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ABSTRACT

We present a longitudinal computational study on the connection between emotional and 

amodal word representations from a developmental perspective. In this study, children’s and 

adult word representations were generated using the LSA vector space model and Word 

Maturity methodology. Some children’s word representations were used to set a mapping 

function between amodal and emotional word representations with a neural network model 

using ratings from 9-year-old children. The neural network was trained and validated in the 

child semantic space. Then, the resulting neural network was tested with adult word 

representations using ratings from an adult data set. Samples of 1,210 and 5,315 words were 

used in the child and the adult semantic spaces, respectively. Results suggested that the 

emotional valence of words can be predicted from amodal vector representations even at the 

child stage, and accurate emotional propagation was found in the adult word vector 

representations. In this way, different propagative processes were observed in the adult 

semantic space. These findings highlight a potential mechanism for early verbal emotional 

anchoring. Moreover, different multiple linear regression and mixed-effect models revealed 

moderation effects for the performance of the longitudinal computational model. First, words 

with early maturation and subsequent semantic definition promoted emotional propagation. 

Second, an interaction effect between age of acquisition and abstractness was found to explain 

model performance. The theoretical and methodological implications are discussed. 

Keywords: lexical acquisition; emotional valence; neural networks; word maturity; Latent 

Semantic Analysis; verbal conditioning; longitudinal modelling.



1. INTRODUCTION 

For many years, cognitive theories in psychology proposed that memory and cognitive 

processes could be modeled by means of amodal symbols and operator rules alone (see Da 

Rold, 2018, and Pexman, 2017, for a review of the evolution of computationalism theories).

That is, symbols were considered representations without reference to the sensorimotor world 

(e.g., logical productions, propositions, stores and buffers, computational states and 

transitions, grammars, etc.). The conceptualization of semantic memory as a system formed 

by amodal symbols that are defined by their relations with the other symbols of the system is 

well-known (e.g., Kintsch, 1988, 1998, 2007). In this classic conceptualization, symbols are 

also considered representations with no reference to the sensorimotor world. In other words, 

symbols are considered amodal. Vector space models are a paradigmatic example of the 

accurate predictions of this conceptualization of symbols. Vector space models like LSA 

(Landauer & Dumais, 1997; Landauer et al., 2007) or HAL (Burgess, 1998) have shown the 

extent to which these amodal representations, which are extracted from texts, can be effective 

for the simulation of certain crucial language-processing tasks. Such amodal emphasis on 

vector space models is partly associated with technical restrictions that prevented the use of 

information sources other than texts (e.g., Landauer, 1999; Landauer & Dumais, 1997; Lenci, 

2008; Burgess, 2000; Günther et al., 2019) and partly due to the drift of information 

processing theories in previous years. The relative success of vector space models served to 

justify the neglect of modal codification. Thus, it was proposed that amodal symbols could be 

self-contained (defined by their relations with other amodal symbols), and there was no need 

to activate modal representations to understand oral discourse or textual material (e.g., 

Landauer, 1999; Landauer & Dumais, 1997; Kintsch, 1988, 1998, 2007). These claims were

supported later by the fact that amodal symbols could also provide information on 



sensorimotor or emotional information extracted from language statistics (Louwerse, 2011, 

2018). 

But the activation of modal representations seems to participate in language 

processing more than expected in a system formed by purely amodal symbols (e.g., Hauk et 

al., 2004; Zwaan & Yaxley, 2003; Binder et al., 2005; Nastase & Haxby, 2017; Vergallito et 

al., 2019; Davis & Yee, in press). Thus, there is also a need to formalize an embodiment 

process to deal with the classical claims of the symbol grounding problem (Searle, 1980; 

Harnad, 1990), as some amodal representations should be grounded to avoid the Chinese 

Room Argument (Searle, 1980). Theoretical proposals like the language and situated 

simulation theory (Barsalou et al., 2008) or the symbol interdependency hypothesis 

(Louwerse, 2011, 2018) have been developed to explain how these amodal representations 

can generate emotional and other sensorimotor word representations. Additionally, some 

mapping mechanisms have also been proposed in vector space models to act as a link between 

amodal and modal representations (Hollis et al., 2017; Martínez-Huertas et al., 2021; Günther, 

Petilli, & Marelli, 2020; Günther, Petilli, Vergallito, & Marelli, 2020). In some contexts, this 

perspective has been termed the specific dimensionality hypothesis, as only some parts of the 

amodal representation seem to be mapping both formats of representation. The current state of 

the research at this moment could be summarized in four key points1: 

1. The sensorimotor and emotional information is redundant in modal and amodal word 

representations. That is, emotional and sensorimotor information could be encoded in 

modal or amodal formats presenting different activation timings depending on task 

demands (Barsalou et al., 2008; Louwerse, 2011, 2018; Louwerse & Zwaan, 2009; 

Connell, 2018; Yee, 2019). It has been found that there is an overlap between vector 

 
1 These four points are the result of different theories and empirical studies published in the last two decades. 
The first, second and third points are essentially based on a summary of Martínez-Huertas et al. (2021). The 
fourth point focuses the interest on the dynamics of the developmental process. 



space models based on purely linguistic information and feature-based models based 

on modal information (see for example the revealing study conducted by Riordan & 

Jones, 2011). This overlap has been also found in behavioral and brain studies 

(Simmons et al., 2008; Louwerse & Hutchinson, 2012; Günther et al., 2018) and 

computational studies (Bestgen & Vincze, 2012; Kuhlmann et al., 2017; Riordan & 

Jones, 2011; Recchia & Louwerse, 2015). 

2. Redundancy of sensorimotor and emotional information in both modal and amodal 

representations does not equate to isomorphism. While both formats of word 

representation share some variance, they encode sensorimotor and emotional 

information in different ways. Thus, it would not be possible to predict all the 

emotional valence of a word from its amodal representation. Although the amodal 

distances of vector space models are effective to predict the emotional valence of 

words by means of semantic neighbors (Bestgen & Vincze, 2012; Kuhlmann et al., 

2017; Hofmann, et al, 2018; Recchia & Louwerse, 2015), only some amodal features 

are relevant for this purpose and thus there is scant isomorphism between modal and 

amodal representations (Hollis et al., 2017; Martínez-Huertas et al., 2021). This means 

that some (but not all) features act as a bridge (mapping function) between modal and 

amodal emotional representations. 

3. Modal and amodal word representations can be reached even with no direct 

experience with emotional or sensorimotor responses. Some studies have shown this

phenomenon in human development (Field & Schorah, 2007; García-Palacios et al., 

2018; Grégoire & Greening, 2020) and also in computational modelling (Howell et al., 

2005; Hollis et al., 2017; Hofmann et al., 2018; Martínez-Huertas et al., 2021). Thus, 

anchored words can propagate the emotional or sensorimotor information to words 

without direct exposure (Slousky & Deng, 2019). 



4. Development influences the acquisition of modal and amodal representations and the 

configuration of their connections (i.e., mapping function). Various authors have 

proposed that the sequential acquisition of vocabulary takes place in a constructive 

way (e.g., Li et al., 2004; Steyvers & Tenenbaum, 2005). In our opinion, this 

sequential acquisition of words could be modulating the propagation of emotional 

properties to amodal representations and thus influencing the configuration of the 

knowledge structure. For example, learning the modal and amodal properties of some 

complex abstract concepts without tangible referents such as truth would be related to 

previous, more concrete and less complex concepts such as thief (Lund et al., 2019). 

This mechanism has been proposed as a prominent explanation for the acquisition of 

abstract words and its relations with emotional processing (e.g., Borghi et al., 2017; 

Howell et al., 2005; Pexman, 2017; Vigliocco et al., 2014). Therefore, 

psycholinguistic properties such as age of acquisition or abstractness are relevant to 

understanding modal and amodal relations and their maturation (e.g., Inkster et al., 

2016; Lund et al., 2019; Pexman, 2017). 

In light of this theoretical background, the present longitudinal computational study 

aims to model how the emotional valence of some children’s words can establish a mapping 

function between emotional and amodal word representations. Then, we will test if emotional 

properties may be propagated to (a) words with no direct emotional experience in that child 

developmental stage, and (b) adult words at later developmental stages without direct 

emotional experiences at all. Specifically, this study computationally models the amodal word 

representations using vector space models (see a brief introduction below), the modal word 

representations using emotional feature-based models, and the mapping function with neural 

network models. Previous research has found that combining amodal word representations 

derived from vector space models and neural network models can be an efficient alternative to 



study such mapping function for emotional properties (see Hoffman et al., 2018; Martínez-

Huertas et al., 2020, 2021). Then, based on the Word Maturity methodology (Kireyev & 

Landauer, 2011; Landauer et al., 2011; see the next section), this study will explore the 

mapping function between emotional and amodal word representations in two different 

developmental stages of semantic representation. 

We would like to highlight that, in this study, the mapping function will be learned 

and validated at a first developmental stage (a child semantic space). Later, exactly the same 

mapping function will be tested at a second developmental stage (an adult semantic space) 

using the Word Maturity methodology2. The next sections briefly describe how words are 

represented at different developmental stages in vector space models (section 1.1), the 

rationale for combining the neural networks and semantic spaces of different developmental 

stages with the aim of the study (section 1.2), and the description of this longitudinal 

computational study and its results (Method section and following sections).

1.1. Representing words at different developmental stages

We used vector spaces models to formalize the developmental stages of the amodal 

word representations mentioned above. These models formally represent the semantic 

meaning of words as coordinates in a high-dimensional vector space. In general, vector space 

models provide high-quality input to emulate different cognitive mechanisms (see Günther et 

al., 2019; Jones et al., 2018; or Jorge-Botana et al., 2020 for a recent revision on the use of 

these models to simulate cognitive process). Given that the semantic information of vector 

 
2 Whilst it is implausible that the brain stops learning associations between words and emotions after childhood, 
this is a longitudinal computational study that aims to model a specific phenomenon based on early verbal 
emotional anchoring. Thus, the present study only modeled the learning of a mapping function in a child 
developmental stage. Later, it was evaluated the performance of that mapping function in a later adult 
developmental stage to evaluate the consequences of such early verbal emotional anchoring. 



space models is derived from co-occurrences of written words in texts (usually from a corpus 

of tens of thousands of documents), their semantic representations are considered amodal.

A popular vector space model with an advanced methodology to measure the state of 

word representations along different developmental stages is the LSA (Landauer & Dumais, 

1997; Landauer et al., 2007). LSA makes it possible to study changes of the meaning of a 

word through its longitudinal development. This meets the need for a non-static view of 

semantic evolution (Elman, 1993; Dascalu et al., 2016; Lemaire & Denhiere, 2006; Saxe et 

al., 2019; Siew et al., 2019; Wulff et al., 2019). The methodology that uses the representations 

of LSA to generate different vector spaces representing different stages of vocabulary 

development is known as Word Maturity (Kireyev & Landauer, 2011; Landauer et al., 2011). 

LSA is well suited for this methodology because all words and texts are expressed on an 

orthogonal basis and this make it possible to keep the similarity distances even with the 

transformations performed by the procedure (see Jorge-Botana et al., 2020 for a discussion of

the advantages of orthogonality). A brief explanation on how Word Maturity works will be 

given now. First, different semantic spaces are generated from cumulative corpora that 

contain texts to which individuals are exposed at specific ages. They are cumulative because 

of the corpus at stage two also contains the texts from the corpus at stage one, and the corpus 

of the stage three also contains the texts contained in the corpus at stages one and two, and so 

on (see Figure 1 for a graphical representation). Although all these vector spaces have been 

processed independently (they have their own latent basis), a word representation extracted 

from one of them is comparable to a word representation from another space thanks to 

Procrustes rotation, a mathematical technique that aligns all spaces to express them with the 

same latent basis (see  et al., 2018 for a revision). 

 



 

Figure 1. Graphical representation of cumulative corpora for Word Maturity technique.

 

Note: Each corpus represents texts to which people are exposed at specific ages. In this graph, three different 
developmental stages are modeled, which would be cumulative because the stage three corpus contains the 
texts contained in the corpus at stages one and two, and so on. 

 

 

Once the semantic spaces of the different developmental stages have been aligned, the 

same word can be instantiated by comparable vector representations in each semantic space. 

This means that, for example, the word “peace” could have a vector representation in each 

developmental stage. The similarity between vector representations of a word at different 

developmental stages is a metric of meaning change. More specifically, the similarity of the 

vectors of each developmental stage with the last stage (the one that represents the adult 

stage) is a measure of the maturity of the representation of the word in that stage (Kireyev & 

Landauer, 2011; Landauer et al., 2011). Word Maturity techniques have proved their

usefulness in different studies about simulations of vocabulary growth (Biemiller et al., 2014; 

Landauer et al., 2011; Jorge-Botana et al., 2017). Another key aspect of Word Maturity for 

this study is that it can also incorporate new words at later developmental stages. That is, new 



words can be acquired for the first time in later developmental spaces. This will give us the 

opportunity to analyze different propagative processes from early words to later novel words.

1.2. A mapping function between modal and amodal word representations at 

different developmental stages

We have introduced Word Maturity, a computational technique that monitors the 

semantic word representation in several developmental stages. These word representations are 

amodal as they are based on lexical relations. The question then is how amodal word 

representations could activate modal representations and hence emotional responses without a 

direct emotional experience. As we previously showed, recent proposals assume that there is a 

link (a mapping function) that connects amodal and modal word representations. Such 

mapping function would learn which part of the amodal representation activates the modal 

ones and its consequences (in this study, emotional responses). This mechanism could 

propagate the modal properties of some amodal representations to other amodal 

representations and generate inferences (like eliciting emotional responses) based on their 

relations with other words (see a graphical illustration in Figure 2). Different studies have 

shown that this is a plausible mechanism for the generation of emotional (Hollis et al., 2017; 

Martínez-Huertas et al., 2021) and perceptual (Günther, Petilli, & Marelli, 2020; Günther, 

Petilli, Vergallito, & Marelli, 2020) responses. Psychobiological evidence has been found for 

this proposal (Binder, 2016; Nastase & Haxby, 2016) and neural network architectures have 

been successfully used to computationally model it (Günther, Petilli, Vergallito, & Marelli, 

2020; Howell et al., 2005; Hoffman et al., 2018; Martínez-Huertas et al., 2020, 2021). Neural 

network models provide a useful framework to predict word emotionality from amodal 

dimensions because, firstly, they are valid learning models (Quinlan, 2003) and, secondly, 

they learn what the most relevant indicators to predict are, and propagate emotions by 

activating/inhibiting responses through backpropagation.



 

Figure 2. Graphical illustration of the mechanism for emotional propagation via amodal propagation.

 

This study implements a neural network model simulating this mapping function 

between emotional and amodal word representations. But the nature of this study is 

longitudinal. Previous research modeled the learning of sensorimotor properties in cross-

sectional studies, that is, in samples of words in a specific developmental stage. Only some 

studies from the connectionist paradigm created prototypes to simulate the emergence of 

symbols from image grounding (Chauvin, 1989; Plunkkett et al., 1992; Howell et al., 2005; 

Hoffman et al., 2018). Recently, different research has been carried out on the modeling of 

changes across developmental stages of semantics from a computational perspective (e.g., 

Saxe et al., 2019; Siew et al., 2019; Wulff et al., 2019). In line with these recent studies, this

study aims to longitudinally test how the early acquisition of the mapping function about the 

relations between modal and amodal word representations elicit later emotional responses via 

amodal propagation.

To summarize, we will computationally model how the mapping function between 

emotional and amodal representations can be established at children’s developmental stages. 



Then, we will analyze the emotional propagation of that mapping function at later 

developmental stages. A brief introduction to the methods shall now be presented. Semantic 

representations are going to be extracted from LSA’s vector space (Landauer & Dumais, 

1997; Landauer et al., 2007), which is a well-suited vector space model that has been 

validated to perform the Word Maturity methodology. The modal representation of words will 

be extracted from emotional feature-based models (see the different normative data sets used 

in this study in the Method section). Feature-based models are a standard approach to model 

the modal format of words (e.g., Andrews et al., 2014; Riordan & Jones, 2011). The mapping 

function will be modelled through neural network models. As it was anticipated in section 

1.1., we have two aligned semantic vector spaces that emulate two vocabulary developmental 

stages (children vocabulary and adult vocabulary). However, it is important to anticipate that 

(a) the learning of the mapping function between modal and amodal representations only take 

place at a first developmental stage, and (b) we will analyze its effects at a later 

developmental stage. In other words, we will test if the results of a neural network model 

trained in a child semantic space can be generalized to an adult semantic space. We have two 

predictions. First, we predict longitudinal emotional propagation via amodal format. The

emotional-amodal contingencies at a first developmental stage would be sufficient to produce 

accurate emotional predictions at a later developmental stage. Second, we predict a potential 

increase in model performance for words that present early maturation and subsequent 

semantic definition. Finally, in a more exploratory way, model performance will be explored 

in relation to different psycholinguistic variables such as abstractness and age of acquisition.  

 

 

 



2. METHOD

In this longitudinal computational study, we modeled a link between amodal and 

emotional word representations, examining how emotional responses are evoked via amodal 

propagation. To this end, we trained a neural network model to predict the emotional valence 

of words (the modal representation) from LSA vector word representations (the amodal one). 

LSA vectors are the input of the neural network and the emotional valence of data sets are the 

output of the neural network. Since we wanted to measure the propagation of grounding at 

different developmental stages, the training of this neural network is done only with the 

vectors of a child semantic space using a child data set as output. To validate this training, we 

tested first the propagation of emotional valence of words in a validation data set in the child 

semantic space. Second, we tested the propagation of the same neural network into adult word 

representations. To this aim, we used an adult semantic space using LSA vectors from an 

adult semantic space as input. We are interested in the outputs that result from applying a 

neural network trained with child word representation to adult word vector representations. 

These outputs were validated using an adult data set of emotional ratings. It is important to 

note that the adult semantic space contains words with and without child word representation. 

That is, there are words that already existed in the child semantic space (words that existed 

during the child’s developmental stage), and words that emerge for the first time in the adult 

semantic space (new acquired words that were learned at a later stage). 

Formally explained, the procedure implies three sequential steps: (1) Two cumulative 

corpora were generated: the first one is a semantic space of 0-9 years old formed by children’s 

fables and tales (texts were taken from Jorge-Botana et al., 2017), and the last is an adult one 

formed by Wikipedia passages. Both corpora are in Spanish. A Procrustes rotation was 

applied to align both corpora following the procedure of . Due to 

this alignment, two different but mutually comparable semantic spaces were obtained, 



namely: child and adult semantic spaces. (2) Different univariate neural network models were 

trained to predict the emotional valence (output of neural networks) from amodal LSA vector 

representations (input of neural networks) only in the child developmental stage. In this case, 

neural networks were trained and validated predicting the child’s emotional judgements of the 

SANDchild data set (Sabater et al., 2020) using the vector representations of the child 

semantic space. As it will be described below, not all the words in the child semantic space 

took part in the training and validation set of the neural network as we only used words from 

the SANDchild data set (908 words for training and 302 words for validation data sets). (3) 

Those neural networks were used to predict the emotionality of words in the adult semantic 

space. That is, the same neural networks (trained in child semantic space) were tested 

predicting a data set of adult emotional judgements (Stadthagen-González et al., 2017) using 

the vector representations of the adult semantic space. Thus, an early emotional model 

generated by early amodal representations was tested in adult amodal representations that 

have not been exposed to emotional contingencies. A flowchart of the procedure of this study 

can be seen in Figure 3.  

 

 

 

 

 

 

 

 



Figure 3. Procedure of this study: Early model training and validation in the child semantic space, and later 
model testing in the adult semantic space. 

Note: Neural network models that were trained and validated in the child semantic space were also tested in 
the adult semantic space.

 

2.1. Semantic spaces and alignments

As mentioned above, the first text corpus formed by 32,161 documents (paragraphs) 

and 7,975 unique terms from children’s stories, fables and tales was used to generate a 300-

dimension child semantic space using standard LSA procedures like SVD (Landauer et al., 

2007) and the log-entropy weighted function for preprocessing. This semantic space was 

obtained from Jorge-Botana et al. (2017). Also, the second text corpus formed by 379,896 

documents (paragraphs) and 34,506 unique terms from a sample of the Spanish Wikipedia 

passages was used to generate a 300-dimension adult semantic space using the same standard 

LSA procedures. Then, a Procrustes alignment was applied to make vectors from both spaces 

comparable. This mathematical procedure allows to rotate children and adult word matrices 

into a common latent basis (in this case, the adult basis). Given that there is a common part of 

documents (paragraphs) in the child and adult corpora (all the child documents were included 



in the adult corpora due to it being cumulative), this rotation matrix is obtained from the 

minimization of the Frobenius norm:

||XQ – Y|| min  [1]

where X and Y are the centered and scaled matrices that represent these common paragraphs 

in the child and adult semantic spaces, respectively, and Q is the rotation matrix to be found 

(see Jorge-Botana et al., 2018 for a complete explanation of this procedure). This technique 

allowed us to obtain comparable vector representations from child and adult semantic spaces. 

This means that the same word could have two vector representations: one that represents the 

word at the child stage and another one that represents it at the adult stage. This is the case 

where a word exists in both child and adult stages. In this scenario, words have direct 

emotional contingency at the first developmental stage. But other words only have vector 

representation in the adult semantic space because they were learned later. In this latter 

scenario, words have no direct emotional contingency at all. 

2.2. Neural network training, validation, and testing 

Once both semantic spaces were aligned, different univariate neural network models 

were trained to predict the emotional valence3 of children’s word judgements at age 9 using 

SANDchild data set (Sabater et al., 2020). As stated above, neural networks were trained to 

predict valence using LSA vector representations from the child semantic space. These neural 

networks were validated in the child semantic space, and then they were tested in the adult 

one using the emotional valence of adult word judgements from a normative data set4 

 
3 Arousal was also considered in this paper, but no relation was found between child (at age 9) and adult arousal 
judgements of words (r=0.052, p=0.05, N=1,370) in Sabater et al. data set. Child (at age 9) and adult valence 
judgements were highly correlated (r=0.843, p<0.01, N=1,370). 
4 In this case, adult emotional judgements presented a high kurtosis and skewness. Given that there was a large 
number of word representations with human judgements for the adult developmental stage, we filtered this data 
set following a uniform distribution to increase the representativeness of the whole range of emotional valence of 
words. 



(Stadthagen-Gonzalez et al., 2017). Reliability and validity of human emotional judgements 

were assumed as reported in the corresponding papers. Univariate neural network models 

were trained to predict valence of children’s emotional judgements using RPOP+ (resilient 

propagation with a bias node) with one hidden layer to estimate the regression weights of the 

model with a logistic transformation in each node to produce neural network predictions. The 

architecture of the neural networks was determined following previous research (see 

Martínez-Huertas et al., 2021). Figure 4 shows the different stages of testing in this study. It 

is important to highlight that four groups of words with emotional norms exist in the adult 

semantic space (see Figure 4): 908 words whose child word representation were used to train 

the neural network (the only words that had an early emotional experience in their child 

vector representation), 302 words whose child word representations were used to validate the 

neural network (their emotional representations were generated via amodal propagation),

1,549 adult words that have a child word representation (but they did not take part of the 

training nor the validation data sets), and 2,556 adult words that did not exist in the child

stage (new acquired words). 

Figure 4. Training, validation and test data sets for child and adult word representations. 
 

  

 

Note: Neural networks were trained and validated using a child data set. The neural network was tested using 
different adult word representations: (1) words from the training data set (words whose child word 
representation were used to train the model), (2) words from the validation data set (words whose child word 
representation were used to validate the model), (3) words from the test data set of preexisting words (adult 
words that have a child word representation), and (4) new acquired words from the test data set (adult words 
that did not exist in the child stage).  



 

3. RESULTS

In line with the procedure, results have the following structure: (1) Univariate neural 

networks (with different number of nodes in the hidden layer) were trained and validated to 

predict emotional valence from amodal word vector representations in the child semantic

space using a child data set. (2) Those neural network models were tested to predict emotional 

valence from word representations in the adult semantic space. This was possible due to both 

child and adult semantic spaces were aligned through Procrustes rotation technique. (3) 

Differences between child and adult emotional valence scores and error predictions (neural 

network predictions vs. adult norms) in the adult developmental stage were explored using 

different computational and psycholinguistic variables. 

3.1. Training and validation of neural networks in the child semantic space

Different univariate neural network models were trained in a semantic space formed 

by a child corpus. As stated, word vector representations were used as input of neural 

networks. These models were trained to predict the emotional valence judgements of children

from the SANDchild data set (Sabater et al., 2020). Table 1 presents Pearson correlation 

coefficients between model predictions and a validation data set (children’s norms for words 

that were not included in the training). A model with 15 hidden nodes was selected because it 

presented the higher predictive performance (r=0.43, p<0.01). It can be said that neural 

networks were able to capture the emotional valence of words from their amodal LSA vector, 

that is, some dimensions of the amodal vectors act as a bridge to predict emotional properties. 

This training makes it possible to test the propagation of emotional valence to later adult 

amodal representations by means of their amodal connections to words with early emotional 

experiences (see next section). 



 

Table 1. Validation of univariate neural networks in 25% of child word representations (N=302) as Pearson 
correlation coefficients between model predictions and normative data set for valence.

No. of hidden nodes
5 10 15 20 25 30 35 40 45 50

Performance 0.421 0.413 0.430 0.416 0.404 0.395 0.409 0.411 0.402 0.387 
No. of epochs 34 31 37 38 34 38 35 38 38 37
Note: Grey cells show the selected neural network models. All Pearson correlation coefficients were 
statistically significant (p<0.01). 

 

 

3.2. Testing neural networks in the adult semantic space

The model selected in the child semantic space was tested in the adult one predicting 

emotional valence judgements of adults (Stadthagen-Gonzalez et al., 2017). Table 2 presents

different propagative processes for emotional valence (see also Figure 4). First, results 

suggested that the model predictions would be more accurate for the adult word 

representations of the same 302 words of the validation data set (r=0.51, p<0.01) than for the 

children’s ones (r=0.43, p<0.01; see Table 1), although the model was trained to predict child 

word representations. As will be explained below, this incremental performance could be 

associated with maturational processes that achieve better definitions of semantic word 

representations in the computational model5.

Table 2 also shows the performance of the model to predict adult word representations 

that had a child word representation (preexisting test words; words that existed in the child

 
5 One anonymous reviewer suggested an alternative explanation for this result as child emotional judgements 
could have more noise and thus being more complicated to predict than the adult ones. In these data sets, the 
child judgements had larger standard deviations than the adult ones (M=2.20, SD=.52; and M=1.30, SD=.33; 
respectively). That difference was statistically significant (t(1372)=57.497, p<.001, Cohen’s d = 2.036). Then, 
less noisy adult words could be easier to predict than noisier child’s words. But the SANDchild data set presents 
high inter-rater reliabilities as it can be seen in the Table 2 of Sabater et al. (2020) study. Furthermore, it was 
found that child and adult valence judgements were highly correlated (r=0.843, p<0.01, N=1,370) as seen in 
footnote #3 of this work. Two additional moderation models were conducted to evaluate if the noise (standard 
deviations) of the emotional judgements were moderating the performance of the neural network model in the 
children and the adult semantic spaces. It was found that such noise (standard deviations) of the emotional 
judgements did not moderate the relations between the computational scores in children nor in adult vector 
representations ( =.033, SE=.102, p=.746, and =.125, SE=.131, p=.340, respectively). 



stage) and word representations of new acquired words without a child word representation 

(new test words; words that did not exist in the child stage). In the first case, the model was 

able to predict the emotional valence of preexisting test words (r=0.46, p<0.01). Even more 

interestingly, in the second case, the model was able to predict the emotional valence of new 

test words (r=0.41, p<0.01), equaling the performance of the model in the child semantic

space. These results hint a propagation of emotional valence in amodal LSA vector 

representations for almost every word (including new acquired words).  

 

Table 2. Testing univariate neural network model in different child and adult word representations as Pearson 
correlation coefficients between model predictions and normative data sets for emotional valence. 

Word representations
Child Adult  

Validation 
words†

Training 
words 

Validation 
words 

Preexisting test 
words 

New test 
words 

N 302 908 302 1,549 2,556
Performance 0.430 0.506 0.516 0.461 0.406
Note: In the adult stage, “Training words”, “Validation words” and “Preexisting test words” are adult word 
vector representations that existed in the child stage. Conversely, “New test words” only have a representation 
in the adult semantic space because they did not exist in the child stage (i.e., children do not use these words). 
All Pearson correlation coefficients were statistically significant (p<0.01). † = Value extracted from Table 1

 

 

3.3. Exploring child-adult word score differences and error predictions 

Validation and test data sets presented interesting results about the propagation of 

emotional valence of words from a developmental perspective (see Table 1 and Table 2). In 

fact, despite the fact that the model was trained in the child semantic space, model 

performance was even higher for the adult word representations than for the child ones in the 

validation data set. In this section, we present some descriptive results regarding the 

differences between the child and adult model scores and the accuracy of the adult model 

predictions compared to adult human norms of emotional valence (Stadthagen-Gonzalez et 



al., 2017). As it can be found in Figure 5.A., child and adult model predictions are very 

similar for some words, but model predictions are very different for other words (r=0.37, 

p<0.001). The next analyses try to understand the developmental differences between both 

groups of word amodal representations. Regarding the error predictions, model accuracy was 

measured as the absolute difference between neural network predictions and human norms for 

each word in the adult developmental stage. Figure 5.B. suggests that error predictions are 

low for most words, but some of them have higher error predictions. That is, the model can 

predict many words accurately, but some words are not well-predicted. Descriptive analyses 

of absolute error predictions showed considerable variability between words: mean=0.18, 

SD=0.14, min=0.00, max=0.82. We analyzed how some factors related to word representation 

changes and some psycholinguistic variables moderate the differences between child and 

adult word emotional model scores and the error predictions in the adult stage. Since we need 

to analyze both the early and the adult amodal representations of the same word we used the 

validation and the preexisting test words data sets (N=1,851) for these analyses. We 

normalized LSA vector representations of all words in this set to estimate computational 

measures in a pure semantic representation independently of their frequency (e.g., measures 

such as semantic definition and word maturation that are explained below) and avoiding 

potential word frequency artifacts in the semantic spaces. This normalization did not affect 

the performance of the neural network. 

 

 

 

 



Figure 5. Graphical representation of child-adult word model scores (A), and error predictions in the adult 
developmental stage (B). 
A) B) 

Note: N=1,851. Figure 5.A. represents child-adult word model scores. Figure 5.B. represents absolute error 
predictions between human and computational scores in the adult developmental stage (given that both human 
and computational scores ranged from 0 to 1, absolute differences also range from 0 to 1). 

 

 

First, we explored different moderation effects between child and adult emotional 

predictions in the longitudinal computational model. Specifically, four multiple linear 

regression models were used to test different moderation effects between child and adult

emotional predictions. Here, adult emotional predictions were used as dependent variables. 

Then, child emotional predictions and different factors related to both word representation 

changes (semantic definition, Word Maturity) and psycholinguistic variables (age of 

acquisition, abstractness) were used as covariates (Covariaten) using this equation:

Adult predictions = Child predictions + Covariaten + Child predictions * Covariaten [1] 

 

 



 

The variables used as covariates (Covariaten) were: 

Semantic definition was conceptualized as information gain in the developmental 

process. It was computed as the difference in entropy between the child and adult 

vector representations (vector components are taken as absolute values). The entropy 

of these vectors was calculated using the Simpson's entropy (Simpson, 1949) with the 

Lande’s correction (Lande, 1996; see also Good, 1953) as a measure of dispersion of 

semantic information in the dimensions of the vectors. In the psychological literature, 

the entropy of representations has been used as a measure of uncertainty, being a 

relevant predictor of vocabulary development (Meylan et al., 2021). In this line, the 

differences in entropy have been used as a measure of information gain comparing 

different states of a phenomenon from a developmental perspective (see different 

examples in the outstanding book of Shultz, 2003 about computational developmental 

psychology). In this study, larger positive differences in entropy indicate greater 

semantic definition in the adult semantic space and thus greater information gain from 

early to adult word representations (on the contrary, negative differences indicate the 

loss of semantic definition). 

Word Maturity was calculated as the cosine (similarity) between child and adult vector 

representations (a higher cosine indicates a higher Word Maturity, which means that 

word representation was relatively mature in the child semantic space; see also other 

studies like Biemiller et al., 2014, Jorge-Botana et al., 2017, or Landauer et al., 2011). 



Psycholinguistic variables (age of acquisition, abstractness) were computed as the 

average of the accessible data sets from emoFinder platform6 (Fraga et al., 2018).

Table 3 presents the results of moderation effects between child and adult emotional model

predictions. As it can be observed, both computational scores and age of acquisition 

moderated the relation between child and adult emotional predictions. Abstractness did not 

interact nor predict adult emotional predictions. 

 

Table 3. Analyzing variable moderation effects between child and adult emotional predictions in validation 
and preexisting test words

Covariates N 
Child
score

Covariate 
Interaction 

effect
R2

Computational 
Measures 

Semantic 
definition† 

1,851 0.37** 0.06** -0.07** 0.15 

Word Maturity‡ 1,851 0.19** 0.01 0.23** 0.16

Human 
Norms 

Age of 
Acquisition§ 

557 0.43** 0.02 -0.10* 0.20 

Abstractness§ 256 0.45** -0.03 -0.02 0.20

Note: ** = p<0.01. * = p<0.05. Age of acquisition and concreteness have less words (N) because of missing 
data in emoFinder platform. 
† = Semantic definition was computed as the differential entropy between Simpson’s entropy with Lande’s 
correction in the adult word vector representation and the one of child word vector representation. ‡ = Word 
Maturity was computed as the cosine between child and adult vector representations. § = Variable extracted 
from emoFinder. 

 

Second, we explored error predictions in the adult semantic space. As was shown in 

Figure 5.B., error predictions present a large variability between words. This means that some 

emotional predictions of the model in the adult stage present a high degree of similarity to 

adult human norms while others are very different. In order to study differences in error 

 
6 We calculated the average of the available data sets for words of the computational study to avoid the loss of 
information due to missing data. The tendency of our results was the same using the average of the available data 
sets and using just one of the data sets per psycholinguistic variable. We only observed a loss of statistical power 
when using just one of the data sets because they drastically reduced the number of words to, approximately 
30%. 



predictions, we conducted two mixed-effects models with random intercepts for words: one 

for computational measures and the other for psycholinguistics measures. Two different 

analyses were conducted to avoid the loss of information in the computational scores as only 

12.85% of the words had human norms. Word frequency was also included in the mixed-

effects models as a covariate to control its potential latent effects due to its relationship with 

the computational and the psycholinguistic measures. Specifically, the word frequency of 

1,847 words was taken from LEXESP corpus (Sebastián-Gallés et al., 2000; using 

BuscaPalabras program, Davis & Perea, 2005) and was included as a covariate in these 

mixed-effects models. Table 4 presents mixed-effects model results for computational 

measures (semantic definition, Word Maturity) and human norms (age of acquisition, 

abstractness) including word frequency as a covariate. As it can be observed, error predictions 

depend on the interaction effect between semantic definition and Word Maturity

(computational measures). Moreover, error predictions also depend on the interaction effect 

between age of acquisition and abstractness (human norms). Figure 6.A and Figure 6.B 

graphically represent these interaction effects dichotomizing the covariates to ease the 

interpretation (but covariates were continuous variables). It was found that a longitudinal 

semantic definition seems to reduce error predictions, especially in words that mature early. 

In other words, if the adult word representation is more defined in its semantic dimensions 

and its similarity with child word representation is higher, then error predictions in the adult 

semantic space are lower. The interaction effect between human norms suggests that error

predictions for early acquired concrete words are lower than early acquired abstract words, 

while later acquired words present the opposite average error predictions for concrete and 

abstract words. A possible explanation for early acquired results is the nature of training 

words that were mostly concrete in the child semantic space and thus error predictions were 

higher for abstract words. A supplementary explanation is the lower semantic definition of 



abstract words for children. Then, later acquired word results could be explained by the nature 

of amodal propagation, which would favor a concrete-abstract propagation in front of a 

concrete-concrete words propagation: Abstract words would emerge from simpler concrete 

concepts that have their own emotional experience while new concrete words would not have 

a clear referent for amodal propagation in this computational model (see Borghi et al., 2017 

for a complete discussion of development and concrete-abstract concepts). 

 

Table 4. Explaining error predictions in validation and preexisting test words data sets using mixed-effects 
models with random intercepts for words. 

Computational Measures (N=1,851) Estimates SE t(1788) p
Intercept 0.18 0.00 52.60 p<0.001
Word frequency  0.00 0.00 1.52 p=0.13 
Semantic definition† -0.92 1.07 -0.86 p=0.39 
Word Maturity‡ -0.04 0.02 -1.58 p=0.12 
Word Maturity*Def. Sem. Growth -18.34 7.55 -2.43 p=0.02 

Human Norms (N=238) Estimates SE t(233) p
Intercept 0.18 0.01 14.87 p<0.001
Word frequency  0.00 0.00 -1.26 p=0.21 
Age of Acquisition§ 0.01 0.01 1.50 p=0.14 
Abstractness§ 0.01 0.01 0.13 p=0.89 
Age of Acquisition*Abstractness -0.01 0.01 -2.08 p=0.04 

Note: Predictors and covariates were centered to ease the interpretation of the model. Human norms have less 
words (N) because of missing data in emoFinder platform. 

= Word frequency was extracted from LEXESP. † = Semantic definition was computed as the differential 
entropy between Simpson entropy in the adult word vector representation and the one of child word vector 
representation. ‡ = Word Maturity was computed as the cosine between child and adult vector representations. 
§ = Variable extracted from emoFinder. 

 

 

 

 



Figure 6. Graphical representations of the interaction effects between (A) semantic definition and Word Maturity, 
and (B) age of acquisition and abstractness, to explain error predictions in the adult semantic space. 
A) B)

Note: Covariates were continuous variables, but they were dichotomized to facilitate the graphical interpretation of 
the interaction effects. Word Maturity, abstractness and age of acquisition were dichotomized as follows: 0 for 
values with less than a SD and 1 for values with more than a SD. Semantic definition was dichotomized as follows: 
0 for values with less than a half SD and 1 for values with more than a SD. 

 

 

4. DISCUSSION 

Primary domains, that is, first experiences with the real world, are said to be reflected 

in the structure of language along development (Gärdenfors, 2019). For some authors, these 

primary domains are considered as universal pivots which help to share a common meaning 

when people use linguistic concepts in communications acts (see Warglien & Gärdenfors, 

2013 for a revision of convex regions for concept exchanges). Like sensory experience, 

emotional responses can be considered one of those primary domains. In the first stage of 

child development, the earliest words are mainly defined in terms of such sensorial or 

emotional experiences, that is, they are directly grounded (Howell et al., 2005). But when 

language becomes a complex system, the mind also operates with amodal representations 

(with linguistic concepts), without mandatorily relying on sensory representations every time 



that a word is processed (Connell, 2018; Pexman, 2017; Yee, 2019). Then the use of modal 

and amodal representations to achieve the meaning of words becomes dependent on task 

demands (see, for example, the symbol interdependency hypothesis of Louwerse, 2011, 2018).

This complex language allows children to understand and use taxonomic inferences (not only 

associative ones). This fact is an indicator of abstract reasoning (Pexman, 2017). When the 

mind operates on amodal representations, some words are acquired without direct experience 

of the real emotional world. An open question is how they activate modal representations and 

elicit emotional responses. An indirect “propagation of grounding” via language (via amodal 

representation) has been proposed to explain the processes by which novel words without any 

(or not much) direct experience achieve the way to emotionally respond from early grounded 

words (Pexman 2017; Howell et al., 2005; Slousky & Deng, 2019). That is to say that, in later 

development stages, children acquire amodal (conceptual) knowledge that could be grounded 

by means of their own conceptual relations (Slousky & Deng, 2019).   

This longitudinal computational study successfully simulated that kind of grounding 

propagation. It also has shown a possible mechanism by which amodal propagation of 

emotional valence can precede both lexical maturation and even lexical acquisition. A 

computational link via neural networks was proposed to join emotional and amodal 

representations of words. Operatively, such neural network model was trained and validated 

to predict emotional rates of a child data set from child word vector representations. Then, the 

emotional responses of this model, acquired in a child stage, were analyzed at a later 

developmental stage showing a good capacity to predict adult emotional values from adult 

word vector representations. Different propagative processes of grounding via language were 

found for child and adult word representations, including new acquired words. Thus, such 

mapping function between emotional and amodal representations can be learned at early 



developmental stages. As we will discuss, these results have theoretical and methodological 

implications. 

The findings of this longitudinal computational study suggest that adult words, both 

the preexisting words and the new acquired words, are fed by the grounding propagation. 

Thus, amodal propagation of emotional valence could precede a complete lexical maturation 

and lexical acquisition of words. This could have implications to formally instantiate the 

hypothesis that part of the lexicon could be acquired by amodal relations (e.g., acquiring the 

meaning of “germ” by its linguistic relations with “illness”) and also could be grounded by 

means of the same relations (Slousky & Deng, 2019). These findings also suggest that a 

mapping function between emotional and amodal representations can be learned at early 

developmental stages and it can propagate emotional valence to almost every word, 

supporting the generalizability by means of a selective mapping function (see for example the 

aforementioned specific dimensionality hypothesis). 

Different variables were found to moderate the performance of the longitudinal 

computational model. The propagation of grounding was found to be more efficient in words 

with moderately early amodal maturation (not necessarily finished) when their amodal 

representations were more semantically defined in the adult stage. This facilitation could be 

close to the prototype effect that states that previously unseen prototypes are better rated than 

seen exemplars (Shultz, 2003 p.110). In our computational model, an amodal representation 

becomes a prototype if its features are relevant to predict the emotional information in the 

mapping function. Once a good prototype has been acquired, its subsequent semantic 

definition would lead to a more efficient emotional propagation by honing the relevant 

amodal features for the mapping function. This conclusion may supplement the fact that 

larger corpora, like an adult corpus compared to a child corpus, also have less noisy 

representations. 



Some psycholinguistic variables were also found to moderate the performance of the 

longitudinal computational model. An interaction effect between age of acquisition and 

abstractness was found to favor the emotional propagation. We found that the emotional 

propagation is facilitated in early acquired concrete words and later acquired abstract words, 

but it is worsened in early acquired abstract words and later acquired concrete words. This 

finding could be related to the initial grounding of concrete words, which are expected to be 

more frequent in children’s vocabulary than abstract words, because it would facilitate the 

later emotional propagation of abstract words by their amodal connections with concrete 

words. Conversely, later acquired concrete words, characterized by scarcer extensional 

definitions7, would not have many amodal relations with other words and, consequently, 

would have less emotional propagation. In vector space models, concrete words present fewer 

high-correlated neighbors than abstract words because the formers have a high clusterization 

(Jorge-Botana & Olmos, 2014; see a similar rationale with nouns, verbs, and adjectives in the 

revision of Gärdenfors, 2019). Along these lines, concrete words would also have more 

associative relations while abstract words would have more taxonomic relations. The 

interpretation of the moderation effect of age of acquisition and abstractness also opens up 

future research on the emotionality of abstract concepts acquired in an early stage by children.

In fact, previous research reported that learning of novel abstract concepts was facilitated by 

verbal descriptions, but that of novel concrete concepts was not (Borghi et al., 2011). Borghi’s 

findings could be explained by the advantage of later acquired abstract words vs. the poorer

extensional definition of concrete words that has been mentioned. Howell et al. (2005) also 

concludes that there is a propagation from early acquired concrete words to later acquired 

 
7 In general, concrete words are expected to present less extensional definitions than abstract words. That is, 
abstracts words would have more low-correlated features (less clusterization) than concrete words, which would 
have fewer high-correlated features (a high clusterization). This would promote more relations and more 
emotional propagation in abstract words. A similar rationale can be found for visual processing and the 
grounding of concrete and abstract concepts (McRae et al., 2018). 



abstract words via language. At the same time, it has been proposed that abstract words are 

eminently grounded by emotion (Vigliocco et al., 2014), and that later acquired abstract 

words could capture this emotion by verbal propagation too (Pexman 2017). This study 

provides a tentative mechanism that supports some findings and explanations about the 

acquisition of abstract words and its relations with emotional processing (e.g., Borghi et al., 

2017; Hoffman et al., 2018; Pexman, 2017; Vigliocco et al., 2014) and the findings of the 

early emotional anchoring of words (Field & Schorah, 2007; García-Palacios et al., 2018; 

Grégoire & Greening, 2020). The mechanism formalized in this study is also suggestive to 

explain verbal synesthesia, in which sensorial and emotional relations from written language 

are hypersensitive (e.g., Simner et al. 2006).   

Furthermore, some methodological insights can be observed in this study. It premieres 

the usefulness of neural networks to model the relation between emotional and amodal 

representations from a developmental perspective. To the best of our knowledge, this is the 

first time that the same neural network model has been successfully tested in two different 

semantic spaces. Amodal vector representations were extracted from two comparable 

semantic spaces that modelled different developmental stages. Along these lines, the 

comparability of those vector representations was possible thanks to the Word Maturity 

technique. As shown, the Word Maturity technique can be an operative tool to conduct 

longitudinal studies of words from a computational perspective (see for example: Biemiller et 

al., 2014; Jorge-Botana et al., 2017, 2018; Landauer et al., 2011). There are other interesting 

methodologies that have been proposed to align vector representations of vector space models 

and lead to relevant findings (e.g., Cassani et al., 2021; Di Carlo et al., 2019; Hamilton et al., 

2016; Yao et al., 2018). In this longitudinal study, two different semantic spaces were treated 

as snapshots of two times of the development of semantic meaning of words. Only the first 

snapshot was exposed to emotional contingency. Thus, this longitudinal study did not model 



the continuous interaction of modal and amodal representations. Whilst its discrete nature is a 

limitation, this study offers interesting results about a plausible mechanism for emotional 

propagation via early verbal emotional anchoring. Along these lines, future studies could 

apply this paradigm using more developmental stages to study the dynamics of such links

with more detail. Also, other neural networks could be used to model such links. For example, 

more interactive architectures like the Elman’s networks (Elman, 1990) could generate such 

mapping function with different formats as input and output, making it possible to monitor the 

state of the net in each developmental stage. 

Finally, we would like to point out that these findings are robust as regards word 

frequency, as it was controlled by means of the normalization of vector space models and its 

inclusion in the statistical analyses. Future research should try to study other potential 

moderating effects of relevant variables on the relations between amodal maturational 

processes and emotional propagative processes. Recent reviews of the study of the interaction 

between the affective and semantic properties of words have brought up the need to regard 

them as part of a whole system (e.g., Barsalou et al., 2018; Winkielman et al., 2018; Davis & 

Yee, in press). As stated by Ostarek & Huettig (2019), new paradigms should be endorsed to 

advance embodiment research. Whilst computational modelling has its own idiosyncrasies, it 

makes it possible to formalize theoretical perspectives and to better reason about hypotheses 

and experiments (Farrell & Lewandowsky, 2010, 2018; Lewandowsky & Farrell, 2010). We 

believe that these longitudinal computational models will lead to a better understanding of the 

dynamics of early verbal emotional anchoring. 
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