Supporting the Statistical Analysis
of Variability Models

David Fernandez-Amoros
Universidad Nacional de
Educacion a Distancia

Madrid, Spain
david@issi.uned.es

Ruben Heradio
Universidad Nacional de
Educacion a Distancia

Madrid, Spain

rheradio@issi.uned.es

Abstract—Variability models are broadly used to specify the
configurable features of highly customizable software. In pactice,
they can be large, defining thousands of features with their
dependencies and conflicts. In such cases, visualizatiorchmiques
and automated analysis support are crucial for understandag the
models. This paper contributes to this line of research by pe-
senting a novel, probabilistic foundation for statistical reasoning
about variability models. Our approach not only provides a rew
way to visualize, describe and interpret variability modek, but
it also supports the improvement of additional state-of-tke-art
methods for software product lines; for instance, providirg exact
computations where only approximations were available beifre,
and increasing the sensitivity of existing analysis operains for
variability models. We demonstrate the benefits of our apprach
using real case studies with up to 17,365 features, and wréh
in two different languages (KConfig and feature models).

Index Terms—Variability modeling, feature modeling, software
product lines, software visualization, binary decision dagrams.

|I. INTRODUCTION

christoph.mayr-dorn@jku.at

Christoph Mayr-Dorn Alexander Egyed

Johannes Kepler University Johannes Kepler University

Linz, Austria
alexander.egyed@jku.at

Linz, Austria

and interpreting variation in large samples/populatiGtatis-
tics. For that, it presents two algorithms that compute the
primary elements needed for the VM statistical analysis: (i
the Feature Inclusion ProbabilitfFIP) algorithm determines
the probability for a feature to be included in a valid proguc
and (ii) the Product Distribution(PD) algorithm determines
the number of products having a given number of features.

SPL engineering typically distinguishes two roles: the
main engineeland theapplication engineefi8]. Whereas the
domain engineer undertakes the product line development (i
she engineerfr reuse), the application engineer obtains par-
ticular systems from the product line through a configuratio
process (i.e., she engineeaxith reuse). Our approach assists
both roles.

Regarding the domain engineer, our method supports repre-
senting the feature and product variation using generéiksta
tical plots (e.g., histograms, box-plots, etc.), and sunziray
the variation through descriptive statistics (e.g., mstandard

A common challenge in software engineering is enablinggviation, etc.). This way, the engineer receives infoiomat
and coping with many variants of software products that asbout the complexity of the software products, and the SPL
customized for different market segments or contexts of usgelf. Moreover, our approach supports augmenting theisen
This is explored in paradigms such @eftware Product Lines tivity of binary analysis operations by redefining them into

(SPLs) [1] or Context-Aware Softwarf2]. An essential tool
to tackle this challenge ardariability Models(VMs), which

probabilistic terms, hence providing a continuous range of
values instead of a simplistic yes/no categorization. Eegjis

specify the common and variable features available for theay use this, for instance, to detect highly dispensableifes

software products, together with the inter-feature cotsfland
dependencies [3],_[4].

whose reuse probability is close to zero, but not exactlp.zer
Regarding the application engineer, our method provides

Numerous visualization methods [5] and analysis operatioimformation about the implications of her decisions (i) in
[6] support the reasoning on non-trivial VMs. Introduced iterms of features (e.g., if featurg is selected, which other
1990, feature diagramg7] are the prevalent way to visualizefeatures become selected/excluded due to their depemdénci
VMs as graphs whose nodes and edges depict features eonflicts with £?), and also (ii) in terms of the final product

inter-feature relationships. Such representation wolikely

(e.g., if featuref is selected, what size will the final product

for small VMs, but it becomes ineffective for large modelprobably have?). Moreover, some procedures have been pro-
because the resulting graphs are overly complicated. Mamysed to guide the engineer through the configuration space

analysis operations are excessively rigid. For instaneeent

by using the concept of feature probabilityl [9],_[10], [11],

approaches for detecting dispensable features only fgten{12]. However, as existing methods for computing feature
those that, due to conflicts/dependencies with the remginiprobabilities do not scale for large VM5 [13], probabilitie
features, cannot be included in any product at all, oveilupk are often roughly approximated from samples of historical

thus features with a reusability insignificantly above zero

product configurations[[12],[[14] or set manually by the

This paper proposes an alternative way to reason abeuigineer according to her beliefs [15]. This paper contebu
VMs. The basic idea is adopting a method that, in many othier configuration guidance procedures by supporting thetexac
knowledge domains, has proven to be successful for desgriband scalable feature probability computation.

Most existing methods for automated reasoning on VN
convert the models into Boolean logic formulas for subsatjue
processing with logic engines [16]. This translation of VM:
into Boolean logic is a well-studied problem, supported fc
most VM notations, such deature model§L6], KConfig[L17],
[18], or CDL [19]. Our algorithms work with practically every
VM notation as they build on th8inary Decision Diagram
(BDD) [20], [21] encoding of the VM Boolean formulas.

We demonstrate the feasibility and benefit of our approa -
with real VMs specified in two distinct languages (KConfi¢
and feature models). The investigated VM examples differ 7
the number of features (ranging from small to huge with u ~
to 17,365 features), and come from different application d
mains (open source software projects, the automotive tngdus
and web configurators). Among other issues, the experime
reveal that some models have a surprisingly high number
features with extremely low reusability.

The remainder of this paper is organized as follows: Sectis
[Mmotivates the statistical analysis of variability moslégllus-
trating its benefits with a real example. Section 11l desesib
our algorithms in detail. Section_1V reports the applicatio
of the approach to distinct case studies. Sedfibn V dissusse
related work. Finally, Sectidn VI summarizes this paper&sm
conclusions and outlines directions for future research.

Fig. 1: Graph-representation of the EmbToolkit KConfig

Il. MOTIVATING THE STATISTICAL ANALYSIS OF regarding their number of features. This distribution ig th
VARIABILITY MODELS basis for distinct plots and descriptive statistics furtblear-

Most approaches for providing engineers with visualizaticacterizing products’ complexity.
assistance to understand non-trivial VMs use graphs (esjre For instance, the density plot in Figlite 2 and the desceptiv
whose nodes and edges represent features and constraft@distics in Tabldll summarize the product distributiom fo
respectively [[5]. Feature modelsare the most widespreadthe KConfig specification of EmbToolkit 1.7.0. This way, the
graphical notation for VMs[22]. engineer becomes aware that the most frequently occurring

In practice, VMs can be hugé [23] and for those casegymber of features for a product is 773, that the smallest and
their visual graph representation becomes ineffective.exe largest products have 19 and 1398 features, respectively, e
ample, the EmbToolkit project (www.embtoolkit.org) eates
application development and firmware generation for high
customized embedded Linux products. Its VM is specified §§ 000050
a text-based language called KConfig, which is also used &% oous-
other popular open source projects, such as the Linux Kerr o.o000-

0.00100-
0.00075-

uClib, or axTLS. The KConfig specification of EmbToolkit SFEEFFETSSSSFSFSESS
encompasses 1,815 configurable features, together wigi3 7,1 . | eawres
inter-feature constraints. Figuré 1 shows the graph reptas Fig. 2: EmbToolkit product distribution

tion of the KConfig specification of EmbToolkit 1.7.0. Such
visual representation offers little value even when zogmim

to make the node labels readable. Mean | Standard |[[Median Median Mode [[Min | Max | Range
. . deviation absolute
In contrast, we propose a statistical approach to descrithe deviation
interpret the variation of the features and products sg@eCifi 7at45 | 33091 [| 748 | 39141 | 773 | 19 [1398 | 1379 |

by a VM. In the following subsections, we outline how this
method assists both the domain and the application engineer TABLE I: Product distribution descriptive statistics

A. Domain engineer's support 2) How complex is the product lineZhe complexity of a
Our algorithms provide the fundamental information t&PL may be characterized by the following three core metrics
enable answering the following key questions: the number of features the SPL manages, the number of valid

1) How complex are the productshe complexity of a products that can be derived, and the resulting homogeneity
product can be roughly measured by its number of featurekthose products [24] (i.e., how much does one productdiffe
[24]. Our PD algorithm computes the products’ distributiofrom the others). The PD algorithm in combination with our

www.embtoolkit.org

Feature Inclusion ProbabilityFIP) algorithm provides a clear
picture of the products’ homogeneity. Figure 3 presents tv 4 1
extreme cases: one of extreme homogeneity (top), the othei 2 -
extreme heterogeneity (bottom): “‘E

o The top row describes a SPL where products are ve

%

10-

0-

o H OO b O

homogeneous because (i) most products contain a sim S E L LS LS HE S LS ESELLSESS S
. o O O O O © O ©O O O o < Q O O O O Q o o]
number of features (i.e., its distribution has low variansee Feature probability of being included in a valid product

the plot on the left), and (i) most features are nearly avay fig 4. EmbToolkit feature probability distribution
included (i.e., the feature probabilities are close to ond a
have low variance - right plot).

« The bottom row describes a SPL where the products are)) o
very heterogeneous because (i) some products may contaifPur approach also proyldes _aSS|stance yvhen historical data
only a few features while others may contain a high numb@POUt the ac.tual feature mclus.lon are gvaﬂable; e.g.Dae
of features (i.e., the product distribution has high vaz@n bian popularity contesgathers information about how many

and (i) most features are nearly never included in a proddtf'es each Debian package has been installed (https:#popc
(i.e., the feature probabilities are close to zero and have |d€bian.org)). In this case, the domain engineer compaees th
VM statistics with the historical ones. If, for example, the

variance). g
actual products tend to be much smaller than the product dis-
tribution mode obtained from the VM, then perhaps the SPL is

) Homogeneous products g unnecessarily complex and could be simplified. Understandi

5% A g A the answers to these questions is thus of essential value for

£ SRS o 7 SPL and product testing, evolution, and reuse.

#Features Eeature p_robabili_ty of being
included in a valid procuct B. Application engineer’s support
Heterogeneous products

- 8 Our approach supports the application engineer’s decision

53 8 A making by showing the impact that a decision has on:

£° o > T o5 _ 10 1) The remaining features: For example, if the

#Features oo ey broduny engineer selects the ARM architecture for EmbToolkit
. ,) (EMBTK_ARCH_ARM), then our FIP algorithm will
Fig. 3: Products’ homogeneity characterization show that some other features will necessarily be

excluded from the product (e.g., the probability of
v KEMBTK_UCLI BC_TARGET_mi ps becomes zero), and
3) Should the SPL t?e rgfactored tq pimplify its MaiNter ot the selection of other features will become difficult
nance?: The histogram in FigurEl4 depicts the feature pro e.g., the probability oEMBTK_CLI B_GLI BC decreases to
ability Qistr.ibution_for EmbToolkit 0. 'I'_hreg Zones .bav.7.41 : 10-3%). It is worth noting that our approach determines
been h|ghl|ghted in the plot, whoseNgQialigl” informaipn fature exclusion beyond explicit constraints among two
summarized in Tablglil L features by considering the overall set of constraints and
o The red shaded area (left) highlights the features W'H"urrently selected features.
probability less than or equal t0.05 of being included 5y The product under configuratiorfor instance, our FIP
in a valid product. The extreme cases are those with zefaq pp aigorithms support providing plots such as the one in
probability, which are commonly calledead([€], [23]. Figure[®, which shows how the configuration space shrinks
Interestingly, 6.23% of the EmbToolkit features are deagl;i, each engineer's decision about selecting/excludegy f
and thus they should be removed from the KConfig specificies. Note that the product distribution variance de@eas

tion as they are completely without value. rogressively until it becomes zero at the end of the configu-
« The green shaded area (right) emphasizes the features Fgﬁgn process.

are required by almost every valid product, being the extrem
cases those with probability one, which are usually cadlee 1250-

as they are present in all products. 1
750 -

« The yellow shaded zone (middle) identifies low-constraint

=]
=1
S

features. In particular, those with probability 0.5 areitytly
pure optional features whose selection is unconstrained.

#Product features

\ Dead features] Unconst. opt. features] Core features | | | | | |
[p=0]p<005]| p=05]0475<p<0.525 [[p=1 [p>0.095 | pecson ! pecson” pecsion® pedson? pecsion®
‘ 6.23% ‘ 11.9% H 25.73% | 38.95% || 1.21% | 5.29% | Configuration stage

TABLE II: Dead, core, and (potentially) optional features Fig. 5: Visualizing the product derivation progress

https://popcon.debian.org/
https://popcon.debian.org/

© N A ®wWN R

Several heuristics have been proposed to speed up produdhe truth table contains all pos-

configuration by taking advantage of the fact that, due to tiséble configurations. The valid and g % % q{
inter-feature constraints, some decisions can be autoatlgti invalid products are representedby o0 o0 1| 0
derived from other decisions previously made. Some of thosevs where® is 1 and 0, respec- 0 1 0]0
heuristics are based on approximating feature probasilititively. For each row, the inclu- (1) é é 8
[10], [11]. Since our FIP algorithm computes those protsion/exclusion of a feature is rep- 1 0 111
abilities, it provides better support for the aforementidn resented by 1/0 in its correspond- 1 1 01
heuristics. ing column. For example, the sev- 11 1710
enth row depicts the valid product

I11. COMPUTING FEATURE AND PRODUCT DISTRIBUTIONS {A,B,C} TABLE llI: Running
3 3 .

This section describes a new method to compute the featurerhe following probabilities are €*@mPle truth table
and product distributions from a VM. First, Section Tl-A-in defined from the truth table:

troduces some_probgbility definitions and_the BDD technplog p(®) andp(T) are the probabilities ob to be 1 and 0,
our approach is built upon. Then, Sectidns TII-B dnd II-C egpectivelyp(®) andp(®) are calculated as the number

explain our algorithms in detail. of rows where® is 1 and 0, respectively, divided by
A. Preliminaries the total number of rows. In Tablelllh(®) = 3/8 and

. , @) =5/8.
The KConfig file in Figure[l6 will be used throughout p(. . . .
this section as running example. It is composed of several® p(z, ®) is thejoint prolgbility of TGRAGHIO be both 1, it

configsthat specify three featured, B and C, and their IS compu_ted as the number of rows where botand &
interdependencies. are 1 divided by the total number of rows. For example,

p(4, @) = 2/8. It is worth noting that joint probabilities

All features are Boolean (Lines 2, are symmetrical, i.ep(x, ®) = p(®, x). Obviously, other

, 5 and 8), meaning that they can be . ; . ’
Cogg'mg f\A val ue?" either selected or deselected. Features JO'%t grolaalblgtles;ag b_e 2deéf|r§((:j hegatingor ©; €.g.,
select Cif 1B can acquire their value from the user p(4,)_../ P4,)._. /8, y .
config B . « Theconditional probabilityp(z|®) is the probability that
bool "B val ue?" input, but also from other feature values. . : PATI™ o
depends on A For iﬁstance Configsl and B specify x is 1 knowing beforehand thatis 1. In other words, it is
config C 2 promotto ré uest%he user abl?)ut T the number of rows where bothand® are 1 divided by
bool fezturepvalueg (e.q"A val ue?"). In the number of rows wher is 1. For examplep(A|®) =
contrast(does not specify any prompt, 2/?” p(A]®) =1/3, etc.) . . .
Fig. 6: Running and its value is derived as follows. is In this paper, we are especially interested in getting the
example: a selected whenevet is selected. but not Probability each feature has to be included in a valid préduc
KConfig file B (Line 3). Finally, featureB depends i.e., p(z|®). Nevertheless, this computation will be built upon

on A ie.. to be selected in a productOther probabilities. In particular, by definition:

B requires thatd is selected as well. p(z, P)

As a result, the configuration space encompasses only p(z|®) = (@) = plz, ®) = p(z|2)p(P)
three valid productsfA, B, C}, {4, B,C},{A, B,C}, where o o(@.2)
f or T represents that featurg is selected or deselected, Likewise,p(®[z) = £725% = p(®, z) = p(®|z)p(z).

respectively. Therefore: As joint probabilities are symmetrical, thep(z,®) =
« The product distribution, regarding the numberoffeatur%g;i}():> p(|®)p(®) = p(Plz)p(z) = plz|@) =

each product has, is: one product with zero features (@) =. This last relation, Wh’iCh supports derivingz|®)
({4, B,C}), zero products with one feature, two productg’om_p(<1>|x), is known asBayes’ rule and it will be used in
with two features {4, B, C’} and {4, B,C}), and zero SectionIll-B to getp(z|®).

products with three features. . _ . 2) Binary decision diagramsTruth tables are convenient
« The probability of A, B and C to be selected in a validy nderstand the concepts we will handle to get the feature
product is2/3,1/3 and1/3, respectively. probabilities and product distribution, but not to make the
1) Boolean representation of variability modelsost ap- computations because their size grows exponentially vi¢h t
proaches for automated reasoning on VMs are based @fimber of variables (a table with variables ha™ rows).
converting the models into Boolean logic formulas, whicé ann contrast, BDDs, which can be thought as compressed truth

then processed with logic engines. _ tables without redundancies, are by far more scalgblé [20],
The details of this translation can be foundlini[16] and [1§pg], [21]. An example that illustrates their compressiawer
for feature and KConfig models, respectively. is reported in this paper experimental section: the KConfig

For instance, the VM in Figufé 6 is equivalent to the formulgpecification of the uClibc library for developing embedded
® = (AANB) < C)A (B — A), whose truth table Ljnux systems has 306 features and thus its truth table would
is summarized in Tablg_1ll (1 and 0 means true and falsgayve23% rows; nevertheless, its BDD encoding has only 3,085
respectively). nodes.

by recursively visiting the lowh;,o and highng; subBDDs
rooted byn. Whenever a node is visited, its mark value is
complemented. Comparing the marksofand its children,

it can be determined if they have already been visited. The
method ensures that each node is visited exactly once afd tha
when traverse finishes, all node marks have the same value.

Algorithm 1. Bryant’s method for BDD traversing

1 Functiontraverse(n)

2 mark(n) < mark(n)
3 if n is non-terminal then
(2) Non-reduced (b) Reduced 4 if mark(n) # mark(nro) then traverse(nro)
if mark(n) # mark(nu1) then traverse(ngur)

Fig. 7: BDD encoding for the KConfig example in Figlife 6 °
6 traverse(ROOT)

A BDD is a rooted directed acyclic graph where (i) all
terminal nodes are Iqbeled with O or 1,.and (ii) all non-terahi 'B. Computing feature probabilities
nodes are labeled with a Boolean variable. Each non-tetmina
node has exactly two edges from that node to others: oneAlgorithm[2 (FIP) obtains, for each feature, the proportion
labeled 0 and the other 1. They are called line and high of valid products that include it, i.ep(x|®). To do so, it
edges, and are usually represented graphically with dased applies Bayes’ rule to ultimately deriyez|®) from p(®|n).
solid lines, respectively. A BDD iordered if the variables First, the definition of conditional probability is used innke
always appear in the same order for all the paths from tB&: p(z|®) = ”;”(i;f?; being p(®) and p(z, ®) computed by
root to the terminal nodes. For instance, Figurk 7a reptsseiiie auxiliary Functionget NodePr andget Joi nt Pr.

a BDD with the orderind A, B, C] for our running example. 1) Computing node probabilitiestn a BDD, let us define
It has eight nodes, two terminalg, and ny, and six non- the probabilitieg(n) andp(%) for a noder as the number of
terminalsny, ns, . .., nr. paths that go from the root to the terminal nodes by travgrsin

Likewise rows in truth tables, paths in BDDs represent through its high and low outgoing edges, respectively,
variable assignments. In a path,is assigned to 0 (or 1) if divided by the total number of paths. Let us start reasoning o
it goes through the low (or high) outgoing edge of a nodgow to computep(n) when Reduction R2 has not been done
labeledz, and the resulting evaluation is O (or 1) if the patlyet. For instance, in FiguleI7a(ns) = 2/8 since there are
ends up in the terminal 0 (or 1). For example, #& row eight paths in total from root to terminals, and two of them
in Table[l (A, B, C, ®) corresponds to the pathy) —(g) 90 through the high edge of;: @ —> —>@ —[mo] and
-=3(2) =[] in Figure[7a. @ —> —>@ -

To save memory, BDDs are usualtgducedby (R1) re- By construction, in a truth table every variabteis 1 half
moving duplicated nodes (i.e., nodes that are the roots tbe rows, and it is O the other half. For instance, in Table Il
structurally identical subBDDs), and (R2) deleting nodéhw there are four rows wher® is 1, and there are other four
identical outgoing edges. In Figurel 7a, R1 was performed bews whereB is 0. This fact can be expressed pis:) =
not R2, as the shaded nodg could be removed. Figuie I7bp(Z) = 1/2. If R2 is not appliedp(z) = p(U,, 1apetea = ™)
shows a completely reduced BDD without these redund@®®iNgp(U,, 1apeied = ™) = Do 1abelea P(7) Decause all BDD
nodes. paths are mutually exclusive as they represent independent

From here on, we will assume that BDDs are ordered aNariable assignments. For example, in Figlre 7@3) =
totally reduced. Thus, the algorithms we present in the nextrs) + p(ns) = 2/842/8 =1/2.
sections deal not only with the existing nodes in the BDD, but The first variable in the BDD ordering is represented by
also with those removed due to R2. a single node: the root. Sp(ROOT) = p(ROOT) = 1/2.

In SectiorI[-B, we saw that, in order to assist the applicdhe next variable in the ordering is encoded with two nodes
tion engineer to understand the impact of her decisions, itROOTHr andROOTo because every node has exactly two
convenient to restrict the configuration space according tooutgoing edges. Hence, the variable probability is shated o
given set of selected/excluded features. Fortunatelyt BD® both nodes and thup(ROOTy;) = p(ROOTH) = 42,
libraries include a function calledestri ct that provides and p(ROOTio) = p(ROOTLo) = “£2. Proceeding this
exactly this functionality[[2]7]. way, the node probabilities will be subsequently divided by

Finally, Algorithm[d shows Bryant’s method[20] to traverséwo until the terminal nodes are reached. Finally, we need
a BDD in a depth-first fashion, which will be used by outo be aware that whereas a node always has two outgoing
algorithmsTr aver se is called at the top level with the BDD edges, it may have any number greater than one of incoming
root as argument, and with a Booleamark for every node edges. Therefore, for a_non-terminal nodewith parents
being either all true or all falselr aver se visits all nodes wq,us, ... us, thenp(n) = %

) ; and for a terminal node,

Algorithm 2. Feature Inclusion Probability (FIP)

10

11
12

13
14
15
16

17

18

19
20
21
22

23

24

25
26

27
28

29
30

31
32
33

34
35

36

37

Function get NodePr (n)
mark(n) < mark(n)
if n is non-terminal then

/1 explore | ow

if npo is terminal then p(nLo) < p(nLo) + p(n)
else p(nLo) «+ p(nLo) + p(n)

if mark(n) # mark(nro) then get NodePr (n1,0)
/1 explore high

if nu is terminal then p(nur) < p(nui) + p(n)

else p(nu1) < p(nur) + p(n)
if mark(n) # mark(ngur) then get NodePr (nur)

Function get Joi nt Pr (n)

mark(n) < mark(n)
if n is non-terminal then

/1 explore | ow
if nLo = no then p(®|7) < 0
elseif n,o = ni then p(®|m) < 1
else
if mark(n) # mark(nro) then get Joi nt Pr(nLo)
_ P.n T
p(@[n) « PTLOVIES) 2;,%3;0)“))
p(n, @) « p(@[n)p(n)

/1 explore high
if nar = no then p(®|n) « 0
else if ngr = ny then p(®|n) « 1
else
if mark(n) # mark(nu1) then get Joi nt Pr (nur)
@, VAT
p(@ln) + HEHIEAD
p(n, @) + p(®|n)p(n)
/1 conbine both | ow and hi gh
p(®,n VR) «+ p(®,n) + p(2,n)
p(var(n), ®) « p(var(n)) + p(n, ®)
// add joint probabilities of the renoved
nodes
foreach z; between var(n) and var(ngr) do
| ple; @) « pla;, @) + 250
foreach z; between var(n) and var(nypo) do
| ple. @) « pla;, @) + 25

p(ROOT) « 1/2

p(n

i) < 0 for all nodes n; except the BDD root

get NodePr (ROOT)

p(x;, ®) < 0 for all variables x;
get Joi nt Pr (ROOT)

p(®) + p(n1)

foreach z; do p(z;|®) +

p(z;,®)
p(P)

p(n) = >"°_, p(u;) (the parents’ probability is not divided as

the node has no outgoing edges).

Let us move now to realistic BDDs, where R2 is performed.
In this case, we need to take into account the removed nodes: _bp —

p@)=p(C U mu(U

w))

n’ labeled x
but removed

)+ > pn

n labeled x

=> pn

is the number of nodes that have been removed between
andny,o, andvar(nur) — var(n) — 1 is the number of nodes
that have been removed betweerand ny;. For example, as
var(ng) —var(ng) —1 =4—2—1 =1, it can be deduced that
one node was removed in the high edge that goes figro

ng (i.e., the shaded node, in Figure[7&).

When a non-reduced BDD has a path —>@ -—-3@
... i?@ , after applying R2 the path becomés —®
According to what was previously discussed abgyey;) =
p(u)/2. For the rest of the nodes,, ns, . . ., v, the probability
is not divided again since both the high and low edges go to the
same node, e.gp(n2) = p(anI)+p(n1LO) — P(“)/2+P(U)/2 —

p(u)/2. To sum up, (i) the probab|I|ty of the reduced nodes
between any two nodes and v is p(u)/2, and (ii) the
probability of v is not affected by the amount of reduced
nodes, being equal to(u)/2 as well.

Functionget NodePr combines the ideas discussed above
with Bryant's traverse method. In Algorithm FIRROOT) is
set tol/2, andp(n) is initialized to O for the remaining nodes
(Lines 31-32). Thenget NodePr traverses the BDD in pre-
order to updatep(n). Finally, it is worth noting thap(®) =
p(n1) andp(®) = p(ng), beingp(®) andp(®) the proportion
of valid and invalid products of the VM, respectively.

2) Computing joint probabilities:Following the same ar-
gumentation line than in the previous section:

(I)) = Zp(nvfb) + Zp(nlvq))

Let us start first with the non-reduced nodes. By definition,
p(n,®) = p(®|n)p(n). As we rely on Bryant’s recursive
method to perform the computations, let us defii®|») in
function of n high descendant (as the probability is condi-
tioned ton = 1, in principle we only care about the high
descendant). Two cases need to be considered:

1) Whenny; is terminal, (a) ifng; = ng it means that the
path is evaluated to O, i.e® is O for the variable assignment
the path represents and g@P|n) = 0; (b) otherwise asiy; =
ny thenp(®|n) = 1.

2) Whenny is non-terminalp(®|n) is calculated as:

p(®, V7T
p(nur V 7mI)
((I)vnHI) +p(q)7n_HI) p(q)vnHI) +p((1)vn—HI)
p(nur) + p(Tm) 2p(nar)
Equatior 1 summarizes the cases above to comgdtp:).
As it needs knowing(®, myr), Equatior® is used (which is
indeed the symmetrical case of Equatidn 1).

p(®[n) = p(@|nm V 7mr) =

Let us see how to compute the number of redundant nodes 0 !f ML= T
removed between any two nodes due to R2. If the variables p(2[n) =41 o R if npn = @)
follow the ordering[z1, xo, . .., x5], let var(n) be the position % otherwise
of the variable that labels the nodein the ordering. For)
example, in FigurZbsar(n4) = 2 sincen, is labeledB, and 0 if nLo =m0
B is in the second position of the orderind, B, C]. Finally, p(®@n) =41 ifno=m (2
let var(ng) = var(n1) = s+ 1. Then,var(nro) — var(n) — 1 p(®nLo)+p(PTLO) otherwise

2p(nLo)

Functionget Joi nt Pr in Algorithm FIP uses both Equa- products that have features; e.g., dists) = [0
tions[1 andR to get the joint probability(x, ®) for non-

,1] because
the subBDD with nodesgg, ny, andns represents no products

removed nodes (Lines 13-26). Then, Equafibn 3 is appliedwdth zero features, and one product with one feature (i.e.,
obtainp(n’, @) for the removed nodes’ (Lines 27-30). It is product{C}).

worth noting that such equation follows the same reasoningget Pr odDi st’s recursive base

presented in Sectidn III-B1 to obtaj(n’).

, p(n,®)
p(n', ®) = p(ﬁgﬁb)
2

if n’ was betweem andngy
if n’ was betweem andni.o

C. Computing product distribution

tains the partial distributions that correspond to the $DIbB

Algorlthm B (PD) sketches the Computatlon of the proq'ecurswe cases, three observations \
uct distribution, accounting for how many products have ngeed to be done:
features, one feature, two features,, all features. It uses
Bryant's method to traverse the BDD in post-order by callingroducts is achieved by shifting the
the auxiliary Functiorget Pr odDi st with the BDD root as dist vector to the right (O1):Let

cases are nodeg, representing no
products at all, and node;, rep-
resenting a single product with no
features. Accordingly, digtg) = []
and distn,) = [1] (Lines 24-25).

To understand the more advance

A, n6
dist=[1,0,2]
B, n4
0 dist=[1,0]

B, n5
dist=[0,2]

1) Including new features into all

. . . 0, n0 , n
argument. From the terminals to the root, it progressivély oys imagine that dist [1,0,4], i.e., dist=] dltzlll,

there is 1 product with O features,

rooted by each node, being the final distribution placed @t t§ products with 1 feature, and 4 Fig. 8: dist vectors
root.

Algorithm 3. Product Distribution (PD)

1 Function get ProdDi st (n)

2
3

4

10

11
12

13
14
15

16
17
18
19
20
21

22
23

mark(n) < mark(n)
if n is non-terminal then

/'l traverse
if mark(n) # mark(nro) then get ProdDi st (npo)
/1 compute lowDist to account for the renoved
nodes through | ow
removedNodes < var(nro) — var(n) — 1
let lowDist be a vector with removedNodes + length of
dist(npo) zeros
for (i = 0; ¢ < removedNodes; i++) do
for (j = 0; j < length of dist(nro); j++) do
lowDist[i + j]
lowDist[i 4 j] + dist(nro)[j] - (FemevedNedes)

i

/1l traverse
if mark(n) # mark(nu1) then get ProdDi st (nmr)
/1 compute highDist to account for the renoved
nodes through high
removedNodes < var(nur) — var(n) — 1
let highDist be a vector with removedNodes + length of
dist(nur) zeros
for (: = 0; ¢ < removedNodes; i++) do
for (j = 0; j < length of dist(nu1); j++) do
highDist[i + j] <
L highDist[i 4 j] 4 dist(nur)[5] - (FemevefNedes)

/1 conbine I ow and high distributions
if lowDist is longer than highDist then
| distLength « length of dist(nLo)
else distLength < length of dist(np) + 1
let dist(n) be a vector of length distLength filled with zeros
for (: = 0; j < length of lowDist; i++) do
| dist(n)[i] <+ lowDist[d]

for (: = 0; j < length of highDist; i++) do
| dist(n)[i 4 1] < dist(n)[i 4- 1] + highDist][3]

24 dist(ng) < []// no products

25 dist(ny) < [1]// one product with no features
26 get ProdDi st (ROOT)

27 return disttROOT)

Figure[8 shows each node’s distribution for our running o
example, which is stored in different vectatist Starting from TABLE 1V: Distribution

products with 2 features.

If no new features are added, dist remains the same. If one
feature is added to all products, dist becorfied, 0, 4], i.e
there are no products without features because all of them ha
at least the new feature, the product that had zero featores n
have 1 feature, and the 4 products that had 2 features now
have 3 features. If two features are added to all producss, di
becomed0, 0, 1, 0,4], and so on.

In general, the addition of features to all products means
shifting dists positions to the right.

2) Combining dist vectors is accomplished by adding
them (02): Let us think about how to gedist(n) from
dist(nro) anddist(ngr). First, let us suppose that no nodes
were removed between and its descendants. Imagine that
dist(nro) = [2,0,3] and dist(nur) = [1,2]. According to
01, dist(nyr) needs to be shifted one position to account for
the additional feature that labels Then, both descendants
distributions are combined by just adding thedist(n) =
[2,0,3] +[0,1,2] = [1,1,3].

3) Removed nodes require taking into account both ob-
servations O1 and O2, and blending them by means of
combinatorial numbers (O3)1f a non -reduced BDD had a
path @ ——+@ @ ——+@ R2 would remove
the s redundant nodes, and thus the path would became
--»@® . Hence, didtur,0) should be adjusted as any of the
removed nodes could be set to 1, and so one new feature would
be added to all products. Furthermore, any pair of redundant
nodes(;) could also be set to 1, any combination of three
nodes(3), ..., and finally the combination of nodes(?).

Let us see how the

M adjustment should work

with an example: imagine
that distno) = [1,0,4] and

[adjusted final diswro) | 1] 2[5 [8]4] two nodes where removed
betweenn andnro. Table[T¥

summarizes the computations.

‘ original dis{ur,0) H 1 ‘ 0 | 4 |

adding (3) features o|2|o0fs
adding (3) features o|o|1|o0f4

0, the positioni in a dist vector accounts for the number ofidjustment The first and last rows

VM Reference #Features | #Clauses BDD Running time
notation #nodes FIP PD

.. VM
represent the initial and‘name

adjusted distributions, respectively. The two intermeslia fos | ™ coucetorgennes e
rows represent the required adjustments. Captops | Model | MR e el oomepofe
First, adding one feature to all products implies shiftifgt d | souoeszr] | aesdenderiasco] | || “e0] 00 00
one position to the right (O1). As there af) = 2 2211)! = | soszo | ™) veibeory R s
2 different combinations of one feature, two shitted vectofgSE™ | o] [psibor S el el B
should be added (02). As a result, 0,4] becomes[0,1 - | 7o | ““™ Fﬁj&ﬁ%rg/ O]t eeR] o) M
(?) ? 0- (?) ’ 4- @)] — [07 2’ 07 8] glzﬂomollve ;ié:jtglre 28 17,365 | 321,933 30,432 | 1m 54.321s| 1Im 2.922s
Second, there is only one possibilifg) = 1 to add two
features to all products. S@l, 0, 4] becomes0, 0, 1,0, 4]. TABLE V: VM benchmark

Finally, all distributions are combined by adding them (02
[1,0,4] +10,2,0,8] +[0,0,1,0,4] = [1,2,5,8, 4].
Lines 5-9 and 11-15 of Algorithm PD adjust the low and

0.475 < p < 0.525

high distributions of the non-terminal nodes to account for 5 s = = 2 -~ 3
. . . 3 £ 3 Il \ Il Il Al

the removed nodes. Then, Lines 16-23 combine both adjusted 2 z 3 s| = a| = a O
H H H TLS 25.46 10.46 3 46 0 9.38 6.25 | 37.50 0 3.12
distributions. el 750 | 2.4 | 21 0 [47.46 0| 254 | 085 | 085
Fiasco 24.84 9.70 4 44 31.20 | 46.40 15.20 | 24.80 0 1.60

. 3 uClibc 106.49 46.13 8 200 2.61 | 23.86 25.49 | 35.29 0 2.94

D. Computat|0na| Comp|ex|ty Busybox 324.44 | 149.05 5 635 295 | 355 (] 3781 5391 || 0.44 | 3.0
EmbToolkit 741.49 | 330.91 19 1,398 6.23 11.9 25.73 | 38.95 1.21 5.29

BOth A|g0rltth FlP and PD traverse the Wh0|e BDD, andAummmive 4,048.48 778.7 2,562 | 5,472 0.03 | 57.31 13.92 | 18.66 9.71 | 10.39
thus their complexity depends linearly on the numbBérof
BDD nodes. Visiting each node requires (i) one loop on t
numberV of variables for FIP, and (ii) two nested loops o
the variables for PD. As a result, the time complexities are
O(NV) andO(NV?) for FIP and PD, respectively.

TABLE VI: Descriptive statistics for product distributipand
ercentage of dead, core, and unconstrained optionalrésatu

number of features, and Figuké 9 visualizes that distri-

IV. EXPERIMENTAL ANALYSIS OF VM S bution. o _
_ _ . « The features’ viewFigure 10 shows the feature probabil-
This section reports the analysis of seven VMs gathered ity distribution, and colored columns in TadlelVI detail

from open source projects and academic repositories with the number of features in the zongsad unconstrained
the aim of illustrating the usefulness and generality of our gptional andcore
approach. All the material described in this section (impe- The product distribution graphs (Figl 9) and feature prob-

tation of the FIP and PD algorithms, VM benchmark, BDD- , ... o) .
. ’ .~ ability distribution graphs (Figi_10) (respectively Tal}i#)
Z?fﬁ:'?oﬁllgjvit:e Vul\gﬁé:?gdorseifgrlts' of the analysis) is aVaelabﬂighlight the existence of two rough VM groups. In the first
httos-// ithugcpom/rher;)dioNl\%StatAnal group, axTLS, uClibc, Busybox, and EmbToolkit represent
bs-1g ’ families of loosely constraint products. Valid productsyma
A. Experimental setup range from consisting of only a few features (as low as three
features for axTLS), to close to all features (e.g., over %%

; i N & features in the case of Busybox). Hence, also the feature
the library CUDD 3.0 for BDDs (https://github.com/vscasta qhapility distribution graphs for these models show more

cudd). The benchmark is composed of VMs coming from ditya¢res in the range.475 < p < 0.525 compared to the
fgrent appllpatlon dor_‘nalns and specified in dlst|r_1ct lammpsa rangep < 0.05. In contrast, the second group consisting
(i) axTL$ Fiascq uClibc, BusyboxandEmbToolkitare open o pej Laptops, Fiasco, and Automotive, represents SPLs

source projects to enable the creation of highly custontzaby i, rather restricted products. Valid products may comtai
products, whose variability models are written in KConfid; (ot 3 maximum 18%, 35%, and 32%, respectively, of available
the Dell feature model specifies a laptop configurator reversge res compared to the first group with 72%, 65%, 94%,

engineered from the DELL homepage; and (AJtomotiveils 54 7704 respectively. SPLs in the second group also tend to
a feature model coming from the automotive industry. Tablg, e ith highly rare features. Between 46% and 57% of all
VI summarizes (i) the models, (ii) the size of the BDDs thgbatres have a reusing probability less or equal than G\05.
encode them, (iii) and our algorithms’ running times on ageailed list of all feature probabilities for every VM ineth
HP ProLiant DL360 G9 with an Intel Xeon E5-2660v3. ponchmark is published at our repository. This list will el
B. R domain engineers to polish their VMs, especially for Fiasco
. Results . g .
which has a surprisingly high percentage of dead features:
Our approach enables reasoning on VMs under two p&Jt 29. For Dell Laptops and due to the sensitivity augment
spectives: that our FIP algorithm provides, some low reusable features
« The products’ viewTable[V] provides descriptive statis-are discovered where current approaches do not detect any
tics for the VMs' product distribution regarding theirproblem at all: although there are no dead features, 17.8% of

Our algorithms have been implemented as an extension

https://github.com/rheradio/VMStatAnal
https://github.com/vscosta/cudd
https://github.com/vscosta/cudd
http://axtls.sourceforge.net/
http://axtls.sourceforge.net/
https://os.inf.tu-dresden.de/fiasco/
https://os.inf.tu-dresden.de/fiasco/
https://www.uclibc.org/
https://www.uclibc.org/
https://busybox.net/
https://busybox.net/
https://www.embtoolkit.org/
https://www.embtoolkit.org/

, . .
Dell's features are allowed in at most 0.001% of the vali axTLs1.5.3
duct 8 - -
products. 230 ES
© 20-]
()]
y 10- |I " _—
axTLS 1.5.3 S 0- — 8 . = - -
- S EL L P PHLPSHPPEELERLS LS P
» 0.03 - ©Q O O O O O O O O O O O O O O O O o o o]
”g % 0.02- Feature probability of being included in a valid product
T C
Eg 0.01- Dell Laptops
000- v v v 0 ‘ . 8 30-
° ® ® S ® & & 3 20-
©
#Features ® 10-
Dell Laptops & o-
S EI P L PR PPREESLERNALSLSSPS
“» i) Q O O O O O O O O O O O o o o o O o o »
S «% 0.10- Feature probability of being included in a valid product
T C
0.05- .
£3 Fiasco 2014092821
0.00- v v - : . v v v : : v D 40- —
[|
© N P S ® S S R & S & ° 5 30- |——]
® 20- ==
#Features 2 Go- j =
i ® o- e B s
Fiasco 2014092821 SE L E P F SR P S LS E N FTE S S
w - 0.03- ©Q © O O O O O O O O O O 9O 9O O O O o o o ~
‘g £ 0.02- Feature probability of being included in a valid product
T C
() o)
E'c 0.01 uClibc 20150420
000- v v v ; : : v v v v ; : 2 30-
SR R S P e e eSS S 2 20-
©
#Features 2 10-
2 0 FLI=T B _
. S
uClibc 20150420 S PP S be s e sEN LS ESES
» 0.006- © O O O O O O O O O O O O O O O O O o o N
‘g ‘%‘ 0.004- Feature probability of being included in a valid product
T C :
(5]
2§ oo02- Busybox 1.23.2
0.000- v v ; v v v : " : v . : 2
©
#Features 9 20
X o- | a
) T] T O T T O 0 L T T T T O 0 T 0 T 0
Busybox 1.23.2 SELL e S b Lo ESEL LS ES S S
“» 0.0020 - ©Q O 9O 9O O O O O O O O 9O 9O 9O O O O O O o Lo
‘g % 0.0015- Feature probability of being included in a valid product
S £ 0.0010-
23 0.0005- EmbToolkit 1.7.0
a
e A A R 8 30-
#Features 2 10- i
. X 0- _— [l _ =
S
so0r0o- P ToOIKit 1.7.0 SE S E I H SR P S L S ENLFT PSS
y , O ST ITI I T ITIILLLELTLFSTEFIT IS
ST o Feature probability of being included in a valid product
3 0.00050-
o i .
23 000025 Automotive 02
000000 S R e e @
(S S) S S S S S]) S S S S S S S S S © 40-
FTSTFERSFFSFFFSESE 3
#Features 8 %" 1
. X - a
Automotive 02 e
S Xl S J S o S xe) S o S ae S o QS o S ned S Lo S
o ge'gj' NERNERNERNY Q{y & &I Ny N é’ NERNS S é\ NSRS Qq" N
_% S e04] Feature probability of being included in a valid product
E% 1e-04-
0e+00- B e ! L . i
S 5 5 6 6 5 b 5 b5 LSS LSS Fig. 10: Feature probability distribution
ST SIS FFTSFSESEIEISFSESFSSS
DR SN U I
#Features

Fig. 9: Product distribution . o .
b visualization of large graph VM representations: apply&iy

techniques to visualize the graphs in the space insteadeof th
plane [31], supporting zooming on different graph aréag, [32

The seminal work by Kang et al][7] established what he{gcusing the visualization on a selected featliré [33], deco

been the mainstream for visually representing VMs from 19499 the graphs [34], etc. Our work complements existing

to nowadays: graphs whose nodes depict features, and whi ?@amh by introducing an alternative way to look at VMs

edges represent inter-feature constraints. The most popﬁ rough statistics, supporting thus the use of centrajmgad

o . : easures, plots, etc.
notation is feature modeling|[5], which puts the emphas@ . . .
on those constraints that enable arranging the featurearhie Sectiond V-A and VB discuss related work that aims to

chically as a tree[[3]. There are also other graph notatior?és'St domain and application engineering, respectively.
e.g., decision diagram$_[29], the OVM languagel [30], etc.
Nevertheless, the differences among notations are mindr,
s0 most approaches can be considered equivalent [4]. A literature review by Benavides et al.][6] reports thirty
As in practice variability models can include thousands @halysis operations on VMs, most of them oriented to domain
features [[2B], some efforts have been made to clarify tlemgineering. This paper supports augmenting the semgitfi

V. RELATED WORK

. Domain engineer’s assistance

some of those operations. For instance, a feature is typicabbtained from the VM, but also the ones based on historical
considered dead if it cannot appear in any product at all. THata. In the latter case, our algorithms can be used to overco
main reason why most approaches stick to this definition fure limitations of reasoning exclusively on the basis of a
detecting dispensable features is due to the current limits. single product sample by applying Bayesian inferernce [39]
of the technology they are built upon, as they detect whetheto combine both therior probabilities coming from the VM
featuref in a VM @ is dead by checking with a SAT solver if with the posterior probabilities coming from historical data.

f A® is unsatisfiable [28]. In contrast, our algorithms support
a more flexible definition, detecting features with an exteim
low probability of being selected.

Beek et al. [[15], [[35], [[36] point out the convenience of
providing the domain engineer with information about thﬁ,
product distribution regarding distinct quantitativeribiites
(e.g., number of features, product cost, failure probihili
etc.). Their approach requires (i) that the domain engisety
manually the feature probabilities, or (ii) that the featprob-
abilities are derived from historical data. Then, the pidilis-

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the algorithmic foundation for analyzing VMs
om an innovative perspective has been presented, where th
features’ and products’ variation is visualized and démsati
using statistics. We have justified why this approach benefit
both, the domain and the application engineer, exemplifyin
such benefits on real models gathered from open source

oo i : . projects and academic repositories. We have shown that our
tribution is estimated by generating multiple samples ulgio

) . , approach not only enables new ways to reason about VMs, but
a simulation process. Compared to Beek et al.'s method, oaLrgp

d ides th t product distribution instfaah o supports the improvement of current VM-related meshod
procedure provides th€ exact product distribution ins increasing the sensitivity of existing analysis operagi@m
approximation. Nevertheless, Algorithm PD currently sone

o . VMs, and providing exact computations for approaches that
only one quantitative attribute, the number of featureg a'aurrently work with approximations

could be extended to consider domain specific properties. . .
P prop We believe that our work opens a range of additional

B. Application engineer’s assistance opportunities for future research. Applied to other pradime
ﬂ{‘ated activities, such as testing, our work enables dhgck

There are several approaches to guide the applicatir .
engineer through product configuration. Some of them W ether current methods for SPL testing are able to generate

built upon historical data about previous configurations: goUltes Covering the whole product distribution range, anct

instance, Pereira et al. [12], [14] proposes a recommen(?é{P'd missing any rare boundary cases. Also, our approach

system that limits the engineer’s decision space towards cnay be_of assistance during maintenance of projects folhigh
figurations included in historical data. In addition, Magk customizable software; e.g., we have reported that the VIMs o

et al. [37] provide the engineer with feedback on the impaﬁ r;e (rje]levant Op?l_?] source profjer(]:ts have lan a]!armlng amoctjmt
of her decisions by estimating the feature probabilitiesrfr ofdead features. The causes of those useless featuresmeed |

historical data. These approaches have several shortgemirYeStigaﬁon' A longitudinal study would provide insightsder

first, the historical data may not be a representative saopreWh'Ch circumstances these projects exhibit these p roblans
hether they are corrected or stay in the successive varsion

the product population, especially if the sample size isllkm _) .
and its variance is high; and most important, feature selgct the VM?' Finally, our algorithms r,ely_onlthe BDD encodlng_ of
VMs. It is well-known that a BDD’s size is extremely sensitiv

cannot be strictly constrained to a sample. For example, if a. X . - . .
y P P gits variable ordering, and that finding an optimal ordgiim

non-dead feature is not included in any configuration of . DA
historical data, then the system could conclude errongi‘ouglln NP-complete problem. Therefore, our approach’s sdajabi

that the engineer should never select such feature. greatly depends on the performance of existing heuristics

Other approaches, instead of relying on previous configwfg-r variable ordering. Hence, future research might look fo

tions, work directly with the VM. For example, Czarnecki egdapting our algorithms to othgr alternative logic tecbgas
al. [9] suggest the application of tlemtropymeasure to guide that also s.upport.modellcountmg, SUCh#BAT solver¢40]
the VM configuration process, which is calculated from th@' Sentential Decision Diagram@DDs) [41].

feature probabilities. In addition, Nohrer et al. [10]1[Ipro-

pose another heuristic also based on the feature proledilit ACKNOWLEDGMENT

However, none of those works scale to large VMs.

Fernandez-Amoros et al. [38] provide an algorithm to com- We thank Armin Biere and Tom van Dijk for their insight
pute the feature probabilities from a feature model. Howevand helpful comments about the strengths and weaknesses of
the algorithm is specific for feature models and it does nBDDs, and other logic related technologies in the earl@gss
scale when many constraints cross the tree structure of tifethis work, which has been supported by (i) the Spanish
feature model. Ministry of Education and Vocational Training under the

To the extent of our knowledge, Algorithm FIP is the mosprojects with reference DPI2016-77677-P and CAS17/00022,
scalable and general approach to compute the feature prafiathe Austrian Science Fund (FWF): P29415-NBL funded by
bilities from a VM. This way, our work not only supports thehe Government of Upper Austria; and (iii) the FFG, Contract
configuration heuristics that rely on the feature probtesi No. 854184.

(1]

(2]

(3]

(4

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES [22]

R. Heradio, H. Perez-Morago, D. Fernandez-Amoros, FCabrerizo, [23]
and E. Herrera-Viedma, “A bibliometric analysis of 20 yearfsre-
search on software product linesjformation and Software Technolagy
vol. 72, pp. 1 — 15, 2016.

W. Cazzola and A. Shagqiri, “Context-aware software ahility through
adaptable interpreters,JEEE Software vol. 34, no. 6, pp. 83-88,
November 2017.

P. Heymans, P. . Schobbens, J. . Trigaux, Y. Bontemps, Rulevi-
cius, and A. Classen, “Evaluating formal properties of deatdiagram
languages,1ET Software vol. 2, no. 3, pp. 281-302, June 2008.

K. Czarnecki, P. Grinbacher, R. Rabiser, K. Schmid, AndlVasowski,
“Cool features and tough decisions: a comparison of vditialbnodeling
approaches,” iréth Int. Workshop on Variability Modelling of Software-
Intensive Systems (VaMo%kipzig, Germany, 2012, pp. 173-182.

R. E. Lopez-Herrejon, S. lllescas, and A. Egyed, “A sysadic mapping
study of information visualization for software productdiengineering,”
Journal of software: evolution and processl. 30, no. 2, pp. 1-18,
2018.

D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automiadealysis of
feature models 20 years later: A literature revielmformation Systems
vol. 35, no. 6, pp. 615 — 636, 2010.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Pe-
terson, “Feature-Oriented Domain Analysis (FODA) FedigjbStudy,” [30]
Carnegie Mellon University/Software Engineering Ind@tuTech. Rep.
CMU/SEI-90-TR-21, November 1990.

K. Czarnecki and U. EiseneckeGenerative Programming: Methods, [31]
Tools, and Applications Addison-Wesley Professional, 2000.

K. Czarnecki, S. She, and A. Wasowski, “Sample spaces faatlire
models: There and back again,” it2th Int. Software Product Line
Conference (SPLCLimerick, Ireland, Sept 2008, pp. 22-31. 32]
A. Nohrer and A. Egyed, “Optimizing user guidance dgridecision-
making,” in 15th Int. Software Product Line Conference (SPLEIu-
nich, Germany, Aug 2011, pp. 25-34.

A. Nohrer and A. Egyed, “C20 configurator: a tool for ded decision-
making,” Automated Software Engineeringpl. 20, no. 2, pp. 265-296,
Jun 2013.

J. A. Pereira, P. Matuszyk, S. Krieter, M. Spiliopouland G. Saake,
“A feature-based personalized recommender system foruptdhe [34]
configuration,” inACM SIGPLAN Int. Conference on Generative Pro-
gramming: Concepts and Experiences (GPCHgw York, NY, USA,
2016, pp. 120-131.

R. Heradio, D. Fernandez-Amoros, J. A. Cerrada, and Badh “A
literature review on feature diagram product counting atsduisage
in software product line economic modeldriternational Journal of
Software Engineering and Knowledge Engineeriugl. 23, no. 8, pp.
1177-1204, 2013.

J. A. Pereira, J. Martinez, H. K. Gurudu, S. Krieter, aBd Saake,
“Visual guidance for product line configuration using regoendations
and non-functional properties,” i83rd Annual ACM Symposium on [37]
Applied Computing (SACNew York, NY, USA, 2018, pp. 2058-2065.
M. H. ter Beek, A. Legay, A. Lluch-Lafuente, and A. Vandi‘Quan-
titative analysis of probabilistic models of software potlines with
statistical model checking,” ith Workshop on Formal Methods and
Analysis in SPL Engineering (FMSPLE@ETAPB)ndon, UK, Apr.
2015, pp. 56-70.

D. S. Batory, “Feature Models, Grammars, and Propwsiti Formulas,”
in 9th Software Product Lines Conference (SPLRZnnes, France, Sep.
2005, pp. 7-20.

T. Berger and S. She, “Formal Semantics of the CDL Laggyia
University of Leipzig, Tech. Rep., 2010. [40]
R. Tartler, “Mastering Variability Challenges in Liruand Related
Highly-Configurable System Software,” Ph.D. dissertatiémiedrich-
Alexander-Universitat Erlangen-Nurnberg, 2013.

S. She and T. Berger, “Formal semantics of the kconfigyuage,”
University of Waterloo, Tech. Rep., 2010.

R. E. Bryant, “Graph-based algorithms for boolean fiorc manipula-
tion,” IEEE Transactions on Computergol. C-35, no. 8, pp. 677-691,
Aug 1986.

T. van Dijk and J. van de Pol, “Sylvan: multi-core franww for deci-
sion diagrams,international Journal on Software Tools for Technology
Transfer vol. 19, no. 6, pp. 675-696, Nov 2017.

[24]

[25]

[26]
[27]

(28]

[29]

(33]

(35]

[36]

(38]

[39]

[41]

S. Apel, D. Batory, and C. Kastndfeature-Oriented Software Product
Lines: Concepts and ImplementationSpringer, 2013.

T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czakie® study
of variability models and languages in the systems softvaan@ain,”
IEEE Transactions on Software Engineeringl. 39, no. 12, pp. 1611—
1640, Dec 2013.

P. C. Clements, J. D. McGregor, and S. G. Cohen, “Thec8trad
Intuitive Model for Product Line Economics (SIMPLE),” Camgie
Mellon University/Software Engineering Institute, Teétep. CMU/SEI-
2005-TR-003, 2005.

H. Perez-Morago, R. Heradio, D. Fernandez-Amoros, RarB and
C. Cerrada, “Efficient identification of core and dead feasuin vari-
ability models,”IEEE Accessvol. 3, pp. 2333-2340, 2015.

C. Meinel and T. TheobaldAlgorithms and Data Structures in VLSI
Design: OBDD - Foundations and ApplicatiansSpringer, 1998.

M. Huth and M. Ryan,Logic in Computer Science: Modelling and
Reasoning about SystemsCambridge University Press, 2004.

S. Krieter, T. Thim, S. Schulze, R. Schroter, and Gk8a“Propagating
configuration decisions with modal implication graphs,” 40th Int.
Conference on Software Engineering (ICSBE)ew York, NY, USA,
2018, pp. 898-909.

K. Schmid, R. Rabiser, and P. Grinbacher, “A comparieb decision
modeling approaches in product lines,” 3th Workshop on Variability
Modeling of Software-Intensive Systems (VaMbd@w York, NY, USA,
2011, pp. 119-126.

K. Pohl, F. V. D. Linden, and G. BockleSoftware Product Line
Engineering: Foundations, Principles, and Techniqu&pringer, Ed.
Springer, 2005.

P. Trinidad, A. R. Cortés, D. Benavides, and S. Segufidjree-
dimensional feature diagrams visualization,"1igth Int. Software Prod-
uct Lines Conference (SPLClimerick, Ireland, Sep. 2008, pp. 295—
302.

M. Stengel, M. Frisch, S. Apel, J. Feigenspan, C. Kastrand
R. Dachselt, “View infinity: a zoomable interface for featoriented
software development,” iB3rd International Conference on Software
Engineering (ICSE)Honolulu, HI, USA, May 2011, pp. 1031-1033.
M. Garba, A. Noureddine, and R. Bashroush, “Musa: A aoial multi-
touch and multi-perspective variability management tanl 13th Work-
ing IEEE/IFIP Conference on Software Architecture (WICS¥gnice,
Italy, April 2016, pp. 299-302.

S. Urli, A. Bergel, M. Blay-Fornarino, P. Collet, and lBosser, “A visual
support for decomposing complex feature models/ERE 3rd Working
Conference on Software Visualization (VISSQFB)emen, Germany,
Sept 2015, pp. 76-85.

M. H. ter Beek, A. Legay, A. Lluch-Lafuente, and A. VandfiStatistical
model checking for product lines,” ifth Int. Symposium on Leveraging
Applications of Formal Methods, Verification and ValidatiglSoLA)
Corfu, Greece, Oct. 2016, pp. 114-133.

M. T. Beek, A. Legay, A. L. Lafuente, and A. Vandin, “A freework for
quantitative modeling and analysis of highly (re)confidileasystems,”
IEEE Transactions on Software Engineering (Early Access), 2018.
J. Martinez, T. Ziadi, R. Mazo, T. F. Bissyandé, J. Kleand Y. L.
Traon, “Feature relations graphs: A visualisation panadigr feature
constraints in software product lines,” 2nd IEEE Working Conference
on Software Visualization (VISSOFNictoria, BC, Canada, Sept 2014,
pp. 50-59.

D. Fernandez-Amoros, R. Heradio, J. A. Cerrada, and €rrada,
“A scalable approach to exact model and commonality cognfor
extended feature modeldEEE Transactions on Software Engineering
vol. 40, no. 9, pp. 895-910, Sept 2014.

J. K. KruschkeDoing Bayesian Data Analysis, 2nd Edition: a Tutorial
with R, JAGS, and Stan Academic Press/Elsevier, 2015.

C. P. Gomes, A. Sabharwal, and B. Selmiiandbook of Satisfiability
10S Press, 2009, ch. Model Counting, pp. 633-654.

A. Darwiche, “SDD: A New Canonical Representation obpwsitional
Knowledge Bases,” ir22nd Int. Joint Conference on Atrtificial Intelli-
gence (1JCAI) 2011, pp. 819-826.

https://www.researchgate.net/publication/333488782

	Introduction
	Motivating the statistical analysis of variability models
	Domain engineer's support
	How complex are the products?
	How complex is the product line?
	Should the SPL be refactored to simplify its maintenance?

	Application engineer's support
	The remaining features
	The product under configuration

	Computing feature and product distributions
	Preliminaries
	Boolean representation of variability models
	Binary decision diagrams

	Computing feature probabilities
	Computing node probabilities
	Computing joint probabilities

	Computing product distribution
	Including new features into all products is achieved by shifting the dist vector to the right (O1)
	Combining dist vectors is accomplished by adding them (O2)
	Removed nodes require taking into account both observations O1 and O2, and blending them by means of combinatorial numbers (O3)

	Computational complexity

	Experimental analysis of VMs
	Experimental setup
	Results

	Related work
	Domain engineer's assistance
	Application engineer's assistance

	Conclusions and future work
	References

