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ABSTRACT 

Some proposals claim that language acts as a link to propagate emotional and other 

modal information. Thus, there is an eminently amodal path of emotional propagation in 

the mental lexicon. Following these proposals, we present a computational model that 

emulates a linking mechanism (mapping function) between emotional and amodal 

representations of words using vector space models, emotional feature-based models, 

and neural networks. We analyzed three central concepts within the embodiment debate 

(redundancy, isomorphism, and propagative mechanisms) comparing two alternative 

hypotheses: semantic neighborhood hypothesis vs. specific dimensionality hypothesis. 

Univariate and multivariate neural networks were trained for dimensional (N=11,357) 

and discrete emotions (N=2,266), and later we analyzed its predictions in a test set 

(N=4,167 and N=875, respectively). We showed how this computational model could 

propagate emotional responses to words without a direct emotional experience via 

amodal propagation, but no direct relations were found between emotional rates and 

amodal distances. Thereby, we found that there were clear redundancy and propagative 

mechanisms, but no isomorphism should be assumed. Results suggested that it was 

necessary to establish complex links to go beyond amodal distances of vector spaces. In 

this way, although the emotional rates of semantic neighborhoods could predict the 

emotional rates of target words, the mapping function of specific amodal features 

seemed to simulate emotional responses better. Thus, both hypotheses would not be 

mutually exclusive. We also showed that discrete emotions could have simpler relations 

between modal and amodal representations than dimensional emotions. All these results 

and their theoretical implications are discussed. 

Keywords: neural networks; emotional words; vector space models; mental lexicon; 

grounded cognition  
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INTRODUCTION 

Language is a sophisticated symbolic tool acquired throughout thousands of 

years of evolution. As modern alphabet symbols, language has no direct analogic 

relation with the real referents (with some exceptions like onomatopoeias and 

calligrams). Language representations of reality encode several kinds of information 

such as propositional and conceptual, but also encodes sensorimotor or emotional 

information (Louwerse, 2011, 2018). According to Louwerse (2011, 2018), amodal 

symbols can inform not only about conceptual constructions (such as relations with 

other amodal symbols in propositional frames), but also about sensorimotor or 

emotional information extracted from language statistics (e.g., “pain” shares an amodal 

frame with “blood” by means of common amodal contexts). In computational studies, 

the amodal format of language representation is usually emulated by vector space 

models (see Günther, Rinaldi, & Marelli, 2019; Jones, Gruenenfelder, & Recchia, 2018; 

or Jorge-Botana, Olmos, & Luzón, 2020, for a recent review on vector-space models) as 

the source of these models is purely linguistic (usually, cooccurrences in paragraphs, 

sentences, or textual windows). These paragraphs, sentences, or textual windows are 

processed in order to generate a semantic space where words are spatially represented 

by vectors. That vector space is useful to extract a distance metric that represents 

semantic relations within words. In this vector space, words with similar meanings 

would compose a semantic neighborhood, which is a group of closely related words in 

this amodal vector space (these words are usually called semantic neighbors because 

they share spatial positions or coordinates in the semantic space). 

In contrast, modal representations can be conceived as the first stages of 

perception that encode and simulate sensorimotor and emotional information in a purer 

state (e.g., Barsalou, 2008; Barsalou, Santos, Simmons & Wilson, 2008). Emotional 
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information also encodes sympathetic nervous system responses and motor responses, 

for example, avoidance/escape preparation or facial responses in some motor areas 

(Barrett, 2006). For this reason, authors like Havas, Glenberg and Rinck (2007) found 

emotion-sentence compatibility effects and they explained their findings as a result of 

emotional simulation processes. In empirical studies, the modal format of these 

representations is usually emulated by feature-based models (Andrews, Frank & 

Vigliocco, 2014; Riordan & Jones, 2011) in which people are asked to identify features 

of words like shapes, movement, size, etc. In the case of emotional information, these 

feature-based models can be generated using data sets that contain emotional features 

such as happiness, anger, sadness, fear, disgust, or affective features such as valence or 

arousal (e.g., Fraga et al., 2018; Stevenson, Mikels, & James, 2007). 

As can be suspected after reading the above description, sensorimotor and 

emotional information are encoded twice in modal and amodal representations. This 

redundancy in the organization of the representations of the cognitive system has been 

observed modeling vector space models and human feature-based studies jointly. 

Riordan and Jones (2011) studied such redundancy comparing six different corpus-

based models (amodal representations) with three feature-based models (modal 

representations). They found that the predictions of amodal models were comparable to 

human judgements within feature-based models in different clustering tasks. This 

redundancy has been formally conceptualized in different theoretical frameworks like 

the language and situated simulation theory (Barsalou, et al., 2008), but specially and 

explicitly in the symbol interdependency hypothesis (Louwerse, 2011, 2018). According 

to Barsalou’s and Louwerse’s models, word processing also relies on sensorimotor and 

emotional information. Both models identify what kind of representation (modal or 
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amodal) is required to give an efficient answer and the different timings and tasks 

dependencies of each one. 

The language and situated simulation theory assumes that conceptual processing 

is the result of the interaction between linguistic processing (amodal representations) 

and a situated simulation (modal representations) by means of statistical underpinnings 

(Barsalou et al., 2008). For example, processing “the yellow bus is near” would 

generate an interacting mirroring between simulations in perception for the yellow bus 

and language and propositional interpretations. But this theory proposes that language 

activation peaks before that perceptual simulation activation (for empirical evidence see 

Ianì, Foiadelli, & Bucciarelli, 2019). That is, the system recruits amodal representations 

before modal ones. These amodal representations, usually identified as linguistic 

inferences, can be used for tasks that only need some superficial sensorimotor and 

emotional information, but they are very useful in reasoning (e.g., conceptual tasks with 

“bus”, “near”, etc., as generic concepts). In a second phase, when the language 

activation peaks and its related inferences are generated, a perceptual 

(sensorimotor/emotional) simulation would start to take place in interaction with those 

inferences. These modal simulations can be used for tasks in which deeper sensorimotor 

and emotional information are needed (e.g., “bus” as a situated shape that comes fast to 

me). 

The symbol interdependency hypothesis shares part of Barsalou´s theoretical 

perspective but emphasizes language employing the encoding of emotional, perceptual, 

or sensorimotor information in it. Louwerse (2011, 2018) proposes, as we explained at 

the beginning of this section, that sensorimotor and emotional information are also 

encoded in amodal representations of language. For this reason, Louwerse’s proposal 

genuinely claims for redundancy of sensorimotor information. When amodal 
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representations interact in a “closed world” (like words in a language), they also reach 

sensorimotor and emotional meanings through linguistic inferences. While Barsalou´s 

model proposes two kinds of modal and amodal representations to univocally represent 

sensorimotor and conceptual information, Louwerse’s proposal explicitly claims that 

this relation is not univocal because amodal representations encode both conceptual and 

sensorimotor information. Therefore, sensorimotor features could be judged in a time-

efficient way just with amodal representations without recruiting modal representations. 

Modal representations would be recruited only for featured-oriented tasks. 

The proposals that claim redundancy have been supported by some empirical 

evidence from behavioral and brain studies (Louwerse, Hutchinson, Tillman, & 

Recchia, 2015; Louwerse & Jeuniaux, 2010; Louwerse & Hutchinson, 2012; Günther, 

Dudschig & Kaup, 2018) and computational studies (Bestgen & Vincze, 2012; 

Kuhlmann, Hofmann & Jacobs, 2017; Louwerse & Benesh, 2012; Louwerse & Zwaan, 

2009; Riordan & Jones, 2011; Recchia & Louwerse, 2015). 

But beyond this redundancy, there is another important concept: Isomorphism. If 

modal and amodal representations were isomorphic, the relations within emotional rates 

in modal representations of words would be equivalent to their relations in amodal 

representations. In other words, if a perfect isomorphism exists, it would be possible to 

exhaustively predict the emotional valence of a word from its amodal representation. 

And even more, the emotional features of a word could be predicted by the emotional 

features of its semantic neighborhood because the semantic neighbors of a word would 

share similar amodal features (positions or coordinates in the amodal space). Some 

computational studies have demonstrated that such predictions are reasonable. For 

example, amodal distances between words in vector space models predict emotional 

properties accurately (Bestgen & Vincze, 2012; Kuhlmann et al., 2017; Hofmann, et al, 
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2018; Recchia & Louwerse, 2015). In the present study, we analyzed this proposal and 

we called it the semantic neighborhood hypothesis.  

Nonetheless, some studies suggested that modal and amodal representations do 

not need to be purely isomorphic because they could distribute information differently 

with some kind of bias. For example, Riordan and Jones (2011) showed that 

sensorimotor information that is represented in modal and amodal representations is 

biased. They found redundant information in both representation formats, but modal 

representations (emulated by feature-based models) were biased to perceptive properties 

like touch or smell, while amodal representations (emulated with vector space models) 

were biased to function, action, and situation relations. Some studies have also found 

that only a part of amodal representations from vector space models is important to 

predict the emotional features of words (Hollis, Westbury, & Lefsrud, 2017). This 

implicitly nuances the semantic neighborhood hypothesis and its implicit isomorphism. 

Tentatively, it could suggest that a link between both formats of representations is 

needed to recruit modal representations by the amodal ones, as suggested by some 

studies. In fact, a biological structure for such a link has been suggested: the supramodal 

hub at the anterior temporal lobe may interface amodal representations with 

sensorimotor machinery, especially if sensorimotor features are demanded by retrieval 

tasks (for a review, see Nastase & Haxby, 2016). This proposal is in accordance with 

studies that showed that, in some circumstances, modal representations are activated in 

the presence of words (Binder, Westbury, McKiernan, Possing & Medler, 2005; Borghi 

et al., 2017; Hauk, Johnsrude & Pulvermüller, 2004; Meteyard, Rodríguez-Cuadrado, 

Bahrami & Vigliocco, 2012; Zwaan, 2014, 2016; Zwaan & Yaxley, 2003). 

Functionally, this link could be considered as a mapping function similar to 

transformations of visual or sound signal representations on abstract conceptual 
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representations as suggested by some authors (Gärdenfors, 1996; Gärdenfors, 2000; 

Balkenius & Gärdenfors, 2016). In the present study, we analyzed this mapping 

function and we called it the specific dimensionality hypothesis. 

Another research question about the emotional properties of words is how 

grounding processing affects words with direct emotional experience and words without 

direct emotional experience. Emotional features can be propagated to words without any 

direct emotional experience as it has been suggested by some studies on verbal 

propagation of emotional properties in language acquisition like Field & Schorah, 

(2007), García-Palacios et al. (2018), or Grégoire & Greening (2020). However, it is 

unclear if we need to expose all words to emotional information to produce adequate 

emotional responses. Recently, Hoffman, McClelland and Lambon-Ralph (2018) have 

formalized the concept of “acquired embodiment”. They proposed a propagation 

mechanism of sensorimotor and emotional features to words that have not been 

previously grounded. These authors implemented a small model based on neural 

networks, a model that is partially symbolic and partially sensorimotor and emotional, 

and they achieved this sensorimotor and emotional propagation. The formalization of 

acquired embodiment acts as a bridge between theories that proposed that symbols need 

to be grounded in the physical experience (e.g. Glenberg, 1997) and theories that 

proposed that knowledge is eminently grounded in a linguistic format (e.g., Landauer & 

Dumais, 1997). 

The Present Study 

We presented three central concepts within the embodiment debate: redundancy, 

isomorphism, and propagative mechanisms. These concepts guided our hypothesis, our 

design, and our analyses. Specifically, in the present study, we analyzed the pertinence 

of a link between emotional and amodal representations of words in a large-scale 
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normative data set of words. We modeled said link by means of a neural network that 

was trained to predict emotional judgements using amodal vector representations of 

some words in a vector space model. Then, we studied the underlying redundancy, 

isomorphism and propagative mechanisms that produce emotional responses using 

amodal representations of words without direct emotional experience. 

The whole computational model is designed to learn and take advantage of the 

redundancy of modal and amodal representations of words following the theoretical 

framework of the symbol interdependency hypothesis (Louwerse, 2011, 2018) and the 

language and situated simulation theory (Barsalou, et al., 2008). We tested the 

underlying mechanism of the redundancy and the isomorphism of modal and amodal 

representations of words, comparing the performance of the semantic neighborhood 

hypothesis vs. the specific dimensionality hypothesis. For the semantic neighborhood 

hypothesis, we analyzed the capacity of the amodal distances in the vector space model 

to predict the emotional judgements of words. For the specific dimensionality 

hypothesis, we tested the relative importance of amodal features of the vector space 

model to predict the emotionality of words. In this case, the superiority of the specific 

dimensionality hypothesis would mean that there is not a perfect isomorphism and, 

probably, a link is needed to join amodal and modal representations when the task is 

biased to emotional features. This hypothetical superiority of the specific dimensionality 

hypothesis would not invalidate the semantic neighborhood hypothesis if the 

performance of semantic neighborhood predictions remains reliable. Thus, the specific 

dimensionality hypothesis and the semantic neighborhood hypothesis would not be 

mutually exclusive.  

Moreover, inspired by Hoffman et al. (2018), we also studied the underlying 

mechanism that produces the propagation of emotions within amodal representations of 
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words in a large-scale normative data set. In our computational model, some of the 

amodal representations of words were grounded by means of the neural network model 

training. In this training, some dimensions gain relevance and act as a mapping between 

emotional and amodal representations of words. Then, we tested the underlying 

propagative mechanisms in a second group of words without direct emotional 

experience. If the neural network model generates valid emotional predictions in this 

second group of words, there would be evidence of a mechanism that would propagate 

the effect of the link via amodal representations. That is, in addition to the encoding of 

emotional features in amodal representations that arise through the interaction of words 

in a language, pure amodal representations could also need a linking mechanism to 

modal simulations. This is close to verbal conditioning of emotions (Field & Schorah, 

2007; García-Palacios et al., 2018; Grégoire & Greening, 2020). 

 Given that the present study is focused on emotional representations of words, 

we explored the potential differences between dimensional and discrete emotional 

categories within this link for modal and amodal representations of words. The 

dimensional categories, also known as affection, are conceptualized as a reduced 

number of subjacent dimensions like valence (unpleasant-pleasant) and arousal 

(calming-arousing) that are transversal to all emotions (Russell, 1979). The discrete 

categories, also known as basic emotions, are conceptualized as a limited number of 

discrete emotions that have specific characteristics, physiological and behavioral 

correlates like happiness, anger, sadness, fear and disgust (Ekman, 1992). This 

distinction is very useful for researchers of emotion (e.g., Fraga et al., 2018; Stevenson 

et al., 2007), but the potential differences between affection and emotion within 

emotional and amodal relations remain unexplored. 
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METHOD 

In order to test the assumptions of redundancy, isomorphism and propagation 

mechanisms, we generated a computational model by means of a neural network 

architecture to emulate a link between emotional and amodal representations. It 

proposes an explanatory mechanism to emotional simulations that goes beyond the 

amodal codification of emotional features (even in words with no modal experiences 

through propagative processes). The procedure of this study can be summarized in four 

consecutive phases (see Figure 1). Firstly, a general domain corpus was processed to 

extract amodal word vector representations for the input of the neural network models. 

We used the vector space model Latent Semantic Analysis (LSA; Landauer & Dumais, 

1997) to generate vector representations as amodal representations of words (see 

Günther et al., 2019; Jones et al., 2018; or Jorge-Botana et al., 2020, for a recent review 

on vector space models). 

Secondly, the emotional ratings of words were sampled from different data sets 

of emoFinder (Fraga et al., 2018), which is the most suitable source of emotional 

normative data sets for Spanish words (the language used in this study) to obtain modal 

(emotional) representations of words. A subset of these emotional ratings was used to 

set the emotional grounding and represent the output for the training phase of the neural 

network models. Specifically, we used both dimensional (valence, arousal) and discrete 

(happiness, anger, sadness, fear, disgust) emotional categories for the modal 

representation of words.  

Thirdly, the neural network architecture was trained with both amodal and 

emotional representations. Here, some LSA amodal word representations were 

grounded by means of the emotional ratings of emoFinder. That is, we modeled a set of 

grounding events that joined the amodal representations with the emotional ones. In this 



12 
 

training phase, the neural network architecture uses the representation of words derived 

from the space model (LSA1) as input, and the emotional ratings from emoFinder 

(emotional experience) as output. 

Fourthly, the neural network architecture was validated and tested using 

independent samples of words (i.e., validation and testing data sets) to test the 

propagation of the effect of the link within purely amodal representations of words 

(with no modal experience). It is worth mentioning that this validity strategy not only 

uses an independent sample of words, but also different normative data sets. 

 

Figure 1. Procedure of the present study: Extraction of modal and amodal word representations. Generation and testing of a 

link between modal and amodal word representations by means of a neural network architecture. 

  

 

 

The details of the procedure are described below. Gallito Studio software (Jorge-

Botana, Olmos, & Barroso, 2013) was used to generate the latent semantic space and to 

train and validate neural network models2. Then, neural network models were tested 

 
1 LSA provides a formal representation of meaning in orthogonal dimensions/vectors (i.e., its latent 

dimensions correlate zero). In this way, orthogonal vectors from LSA can be considered an ideal input 

due to its dimensionality reduction (Mandl, 1999). 
2 This software uses the encog library from https://www.heatonresearch.com/encog/ to train the neural 

network models. 
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using GallitoAPI (e.g., www.gallitoapi.net), which is an API that exposes the 

functionalities of Gallito Studio online. Both the API requests and the statistical 

analyses were performed using R software (Spanish word lists, R code, and instructions 

are available at: https://osf.io/m8wux/; DOI:10.17605/OSF.IO/M8WUX). 

Amodal word vector representations 

A textual corpus was processed with the LSA technique in order to use its 

vectors as the amodal input for the different neural network models. 455,969 documents 

(paragraphs) and 70,244 unique terms from a random sample of the Spanish Wikipedia 

were used as the corpus to generate the semantic space. It was generated using standard 

procedures (Landauer, McNamara, Dennis, & Kintsch, 2007). After Singular Value 

Decomposition (SVD), 300 dimensions were imposed for the semantic space. The log-

entropy weighted function was used as the preprocessing (Nakov, Popova, & Mateev, 

2001). 

Selecting a training set of words for neural network training 

A training set of words was selected for neural network training. The larger 

normative data sets of emoFinder (Fraga et al., 2018) were selected to train the neural 

network models in both dimensional (Ferré et al., 2017) and discrete (Stadthagen-

González et al., 2017) emotional categories. Words of the training data set were filtered 

by deleting the common words between the training and the test sets to ensure that 

words from the test set were not trained at all. Table 1 shows the data sets and the 

number of words used in each step of the neural network models. Emotional values of 

each word were standardized on a 0-1 scale to make all data sets equivalent and to have 

a suitable output for logistic functions of neural networks. 

Training and validating neural network models 

http://www.gallitoapi.net/
https://osf.io/m8wux/
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Different neural network models were trained for each of the emotional 

categories considered in the present study. 11,357 words were used to train the neural 

network for the dimensional categories (valence, arousal) and 2,266 words were used 

for the discrete ones (happiness, anger, sadness, fear, disgust) (see Table 1). Different 

versions of neural networks were trained to learn and to link in the training set. Namely: 

univariate and multivariate models (see Figure 2). These neural networks use RPROP+ 

(resilient propagation with a bias node) with one hidden layer in order to estimate the 

regression weights of the model. A logistic transformation in each node is used to 

produce a response. 

 

Figure 2. Graphical representation of univariate (2.A) and multivariate (2.B and 2.C) neural networks. 

A) Univariate neural networks 
B) Multivariate neural networks 

for dimensional categories 

C) Multivariate neural networks 

for discrete categories 
 

 
 

 

 

 

 

 

 

Note. dk = From 1 to 300 LSA dimensions as the input. ni = From 1 to i hidden nodes (see Table 2). o1-o5 = 

Different affective/emotional predictions as the output. 

 

 

While a univariate neural network was generated for each emotional category 

(with only one modal scalar prediction for each feature as output), the multivariate one 

jointly propagates different categories (which generates a modal vector of values as 

output). In this training phase, different iterative processes based on backpropagation 

modified the weights that interrelated LSA amodal word vector representations with 
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human emotional judgements (acting as modal representations). The data set was 

divided into two parts: a sample of 85% of the words were used as the training set and 

15% of the words were used as the validation set. This was done to select the most 

appropriate number of hidden nodes in each affective/emotional category (see Results 

section), but this 15% validation data set is also the first evidence of emotional 

propagation. 

Testing neural network models 

To analyze the propagation of emotional responses, the performance of neural 

network models was tested using words from new normative data sets (different words, 

different human evaluators, and different researchers). 4,167 words were used to test the 

dimensional categories (valence, arousal) and 875 words were used to test the discrete 

ones (happiness, anger, sadness, fear, disgust) (see Table 1). 93 words of dimensional 

categories and 25 words of discrete ones were excluded from the analyses because they 

did not have a vector representation in the LSA. As was pointed out before, neural 

network models estimated modal values (a modal vector) for the amodal representation 

of each word. Then different statistical analyses were performed to test these network 

scores using the human scores from the data set as the dependent variable. Once the 

univariate and the multivariate neural network models were tested, additional analyses 

on the network scores were performed. 

Table 1. Specification of the normative data sets used in each step of the neural network estimations. 

Variable 
 Dimensional emotions  Discrete emotions 

 Valence Arousal  Happiness Anger Sadness Fear Disgust 

Training and 

validation data set 
 

Stadthagen-González et al. 

2017 (N=11,357) 
 Ferré et al. 2017 (N=2,266) 

Test data set  

Redondo et al. 2005 (N=478) 

Redondo et al. 2007 (N=1,034) 

Ferré et al. 2012 (N=380) 

Guasch et al. 2016 (N=1,400) 

Hinojosa et al. 2016 (N=875) 

 Hinojosa et al. 2016 (N=875) 

Note: N = Number of selected words in each data set. 
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Analyzing the semantic neighborhood hypothesis 

In order to test the semantic neighborhood hypothesis, we estimated the 

emotional scores of the words from test data sets (i.e., target words) by means of their 

semantic neighbors in the amodal vector space (see similar procedures in Bestgen & 

Vincze, 2012; Kuhlmann et al., 2017; Hofmann, et al, 2018; Recchia & Louwerse, 

2015). That is, we tested the capacity of amodal semantic distances to predict emotional 

properties of words. We computed the cosine measure to determine all the results of the 

semantic neighborhood hypothesis, in other words, to select the semantic neighbors and 

to compute the amodal distances. These target word scores were computed as the mean 

of the human emotional rates of its 30 closest semantic neighbors. For each target word, 

we extracted the 30 closest semantic neighbors and then retrieved the human rate of 

each semantic neighbor from the normative data set (each target word contained from 2 

to 26 semantic neighbors with valid values). We used a multiple linear regression 

comparing the mean of the human rates of semantic neighbors and the neural network 

scores to identify whether the neural networks explained something that goes beyond 

and above amodal neighbors. Moreover, we also analyzed the relation between 

emotional ratings and amodal distances (cosines) of semantic neighbors of target words 

through the mean Pearson correlation coefficients in the sample of words. 

 

Analyzing the specific dimensionality hypothesis 

In order to test the specific dimensionality hypothesis, we obtained different 

evidence of the relative importance of the LSA amodal dimensions in the neural 

network architecture to predict the emotionality of words. First, we analyzed the relative 

importance of the LSA amodal dimensions in the neural network architecture 
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employing Olden (Olden, Joy, & Death, 2004) and Garson (Garson, 1991; Goh, 1995) 

algorithms using R’s NeuralNetTools package (Beck, 2018). As expected, the absolute 

values of Olden algorithm’s results were equivalent to Garson’s ones. Thus, we reported 

here the results of Olden algorithm to represent the relative importance of the LSA 

amodal dimensions. We also tested the specific dimensionality hypothesis using 

backward stepwise linear regressions using the AIC index replicating the procedure of 

Hollis et al. (2017). As a complement, we compared the performance of the scores of 

neural networks and backward stepwise linear regressions using a test for dependent 

correlations (Hittner, May, & Silver, 2003) and estimating the exact confidence interval 

for those differences (Zou, 2007) using R’s cocor package (Diedenhofen & Musch, 

2015). 

Analyzing the overlapping between the dimensions of the link and the amodal 

dimensions of a tentative core of emotions 

The specific dimensionality hypothesis assumes that only some relevant 

dimensions are used to bypass emotional responses from amodal representations. As it 

was stated above, the Olden algorithm (Olden et al., 2004) is a way to identify such 

relevant LSA amodal dimensions. On the contrary, the semantic neighborhood 

hypothesis requires the generation of semantic neighborhoods and thus assumes that all 

the dimensions are relevant in the process. But there is room for differential 

participation of dimensions even in the amodal vector space. The emotional bias of 

tasks could cause some amodal dimensions to be more activated to generate judgments 

and neighbors. This is the case where the amodal emotional concept of words is reached 

by activating or inhibiting different parts of their amodal representations. For example, 

the emotional meaning of “bank” can be reached amodally by promoting part of its 

amodal representation, such as the one that is related to “crisis” and “unemployment” or 
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“fishing” and “family”. Therefore, we isolate those amodal dimensions that are 

potentially coherent with the amodal concept of each emotion to compare them with the 

dimensions that participate in the link emulated by the neural network models. 

We computed the importance of the LSA dimensions in the amodal vector space 

by means of two complementary methods. The first is simple. We identified the words 

from the data set with high human rates (at least, more than one standard deviation 

above the mean) in each emotion. In each emotional pool, we randomly generated 100 

sets of six words, such as {“fear”, “terror”, “terrorism”, “monster”, “horror”, “bank”}, 

and computed the vector sum of each, such as: 

𝑣𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝑣𝑓𝑒𝑎𝑟  + 𝑣𝑡𝑒𝑟𝑟𝑜𝑟  + 𝑣𝑡𝑒𝑟𝑟𝑜𝑟𝑖𝑠𝑚  + 𝑣𝑚𝑜𝑛𝑠𝑡𝑒𝑟 +  𝑣ℎ𝑜𝑟𝑟𝑜𝑟  + 𝑣𝑏𝑎𝑛𝑘 

The result was a vector that represented the centroid of the six words (Landauer & 

Dumais, 1997). As words had a high emotional score in each specific emotion, it was 

inferred that the resulting vector dimensions would preserve the amodal representation 

of that emotion. We computed the mean of these 100 resulting vectors in each amodal 

dimension. Finally, we had a unique vector that represented the dimensions of an 

amodal concept of the emotion. We called this method centroid. 

The second method is more sophisticated, but it is well known and has been 

widely applied in the literature. One of the algorithms that take into account the context 

of the words is the Construction-Integration (C-I) algorithm for vector spaces (Kintsch, 

1998; Kintsch, 2000; Kintsch, 2001; Kintsch & Bowles, 2002; Millis & Larson, 2008; 

Jorge-Botana, Olmos, & Barroso, 2012). The C-I algorithm has inhibition and activation 

mechanisms that promote context-agree components and inhibit context-disagree ones 

(see Kintsch & Welsch, 1991 for details of the original conception). This mechanism 

can magnify those dimensions that are consistent with the amodal concept of emotion.  
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For example, the set of words {“fear”, “terror”, “terrorism”, “monster”, “horror”, 

“bank”} activates a part of the amodal representation and inhibits another part. As each 

word of the set has a high emotional score and acts as a context for the other words, 

then, for example, only the emotionalized meaning of “bank” would be activated. The 

C-I works as follows: First, in the construction phase, a net is constructed with the first 

n neighbors of each word in the set. Second, in the integration phase, 

inhibition/activation mechanisms are run until a stable state is reached. Third, the 

vectors of the k most activated words from that net are summed. The resulting vector 

would be the amodal representation of the emotion. For the parameters n and k, we used 

n={15, 30, 60, 90, 120} and k={6, 12}. We called this method the C-I method. 

The dimensions with the highest scores (in absolute values) of the resulting 

vectors are those dimensions that participate in a potentially biased selection of the 

amodal context of emotions in the amodal vector space. In this way, we can compare 

those dimensions that participate in the neural network model using the Olden algorithm 

(Olden et al., 2004) with those LSA amodal dimensions that define the context of 

specific emotions using both the centroids and the C-I method resulting vectors. If the 

relative importance of both groups of dimensions does not coincide, it would support 

the necessity of a mechanism that acts as a link to produce emotional simulations. We 

analyzed the Kendall rank correlation coefficients to avoid potential metric bias when 

analyzing the relations between the relative importance of both measures. 
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RESULTS 

Aligned with the objectives of this study, results have the following structure: 

(1) We tested the performance of univariate and multivariate neural network models in 

the validation and the test sets to show the grounding and propagative mechanisms of 

the link between emotional and amodal representations; (2) We present the analyses that 

were performed around the semantic neighborhood hypothesis to test the capacity of 

amodal semantic distances to predict emotional properties of words; (3) We present the 

analyses that were performed around the specific dimensionality hypothesis to test the 

relative importance of the LSA amodal dimensions to predict the emotionality of words; 

(4) We present the analyses that were performed to compare the semantic neighborhood 

hypothesis and the specific dimensionality hypothesis. 

1. Validating and testing neural network emotional predictions 

As it was mentioned above, neural network models were trained using 11,357 

words for dimensional categories and 2,266 words for discrete ones as the training data 

set. 15% of these words (1,704 and 340 words, respectively) were randomly selected as 

a validation data set (thus, they were not included in the training). Results were robust 

(i.e., the number of hidden nodes did not show a great impact on the performance) and 

presented a considerable propagation to new words in terms of its similarity with 

normative data sets (see Table 2). We selected the number of hidden nodes with higher 

performance in the validation data set for the following analyses. 
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Table 2. Performance of the neural network models in the validation data set (Pearson correlation 

coefficients between predicted scores from neural networks and human rates) 

 
Hidden 

nodes 

 Dimensional 

emotions* 
 Discrete emotions** 

  Valence Arousal  Happiness Anger Sadness Fear Disgust 

U
n

iv
ar

ia
te

 

5  .519 .504  .626 .641 .579 .597 .537 

Epochs  #502 #70  #116 #38 #56 #67 #41 

10  .548 .522  .647 .626 .611 .636 .525 

Epochs  #164 #54  #70 #37 #39 #65 #43 

15  .568 .521  .616 .616 .618 .646 .516 

Epochs  #137 #51  #63 #36 #45 #55 #45 

20  .559 .534  .643 .631 .590 .587 .533 

Epochs  #121 #50  #65 #35 #39 #54 #40 

25  .562 .512  .655 .599 .602 .626 .476 

Epochs  #137 #44  #81 #39 #39 #55 #44 

30  .562 .514  .691 .610 .582 .635 .518 

Epochs  #121 #60  #74 #38 #45 #58 #49 

 
Hidden 

nodes 

 Dimensional 

emotions* 
 Discrete emotions** 

  Valence Arousal  Happiness Anger Sadness Fear Disgust 

M
u

lt
iv

ar
ia

te
 

10  .538 .498  .592 .558 .551 .631 .536 

Epochs  #221  #125 

20  .567 .474  .620 .605 .573 .611 .496 

Epochs  #116  #87 

30  .591 .504  .632 .613 .588 .636 .514 

Epochs  #139  #74 

40  .574 .510  .673 .633 .603 .647 .547 

Epochs  #130  #68 

50  .572 .521  .680 .593 .564 .614 .514 

Epochs  #127  #65 

60  .576 .511  .650 .577 .584 .611 .515 

Epochs  #98  #73 

Note: All Pearson correlation coefficients were statistically significant (p<.01). Grey cells show the 

highest Pearson correlation coefficients. # = number of epochs per training. * = 1,704 words were used 

as the validation set. ** = 340 words were used as the validation set. 

 

 

The following results were obtained in the test data set (different words, 

different human evaluators and different researchers). Specifically, dimensional 

emotions were tested using 4,074 words, while discrete emotions were tested using 850 

words. The performance of neural network models was robust and coherent with the 

previous results (see Table 3). Results showed the propagation of the emotionality via 
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amodal representations, that is, the capacity to accurately predict the emotional 

properties of the words of the test set in both univariate and multivariate neural network 

models. 

 

Table 3. Performance of the neural network models in the test set (Pearson correlation coefficients). 

   
Dimensional 

emotions 
 Discrete emotions 

   Valence Arousal  Happiness Anger Sadness Fear Disgust 

Univariate 
Hidden nodes 15 20  30 5 15 15 5 

Performance  .702 .609  .646 .702 .636 .692 .590 

Multivariate 
Hidden nodes 40  40 

Performance  .700 .598  .645 .676 .626 .709 .562 

Note: All Pearson correlation coefficients were statistically significant (p<.01). 

 

 

2. Analyzing the semantic neighborhood hypothesis 

Different studies showed that the surrounding semantic neighbors of a target 

word in the amodal vector space were good proxies to predict human scores of this 

target word (e.g., Bestgen & Vincze, 2012; Hollis et al., 2017; Kuhlmann et al., 2017; 

Lenci et al., 2018; Recchia & Louwerse, 2015; Turney & Littman, 2003). In this text, 

we have called this the semantic neighborhood hypothesis because implicitly it is 

assumed that the amodal representation as a whole is enough to capture the emotionality 

of a word and, consequently, all semantic dimensions would have the same relevance to 

predict emotionality. To put to the test the prediction based on this assumption, 30 

semantic neighbors were selected for each target word based on the cosine in the 

amodal vector space. Then, the mean of the human emotional rates of the semantic 

neighbors was used to predict the emotional score of the target words of the test data 

set. As it can be observed in Table 4, the mean emotional score of the semantic 
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neighbors was capable of predicting human rates (R2 ranged from .28 to .41) as it was 

found in previous studies. Thus, this procedure can be useful as a strategy to impute 

missing values in data sets using semantic neighbors as a proxy of the emotional scores 

of target words. Also, we included the neural network scores in the same linear 

regression model. Results showed that the predictions of the neural network model were 

more important when predicting the scores of target words, whose standardized β 

coefficient almost doubled the semantic neighbors (except for disgust). This means that 

neural networks explained something that goes beyond and above the semantic 

neighbors suggesting that an ideal isomorphism does not exist.  

 

Table 4. Standardized β coefficients from multiple linear regressions to predict human rates using 

average human rate of the 30 closest neighbors of the predicted word, and neural network scores. 

  Dimensional emotions  Discrete emotions 

  Valence Arousal  Happiness Anger Sadness Fear Disgust 

Semantic 

neighbors* 
.597 .542  .537 .637 .572 .646 .578 

R2 .36 .29  .28 .41 .32 .41 .33 

Neural 

networks 
.707 .612  .680 .735 .656 .714 .609 

R2 .50 .37  .46 .46 .43 .51 .37 

Semantic 

neighbors 
.209 .229  .217 .266 .279 .294 .358 

Neural 

networks 
.523 .453  .555 .558 .488 .512 .423 

R2 .52 .40  .49 .58 .48 .56 .46 

Note: All the standardized β coefficients were significant at p<.01. * = Each target word contained 

from 2 to 26 (out of 30) semantic neighbors. 

 

 

Another way to test the semantic neighborhood hypothesis is to correlate amodal 

distances and emotions of semantic neighbors of target words. That is, if the word 

“tomb” predicts a high human score in fear, it could be expected that its semantic 

neighbors are also associated with a high prediction of fear. To do this, the covariation 
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of human scores and amodal distances (cosines; less amodal distances -higher cosines- 

would imply more similar emotional predictions) were analyzed to test if semantic 

neighbors represented the emotionality of target words. Table 5 shows that the relation 

between both distributions was not different to zero in any of the emotional categories, 

that is, human emotional scores do not present a similar distribution to distances in the 

amodal vector space. As it will be discussed below, these results support that there is 

not an ideal isomorphism and, thus, a mapping link between amodal and emotional 

representations of words is probably needed to simulate specific emotional features.  

 

Table 5. Mean Pearson correlation coefficient [95%CI] between human emotional scores and distances (cosines) in 

the amodal vector space of semantic neighbors of target words. 

Dimensional emotions Discrete emotions 

Valence Arousal Happiness Anger Sadness Fear Disgust 

.008 

[-.013—.029] 

-.002 

[-.023—.019] 

.043 

[-.028—.114] 

.025 

[-.051—.103] 

-.011 

[-.084—.063] 

-.032 

[-.110—.046] 

-.001 

[-.079—.063] 

Note: Pearson correlation coefficients were estimated only for those target words that had more than ten semantic 

neighbors for dimensional categories and more than five for discrete categories. 

 

 

3. Analyzing the specific dimensionality hypothesis 

Neural networks and multiple linear regression models use specific dimensions 

(with different bias or weight combinations) to capture emotional properties. These 

models assume that modal representations are differentially concentrated in the amodal 

dimensions and, consequently, that the emotionality of a word cannot be reduced to the 

whole semantic representation. A direct way to test the specific dimensionality 

hypothesis is to analyze the relative relevance of features of amodal representations of 

words (in this case, 300 LSA amodal dimensions) to predict emotional scores in the 

neural network models. Here, we computed the relative importance of the LSA amodal 
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dimensions in the neural network architecture using Olden algorithm (Olden et al., 

2004). Figure 3 shows that only a few dimensions of the amodal vector space were 

relevant to predict the emotionality of words in the emotional category (please note that 

some dimensions were relevant to activate and others to inhibit emotional responses). 
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Figure 3. Testing the specific dimensionality hypothesis as the relative importance of LSA amodal dimensions in the neural architecture using Olden et al. (2004) algorithm. 
Valence Arousal Happiness Anger 

    
Sadness Fear Disgust  

   

 

Note: 300 features of amodal representations of words (LSA dimensions) are ordered in the x axis by their relative importance. Relative importance of these amodal 

features to predict emotional scores is plotted in the y axis (Olden et al. 2004 algorithm was used to compute this measure). 
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Moreover, we compared the performance of univariate neural networks with 

multiple linear regressions, which is an alternative procedure to capture the relation 

between amodal and emotional representations of words (Hollis et al., 2017). Linear 

regression models have a simpler structure than neural networks regarding the 

sensibility of variable interactions. Thus, the sensitivity to more complex emotional 

constructs may be favored by a non-linear architecture as the neural network. We 

replicated Hollis et al. (2017) procedure where human rates were predicted by amodal 

vector representations using backward stepwise regressions through the AIC index. 

Concretely, different multiple linear regression models were estimated using the 

training set and were tested later in the test set. Results showed that backward stepwise 

regressions can equal neural network performances in discrete emotions, while neural 

networks nearly double backward stepwise regression performances in dimensional 

emotions (see Table 6). It seems that simple linear relations between emotional and 

amodal representations of words were sufficient to explain discrete categories. That is, 

discrete emotional constructs could present simpler emotional and cognitive relations. 
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Table 6. Performance of backward stepwise regressions in the test set as Pearson correlation coefficients, and comparison of the performance of neural networks and backward stepwise 

regressions. 

    Dimensional emotions  Discrete emotions 

    Valence Arousal  Happiness Anger Sadness Fear Disgust 

Backward stepwise regressions N. relevant dimensions 146 141  94 104 100 93 83 

Performance  .439 .367  .640 .721 .668 .700 .598 

Neural networks vs. backward 

stepwise regressions 

z (p)  18.24 (p<.01) 14.92 (p<.01)  .21 (p=.42) -.81 (p=.79) -1.15 (p=.88) -.32 (p=.63) -.26 (p=.60) 

95%CI  [.21—.29] [.17—.27]  [-.05—.06] [-.07—.03] [-.09—.02] [-.06—.04] [-.07—.05] 

Note: All Pearson correlation coefficients were statistically significant (p<.01). N. relevant dimensions = Number of LSA amodal dimensions in the final linear regression model using 

Hollis et al. (2017) procedure. z = One-sided backtransformed average Fisher's Z to compare dependent correlation coefficients using Hittner, May, & Silver (2003) modification. 

95%CI = 95% confidence interval for differences between neural networks and backward stepwise regressions using Zou (2007) estimation. 
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4. Analyzing the overlapping between the dimensions of the link and the amodal 

dimensions of a tentative core of emotions 

In order to study the overlapping between the dimensions of the link and the 

amodal dimensions of a tentative core of emotions, we analyzed the relations between 

the relative importance of LSA amodal dimensions in neural network models and the 

amodal vector space. Kendall rank correlation coefficients showed that no relevant 

relations were obtained for any of these measures (see Table 7). Some exceptions could 

be seen in the statistical significance of C-I results for sadness or fear, but the effect size 

was very small. This means that there was no overlapping between the relative 

importance of amodal dimensions for the neural network models and amodal 

dimensions of a tentative core of emotions in the vector space. 

 

Table 7. Kendall rank correlation coefficients to compare the relative importance of LSA amodal dimensions in neural network models 

and in the amodal tentative core of emotions. 

 Initial 

words 

Dimensional categories  Discrete categories 

 Valence Arousal  Happiness Anger Sadness Fear Disgust 

Centroids  .01 (p=.81) -.04 (p=.29)  -.02 (p=.68) .00 (p=.93) -.01 (p=.71) -.07 (p=.06) .00 (p=.81) 

C-I 

15 -.08 (p=.04) .04 (p=.29)  -.02 (p=.53) -.03 (p=.42) -.10 (p<.01) -.13 (p<.01) -.03 (p=.47) 

30 -.06 (p=.14) .08 (p=.07)  .00 (p=.81) -.03 (p=.38) -.11 (p<.01) -.11 (p<.01) .00 (p=.90) 

60 -.03 (p=.42) .07 (p=.06)  .00 (p=.96) -.03 (p=.49) -.09 (p=.02) -.10 (p=.01) -.03 (p=.49) 

90 -.03 (p=.47) .05 (p=.20)  .01 (p=.76) -.03 (p=.37) -.09 (p=.03) -.10 (p<.01) -.03 (p=.50) 

120 .02 (p=.72) .06 (p=.13)  .00 (p=.86) -.02 (p=.53) -.08 (p=.04) -.10 (p<.01) -.02 (p=.58) 

Note: N = 300 dimensions. All Kendall rank correlation coefficients were computed between the absolute value of Olden algorithm result 

(relative importance of LSA amodal dimensions in neural network models), and different estimations of the relative importance of LSA 

dimensions in the amodal vector space (centroids and different parametrizations of C-I). 

 

 

Figure 4 represents the relations between the relative importance of amodal 

dimensions for the neural network models and amodal dimensions of a tentative core of 

emotions in the vector space. These graphs show that the most important dimensions for 

the neural network models were irrelevant for the tentative core of emotions in the 
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vector space (and vice versa). This means that there was no relation between the relative 

importance of the LSA amodal dimensions for the neural network models and the 

tentative core of emotions in the vector space.  There were some minimal agreements 

for valence, arousal, happiness, and disgust, but they are more anecdotal than robust. 

Thus, it can be concluded that there was no agreement between both measures about the 

most relevant LSA amodal dimensions. 
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Figure 4. Scatterplots to study the overlapping between the dimensions of the link and the amodal dimensions of a tentative core of emotions. 
Valence Arousal Happiness Anger 

    
Sadness Fear Disgust  

   

 

Note: Absolute values were imposed for both measures. In this case, Olden algorithm results are equivalent to Garson results. Six final semantic neighbors from 15 

initial semantic neighbors were used for these C-I results. 
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DISCUSSION 

The aim of this study was to explore and analyze three central concepts within 

the embodiment debate: redundancy, isomorphism, and propagative mechanisms, by 

means of a computational model. This model was designed according to the theoretical 

frameworks of the symbol interdependency hypothesis (Louwerse, 2011, 2018) and the 

language and situated simulation theory (Barsalou, et al., 2008), but we tested some 

underlying mechanisms comparing two different but compatible hypotheses: the 

semantic neighborhood hypothesis and the specific dimensionality hypothesis. This 

computational model is also in accordance with recent proposals like acquired 

embodiment and its propagative mechanisms (Hoffman et al., 2018). As was explained 

before, we first trained a neural network model as a mapping function to formalize 

emotional simulation as a bypass capable to activate emotional representations from 

amodal ones. In our computational architecture, amodal representations from a LSA 

vector space were used as inputs to predict human rates on different emotional 

categories (as a feature-based emotional model). 

A first remark is that this computational model properly predicted human 

emotional rates of words. In this process, some dimensions gained relevance and acted 

as a mapping between emotional and amodal representations. In other words, some 

amodal dimensions were qualified to simulate emotional responses. In addition, words 

without a direct emotional experience were also beneficiated by this process via amodal 

representations thanks to said link. This was only possible because the words without a 

direct experience present similar feature values in those qualified amodal dimensions. 

This mechanism could be understood as verbal conditioning in which words elicit 

emotional responses (Field & Schorah, 2007; García-Palacios et al., 2018; Grégoire & 

Greening, 2020). A second remark is that results did not show a differential 
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performance of univariate and multivariate neural network models in dimensional nor 

discrete emotional categories (probably, this result can be explained because the 

emotional categories are relatively independent and thus no benefit is gained with a 

multivariate model). But relevant differences were obtained between dimensional and 

discrete emotions when neural networks and backward stepwise regressions were 

compared. While no differences were obtained between both methods in discrete 

emotions, neural network models doubled the backward stepwise regressions 

performance in dimensional emotions. Consequently, it seems to be much more 

complex to model the relation between emotional and amodal representations of words 

for dimensional emotions than for discrete emotions. These results reinforce the 

necessity to study emotional and cognitive relations using an integrative perspective for 

dimensional and discrete models of emotion as it has been proposed by Harmon-Jones 

(2019). In this way, neural networks seem to be appropriate models for different 

emotional categories, supporting previous results about the complexity of models of 

emotional processing (e.g., Berrios, Totterdell & Kellett, 2015; Hamann, 2012). 

Regarding the semantic neighborhood hypothesis and the specific dimensionality 

hypothesis, we found evidence in favor of the specific dimensionality hypothesis, 

although as in other studies, we also found that the semantic neighborhood hypothesis is 

plausible. The specificity of the neural network model seems to be more plausible but it 

is also possible to predict the emotionality of target words using the mean of the 

emotional rates of their semantic neighbors (see also some previous studies: Bestgen & 

Vincze, 2012; Hollis et al., 2017; Kuhlmann et al., 2017; Lenci et al., 2018; Recchia & 

Louwerse, 2015; Turney & Littman, 2003). Additional explorations showed that while 

the mean emotional value of the amodal semantic neighbors could predict the emotional 

properties of target words, the emotional values of the neighbors did not correlate with 
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the distances in the amodal vector space. That is, closer neighbors were not necessarily 

scored as the target. These results suggest that there is redundancy but no isomorphism 

between emotional and amodal representations. In other words, although the semantic 

neighborhood hypothesis is plausible as words from the semantic neighborhoods tend to 

present similar amodal features, the mapping function of some specific amodal features 

seems to better simulate emotional responses. Thus, the specific dimensionality 

hypothesis and the semantic neighborhood hypothesis would not be mutually exclusive 

(as pointed out by some authors like Goldstone & Rogosky, 2002). These findings could 

indicate that decisions based on amodal representations could be efficiently used unless 

the task demands modal simulations as it was suggested by the symbol interdependency 

hypothesis (Louwerse, 2011, 2018), where a linking mechanism would be needed.   

Furthermore, we conducted a direct comparison between the importance of the 

LSA amodal dimensions of the vector space for the neural network models and the 

amodal context of emotional words in the vector space. The first one is directly related 

to the specific dimensionality hypothesis, while the second is more related to the 

semantic neighborhood hypothesis. The latter hypothesis assumes that all the 

dimensions are relevant when computing emotional estimation because the semantic 

neighbors are estimated by means of cosines (cosine measures take into account all the 

dimensions without a weighting process guided by emotional context). But it could be 

the case that, even in the amodal representations, not all the dimensions participate 

equally in the emotional responses of words. Our purpose was to isolate the amodal 

dimensions potentially promoted by the concept of each emotion and to compare them 

with the dimensions that participate in the link emulated by the neural networks. That is, 

we compared the dimensions that are relevant for an amodal concept of emotion with 

the dimensions that are relevant for the link of emotional simulations. We did not find 
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an overlapping between both kinds of dimensions, that is, the linking mechanism uses 

dimensions to simulate emotional responses that are not relevant to the amodal context 

of the emotional categories (exceptionally, only a few dimensions showed a relative 

agreement). Again, this fact goes beyond isomorphism as some dimensions would be 

important for emotional simulations while other dimensions would be important for 

amodal judgments.  

 The theoretical implications of this study are related to different theoretical 

predictions about language processing using the results of computational emotional 

estimations, linking mechanisms and semantic neighbors. Our computational model and 

its predictions could suggest some plausible mechanisms to deal with relative redundant 

information that spreads in both modal (emotional) and amodal representations, as some 

authors have suggested (Barsalou, et al., 2008; Louwerse, 2011, 2018), but using a 

mapping function (that is, without assuming isomorphism). Moreover, the propagative 

mechanisms via amodal properties ensure that even words without emotional experience 

benefit from that mechanism. Thus, these results support proposals claiming that some 

words can be associated to their sensorimotor and emotional information by direct 

exposure, while other words would acquire their sensorimotor and emotional 

information through amodal propagation just because they are symbolically connected 

with those words that had sensorimotor and emotional experience (extending previous 

research such as Hoffman et al., 2018 study). It can be said that complex links between 

emotional and amodal representations of words are needed to explain a large proportion 

of the emotionality of words against simple co-occurrence statistics (such as the 

semantic similarity in the amodal semantic space). The results of this study showed that 

the advantages of these linking mechanisms are more evident for dimensional emotions. 

It is noteworthy that these propagative mechanisms can be the key to understanding 
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abstract words since some studies claim a propagation of emotionality to reach mature 

meanings (see Pexman, 2019 for a review on abstract words maturation). 

The formalization of this linking mechanism between emotional and amodal 

representations of words can be manipulated in future research in order to test task-

dependence effects. Different mathematical functions could control the relevance of the 

mapping function to model grounded and non-grounded tasks (tasks with or without 

emotional simulation), by amplifying or attenuating emotional or amodal 

representations of words, depending on task demands. While some tasks could require 

an active link, other tasks would not need it (or gradually use it), such as tasks whose 

processes rest in amodal representations (e.g., pure linguistic processing). The applied 

implications of these studies are clear: Valid models of emotional language processing 

can generate automatic ratings of emotional properties of words that are useful for 

experimental research. Although we are not there yet, we are moving in a direction 

where automatic raters of emotional properties of words could be useful for effortlessly 

testing theoretical predictions. 

Conclusions 

 This computational study proposed a linking mechanism between emotional and 

amodal representations of words following different theoretical proposals, such as the 

symbol interdependency hypothesis (Louwerse, 2011, 2018) and the language and 

situated simulation theory (Barsalou, et al., 2008), and new concepts like acquired 

embodiment and its propagative mechanisms (Hoffman et al., 2018). As a 

computational model, it should be considered as a reduction of the complexity of the 

real neurocognitive system. Nevertheless, this study generated some interesting results 

that could be modeling the interfacing of amodal representations with sensorimotor 
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machinery in the supramodal hub (for a review, see Nastase & Haxby, 2016; Meteyard 

et al., 2012) in the algorithm Marr’s level. Although this model was static (non-

dynamic), it enables the study of some underlying assumptions of these proposals like 

the redundancy, the isomorphism, and the propagative mechanisms. We showed how 

this computational model was able to propagate emotional responses to words without a 

direct emotional experience via amodal propagation. Thus, we found that there are clear 

redundancy and propagative mechanisms, but no isomorphism should be assumed. 

However, it is necessary to establish complex links to go beyond amodal distances of 

vector space models. Moreover, we showed that some emotional categories, such as 

discrete emotions, could have simpler relations between modal and amodal 

representations of words than dimensional emotions. Finally, we made different 

tentative proposals to test theoretical predictions using these computational models. 
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