoids applying the Newton’s method to the complete system, as done in Eq. (6.18).

Dymola supports inline integration. The implemented integration methods are

shown in Figure 6.2. The method has to be selected before performing the model

translation.
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Figure 6.2: Inline integration methods supported by Dymola version 2017.

6.4.3 Mixed-mode integration

To choose between an explicit or implicit integration method implies to choose

between using small integration steps or solving an algebraic loop in each integration

step. This motivates the idea of finding a midpoint between implicit and explicit

methods. The idea is to divide the system into two parts:

1. A fast system, with the smallest possible dimension, that can be solved using

an implicit integration method.

2. A slow system that can be solved using an explicit integration method.

Mixed-mode and inline integration methods may be applied in combination. In

this case, an explicit integration method is applied to every state variable, except to

those state variables that the model developer has explicitly defined as “fast states”.

The implicit integration method would be applied to these fast states.

6.5 Further reading

Tearing of nonlinear systems of simultaneous equations is discussed in (Elmqvist

& Otter 1994) and (Cellier & Kofman 2006).

DASSL is described in (Brenan et al. 1996).

Inline integration is discussed in (Elmqvist et al. 1995), and compared with other

numerical integration techniques in (Elmqvist et al. 2002). Mixed-mode integration

in Modelica is analyzed in (Schiela & Olsson 2000).
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7.7 Further reading

Learning objectives

After studying the lesson, students should be able to:

– Formulate hybrid-DAE models according to the OHM formalism.

– Given the description of a hybrid-DAE model according to the OHM forma-

lism, formulate the simulation algorithm of the model.

– Describe events in Modelica using when and if clauses.

– Describe variable structure models in Modelica.

– Describe model initialization conditions in Modelica.
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7.1 Introduction

The state of hybrid models is described using both continuous-time and discrete-

time variables. The hybrid model state evolves over time as a continuous change in

the value of the continuous-time state variables, and as instantaneous changes in

the total state, continuous and discrete, named events. The simulation algorithm

of hybrid models is devised to switch between the solution of the continuous-time

problem, and the execution of the events.

A formalism for hybrid models, specially intended to facilitate their simulation,

is described in this section. The relationship of the formalism with the simulation

algorithm, and with the Modelica description is discussed. The Modelica features

for describing instantaneous changes in the model state, and changes in the model

structure, are described. Modelica support to models with a variable structure is

discussed. Finally, initialization of Modelica models is explained.

7.2 The OHM formalism

There are several formalisms for describing hybrid models. The formalism dis-

cussed in this section is based on the OHM (Omola Hybrid Model) formalism, which

was proposed in the early 1990s together with the Omola modeling language. Omola

is nowadays no longer used, but it had a relevant influence on the first proposal, and

initial development of the Modelica language.

A hybrid model M is represented as the following tuple (i.e., finite ordered

sequence of elements):

M = 〈q, x, y, E, G, H, Φ, ∆〉 (7.1)

where the tuple elements are defined as described below.

q =
{

q1, ..., qnq

}

is a vector that contains the model discrete-time variables.

Discrete-time variables can be of real, integer, Boolean and string type.

x = {x1, ..., xnx
} is a vector that contains the continuous-time state variables.

Continuous-time variables can only be of real type.

y =
{

y1, ..., yny

}

is a vector that contains the continuous-time algebraic varia-

bles. As indicated previously, these variables are of real type.
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E = {e1, ..., ene
} is a set that contains all the possible types of events.

G =
{

g1, ..., gng

}

is the set of expressions that define the continuous-time beha-

vior of the model. Each of these expressions represents a continuous-time

equation, so that the model equations are:

gi (x, ẋ, y, qt, t) = 0 with i = 1, . . . , ng (7.2)

Continuous-time equations must be satisfied at any time of the simulation,

including the model initialization, and the event execution.

The qt notation indicates that the value of the discrete-time variables q is

updated at the event instants, being constant between any two consecutive

events. From the point of view of the numerical integration algorithm employed

for solving the continuous-time part of the model, discrete-time variables have

constant known values. The DAE system that describes the continuous-time

part of the model is composed of the Eqs. (7.2) and can be represented as:

g (x, ẋ, y, qt, t) = 0 (7.3)

Note that we are assuming that the DAE system has been manipulated (if

necessary), so that the variables that appear differentiated are the state varia-

bles.

H = {h1, ..., hnh
} is a set of Boolean expressions, named invariant expressions,

that have the following form:

hi (x, ẋ, y, qt, t) (7.4)

Invariant expressions divide the state space into two regions:

1. The set of admissible states, which are those that make the value of every

Boolean expression hi to be true.

2. The set of non-admissible states, which are those that make the value of

at least one of the Boolean expression to be false.

When the model trajectory crosses the boundary between these two regions,

exiting from the set of admissible states, an event is triggered. Therefore, the

invariant expressions describe (when the expression value changes from true

to false) trigger conditions of events.



MODELING AND SIMULATION IN ENGINEERING USING MODELICA

The Boolean complements of the invariant expressions are named event con-

ditions. An event condition that depends on at least one continuous-time

variable is named continuous-time event condition. If an event condition

depends only on discrete-time variables, then it is named discrete-time event

condition. Time events have invariant expressions of the form:

hi = t < ti (7.5)

where t represents the time variable, and ti is a discrete-time variable repre-

senting the future time in which the event will be triggered.

Φ : H → E is a function that associates an event type to each invariant

expression. When the value of hi changes from true to false, the event type

associated to hi is triggered.

∆ = {δ1, ..., δne
} is a set of vector expressions that describes the instantaneous

change in the model variables produced by the execution of each event type.

These vector expressions describe vector equations with the following form:

δi (xa, ẋa, ya, qa, xb, ẋb, yb, qb, te) = 0 (7.6)

where {xa, ẋa, ya, qa} represents the value of the variables after the event

execution, {xb, ẋb, yb, qb} the value before the event execution, and te is the

value of the time variable at the event execution instant.

At the event execution time te, a discontinuous change in the model variables

takes place. The value of the model variables changes from {xb, ẋb, yb, qb} to
{xa, ẋa, ya, qa}. The former are referred to as the previous values and the

latter as the new values.

The vector expression δi is associated to the event ei. Being known the value of

the variables before the event, the event execution is performed as follows: the

vector equation associated to the event, together with all the continuous-time

equations of the model, are solved jointly to calculate the value of the variables

after the event.

7.3 Model specification and simulation algorithm

The formal specification described in Section 7.2 is closely related to the si-

mulation algorithm implemented by the Modelica modeling environments. This

algorithm, which was outlined in Section 1.4, is composed of the following parts.
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1. The solution of the continuous-time problem, which is described by the

DAE system (7.3). As described in Lesson 6, the numerical solution of the

DAE system implies solving nonlinear systems of simultaneous equations, and

performing numerical integration. The discrete-time variables have constant

known values during the solution of the continuous-time problem. By defini-

tion, the values of the discrete-time variables only change when executing the

events.

2. The detection of events, which is carried out by checking the invariant

expressions during the solution of the continuous-time problem. When an

invariant expression changes from true to false, the numerical solution of the

continuous-time problem is stopped, and an iterative algorithm for finding the

trigger time of the event is started.

3. The determination of the event trigger time. As the numerical integration

of the DAE system advances in time steps, the event can be detected at a time

later than its trigger time. Therefore, when an event is detected, an iterative

method is employed to locate the event trigger time within the last integration

step. A time interval is obtained, satisfying that the interval contains the event

trigger time, and the interval length is below a certain tolerance. It is assumed

that the event trigger time is the right limit of the interval, and is named te.

4. The execution of the event. The new values of the model variables, calcu-

lated at the event time as a result of executing the event, must be consistent

initial values for the continuous-time problem, which will be resumed after

executing the event. These new values must satisfy all the equations that

describe the continuous-time behavior of the model. For this reason, the event

execution is also referred to as solving the restart problem. The execution

of the ei event consists in calculating {xa, ẋa, ya, qa} solving the following

system of equations:

δi (xa, ẋa, ya, qa, xb, ẋb, yb, qb, te) = 0 (7.7)

g (xa, ẋa, ya, qa, te) = 0 (7.8)

The restart problem expressed in this form may be difficult to solve, as it

contains not only unknown variables of real type, but also of integer and

Boolean types. The restart problem is easier to solve expressed as follows:
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qa = δi,1 (xb, ẋb, yb, qb, te) (7.9)

xa = δi,2 (qa, xb, ẋb, yb, qb, te) (7.10)

g (xa, ẋa, ya, qa, te) = 0 (7.11)

Being known the previous values of the model variables, the new values of

the discrete-time variables are trivially calculated from Eq. (7.9). Next, the

new values of the continuous-time state variables are trivially calculated from

Eq. (7.10). Finally, the new values of the continuous-time algebraic variables

and derivatives are calculated from the DAE system (7.11).

7.4 Model specification and Modelica description

Continuing with the discussion on the specification of hybrid DAE models, the

description of events in Modelica is explained below. Events are described in Mode-

lica using when clauses, and if sentences and clauses.

When clauses allow to describe changes in the value of discrete-time variables,

and to reinitialize (i.e., change discontinuously) the value of continuous-time state

variables. A when clause is composed of a logical expression describing the clause

trigger condition, and a set of equations, named instantaneous equations, in

which the new values of the variables appear explicitly indicated. The syntax of the

when clause is essentially the following:

when logical expression then

instantaneous equations

end when;

(7.12)

At the time in which the logical expression changes from false to true, the changes

in the variable values described by the instantaneous equations are made. The

instantaneous equations have to be written so that the restart problem is formulated

in the form described by Eqs. (7.9) – (7.11).

– The equations describing changes in the value of discrete-time variables have

to be written as assignments: the new value assigned to the left-hand side

variable is calculated evaluating the expression on the right-hand side.
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– The value of continuous-time state variables is reinitialized in Modelica using

the reinit function. This function has two arguments: the state variable to be

reinitialized, and the expression employed for calculating the new value.

If sentences allow to describe changes in the model equations. The modeling

environment translates automatically the if sentences into equations. For instance,

the following if sentence

0 = if cond then f1 else f2; (7.13)

indicates that while cond equals true, it must be satisfied 0 = f1, and while cond

equals false, it must be satisfied 0 = f2. This if sentence is automatically translated

by the modeling environment into the following equation

0 = α · f1 + (1− α) · f2 (7.14)

where α is a discrete-time dummy variable, whose value is one while cond equals true,

and zero while cond equals false. The changes in the value of α can be performed

at events. The relationship with the OHM formalism is as follows: Eq. (7.14), which

represents the if sentence, belongs to the G set, and the α variable is a component

of the q vector.

With the purpose of making the formal specification of hybrid models more

similar to their Modelica description, we will perform the specification as follows:

1. Indicating the discrete-time variables (q), the continuous-time state variables

(x), and the continuous-time algebraic variables (y). The dummy variables

introduced for translating the if sentences are included in q.

2. Writing the equations (instead of the expressions) that describe the continuous-

time behavior, including the equations equivalent to the if sentences.

3. Writing the tuple elements E, H , Φ and ∆ in a table with the following

characteristics.

– The table has ne rows: one row per event type in the E set. The first

column of the table contains the consecutive numbering of its rows. The

i-th row of the table corresponds to the ei event type.

– The second column of the table contains the trigger condition of each

event type (instead of the corresponding invariant expression), this is,
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the Boolean complements of H . The Φ function associates invariant ex-

pression with event types. As the trigger condition of the i-th event type

is written in the i-th row of the table, the Φ function is represented in

the table.

– The third column of the table contains the instantaneous equations (ins-

tead of the vector expression) that describe the change in the values of the

discrete-time variables and the continuous-time state variables produced

at the event. State variables whose change is not explicitly indicated are

assumed to remain constant at the event.

The following examples illustrate how the specification of some hybrid models

can be described.

7.4.1 Bouncing ball

Let’s see an example of how to describe the formal specification of a hybrid

model. The model describes the vertical movement of a ball that falls down due to

gravity and bounces on the floor. The gravitational acceleration is assumed to have

a constant value, g = 9.8 m/s2. The vertical position of the ball (i.e., the vertical

distance from the ball center to the floor), and the ball velocity are denoted as h

and v respectively.

The references for the ball position and velocity are selected as follows. The

floor is assumed to be at rest, and at zero position. Positions above the floor are

positive. The velocity of the ball is positive when it moves upward. The following

two equations describe the free vertical movement of the ball.

dh

dt
= v (7.15)

dv

dt
= −g (7.16)

The initial position and velocity of the ball are denoted as h0 y v0 respectively.

The ball bounces when touches the floor. It is assumed that the direction of

the ball velocity is reversed and its magnitude is reduced by 20%. Naming vb the

velocity before the bounce and va the velocity after the bounce, it is verified when

the bounce takes place:
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va = −0.8 · vb (7.17)

For instance, if the ball velocity before bouncing is −10 m/s, then after bouncing

is 8 m/s. The negative sign of the velocity indicates that the ball is falling, while the

positive sign indicates that it is ascending. Eq. (7.17) can be described in Modelica

employing a when clause and the reinit function, as shown below.

when h ≤ 0 then

reinit(v,−0.8 · v);

end when;

(7.18)

The reinit function has two arguments. The first one is the continuous-time state

variable, and the second one is a real type expression. When the reinit function is

called, the expression of the second argument is evaluated and the obtained value is

assigned to the state variable passed as first argument.

The ball position at the event execution time will be very close to zero, but

probably it will not be exactly zero. Including within the when clause another call to

the reinit function, the ball position is reinitialized to zero after the event execution.

when h ≤ 0 then

reinit(v,−0.8 · v);

reinit(h, 0);

end when;

(7.19)

The Boolean expression (h ≤ 0) is the logical condition, and the two reinit

sentences are the instantaneous equations of the when clause.

The formal specification of this model can be described as follows. The vectors

containing the model variables are shown below. As the model does not contain

discrete-time variables and continuous-time algebraic variables, the corresponding

vectors are empty.

q = { } (7.20)

x = {h, v} (7.21)

y = { } (7.22)
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Table 7.1: Events of the bouncing ball model.

Event condition Instantaneous equations

1 h ≤ 0
va = −0.8 · vb

ha = 0

The continuous-time equations are Eqs. (7.15) and (7.16). The events are descri-

bed in Table 7.1.

This model has only one type of event. Observe that the restart problem for this

event consists in calculating {ha, va, derha, derva} from the system of four equations

composed by the instantaneous equations of the event (see the second column of

Table 7.1), and the two equations that describe the continuous-time behavior, this

is, Eqs. (7.15) and (7.16). The system is written below.

va = −0.8 · vb (7.23)

ha = 0 (7.24)

derha = va (7.25)

derva = −g (7.26)

7.4.2 Liquid storage tank with drain valve

As a second example, let’s consider the system depicted in Figure 7.1. It is

composed of a liquid storage tank, an input pipe (connected on the top of the

tank), a drain pipe (connected at medium height, h0), and a valve to regulate the

flow through the drain pipe.

The valve opening, represented as V , takes values between 0 (fully closed), and

1 (fully open, allows to pass 100% of the flow). Let’s assume that the input flow of

liquid (Fin) and the valve opening (V ) are known functions of time.

Fin = f1(t) (7.27)

V = f2(t) (7.28)
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Figure 7.1: Liquid storage tank with drain valve.

The drain pipe is connected at h0 height. Therefore, liquid flows through the drain

pipe only if the following two conditions are simultaneously satisfied: the liquid level

in the tank (h) is greater than h0, and the valve is not closed. The output flow of

liquid is described by the following two-branch equation:

Fout =







0 if h ≤ h0

K · V ·
√

h− h0 if h > h0

(7.29)

where K and h0 are parameters with known values. Eq. (7.29) can be described in

Modelica employing an if sentence, which will be automatically translated by the

modeling environment into an equation of the form:

Fout = α ·K · V ·
√

h− h0 (7.30)

where α is a discrete-time dummy variable, whose value is zero while h ≤ h0, and

one otherwise (i.e., while h > h0).

Assuming that the liquid has a constant density, the balance of liquid mass in

the tank can be expressed as:

A · dh

dt
= Fin − Fout (7.31)

where the tank section, denoted as A, is a known parameter.

The system has an overflow alarm that is triggered when the liquid level inside the

tank becomes greater than a known predefined value, hmax. The alarm is described

by a Boolean variable named Alarm, whose value is calculated evaluating the logical

expression h > hmax.

The formal specification of the model is shown below. The model variables are:
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Table 7.2: Events of the tank model.

Event condition Instantaneous equations

1 α == 0 and h > h0 αa = 1

2 α == 1 and h ≤ h0 αa = 0

3 Alarm == 0 and h > hmax Alarma = 1

4 Alarm == 1 and h ≤ hmax Alarma = 0

q = {α, Alarm} (7.32)

x = {h} (7.33)

y = {Fin, Fout, V } (7.34)

The equations that describe the continuous-time behavior are Eqs. (7.27), (7.28),

(7.30) and (7.31). The events are described in Table 7.2. Observe that there are four

types of events.

If the change in the value of a state variable is not explicitly indicated by an

instantaneous equation, then it is assumed that the value of this state variable does

not change at the event. An equation stating that the “before” and “after” values of

this state variable are equal is automatically included in the restart problem.

For instance, assuming that the event is triggered at time te, the restart problem

for the first type of event (see Table 7.2) is:

αa = 1 (7.35)

Alarma = Alarmb (7.36)

ha = hb (7.37)

Fina
= f1(te) (7.38)

Va = f2(te) (7.39)

Fouta
= αa ·K · Va ·

√

ha − h0 (7.40)

A · derha = Fina
− Fouta

(7.41)
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Eq. (7.35) is the instantaneous equation indicated in the event table. Eqs. (7.36)

and (7.37) indicate that the values of the Alarm and h variables don’t change at

the event. Eqs. (7.38) – (7.41) describe the continuous-time behavior. The unknown

variables to calculate from these seven equations, Eqs. (7.35) – (7.41), are: {αa,

Alarma, ha, derha, Fina
, Va, Fouta

}.

7.4.3 Two-tank and valve system

Let’s consider the system depicted in Figure 7.2 that is composed of two liquid

storage tanks connected through a valve. The mass of the liquid stored in the tanks

is denoted as m1 and m2, and the temperature of the liquid as T1 and T2. The tank

sections, S1 and S2, and the gravitational acceleration, g, are known parameters of

the model. The mass flow rate from tank 1 to tank 2 is denoted as F m.

The first tank is modeled writing the mass and energy balances, and the re-

lationship between the pressure at the bottom and the mass of liquid. The heat

capacity of the liquid (Cp) is a known parameter of the model.

dm1

dt
= −F m (7.42)

m1 · Cp ·
T1

dt
= −F m · Cp · (Tf − T1) (7.43)

p1 =
m1 · g

S1
(7.44)

The second tank is modeled analogously.

dm2

dt
= F m (7.45)

m2 · Cp ·
T2

dt
= F m · Cp · (Tf − T2) (7.46)

p2 =
m2 · g

S2

(7.47)

The mass flow rate between the tanks (F m) is proportional to the valve opening

(θ), and to the Kv parameter. We assume that the flow is positive if exits Tank 1

and enters Tank 2. The constitutive relationship of the valve is:

F m =







Kv · θ ·
√

p1 − p2 if p1 > p2

−Kv · θ ·
√

p2 − p1 if p1 ≤ p2

(7.48)
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Figure 7.2: Liquid storage tanks connected through a valve.

The temperature of the liquid flowing through the valve (Tf ) depends on the flow

direction:

Tf =







T1 if p1 > p2

T2 if p1 ≤ p2

(7.49)

The two-branch equations (7.48) and (7.49) can written as shown below, intro-

ducing a dummy variable α whose value is one while p1 > p2, and zero otherwise.

F m = α ·Kv · θ ·
√

p1 − p2 + (1− α) ·
(

−Kv · θ ·
√

p2 − p1

)

(7.50)

Tf = α · T1 + (1− α) · T2 (7.51)

The valve opening (θ) is modeled as a discrete-time variable. An initial value is

assigned to the valve opening. The valve opening is kept constant during t0 seconds.

Then, the valve opening changes instantaneously to the value θ0. The t0 and θ0

quantities are known parameters of the model. This behavior can be described

employing a when clause:

when t > t0 then

θ = θ0;

end when;

(7.52)

The formal specification of this model is shown below. The model variables are:

q = {θ, α} (7.53)

x = {m1, m2, T1, T2} (7.54)

y = {F m, Tf , p1, p2} (7.55)
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Table 7.3: Events of the two-tank and valve model.

Event condition Instantaneous equations

1 α == 0 and p1 > p2 αa = 1

2 α == 1 and p1 ≤ p2 αa = 0

3 t > t0 θa = θ0

The following equations describe the continuous-time behavior:

Tf = α · T1 + (1− α) · T2 (7.56)

F m = α ·Kv · θ ·
√

p1 − p2 + (1− α) ·
(

−Kv · θ ·
√

p2 − p1

)

(7.57)

dm1

dt
= −F m (7.58)

m1 · Cp ·
dT1

dt
= −F m · Cp · (Tf − T1) (7.59)

p1 =
m1 · g

S1
(7.60)

dm2

dt
= F m (7.61)

m2 · Cp ·
dT2

dt
= F m · Cp · (Tf − T2) (7.62)

p2 =
m2 · g

S2
(7.63)

The events are described in Table 7.3. Three types of events have been defined.

The two firsts types of event describe the changes in the flow direction. The third

type of event describes the abrupt change in the valve opening.

We have assumed that the mass flow through the valve is an algebraic function

of the pressure difference. This is equivalent to neglect the inertia of the circulating

liquid. Let’s now take a different approach in modeling the valve. Instead of neglec-

ting the liquid inertia, we assume now that the linear momentum of the liquid (P )

changes over time in response to the pressure difference. The valve model is shown

below. When clauses are employed to describe the change in the valve opening, and

to reinit the linear momentum when the valve becomes closed. The L parameter

represents the effective length of the valve, and K∗
v is a characteristic parameter of

the valve.
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Tf =







T1 if P > 0

T2 otherwise
(7.64)

dP

dt
= K∗

v · θ2 · (p1 − p2) (7.65)

P = F m · L (7.66)

when t > t0 then

θ = θ0

end when;

(7.67)

when θ ≤ 0 then

reinit (P, 0) ;

end when;

(7.68)

The formal specification of the model is written next. The model variables are:

q = {θ, α} (7.69)

x = {m1, m2, T1, T2, P} (7.70)

y = {F m, Tf , p1, p2} (7.71)

where α is a dummy variable introduced to translate into an equation the two-branch

equation (7.64), which describes the temperature (Tf) of the liquid flowing through

the valve. The continuous-time behavior is described by the following equations.

Tf = α · T1 + (1− α) · T2 (7.72)

dP

dt
= K∗

v · θ2 · (p1 − p2) (7.73)

P = F m · L (7.74)

dm1

dt
= −F m (7.75)

m1 · Cp ·
dT1

dt
= −F m · Cp · (Tf − T1) (7.76)

p1 =
m1 · g

S1
(7.77)

dm2

dt
= F m (7.78)

m2 · Cp ·
dT2

dt
= F m · Cp · (Tf − T2) (7.79)

p2 =
m2 · g

S2
(7.80)
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Table 7.4: Events considering the inertia of the liquid that flows through the valve.

Event condition Instantaneous equations

1 α == 0 and P > 0 αa = 1

2 α == 1 and P ≤ 0 αa = 0

3 t > t0 θa = θ0

4 θ ≤ 0 Pa = 0

The model events are described in Table 7.4. There have been defined four types

of events. The two first types describe the change in the flow direction. The third

type describes the abrupt change in the valve opening. The fourth type of event sets

to zero the linear momentum of the liquid when the valve becomes closed.

7.5 Models with a variable structure

A model is said to have a variable structure if its mathematical description

can change during the simulation run. Models of this type can be in different

modes, being each mode described by a particular system of equations. During

the simulation run, transitions between modes are taking place according to prede-

fined conditions, producing the corresponding changes in the model mathematical

description. Some examples are discussed next.

7.5.1 Ideal switch

A variable structure model that appears in different domains is the ideal switch.

The model has two connectors. Each connector has an across (e) and a through

(f) variable. Let’s represent the variables of the first connector as e1/f1, and the

variables of the second connector as e2/f2. The through quantity is conserved, but is

not accumulated inside the ideal switch: f1 = −f2. The ideal switch has two modes:

Open and Close. The constitutive relationship of the ideal switch is f1 = 0 while in

the Open mode, and it is e1 = e2 while in the Close mode.

To illustrate the previous description, a model of an ideal switch in the hydraulic

domain is represented in Figure 7.3. The actual mode of the switch is determined

by the value of a Boolean variable named OpenSw. The connector variables are

pressure (p), and volumetric flow rate (FV ).
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Figure 7.3: Two-mode model of an ideal switch in the hydraulic domain.

– While OpenSw equals true, the switch is in the Open mode: there is no flow

through the switch, and the pressure drop is determined by the rest of the

hydraulic circuit. The constitutive relationship is:

FV = 0 (7.81)

– While OpenSw equals false, the switch is in the Close mode. The pressure

drop is zero, and the flow through the switch is determined by the rest of the

hydraulic circuit. The constitutive relationship is:

pA = pB (7.82)

As described in the Section 7.4, models with a variable structure can be described

in Modelica employing if sentences. These sentences are automatically translated by

the modeling environment into equations. The constitutive relationship of the ideal

switch represented in Figure 7.3 can be described in Modelica using this if sentence:

0 = if OpenSw then FV else pA − pB; (7.83)

that is automatically translated by the modeling environment into the following

equation:

0 = α · FV + (1− α) · (pA − pB) (7.84)

where the discrete-event dummy variable α is equal to one while OpenSw is true,

and is equal to zero while OpenSw is false.

The computational causality of the switch’s constitutive relationship depends on

the value of the OpenSw variable. While the value of OpenSw is true, the volumetric
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flow rate is evaluated from the constitutive relationship: [FV ] = 0. While OpenSw

is false, the pressure at a connector is evaluated from the constitutive relationship:

[pA] = pB or pA = [pB].

The computational causality of the switch’s constitutive relationship can change

during the simulation run. Therefore, assigning the computational causality of the

complete model, the switch’s constitutive relationship will be part of an algebraic

loop. The model discussed in Section 7.5.2 illustrates it.

7.5.2 Hydraulic system with relief pipe

Let’s consider the model depicted in Figure 7.4. The main hydraulic circuit is

composed of a primary pipe connected to a source of liquid. An ideal switch and a

secondary pipe are connected in parallel to the primary pipe.

The hydraulic circuit is regulated as follows. During normal operating conditions,

the switch is open and all the liquid flows through the primary pipe (FV,2 = 0). When

the volumetric flow rate through the primary circuit is larger than a certain critical

value, the switch is closed, circulating part of the liquid flow through the secondary

hydraulic circuit (p1 = p2).

Let’s assume for constructing this model that the constitutive relationship of a

pipe is Eq. (7.85), where FV is the volumetric flow rate through the pipe, ∆p the

pressure drop between the pipe connectors, S is the cross sectional area of the pipe,

and cdesc is a coefficient whose value can be calculated from Eq. (7.86).

FV = S · cdesc ·
√

∆p (7.85)

cdesc =

√

2 ·D
κF anning · L · ρ

(7.86)

The pipe’s constitutive relationship can be linearized around an operating point

(FV,0, ∆p0). It is obtained:

FV = FV,0 +
S · cdesc

2 ·
√

∆p0

· (∆p−∆p0) (7.87)

This linearized constitutive relationship can be written as:

pA − pB = R∗ + R · FV (7.88)
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Figure 7.4: Hydraulic system composed of a liquid source, two pipes, and an ideal switch.

The following equations describe the hydraulic circuit shown in Figure 7.4. We

have made the simplifying assumption that the atmospheric pressure (patm) is cons-

tant. For the sake of simplicity, the equations to calculate α have not been included

in the model.

p1 − patm = R∗
1 + R1 · FV,1 (7.89)

p2 − patm = R∗
2 + R2 · FV,2 (7.90)

0 = α · FV,2 + (1− α) · (p1 − p2) (7.91)

FV,S = FV,1 + FV,2 (7.92)

FV,S = f (t) (7.93)

Assuming that α is an input variable of the model, the computational causality

of the model can be calculated. The sorted and solved model is written below.

[FV,S] = f (t) (7.94)

[FV,2] =
(R∗

1 − R∗
2 + R1 · FV,S) (1− α)

(R1 + R2) (1− α)− α
(7.95)

[FV,1] = FV,S − FV,2 (7.96)

[p1] = R∗
1 + R1 · FV,1 + patm (7.97)

[p2] = R∗
2 + R2 · FV,2 + patm (7.98)

The denominator of Eq. (7.95) is different from zero in both modes (i.e., in the

cases α = 0 and α = 1), meaning that the model is valid for the two modes of the

ideal switch. If the hydraulic system would contain N ideal switches, the complete
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model would have the required algebraic loops for it to be valid in any of the 2N

possible combinations of the switches’ modes.

In this model, the number of DoF is independent of the switch mode. However,

there exist models in which the mode transitions introduce or eliminate constraints

on the state variables, which change the DoF number of the model. An example is

shown in Section 7.5.3.

7.5.3 Drain pipe

Pipes were modeled in Section 7.5.2 as resistive components, describing the

pressure loss caused by the friction between the pipe wall and the liquid. Another

phenomenon related to the liquid flow in pipes is the liquid inertia. This phenomenon

can be modeled describing that the liquid stores kinetic energy, exhibiting a behavior

analogous to the electric inductor.

Let’s consider a liquid of constant density ρ that flows with uniform velocity v

(independent of the spatial coordinates, but time dependent) in a pipe with cross-

sectional area S and length L. The linear momentum (P ) of the liquid in the pipe

can be calculated from Eq. (7.99), where the mass of liquid is equal to ρ ·L · S, and
FV is the volumetric flow rate (FV = S · v).

P = ρ · L · S
︸ ︷︷ ︸

Mass of liquid

·v = ρ · L · FV
︸︷︷︸

=S·v

(7.99)

The derivative of the liquid’s linear momentum is equal to the force exerted on

the liquid (Newton’s second law of motion). It is assumed that the pressure difference

between the pipe terminals is the only force exerted on the liquid that is inside the

pipe. The model is represented on the left side of Figure 7.5. In analogy with the

electrical domain, the I coefficient calculated in Eq. (7.100) is named inductance.

I =
ρ · L

S
(7.100)

On the right side of Figure 7.5, the resistive behavior discussed in Section 7.5.2

is represented. Energy dissipation by friction between the liquid and the pipe wall is

described as a nonlinear algebraic relationship involving the pressure drop and the

volumetric flow rate.
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Figure 7.8: Drain pipe while the ideal switch is open.
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Let’s consider the hydraulic circuit shown in Figure 7.6. The liquid stored in

the tank is drained through a valve-regulated pipe that is modeled as a resistive

component, an ideal switch, and an inductive component. It is assumed that the

pressure at the tank bottom is a known function of time, p1 = f(t), and the

atmospheric pressure (patm) is a known constant.

The model equations depend on the switch mode, as described in Figures 7.7 and

7.8. Observe that the number of DoF depends on the switch mode.

– While the ideal switch is closed, the model has one DoF. The volumetric flow

rate (FV ) can be selected as state variable.

– While the ideal switch is open, the model has zero DoF. The volumetric flow

rate (FV ) is an algebraic variable that is calculated from the equation FV = 0.

The DAE index can be reduced by differentiating this equation (i.e., FV = 0)

and adding the obtained equation (dFV

dt
= 0) to the system.

At the time of writing this book, the Modelica modeling environments don’t

support the simulation of models with variable number of DoF. The model developer

needs to modify the modeling hypotheses, in order to avoid runtime changes in the

number of DoF.

An approach consists in describing the switch as a resistive component with low

resistance while closed, and high resistance while open. In this way, the switch’s

constitutive relationship contains both the volumetric flow rate and the pressure

drop in the two modes. If the ideal switch is replaced by the resistive switch, the

drain pipe model depicted in Figure 7.6 has one DoF with independence of the switch

mode.

7.5.4 Tanks connected in parallel

In the example discussed in Section 7.5.3, the high-index problem arises because

the constitutive relationship of the open ideal switch (FV = 0) only contains FV

(having, in consequence, FV to be calculated from this equation), and FV appears

differentiated in the constitutive relationship of the hydraulic inductor.

The dual problem arises, for instance, when two storage tanks are connected in

parallel to a liquid source, so that the flow to one of the tanks is regulated by an

ideal switch. The tank is described as a hydraulic capacitor that stores potential

energy. The number of DoF of this model depends on the switch mode, as shown in
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Figures 7.9 and 7.10. While the ideal switch is closed, its constitutive relationship

only contains the pressures at the switch connectors. As these variables appear

differentiated in the tank’s constitutive relationships, it is a high-index DAE system.

7.5.5 Resistive switch

As commented in Section 7.5.3, the difficulties associated to the use of ideal

switches are avoided using resistive switches. This is an approach commonly adopted

by model developers.

A model of a resistive switch is shown in Figure 7.11. It has two modes: open and

closed. The two constitutive relationships (one per mode) are algebraic equations

that contain the connector pressures and the volumetric flow rate. The resistive

switch has low resistance while closed and high resistance while open.

The ε () function that appears in the constitutive relationships of Figure 7.11

is any function that returns a value small enough to be considered negligible. A

different function is employed in each mode. A possible selection is:

pA − pB = ε · FV if OpenSw = 0 (7.101)

pA − pB =
1

ε
· FV if OpenSw = 1 (7.102)

where in this case ε is a parameter small enough for the term in which intervenes to

be negligible. As shown in Figures 7.12 – 7.15, this resistive switch produces models

with the same number of DoF in the open and closed modes.
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Figure 7.11: Resistive switch in the hydraulic domain.
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7.6 Model initialization

The model initialization, this is, the calculation of the model variables at the

initial time, is problematic in some cases. If the model contains nonlinear algebraic

loops, these are solved by applying iterative methods, using as initial guesses the

corresponding values provided by the model developer. Depending on the problem

in particular and on the proximity of the initial guess to the actual solution, the

iterative method may not converge.

Once the model has been solved at the initial time, the solution of the algebraic

loops is much less problematic during the integration of the continuous-time problem.

The initial guess for iterating the algebraic loop is the value of the variable calculated

at the previous time step. If the iterative method does not converge, the length of

the integration time step can be reduced, so that the searched solution gets closer

to the initial guess.

Observe that when an event produces instantaneous changes in the model state,

the situation can be as problematic as solving the initialization problem. The values

of the variables before the event are used as initial guess for Newton’s iteration. The

abrupt change in the model state can make the actual solution of the algebraic loop

to be “too far” from the initial guess, so that the iteration of the restart problem

does not converge.

The features provided by the Modelica language for defining the initialization

problem are discussed in this section. These are based on supporting separated

definition of the initialization problem and the dynamic problem, so that they can

be defined using different sets of equations and, consequently, their computational

causality is analyzed separately.

7.6.1 Posing the initialization problem

The initialization problem consists in calculating consistent values for all the

model variables at the initial time. The vector of unknown variables to evaluate is:

{der (x) , x, y, q, pre (q) , p, c} (7.103)

where the vector components represent the derivatives (der(x)), the variables that

appear differentiated (x), the algebraic continuous-time variables (y), the discrete-
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model Example1
parameter Real x0=1;
parameter Real a=2;
parameter Real b=3;
parameter Boolean steadyState=true;
Real x(start=x0, fixed= not steadyState);

equation
der(x) = a*x + b;

initial equation
if steadyState then

der(x) = 0;
end if;

end Example1;

Modelica Code 7.1: Initialization of a continuous-time model.

time variables (q), the “previous” value of the discrete time variables (pre (q)), the

parameters (p), and the Boolean conditions of the if and when clauses c.

These unknown variables are calculated by solving the equations and algorithms

that describe the continuous-time behavior of the model, and a set of additional

constraints named initial conditions. The number of these initial conditions has

to be equal to the number of continuous-time state variables (≤ dim(x)), plus the

number of parameters (= dim(p)), plus the number of discrete-time variables (=

dim(q)).

7.6.2 Continuous-time variables

The initial value of the continuous-time variables can be specified using the start

and fixed attributes. For instance, declaring the x variable as

Real x (start = x0, fixed = true);

these values of the start and fixed attributes are translated by the modeling environ-

ment into the following initial condition for the x variable:

x = x0

If the fixed attribute is not specified, its by-default value is:

fixed = true for constants and parameters

fixed = false for other variables

Another way of specifying initial conditions is by means of the initial equation

and initial algorithm sections. For instance, consider the Modelica Code 7.1. In
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this model, the set of equations that defines the initialization problem depends on the

value of the Boolean steadyState parameter. In consequence, the modeling environ-

ment needs to be able to calculate the value of this parameter before analyzing the

computational causality of the model, and the model developer will not be allowed

to modify the value of this parameter after the model translation.

If steadyState equals true, then the following equation is an initial condition:

der(x) = 0

If steadyState equals false, then the initial condition is:

x = x0

Additional initial conditions are the values assigned to the parameters a and b,

this is, a = 2, b = 3.

The equations and algorithms that define the continuous-time behavior of the

model have to be satisfied also at the model initialization. The continuous-time

behavior of the model shown in Modelica Code 7.1 is described using only one

equation, which has to be satisfied at the initial time:

der(x) = a*x + b

Summarizing the previous discussion, the initialization problem depends on the

value assigned to the steadyState parameter. Depending on this value, the initia-

lization problem is posed as described on the left or right column of the following

table.

steadyState = true steadyState = false

a = 2, b = 3 a = 2, b = 3

der(x) = a*x + b der(x) = a*x + b

der(x) = 0 x = x0

In both cases, the problem is well posed. It consists of 5 equations to calculate 5

unknown variables: steadyState, a, b, x and der(x).

7.6.3 Simple plane pendulum

The model of a pendulum is used in this section to show different ways of

specifying the initialization problem. Let’s consider the pendulum depicted in Figu-

re 7.16. The pendulum length (L) and mass (m) are time-independent quantities.
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The gravitational acceleration is g = 9.81 m·s−2. The angle with respect to the

vertical (ϕ) and the angular velocity (w) are described by the following equations:

ϕ̇ = w (7.104)

J · ẇ = −m · g · L · sin (ϕ) (7.105)

The Cartesian coordinates (x, y) are related with the angle (ϕ) and length (L):

x = L · sin (ϕ) (7.106)

y = L · cos (ϕ) (7.107)

Three different ways of initializing the pendulum model are shown in Modelica

Code 7.2.

1. Initial values are assigned to the parameters and the variables that appear

differentiated (ϕ(0) = 1 rad, w(0) = 0 rad·s−1).

2. Initial values are assigned to the vertical Cartesian coordinate (y(0) = 0.9 m)

and the angular velocity (w(0) = 0 rad·s−1). As two different values of ϕ(0)

may correspond to the same value of y(0), an initial guess for the iterative

calculation of ϕ(0) is provided: ϕ(0) ≃ 0.1 rad.

3. Initial values are assigned to the Cartesian coordinates (x(0) = 0.5 m, y(0) =

0.9 m) and the angular velocity (w(0) = 0 rad·s−1). The length of the pendulum

(L) and the initial value of the angle (ϕ(0)) are not specified, but initial guesses

are provided for their iterative calculation: L ≃ 1 m, ϕ(0) ≃ 0.1 rad.

7.6.4 Discrete-time variables

The “previous” value of the discrete-time variables can be initialized in

the following two ways:

1. Setting the value of the start and fixed attributes. For instance, the following

declarations
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Figure 7.16: Simple plane pendulum.

model pendulum
parameter Real m=1, g=9.81;
parameter Real L=1;
parameter Real J=m*L^2;
Real phi (start=1, fixed=true);
Real w (start=0, fixed=true);
Real x;
Real y;

equation
der(phi) = w;
J*der(w) = -m*g*L*sin(phi);
x = sin(phi)*L;
y = cos(phi)*L;

end pendulum;

model pendulum
parameter Real m=1, g=9.81;
parameter Real L=1;
parameter Real J=m*L^2;
Real phi (start=0.1, fixed=false);
Real w (start=0, fixed=true);
Real x;
Real y (start=0.9, fixed=true);

equation
der(phi) = w;
J*der(w) = -m*g*L*sin(phi);
x = sin(phi)*L;
y = cos(phi)*L;

end pendulum;

model pendulum
parameter Real m=1, g=9.81;
parameter Real L (fixed=false) = 1;
parameter Real J=m*L^2;
Real phi (start=0.1, fixed=false);
Real w (start=0, fixed=true);
Real x (start=0.5, fixed=true);
Real y (start=0.9, fixed=true);

equation
der(phi) = w;
J*der(w) = -m*g*L*sin(phi);
x = sin(phi)*L;
y = cos(phi)*L;

end pendulum;

Modelica Code 7.2: Three different ways of initializing the pendulum model.
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Boolean b (start = false, fixed = true);
Integer i (start = 1 , fixed = true);

produce the two following initial conditions:

pre(b) = false;
pre(i) = 1;

2. Writing the initial conditions within initial equation and initial algorithm

sections. For instance,

initial equation
pre(xd) = 0;
pre(u) = 0;

The initial conditions on the value of the discrete-time variables have to

be written within when clauses whose activation condition is the initial() function.

For instance:

equation
when { initial(), condition1, ...} then

v = ...
end when;

Observe that a when clause is active during the initialization if and only if the

clause condition is the initial() function. It is not possible to specify initial conditions

using other conditions, such as not time < 0, or time >= 0.

If an initial condition is not specified for a discrete-time variable, it is then by-

default assumed that the value of the variable is equal to its previous value. For

instance, if the when clause where the v variable is evaluated does not contain

the initial() function as a trigger condition, then the following initial condition is

assumed: v = pre(v).

7.6.5 Control loop

The model of the control loop shown in Figure 7.17 allows to illustrate the

initialization of the discrete-time variables. The control loop is represented as a block

diagram. The circle indicates the subtraction operation performed to calculate the
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PI x x u= − +ɺ
xxref u

PI x x u= − +ɺ
xxref u

Figure 7.17: Control loop.

difference between the setpoint value (xref ), and the actual output of the plant (x).

The result of this operation, which is named error signal (= xref − x), is the input

to the PI controller. The output of the PI controller (u) is the input to the plant.

The controller is a discrete-time PI controller, with sampling period TS, that is

described by the following difference equations:

xd = pre (xd) +
TS

T
· (xref − x) (7.108)

u = k · (xref − x) + xd (7.109)

where xref −x is the error signal, k and T are the proportional and integral parame-

ters respectively, xd is the integral term, which is calculated from Eq. (7.108), and

k · (xref − x) is the proportional term. As described by Eq. (7.109), the controller

output (u) is calculated by adding the proportional and integral terms.

The plant is described by the following equation:

ẋ = −x + u (7.110)

Four different ways of initializing this model are described next. In each case, the

fragment of Modelica code and the associated initialization problem are shown.
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Case 1

Let’s suppose that the model of the control loop shown in Figure 7.17 is described

as indicated in the following fragment of code:

model ControlLoop
parameter Real k=10, T=1; // PI controller parameters
parameter Real Ts=0.01 "Sampling period";

Real xref "Reference";
Real x (fixed=true, start=2);

discrete Real xd (fixed=true, start=0);
discrete Real u (fixed=true, start=0);

equation
// Reference
xref = sin(time);
// Plant
der(x) = -x + u;
// Discrete PI controller
when sample(Ts,Ts) then

xd = pre(xd) + Ts/T*(xref-x);
u = k*(xref-x)+xd;

end when;
end ControlLoop;

The unknown variables of the initialization problem are:

k, T, Ts
xref
x, der(x)
xd, u, pre(xd), pre(u)

The when clause is not active during the initialization. Therefore, the following

equations are added to the initialization problem:

xd := pre(xd)
u := pre(u)

The sorted and solved equations of the initialization problem are:

k := 10, T := 1, Ts := 0.01
xref := sin(0) // = 0
x := x.start // = 2
pre(xd) := xd.start // = 0
pre(u) := u.start // = 0
xd := pre(xd) // = 0
u := pre(u) // = 0
der(x) := -x+u // = -2
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Case 2

Let’s consider another initial conditions for the control loop model:

model ControlLoop
parameter Real k=10, T=1; // PI controller parameters
parameter Real Ts=0.01 "Sampling period";

Real xref "Reference";
Real x (fixed=true, start=2);

discrete Real xd (fixed=true, start=0);
discrete Real u (fixed=true, start=0);

equation
// Reference
xref = sin(time);
// Plant
der(x) = -x + u;
// Discrete PI controller
when {initial(),sample(Ts,Ts)} then

xd = pre(xd) + Ts/T*(xref-x);
u = k*(xref-x)+xd;

end when;
end ControlLoop;

As the initial() function is a condition of the when clause, the instantaneous

equations of the when clause are added to the initialization problem.

xd := pre(xd) + Ts/T*(xref-x)
u := k*(xref-x) + xd

The sorted and solved equations of the initialization problem are:

k := 10, T := 1, Ts := 0.01
xref := sin(0) // = 0
x := x.start // = 2
pre(xd) := xd.start // = 0
pre(u) := u.start // = 0
xd := pre(xd)+Ts/T*(xref-x) // = -0.02
u := k*(xref-x)+xd // = -20.02
der(x) := -x+u // = -22.02



MODELING AND SIMULATION IN ENGINEERING USING MODELICA

Case 3

Let’s suppose that the control loop model is initialized as shown below. In this

case, the when clause is active during the initialization, and the previous values of

the discrete-time variables are assigned in the initial equation section.

model ControlLoop
parameter Real k=10, T=1; // PI controller parameters
parameter Real Ts=0.01 "Sampling period";

Real xref "Reference";
Real x (fixed=true, start=2);

discrete Real xd;
discrete Real u;

equation
// Reference
xref = sin(time);
// Plant
der(x) = -x + u;
// Discrete PI controller
when {initial(),sample(Ts,Ts)} then

xd = pre(xd) + Ts/T*(xref-x);
u = k*(xref-x)+xd;

end when;
initial equation

pre(xd) = 0;
pre(u) = 0;

end ControlLoop;

The sorted and solved equations of the initialization problem are:

k := 10, T := 1, Ts := 0.01
xref := sin(0) // = 0
x := x.start // = 2
pre(xd) := 0 // = 0
pre(u) := 0 // = 0
xd := pre(xd)+Ts/T*(xref-x) // = -0.02
u := k*(xref-x)+xd // = -20.02
der(x) := -x+u // = -22.02
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Case 4

In this case, the control loop model is initialized imposing that it is at steady

state:

model ControlLoop
parameter Real k=10, T=1; // PI controller parameters
parameter Real Ts=0.01 "Sampling period";

Real xref "Reference";
Real x (fixed=false, start=2);

discrete Real xd;
discrete Real u;

equation
// Reference
xref = sin(time);
// Plant
der(x) = -x + u;
// Discrete PI controller
when {initial(),sample(Ts,Ts)} then

xd = pre(xd) + Ts/T*(xref-x);
u = k*(xref-x)+xd;

end when;
initial equation

pre(xd) = xd;
pre(u) = u;
der(x) = 0;

end ControlLoop;

The sorted equations of the initialization problem are:

k := 10, T := 1, Ts := 0.01
xref := sin(0) // =0
der(x) = 0
// Linear system of 4 simultaneous equations
// Unknown variables: xd, pre(xd), u, x
| pre(xd) = xd
| xd = pre(xd)+Ts/T*(xref-x)
| u = k*(xref-x)+xd
| der(x) = -x+u
pre(u) = u

The sorted and solved equations are:

k := 10, T := 1, Ts := 0.01
xref := sin(0) // = 0
der(x) := 0 // = 0
xd := xref // = 0
u := xref // = 0
x := xref // = 0
pre(xd) := xd // = 0
pre(u) := u // = 0
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7.6.6 Initial model

The model developer can specify initial conditions using the start and fixed

attributes, and the initial equation and initial algorithm sections. These initial

conditions, the by-default initial conditions, and the equations and algorithms that

describe the continuous-time behavior, constitute the initialization problem.

In posing the initialization problem, Modelica allows to replace some of these

equations that describe the model continuous-time behavior, by other equations

that are only used at the model initialization. To this end, if sentences with the

initial() function as condition can be employed. For instance,

equation
y = if initial() then

// expression used only at the model initialization
else

// expression used during the simulation

This feature allows to employ a simplified model to describe the initialization

problem (e.g., a model linearized at the initial operating point), with the aim of

facilitating its numerical solution.

7.7 Further reading

The OHM formalism and the Omola algorithm for hybrid model simulation are

described in (Andersson 1990) and (Andersson 1994). We have used these two theses

as references in preparing this lesson.

The event detection and iteration are discussed in (Cellier 1979) and (Cellier

et al. 1993).

The initialization procedure for Modelica models is described in (Mattsson et al.

2002). The explanations given in Section 7.6 are extracted from this article.

Simulation of variable structure models is discussed in (Elmqvist 1993), (Elmqvist

et al. 1993) and (Cellier et al. 1995). We have employed these three articles as

references in preparing this lesson.

The Modelica features for hybrid modeling are described in (ModelicaTM 2000),

(Otter 2009), (Fritzson 2011) and (Tiller 2001). As their reading was recommended

in previous lessons, probably the reader is now familiar with these books.
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Learning objectives

After studying the lesson, students should be able to:

– Discuss how simultaneous events are handled in Modelica.

– Discuss how event chains are executed by Modelica modeling environments

such as Dymola and OpenModelica.

– Discuss the event detection mechanism based on crossing functions that is

implemented in Modelica modeling environments such as Dymola and Open-

Modelica.

– Discuss how the trigger time of events is calculated by Modelica modeling

environments such as Dymola and OpenModelica.

– Use the noEvent operator of Modelica.

– Detect and avoid chattering.
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8.1 Introduction

In this section, the detection and handling of events are analyzed more in-depth.

The concept of the crossing function is also explained, showing how the Modelica

modeling environments use crossing functions to detect the events. Finally, the

chattering is explained.

8.2 Simultaneous events

The execution of an event can generate the triggering, in that same instant, of

another event. This happens when the solution of the restart problem does not satisfy

one of the invariants, and, consequently, the event corresponding to this invariant is

immediately executed. In this way, several events can be sequentially executed until

all invariants are satisfied, and then, the solution of the continuous-time problem is

resumed. The execution of a sequence of events is called an event chain.

When only one invariant is not satisfied, there is no doubt about how to proceed.

However, several events can be detected simultaneously during the solution of the

continuous-time problem. Also, several invariants can be not satisfied at certain

step in the execution of an event chain. In both cases, it is necessary to establish a

criterion to decide how to execute these simultaneously triggered events.

The order in which simultaneously triggered events are executed may be irrele-

vant. This is typically the case when these events affect to different parts of the model

that don’t interact among them. However, the execution order may be relevant,

affecting to the solution of the restart problem. Let’s consider, for instance, the

model described by Eqs. (8.1) – (8.5).

dx1

dt
= 1 (8.1)

dx2

dt
= −1 (8.2)

x1 + x2 = y (8.3)

when x1 ≥ 0.5 · y then

reinit (x1, 0)

end when;

(8.4)

when x2 ≤ 0.5 · y then

reinit (x2, 10)

end when;

(8.5)
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The initial values assigned to the state variables are:

x1 (0) = 0 x2 (0) = 10 (8.6)

Observe that, at time t = 5, it is satisfied

x1 (5) = 5 x2 (5) = 5 y (5) = 10 (8.7)

and, consequently, the two events are triggered simultaneously.

If the event whose condition is (x1 ≥ 0.5 · y) is executed in first place, the results

shown in Table 8.1 are obtained. As the event condition (x2 ≤ 0.5 · y) is false, the

associated event is no longer triggered and, therefore, is not executed.

On the contrary, if the event with the condition (x2 ≤ 0.5 · y) is executed in the

first place, the results shown in the Table 8.2 are obtained. In this case, the condition

(x1 ≥ 0.5 · y) is false, so the associated event is no longer triggered.

Comparing the results shown in Tables 8.1 and 8.2, it can be seen that the

model state after the event depends on the selection of which of the simultaneously

triggered events is executed in the first place.

There are several methods, deterministic and stochastic, to decide the execution

order of the events triggered simultaneously. One method consists in triggering the

events according to the order in which they have been defined in the model code.

The events scheduled in time can be sorted from the beginning, establishing a queue.

Let’s suppose, for instance, that the events e1 and e2 have been triggered simul-

taneously. The event e1 is executed first, because it has been defined before the event

e2. The solution of the restart problem satisfies one of the three following conditions:

1. If all the invariant expressions are satisfied, then the solution of the continuous-

time problem is resumed.

2. If only one invariant expression is not satisfied, the event associated to this

invariant is executed.

3. If several invariant expressions are not satisfied, the event with less order of

definition, among the events associated to these invariant, is executed.

Summarizing the previous discussion, the algorithm employed to decide which

event to execute would be:
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Table 8.1: Result of executing the event whose condition is (x1 ≥ 0.5 · y).
Before the event execution After the event execution

x1 = 5 x1 = 0
x2 = 5 x2 = 5
y = 10 y = 5
(x1 ≥ 0.5 · y) = true (x1 ≥ 0.5 · y) = false

(x2 ≤ 0.5 · y) = true (x2 ≤ 0.5 · y) = false

Table 8.2: Result of executing the event whose condition is (x2 ≤ 0.5 · y).

Before the event execution After the event execution

x1 = 5 x1 = 5
x2 = 5 x2 = 10
y = 10 y = 15
(x1 ≥ 0.5 · y) = true (x1 ≥ 0.5 · y) = false

(x2 ≤ 0.5 · y) = true (x2 ≤ 0.5 · y) = false

Table 8.3: Result of executing the two events.

Before the event execution After the event execution

x1 = 5 x1 = 0
x2 = 5 x2 = 10
y = 10 y = 10
(x1 ≥ 0.5 · y) = true (x1 ≥ 0.5 · y) = false

(x2 ≤ 0.5 · y) = true (x2 ≤ 0.5 · y) = false

model dispEvent
Real x1(start=0, fixed=true);
Real x2(start=10, fixed=true);
Real y;

equation
der(x1) = 1;
der(x2) = -1;
x1 + x2 = y;
when x1 >= 0.5*y then

reinit(x1,0);
end when;
when x2 <= 0.5*y then

reinit(x2,10);
end when;

end dispEvent;

Modelica Code 8.1: Model used to illustrate the simultaneous triggering of two events.
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Algorithm:

Step 1. Execute the event with less order of definition among the

triggered events. An event is triggered when the value of its

invariant expression is false.

Step 2. Check whether there are triggered events. If this is the

case, go to Step 1. Otherwise, resume the solution of the

continuous-time problem.

Other different algorithm would be:

Algorithm:

Step 1. Determine and sort out, according to the definition order,

the set of triggered events. This set is named E′.

Step 2. If the set E′ is empty, resume the solution of the continuous-

time problem, finishing this algorithm.

Step 3. Execute the first event of the E′ set.

Step 4. Consider the next event of the sorted set E′. If this event

has not been executed yet and it is still triggered, this event

is executed.

Step 5. If every event of E′ has been examined, go to Step 1.

Otherwise, go to Step 4.

Another approach consists in executing simultaneously all the triggered events.

This is the approach adopted in Modelica. To this end, the single-assignment rule

is imposed. This rule states that all the instantaneous changes in a continuous-time

or discrete-time state variable must be described in a single instantaneous equation.

This guarantees that the same state variable is not changed by two instantaneous

equations simultaneously active. The potential risk of executing simultaneously

several events that assign different values to a same state variable is eliminated.

Applying this criterion (i.e., executing simultaneously all the triggered events)

to the previous example, the result shown in the Table 8.3 is obtained. To check it,

let’s describe the model in Modelica as shown in Modelica Code 8.1, and simulate

it using Dymola.

Dymola can be configured for writing information on the executed events in the

message window during the simulation. To this end, the option Event logging has

to be selected in the Debug tab of the Simulation Setup window, before translating

the model (see Figure 8.1). The results obtained by executing the simulation during

16 s with Dymola are shown in Figure 8.2. Dymola writes in the message window

the following report, describing the events detected and iterated (determination of

the event trigger time) during the simulation.



MODELING AND SIMULATION IN ENGINEERING USING MODELICA

Figure 8.1: Configuring Dymola so that the information on the event detection and iteration
during the model initialization and simulation is written in the message window.

Figure 8.2: Simulation of Modelica Code 8.1.
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Expression x2 <= 0.5*y became false ( (x2)-(0.5*y) = 5 )
Expression x1 >= 0.5*y became false ( (x1)-(0.5*y) = -5 )
Iterating to find consistent restart conditions.

during event at Time : 0

Integration started at T = 0 using integration method DASSL
(DAE multi-step solver (dassl/dasslrt of Petzold modified by Dynasim))

Expression x2 <= 0.5*y became true ( (x2)-(0.5*y) = -9.99991e-011 )
Expression x1 >= 0.5*y became true ( (x1)-(0.5*y) = 1e-010 )
Iterating to find consistent restart conditions.
Expression x2 <= 0.5*y became false ( (x2)-(0.5*y) = 5 )
Expression x1 >= 0.5*y became false ( (x1)-(0.5*y) = -5 )
Iterating to find consistent restart conditions.

during event at Time : 5.0000000001

Expression x2 <= 0.5*y became true ( (x2)-(0.5*y) = -5e-010 )
Expression x1 >= 0.5*y became true ( (x1)-(0.5*y) = 5e-010 )
Iterating to find consistent restart conditions.
Expression x2 <= 0.5*y became false ( (x2)-(0.5*y) = 5 )
Expression x1 >= 0.5*y became false ( (x1)-(0.5*y) = -5 )
Iterating to find consistent restart conditions.

during event at Time : 10.0000000006

Expression x2 <= 0.5*y became true ( (x2)-(0.5*y) = -5.00001e-010 )
Expression x1 >= 0.5*y became true ( (x1)-(0.5*y) = 5e-010 )
Iterating to find consistent restart conditions.
Expression x2 <= 0.5*y became false ( (x2)-(0.5*y) = 5 )
Expression x1 >= 0.5*y became false ( (x1)-(0.5*y) = -5 )
Iterating to find consistent restart conditions.

during event at Time : 15.0000000011

Integration terminated successfully at T = 16

The simulation of this hybrid model has been performed as follows.

– The initialization problem is solved.

– The numerical integration of the continuous-time problem starts, using as

initial value the solution of the initialization problem.

– The numerical integration algorithm advances, using its own method for ad-

justing the time step size. The algorithm proceeds until it is detected that

one or several event conditions have become true. The two event conditions of

this model become true when time becomes greater that t = 5 s. As events

have been detected, the numerical integration of the continuous-time problem

is halted.
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– Event iteration starts. The objective of this iterative algorithm is to calculate

the precise time at which the events are triggered. The obtained result is a time

interval that satisfies the following two conditions: (1) its length is smaller than

a certain tolerance; (2) all the event conditions are false at the interval left-

hand limit, and at least one is true at the right-hand limit. It is assumed that

the event trigger time is the right-hand limit of this interval. In this case, it

has the value 5.0000000001 s.

– The restart problem is solved at the calculated event trigger time. If the

solution of the restart problem triggers events, these are executed. In this

way, the event chain is executed until all the event conditions are false. There

is no event chain in this model: the event conditions calculated solving the

restart problem are false.

– The numerical integration of the continuous-time problem is resumed, emplo-

ying as initial value the solution of the restart problem. If a variable step-size

method is used (e.g., DASSL), the step size is reset.

– The numerical integration of the continuous-time problem proceeds. The event

conditions are watched. When one or several event conditions become true, the

integration is halted. This happens when time becomes greater that t = 10 s.

Again, the event trigger time is found (event iteration), the restart problem

is solved, and the numerical integration of the continuous-time problem is

resumed.

– Events are detected when time becomes greater than t = 15 s. The same

procedure is applied.

– The ending condition is satisfied when time reaches the value t = 16 s,

therefore, the simulation finishes.

8.3 Crossing function

Modeling environments of hybrid systems typically use crossing functions for

detecting events. To this end, the event conditions are automatically translated into

crossing functions, which are watched during the continuous-time problem solution.

A crossing function is an expression whose result is positive while the event

condition is true, and negative while it is false. Therefore, the crossing function

crosses the zero value at the time instant in which the event condition changes its

value (from true to false, or vice-versa).
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eveps

− eveps

z

t

Figure 8.3: When z crosses −eveps with negative slope, the event condition is considered to
change its value from true to false. When z crosses +eveps with positive slope, the event condition
is considered to change its value from false to true.

Let’s see an example. Suppose that the y variable is described by means of the

following if sentence,

y = if x > xLimit then y1 else y2; (8.8)

This sentence states that while x > xLimit, the y variable is equal to the y1

variable. Otherwise, the y variable is equal to the y2 variable. The event detection

can be made by associating the event condition x > xLimit to the following crossing

function (named z):

z = x− xLimit (8.9)

The Modelica modeling environments typically perform the event detection as

follows (see Figure 8.3). A small interval around zero, (−eveps, eveps), is defined.

– The change of the event condition from false to true is detected when z crosses

eveps with positive slope.

– The change of the event condition from the true to false is detected when z

crosses −eveps with negative slope.

This is equivalent to associate to the event condition the two crossing functions

shown below, and to watch their cross through the zero value.

zp = z + eveps (8.10)

zn = z − eveps (8.11)
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If the z crossing function initially remains inside the interval (−eveps, eveps)

due to the initial conditions, the value of the crossing function is assumed to be zero

during this time and it is used the corresponding branch of the if expression.

The value of eveps is very small. The by-default value used by Dymola and Open-

Modelica is 1E-10. This value can be changed, although this is not recommended: it

is preferable to re-scale the model than modify eveps. In any case, the procedure to

change eveps in Dymola is explained below.

To change the eveps value, the experiment file generated by Dymola (dsin.txt)

has to be manually edited, after the model has been translated and before running

the simulation. For avoiding Dymola to re-write the dsin.txt file when the simulation

is launched, the simulation must not be executed from the user-interface of Dymo-

la. Instead, it has to be launched by executing the following command from the

operating system shell, in the working directory (where Dymola has generated the

dymosim.exe and dsin.txt files):

dymosim dsin.txt

When the simulation finishes, Dymola stores the results in a file named dsres.mat.

This file can be opened from the graphical-user-interface of Dymola (Plot > Open

Result) to represent graphically the model variables.

To illustrate how Dymola performs the event detection, we are going to simulate

the model shown in Modelica Code 8.2 using two different values of eveps. The first

simulation of the model has been performed using the by-default value of eveps, i.e.,

1E-10. In the second simulation, the value 0.6 has been manually assigned to eveps.

To this end, the following line of the dsin.txt file has been replaced

1.0000000000000000E-010 # eveps Hysteresis epsilon at event points

by:

0.6000000000000000 # eveps Hysteresis epsilon at event points

and then dymosim.exe has been executed from a MS-DOS shell. Afterwards, the

results have been loaded from Dymola to obtain a graphical representation.

The results of the two simulations are shown in Figure 8.4. The event condition

(x > 0) is translated into two crossing functions: zp = x + eveps, zn = x − eveps.

The event condition is detected to change from false to true when x crosses +eveps

with positive slope, and from true to false when x crosses −eveps with negative

slope. This is clearly visible in the plot placed in the lower part of Figure 8.4.
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model ejemEveps
Real x;
Real y;

equation
y = if x > 0 then 1 else -1;
x = sin(time);

end ejemEveps;

Modelica Code 8.2: Model to illustrate the event detection in Dymola.

Figure 8.4: Simulation results for two values of eveps: 1E-10 (upper plot) and 0.6 (lower plot).
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The mechanism used by the modeling environment to detect events is relevant

in a practical sense, and must be known by the model developer, because this

mechanism may result in numerical artifacts that condition the simulation result.

An example is provided below.

Let’s consider again the model of the ball that falls downwards due to gravity

and bounces when hitting the floor. The ball is initially at rest, and it is dropped

from a height of 10 m. The model is shown in Modelica Code 8.3.

Let’s execute the simulation during 14 s. The result is shown in Figure 8.5. At

the beginning of the simulation, the ball falls downwards accelerated by the gravity.

When the ball hits the floor, the speed direction changes, going up and then falling

down again. As the ball losses speed (an consequently, energy) with each bounce,

the maximum height of the ball decreases between consecutive bounces.

Observe in Figure 8.5 that the ball falls below the floor level when the simulation

time is around 13 s. This behavior is not described in the model: is a numerical

artifact due to the mechanism used to detect the events.

To look into the reasons behind the falling of the ball below the floor level, let’s

repeat the simulation of the model with an initial height of the ball of 5E− 9 m. As

in the previous simulation, the ball is initially at rest. We establish also 0.0003 s as

the final time of the simulation.

Executing the simulation, the result shown in the upper plot of Figure 8.6 is

obtained. If we zoom the interval 2.16E − 4 < t < 2.52E − 4, it is noted (see

the lower plot of the figure) that there comes a time when the ball bounces at the

height −eveps with so low energy that is not able to go beyond eveps. Consequently,

Dymola does not detect that the condition x ≤ 0 becomes false. For this reason, the

event condition remains true from the bouncing performed at the time 2.36E − 4 s

approximately. As the instantaneous equations of the when clause are activated when

the condition changes from false to true, the when condition is not activated again.

And, therefore, the speed is not reinitialized and the ball falls below the floor level.
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model BouncingBall1
Modelica.SIunits.Distance x(start=10, fixed=true);
Modelica.SIunits.Velocity v(start=0, fixed=true);
parameter Real c = 0.8 "Coeff. elastic bouncing";
parameter Modelica.SIunits.Acceleration g = 9.8;

equation
der(v) = -g;
der(x) = v;
when x <= 0 then

reinit(v, -c*v);
end when;

end BouncingBall1;
Modelica Code 8.3: Vertical fall and bouncing of a ball.

Figure 8.5: Results of simulating the Modelica Code 8.3.

eveps

− eveps

( )0 :  x true false≤ →

( )0 :  x false true≤ → ( )0 :  x false true≤ →

Figure 8.6: Results of simulating the Modelica Code 8.3, but with an initial height of 5E − 9 m.
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8.4 Determination of the event instant

Depending on its trigger condition, events can be classified into time events and

state events.

Likewise, time events can be classified into exogenous and endogenous. If the

trigger time is specified in the model, the event is said to be exogenous. If this

time is computed during the simulation execution as a result of the execution of a

previous time event or state event, the time event is said to be endogenous.

During the solution of the continuous-time problem, when the next time event

is scheduled within the next time step of the integration algorithm, the time step

length is modified so that the evaluation time is equal to the time event. Once the

event is executed, the integration algorithm is resumed, using its own method to set

the size of the integration step.

The state events are triggered when the system state satisfies certain conditions.

The trigger time of state events is not known in advanced and must be calculated

during the simulation (event iteration).

To illustrate the iterative method employed to calculate the event trigger time,

let’s consider a two-branch equation, so that each branch is valid only in a certain

domain of the state space. State events indicate the end of the validity domain of a

branch and the start of the validity domain of the other. The modeling environment

automatically define crossing functions for detecting state events. These functions

indicate the crossing of the trajectory in the space state from one domain to the

other one. When a state event is detected, the integration is halted, and the event

iteration (iterative algorithm to determine the time instant in which the event is

triggered) is started. This calculation implies the evaluation of the equation. To this

end, the “old” branch is used, extending the “old” branch beyond its validity

domain. Once the event trigger time is determined, the“old”branch of the equation

is switched to the “new” branch. The restart problem is solved using the “new”

branch of the equation. The integration algorithm is resumed, starting at the event

instant, using the “new” branch of the function.

The model developer needs to take into account that the event detection proce-

dure requires evaluating equation branches beyond their definition domain. If this

is not possible, a runtime numerical error will be generated when the trajectory in

the state space crosses the definition domains of the equation branches.
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The following example illustrates this problem. Suppose that the mass flow rate

of liquid (F ) through a valve is related with the pressure drop (∆p) by means of the

constitutive relationship of the valve:

F = sgn (∆p) ·K ·
√

∆p (8.12)

where the sign function returns one if its argument is positive or zero, and minus

one if negative. K is a constant that depends on the valve geometry, the friction

factor and the liquid density.

If the constitutive relationship of the valve is described as follows,

F = if ∆p > 0

then K · (∆p)0.5

else −K · (−∆p)0.5

(8.13)

numerical error will be produced at runtime, when the sign of ∆p changes. The

reason is that the branch switching event is detected (evaluating and checking the

crossing functions) after every algebraic variable has been evaluated. That is, after

the square root of a real negative number has been attempted to be calculated,

producing the corresponding numerical error.

The numerical error would be avoided if the simulation algorithm checks, before

evaluating the two-branch equation, which of the two branches to use, which depends

on the value of the condition in that time instant. The Modelica language provides

an operator, named noEvent(), to indicate this way to proceed with a particular

equation.

For example, writing in Modelica

F = if noEvent(difPresion > 0)
then K*difPresion^0.5 else -K*(-difPresion)^0.5;

the modeling environment will check, before evaluating the right-hand side expres-

sion of the equation, which of the two branches to use.

Additionally, the noEvent() operator indicates to the modeling environment that,

in case of a change of branch, it must not iterate to find the precise time instant in

which the event was triggered. This way of evaluating variable structure equations,

avoiding event iteration, is called performing a textual handling of the equation,

as opposed to the event-based handling.
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Textual handling of two-branch equations implies to integrate across the branch

switching. If there exists discontinuity between the branches, the integration al-

gorithm may fail. Integration algorithms are designed on the assumption that the

function to integrate and its derivatives are continuous.

To avoid numerical errors performing event-based handling of the equations,

Modelica provides some built-in functions with their branches extended beyond their

domain of validity. An example is the square root function, sqrt(). In this way,

there is no numerical error if the constitutive relationship of the valve is expressed

as follows:

F = if difPresion > 0 then
K*sqrt(difPresion) else -K*sqrt(-difPresion);

8.5 Chattering

Simulating hybrid models arise theoretical and computational problems that

there not exist in continuous-time model simulation. One of these problems is the

chattering. A simulation exhibits chattering if the number of state events executed

during the simulation is large in comparison with the number of integration steps.

Every time an state event is detected, the trigger time is calculated and the restart

problem is solved. Therefore, chattering significantly slows down the simulation. In

some cases, the noEvent() operator allows to avoid chattering. However, this is not

always the case, and the only way to avoid chattering is to modify the modeling

hypotheses.

To illustrate this idea, let’s consider again the model of the bouncing ball shown

in Modelica Code 8.3, and let’s modify it to avoid the ball to fall below the floor

level. To this end, the ball acceleration is modeled making different assumptions.

Now, we consider that while the ball is touching floor or below the floor level, the

ball has zero acceleration. The model is shown in Modelica Code 8.4.

The result of simulating Modelica Code 8.4 during 14 s is shown in Figure 8.7.

The ball does not fall below the floor level. However, when the ball energy becomes

very small, which happens approximately at t = 12 s, the execution of the simulation

slows down significantly (see the part of the plot that is encircled in the figure).

Once the simulation is finished, Dymola writes to the log window a message

stating that the simulation execution has taken 3.22 seconds of CPU time, and the



EVENT DETECTION AND HANDLING

model BouncingBall2
Modelica.SIunits.Distance x(start=10, fixed=true);
Modelica.SIunits.Velocity v(start=0, fixed=true);;
parameter Real c = 0.8 "Coeff. elastic bouncing";
parameter Modelica.SIunits.Acceleration g = 9.8;

equation
der(v) = if (x <= 0) then 0 else -g;
der(x) = v;
when x <= 0 then

reinit(v, -c*v);
end when;

end BouncingBall2;

Modelica Code 8.4: Model with chattering of the vertical fall and bouncing of a ball.

Figure 8.7: Result of simulating Modelica Code 8.4.

number of state events has been 141128. As the number of state events is very high,

Dymola indicates that the model may be exhibiting chattering. Part of the message

generated by Dymola is reproduced below.

Integration started at T = 0 using integration method DASSL
(DAE multi-step solver (dassl/dasslrt of Petzold modified by Dynasim))
Integration terminated successfully at T = 14

WARNING: You have many state events. It might be due to chattering.
Enable logging of event in Simulation/Setup/Debug/Events during simulation
CPU-time for integration : 3.22 seconds
CPU-time for one GRID interval: 6.44 milli-seconds
Number of result points : 282757
Number of GRID points : 501
Number of (successful) steps : 209012
Number of F-evaluations : 370896
Number of H-evaluations : 1089681
Number of Jacobian-evaluations: 161884
Number of (model) time events : 0
Number of (U) time events : 0
Number of state events : 141128
Number of step events : 0
Minimum integration stepsize : 1.75e-011
Maximum integration stepsize : 1.65
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Maximum integration order : 3
Calling terminal section
... "dsfinal.txt" creating (final states)

An important contribution to the time spent in executing the simulation corres-

ponds to the time employed in saving to file the simulation results. This is specially

important when the model exhibits chattering. The size of this file can also become

a problem for complex models.

Dymola allows the user to set the types of variables to store in file and also at

which time instants. This is indicated in the Output tab of the Simulation > Setup

window. The usual selection is to store the result at equidistant time instants and

also at event instants. The time interval between these equidistant time instants is

called communication interval (Output interval). The size of the communication

interval or the number of communication interval is set in the General tab of the

Simulation > Setup window.

To analyze why chattering is produced in this model, we will repeat the simulation

selecting a different set of initial conditions and stop time. We consider that the ball

is initially at rest with height 5E − 9 m, and the stop time is 0.0006 s. The result is

shown in Figure 8.8. Note that the ball bounces periodically from 4E − 4 s, and a

bounce (i.e., state event) takes place every approximately 2E − 5 s.

The ball shows a periodic behavior in the stationary, bouncing indefinitely.

This behavior is not described in the model. It is a numerical artifact due to the

mechanism for event detection used by Dymola. Note that while the ball goes up

from −eveps to +eveps, the event condition x ≤ 0 is true. Thus, the gravity is

not acting on the ball during these time periods. The energy required for the ball

to ascend from −eveps to +eveps is given to the ball. When this energy provided

“for free” to the ball (as a result of the event detection procedure) becomes equal to

energy lost in the bouncing, the model oscillates indefinitely.
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( )0 :  x false true≤ → ( )0 :  x false true≤ → ( )0 :  x false true≤ →

( )0 :  x true false≤ → ( )0 :  x true false≤ →

Figure 8.8: The ball reaches a stationary periodic behavior, which is a numerical artifact originated
by the event detection procedure.
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8.6 Further reading

The discussion on the treatment of simultaneous events was extracted from

(Andersson 1994). Event detection and handling are discussed in (Cellier 1979),

and in Chapter 9 of (Cellier & Kofman 2006). The use of this thesis report and this

book was recommended in previous lessons. Another excellent reference on hybrid

system simulation is (Barton 1992).

The event detection in Dymola, employing two crossing functions, is described in

(Elmqvist et al. 1993). A discussion on the branch switching mechanism employed for

simulating if-sentences, and the numerical errors originated by the event detection

mechanism, can be found in (Elmqvist et al. 1994).
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Learning objectives

After studying the lesson, students should be able to:

– Develop multi-mode models in Modelica.

– Design, develop and use hybrid model libraries in Modelica.

9.1 Introduction

Hybrid models are those that combine continuous-time behavior with events.

An event is a set of actions that are triggered when a certain condition is satisfied.

Therefore, the definition of an event consists of specifying the logic condition that

triggers it, and the actions to be performed.
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The execution of the actions associated to the event does not consume simulated

time. For this reason, those variables that change due to the event have two values

at the time in which the event is triggered: the value before the event execution and

the value after the event execution.

Modelica provides the function pre() to distinguish between the variable value

before the event, pre(variable), and the new value of the variable after the event

execution, which is referred using the name of the variable. For example, if the

instantaneous equation that describes the action associated to an event is:

x = 2 · pre(x) (9.1)

then the value of the x variable is doubled each time this event is executed.

The actions that Modelica allows to perform in an event are basically of the

following three types:

– Change in the model structure. An event can generate a change in the

mathematical structure of the model. That is, a change in the equations that

describe the model behavior.

– Update the value of discrete-time variables. The action associated to an

event can be to modify the value of one or more discrete-time variables. The

value of a discrete-time variable is constant between two consecutive events,

changing only at event instants.

– Reinitialization of continuous-time state variables. Other action asso-

ciated to an event can be to change the value of a continuous-time variable.

For this change to take effect, the variable whose value is reinitialized in the

event action has to be a state variable.

If sentences and if clauses are employed to describe the first type of action. For

the last two, the when clause is employed. This is explained in detail below.

9.1.1 If sentence and clause

The if-sentence and the if-clause allow to describe models with a variable struc-

ture. Both can be included in equation and algorithm sections.
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As shown in the previous lessons, the if sentence allows to describe functions

with several branches. It has basically the following syntax, when written inside an

equation and algorithm section respectively:

expr1 = if cond then expr2 else expr3;

var := if cond then expr1 else expr2;

(9.2)

where var is a variable, cond is a Boolean expression, and expr is an expression.

Else branches can be replaced by elseif-then-else. For example:

expr1 = if cond1 then expr2

elseif cond2 then expr3 else expr4;

var := if cond1 then expr1

elseif cond2 then expr2 else expr3;

(9.3)

The syntax of an if clause written within an equation section is basically:

if cond then

equations

else

equations

end if ;

(9.4)

If clauses written inside algorithm sections contain assignments, instead of equa-

tions. Analogously to the if-sentences, the else branches can be replaced by elseif-

then-else. For example,

if cond1 then

equations

elseif cond2 then

equations

else

equations

end if ;

(9.5)
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9.1.2 Textual handling of if expressions

As explained in previous lessons, Modelica modeling environments perform an

event-based handling of if expressions. This is, when an event is detected, the

numerical integration of the continuous-time problem is halted, the trigger time is

calculated by applying iterative algorithms (event iteration), and the restart problem

is solved. The old branch of the if expression is used in the event iteration, and the

new branch in solving the restart problem.

However, in some cases the branch switching does not introduce any disconti-

nuities in the value of the expression and its derivatives, or the effect of these is

small. In these cases, it is possible to integrate over the branch switching point. As

this procedure avoids to perform the event iteration (calculate precisely the time

in which the branch switching is produced), the simulation CPU-time is reduced.

Performing such a textual treatment of the if expression can result in a significant

reduction in the simulation time of models with a large number of events.

Using the noEvent() function in the logical condition of an if expression indica-

tes that the if expression has to be handled textually (in opposition to the by-default

event-based handling). For example, given the following sentences, written inside

equation or algorithm sections respectively

expr1 = if noEvent(cond) then expr2 else expr3;

var := if noEvent(cond) then expr1 else expr2;

(9.6)

the modeling environment evaluates in first place the Boolean condition, to choose

which one of the two branches of the if expression must use, and then computes the

corresponding variable using the chosen branch.

As discussed in Section 8.4, the noEvent() function also allows to avoid runtime

numerical errors when the branches cannot be extended beyond its validity range.

For example, the if sentence

y = if u >= 0 then u∧0.5 else (−u)∧0.5; (9.7)

can generate an execution error of the type “attempt to compute the square root of

a negative number”. This error is avoided using noEvent():

y = if noEvent(u >= 0) then u∧0.5 else (−u)∧0.5; (9.8)
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9.1.3 When clause

The syntax of the when clause is basically the following:

when cond then

instantaneous equations

end when;

(9.9)

where cond (the clause’s trigger condition) is a Boolean expression. In this case, the

instantaneous equations included in the body of the when clause are executed only

at the time instant in which the Boolean expression value changes from false to true.

The trigger condition of a when clause can also be a vector of Boolean expressions,

as shown below. In this case, the when clause is triggered each time any of the vector

components changes its value from false to true.

when {cond1, . . . , condn} then

instantaneous equations

end when;

(9.10)

To illustrate the difference between these two ways of specifying the trigger

condition, consider the two when clauses shown below:

when u1>0 or u2>0 then when { u1>0 , u2>0 } then

b1 = not pre(b1); b2 = not pre(b2);

end when; end when;

The clause written on the left-hand side is triggered when the value of the Boolean

expression (u1>0 or u2>0) changes from false to true. The clause on the right-hand

side is triggered when the value of u1>0 changes from false to true, and also when

the value of u2>0 changes from false to true. See Figure 9.1.

The instantaneous equations can be of two types:

– Difference equations describing how the new values of discrete-time varia-

bles are evaluated. Depending on whether the when clause is included inside

an equation or algorithm section, the instantaneous equation has the following

syntax respectively, where var represents the new value of the variable.

var = expr; (9.11)

var := expr; (9.12)
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when u1>0 or u2>0 then
…

end when; 

when { u1>0, u2>0 } then
…

end when; 

u1>0  u1>0 

u2>0  u2>0 

Figure 9.1: Trigger conditions expressed as a Boolean expression (left), and as an array of Boolean
expressions (right). Trigger instants are indicated by arrows.

The pre() function allows to refer to the variable value before the event, e.g.,

pre(variable). Observe that the difference equations have to be written in

explicit form. This is, with the variable to evaluate written on the left-hand

side of the “=” or “:=” symbol. The new value of the variable is the result

of evaluating the expression written on the right-hand side of the difference

equation.

– reinit sentences, employed to change abruptly the value of continuous-time

state variables. The function has two arguments. The first one is the continuous-

time state variable whose value is going to be changed. The second one is the

expression used to evaluate the new value of the state variable. If the first

argument of the reinit function is not an state variable, then the function call

has not any effect. The function is invoked as follows:

reinit(var, expr); (9.13)

The single-assignment rule applies within the when-clause body depending

on whether the when clause is written inside an equation section or an algorithm

section. This is explained below.

– In the case of a when clause written within an equation section, the order

in which the model developer writes the instantaneous equations is irrelevant.

The modeling environment sorts automatically the instantaneous equations.

For this to be possible, the single-assignment rule must be fulfilled, of which

it is being guaranteed that each variable is evaluated from a single equation.

– The assignments included inside an algorithm section are considered an

indivisible set, and the modeling environment does not manipulate them or
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change their order. Therefore, the single assignment rule doesn’t apply inside

an algorithm section: several assignments to the same variable can be written

within an algorithm section. For example, it is possible to write:

algorithm
when h1>3 then

closed := true;
end when;
when h2>1 then

closed := false;
end when;

If these two events are triggered simultaneously, then they are executed in

order and, therefore, the new value of the closed variable would be false.

Nevertheless, the algorithm sections have to be sorted together with the rest

of the model. For this reason, a variable calculated in an algorithm section

cannot be calculated in any other algorithm section, or from an equation.

The sample(), initial() and terminal() built-in functions can be used in the

Boolean condition of the when clause as described below.

– The sample() function triggers periodically the when clause, starting at a

determined initial instant. For example, the clause written below is triggered

at the following time instants: t0 + n · T , with n = 0, 1, 2, . . .

when sample(t0, T) then
x = a*pre(x) + b*u;
y = c*pre(x) + d*u;

end when;

– As discussed in Section 7.6.4, the initial() function triggers the when clause

at the model initialization.

– The terminal() function triggers the when clause when the ending condition

of the simulation is satisfied. It has the following syntax:

when terminal() then

. . .

end when;

(9.14)



MODELING AND SIMULATION IN ENGINEERING USING MODELICA

The when clause can also be used to force the simulation termination. The

ending condition in the examples discussed so far is the simulated time to reach

a predefined value, which is specified in the experiment definition. However, the

termination condition of some simulation studies depends not only on time, but also

on some model variables.

These termination conditions, dependent on model variables, can be described

by calling the terminate() function inside the body of a when clause. This built-

in function has one argument of String type: the message written by the modeling

environment to the message window when the function is executed, forcing the

simulating to finish. For example:

Modelica.SIunits.Temperature T "Mixture temperature";
parameter Real eps (unit="K/s") = 1e-3 "Small value";

equation
when abs(der(T)) < eps then

terminate("A steady-state has been reached");
end when;

String is a predefined type of variable in Modelica. String variables store chains

of characters. To work with String variables, it is useful to know that:

– The + operator concatenates Strings.

– Strings can contain end-of-line (\n) and tab (\t) characters.

– The realString() and integerString() functions allow to convert Real and

Integer types into String, respectively. These functions have three input argu-

ments, and one output argument, as shown below.

function realString "Convert a real to a string"
input Real number "The number to convert to a string";
input Integer minimumWidth := 1 "Minimum width of result";
input Integer precision := 6 "Number of significant digits";
output String result;

function integerString "Convert an integer to a string"
input Integer number "The number to convert to a string";
input Integer minimumWidth := 1 "Minimum width of result";
input Integer precision := 1 "Minimum number of digits";
output String result;
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Another application of the when clause is to write to the message window.

This can be useful to debug models, as it allows to get information about the value of

determined variables at specified simulation time instants, or when certain conditions

are satisfied.

The LogVariable() function writes the actual value of a variable to the message

window. For example, the following when clause writes the value of the x variable

every 0.1 s, starting from time zero.

when sample(0,0.1) then
LogVariable(x);

end when;

9.2 Ideal electric switch

Let’s consider the model of an electric circuit shown in the Figure 9.2, that

is composed of a voltage generator, a resistor and an ideal switch. The Boolean

variable open, whose time evolution is shown on the right-hand side of the figure,

is a known function of time. The Modelica description of this circuit is shown in

Modelica Code 9.1.

The if sentence shown below has been used to describe the constitutive rela-

tionship of the ideal electric switch. Comparing this constitutive relationship with

Eq. (7.83), it can be observed the analogy between the electrical and hydraulic

domains.

0 = if open then i else uD; (9.15)

When the model is translated, Dymola shows a warning stating that the units

of the if-expression branches are different: the i branch is expressed in amperes, and

the uD branch in volts. This is not an error in this model, so we can ignore the

warning.

The results obtained executing the simulation during 16 s are shown in Figure

9.3. While the switch is open, the current is zero and the voltage drops across the

switch. While the switch is closed, there is a flow of electrical current and the voltage

drops across the resistor.
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Figure 9.2: Electric circuit, and evolution of the open Boolean variable.

model ResistConmutCircuit
Modelica.SIunits.Voltage U, uR, uD;
Modelica.SIunits.Current i;
Boolean open;
parameter Modelica.SIunits.Resistance R = 10;
parameter Modelica.SIunits.Voltage U0 = 5;
parameter Modelica.SIunits.AngularFrequency w = 2;

equation
U = U0*sin(w*time); // Generator
uR = i*R; // Resistor
0 = if open then i else uD; // Switch
open = time < 5 or time > 10; // Control of switch
U = uR + uD;

end ResistConmutCircuit;

Modelica Code 9.1: Model of the electric circuit shown in Figure 9.2.

Figure 9.3: Simulation of Modelica Code 9.1.
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9.3 Ideal diode

The model of the switch can be modified to describe an ideal diode. In the diode,

the opening condition depends on internal variables of the device, instead of being

determined by a particular function of time.

An ideal diode can be in two modes, conduction and cutoff, that are analogous

to the closed and open modes of an ideal switch. The behavior of the ideal diode is

modeled in the following way (see Figure 9.4):

– While in the conduction phase, the voltage drop across the diode terminals

is zero, and the current flowing through it must have a positive sign. When

this last condition is not satisfied, the diode changes to the cutoff phase.

– While in the cutoff phase, the current flowing through the diode is zero, and

the voltage drop across the diode terminals must be less or equal to zero. When

this condition on the voltage drop is not satisfied, the diode changes to the

conduction phase.

The constitutive relationship of the ideal diode can be described in Modelica by

means of the two Eqs. (9.16). Note that the Boolean variable corte is calculated from

the second equation, evaluating a logical expression that depends on two continuous-

time variables. While corte equals true, the diode is in the cutoff mode; and while

false, in the conduction mode.

0 = if corte then i else uD;

corte = i ≤ 0 and not uD > 0;
(9.16)

To illustrate the application of the previous model, let’s consider the rectifier

circuit shown in Figure 9.5, whose model is described by the following equations.

u = U0 · sin(w · t) (9.17)

u− u1 = i1 · R1 (9.18)

0 = if corte then i1 else u1 − u2 (9.19)

corte = i1 ≤ 0 and not u1 − u2 > 0 (9.20)

u2 = i2 · R2 (9.21)

C · du2

dt
= iC (9.22)

i1 = i2 + iC (9.23)

265
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Figure 9.4: I-V characteristic curve of an ideal diode and its two-phase model.

The results shown in Figure 9.6 are obtained simulating Modelica Code 9.2 during

0.1 s. The circuit behavior is as follows.

– While the diode is in the cutoff mode (corte = true), the current through the

diode (i1) is zero. Therefore, there is no voltage drop in the R1 resistor, and

u1 is equal to u.

– While the diode is in the conduction mode (corte = false), there is no

voltage drop across its pins (u1 = u2). Part of the generator voltage drops in

the R1 resistor, and the rest drops in the parallel of R2 and C.

In analogy to the problem discussed for the ideal switch, the ideal diode model

produces an error if the mode change implies a change in the number of DoF of the

complete model. For example, the ideal diode model cannot be used to model the

circuit shown in Figure 9.7. The reason is as follows.

– The circuit model has one DoF while the diode is in the cutoff mode. The

constitutive relationship of the diode forces that no current flows through it.

Thus, the current provided by the generator, that flows completely through

R1, is distributed between R2 and C. The voltage drop across the capacitor

can be selected as state variable.

– However, while the diode is in the conduction mode, the constitutive rela-

tionship of the diode forces the voltage drop across its terminals to be zero.

As a consequence, the voltage drop across the condenser is computed from the

diode constitutive relationship and this variable is not a state variable. The

model has zero DoF.



HYBRID MODELING PRACTICE

R
1

R
2

C

D

+
−u

1
u

2
uu

1
i

2
i

C
i

Figure 9.5: Rectifier circuit.

model idealDiodeCircuit
import SI = Modelica.SIunits;
SI.Current i_1, i_2, i_C;
SI.Voltage u, u_1, u_2(start=0, fixed=true);
Boolean corte "Diode mode";
parameter SI.Voltage U0=5;
parameter SI.Frequency frec=50;
parameter SI.AngularFrequency w=2*Modelica.Constants.pi*frec;
parameter SI.Resistance R1=10, R2=50;
parameter SI.Capacitance C=1e-3;

equation
u = U0*sin(w*time);
u - u_1 = i_1*R1;
0 = if corte then i_1 else u_1 - u_2;
corte = i_1 <= 0 and not u_1 - u_2 > 0;
u_2 = i_2*R2;
C*der(u_2) = i_C;
i_1 = i_2 + i_C;

end idealDiodeCircuit;

Modelica Code 9.2: Rectifier circuit shown in Figure 9.5 with ideal diode.

Figure 9.6: Results obtained simulating Modelica Code 9.2.



MODELING AND SIMULATION IN ENGINEERING USING MODELICA

R
1

R
2

CD+
−

Figure 9.7: The ideal diode model cannot be employed in modeling this circuit.
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Figure 9.8: Diode model included in the Modelica Standard Library 3.2.1.

To avoid that a change in the diode mode generates a change in the number

of DoF of the complete circuit model, the diode model included in the Modelica

Standard Library (MSL) includes a little resistance (Ron) while in conduction, and

a little conductance (Goff) while in cutoff. The constitutive relationship of this

resistive diode, in the version 3.2.1 of the MSL distributed with Dymola 2015, is

the following (see Figure 9.8):

corte = s < 0

uD = (s · unitCurrent) · (if corte then 1 else Ron) + Uknee

i = (s · unitV oltage) · (if corte then Goff else 1) + Goff · Uknee

(9.24)

where the Uknee parameter is the threshold voltage of the diode, i.e., the value of uD

for which the slope of the I-V characteristic changes (see Figure 9.8). By default,

Uknee is zero, the Ron resistance is 10−5 ohm, and the Goff conductance is 10−5

ohm−1. The values of these three parameters can be modified when the component

is instantiated, and when the experiment is defined.
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The s variable, that determines the diode operating point, is declared as a

dimensionless variable (unit="1") of Real type. While the diode is in cutoff, s is

equal to uD −Uknee. While the diode is in conduction, s is equal to i−Goff · Uknee.

If s = 0, the diode operates in the threshold voltage (Uknee). While s < 0, the

operation point is below the threshold voltage and the diode is in the cutoff mode.

While s > 0, the operation point is above the threshold voltage, and the diode is in

the conduction mode.

The unitCurrent and unitV oltage constants have been declared to avoid incon-

sistency in the units of Eq. (9.24).

constant Modelica.SIunits.Voltage unitVoltage = 1;
constant Modelica.SIunits.Current unitCurrent = 1;

9.4 Two-tank and valve system

Let’s consider the system described in Section 7.4.3, which is composed of two

tanks connected by a valve. For readers’ convenience, the system diagram is shown

again in Figure 9.9. The system is modeled as shown in Modelica Code 9.3. If

sentences are used to describe the mass flow rate and the temperature of the liquid

that flows through the valve. A when sentence is used to describe the change of

the valve opening, which occurs when time becomes greater than t0 = 50 s. The

simulation result is shown in Figure 9.10.

Observe that while the value of the theta variable is zero, the flow between

the two tanks is zero. Thus, the mass and temperature remain constant in each

tank. When the valve opening theta is set to the value 0.5 (at t = 50 s), the mass

flow between the two tanks becomes instantaneously different from zero. Since the

liquid level is at that moment higher in the second tank, the liquid flows from the

second tank to the first one. The liquid that flows through the valve is at the same

temperature as the liquid stored in the upstream tank. Therefore, the flowing liquid

is at the temperature of the second tank. The liquid temperature in the second tank

is higher than the liquid temperature in the first tank, and consequently the liquid

temperature in the first tank increases.

As the liquid level difference tends to zero, the flow through the valve tends

to zero. When the levels (and thus the pressures) become equal, the flow becomes

zero. As no more liquid enters the first tank, the temperature of the stored liquid

remains constant from that instant. The liquid in the second tank maintains the

same temperature during the entire simulation.
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Figure 9.9: Two-tank and valve system described in Section 7.4.3.

model TanksValve
import SI = Modelica.SIunits;
constant SI.Acceleration g=9.81 "Gravitational acceleration";
parameter SI.Area S1 = 1, S2 = 2;
parameter Real Kv = 0.2;
parameter Real theta0(unit="1") = 0.5;
parameter SI.Time t0 = 50;
parameter SI.Density rho = 1000;
SI.Mass m1(start=1000,fixed=true), m2(start=4000,fixed=true);
SI.Temperature T1(start=300,fixed=true), T2(start=350,fixed=true), Tf;
SI.Height h1, h2;
SI.Pressure p1, p2;
SI.MassFlowRate Fm;
Real theta( start=0, fixed=true, unit="1");

equation
// Tank 1
der(m1) = -Fm;
m1 * der(T1) = -Fm * (Tf-T1);
p1 = m1 * g / S1;
m1 = rho * h1 * S1;
// Tank 2
der(m2) = Fm;
m2 * der(T2) = Fm * (Tf-T2);
p2 = m2 * g / S2;
m2 = rho * h2 * S2;
// Valve
Tf = if p1 > p2 then T1 else T2;
Fm = if p1 > p2 then Kv*theta*sqrt(abs(p1-p2))

else -Kv*theta*sqrt(abs(p2-p1));
when time > t0 then

theta = theta0;
end when;

end TanksValve;

Modelica Code 9.3: Model of the two-tank and valve system shown in Figure 9.9.
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Figure 9.10: Simulation of Modelica Code 9.3 during 200 s.
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9.5 Bouncing ball

The vertical movement of a ball falling under the gravity action and bouncing

on the floor was modeled in Section 7.4.1. Two different models were proposed that,

as we have seen, were not satisfactory: the Modelica Code 8.3 allows the ball to fall

below the floor level, and the Modelica Code 8.4 exhibits chattering. Let’s adopt a

different approach in modeling the bouncing ball behavior.

The specific energy (energy per mass unit) of the ball is defined by Eq. (9.25).

The first term in the right-hand side expression is the ball’s kinetic energy, and the

second term its potential energy.

e =
1

2
· v2 + g · x (9.25)

The ball’s specific energy is computed at the beginning of the simulation, einicial,

and after each bounce. When the specific energy after a bounce becomes less than a

determined proportion of the initial one, the ball enters in a mode, named Stoppe-

dOnFloor, in which the position and the velocity are forced to be zero. Notice that

the computational load of the model while in the StoppedOnFloor mode is very low,

and the chattering problem is avoided.

To avoid the ball to fall below the floor level, it is checked after each bounce

whether the ball’s kinetic energy is large enough to ascend over the (2 · eveps)

height. Otherwise, the simulation is finished, and a message warning that the model

is out of its experimental frame is written to the log window. This indicates that the

model is being used in an experimental context for which the model is not valid.

The behavior of the model is shown in Figure 9.11. The point filled in black is

the entry to the diagram. From this point, it is triggered an unconditional transition

from the Moving mode, where the model describes the fall and bounce of the ball.

The ball energy changes with each bounce.

If the ball goes out of its experimental frame, the simulation is finished. The

simulation end is represented by two concentric circles, so that the outer circle is

hollow and the inner circle is filled in black.

If, inside the experimental frame, the specific energy is lower than coef · einicial,

a transition to the StoppedOnFloor mode takes place, and the model stays in this

mode indefinitely.

The model description is shown in Modelica Code 9.4. Notice that:
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der(v) = -g;
der(x) = v;
when x < 0 then

reinit(v, -c*v);
end when;

x = 0;

Figure 9.11: Model of the bouncing ball with two modes: Moving and StoppedOnFloor.

model BouncingBall3

import SI = Modelica.SIunits;

constant Real eveps(unit="1") = 1E-10;
constant SI.Acceleration g=9.8 "Gravitational acceleration";

parameter Real c(unit="1")=0.8 "Elastic bouncing coeff.";
parameter Real coef(unit="1")=1e-3 "Coeff. transition to StoppedOnFloor";

SI.Distance x(start=10, fixed=true) "Vertical distance of ball to the floor";
SI.Velocity v(start=0, fixed=true) "Ball velocity";
Real eInicial(unit="J/kg") "Initial specific energy";
Boolean parada(start=false, fixed=true) "Ball in StoppedOnFloor mode?";

equation

der(v) = if parada then 0 else -g;
der(x) = v;

when initial() then
eInicial = 0.5*v^2 + g*x;

end when;

when x < 0 then
assert(0.5*(c*v)^2 > g*2*eveps, "Model out of its experimental frame");
parada = (0.5*(c*v)^2 < coef*eInicial);
reinit(v, if parada then 0 else -c*v);

end when;

when parada then
reinit(x, 0);

end when;

end BouncingBall3;

Modelica Code 9.4: Bouncing ball model shown in Figure 9.11.
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Figure 9.12: Result obtained simulating Modelica Code 9.4.

– The initial specific energy is computed using a when clause, whose condition is

the initial() function. A value is assigned to the eInicial variable at the start

time, and this value remains constant during the simulation.

– An assert sentence is used to check whether the model has gone out of its

experimental frame.

– The model has two state variables in both modes. When the transition to the

StoppedOnFloor mode takes place, the x and v state variables are reinitialized

to zero, and the time derivatives of both variables are zero while the model

remains in this mode. So, the ball position and velocity are zero while in the

StoppedOnFloor phase.

9.6 Dry fiction

In this section, we are going to model the friction force between two contacting

solid objects. The proposed model is described by the characteristic curve shown in



HYBRID MODELING PRACTICE

r
f

v

mR

mR−

0R

0R−

r v mf R v R= ⋅ +

r v mf R v R= ⋅ −

Figure 9.13: Characteristic curve of the dry friction force.

Figure 9.13, which depends on three parameters: R0, Rm and Rv. This curve has the

following meaning.

– While the relative velocity (v) between the two objects is different from zero,

the friction force (fr) depends linearly on this relative velocity.

fr =







Rv · v −Rm if v < 0

Rv · v + Rm if v > 0
(9.26)

– Suppose that the relative velocity between the two objects is zero, and an

external force is applied. The friction force is modeled as follows.

• If the module of the external force is not larger than a certain value R0,

the friction force exactly counteracts the applied force, so that the objects

remain in relative rest.

• If the module of the external force is larger than R0, then the friction

force is not able to avoid the relative movement of the objects, and the

friction force is described by Eq. (9.26).

This behavior of the friction force can be described using the following two-mode

model.

1. In this mode, the velocity between the two bodies is different from zero, and

the friction force is related to the relative velocity by Eq. (9.26). The transition

condition to leave this mode is the relative velocity to become zero.
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2. In this mode, that we name Stuck, the relative velocity between the objects

is zero. The friction force has the value that makes the relative velocity to

continue being zero. The friction force is this mode, named fc, is calculated by

imposing v = 0. The transition condition to leave this mode is |fc| > R0.

The model in the Stuck mode has one more equation (v = 0) and one more

variable (fc) than in the other mode. As Modelica does not allow to declare variables

local to a particular mode, a value has to be assigned to the fc variable while the

model is not in the Stuck mode. This value is arbitrary, because fc only has a

physical meaning while the model is in the Stuck phase. By simplicity, we set this

variable to zero. Therefore, the friction force is described by the following constitutive

relationship.

fr = if v > 0 then Rv · v + Rm

elseif v < 0 then Rv · v − Rm

else fc

0 = if Stuck then v

else fc

(9.27)

However, the model should not be formulated in this way. The reason is that, in

mechanical system models, velocities are typically either state variables or calculated

from state variables. In consequence, the friction model in the Stuck mode, by

imposing v = 0, reduces the number of DoF of the complete model. Let’s explore

another approach.

As accelerations typically are not state variables of mechanical system models,

let’s replace the equation v = 0 by dv
dt

= 0. This is, instead of imposing the relative

velocity to be zero while in the Stuck phase, it is imposed the relative acceleration

to be zero. In addition, when the model enters in the Stuck phase, the relative

velocity is reinitialized to zero. To goal is to avoid the numeric drifting of the relative

displacement, which may become relevant if the model stays in the Stuck mode for

a long time.

The next step is to specify the transition conditions among the model modes.

We suppose that the model can be in any of the following five modes:

– Stuck. The relative velocity is zero while in this mode, and the friction force

satisfies −R0 ≤ fr ≤ R0.

– Forward and Backward. The relative velocity between the bodies is different

from zero. In the Forward mode, the relative velocity satisfies v > 0 and



HYBRID MODELING PRACTICE

Table 9.1: Modes of the dry friction model.

Mode Condition

Forward v > 0 and fr = Rv · v + Rm

StartForward v = 0 and a > 0 and fr = Rm

Stuck v = 0 and a = 0 and −R0 ≤ fr ≤ R0

StartBackward v = 0 and a < 0 and fr = −Rm

Backward v < 0 and fr = Rv · v −Rm

Start

StartBackwardBackward ForwardStartForwardStuck

0v < 0v >

else
0v < 0v >

0v ≤0v ≥

0cf R< −
0cf R>

0   0a v≥ <and not 0   0a v≤ >and not

Figure 9.14: Transitions among the modes of the dry friction model.

the friction force is fr = Rv · v + Rm. In the Backward phase, v < 0 and

fr = Rv · v −Rm.

– StartForward and StartBackward. These are intermediate modes between re-

lative resting and sliding. While in these modes, the relative speed is zero, but

the acceleration is different from zero. The friction force in the StartForward

mode is fr = Rm, and in the StartBackward mode is fr = −Rm.

The conditions to stay in each mode are summarized in Table 9.1. The transi-

tions among the modes can be described by means of a finite state machine, as in

Figure 9.14. The diagram has six modes: the five previously described and the Start

mode, in which the model is at the initialization.

Finite state machines can be described in Modelica by declaring a Boolean

variable for each mode, and describing the condition for staying in each mode in

the following way:
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mode = pre(modeP re1) and conditionIn1 or

pre(modeP re2) and conditionIn2 or

. . . or

pre(mode) and not ( conditionOut1 or

conditionOut2 . . . )

(9.28)

where modeP re1, modeP re2, . . . are the modes from which a transition to mode

can occur if the conditionIn1, conditionIn2, . . . conditions are fulfilled, respectively.

The Boolean expressions conditionOut1, conditionOut2, . . . are the conditions for

the exit transitions from mode.

The Modelica description of the finite state machine shown in Figure 9.14 is the

following.

Forward = pre(Start) and v>0 or
pre(StartForward) and v>0 or
pre(Forward) and not v<=0;

Backward = pre(Start) and v<0 or
pre(StartBackward) and v<0 or
pre(Backward) and not v>=0;

StartForward = pre(Stuck) and fc > R0 or
pre(StartForward) and not (v>0 or a<=0 and not v>0);

StartBackward = pre(Stuck) and fc < -R0 or
pre(StartBackward) and not (v<0 or a>=0 and not v<0);

Start = if initial() then true else false;
Stuck = not ( Forward or Backward or StartForward or

StartBackward or Start );

To illustrate the application of the friction model, a Modelica library named Lib-

Friction has been programmed. See Modelica Code 9.5 – 9.7. The library architecture

is shown in Figure 9.15.

The Port connector describes the mechanical port, that is composed of two

variables: the position and the force. The velocity could have been chosen as across

variable, instead of the position.

The Transbody model describes an object that can move in one dimension. The

object has only one connector. The force variable of the connector is the net force

applied to the object, which accelerates it. The position variable of the connector

represents the position where the object is.

The Inertial model describes an object fixed in the origin of coordinates. This

model will be used to represent the floor.
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Figure 9.15: Architecture of the LibFriction library.

package LibFriction

import SI = Modelica.SIunits;

connector Port
SI.Position p;
flow SI.Force f;

end Port;

model TransBody
Port port;
parameter SI.Mass m = 1;
parameter SI.Position p_Initial = 0;
parameter SI.Velocity v_Initial = 0;
SI.Position p( start=p_Initial, fixed=true);
SI.Velocity v( start=v_Initial, fixed=true);
SI.Acceleration a;

equation
port.f = m*a;
port.p = p;
der(p) = v;
der(v) = a;

end TransBody;

model Inertial
Port port;

equation
port.p = 0;

end Inertial;

model ExtForce
Port port;
SI.Force f;
parameter Real Tstart = 50;
parameter Real Tend = 75;
parameter Real Kf = 1;

equation
f = if time > Tstart and time < Tend

then Kf*(time-Tstart)
else 0;

port.f = -f;
end ExtForce;

Modelica Code 9.5: LibFriction library (1/3).
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model TransForce
Port port1;
Port port2;
SI.Position p;
SI.Velocity v(stateSelect = StateSelect.always);
SI.Acceleration a;

equation
p = port2.p - port1.p;
der(p) = v;
der(v) = a;

end TransForce;

model FrictionLin
extends TransForce;
SI.Force fr "Friction force";
parameter Real Kf=1;

equation
port2.f = -fr;
port1.f = fr;
fr = -Kf*v;

end FrictionLin;

model Friction
extends TransForce;
SI.Force fr "Friction force";
SI.Force fc "Dummy variable";
parameter Real R0 = 1 "Threshold value";
parameter Real Rm = 0.5;
parameter Real Rv = 1;
Boolean Start(start=true, fixed=true);
Boolean Stuck(start=false, fixed=true);
Boolean StartBackward(start=false, fixed=true);
Boolean StartForward(start=false, fixed=true);
Boolean Backward(start=false, fixed=true);
Boolean Forward(start=false, fixed=true);
constant SI.Mass unitMass = 1;

equation
port2.f = -fr;
port1.f = fr;
fr = if Forward then -(Rv*v+Rm) else

if Backward then -(Rv*v-Rm) else
if StartForward then -Rm else
if StartBackward then Rm else fc;

0 = if Stuck then unitMass*a else fc;

Stuck = not (Forward or Backward or StartForward or
StartBackward or Start);

Forward = pre(Start) and v>0 or
pre(StartForward) and v>0 or
pre(Forward) and not v<=0;

Backward = pre(Start) and v<0 or
pre(StartBackward) and v<0 or
pre(Backward) and not v>=0;

StartForward = pre(Stuck) and fc < -R0 or
pre(StartForward) and not (v>0 or a<=0 and not v>0);

StartBackward = pre(Stuck) and fc > R0 or
pre(StartBackward) and not (v<0 or a>=0 and not v<0);

Start = if initial() then true else false;
// reinit() has effect because v is state variable
//See the value of the stateSelect attribute in the TransForce model
when Stuck then

reinit(v,0);
end when;

end Friction;

Modelica Code 9.6: LibFriction library (2/3).



HYBRID MODELING PRACTICE

package Examples

model OneBodyFloor
TransBody body(p_Initial=0, v_Initial=0, m=10);
Friction friction;
Inertial floor;
ExtForce extForce1(Tstart=10, Tend=50, Kf=0.1);
ExtForce extForce2(Tstart=100, Tend=150, Kf=-0.1);

equation
connect(body.port, friction.port2);
connect(friction.port1, floor.port);
connect(extForce1.port, body.port);
connect(extForce2.port, body.port);
annotation (experiment(StopTime=250));

end OneBodyFloor;

model TwoBodies
TransBody body1(p_Initial=0, v_Initial=2, m=10);
TransBody body2(p_Initial=0, v_Initial=0, m=10);
Friction friction;
ExtForce extForce_c2(Tstart=100, Tend=150, Kf=-0.1);

equation
connect( body1.port, friction.port2);
connect( friction.port1, body2.port);
connect( extForce_c2.port, body2.port);
annotation (experiment(StopTime=250));

end TwoBodies;

model TwoBodiesFloor
// body2 - body1 - floor

TransBody body1(p_Initial=0, v_Initial=2, m=10);
TransBody body2(p_Initial=0, v_Initial=-2, m=10);
Friction friction_c2_c1;
Friction friction_c1_floor;
Inertial floor;
ExtForce extForce_c1(Tstart=50, Tend=100, Kf=0.1);
ExtForce extForce_c2(Tstart=200, Tend=250, Kf=-0.1);

equation
connect( body2.port, friction_c2_c1.port2);
connect( friction_c2_c1.port1, body1.port);
connect( body1.port, friction_c1_floor.port2);
connect( friction_c1_floor.port1, floor.port);
// External forces
connect( extForce_c1.port, body1.port);
connect( extForce_c2.port, body2.port);
annotation (experiment(StopTime=350));

end TwoBodiesFloor;

end Examples;

end LibFriction;

Modelica Code 9.7: LibFriction library (3/3).
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The ExtForce model describes an external force that can be applied to an object.

The model has three parameters: Tstart, Tend and Kf . The force is zero outside the

(Tstart, Tend] time interval. Within this time interval, the force increases linearly with

slope Kf N/s, stating from the zero value at the Tstart time.

The TransForcemodel has two mechanical ports, and defines the relative position

and velocity of the two ports. This model will be used as a superclass of the friction

models.

The library contains two different models of the friction. In the FrictionLin

model, the friction force depends linearly on the relative velocity for any value of the

relative velocity. The Friction model describes the six-mode friction model shown in

Figure 9.14, whose characteristic curve is shown in Figure 9.13.

The Examples package includes three models. The OneBodyFloor model des-

cribes the sliding motion with dry friction of a body over the floor. An external

force is applied to the body during two different time intervals. The TwoBodies

model describes the sliding motion with dry friction of two bodies. Additionally, the

TwoBodiesFloor model includes the floor model, so that the sliding with friction

occurs between the two bodies, and between the lower body and the floor. The

simulation of these examples is left to the reader.

9.7 Heat conduction in a wall

The heat conduction in the wall of a cooling chamber is analyzed in this section.

The wall is composed of three layers of different materials, named A, B and C, with

width LA = 15 mm, LB = 100 mm and LC = 75 mm respectively. A transversal cut

of the wall is represented in the upper part of Figure 9.16.

The inner surface of the wall is at a constant temperature of 0 0C, while the outer

temperature varies between −20 0C and 20 0C along 24 hours. The temperatures of

the inner and outer surfaces of the wall, T1 and T5, are described by Eqs. (9.29) and

(9.30), where time (t) is expressed in seconds (24 hours are equivalent to 24 ·60 ·60 =

86400 seconds), and temperature in Kelvin.

T1 = 273.15 (9.29)

T5 = 273.15 + 20 · sin
(

2 · π · t
86400

)

(9.30)
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The goal is to calculate the heat flow rate per unit of cross-sectional area, and

the temperatures at the interfaces between the different materials (T2, T3) and at

the wall’s outer surface (T4). To this end, the system is described as the equivalent

thermal circuit shown in the lower part of Figure 9.16. The S parameter that appears

in the thermal resistance denominator is the wall surface. This parameter is set to

S = 1 m2, so that Q is equal to the heat flow rate per unit of cross-sectional area. The

thermal conductivities, κA, κB and κC , are expressed in W·m−1·K−1 in Eqs. (9.31)

– (9.33).

κA = 0.151 (9.31)

κB = 2.5 · exp
(−1225

T

)

(9.32)

κC = 0.762 (9.33)

The thermal conductivity of the B material is a function of the temperature

(T , expressed in Kelvin), as can be seen in Eq. (9.32). In first approximation, the

temperature of the B material is assumed to be the average of the temperatures in

the A-B and B-C interfaces. This is,

κB = 2.5 · exp

(

−1225

0.5 · (T2 + T3)

)

(9.34)

The natural convection heat transfer coefficient, expressed in W·m−2·K−1, is

calculated as follows.

h = 1.37 ·
∣
∣
∣
∣

T5 − T4

6

∣
∣
∣
∣

1/4

(9.35)

Naming Q to the heat flow rate (watts) from the inner to the outer surface of

the wall, the constitutive relationships of the four thermal resistors are:

T1 − T2 = Q · LA

κA · S
(9.36)

T2 − T3 = Q · LB

κB · S
(9.37)

T3 − T4 = Q · LC

κC · S
(9.38)

T4 − T5 = Q · 1

h · S (9.39)
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Figure 9.16: Structure of the chamber wall (above) and equivalent thermal circuit (below).

model MultilayerWall
import SI = Modelica.SIunits;
// Thickness of the layers
parameter SI.Length La = 15E-3;
parameter SI.Length Lb = 100E-3;
parameter SI.Length Lc = 75E-3;
// Cross-sectional area of the wall

parameter SI.Area S = 1;
// Thermal conductivities of the layers
parameter SI.ThermalConductivity Ka = 0.151;
SI.ThermalConductivity Kb;
parameter SI.ThermalConductivity Kc = 0.762;
// Convective heat transfer coefficient
SI.CoefficientOfHeatTransfer h;
// Temperatures
parameter SI.Temperature T1 = 273.15;
SI.Temperature T2(start=273,fixed=false);
SI.Temperature T3(start=273,fixed=false);
SI.Temperature T4(start=273,fixed=false);
SI.Temperature T5;
// Heat flow rate
SI.HeatFlowRate Q;

equation
// Outer temperature
T5=273.15+20*sin(time*2*Modelica.Constants.pi/86400);
// Thermal conductivity of the B material
Kb= 2.5*exp(-1225*2/(T2+T3));
// Convective heat transfer coefficient
h= if noEvent(T4>T5) then 1.37*((T4-T5)/6)^0.25 else

if noEvent(T5>T4) then 1.37*((T5-T4)/6)^0.25 else
1;

// Constitutive relationships of the thermal resistors
T1 - T2 = Q * La/(Ka*S);
T2 - T3 = Q * Lb/(Kb*S);
T3 - T4 = Q * Lc/(Kc*S);
T4 - T5 = Q * 1 /(h*S);

end MultilayerWall;

Modelica Code 9.8: Heat transfer in the three-layer wall shown in Figure 9.16.
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In summary, the model has 8 variables (T1, T2, T3, T4, T5, Q, κB, h) and is

composed of 8 equations. These are Eqs. (9.29), (9.30), (9.34), (9.35) and (9.36) –

(9.39). The LA, LB, LC , S, κA and κC parameters have known values.

Observe Eq. (9.39). The convection heat transfer coefficient, h, appears in the

denominator of the thermal resistance. When the T4 and T5 temperatures become

equal, the value of h, calculated from the Eq. (9.35), is zero. The value h = 0 implies

an infinite value of the thermal resistance, 1/(h · S), which generates a runtime

numerical error.

To avoid this error, let’s assign to h a value different from zero when T4 and T5

are equal. As the heat flow rate in this situation is Q = 0, it does not matter the

value assigned to h when T4 = T5, as long as it is different from zero. We define h

as follows:

h = if noEvent(T4 > T5) then 1.37 · ((T4− T5)/6)∧0.25

else if noEvent(T5 > T4) then 1.37 · ((T5− T4)/6)∧0.25

else 1;

(9.40)

Executing the simulation of Modelica Code 9.8 during 86400 s, the result shown

in Figure 9.17 is obtained. The biggest thermal step occurs in the B material, as

shown in the upper plot of the figure. The heat flow rate Q is positive while it goes

out from the cooling chamber, i.e., while T1 > T5.

Remember that the thermal conductivity of the B material is a function of the

temperature, and that we have assumed the temperature of the B material to be

equal to the average of the temperatures at the A-B and B-C interfaces. To estimate

the error associated to this modeling hypothesis, the B material is split into NelemB

equal layers, each one with a thickness equal to LB/NelemB. We define a vector of

temperatures, whose components are:

TB[1], . . . , TB[NelemB + 1] (9.41)

so that

TB[1] = T2 (9.42)

TB[NelemB + 1] = T3 (9.43)
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Figure 9.17: Result obtained simulating Modelica Code 9.8.
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and where

TB[i] with i = 2, . . . , NelemB (9.44)

is the temperature at the interface between the (i−1)-th and the i-th layer in which

the B material has been split. The thermal conductivity at the i-th layer of the B

material is:

κB[i] = 2.5 · exp

(

−1225

0.5 · (TB[i] + TB[i + 1])

)

(9.45)

The constitutive relationship of the thermal resistor describing the i-th layer of

the B material is:

TB[i]− TB[i + 1] = Q · LB/NelemB

κB[i] · S (9.46)

The model is described in Modelica Code 9.9. The simulation has been performed

by dividing the B material into NelemB = 50 layers, and the obtained results have

been compared with the results obtained by simulating Modelica Code 9.8. The

result of this comparison is shown in Figure 9.18, where can be seen the order of

magnitude of the error in the heat flow rate, and the T2 and T3 temperatures.
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model NMultilayerWall
import SI = Modelica.SIunits;
// Number of layers of the B material
constant Integer NelemB = 50;
// Thickness of the layers
parameter SI.Length La = 15E-3;
parameter SI.Length Lb = 100E-3;
parameter SI.Length Lc = 75E-3;
// Wall cross-sectional area

parameter SI.Area S = 1;
// Thermal conductivities of the layers
parameter SI.ThermalConductivity Ka = 0.151;
SI.ThermalConductivity Kb[NelemB];
parameter SI.ThermalConductivity Kc = 0.762;
// Coefficient of convection heat transfer
SI.CoefficientOfHeatTransfer h;
// Temperatures
parameter SI.Temperature T1 = 273.15;
SI.Temperature T2(start=273,fixed=false);
SI.Temperature T3(start=273,fixed=false);
SI.Temperature T4(start=273,fixed=false);
SI.Temperature T5;
SI.Temperature TB[NelemB+1]( start=273*ones(NelemB+1),fixed=false);
// Heat flow rate
SI.HeatFlowRate Q;

equation
// Outer temperature
T5=273.15+20*sin(time*2*Modelica.Constants.pi/86400);
// Coeff. of convection heat transfer
h= if noEvent(T4>T5) then 1.37*((T4-T5)/6)^0.25 else

if noEvent(T5>T4) then 1.37*((T5-T4)/6)^0.25 else
1;

// Constitutive relationships of the thermal resistors
T1 - T2 = Q * La/(Ka*S);
T3 - T4 = Q * Lc/(Kc*S);
T4 - T5 = Q * 1 /(h*S);
// Layer B
TB[1] = T2;
for i in 1:NelemB loop

TB[i] - TB[i+1] = Q * (Lb/NelemB)/(Kb[i]*S);
Kb[i] = 2.5*exp(-1225*2/(TB[i] + TB[i+1]));

end for;
TB[NelemB+1] = T3;

end NMultilayerWall;

Modelica Code 9.9: Heat transfer in the wall, with the B material divided into layers.
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Figure 9.18: Comparison of the results obtained with NelemB = 50 and NelemB = 1.
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9.8 Further reading

Some of the examples discussed in this lesson have been extracted from biblio-

graphy. Modeling and simulation of an ideal diode is discussed in (Elmqvist et al.

2001). The dry friction model, implemented using the Dymola language, is described

in (Elmqvist et al. 1993). Although the Dymola language is no longer in use, the

event detection procedure described in this article is essentially the same as the

procedure employed by the Modelica modeling environments nowadays. The model

of heat conduction in a wall is described in (Cutlip & Shacham 1999).
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physical field, 106 
pre(), 244
product, 58 
protected, 72, 85 
public, 72
Real, 44
record, 18, 85 
redeclare, 82
reinit, 167, 193, 248 
rem, 64
replaceable, 81 
sample, 249
script file, 30
sign, 64
simulation termination, 250 
size, 58
sqrt, 64
start, 212, 214 
state variable, 136 
stateSelect, 169 
String, 44, 250
concatenation, 250 
integerString, 250 
realString, 250

sum, 58 
terminal, 249 
terminate, 250 
time, 43
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transpose, 58 
type, 18, 45 
variable

attribute, 44
built-in types, 44 

vector, 55
when, 247 
within, 81 
zeros, 58

modeling

causal, 16 
environment, 20 
equation-based, 15 
non-causal, 15 
object-oriented, 17 
physical paradigm, 14

node, 19
numerical differentiation, 146

Omola, 186 
OpenModelica, 32

Check Model, 33 
OMEdit, 32
Diagram View, 33 
Documentation View, 33 
Icon View, 33
Options, 36
Simulate, 36
simulation interval, 36 
Simulation Setup, 36 
Text View, 33
working directory, 36

Pantelides algorithm, 134, 154 
partial class, 17
partition, 116
pendulum, 213
PI controller, 93, 216
pin, 19

simulation

algorithm, 125
hybrid model, 21

single-assignment rule, 61, 248 
SPICE, 85, 174
stiff system, 171
structural singularity, 115, 122 
switch

ideal, 201 
resistive, 208

Tarjan’s algorithm, 117 
tearing, 175
temporal discretization, 176 
time, 113

variable

across, 17
algebraic, 125
alias, 20
auxiliar, 113 
classification, 122 
effort, 17
flow, 17
parameter, 125
state variable, 125, 157 
through, 17
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