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Abstract—Variability models are broadly used to specify the
configurable features of highly customizable software. In practice,
they can be large, defining thousands of features with their
dependencies and conflicts. In such cases, visualization techniques
and automated analysis support are crucial for understanding the
models. This paper contributes to this line of research by pre-
senting a novel, probabilistic foundation for statistical reasoning
about variability models. Our approach not only provides a new
way to visualize, describe and interpret variability models, but
it also supports the improvement of additional state-of-the-art
methods for software product lines; for instance, providing exact
computations where only approximations were available before,
and increasing the sensitivity of existing analysis operations for
variability models. We demonstrate the benefits of our approach
using real case studies with up to 17,365 features, and written
in two different languages (KConfig and feature models).

Index Terms—Variability modeling, feature modeling, software
product lines, software visualization, binary decision diagrams.

I. I NTRODUCTION

A common challenge in software engineering is enabling
and coping with many variants of software products that are
customized for different market segments or contexts of use.
This is explored in paradigms such asSoftware Product Lines
(SPLs) [1] orContext-Aware Software[2]. An essential tool
to tackle this challenge areVariability Models(VMs), which
specify the common and variable features available for the
software products, together with the inter-feature conflicts and
dependencies [3], [4].

Numerous visualization methods [5] and analysis operations
[6] support the reasoning on non-trivial VMs. Introduced in
1990,feature diagrams[7] are the prevalent way to visualize
VMs as graphs whose nodes and edges depict features and
inter-feature relationships. Such representation works nicely
for small VMs, but it becomes ineffective for large models
because the resulting graphs are overly complicated. Many
analysis operations are excessively rigid. For instance, current
approaches for detecting dispensable features only identify
those that, due to conflicts/dependencies with the remaining
features, cannot be included in any product at all, overlooking
thus features with a reusability insignificantly above zero.

This paper proposes an alternative way to reason about
VMs. The basic idea is adopting a method that, in many other
knowledge domains, has proven to be successful for describing

and interpreting variation in large samples/populations:statis-
tics. For that, it presents two algorithms that compute the
primary elements needed for the VM statistical analysis: (i)
the Feature Inclusion Probability(FIP) algorithm determines
the probability for a feature to be included in a valid product,
and (ii) the Product Distribution(PD) algorithm determines
the number of products having a given number of features.

SPL engineering typically distinguishes two roles: thedo-
main engineerand theapplication engineer[8]. Whereas the
domain engineer undertakes the product line development (i.e.,
she engineersfor reuse), the application engineer obtains par-
ticular systems from the product line through a configuration
process (i.e., she engineerswith reuse). Our approach assists
both roles.

Regarding the domain engineer, our method supports repre-
senting the feature and product variation using general statis-
tical plots (e.g., histograms, box-plots, etc.), and summarizing
the variation through descriptive statistics (e.g., mean,standard
deviation, etc.). This way, the engineer receives information
about the complexity of the software products, and the SPL
itself. Moreover, our approach supports augmenting the sensi-
tivity of binary analysis operations by redefining them into
probabilistic terms, hence providing a continuous range of
values instead of a simplistic yes/no categorization. Engineers
may use this, for instance, to detect highly dispensable features
whose reuse probability is close to zero, but not exactly zero.

Regarding the application engineer, our method provides
information about the implications of her decisions (i) in
terms of features (e.g., if featuref is selected, which other
features become selected/excluded due to their dependencies/
conflicts with f?), and also (ii) in terms of the final product
(e.g., if featuref is selected, what size will the final product
probably have?). Moreover, some procedures have been pro-
posed to guide the engineer through the configuration space
by using the concept of feature probability [9], [10], [11],
[12]. However, as existing methods for computing feature
probabilities do not scale for large VMs [13], probabilities
are often roughly approximated from samples of historical
product configurations [12], [14] or set manually by the
engineer according to her beliefs [15]. This paper contributes
to configuration guidance procedures by supporting the exact
and scalable feature probability computation.
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Most existing methods for automated reasoning on VMs
convert the models into Boolean logic formulas for subsequent
processing with logic engines [16]. This translation of VMs
into Boolean logic is a well-studied problem, supported for
most VM notations, such asfeature models[16], KConfig[17],
[18], or CDL [19]. Our algorithms work with practically every
VM notation as they build on theBinary Decision Diagram
(BDD) [20], [21] encoding of the VM Boolean formulas.

We demonstrate the feasibility and benefit of our approach
with real VMs specified in two distinct languages (KConfig
and feature models). The investigated VM examples differ in
the number of features (ranging from small to huge with up
to 17,365 features), and come from different application do-
mains (open source software projects, the automotive industry,
and web configurators). Among other issues, the experiments
reveal that some models have a surprisingly high number of
features with extremely low reusability.

The remainder of this paper is organized as follows: Section
II motivates the statistical analysis of variability models, illus-
trating its benefits with a real example. Section III describes
our algorithms in detail. Section IV reports the application
of the approach to distinct case studies. Section V discusses
related work. Finally, Section VI summarizes this paper’s main
conclusions and outlines directions for future research.

II. M OTIVATING THE STATISTICAL ANALYSIS OF

VARIABILITY MODELS

Most approaches for providing engineers with visualization
assistance to understand non-trivial VMs use graphs (or trees),
whose nodes and edges represent features and constraints,
respectively [5]. Feature modelsare the most widespread
graphical notation for VMs [22].

In practice, VMs can be huge [23] and for those cases,
their visual graph representation becomes ineffective. For ex-
ample, the EmbToolkit project (www.embtoolkit.org) easesthe
application development and firmware generation for highly
customized embedded Linux products. Its VM is specified in
a text-based language called KConfig, which is also used in
other popular open source projects, such as the Linux Kernel,
uClib, or axTLS. The KConfig specification of EmbToolkit
encompasses 1,815 configurable features, together with 7,193
inter-feature constraints. Figure 1 shows the graph representa-
tion of the KConfig specification of EmbToolkit 1.7.0. Such
visual representation offers little value even when zooming in
to make the node labels readable.

In contrast, we propose a statistical approach to describe and
interpret the variation of the features and products specified
by a VM. In the following subsections, we outline how this
method assists both the domain and the application engineers.

A. Domain engineer’s support

Our algorithms provide the fundamental information to
enable answering the following key questions:

1) How complex are the products?:The complexity of a
product can be roughly measured by its number of features
[24]. Our PD algorithm computes the products’ distribution

Fig. 1: Graph-representation of the EmbToolkit KConfig

regarding their number of features. This distribution is the
basis for distinct plots and descriptive statistics further char-
acterizing products’ complexity.

For instance, the density plot in Figure 2 and the descriptive
statistics in Table I summarize the product distribution for
the KConfig specification of EmbToolkit 1.7.0. This way, the
engineer becomes aware that the most frequently occurring
number of features for a product is 773, that the smallest and
largest products have 19 and 1398 features, respectively, etc.

Fig. 2: EmbToolkit product distribution

Mean Standard Median Median Mode Min Max Range
deviation absolute

deviation

741.49 330.91 748 391.41 773 19 1398 1379

TABLE I: Product distribution descriptive statistics

2) How complex is the product line?:The complexity of a
SPL may be characterized by the following three core metrics:
the number of features the SPL manages, the number of valid
products that can be derived, and the resulting homogeneity
of those products [24] (i.e., how much does one product differ
from the others). The PD algorithm in combination with our

www.embtoolkit.org
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Feature Inclusion Probability(FIP) algorithm provides a clear
picture of the products’ homogeneity. Figure 3 presents two
extreme cases: one of extreme homogeneity (top), the other of
extreme heterogeneity (bottom):
• The top row describes a SPL where products are very

homogeneous because (i) most products contain a similar
number of features (i.e., its distribution has low variance- see
the plot on the left), and (ii) most features are nearly always
included (i.e., the feature probabilities are close to one and
have low variance - right plot).
• The bottom row describes a SPL where the products are

very heterogeneous because (i) some products may contain
only a few features while others may contain a high number
of features (i.e., the product distribution has high variance),
and (ii) most features are nearly never included in a product
(i.e., the feature probabilities are close to zero and have low
variance).

Fig. 3: Products’ homogeneity characterization

3) Should the SPL be refactored to simplify its mainte-
nance?: The histogram in Figure 4 depicts the feature prob-
ability distribution for EmbToolkit 1.7.0. Three zones have
been highlighted in the plot, whose detailed information is
summarized in Table II:
• The red shaded area (left) highlights the features with

probability less than or equal to0.05 of being included
in a valid product. The extreme cases are those with zero
probability, which are commonly calleddead[6], [25].

Interestingly, 6.23% of the EmbToolkit features are dead,
and thus they should be removed from the KConfig specifica-
tion as they are completely without value.
• The green shaded area (right) emphasizes the features that

are required by almost every valid product, being the extreme
cases those with probability one, which are usually calledcore
as they are present in all products.
• The yellow shaded zone (middle) identifies low-constraint

features. In particular, those with probability 0.5 are typically
pure optional features whose selection is unconstrained.

Dead features Unconst. opt. features Core features
p = 0 p ≤ 0.05 p = 0.5 0.475 ≤ p ≤ 0.525 p = 1 p ≥ 0.095

6.23% 11.9% 25.73% 38.95% 1.21% 5.29%

TABLE II: Dead, core, and (potentially) optional features

Fig. 4: EmbToolkit feature probability distribution

Our approach also provides assistance when historical data
about the actual feature inclusion are available; e.g., theDe-
bian popularity contestgathers information about how many
times each Debian package has been installed (https://popcon.
debian.org/). In this case, the domain engineer compares the
VM statistics with the historical ones. If, for example, the
actual products tend to be much smaller than the product dis-
tribution mode obtained from the VM, then perhaps the SPL is
unnecessarily complex and could be simplified. Understanding
the answers to these questions is thus of essential value for
SPL and product testing, evolution, and reuse.

B. Application engineer’s support

Our approach supports the application engineer’s decision
making by showing the impact that a decision has on:

1) The remaining features: For example, if the
engineer selects the ARM architecture for EmbToolkit
(EMBTK_ARCH_ARM), then our FIP algorithm will
show that some other features will necessarily be
excluded from the product (e.g., the probability of
KEMBTK_UCLIBC_TARGET_mips becomes zero), and
that the selection of other features will become difficult
(e.g., the probability ofEMBTK_CLIB_GLIBC decreases to
7.41 · 10−35). It is worth noting that our approach determines
feature exclusion beyond explicit constraints among two
features by considering the overall set of constraints and
currently selected features.

2) The product under configuration:For instance, our FIP
and PD algorithms support providing plots such as the one in
Figure 5, which shows how the configuration space shrinks
with each engineer’s decision about selecting/excluding fea-
tures. Note that the product distribution variance decreases
progressively until it becomes zero at the end of the configu-
ration process.

Fig. 5: Visualizing the product derivation progress

https://popcon.debian.org/
https://popcon.debian.org/
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Several heuristics have been proposed to speed up product
configuration by taking advantage of the fact that, due to the
inter-feature constraints, some decisions can be automatically
derived from other decisions previously made. Some of those
heuristics are based on approximating feature probabilities
[10], [11]. Since our FIP algorithm computes those prob-
abilities, it provides better support for the aforementioned
heuristics.

III. C OMPUTING FEATURE AND PRODUCT DISTRIBUTIONS

This section describes a new method to compute the feature
and product distributions from a VM. First, Section III-A in-
troduces some probability definitions and the BDD technology
our approach is built upon. Then, Sections III-B and III-C
explain our algorithms in detail.

A. Preliminaries

The KConfig file in Figure 6 will be used throughout
this section as running example. It is composed of several
configs that specify three featuresA, B and C, and their
interdependencies.

1 config A
2 bool "A value?"
3 select C if !B
4 config B
5 bool "B value?"
6 depends on A
7 config C
8 bool

Fig. 6: Running
example: a
KConfig file

All features are Boolean (Lines 2,
5 and 8), meaning that they can be
either selected or deselected. Features
can acquire their value from the user
input, but also from other feature values.
For instance, ConfigsA andB specify
a prompt to request the user about their
feature values (e.g.,"A value?"). In
contrast,C does not specify any prompt,
and its value is derived as follows:C is
selected wheneverA is selected, but not
B (Line 3). Finally, featureB depends
on A, i.e., to be selected in a product,

B requires thatA is selected as well.
As a result, the configuration space encompasses only

three valid products:{A,B,C}, {A,B,C}, {A,B,C}, where
f or f represents that featuref is selected or deselected,
respectively. Therefore:
• The product distribution, regarding the number of features

each product has, is: one product with zero features
({A,B,C}), zero products with one feature, two products
with two features ({A,B,C} and {A,B,C}), and zero
products with three features.

• The probability of A, B and C to be selected in a valid
product is2/3, 1/3 and1/3, respectively.

1) Boolean representation of variability models:Most ap-
proaches for automated reasoning on VMs are based on
converting the models into Boolean logic formulas, which are
then processed with logic engines.

The details of this translation can be found in [16] and [18]
for feature and KConfig models, respectively.

For instance, the VM in Figure 6 is equivalent to the formula
Φ = ((A ∧ B) ↔ C) ∧ (B → A), whose truth table
is summarized in Table III (1 and 0 means true and false,
respectively).

A B C Φ

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

TABLE III: Running
example truth table

The truth table contains all pos-
sible configurations. The valid and
invalid products are represented by
rows whereΦ is 1 and 0, respec-
tively. For each row, the inclu-
sion/exclusion of a feature is rep-
resented by 1/0 in its correspond-
ing column. For example, the sev-
enth row depicts the valid product
{A,B,C}.

The following probabilities are
defined from the truth table:
• p(Φ) andp(Φ) are the probabilities ofΦ to be 1 and 0,

respectively;p(Φ) andp(Φ) are calculated as the number
of rows whereΦ is 1 and 0, respectively, divided by
the total number of rows. In Table III,p(Φ) = 3/8 and
p(Φ) = 5/8.

• p(x,Φ) is thejoint probability of x andΦ to be both 1; it
is computed as the number of rows where bothx andΦ
are 1 divided by the total number of rows. For example,
p(A,Φ) = 2/8. It is worth noting that joint probabilities
are symmetrical, i.e.,p(x,Φ) = p(Φ, x). Obviously, other
joint probabilities can be defined negatingx or Φ; e.g.,
p(A,Φ) = 1/8, p(A,Φ) = 2/8, etc.

• Theconditional probabilityp(x|Φ) is the probability that
x is 1 knowing beforehand thatΦ is 1. In other words, it is
the number of rows where bothx andΦ are 1 divided by
the number of rows whereΦ is 1. For example,p(A|Φ) =
2/3, p(A|Φ) = 1/3, etc.

In this paper, we are especially interested in getting the
probability each feature has to be included in a valid product,
i.e., p(x|Φ). Nevertheless, this computation will be built upon
other probabilities. In particular, by definition:

p(x|Φ) =
p(x,Φ)

p(Φ)
⇒ p(x,Φ) = p(x|Φ)p(Φ)

Likewise,p(Φ|x) = p(Φ,x)
p(x) ⇒ p(Φ, x) = p(Φ|x)p(x).

As joint probabilities are symmetrical, thenp(x,Φ) =
p(Φ, x) ⇒ p(x|Φ)p(Φ) = p(Φ|x)p(x) ⇒ p(x|Φ) =
p(Φ|x)p(x)

p(Φ) . This last relation, which supports derivingp(x|Φ)
from p(Φ|x), is known asBayes’ rule, and it will be used in
Section III-B to getp(x|Φ).

2) Binary decision diagrams:Truth tables are convenient
to understand the concepts we will handle to get the feature
probabilities and product distribution, but not to make the
computations because their size grows exponentially with the
number of variables (a table withn variables has2n rows).
In contrast, BDDs, which can be thought as compressed truth
tables without redundancies, are by far more scalable [20],
[26], [21]. An example that illustrates their compression power
is reported in this paper experimental section: the KConfig
specification of the uClibc library for developing embedded
Linux systems has 306 features and thus its truth table would
have2306 rows; nevertheless, its BDD encoding has only 3,085
nodes.
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(a) Non-reduced (b) Reduced

Fig. 7: BDD encoding for the KConfig example in Figure 6

A BDD is a rooted directed acyclic graph where (i) all
terminal nodes are labeled with 0 or 1, and (ii) all non-terminal
nodes are labeled with a Boolean variable. Each non-terminal
node has exactly two edges from that node to others: one
labeled 0 and the other 1. They are called thelow and high
edges, and are usually represented graphically with dashedand
solid lines, respectively. A BDD isordered if the variables
always appear in the same order for all the paths from the
root to the terminal nodes. For instance, Figure 7a represents
a BDD with the ordering[A,B,C] for our running example.
It has eight nodes, two terminalsn0 and n1, and six non-
terminalsn2, n3, . . . , n7.

Likewise rows in truth tables, paths in BDDs represent
variable assignments. In a path,x is assigned to 0 (or 1) if
it goes through the low (or high) outgoing edge of a node
labeledx, and the resulting evaluation is 0 (or 1) if the path
ends up in the terminal 0 (or 1). For example, the6th row
in Table III (A,B,C,Φ) corresponds to the pathn7 →n6

99Kn4 →n1 in Figure 7a.
To save memory, BDDs are usuallyreducedby (R1) re-

moving duplicated nodes (i.e., nodes that are the roots of
structurally identical subBDDs), and (R2) deleting nodes with
identical outgoing edges. In Figure 7a, R1 was performed but
not R2, as the shaded noden2 could be removed. Figure 7b
shows a completely reduced BDD without these redundant
nodes.

From here on, we will assume that BDDs are ordered and
totally reduced. Thus, the algorithms we present in the next
sections deal not only with the existing nodes in the BDD, but
also with those removed due to R2.

In Section II-B, we saw that, in order to assist the applica-
tion engineer to understand the impact of her decisions, it is
convenient to restrict the configuration space according toa
given set of selected/excluded features. Fortunately, most BDD
libraries include a function calledrestrict that provides
exactly this functionality [27].

Finally, Algorithm 1 shows Bryant’s method [20] to traverse
a BDD in a depth-first fashion, which will be used by our
algorithms.Traverse is called at the top level with the BDD
root as argument, and with a Booleanmark for every node
being either all true or all false.Traverse visits all nodes

by recursively visiting the lownLO and highnHI subBDDs
rooted byn. Whenever a node is visited, its mark value is
complemented. Comparing the marks ofn and its children,
it can be determined if they have already been visited. The
method ensures that each node is visited exactly once and that,
when traverse finishes, all node marks have the same value.

Algorithm 1. Bryant’s method for BDD traversing
1 Function traverse(n)
2 mark(n)← mark(n)
3 if n is non-terminal then
4 if mark(n) 6= mark(nLO) then traverse(nLO)
5 if mark(n) 6= mark(nHI) then traverse(nHI)

6 traverse(ROOT)

B. Computing feature probabilities

Algorithm 2 (FIP) obtains, for each feature, the proportion
of valid products that include it, i.e.,p(x|Φ). To do so, it
applies Bayes’ rule to ultimately derivep(x|Φ) from p(Φ|n).
First, the definition of conditional probability is used in Line
37: p(x|Φ) = p(x,Φ)

p(Φ) ; being p(Φ) and p(x,Φ) computed by
the auxiliary FunctionsgetNodePr andgetJointPr.

1) Computing node probabilities:In a BDD, let us define
the probabilitiesp(n) andp(n) for a noden as the number of
paths that go from the root to the terminal nodes by traversing
n through its high and low outgoing edges, respectively,
divided by the total number of paths. Let us start reasoning on
how to computep(n) when Reduction R2 has not been done
yet. For instance, in Figure 7a,p(n6) = 2/8 since there are
eight paths in total from root to terminals, and two of them
go through the high edge ofn6: n7 →n6 →n3 →n0 and
n7 →n6 →n3 99Kn1

By construction, in a truth table every variablex is 1 half
the rows, and it is 0 the other half. For instance, in Table III,
there are four rows whereB is 1, and there are other four
rows whereB is 0. This fact can be expressed asp(x) =
p(x) = 1/2. If R2 is not applied,p(x) = p(

⋃

n labeled x n);
beingp(

⋃

n labeled x n) =
∑

n labeled p(n) because all BDD
paths are mutually exclusive as they represent independent
variable assignments. For example, in Figure 7a,p(B) =
p(n5) + p(n6) = 2/8 + 2/8 = 1/2.

The first variable in the BDD ordering is represented by
a single node: the root. So,p(ROOT) = p(ROOT) = 1/2.
The next variable in the ordering is encoded with two nodes
ROOTHI andROOTLO because every node has exactly two
outgoing edges. Hence, the variable probability is shared out
both nodes and thusp(ROOTHI) = p(ROOTHI) = 1/2

2 ,
and p(ROOTLO) = p(ROOTLO) = 1/2

2 . Proceeding this
way, the node probabilities will be subsequently divided by
two until the terminal nodes are reached. Finally, we need
to be aware that whereas a node always has two outgoing
edges, it may have any number greater than one of incoming
edges. Therefore, for a non-terminal noden with parents
u1, u2, . . . us, thenp(n) =

∑

s
i=1 p(ui)

2 ; and for a terminal node,
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Algorithm 2. Feature Inclusion Probability (FIP)
1 Function getNodePr(n)
2 mark(n)← mark(n)
3 if n is non-terminal then

// explore low
4 if nLO is terminal then p(nLO)← p(nLO) + p(n)

5 else p(nLO)← p(nLO) + p(n)
2

6 if mark(n) 6= mark(nLO) then getNodePr(nLO)

// explore high
7 if nHI is terminal then p(nHI)← p(nHI) + p(n)

8 else p(nHI)← p(nHI) +
p(n)

2
9 if mark(n) 6= mark(nHI) then getNodePr(nHI)

10 Function getJointPr(n)
11 mark(n)← mark(n)
12 if n is non-terminal then

// explore low
13 if nLO = n0 then p(Φ|n)← 0
14 else if nLO = n1 then p(Φ|n)← 1
15 else
16 if mark(n) 6= mark(nLO) then getJointPr(nLO)

17 p(Φ|n)←
p(Φ,nLO∨nLO)

2p(nLO)

18 p(n,Φ)← p(Φ|n)p(n)

// explore high
19 if nHI = n0 then p(Φ|n)← 0
20 else if nHI = n1 then p(Φ|n) ← 1
21 else
22 if mark(n) 6= mark(nHI) then getJointPr(nHI)

23 p(Φ|n)←
p(Φ,nHI∨nHI)

2p(nHI)

24 p(n,Φ)← p(Φ|n)p(n)

// combine both low and high
25 p(Φ, n ∨ n)← p(Φ, n) + p(Φ, n)
26 p(var(n),Φ)← p(var(n)) + p(n,Φ)

// add joint probabilities of the removed
nodes

27 foreach xj between var(n) and var(nHI) do
28 p(xj,Φ)← p(xj ,Φ) + p(n,Φ)

2

29 foreach xj between var(n) and var(nLO) do
30 p(xj,Φ)← p(xj ,Φ) + p(n,Φ)

2

31 p(ROOT)← 1/2
32 p(ni)← 0 for all nodes ni except the BDD root
33 getNodePr(ROOT)

34 p(xj ,Φ)← 0 for all variables xj

35 getJointPr(ROOT)

36 p(Φ)← p(n1)

37 foreach xj do p(xj|Φ)←
p(xj,Φ)

p(Φ)

p(n) =
∑s

i=1 p(ui) (the parents’ probability is not divided as
the node has no outgoing edges).

Let us move now to realistic BDDs, where R2 is performed.
In this case, we need to take into account the removed nodes:

p(x) = p
(

(

⋃

n labeled x

n
)

∪
(

⋃

n′ labeled x
but removed

n′
)

)

=
∑

n

p(n) +
∑

n′

p(n′)

Let us see how to compute the number of redundant nodes
removed between any two nodes due to R2. If the variables
follow the ordering[x1, x2, . . . , xs], let var(n) be the position
of the variable that labels the noden in the ordering. For
example, in Figure 7b,var(n4) = 2 sincen4 is labeledB, and
B is in the second position of the ordering[A,B,C]. Finally,
let var(n0) = var(n1) = s+1 . Then,var(nLO)− var(n)− 1

is the number of nodes that have been removed betweenn
andnLO, andvar(nHI)− var(n)− 1 is the number of nodes
that have been removed betweenn andnHI. For example, as
var(n0)−var(n4)−1 = 4−2−1 = 1, it can be deduced that
one node was removed in the high edge that goes fromn4 to
n0 (i.e., the shaded noden2 in Figure 7a).

When a non-reduced BDD has a pathu →n1
−→
99Kn2

−→
99K . . .−→99K v , after applying R2 the path becomesu → v
According to what was previously discussed above,p(n1) =
p(u)/2. For the rest of the nodesn2, n3, . . . , v, the probability
is not divided again since both the high and low edges go to the
same node, e.g.,p(n2) =

p(n1HI)+p(n1LO)
2 = p(u)/2+p(u)/2

2 =
p(u)/2. To sum up, (i) the probability of the reduced nodes
between any two nodesu and v is p(u)/2, and (ii) the
probability of v is not affected by the amount of reduced
nodes, being equal top(u)/2 as well.

FunctiongetNodePr combines the ideas discussed above
with Bryant’s traverse method. In Algorithm FIP,p(ROOT) is
set to1/2, andp(n) is initialized to 0 for the remaining nodes
(Lines 31-32). Then,getNodePr traverses the BDD in pre-
order to updatep(n). Finally, it is worth noting thatp(Φ) =
p(n1) andp(Φ) = p(n0), beingp(Φ) andp(Φ) the proportion
of valid and invalid products of the VM, respectively.

2) Computing joint probabilities:Following the same ar-
gumentation line than in the previous section:

p(x,Φ) =
∑

n

p(n,Φ) +
∑

n′

p(n′,Φ)

Let us start first with the non-reduced nodes. By definition,
p(n,Φ) = p(Φ|n)p(n). As we rely on Bryant’s recursive
method to perform the computations, let us definep(Φ|n) in
function of n high descendant (as the probability is condi-
tioned to n = 1, in principle we only care about the high
descendant). Two cases need to be considered:

1) WhennHI is terminal, (a) ifnHI = n0 it means that the
path is evaluated to 0, i.e.,Φ is 0 for the variable assignment
the path represents and sop(Φ|n) = 0; (b) otherwise asnHI =
n1 thenp(Φ|n) = 1.

2) WhennHI is non-terminal,p(Φ|n) is calculated as:

p(Φ|n) = p(Φ|nHI ∨ nHI) =
p(Φ, nHI ∨ nHI)

p(nHI ∨ nHI)

=
p(Φ, nHI) + p(Φ, nHI)

p(nHI) + p(nHI)
=

p(Φ, nHI) + p(Φ, nHI)

2p(nHI)

Equation 1 summarizes the cases above to computep(Φ|n).
As it needs knowingp(Φ, nHI), Equation 2 is used (which is
indeed the symmetrical case of Equation 1).

p(Φ|n) =











0 if nHI = n0

1 if nHI = n1
p(Φ,nHI)+p(Φ,nHI)

2p(nHI)
otherwise

(1)

p(Φ|n) =











0 if nLO = n0

1 if nLO = n1
p(Φ,nLO)+p(Φ,nLO)

2p(nLO) otherwise

(2)
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FunctiongetJointPr in Algorithm FIP uses both Equa-
tions 1 and 2 to get the joint probabilityp(x,Φ) for non-
removed nodes (Lines 13-26). Then, Equation 3 is applied to
obtainp(n′,Φ) for the removed nodesn′ (Lines 27-30). It is
worth noting that such equation follows the same reasoning
presented in Section III-B1 to obtainp(n′).

p(n′,Φ) =

{

p(n,Φ)
2 if n′ was betweenn andnHI

p(n,Φ)
2 if n′ was betweenn andnLO

(3)

C. Computing product distribution

Algorithm 3 (PD) sketches the computation of the prod-
uct distribution, accounting for how many products have no
features, one feature, two features,. . ., all features. It uses
Bryant’s method to traverse the BDD in post-order by calling
the auxiliary FunctiongetProdDist with the BDD root as
argument. From the terminals to the root, it progressively ob-
tains the partial distributions that correspond to the subBDDs
rooted by each node, being the final distribution placed at the
root.

Algorithm 3. Product Distribution (PD)
1 Function getProdDist(n)
2 mark(n)← mark(n)
3 if n is non-terminal then

// traverse
4 if mark(n) 6= mark(nLO) then getProdDist(nLO)

// compute lowDist to account for the removed
nodes through low

5 removedNodes← var(nLO)− var(n)− 1
6 let lowDist be a vector with removedNodes + length of

dist(nLO) zeros
7 for (i = 0; i ≤ removedNodes; i++) do
8 for (j = 0; j < length of dist(nLO); j++) do
9 lowDist[i+ j] ←

lowDist[i+ j] + dist(nLO)[j] ·
(removedNodes

i

)

// traverse
10 if mark(n) 6= mark(nHI) then getProdDist(nHI)

// compute highDist to account for the removed
nodes through high

11 removedNodes← var(nHI)− var(n)− 1
12 let highDist be a vector with removedNodes + length of

dist(nHI) zeros
13 for (i = 0; i ≤ removedNodes; i++) do
14 for (j = 0; j < length of dist(nHI); j++) do
15 highDist[i+ j] ←

highDist[i + j] + dist(nHI)[j] ·
(removedNodes

i

)

// combine low and high distributions
16 if lowDist is longer than highDist then
17 distLength← length of dist(nLO)
18 else distLength← length of dist(nHI) + 1
19 let dist(n) be a vector of length distLength filled with zeros
20 for (i = 0; j < length of lowDist; i++) do
21 dist(n)[i]← lowDist[i]

22 for (i = 0; j < length of highDist; i++) do
23 dist(n)[i + 1]← dist(n)[i + 1] + highDist[i]

24 dist(n0)← [ ] // no products
25 dist(n1)← [1] // one product with no features
26 getProdDist(ROOT)
27 return dist(ROOT)

Figure 8 shows each node’s distribution for our running
example, which is stored in different vectorsdist. Starting from
0, the positioni in a dist vector accounts for the number of

products that havei features; e.g., dist(n3) = [0, 1] because
the subBDD with nodesn0, n1, andn3 represents no products
with zero features, and one product with one feature (i.e.,
product{C}).

Fig. 8: dist vectors

getProdDist’s recursive base
cases are noden0, representing no
products at all, and noden1, rep-
resenting a single product with no
features. Accordingly, dist(n0) = [ ]
and dist(n1) = [1] (Lines 24-25).

To understand the more advanced
recursive cases, three observations
need to be done:

1) Including new features into all
products is achieved by shifting the
dist vector to the right (O1):Let
us imagine that dist= [1, 0, 4], i.e.,
there is 1 product with 0 features,
0 products with 1 feature, and 4
products with 2 features.

If no new features are added, dist remains the same. If one
feature is added to all products, dist becomes[0, 1, 0, 4], i.e.,
there are no products without features because all of them have
at least the new feature, the product that had zero features now
have 1 feature, and the 4 products that had 2 features now
have 3 features. If two features are added to all products, dist
becomes[0, 0, 1, 0, 4], and so on.

In general, the addition ofs features to all products means
shifting dists positions to the right.

2) Combining dist vectors is accomplished by adding
them (O2): Let us think about how to getdist(n) from
dist(nLO) anddist(nHI). First, let us suppose that no nodes
were removed betweenn and its descendants. Imagine that
dist(nLO) = [2, 0, 3] and dist(nHI) = [1, 2]. According to
O1, dist(nHI) needs to be shifted one position to account for
the additional feature that labelsn. Then, both descendants
distributions are combined by just adding them:dist(n) =
[2, 0, 3] + [0, 1, 2] = [1, 1, 3].

3) Removed nodes require taking into account both ob-
servations O1 and O2, and blending them by means of
combinatorial numbers (O3):If a non-reduced BDD had a
path u 99Kn1

−→
99K n2

−→
99K . . . ns

−→
99K v , R2 would remove

the s redundant nodes, and thus the path would becomeu
99K v . Hence, dist(uLO) should be adjusted as any of the
removed nodes could be set to 1, and so one new feature would
be added to all products. Furthermore, any pair of redundant
nodes

(

s
2

)

could also be set to 1, any combination of three
nodes

(

s
3

)

, . . ., and finally the combination ofs nodes
(

s
s

)

.

original dist(uLO) 1 0 4

adding
(2
1

)

features 0 2 0 8

adding
(2
2

)

features 0 0 1 0 4

adjusted final dist(uLO) 1 2 5 8 4

TABLE IV: Distribution
adjustment

Let us see how the
adjustment should work
with an example: imagine
that dist(nLO) = [1, 0, 4] and
two nodes where removed
betweenn andnLO. Table IV
summarizes the computations.
The first and last rows



PREPRIN
T

represent the initial and
adjusted distributions, respectively. The two intermediate
rows represent the required adjustments.

First, adding one feature to all products implies shifting dist
one position to the right (O1). As there are

(

2
1

)

= 2!
1!(2−1)! =

2 different combinations of one feature, two shifted vectors
should be added (O2). As a result,[1, 0, 4] becomes

[

0, 1 ·
(

2
1

)

, 0 ·
(

2
1

)

, 4 ·
(

2
1

)]

= [0, 2, 0, 8].
Second, there is only one possibility

(

2
2

)

= 1 to add two
features to all products. So,[1, 0, 4] becomes[0, 0, 1, 0, 4].

Finally, all distributions are combined by adding them (O2):
[1, 0, 4] + [0, 2, 0, 8] + [0, 0, 1, 0, 4] = [1, 2, 5, 8, 4].

Lines 5-9 and 11-15 of Algorithm PD adjust the low and
high distributions of the non-terminal nodes to account for
the removed nodes. Then, Lines 16-23 combine both adjusted
distributions.

D. Computational complexity

Both Algorithms FIP and PD traverse the whole BDD, and
thus their complexity depends linearly on the numberN of
BDD nodes. Visiting each node requires (i) one loop on the
numberV of variables for FIP, and (ii) two nested loops on
the variables for PD. As a result, the time complexities are
O(NV ) andO(NV 2) for FIP and PD, respectively.

IV. EXPERIMENTAL ANALYSIS OF VM S

This section reports the analysis of seven VMs gathered
from open source projects and academic repositories with
the aim of illustrating the usefulness and generality of our
approach. All the material described in this section (implemen-
tation of the FIP and PD algorithms, VM benchmark, BDD-
encoding of the VMs, and results of the analysis) is available
at the following public repository:

https://github.com/rheradio/VMStatAnal

A. Experimental setup

Our algorithms have been implemented as an extension of
the library CUDD 3.0 for BDDs (https://github.com/vscosta/
cudd). The benchmark is composed of VMs coming from dif-
ferent application domains and specified in distinct languages:
(i) axTLS, Fiasco, uClibc, Busybox, andEmbToolkitare open
source projects to enable the creation of highly customizable
products, whose variability models are written in KConfig; (ii)
the Dell feature model specifies a laptop configurator reverse-
engineered from the DELL homepage; and (iii)Automotiveis
a feature model coming from the automotive industry. Table
V summarizes (i) the models, (ii) the size of the BDDs that
encode them, (iii) and our algorithms’ running times on an
HP ProLiant DL360 G9 with an Intel Xeon E5-2660v3.

B. Results

Our approach enables reasoning on VMs under two per-
spectives:

• The products’ view. Table VI provides descriptive statis-
tics for the VMs’ product distribution regarding their

VM VM Reference #Features #Clauses BDD Running time
name notation #nodes FIP PD

axTLS
1.5.3

KConfig http://axtls.
sourceforge.net/

64 119 108 0.018s 0.019s

Dell Feature [11] 118 2,304 1,876 0.055s 0.052s
Laptops Model
Fiasco
2014092821

KConfig https://os.inf.tu-
dresden.de/fiasco/

125 4,717 1,235 0.020s 0.033s

uClibc 201
50420

KConfig https://www.
uclibc.org/

306 903 4,862 0.362s 0.315s

Busybox
1.23.2

KConfig https://busybox.
net/

677 572 1,036 0.213s 0.323s

EmbToolkit
1.7.0

KConfig https://www.
embtoolkit.org/

1,815 7,193 263,636 12.863s 14.716s

Automotive
02

Feature
model

[28] 17,365 321,933 30,432 1m 54.321s 1m 2.922s

TABLE V: VM benchmark

V
M

na
m

e

M
ea

n

S
D

M
in

M
ax

p
=

0

p
≤

0
.0
5

p
=

0
.5

0
.4
7
5
≤

p
≤

0
.5
2
5

p
=

1

p
≥

0
.0
9
5

axTLS 25.46 10.46 3 46 0 9.38 6.25 37.50 0 3.12
Dell 17.50 2.24 14 21 0 47.46 0 2.54 0.85 0.85

Fiasco 24.84 9.70 4 44 31.20 46.40 15.20 24.80 0 1.60
uClibc 106.49 46.13 8 200 2.61 23.86 25.49 35.29 0 2.94

Busybox 324.44 149.05 5 635 2.95 3.55 37.81 53.91 0.44 3.10
EmbToolkit 741.49 330.91 19 1,398 6.23 11.9 25.73 38.95 1.21 5.29
Automotive 4,048.48 778.7 2,562 5,472 0.03 57.31 13.92 18.66 9.71 10.39

TABLE VI: Descriptive statistics for product distribution, and
percentage of dead, core, and unconstrained optional features

number of features, and Figure 9 visualizes that distri-
bution.

• The features’ view. Figure 10 shows the feature probabil-
ity distribution, and colored columns in Table VI detail
the number of features in the zonesdead, unconstrained
optional, andcore.

The product distribution graphs (Fig. 9) and feature prob-
ability distribution graphs (Fig. 10) (respectively TableVI)
highlight the existence of two rough VM groups. In the first
group, axTLS, uClibc, Busybox, and EmbToolkit represent
families of loosely constraint products. Valid products may
range from consisting of only a few features (as low as three
features for axTLS), to close to all features (e.g., over 90%of
all features in the case of Busybox). Hence, also the feature
probability distribution graphs for these models show more
features in the range0.475 ≤ p ≤ 0.525 compared to the
range p ≤ 0.05. In contrast, the second group consisting
of Dell Laptops, Fiasco, and Automotive, represents SPLs
with rather restricted products. Valid products may contain
at a maximum 18%, 35%, and 32%, respectively, of available
features compared to the first group with 72%, 65%, 94%,
and 77% respectively. SPLs in the second group also tend to
come with highly rare features. Between 46% and 57% of all
features have a reusing probability less or equal than 0.05.A
detailed list of all feature probabilities for every VM in the
benchmark is published at our repository. This list will help
domain engineers to polish their VMs, especially for Fiasco,
which has a surprisingly high percentage of dead features:
31.2%. For Dell Laptops and due to the sensitivity augment
that our FIP algorithm provides, some low reusable features
are discovered where current approaches do not detect any
problem at all: although there are no dead features, 17.8% of

https://github.com/rheradio/VMStatAnal
https://github.com/vscosta/cudd
https://github.com/vscosta/cudd
http://axtls.sourceforge.net/
http://axtls.sourceforge.net/
https://os.inf.tu-dresden.de/fiasco/
https://os.inf.tu-dresden.de/fiasco/
https://www.uclibc.org/
https://www.uclibc.org/
https://busybox.net/
https://busybox.net/
https://www.embtoolkit.org/
https://www.embtoolkit.org/
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Dell’s features are allowed in at most 0.001% of the valid
products.

Fig. 9: Product distribution

V. RELATED WORK

The seminal work by Kang et al. [7] established what has
been the mainstream for visually representing VMs from 1990
to nowadays: graphs whose nodes depict features, and whose
edges represent inter-feature constraints. The most popular
notation is feature modeling [5], which puts the emphasis
on those constraints that enable arranging the features hierar-
chically as a tree [3]. There are also other graph notations,
e.g., decision diagrams [29], the OVM language [30], etc.
Nevertheless, the differences among notations are minor, and
so most approaches can be considered equivalent [4].

As in practice variability models can include thousands of
features [23], some efforts have been made to clarify the

Fig. 10: Feature probability distribution

visualization of large graph VM representations: applying3D
techniques to visualize the graphs in the space instead of the
plane [31], supporting zooming on different graph areas [32],
focusing the visualization on a selected feature [33], decom-
posing the graphs [34], etc. Our work complements existing
research by introducing an alternative way to look at VMs
through statistics, supporting thus the use of centrality/spread
measures, plots, etc.

Sections V-A and V-B discuss related work that aims to
assist domain and application engineering, respectively.

A. Domain engineer’s assistance

A literature review by Benavides et al. [6] reports thirty
analysis operations on VMs, most of them oriented to domain
engineering. This paper supports augmenting the sensitivity of
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some of those operations. For instance, a feature is typically
considered dead if it cannot appear in any product at all. The
main reason why most approaches stick to this definition for
detecting dispensable features is due to the current limitations
of the technology they are built upon, as they detect whethera
featuref in a VM Φ is dead by checking with a SAT solver if
f ∧Φ is unsatisfiable [28]. In contrast, our algorithms support
a more flexible definition, detecting features with an extremely
low probability of being selected.

Beek et al. [15], [35], [36] point out the convenience of
providing the domain engineer with information about the
product distribution regarding distinct quantitative attributes
(e.g., number of features, product cost, failure probability,
etc.). Their approach requires (i) that the domain engineersets
manually the feature probabilities, or (ii) that the feature prob-
abilities are derived from historical data. Then, the product dis-
tribution is estimated by generating multiple samples through
a simulation process. Compared to Beek et al.’s method, our
procedure provides the exact product distribution insteadof an
approximation. Nevertheless, Algorithm PD currently supports
only one quantitative attribute, the number of features, and
could be extended to consider domain specific properties.

B. Application engineer’s assistance

There are several approaches to guide the application
engineer through product configuration. Some of them are
built upon historical data about previous configurations. For
instance, Pereira et al. [12], [14] proposes a recommender
system that limits the engineer’s decision space towards con-
figurations included in historical data. In addition, Martinez
et al. [37] provide the engineer with feedback on the impact
of her decisions by estimating the feature probabilities from
historical data. These approaches have several shortcomings:
first, the historical data may not be a representative sampleof
the product population, especially if the sample size is small
and its variance is high; and most important, feature selectivity
cannot be strictly constrained to a sample. For example, if a
non-dead feature is not included in any configuration of the
historical data, then the system could conclude erroneously
that the engineer should never select such feature.

Other approaches, instead of relying on previous configura-
tions, work directly with the VM. For example, Czarnecki et
al. [9] suggest the application of theentropymeasure to guide
the VM configuration process, which is calculated from the
feature probabilities. In addition, Nöhrer et al. [10], [11] pro-
pose another heuristic also based on the feature probabilities.
However, none of those works scale to large VMs.

Fernandez-Amoros et al. [38] provide an algorithm to com-
pute the feature probabilities from a feature model. However,
the algorithm is specific for feature models and it does not
scale when many constraints cross the tree structure of the
feature model.

To the extent of our knowledge, Algorithm FIP is the most
scalable and general approach to compute the feature proba-
bilities from a VM. This way, our work not only supports the
configuration heuristics that rely on the feature probabilities

obtained from the VM, but also the ones based on historical
data. In the latter case, our algorithms can be used to overcome
the limitations of reasoning exclusively on the basis of a
single product sample by applying Bayesian inference [39]
to combine both theprior probabilities coming from the VM
with the posteriorprobabilities coming from historical data.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the algorithmic foundation for analyzing VMs
from an innovative perspective has been presented, where the
features’ and products’ variation is visualized and described
using statistics. We have justified why this approach benefits
both, the domain and the application engineer, exemplifying
such benefits on real models gathered from open source
projects and academic repositories. We have shown that our
approach not only enables new ways to reason about VMs, but
also supports the improvement of current VM-related methods:
increasing the sensitivity of existing analysis operations on
VMs, and providing exact computations for approaches that
currently work with approximations.

We believe that our work opens a range of additional
opportunities for future research. Applied to other product line
related activities, such as testing, our work enables checking
whether current methods for SPL testing are able to generate
suites covering the whole product distribution range, and thus
avoid missing any rare boundary cases. Also, our approach
may be of assistance during maintenance of projects for highly
customizable software; e.g., we have reported that the VMs of
some relevant open source projects have an alarming amount
of dead features. The causes of those useless features need in-
vestigation. A longitudinal study would provide insights under
which circumstances these projects exhibit these problems, and
whether they are corrected or stay in the successive versions of
the VMs. Finally, our algorithms rely on the BDD encoding of
VMs. It is well-known that a BDD’s size is extremely sensitive
to its variable ordering, and that finding an optimal ordering is
an NP-complete problem. Therefore, our approach’s scalability
greatly depends on the performance of existing heuristics
for variable ordering. Hence, future research might look for
adapting our algorithms to other alternative logic technologies
that also support model counting, such as#SAT solvers[40]
or Sentential Decision Diagrams(SDDs) [41].
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