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Abstract

Software Product Line (SPL) engineering is a cost effective approach to developing families of similar
products. Key to the success of this approach is to correctly scope the domain of the SPL, identifying the
common and variable features of the products and the interdependencies between features. In this paper,
we show how the commonality of a feature (i.e., the reuse ratio of the feature among the products) can be
used to detect scope flaws in the early stages of development. SPL domains are usually modeled by means
of feature diagrams following the FODA notation. We extend classical FODA trees with unrestricted
cardinalities, and present an algorithm to compute the number of products modeled by a feature diagram
and the commonality of the features. Finally, we compare the performance of our algorithm with two
other approaches built on top of boolean logic SAT-solver technology such as cachet and relsat.

1 Introduction

Software Product Line (SPL) engineering is an efficient and cost-effective approach to developing portfolios
of similar products [36]. The fundamental idea of the approach is to undertake the development of a set
of products as a single, coherent development task. Products are built from a Core Asset Base (CAB), a
collection of artifacts that have been designed specifically for use across the portfolio [12].

The domain of a SPL must be carefully scoped, identifying the common and variable features of its
products and the interdependencies between features. In ill-scoped domains, relevant features may not
be implemented, and implemented features may never be used, causing unnecessary complexity and both
development and maintenance costs [14]. To avoid these serious problems, SPL domains are usually mod-
eled by means of feature diagrams. Commonality is a key metric, that indicates the reuse ratio of a feature
across the SPL. According to the Software Engineering Institute [11], the commonality CF of a feature F can
be computed by equation 1, where: ‖PF‖ is the number of products within the SPL that satisfy the feature
and n is the total number of products of the SPL.

CF = ‖PF‖n (1)
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The relevance of commonality to estimate the costs and benefits of developing and evolving a SPL has
been recognized by a number of surveys [7], theses [5, 32] and economic models [11]. In other indus-
tries (e.g., the automotive industry), commonality is also considered a key metric in resolving the tradeoff
between product similarity and distinctiveness in a family of products [42, 9].

Analyzing feature diagrams is an error-prone and tedious task, and it is unfeasible to carry it out with
large-scale feature diagrams. As a result, the automated analysis of feature diagrams is an active area of
research in the SPL community [7]. Existing proposals for computing commonality in SPLs translate feature
diagrams into propositional logic formulas, that are processed by off-the-shelf tools, such as Boolean Satis-
fiability (SAT) solvers, general Constraint Satisfaction Problem (CSP) solvers and Binary Decision Diagrams
(BDD). Nevertheless, this approach does not scale to real SPLs since it quickly falls into a combinatorial
explosion [5, 32]. To overcome this problem, we propose an algorithm that computes commonality and
works for large diagrams (its time complexity is just quadratic on the number of features included in the
diagram).

Most notations for feature diagrams [14, 18, 27] and commercial SPL tools [43, 44] model dependencies
between features by means of a tree structure. In addition, extra cross-tree interdependencies are written
in propositional logic. Our algorithm is focused on the essential dependencies and does not consider
cross-tree feature dependencies. There are a number of notations available for feature diagrams. In order
to make our proposal as general as possible, the algorithm is specified for an abstract notation for feature
diagrams, named Neutral Feature Tree (NFT), that works as a pivot language for most of the available
notations.

The remainder of this paper is structured as follows. Section 2 introduces the notion of feature diagram
and formally defines the abstract syntax and semantics of NFT. Section 3 sums up how to detect scope flaws
in the domain analysis stage thanks to commonality. Section 4 presents the sketch of our algorithm, which
is described in detail in appendix A. Section 5 describes the computational complexity of the algorithm.
Section 6 experimentally evaluates our proposal, translating a set of feature diagrams to boolean logic
and processing them with cachet [40] and relsat [3], two model counters based on SAT-solver technology,
verifying empirically that our approach scales better. Section 7 summarizes related work to our proposal.
Finally, section 8 presents the conclusions of our work.

2 Formalizing Feature Diagrams

The aim of this paper is to provide an efficient algorithm to calculate the commonality of the features
modeled by a feature diagram. In order to make our proposal as general as possible, we should avoid
limiting the algorithm to a particular notation for feature diagrams. This is a challenging issue, because
there is a profusion of available notations. Since the first language was proposed by the FODA methodology
in 1990 [27], a number of extensions and alternative languages have been devised to model variability in
families of related systems:

1. As part of the following methods: FORM [28], FeatureRSEB [23], Generative Programming [14], PLUSS
[18].

2. In the work of the following authors: Riebisch et al. [38], van Gurp et al. [46], van Deursen et al. [16],
Gomaa [21], Pohl [36].

3. As part of the following tools: Gears [43] and pure::variants [44].

Fortunately, Schobbens et al. [41, 33] have demonstrated that most of the notations can be translated
easily and efficiently into a pivot language called Varied Feature Diagram+ (VFD+).
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VFD+ diagrams are single-rooted directed acyclic graphs. However, our algorithm has been tuned to
work with feature diagrams structured as trees. For that reason, we propose the usage of a VFD+ subset
named NFT, where diagrams are restricted to trees. This does not imply a loss of generality for the
algorithm, since, as it will be shown in section 2.4, NFT and VFD+ are fully equivalent (i.e., any VFD+ model
has an equivalent representation in NFT).

In this section, we provide a precise definition of NFT. As argued in [24, 22], the syntax and semantics
of languages should be formally defined to avoid ambiguities and support the construction of automated
reasoning tools, such as the algorithm we propose in this paper. Accordingly, section 2.1 outlines the
main parts of a formal language, and sections 2.2 and 2.3 define the abstract syntax and semantics of NFT,
respectively. We emphasize NFT is not meant as a user language, but only as a formal “back-end” language
used to define our algorithm in a general way.

2.1 Anatomy of a Formal Language

According to Greenfield et al. [22], the anatomy of a formal language includes an abstract syntax, a seman-
tics and one or more concrete syntaxes.

1. The abstract syntax of a language characterizes, in a abstract form, the kinds of elements that make
up the language, and the rules for how those elements may be combined. All valid element combina-
tions supported by an abstract syntax conform the syntactic domain L of a language.

2. The semantics of a language define its meaning. According to Harel et al. [24], a semantic definition
consists of two parts: a semantic domain S and a semantic mappingM from the syntactic domain to
the semantic domain. That is,M : L → S.

3. A concrete syntax defines how the language elements appear in a concrete, human-usable form.

Following sections define NFT abstract syntax and semantics. Most notations for feature diagrams may
be considered as concrete syntaxes or “views" of NFT.

2.2 Abstract Syntax of NFT

A NFT diagram d ∈ LNFT is a tuple (N,Σ, r ,DE, λ,φ), where:

1. N is the set of nodes of d, among r is the root. Nodes are meant to represent features. The idea of
feature is of widespread usage in domain engineering and it has been defined as a “distinguishable
characteristic of a concept (e.g., system, component and so on) that is relevant to some stakeholder
of the concept" [14].

2. Σ ⊂ N is the set of terminal nodes (i.e., the leaves of d).

3. DE ⊆ N × N is the set of decomposition edges; (n1, n2) ∈ DE is alternatively denoted n1 → n2. If
n1 → n2 then n1 is the parent of n2, and n2 is a child of n1.

4. λ : (N − Σ) → card labels each non-leaf node n with a card boolean operator. If n has children
n1, ..., ns , cards[i..j](n1, ..., ns) evaluates to true if at least i and at most j of the s children of n
evaluate to true. Regarding the card operator, the following points should be taken into account1:

1The same considerations are valid for VFD+.
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(a) whereas many notations distinguish between mandatory, optional, or and xor dependencies,
card operator generalizes these categories. For instance, Figure 1 depicts equivalences between
the feature notation proposed by Czarnecki et al. [14] and NFT.

(b) whereas, in many notations, children nodes may have different types of dependencies on their
parent, in NFT all children must have the same type of dependency. This apparent limitation can
be easily overcome by introducing auxiliary nodes. For instance, Figure 2 depicts the equivalence
between a feature model and a NFT diagram. Node A has three children and two types of
dependencies: A → B is mandatory and (A → C, A → D) is a xor-group. In the NFT diagram, the
different types of dependencies are modeled by introducing the auxiliary node aux.

5. φ2 are additional textual constraints written in propositional logic over any type of node (φ ∈ B(N)).

Additionally, d must satisfy the following constraints:

1. Only r has no parent: ∀n ∈ N · (∃n′ ∈ N ·n′ → n)� n ≠ r .

2. d is a tree. Therefore,

(a) a node may have at most one parent:

∀n ∈ N · (∃n′, n′′ ∈ N · ((n′ → n)∧ (n′′ → n)⇒ n′ = n′′))
(b) DE is acyclic: �n1, n2 . . . , nk ∈ N ·n1 → n2 → . . .→ nk → n1.

3. card operators are of adequate arities:

∀n ∈ N · (∃n′ ∈ N ·n→ n′)⇒ (λ(n) = cards)∧ (s = ‖{(n,n′)|(n,n′) ∈ DE}‖)

Figure 1: card operator generalizes mandatory, optional, or and xor dependencies

2Also named cross-tree constraints [5].
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Figure 2: Different types of dependencies between a node and its children can be expressed in NFT by
introducing auxiliary nodes

2.3 Semantics of NFT

Feature diagrams are meant to represent sets of products, and each product is seen as a combination of
terminal features. Hence, the semantic domain of NFT is P(P(Σ)), i.e., a set of sets of terminal nodes. The
semantic mapping of NFT (MNFT : LNFT → P(P(Σ))) assigns a SPL to every feature diagram d, according to
the next definitions:

1. A configuration is a set of features, that is, any element of P(N). A configuration c is valid for a
d ∈ LNFT, iff:

(a) The root is in c (r ∈ c).
(b) The boolean value associated to the root is true. Given a configuration, any node of a diagram

has associated a boolean value according to the following rules:

i. A terminal node t ∈ Σ evaluates to true if it is included in the configuration (t ∈ c), else
evaluates to false.

ii. A non-terminal node n ∈ (N −Σ) is labeled with a card operator. If n has children n1, ..., ns ,
cards[i..j](n1, ..., ns) evaluates to true if at least i and at most j of the s children of n
evaluate to true.

(c) The configuration must satisfy all textual constraints φ.

(d) If a non-root node is in the configuration, its parent must be too.

2. A product p, named by a valid configuration c, is the set of terminal features of c: p = c ∩ Σ.

3. The SPL represented by d ∈ LNFT consists of the products named by its valid configurations (SPL ∈
P(P(Σ))).

2.4 Equivalence between NFT and VFD+

NFT differentiates from VFD+ in the following points:

1. Terminal nodes vs. primitive nodes. As noted by some authors [1], there is currently no agreement
on the following question: are all features equally relevant to define the set of possible products
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that a feature diagram stands for? In VFD+, Schobbens et al. have adopted a neutral formaliza-
tion: the modeler is responsible for specifying which nodes represent features that will influence
the final product (the primitive nodes P ) and which nodes are just used for decomposition (N − P ).
P. Schobbens points that primitive nodes are not necessarily equivalent to leaves, though it is the
most common case. However, a primitive node p ∈ P , labeled with cards[i..j](n1, ..., ns), can always
become a leaf (p ∈ Σ) according to the following transformation TP→Σ:

(a) p is substituted by an auxiliary node aux1.

(b) the children of aux1 are p and a new auxiliary node aux2.

(c) aux1 is labeled with card2[2..2](p, aux2).

(d) p becomes a leaf. aux2’s children are the former children of p.

(e) aux2 is labeled with the former cards[i..j](n1, ..., ns) of p.

Figure 3 depicts the conversion of a primitive non-leaf node B into a leaf node.

2. Directed acyclic graphs vs. trees. Whereas diagrams are trees in NFT, in VFD+ they are directed
acyclic graphs. Therefore, a node n with s parents (n1, ..., ns) can be translated into a node n with
one parent n1 according to the following transformation Tdirected acyclic graph→tree:

(a) s − 1 auxiliary nodes aux2, ..., auxs are added to the diagram.

(b) edges n2 → n, ..., ns → n are replaced by new edges n2 → aux2, ..., ns → auxs.

(c) Batory [1] demonstrated how to translate any edge a → b into a propositional logic formula
φa,b. Using Batory’s equivalences, implicit edges aux2 → n, ..., auxs → n are converted into
textual constraints φaux2,n...φauxs,n and are added to φ (φ′ ≡ φ∧φaux2,n ∧ ...∧φauxs,n).

Figure 4 depicts the conversion of a node D with two parents B and C into a node with a single parent.

Figure 3: Any primitive non-leaf node can be converted into a leaf node by using TP→Σ

In order to identify when a transformation on a diagram keeps (1) the diagram semantics and (2) the
diagram structure, Schobbens [41] proposes the following definition of graphical embedding: “a translation
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Figure 4: Any DAG can be converted into a tree by using TDAG→tree

T : L → L′ that preserves the semantics of L and is node-controlled, i.e., T is expressed as a set of rules
of the form d→ d′, where d is a diagram containing a defined node or edge n, and all possible connections
with this node or edge. Its translation d′ is a subgraph in L′, plus how the existing relations should be
connected to nodes of this new subgraph". According to this definition, TP→Σ and Tdirected acyclic graph→tree

are graphical embeddings that guarantee the equivalency between NFT and VFD+.

2.5 An example of NFT diagram

Figure 5 is a NFT representation of the FAME-DBMS model proposed by Kastner et al. [29]. FAME-DBMS is
a database SPL prototype designed specifically for small embedded systems. To customize FAME-DBMS,
we can choose between different operating systems, between a persistent and an in-memory database,
and between different memory allocation mechanisms and paging strategies. Furthermore, index support
using a B+-tree is optional, and so are debugging and logging. Finally, it is possible to select from three
optional operations get, put, and delete.

The example has 22 features, 13 of which are terminal. Terminal features are represented by simple
boxes and non-terminal ones by double boxes. The decomposition edges are hierarchically depicted, e.g.,
the line between Storage and Unindexed means Storage → Unindexed. λ labels are abbreviated by the
[low..high] notation, e.g., [0..3] in box API means card3[0..3](Delete,Put,Get). Finally, the example does not
include any cross-tree constraint φ.

There are 200 valid configurations for Figure 5. Table 1 includes one of them and its corresponding
product:

3 Commonality-Based Analysis of a Product Line

This section presents how commonality can help to detect ill-scoped domains. Subsection 3.1 is focused
on the identification of problematic features which are rarely reused or not reused enough to produce
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FAME-DBMS

[4..4]

Storage

[1..1]

auxiliar
node

[0..1]

Buffer
Manager

[1..1]

OS

[1..1]

Unindexed
B+

Tree

API

[0..3]

Delete Put Get

Debug
Logging

In
Memory

Persistent

[2..2]
Win Nut/OS

Memory
Allocation

[1..1]

Page
Replication

[1..1]

Dynamic Static LFU LRU

Figure 5: NFT representation of the FAME-DBMS SPL

configuration FAME-DBMS, Storage, Unindexed, Buffer
Manager, In Memory, OS, Win

product Unindexed, In Memory, Win

Table 1: Example of valid configuration / product for the feature diagram in Figure 5
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significant payoff. Then, subsection 3.2 shifts to a more abstract level of detail, showing how commonality
may be used to get an overall idea of the amount of reuse achieved with the SPL.

3.1 Detection of Problematic Features

Figure 6 summarizes the commonalities of the terminal features of the FAME-DBMS feature diagram. For
instance, whereas feature Unindexed is included in 10% of the products, Debug Logging appears in 50%.
Because of Figure 6, the domain engineer can quickly get a feel for the essential features of the SPL.

Economic models for SPLs proposed in [10, 30, 35, 37, 47] use the following measures to quantify the
effort of reusing an asset and the effort of making it easy to reuse:

• The Relative Cost of Reuse (RCR) represents the proportion of the effort that it takes to reuse software
compared to the cost normally incurred to develop it for one-time use. For instance, a feature has
RCR = 0.2 if it can be reused for only 20% of the cost of implementing it.

• The Relative Cost of Writing for Reuse (RCWR) represents the proportion of the effort that it takes
to develop reusable software compared to the cost of writing it for one-time use. For instance, if it
costs an additional 50% effort to create a feature for reuse (i.e., it is necessary a more generic design,
additional documentation...) then RCWR = 1.5.

Poulin [37] defines a metric called payoff threshold, which shows how many times a feature has to be
reused before the investment made to develop the feature is recovered. The payoff threshold of a feature
F is calculated by equation 2.

Payoff ThresholdF =
RCWRF

1− RCRF
(2)

If CF is the commonality of feature F and n is the total number of products of the SPL, F causes a scope
flaw when equation 3 holds.

(CF ·n) < Payoff ThresholdF (3)

In addition, commonality supports the detection of core features. A feature F is a core feature if it is
part of all the products, i.e., CF = 1. Core features are the most relevant features of a SPL since they are
supposed to appear in all products. Hence, detecting them in a feature diagram is useful to determine
which features should be developed first [45] or to decide which features should be part of the core
architecture of the SPL [34].

3.2 Global Analysis of the SPL Scope

Frequently, a domain engineer has to deal with feature diagrams that contain so many features that it is
necessary to condense the data for easy comprehension of the general characteristics of a SPL. We propose
to use a commonality histogram to graphically represent the degree of reuse of the features. For instance,
Figure 7 shows that most of the terminal features of the FAME-DBMS feature diagram are reused by the
(20%-40%]3 of the products, i.e., there are 3 features with commonality between [0-0.2], 7 between (0.2-0.4]
and 3 between (0.4-0.6].

Many managers favor an incremental approach to product line adoption, one that first tackles areas of
highest and most readily available commonality, earning payback early in the adoption cycle. Under this

3In Figure 7 we have adopted the right-end inclusion convention, which stipulates that a class interval contains its right-end but
not its left-end boundary point.
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Figure 6: Commonality histogram for the FAME-DBMS terminal features

Figure 7: Commonality histogram for the FAME-DBMS terminal features
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approach, the organization plans from the beginning to develop a SPL. It develops part of the Core Asset
Base (CAB), including the architecture, and then builds one or more products. In the next increment, it
develops a portion of the rest of the CAB and builds additional products. Over time, it evolves more of the
CAB in parallel with new product development. In order to quantify the reuse improvement achieved in
each development increment, Cohen [13] proposes a measure called Degree of Reuse (DOR), which is the
portion of a complete product that is made reusing the CAB; e.g., a DOR of 0.25 means that the core assets
are used in the development of 25% of the software of a typical product.

Cohen does not provide an equation to calculate DOR accurately. For that reason, we propose equation
4 to compute DOR, which relies on the commonality concept. The following points sum up the meaning of
the equation parameters:

1. CF is the commonality of F and n the total number of products of the SPL.

2. SizeF is the size of the software that implements the feature F (a number of techniques to estimate
software size are presented in [19]).

3. The dividend is the size of all the software encompassed by the SPL, i.e., the size of all the products.
Such size is calculated indirectly multiplying the size of the software that implements every feature
(i.e., SizeF ) by the number of times that software is reused (i.e., CF ×n).

4. The numerator is the size of the all the software that is made by reusing core assets.

DOR =
∑
F∈CAB

(
SizeF × CF ×n

)
∑
F
(
SizeF × CF ×n

) =
∑
F∈CAB

(
SizeF × CF

)
∑
F
(
SizeF × CF

) (4)

For instance, Table 2 summarizes a possible development state for the FAME-DBMS example. The
table includes the commonality for each feature, the size measured in thousands of Source Lines of Code
(KSLOC) of the software that implements each feature, and if a feature is part of the CAB (i.e., whether
it has been adapted for reuse throughout the SPL). For example, feature Unindexed has commonality 0.1,
estimated size of 1 KSLOC and belongs to the CAB. Thanks to equation 4, we can conclude that a reasonable
level of reuse has been achieved in the SPL, since the core assets are used in the development of 79.6% of
a typical product:

DOR = 1 · 0.1+ 1 · 0.4+ ...+ 2 · 0.5
1 · 0.1+ 2 · 0.1+ ...+ 2 · 0.5

= 4.7
5.9

= 0.796

Although there are well documented examples of cost reduction, shorter development times, and qual-
ity improvement achieved by introducing the SPL paradigm in industry [17], the approach is not always
the best economic choice for developing a family of related products. For instance, the products may be
prohibitively dissimilar from each other. In such cases, it is not worthwhile to develop and maintain a CAB
(i.e., if an asset is not going to be reused, it makes no sense to invest in making it easily reusable). SIMPLE
defines a measure, named homogeneity, that characterizes how similar the products are. The metric varies
from 0 to 1, where 0 indicates that the products are all totally unique and 1 indicates that there is only one
product.

In the presence of unknown feature commonalities, SIMPLE proposes to calculate homogeneity by
means of equation 5, where: ‖FU‖ is the number of features unique to one product, and t is the total
number of features. Unfortunately, this measure may produce erroneous results in some scenarios. For
instance, consider a SPL with 100 features, where every feature has commonality of 0.02 (i.e., each feature
is reused by only 2 products); although the SPL is quite heterogeneous, equation 5 says that the SPL is
completely homogeneus (i.e., homogeneity = 1− 0

100 = 1).

Homogeneity = 1− ‖FU‖
t

(5)
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F CF SizeF (KSLOC) is F part of the CAB?

Unindexed 0.1 1 �

B+ Tree 0.1 2 �

Delete 0.4 1 �

Put 0.4 1 �

Get 0.4 1 �

Debug Logging 0.5 2 �

In Memory 0.2 2 �

Dinamic 0.4 2 �

Static 0.4 1 �

LFU 0.4 1 �

LRU 0.4 1 �

Win 0.5 2 �

NutOS 0.5 2 �

Table 2: Input parameters to compute DOR for the FAME-DBMS example

Alternatively, SIMPLE proposes the more reliable equation 6 to calculate homogeneity, where: t is the
number of features of the SPL and CF is the commonality of feature F . Using equation 6 for the scenario
proposed in the previous paragraph, we check the SPL is certainly heterogeneous (i.e., homogeneity =∑100
i=1 0.02
100 = 0.02). Note that commonality is the basis for this reliable calculation.

Homogeneity =
∑t
i=1 CF
t

(6)

As a preliminary step to compute commonality, in section 4.1 we propose how to calculate the total
number of products n of a feature diagram; n is useful on its own to calculate the variability factor of a
feature diagram. Variability factor is a value between 0 and 1 that is computed by Equation 7. The smaller
the ratio the more restrictive is the feature diagram and vice-versa. The relevance of the variability factor
has been related to decision-making strategies for adopting the product line approach [6].

Variability = n
2total number of features

(7)

4 Computing Commonality

In the previous section, we have summarized some approaches to identify problematic features (i.e., when
the payoff threshold of a feature is too high), to measure the level of reuse achieved by the SPL (i.e.,
the DOR) and to evaluate the similarity among the products of a SPL (i.e., the homogeneity). All those
approaches require knowing the commonality of the features beforehand.

This section proposes an algorithm to compute feature commonality from a feature diagram. According
to equation 1, to compute the commonality of a given feature, it is necessary to calculate the number of
products that include it and compare it with the total number of products in the SPL. Section 4.1 describes
how to compute the total number of products in a SPL. In section 4.2 we shall extend this procedure to
compute the products that include a certain feature. These procedures are different, because for a feature
node other than the root, the number of products the feature appears in, depends not only on the subtree
below the feature, but also on the rest of the tree.
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4.1 Total Number of Products

The number of products of a node n is denoted as P(n). Thus, the total number of products represented
by a NFT diagram is P(r), where r is the root. For a leaf node l, P(l) = 1. Table 3 shows the formulas to
compute P(n) for a non-leaf node n with s children, n1, n2, . . .ns , of type mandatory (i.e., n is labeled with
cards[s..s]), optional (cards[0..s]), or (cards[0..s]) and xor (cards[1..1]) respectively. All these formulas are
linear, hence, time complexity for computing P(n) in these cases is O(s). Therefore, in these particular
cases, the complexity for computing P(r) is linear on the number of nodes, i.e., O(N).

type of relationship formula
mandatory (cards[s..s]) P(n) =∏s

i=1 P(ni)
optional (cards[0..s]) P(n) =∏s

i=1 (P(ni)+ 1)
or (cards[1..s]) P(n) = (∏s

i=1 (P(ni)+ 1))− 1
xor (cards[1..1]) P(n) =∑si=1 P(ni)

Table 3: Total number of products for mandatory, optional, or and xor relationships

In general, when a node n has s children and is labeled with cards[low..high], P(n) is calculated by
equation 8, where Sk is the number of products choosing any combination of k children from s. For the
sake of clarity, let us denote P(n1), P(n2), . . . P(ns) as p1, p2, . . . , ps . In a straightforward approach, Sk
can be calculated by summing the number of products of all possible k-combinations (see equation 9).
Unfortunately, this calculation has exponential complexity.

P(n) =
high∑
k=low

Sk (8)

Sk =
∑

1≤i1<i2<i3...<ik≤s
pi1pi2 . . . pik (9)

A better complexity can be reached by using recurrent relations. The base case is S0 = 1. According
to equation 9, S1 =

∑s
i=1 pi. Calculating S2, the number of products for combinations of 2 siblings that

include n1 is p1p2+p1p3...+p1ps = p1(p2+p3+ ...+ps) = p1(S1−p1). Likewise, the number of products
of 2-combinations that include n2 is p2(S1−p2). Adding up every 2-combinations, we get

∑s
i=1pi(S1 − pi).

However, in the sum each term pipj is being accounted for twice; once in the round for i and another in
the round for j. Thus, removing the redundant calculations:

S2 = 1
2

s∑
i=1

pi(S1 − pi)

= 1
2
(S1

s∑
i=1

pi −
s∑
i=1

p2
i )

= 1
2
(S2

1 −
s∑
i=1

p2
i )

Calculating S3, the number of products for combinations of 3 siblings that include n1 is p1 multiplied
by the number of products for 2-combinations that do not contain n1, i.e., p1(S2 − p1(S1 − p1)). Adding
up every 3-combinations:

s∑
i=1

pi(S2 − pi(S1 − pi)) = S2S1 − S1

s∑
i=1

p2
i +

s∑
i=1

p3
i

13
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This time, every triple pipjpk is being accounted for three times. Hence, removing the redundant compu-
tations:

S3 = 1
3

⎛
⎝S2S1 − S1

s∑
i=1

p2
i +

s∑
i=1

p3
i

⎞
⎠

Our reasoning leads to the general equation 10 which allows efficient computation of the S vector. Though
we will compute it from the pseudocode later on, combining equations 8 and 10, we could conclude that
the total number of products of a SPL represented by a NFT diagram can be calculated in quadratic time,
i.e., O(N2); what constitutes a considerable improvement from exponential to polynomial computational
complexity.

S0 = 1

Sk = 1
k

k−1∑
i=0

((−1)iSk−i−1

s∑
j=1

pi+1
j ) for 1 ≤ k ≤ s (10)

In appendix A, Algorithm 3, and its auxiliary Algorithms 4 and 5, implement the calculation of P .
Let us consider the simple diagram in Figure 8. It is easy to compute that nodes B and D generate 7

products each and C generates 3. Since A has or cardinality, we could use the corresponding equation
P(n) = (∏si=1 (P(ni)+ 1))− 1. Thus, P (A) = (7+1)(3+1)(7+1)-1 = 255. As an example, we will compute P (A)
using equation 10. We will begin computing the powers of the number of products from the children of A
and their sum (Table 4).

power B C D sum
1 7 3 7 17
2 49 9 49 107
3 343 27 343 713

Table 4: Powers of the number of products from the children of A and their sum

A

[1..3]

B

[1..3]

C

[1..2]

D

[1..3]

E F G H I J K L

Figure 8: A sample FD

Now, S0 = 1 by definition, S1 = 17, as it is the sum of children’s products, S2 = 1/2(17·17−1·107) = 91,
following the general formula 8 and S3 = 1/3(91 · 17− 17 · 107+ 1 · 713) = 147. Adding up S1, S2 and S3,
we get again 255.
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The nested loops in Algorithm 5 determine the complexity of Algorithm 3. Since High ≤ N , it is safe to
say the complexity is O(N2). Thus, #ProductsOD is in O(N2) given that #Particular is linear and #General
is quadratic.

4.2 Updating the Number of Products Considering the Entire Context of Nodes

We will now tackle another question. Let n be a node, with s children whose number of products are
respectively p1, p2, . . . , ps , and let us suppose we have computed already P(n) using equation 10. This
calculation would provide us with vector S. What would happen if we should add a new child with ps+1

products? We may compute a new vector S′ using the general equation, but it is possible to derive S′i from
Si directly, for any suitable i.

Obviously, S′i will contain all the possibilities in Si, since all of them are valid combinations of i children
of n. These are the combinations in S′i which do not include the new node. The combinations including
the new child amount to ps+1 · Si−1. So, S′i = Si + ps+1 · Si−1.

In order to calculate the real value of P(n) (i.e., considering not only the descendants of n, but also
its antecessors and siblings), what we really want to do is exactly the opposite, i.e., having computed Si,
eliminate a child m and compute the vector S′i (equation 11).

S′0 = 1

S′i = Si − pm · Si−1 (11)

Going back to our previous example, say we want to eliminate node C. Now S0 = 1 by definition,
S1 = 17 − 3 · 1 = 14, S2 = 91 − 3 · 14 = 49 and S3 = 147 − 3 · 49 = 0 (as expected, since there are
only two siblings left). Let us focus on the subtree with root E. The valid products for this subtree are
{{E}} and, consequently, P (E)=1 using equation 10. Now, let us consider the subtree with root B, which has
children E, F and G. The valid products for this subtree are {{E}, {F}, {G}, {E, F}, {E, G}, {F, G}, {E, F, G}}. Using
equation 10 we get P (E)=P (F)=P (G)=1 and P (B)=7. Whereas P(B) is valid, the P values for its children must
be updated considering their full context (e.g., though E is included in 4 products, P (E)=1). Algorithm 6
(appendix A) uses equation 11 to support the updating. For instance, the number of products that include
E is P ′(E)=P (E)·TakeOneOut(7,1,3,[1,1,1],1) = 1·4 = 4.

Now, we are ready to present the Algorithm 1 (appendix A) to calculate commonality. First, we will
use an array PList to store the number of products for each node, taken as the root of the corresponding
subtree. Then, we will multiply this amount by the variability provided by the siblings of the node, prop-
agating the variability to the whole subtree. When we have the definitive number of products each node
appears in, it is immediate to compute the commonality CList. The number of products for each node is
computed in a bottom-up approach.

Our example is three-level-deep (i.e., level 1 includes node A, level 2 includes B, C and D, and level 3
includes E, F, G, H, I, J, K and L). Figure 9 depicts the calculation of P for all nodes step by step:

1. Calculating P for level 3: the call to #ProductsOD for leaf nodes returns 1, therefore PList[E] = PList[F]
= ... = PList[L] = 1.

2. Calculating P for level 2 and recalculating P for level 3:

(a) PList[B] = #ProductsOD([1,1,1],1,3) = 2 · 2 · 2 − 1 = 7. Now we recompute PList[E], PList[F] and
PList[G]. In these three cases, P ′B = TakeOneOut(7,1,3,[1,1,1],1) = 4, so PList[E] = PList[F] = PList[G]
= 4.

(b) PList[C] = #ProductsOD([1,1],1,2) = 2·2−1 = 3, P ′C = TakeOneOut(3,1,2,[1,1],1) = 2, so now PList[H]
= PList[I] = 2.
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(c) The subtree headed by D has the same structure as that of B.

3. Calculating P for level 1 and recalculating P for levels 2 and 3:

(a) PList[A] = #ProductsOD([7,3,7],1,3) = 8 · 4 · 8− 1 = 255.

(b) For the subtree under B, P ′A = TakeOneOut(255,1,3,[7,3,7],7) = 32 and then, PList[B] = 7·32 = 224,
PList[E] = PList[F] = PList[G] = 4 · 32 = 128.

(c) For the subtree under C, P ′A = TakeOneOut(255,1,3,[7,3,7],3) = 64, so PList[C] = 3 · 64 = 192. Now
PList[H] = PList[I] = 2 · 64 = 128.

(d) The case for the subtree under D is symmetrical to that under B.

Finally, commonality is computed: CList[A] = 1, CList[B] = 224 / 255 = .87, CList[C] = 192/255 = .75,
CList[D] = .87, CList[E] = CList[F] = CList[G] = 128/255 = .50, CList[H] = CList[I] = 128/255 = .50, CList[J] =
CList[K] = CList[L] = .50.

5 Computational Complexity

The algorithm just presented is quadratic in the number of features. For a clearer analysis, it may help if
we consider the operations step-by-step. As we have already noted, #ProductsOD is O(N2). If we call that
function for all the nodes, as we do in the first loop in #Products, the result is in O(N2), where N is the
total number of nodes. This can easily be proven by means of structural induction: the leaf-nodes are the
base case of the induction and they take constant time to be processed, so the condition holds trivially. Let
now n be the root of the diagram with children n1, n2, . . . ns with N1, N2, . . . , Ns nodes in their respective
subtrees. Our induction hypothesis is that #ProductsOD(ni) ∈ O(N2

i ). So, the time for the first loop in
#Products is delimited by equation 12.

s∑
i=1

N2
i + k ≤

⎛
⎝∑
i=1

s

⎞
⎠

2

+ sk = N2 + sK ≤ N2 +Nk ∈ O(N2) (12)

Where k is a constant that represents the time it takes to append one item to PChildrenList.
Therefore, the first loop is quadratic. Next there is a call to ProductsOD, which we know to be quadratic.

Finally, we have to consider the second loop. The call to TakeOneOut for some node ni takes time in O(Ni)
and the inner loop of its descendants also is O(Ni), so the body in the second loop of #Products belongs
in O(N2

i ). We apply again the argument expressed in equation 12 to conclude that this second loop in
#Products is again O(N2). Therefore, the sequence of the operations is O(N2).

Commonality computing just calls #Products and then traverses all the nodes to perform a division, so
the complexity for the algorithm Commonality is O(N2 +N) = O(N2).

6 Experimental Evaluation

Following the directions given by Juristo et al. [26], this section evaluates our algorithm experimentally.

6.1 Objective Definition

The Objectives (O) of our evaluation are:
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Figure 9: Calculating P step-by-step
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1. O1: To validate the results of our algorithm (i.e., are the results of our algorithm correct?). Since
computing commonality by hand is unfeasible except for tiny feature diagrams, we will validate our
algorithm results by comparing them to the results returned by alternative proposals to compute
commonality.

2. O2: To evaluate the scalability of our algorithm (i.e., does our algorithm work for feature diagrams of
any size?) and comparing it to the scalability of alternative proposals.

To the extent of our knowledge [7], the only proposals to compute commonality alternative to our
approach are [5, 4]. Unfortunately, those proposals rely on general purpose logic tools and do not scale
except for the smallest diagrams (see section 7). Consequently, we have just used such proposals to verify
that the commonality results of our algorithm are correct.

Since the alternative proposals we consider for direct experimental comparison do not really compute
the commonality, it would be inappropriate to compare them with our algorithm, so the experiment only
considers computing the number of products in the exemplar feature diagrams. Therefore the Hypotheses
(H) for testing are:

1. H1: Our algorithm computes the number of products correctly.

2. H2: Our algorithm scales for large feature diagrams.

6.2 Experimental Design

A set of feature diagrams is automatically generated and the total number of products is counted using
three different approaches: the propositional-logic exact model counters cachet [40] and relsat [3], and our
algorithm. Although exact model counters have exponential time complexity for the worst cases, there is
experimental evidence that they perform well for certain formulaes with two thousand variables [39].

As noted in section 2, the group cardinality constructor card generalizes any kind of relation between
features (e.g., mandatory, optional...). So, the experiment is focused on how the constructor card is man-
aged. The feature diagrams consist of a root node n, with s terminal children and cardinality h..h+ 1 (i.e.,
λ(n) = cards[h..h+1](n1, ..., ns)), where h is the integer division of s by 2. For instance, Figure 10 depicts
the corresponding feature diagram for 4 terminal nodes.

Since the input to cachet and relsat are logic formulas in CNF (Conjunctive Normal Form4), we sketch
here the feature diagram translation to CNF following the directions in [8]. The tree-structure is dealt with
s + 1 clauses: there is a clause to express that node n is true. Also, each child ni implies the parent node
n. For instance, the tree-structure in Figure 10 is encoded by:

A∧ (B → A)∧ (C → A)∧ (D → A)∧ (E → A) ≡
A∧ (¬B ∨A)∧ (¬C ∨A)∧ (¬D ∨A)∧ (¬E ∨A)

For the cardinality restriction, we treat the low and high restrictions separately. Saying that at least low
children have to be present in a product is equivalent to say that at most s− low children can be excluded
(i.e., in the logical formula no more than s − low can be false). Which means that as soon as s − low + 1
literals are selected, at least one of them must be true (this constraint is a clause). So, the low restriction
is equivalent to the conjunction of all possible clauses obtained by choosing s− low +1 children of n. For
instance, in Figure 10 the low limit is encoded by:

4In boolean logic, a formula is in CNF if it is a conjunction of clauses, where a clause is a disjunction of literals. A literal is an
atomic formula or its negation.
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(B ∨ C ∨D)∧ (B ∨ C ∨ E)∧ (B ∨D ∨ E)∧ (C ∨D ∨ E)
The high restriction is somewhat easier. Since in a set of high+ 1 children at least one of them has to

be false, we just compute all the sets of children of size high+1 and add a clause with all the set members
negated.

¬(B ∧ C ∧D ∧ E) ≡ ¬B ∨¬C ∨¬D ∨¬E
To sum up, Figure 10 is encoded by the following formula with 10 clauses:

A∧ (¬B ∨A)∧ (¬C ∨A)∧ (¬D ∨A)∧ (¬E ∨A)∧
(B ∨ C ∨D)∧ (B ∨ C ∨ E)∧ (B ∨D ∨ E)∧ (C ∨D ∨ E)∧
(¬B ∨¬C ∨¬D ∨¬E)

In order to support the replication of the experiment, a prototype implementation of our algorithm, the
experiment described in this section and a number of case studies are available on:

https://sourceforge.net/projects/commonality-spl

6.3 Experimental Results

The results of the experiment are summarized by Table 5, and Figures 11 and 125. Whenever the ap-
proaches are able to compute the number of products, the computed results always coincide.

6.4 Result Analysis

A

[2..3]

B C D E

Figure 10: Testing FD with 4 terminal nodes

According to the experimental results, the hypotheses H1 and H2 are satisfied. Regarding H2, the
number of products and the number of clauses grows exponentially with the number of nodes (see in
Figure 11). As showed by Table 5 and Figure 12, cachet and relsat have a hard time keeping up with the
pace of growth of the input: cachet gives up at size 15 and relsat at size 20, while our proposal takes
less than 10 milliseconds to complete in all cases, which goes to show that using purely logic tools does
not provide a scalable solution for the problem of feature model counting in the presence of extended

5The time it takes for cachet, relsat and our proposal to compute the number of products is subject of an error of ±10
milliseconds in Table 5 and Figure 12.
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#terminal #clauses #products time (milliseconds)
nodes cachet relsat our algorithm

1 2 2 30 0 0
2 4 3 30 0 0
3 6 6 30 0 0
4 10 10 30 0 0
5 16 20 30 0 0
6 28 35 40 10 0
7 50 70 30 10 0
8 93 126 30 0 0
9 178 252 40 10 0

10 341 462 40 40 0
11 672 924 40 140 0
12 1300 1716 40 550 0
13 2588 3432 40 3130 0
14 5020 6435 error 10890 0
15 10026 12870 error 56780 0
16 19465 24310 error 249890 0
17 38914 48620 error 1.72E+06 0
18 75601 92378 error 6.11E+06 0
19 151184 184756 error 2.85E+07 0
20 293951 352716 error error 0

Table 5: Summary of the experiment

cardinality. This is because cachet and relsat, as well as the vast majority of SAT-solvers and exact model
counters, rely on a technique called DPLL6 [15], which is exponential on the number of clauses. To make
matters worse for them, in this case, the number of clauses also grows exponentially with the number of
nodes. Admittedly, real feature models are not likely to display such a complex structure, but then again,
extended cardinality could not be efficiently processed hitherto.

7 Related Work

In recent years, many researchers have worked on the automated analysis of feature diagrams including,
but not limited to, consistency checking of a feature diagram [31], configuration support [1] and safe
refactoring transformations [20]. Nevertheless, proposals for computing commonality are rare [7].

Benavides et al. [4, 5] translate feature diagrams into propositional logic formulas (i.e., feature diagram
� ψ). Off-the-shelf tools, such as SAT and CSP solvers are then used to enumerate all the different sets
of variable assignments that satisfy the logic formula ψ. Each one of these sets represents a particular
product. There is a correspondence between features and variables, so that if a feature F is encoded in
ψ by a boolean variable V , then F is included in the product represented by a set S iff the value of V in
S is true. Hence, commonality of F is calculated by counting the number nF of sets where V is true, and
dividing nF by the total number of sets.

As noted by Sang et al. [39], any backtracking SAT algorithm can be trivially extended to one that
counts the number of satisfying assignments by simply forcing it to backtrack whenever a solution is

6DPLL stands for Davis-Putnam-Logemann-Loveland, the inventors of the DPLL technique.
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Figure 11: Growth of the number of products and clauses by the number of nodes

Figure 12: Growth of the time to calculate the number of products by the number of nodes
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found. However, such a simple approach, is unfeasible for all but the smallest problem instances. As Bena-
vides reports [5], CSP technology scales even worse than SAT-solvers to compute the number of satisfying
assignments. The approach can be improved by using tools specifically designed for counting the number
of valid assignments that a formula has, such as relsat [2] and cachet [39, 40], two state of the art model
counters for propositional logic. The scalability of this approach has been tested in the previous section.

Regarding the calculation of feature commonality with model counters, in [39], Sang et al. propose how
to extend cachet to compute the marginal probabilities of each variable, i.e., the probability that a variable
is present in a random product. Although that probability would correspond to feature commonality, the
current cachet implementation does not support it.

Mendonça [32] proposes another approach that uses BDDs to generate partial assignments to variables
representing features as an intermediate step in computing the number of products. The actual counting
is performed efficiently, taking advantage of the tree structure in a similar way to the function we have
presented in Algorithm 3 (see appendix A). Unlike Benavides’, Mendonça’s approach does not compute
commonality. Moreover, it lacks the expressive power of the cardinality construct, as it deals only with the
standard FODA cardinalities mandatory, optional, or and xor. Regarding the scalability of the approach,
constructing a BDD from a formula may require large amounts of memory depending on the variable
ordering for representing the BDD. The size of the resulting BDD can be reduced with a good variable
ordering, though computing the best variable ordering is an NP-hard problem [25].

To sum up, currently available proposals to compute commonality and the total number of products
handle feature diagrams as logic formulas, which are processed by off–the–shelf tools designed for propo-
sitional logic. The main advantage of such approach is being able to tackle cross-tree constraints. However,
it has the drawback of running in worst-case exponential time (and this is true even without considering
cross-tree constraints). In contrast, we are proposing a non–logic–based approach that has quadratic com-
plexity and, consequently, can work effectively for diagrams of any size. On the other hand, our algorithm
does not take into account cross-tree constraints. However, it could be combined with DPLL-style search
[15] to manage such kind of constraints (although scalability would probably be affected).

8 Conclusions

Commonality measures the reuse ratio of features among the products in a SPL. In this paper, we have dis-
cussed its importance in SPL scoping and provided an algorithm to compute commonality in just quadratic
time on the number of features (i.e., our proposal scales for large feature diagrams).

To make our proposal as general as possible, we have specified the algorithm for an abstract notation
for feature diagrams, named NFT, that works as a pivot language for most of the available notations. We
have formally defined the abstract syntax and semantics of NFT.

It is interesting to note that we have added an extension to usual FODA cardinalities (i.e., the card[low,
high] construction) without incurring in any complexity penalty, since commonality calculation without it
would still be quadratic. The expressive power of the formalism has been thus improved at not asymptotic
cost.
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A Algorithm to Calculate Commonality

This appendix describes in detail our algorithm to calculate the commonality of the features modeled by a
feature diagram. In order to facilitate the understanding of the algorithm, it has been decomposed into a
main program (algorithm 1) and five auxiliary subprograms (algorithms 2, 3, 4, 5 and 6).
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Algorithm 1: Commonality(Tree, CList)

Data: Tree is a NFT diagram
Result: CList includes the commonality values for all Tree nodes
begin

#Products(RootOfTree, PList)
forall the n node in Tree do

CList[n] ← PList[n] ÷ PList[RootOfTree]

Algorithm 2: #Products(n, PList)

Result: PList stores the total number of products for each tree node
begin

/* computing PList in a bottom-up approach */
PChildrenListn ← [ ]
forall them child of n do

#Products(m, PList)
PChildrenListn ← PChildrenListn ∪ PList[m]

/* calculating PList considering exclusively descendants */
PList[n], SListn ←

#ProductsOD(PChildrenListn, Lown, Highn)
/* updating PList considering the entire context */
forall them child of n do
P ′n ← TakeOneOut(PList[n], Lown, Highn,

SListn, PList[m])
PList[m] ← PList[m] · P ′n
forall the d descendant of m do

PList[d]← PList[d] · P ′n

Algorithm 3: #ProductsOD(PChildrenList, Low, High): P , SList

Data: PChildrenList includes the P values of the children of the current node; cardinality limits of the
node are [Low, High]

Result: P is the total number of products for the node; SList includes the node S values (OD: Only
node Descendants are considered)

begin
if (node is leaf) ∨ (children are mandatory ∨ optional ∨ or ∨ xor) then
P ← #Particular(PChildrenList, Low, High)
SList ← nil

else
P , SList ← #General(PChildrenList, Low,

High)
return P , SList
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Algorithm 4: #Particular(PChildrenList, Low, High): P
begin
P ← 1
N ← number of children
if Low=N ∧ High=N then // mandatory

forall the i such that 1 ≤ i ≤ N do
P ← P·PChildrenList[i]

else if Low=0 ∧ High=N then // optional
forall the i such that 1 ≤ i ≤ N do
P ← P·(1 + PChildrenList[i])

else if Low=1 ∧ High=N then // or
forall the i such that 1 ≤ i ≤ N do
P ← P·(1 + PChildrenList[i])

P ← P − 1
else if Low=1 ∧ High=1 then // xor

forall the i such that 1 ≤ i ≤ N do
P ← P + PChildrenList[i]

// else leaf (do nothing)
return P
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Algorithm 5: #General(PChildrenList, Low, High): P , SList

begin
N ← number of children
if Low = 0 then
P ← 1

else
P ← 0

SList[0] ← 1
PowerSumList[0] ← N
forall the k such that 1 ≤ k ≤ N do

PowerList[k] ← 1

forall the k such that 1 ≤ k ≤ High do
ThisPowerSum ← 0
forall the j such that 1 ≤ j ≤ N do

PowerList[j] ←
PowerList[j]·PChildrenList[j]

ThisPowerSum ←
ThisPowerSum+PowerList[j]

PowerSumList[k] ← ThisPowerSum
SList[k]← 0
Parity ← 1
forall the i such that 0 ≤ i < k do

SList[k]← SList[k]+Parity·
SList[k− i− 1]·PowerSumList[i+ 1]

Parity ← −1·Parity

SList[k]← SList[k]÷ k
if k > Low−1 then
P ← P+SList[k]

return P , SList
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Algorithm 6: TakeOneOut(P , Low, High, SList, Pm): P ′

begin
N ← number of children
if N=0 then // leaf node
P ′ ← 1

else if Low=N ∧ High=N then // mandatory
P ′ ← P ÷ Pm

else if Low=0 ∧ High=N then // optional
P ′ ← P ÷ (Pm + 1)

else if Low=1 ∧ High=N then // or
P ′ ← (P + 1)÷ (Pm + 1)

else if Low=1 ∧ High=1 then // xor
P ′ ← P − Pm

else // the general case
SList′[0]← 1
if Low = 0 then
P ′ ← 1

else
P ′ ← 0

forall the k such that 1 ≤ k < High do
SList′[k]← SList[k]− Pm· SList′[k− 1]
if k > Low −1 then
P ′ ← P ′+ SList′[k]

return P ′
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