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• A sample of 5,389 articles is examined to study the literature published on off-line handwritten docu-

ment analysis for the last thirty years.

• Two techniques are applied: performance analysis and science mapping techniques.

• The examination reveals:

– The highest influential articles.

– The most productive authors and their collaboration networks.

– Which countries and institutions are leading research.

– The journals and conferences that have published most papers.

– The most relevant research topics and their evolution.

2Corresponding author: victoria.ruiz.parrado@urjc.es



A Bibliometric Analysis of Off-line Handwritten Document Analysis
Literature (1990 - 2020)

Victoria Ruiz-Parrado1a, Ruben Heradiob, Ernesto Aranda-Escolasticob, Ángel Sáncheza, José F. Véleza
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Abstract

Providing computers with the ability to process handwriting is both important and challenging, since many

difficulties (e.g., different writing styles, alphabets, languages, etc.) need to be overcome for addressing

a variety of problems (text recognition, signature verification, writer identification, word spotting, etc.).

This paper reviews the growing literature on off-line handwritten document analysis over the last thirty

years. A sample of 5,389 articles is examined using bibliometric techniques. Using bibliometric techniques,

this paper identifies (i) the most influential articles in the area, (ii) the most productive authors and their

collaboration networks, (iii) the countries and institutions that have led research on the topic, (iv) the

journals and conferences that have published most papers, and (v) the most relevant research topics (and

their related tasks and methodologies) and their evolution over the years.

Keywords: Automatic document analysis, Off-line handwriting recognition, Writer identification,

Signature verification, Bibliometrics, Science mapping

1. Introduction

Document image analysis deals with the automated extraction of information [1] from documents. It has

important applications in numerous domains. According to their data source, document analysis systems

are typically classified into on-line, where data are collected dynamically during the writing through some

device (e.g., a tablet), and off-line, where data are gathered statically from document page images after a

scanning process [2]. Besides, documents may include printed, handwritten and graphical elements.

This paper reviews the research literature on a type of document analysis called off-line handwritten,

which is particularly challenging because it works with data that do not contain any dynamic information

that usually helps on-line systems to process information [3] (e.g., writing velocity, pen liftings and pauses,
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writing pressure changes, sequence ordering of strokes, etc.). Also, handwritten text has much more vari-

ability than the printed one [4]; there is interpersonal variability because the same person’s writing often

accommodates different situations, and interpersonal variability due to the writing styles of people.

Our review encompasses, among others, the following off-line handwritten topics: Handwritten Text

Recognition (HTR), Signature Verification (SV), Writer Identification (WI), Word Spotting (WS), Infor-

mation Retrieval (IR), and Script Identification (SI). HTR [2] deals with the transcription of a handwritten

input (paper documents, photos, etc.) into its symbolic representation. This problem often it is focused on

Handwritten Characters Recognition (HCR), Handwritten Numeral Recognition (HNR), Handwritten Word

Recognition (HWR), and/or Handwritten Sentence/text line Recognition (HSR). SV [5] decides whether a

signature is genuine or a forgery. WI [6] tries to find the authorship of the document from a known list of

authors. In this case, the authentication process is made by analyzing handwritten text. WS [7] creates

keywords to index documents in repositories, while IR [8] looks for a specific element (e.g., keywords) as a

result of a query in a repository search. Finally, SI [9] determines the alphabet(s) in which a text is written.

Since 1990, much research has been published on off-line handwritten document analysis. To assist

practitioners and researchers in finding the most prominent articles, authors, research trends, and near-future

challenges, this paper examines a total of 5,389 articles published from 1990 to December 2020. For such

purpose, two bibliometric techniques were used: performance analysis and science mapping. Performance

analysis [10] measures impact by counting citations; it can be applied to estimate the performance of authors,

institutions, articles, journals, etc. Science mapping [11] identifies the most researched topics, related tasks

and methodologies, measuring their influence over time using graph theory and clustering algorithms. In

particular, this paper answers the following research questions:

1. What articles are the most influential?

2. Which authors and institutions have relevant research on off-line handwritten document analysis?

3. Which journals and conferences have published the largest number of articles?

4. Which problems have been the most studied on off-line handwritten document analysis?

5. What techniques have been used to face those problems?

6. How has the interest in the main research topics evolved over the years? Where will research be

focused on the short-term future?

The rest of this paper is organized as follows. Section 2 summarizes related work. Section 3 describes

the methodology we have followed for our bibliometric analysis. Section 4 reports and discusses the achieved

results. Finally, some concluding remarks are provided in Section 5.
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2. Related work

As far as we know, this paper is the first attempt to provide a global bibliometric overview of off-line

handwritten document analysis. No previous work has considered so many articles, nor has approached

the study using bibliometric techniques. This section summarizes other review articles that targeted more

specific scopes.

First, we should highlight the classic reviews published by Mori et al. [12], Plamondon and Srihari [2],

Arica and Yarman-Vural [13], Vinciarelli [14], Koerich et al. [15], Bunke [16], and Rehman and Saba [17].

Document analysis systems are often structured in five stages: pre-processing, segmentation, feature

extraction, modeling, and post-processing [2]. Several reviews are specifically focused on some of these

stages. For example, [18] covers literature on pre-processing,[19] on segmentation, [20] on feature extraction,

and [21] modeling techniques.

WI is a very close problem to handwriting recognition, and some articles review both [2]. Others are

focused on WI and writer verification [22].

In SV, some influential reviews are Plamondon and Lorette [23] and Impedovo and Pirlo [24].

WS and IR have been reviewed by Giotis et al. [25] and Doermann et al. [8], respectively.

Several studies are script-specific, such as Arabic [26], Indian [27], and Chinese [28]. As SI is also an

important task in multi-language systems, some authors have reviewed this particular problem [9].

3. Materials and Methods

This section explains how bibliographic data was retrieved and processed. Moreover, it describes the two

bibliometric techniques used in this paper: performance analysis and science mapping.

3.1. Bibliometric workflow

To perform our analysis systematically, we followed the workflow recommended by Cobo et al. [29],

PRISMA [30], and Börner et al. [31], which is structured in three phases:

1. Data retrieval. As pointed by Wohlin et al. [32], gathering the whole population of articles that fall into

the scope of a bibliometric analysis is unrealistic. Consequently, we sought the more pragmatic goal of

getting an unbiased publication sample representing the population satisfactorily.

Several studies [33, 34] have shown that Clarivate Analytics-Web of Science (WoS) and Elsevier Scopus

provide the highest-quality bibliographic data for longitudinal analyses. Hence, we checked the WoS

and Scopus coverture for our analysis scope, finding that Scopus roughly provides a superset of the
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bibliographic records given by WoS, including some more documents published in conference proceedings.

It is worth noting that citation counts vary considerably among databases, so mixing records from different

databases produces inconsistent counts [35, 34]. Therefore, we decided to use Scopus as the only data

source for our sample.

A database query was refined iteratively until a convenient balance between completeness and absence of

false positives was accomplished. Figure 1 shows the final query. Line 2 looks for documents whose title

includes handwriting documents (hand-writ*, handwrit*, etc. ). The truncation symbol * captures all

possible endings a word may have (e.g., handwrit* means any word that starts with handwrit). Lines 3

and 4 look for problems related to them (recognition or verification or spotting or identification

or analysis or segmentation). Line 5 filters false positives. Lines 7 and 8 limit the subject area to

computer science ("COMP"), engineering ("ENGI"), and mathematics ("MATH").

The query was executed on Scopus on 19 December 2020. After filtering articles published between 1990

and 2020, 5,389 records articles focused on off-line handwriting were achieved.

1 TITLE(
2 (hand-writ* OR handwrit* OR hand-print* OR handprint*)
3 AND (recognition OR verification OR spotting OR identification OR
4 analysis OR segmentation)
5 AND NOT( (on-line OR online) AND NOT(off-line OR offline) )
6 ) AND (
7 LIMIT-TO(SUBJAREA, "COMP") OR LIMIT-TO(SUBJAREA, "ENGI") OR
8 LIMIT-TO(SUBJAREA, "MATH")
9 )

Figure 1: Query used to retrieve from Elsevier Scopus the publication sample this article analyzes.

2. Data cleaning and standardization. Bibliographic data sometimes involves typographical errors and am-

biguities that need to be corrected [29, 36, 11]. For instance, in our sample, “Á. Sánchez”, “A. Sanchez”,

and “A. Sánchez” are slightly different versions of the same author’s name. Moreover, as we will see in

Section 3.3, our analysis is built upon a bibliometric technique that processes keywords. Unfortunately,

neither most journals/conferences impose a set of standardized keywords, nor there is a thesaurus specific

for “off-line handwritten document analysis”. Accordingly, keywords were manually standardized. For

example, in the context of our study, the following keywords: “NN”, “Neural network classifier”, “ANN”,

etc. correspond to the same concept, and thus they were grouped as “NN”. It is true that grouping

keywords by hand needs a thorough knowledge of the research area under analysis. To mitigate this sub-

jectivity, keyword normalization was undertaken consensually. A public repository accompanying this

paper provides all the details of our analysis (see Section 3.4). In particular, the repository reports the

standardization of the author names and keywords exhaustively.
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To perform the longitudinal analysis of the research area, the paper sample was divided into six sub-

periods of approximately five years each: 1990-1994, 1995-1999, 2000-2004, 2005-2009, 2010-2014, and

2015-2020, respectively. Moreover, 1,726 documents did not include any keyword at all, and thus they

were discarded for this analysis.

3. Data analysis. Using well-established bibliometric procedures, performance analysis and science mapping

[37], the standardized data are analyzed.

3.2. Performance analysis

Research performance is typically measured through citation analysis [10], being the h-index the most

commonly accepted citation analysis indicator [38]. This index can quantify the productivity of various

bibliographic aspects: authors, journals, research areas, etc. For instance, the h-index of a research area is

defined as follows [39]: A research area has index h whenever h of the n papers framed into the area have

at least h citations each, and the remaining n− h papers have less than or equal to h citations each.

3.3. Science mapping

The following sections explain the methods we used to identify the key research topics, tasks and method-

ologies, and their evolving relevancy over time. These methods analyze the standardized keywords of all

papers in the sample and are supported by the open-source software SciMAT2 [29].

3.3.1. Thematic network identification

The essential topics, tasks and methodologies, of a research area can be identified by building a co-

occurrence graph, whose nodes refer to keywords, and whose edges are referred to equivalence index values

[40]. The equivalence index between two keywords a and b is eab = c2
ab/cacb, where ci is the number of

documents that include the keyword i, and cab is the number of documents that contain both a and b.

The range of eab goes from zero, when there is no document including both a and b, to one, when a and b

co-occur in all documents.

Then, the most relevant topics, tasks and methodologies arise as clusters, known as Thematic Networks

(TNs), of highly tied keywords according to their equivalence index (i.e., TNs are groups of standardized

keywords that frequently appear together in the papers). In particular, we identify the clusters with the

simple centers’ algorithm [40], which has been applied successfully to numerous bibliometric analyses, e.g.,

[29, 41, 36].

2https://sci2s.ugr.es/scimat/
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Figure 2: TN roles according to the strategic diagram quadrants.

3.3.2. Strategic diagrams and maps of conceptual evolution

The development of a research area can be examined by performing a longitudinal analysis as follows.

First, the document sample is divided into periods, and the TNs for those periods are identified. Then, the

role each network plays in a period is determined by Callon’s centrality and density measures [40], which

are based on the equivalence index. Specifically, on one hand centrality calculates the degree of interaction

of a theme with the rest of them as 10 ·
∑

a∈network,b/∈network eab. On the other hand density quantifies the

network internal coherence as 100
#network ·

∑
a,b∈network eab.

Strategic diagrams [29] are helpful for visualizing network roles by placing the themes according to their

normalized centrality and density. These normalized versions are obtained as rank(ct)/n and rank(dt)/n,

where rank(ct) and rank(dt) are the positions of the theme t in the centrality and density rankings sorted

in ascending order, respectively; rank(ct) and rank(dt) are then divided by the total number of themes n

to normalize their values into the interval [0, 1]. Figure 2 shows the roles a TN may play according to

the quadrant where it is placed in the strategic diagram. The theme movement across the quadrants over

successive periods of years can be used to recognize the emergence and growth of research lines, and to

forecast their short-term evolution [42].

Also, the comparison of each period keywords can reveal whether the number of researched topics, tasks

and methodologies, increases (i.e., new words are incorporated), decreases (old words become obsolete),

or remains stable. Following Sternitzke and Bergmann [43] recommendations, we use the inclusion index

to track the evolution between two consecutive periods with keyword sets K and L: inclusion indexKL =

#(K∩L)
min(#K,#L) .
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3.4. Material

Following Open Science good practices, this paper material is publicly available at: https://github.com/

rheradio/offline-handwritten-doc-analysis

In particular, our repository provides:

1. The raw paper sample gathered from Scopus that this article analyzes.

2. The keywords’ normalization.

3. The author names’ standardization.

4. The SciMAT database we built to perform the bibliometric analysis.

5. A website reporting the results of our science mapping analysis exhaustively.

4. Results and discussion

This section outlines the most relevant results of our analysis. For a complete report, please check the

repository linked in Section 3.4.

4.1. Most influential papers

This subsection identifies the most relevant papers for the whole period 1999-2020. To do so, we use

the citation classic concept, which was coined by Garfield [44] to refer to the most impacting papers of a

research area according to their number of citations.

Table 1: Citation classics (the h-index is 93).

Paper Journal/Conf. #Cit Topic

Plamondon and Srihari [2]. On-line and off-line handwriting recognition: A comprehen-

sive survey (2000)

IEEE T Pattern Anal 1,749 HTR, SV,

Survey

Xu et al. [45]. Methods of combining multiple classifiers and their applications to hand-

writing recognition (1992)

IEEE T Syst Man

Cyb

1,655 HNR

Hull [46]. A database for handwritten text recognition research (1994) IEEE T Pattern Anal 1,029 HTR,

Database

Graves et al. [4]. A novel connectionist system for unconstrained handwriting recognition

(2009)

IEEE T Pattern Anal 982 HWR

Marti and Bunke [47]. The IAM-database: An English sentence database for offline

handwriting recognition (2003)

Int J Doc Anal Recog 588 HTR,

Database

Graves and Schmidhuber [48]. Offline handwriting recognition with multidimensional

recurrent neural networks (2009)

NeurIPS 522 HWR

Huang and Suen [49]. A method of combining multiple experts for the recognition of

unconstrained handwritten numerals (1995)

IEEE T Pattern Anal 418 HNR

Liu et al. [50]. Handwritten digit recognition: Benchmarking of state-of-the-art tech-

niques (2003)

Pattern Recogn 401 HNR
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Paper Journal/Conf. #Cit Topic

Lorigo and Govindaraju [26]. Offline Arabic handwriting recognition: A survey (2006) IEEE T Pattern Anal 342 HTR,

Survey

Marti and Bunke [51]. Using a statistical language model to improve the performance of

an HMM-based cursive handwriting recognition system (2001)

Int J Pattern Recogn 314 HSR

Suen et al. [52]. Computer recognition of unconstrained handwritten numerals (1992) Proc IEEE 300 HNR

Arica and Yarman-Vural [13]. An overview of character recognition focused on off-line

handwriting (2001)

IEEE T Syst Man Cy

C

291 HCR,

Survey

Said et al. [53]. Personal identification based on handwriting (2000) Pattern Recogn 246 WI

Pham et al. [54]. Dropout improves recurrent neural networks for handwriting recogni-

tion (2014)

ICFHR 239 HWR

Liu et al. [55]. Handwritten digit recognition: Investigation of normalization and feature

extraction techniques (2004)

Pattern Recogn 226 HNR

Bhattacharya and Chaudhuri [56]. Handwritten numeral databases of Indian scripts and

multistage recognition of mixed numerals (2009)

IEEE T Pattern Anal 210 HNR,

Database

Kimura et al. [57]. Handwritten numerical recognition based on multiple algorithms

(1991)

Pattern Recogn 203 HNR

Vinciarelli et al. [58]. Offline recognition of unconstrained handwritten texts using

HMMs and statistical language models (2004)

IEEE T Pattern Anal 201 HWR

Lauer et al. [59]. A trainable feature extractor for handwritten digit recognition (2007) Pattern Recogn 194 HNR

Kim and Govindaraju [60]. A lexicon driven approach to handwritten word recognition

for real-time applications (1997)

IEEE T Pattern Anal 189 HWR

Fischer et al. [61]. Lexicon-free handwritten word spotting using character HMMs (2012) Pattern Recogn Lett 186 WS

Madhvanath and Govindaraju [62]. The role of holistic paradigms in handwritten word

recognition (2001)

IEEE T Pattern Anal 177 HWR

Kato [63]. A handwritten character recognition system using directional element feature

and asymmetric mahalanobis distance (1999)

IEEE T Pattern Anal 177 HCR

Manmatha et al. [64]. Word spotting: a new approach to indexing handwriting (1996) CVPR 176 WS

El-Yacoubi et al. [65]. An HMM-based approach for off-line unconstrained handwritten

word modeling and recognition (1999)

IEEE T Pattern Anal 173 HWR

Chen et al. [66]. Offline handwritten word recognition using a hidden Markov model

type stochastic network (1994)

IEEE T Pattern Anal 173 HWR

Senior and Robinson [67]. An off-line cursive handwriting recognition system (1998) IEEE T Pattern Anal 172 HWR

Liu et al.. [68]. Online and offline handwritten Chinese character recognition: Bench-

marking on new databases (2013)

Pattern Recogn 169 HCR

España-Boquera et al. [69]. Improving offline handwritten text recognition with hybrid

HMM/ANN models (2011)

IEEE T Pattern Anal 168 HWR

Oliveira et al. [70]. Automatic recognition of handwritten numerical strings: A Recog-

nition and Verification strategy (2002)

IEEE T Pattern Anal 165 HNR

Zhong et al. [71]. High performance offline handwritten Chinese character recognition

using GoogLeNet and directional feature maps (2015)

ICDAR 158 HCR

Lavrenko et al. [72]. Holistic Word Recognition for Handwritten Historical Documents

(2004)

DIAL 155 HWR

Marti and Bunke [73]. A full English sentence database for off-line handwriting recogni-

tion (1999)

ICDAR 154 HTR,

Database

Zheng and Doermann [74]. Machine printed text and handwriting identification in noisy

document images (2004)

IEEE T Pattern Anal 142 WI

Plötz and Fink [21]. Markov models for offline handwriting recognition: A survey (2009) Int J Doc Anal Recog 141 HWR,

Survey

Adankon and Cheriet [75]. Model selection for the LS-SVM. Application to handwriting

recognition (2009)

Pattern Recogn 140 HNR
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Paper Journal/Conf. #Cit Topic

Fukushima and Wake [76]. Handwritten Alphanumeric Character Recognition by the

Neocognitron (1991)

IEEE T Neural

Netwo

140 HCR

Louloudis et al. [77]. Text line and word segmentation of handwritten documents (2009) Pattern Recogn 138 HWR

Rodŕıghez-Serrano and Perronnin [78].Handwritten word-spotting using hidden Markov

models and universal vocabularies (2009)

Pattern Recogn 136 WS

C.L Liu et al. [79]. Lexicon-driven segmentation and recognition of handwritten charac-

ter strings for Japanese address reading (2002)

IEEE T Pattern Anal 134 HSR

Ha and Bunke [80]. Off-line, handwritten numeral recognition by perturbation method

(1997)

IEEE T Pattern Anal 133 HNR

Zhang et al. [81]. Online and offline handwritten Chinese character recognition: A

comprehensive study and new benchmark (2017)

Pattern Recogn 132 HCR

Li et al. [82]. Script-independent text line segmentation in freestyle handwritten docu-

ments (2008)

IEEE T Pattern Anal 132 HSR

Jain and Zongker [83]. Representation and recognition of handwritten digits using de-

formable templates (1997)

IEEE T Pattern Ana 132 HNR

Shi et al. [84]. Handwritten numeral recognition using gradient and curvature of gray

scale image (2002)

Pattern Recogn 130 HNR

Chacko et al. [85]. Handwritten character recognition using wavelet energy and extreme

learning machine (2012)

Int J Mach Learn

Cyb

126 HCR

Kimura et al. [86]. Improvement of handwritten Japanese character recognition using

weighted direction code histogram (1997)

Pattern Recogn 126 HCR

Hildebrant and Liu [87]. Optical recognition of handwritten Chinese characters: Ad-

vances since 1980 (1993)

Pattern Recogn 126 HCR,

Survey

Lu and Shridhar [88]. Character segmentation in handwritten words - An overview

(1996)

Pattern Recogn 124 HWR,

Survey

Wunsch and Laine [89]. Wavelet descriptors for multiresolution recognition of hand-

printed characters (1995)

Pattern Recogn 123 HCR

El-Hajj et al. [90]. Arabic handwriting recognition using baseline dependant features

and hidden Markov modeling (2005)

ICDAR 122 HWR

Lee [91]. Off-line recognition of totally unconstrained handwritten numerals using mul-

tilayer cluster neural network (1996)

IEEE T Pattern Anal 122 HNR

Yamada et al. [92]. A nonlinear normalization method for handprinted kanji character

recognition-line density equalization (1990)

Pattern Recogn 121 HCR

Koerich et al. [15]. Large vocabulary off-line handwriting recognition: A survey (2003) Pattern Anal Appl 119 HWR,

Survey

Pal et al. [93]. Handwritten numeral recognition of six popular Indian scripts (2007) ICDAR 118 HNR

Bunke et al. [16]. Recognition of cursive roman handwriting - past, present and future

(2003)

ICDAR 118 HTR,

Survey

Chen and Wang [94]. Segmentation of single- or multiple-touching handwritten numeral

string using background and foreground analysis (2000)

IEEE T Pattern Anal 118 HNR

Guerbai et al. [95]. The effective use of the one-class SVM classifier for handwritten

signature verification based on writer-independent parameters (2015)

Pattern Recogn 117 SV

Mohamed and Gader [96]. Handwritten word recognition using segmentation-free hidden

Markov modeling and segmentation-based dynamic programming techniques (1996)

IEEE T Pattern Anal 117 HWR

Liu et al. [97]. ICDAR 2011 Chinese handwriting recognition competition (2011) ICDAR 113 HTR

Al-HajjMohamad et al. [98]. Combining slanted-frame classifiers for improved HMM-

based Arabic handwriting recognition (2009)

IEEE T Pattern Anal 113 HWR

Liu and Nakagawa [99]. Evaluation of prototype learning algorithms for nearest-neighbor

classifier in application to handwritten character recognition (2001)

Pattern Recogn 112 HCR

Arica and Yarman-Vural [100]. Optical character recognition for cursive handwriting

(2002)

IEEE T Pattern Anal 111 HWR
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Paper Journal/Conf. #Cit Topic

Knerr et al. [101]. Handwritten Digit Recognition by Neural Networks with Single-Layer

Training (1992)

IEEE T Neural Net-

works

111 HNR

Pal and Datta [102]. Segmentation of Bangla unconstrained handwritten text (2003) ICDAR 109 HTR

Cao et al. [103]. Recognition of handwritten numerals with multiple features and multi-

stage classifiers (1995)

Pattern Recogn 108 HNR

Papavassiliou et al. [104]. Handwritten document image segmentation into text lines

and words (2010)

Pattern Recogn 106 HSR

Sudholt and Fink [105]. PHOCNet: A deep convolutional neural network for word spot-

ting in handwritten documents (2016)

ICFHR 106 WS

Yin and Liu [106]. Handwritten Chinese text line segmentation by clustering with dis-

tance metric learning (2009)

Pattern Recogn 106 HTR

Liu [107]. Normalization-cooperated gradient feature extraction for handwritten charac-

ter recognition (2007)

IEEE T Pattern Anal 105 HCR

Revow et al. [108]. Using generative models for handwritten digit recognition (1996) IEEE T Pattern Anal 105 HNR

Pechwitz and Maergner [109]. HMM based approach for handwritten Arabic word recog-

nition using the IFN/ENIT-database (2003)

ICDAR 104 HWR

Heutte et al. [110].A structural/statistical feature based vector for handwritten character

recognition (1998)

Pattern Recogn 104 HCR

Salah et al. [111]. A selective attention-based method for visual pattern recognition with

application to handwritten digit recognition and face recognition (2002)

IEEE T Pattern Anal 102 HNR

Wang et al. [112]. Handwritten Chinese text recognition by integrating multiple contexts

(2012)

IEEE T Pattern Anal 101 HTR

Stamatopoulos et al. [113]. ICDAR 2013 handwriting segmentation contest (2013) ICDAR 100 HTR

Yin et al.. [114]. ICDAR 2013 Chinese handwriting recognition competition (2013) ICDAR 100 HCR

Su et al. [115]. Off-line recognition of realistic Chinese handwriting using segmentation-

free strategy (2009)

Pattern Recogn 100 HSR

He et al. [116]. Writer identification of Chinese handwriting documents using hidden

Markov tree model (2008)

Pattern Recogn 100 WI

Su et al. [117]. Corpus-based HIT-MW database for offline recognition of general-purpose

Chinese handwritten text (2007)

Int J Doc Anal Recog 100 HTR,

Database

Seni and Cohen [118]. External word segmentation of off-line handwritten text lines

(1994)

Pattern Recogn 99 HWR

Si Wei Lu et al. [119]. Hierarchical attributed graph representation and recognition of

handwritten chinese characters (1991)

Pattern Recogn 99 HCR

Hafemann et al. [120]. Learning features for offline handwritten signature verification

using deep convolutional neural networks (2017)

Pattern Recogn 98 SV

Toselli et al. [121]. Integrated handwriting recognition and interpretation using finite-

state models (2003)

Int J Pattern Recogn 98 HSR

Oliveira et al. [122]. A methodology for feature selection using multiobjective genetic

algorithms for handwritten digit string recognition (2003)

Int J Pattern Recogn 98 HNR

Dehghan et al. [123]. Handwritten Farsi(Arabic) word recognition: A holistic approach

using discrete HMM (2001)

Pattern Recogn 98 HWR

Gader et al. [124]. Handwritten word recognition with character and inter-character

neural networks (1997)

IEEE T syst Man

Cyb B

98 HWR

Van Breukelen et al. [125]. Handwritten digit recognition by combined classifier (1998) Kybernetika 96 HNR

Favata and Srikantan [126]. A multiple feature/resolution approach to handprinted digit

and character recognition (1996)

Int J Imag syst Tech 96 HCR

Chi et al. [127]. Handwritten numeral recognition using self-organizing maps and fuzzy

rules (1995)

Pattern Recogn 95 HNR

H. Liu and Ding. [128]. Handwritten character recognition using gradient feature and

quadratic classifier with multiple discrimination schemes (2005)

ICDAR 94 HCR
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Paper Journal/Conf. #Cit Topic

Liu et al. [129]. Discriminative learning quadratic discriminant function for handwriting

recognition (2004)

IEEE T Neural Net-

works

93 HNR

Al-Ohali et al. [130]. Databases for recognition of handwritten Arabic cheques (2003) Pattern Recogn 93 HTR,

Database

In particular, we use the formal definition given by Martinez et al. [131], which is based on the Hirsch

index [39]: “the citation classics, also called the h-core, of a research area whose h-index is h are the top h

cited papers”. In our paper sample, the h-index is 93 (there are 93 citation classics). Table 1 lists those top

93 citation classics. Columns stand for the paper title, publication source, number of citations, and central

topic(s) of the paper.

As recent papers seldom have enough time to accumulate citations to compete with older articles, Clar-

ivate WoS proposes recognizing as hot papers those with a number of citations beyond a given threshold.

Accordingly, Table 2 shows the hot papers for the last three years, i.e., the top 5 cited articles per year.

Table 2: Hot papers: top 5 cited articles in 2020, 2019, and 2018.
Paper Journal/Conf. #Cit Topic

Ghosh et al. [132]. Graphology based handwritten character analysis for human
behaviour identification (2020)

CAAI T Intell
Technol

35 Behaviour
identifica-
tion

Ahlawat et al. [133]. Improved handwritten digit recognition using convolutional
neural networks (2020)

Sensors 19 HNR

Zhao and Liu [134]. Multiple classifiers fusion and CNN feature extraction for
handwritten digits recognition (2020)

Granul Comput 18 HNR

Jiang and Zhang [135]. Edge-SiamNet and Edge-TripleNet: New deep learning
models for handwritten numeral recognition (2020)

IEICE T Inf
Syst

18 HNR

Malakar et al. [136]. A GA based hierarchical feature selection approach for hand-
written word recognition (2020)

Neural Comput
Appl

16 HWR

Diaz-Cabrera et al. [137]. A perspective analysis of handwritten signature technol-
ogy (2019)

ACM Comput
Surv

64 SV

Cilia et al. [138]. A ranking-based feature selection approach for handwritten
character recognition (2019)

Pattern Recogn
Lett

44 HCR, Fea-
ture Selec-
tion

De Stefano et al. [139] Handwriting analysis to support neurodegenerative diseases
diagnosis: A review (2019)

Pattern Recogn
Lett

31 Neurodege-
nerative
diseases

Baldominos et al. [140]. A survey of handwritten character recognition with MNIST
and EMNIST (2019)

Appl Sci 27 HCR

He and Schomaker [141]. Deep adaptive learning for writer identification based on
single handwritten word images (2019)

Patter Recogn 24 WI

Hafemann et al. [142]. Offline handwritten signature verification - Literature review
(2018)

IPTA 65 SV, Survey

Baldominos et al. [143]. Evolutionary convolutional neural networks: An applica-
tion to handwriting recognition (2018)

Neurocom-
puting

57 HNR

Pramanik and Bag [144]. Shape decomposition-based handwritten compound char-
acter recognition for Bangla OCR (2018)

J Vis Commun
Image R

53 HCR

Kulkarni and Rajendran [145]. Spiking neural networks for handwritten digit recog-
nition—Supervised learning and network optimization (2018)

Neural Net-
works

49 HNR

Sueiras et al. [146]. Offline continuous handwriting recognition using sequence to
sequence neural networks (2018)

Neurocom-
puting

46 HWR

4.2. Most prolific authors

A total of 8,044 researchers have co-authored the 5,389 papers that this article analyzes. Most of

them are occasional authors; e.g., 69.87% have published a single paper. Only 7.13% of the researchers
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have published five or more papers. Such authorship distribution is coherent with a fundamental law in

bibliometrics called Lotka’s law [147], which states that the number of authors with n papers was habitually

inversely proportional to n2. In our case, 5,621 researchers published only one paper; therefore, Lotka’s law

predicts that the number of authors that published n papers should be 5, 621/n2.

The graph in Figure 3 depicts the collaboration patterns between the most productive researchers. Nodes

represent the top 2.29% of authors, who have published at least ten papers; node areas are proportional to

the number of published papers. There is an edge between two nodes if the corresponding researchers have

co-authored one or more papers; the width of an edge connecting authors i and j is proportional to the

equivalence index eij (this index was introduced in Section 3.3.1). Finally, the graph is colored according to

the groups of collaborating authors identified with the Leiden algorithm [148].

4.3. Most prolific journals

Figure 4 shows the journals that have published the largest number of papers, standing out Pattern

Recognition, Pattern Recognition Letters, IEEE Transactions on Pattern Analysis & Machine Intelligence,

and International Journal on Document Analysis and Recognition (which is specialized in document analy-

sis). Likewise, Figure 5 shows the most prolific conferences. Figure 5 shows the most prolific conferences,

including (i) those focused on off-line handwriting document analysis, such as the International Conference

on Document Analysis Recognition (ICDAR) and the International Conference on Frontiers of Handwriting

Recognition (ICFHR), and (ii) others with a more general thematic, such as the International Conference

on Pattern Recognition (ICPR) or the International Joint Conference on Neural Networks (IJCNN).

4.4. Longitudinal analysis

Figure 6 represents the number of published papers per year. Some significant developments have

accelerated the upswing trend, such as the introduction of deep learning in 2006 [149], the 2009 NIPS

Workshop on Deep Learning for Speech Recognition [150], and the popularization of inexpensive GPUs

from 2012 onwards [151]. To analyze the temporal evolution of the area, we have divided the document

sample into six periods of five years.
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Kim, J.H.

Anquetil, E.

Zhou, J.

Chiang, J.-H.

Zimmermann, M.

Mohamed, M.A.

Sakoe, H.

Marcelli, A.

Fakotakis, N.

Li, H.

Zhu, Y.

Fu, Q.

Freitas, C.O.A.

Bertolami, R.

Sadri, J.

Tan, J.

He, C.L.

Eglin, V.

Chen, Q.

Serrano, N.

Zanchettin, C.

Louloudis, G.

Puigcerver, J.

Ahlawat, S.

Serdouk, Y.

Wakahara, T.

Kim, G.

Zhang, B.

Nakagawa, M.

De Carvalho, J.M.

Shi, P.

Doermann, D.

Tan, C.L.

Wang, C.

Pratikakis, I.

Alaei, A.

Lee, H.

Stamatopoulos, N.

Zhang, Y.

Razzazi, F.

Zhang, X.Y.

Siddiqi, I.

Bhowmik, S.

Ogier, J.M.

Das, S.

James, A.

Lu, K.

Britto, A.S.

Mahmoud, S.A.

Heutte, L.

Liu, J.

Sako, H.

Hanmandlu, M.

Wu, Y.

Huo, Q.

Chen, Y.

Koerich, A.L.

Fink, G.A.

Zhang, X.

Zhang, H.

Fontanella, F.

Hangarge, M. Wang, S.

Sas, J.

Du, J.

Zhang, S.

Chen, J.

Bezerra, B.L.D.

Elzobi, M.

Al-Hamadi, A.

Liu, H.

Madhvanath, S.

Rahman, A.F.R.

Chen, Z.

Yang, J.

Gao, X.

Niranjan, S.K.

Xu, Y.

Doetsch, P.

Majhi, B.

Lam, L.

Plamondon, R.

Ahmadi, M.

Leedham, G.

Wakabayashi, T.

Amin, A.

Blumenstein, M.

Nagabhushan, P.

Hamdani, M.

Kanoun, S.

Bag, S.

Prasad, R.

Schomaker, L.

Fujisawa, H.

Günter, S.

Wang, X.

Li, Y.

Li, J.

Mokbel, C.

Zhang, C.

Santosh, K.C.

Malakar, S.

De Stefano, C.

Alimi, A.M.
Bui, T.D.

Kherallah, M.

Cao, H.

Wang, Q.F.

Wang, H.

Mouchère, H.

Bluche, T.

Impedovo, S.

Verma, B.

Oliveira, L.S.

Belaïd, A.

El Abed, H.

Sharma, R.K.

Natarajan, P.

Chatelain, C.

Impedovo, D.

Halder, C.

Faez, K.

Juan, A.

Bhattacharya, U.

Likforman-Sulem, L.

Obaidullah, S.M.

Naoi, S.

Yang, Y.

Kessentini, Y.

Roy, P.P.

Uchida, S.

Wang, J.

Parui, S.K.

Märgner, V.

Sun, J.

Singh, P.K.

Basu, S.

Sánchez, J.A.

Wang, W.

Bortolozzi, F.

Viard-Gaudin, C.

Liwicki, M.

Kermorvant, C.

Kumar, M.

Jindal, M.K.

Romero-Gomez, V.

Lu, Y.

Fairhurst, M.C.

Wang, Y.

Frinken, V.

Chaudhuri, B.B.

Gatos, B.

Lee, S.W.

Shridhar, M.

Cheriet, M.

Guo, J.

Kundu, M.

Nemmour, H.Gader, P.

Fischer, A.

Lladós, J.

Srihari, S.N.

Yan, H.

Pirlo, G.

Ney, H.

Fornés, A.

Roy, K.

Kimura, F.

Yin, F.

Jin, L.

Ding, X.

Chibani, Y.

Vidal, E.

Toselli, A.H.

Paquet, T.

Das, N.

Sarkar, R.

Govindaraju, V.

Sabourin, R.

Nasipuri, M.

Pal, U.

Bunke, H. Liu, C. L.

Suen, C.Y.

Figure 3: Collaboration networks of the authors with ten or more papers.
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Figure 6: Number of publications per year.

4.4.1. Most prolific research institutions and countries

Figure 7 shows (i) the number of papers that researchers of each country have published, and (ii) the

institutions to which researchers publishing the highest number of papers belong.

From 1990 to 1999, most research is concentrated in a few countries. USA, Japan, and Taiwan led the

investigation, with 20.57%, 11.33%, and 8.13% of all published papers, respectively. In the next decade,

from 2000 to 2019, research spread around the world. China and India emerged as global powers; in fact,

the most prolific countries of that decade were China (18.41% of all published papers), USA (10.72%), and

India (9.91%). Finally, in the last decade, India and China have consolidated their leadership with 28.80%

and 17.42% of the articles; USA, Spain, and France follow them in the ranking with 6.01%, 5.33%, and

5.14% of the papers, respectively.
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Figure 7: Most prolific countries and organizations. The scale of the maps is related to the data volume in each period of time.
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4.4.2. Thematic networks

As explained in Section 3.3, the science mapping technique that we have used to identify the most

researched topics is based on analyzing the relations between paper keywords. Figure 8 represents the

number of keywords evolution over time. Each node shows the number of keywords in a given period.

Arrows connecting two nodes depict the number of shared keywords between two periods; the inclusion

index is denoted in parentheses. Upper incoming arrows represent how many new keywords were added

in a period, and upper outcoming arrows account for the keywords that became obsolete. For instance,

the second period goes from 1995 to 1999; it comprises 74 keywords, 42 of them coming from the previous

period. Out of these 74 keywords, 59 were used in the next period, and 15 were discarded. According to

the inclusion index, 80% of this period’s keywords were still used in the third period.

1990-1994 1995-1999 2000-2004 2005-2009 2010-2014 2015-2020

43

1

42(0.98) 59(0.8) 72(0.87) 91(0.94) 117(0.97)

32 15 24 11 25 6 30 4 21

74 83 97 121 138
#keywords

#common keywords
(inclusion index)Period t Period t+1

#keywords

#obsolete keywords #new keywords
KEY

Figure 8: Number of keywords per period.

Using the simple centers’ algorithm, sixteen TNs were identified. Some of them are related to docu-

ment analysis problems:Character Recognition, Text Recognition, Numeral Recognition, Chinese Character

Recognition, Word Spotting, Writer Identification, Signature Verification, Script Identification, and Histor-

ical Text Recognition (Historical Documents). Others refer to approaches for dealing with these problems:

Hidden Markov models (HMMs), Support Vector Machine (SVM), Deep Neural Networks (DNNs), En-

semble Classification, and Attention Mechanism; and the last ones are related to important tasks in the

resolution of these problems (Segmentation, Feature Extraction Classification). Figure 9 and the strategic

diagrams in Figure 10 provide the field evolution overview, which will be discussed in detail in the subsequent

Sections 4.4.3-4.4.8.

In Figures 9 and 10, each node represents a TN, being its size proportional to the number of papers using

some of the keywords the network contains. Edges in Figure 9 account for conceptual relations between

TNs; a solid line connecting two TNs T and T ′ depicts a strong relationship, meaning that both TNs share

a keyword that is central to some of them. A dashed line indicates the existence of some shared keywords

between T and T ′, which is not central neither for T nor T ′. For example, between the first and second

periods, (i) there is a solid line between Character Recognition and Numeral Recognition, because both
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Figure 9: TNs’ conceptual linking between periods.
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Figure 10: Strategic diagrams per period.
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themes share the keyword Numeral Recognition, which is central for the second one; and (ii) there is a

dashed line between Character Recognition and Chinese Character Recognition because they share the non-

central keywords Graph and Preprocessing (the keywords composing each TN and their interrelationships

are provided in the repository linked in Section 3.4). Edge width is proportional to the inclusion index.

As explained in Section 3.3.2, the TN flow across the quadrants of successive strategic diagrams helps

to recognize the emergence and growth of research lines and to forecast their short-term evolution. For

example, according to Figure 10, from 2005-2009 to 2010-2020, HMM has increased both its centrality and

its number of papers. Accordingly, it has become increasingly important, and it is reasonable to expect that,

in the short-term future, the topics, tasks, and methodologies represented by the TN will be kept relevant.

In contrast, Figure 10 shows that Chinese Character Recognition has lost its centrality but increased its

density from 2005-2009 to 2010-2014 period, evolving from being a traversal TN to a highly developed one.

The following subsections analyze the TNs in each period. For every network, a table summarizes the

network’s keywords, its number of articles, h-index, and the top 10 cited papers. This way, the relevancy

a network has in a given period is quantified in terms of quantity (#papers) and quality (h-index). It is

worth noting that a document may include keywords belonging to different TNs.

4.4.3. Period 1: 1990-1994

As Figure 10 shows, two TNs are identified from 1990 to 1994: the motor network Character Recognition

and the isolated one Text Recognition. Figure 11 depicts the keywords’ relationship for both TNs. Each

node represents a standardized keyword (see Section 3.1) whose size depends on the number of articles

that include it. An edge links two nodes if two or more articles contain the corresponding keywords. The

edge thickness depends on the equivalence index that normalizes the number of articles where the keywords

co-occur (see Section 3.3.1). It is worth noting that the simple centers’ algorithm automatically labels the

TN according to the most central keyword, i.e., to the keyword that is strongest connected to the other ones

[40]. In Figure 11, the most central keywords coincide with the most included in the articles, but this is not

always the case. Also, a paper is considered to belong to the network if it contains at least one of the TN’s

keywords [29] (accordingly, not all articles in a TN necessarily include the keyword that gives its name).

Table 3 summarizes these networks’ keywords and their top ten cited papers. The first column shows

the central keywords that give names to the TNs; clicking on them, a browser will take you to a detailed

TN description in our repository (see Section 3.4). The last column follows the notation [reference]#citations,

e.g., [52]300 means that [52] has been cited 300 times since its publication. On the one hand, HNR, Arabic

and Japanese scripts were considered. Additionally, they were closely related to HCR problems. A highly
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Figure 11: Thematic networks for Period 1: 1990-1994.

Table 3: TNs’ performance for Period 1: 1990-1994.
TN Network’s keywords #papers h-index Top 10 papers

Character Recogni-
tion

Character Recognition, Statistical Model, Graph, Decision
Tree, MLP, NN, Numeral Recognition, Preprocessing, Ara-
bic Text Recognition, Template Matching, Japanese Text
Recognition, Ensemble Classification

44 22 [52]300 [57]203 [66]173
[87]126 [92]121 [119]99
[152]80 [153]78 [154]71
[155]51

Text Recognition Text Recognition, Segmentation, Feature Extraction 14 11 [46]1029 [118]99 [152]80
[156]72 [157]49 [158]42
[159]38 [160]34 [161]19
[162]18

influential paper on this TN and period is presented by Suen et al. [52], which combines four different

heuristic methods proposed by experts for the unconstrained HNR problem. This technique is also known

as ensemble classification. The authors demonstrated that the combination or consensus among the HNR

methods tends to compensate for the weaknesses of individual algorithms while preserving their strengths.

Therefore, ensemble classification became important in this and the following periods. Focusing on the

keywords related to some methodology, Template Matching, Decision Trees, and Ensemble Classification

were some of the most used strategies to solve these problems. Also, in these years, Neural Networks

(NNs), in general, and the Multi-Layer Perceptron (MLP), in particular, started to be important since new

optimization algorithms were developed and more effective training was possible. On the other hand, the

Text Recognition TN encompassed the most studied tasks, which were Segmentation and Feature Extraction.

Note that the keyword Text Recognition includes the keywords related to handwriting recognition that were

not specific on any script or scope, such as characters, words, etc. Therefore, the keywords related to it are

also generic. Concerning this second TN, the most cited paper was written by Hull [46]. It described an

image database with thousands of city names, ZIP codes, and other types of words extracted from scanned

post mail handwritten text and targeted towards general text recognition. The database was divided into

explicit training and testing sets. The included words presented a high variability concerning writers and

writing styles. Many of the applications and algorithms for HTR in that period were oriented towards postal

address interpretation [152].
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4.4.4. Period 2: 1995-1999

In this period, there were four TNs: the motor network Character recognition, the isolated network Word

Spotting, and the traversal networks Chinese Character Recognition and Numeral Recognition. Figure 12

and Table 4 summarize the keywords of these networks, showing that other motor TNs related to HCR

were Character Segmentation, HWR, and Japanese text recognition. To solve these problems, HMMs were

added to the previous motor methodologies. The first word recognition systems were based on character

recognition and their subsequent concatenation. For that, HMMs were one of the most used ones. Therefore,

it is natural that all these keywords appear together in this period. Moreover, the importance of these

problems and techniques grew in the scientific community, as it is shown by the increase of its h-index.

Chinese Character Recognition appears as its own TN, including related techniques as directional features

and graph-based methodologies. Numeral Recognition was related to structural and ensemble classification,

segmentation, clustering, fuzzy logic, K-Nearest Neighbour (KNN), and Genetic Algorithms (GA). Indeed,

as HNR problems focused on isolated digits started to be solved, most numerical string recognition problems

tried to segment digits to classify them. Then, digit string recognition was achieved by concatenating the

previous results. Some of the most cited articles in this period belonged to this TN. The work by Huang and

Suen [49] proposed a multiple classification approach for recognizing unconstrained handwriting numerals.

Kim and Govindaraju [60] demonstrated the importance of using a lexicon for ranking the lexicon entries

when matching them to word images in word recognition tasks suitable to real-time applications. Finally,

Jain and Zongker [83] introduced the representation and usage of deformable templates to compute the

deformation needed when comparing handwritten digit patterns for their recognition at a relatively low

computational cost. Word Spotting was a new and very studied problem related to IR and HTR. Indeed,

WS and IR were complementary tasks since WS tries to get keywords, and IR asks for specific keywords on

documents. Moreover, HTR and WS share many common methodologies to address them. Also, a capital

work was the gradient-based learning to train convolutional neural networks (CNNs) proposed by LeCun et

al. [163]. Although this article is not devoted to handwritten documents (and for this reason, their literature

is outside the sample), it was fundamental in computer vision studies, leading to a great development in

many applications such as document analysis.

4.4.5. Period 3: 2000-2004

Figure 13 and Table 5 summarize four TNs identified in this period. HMM was a motor and a highly

studied TN. Indeed, in this period, the importance of word and sentence recognition problems, solved

by HMMs approaches, increased. Besides, word recognition for large vocabulary problems was studied,
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Figure 12: Thematic networks for Period 2: 1995-1999.

Table 4: TNs’ performance for Period 2: 1995-1999.
TN Network’s keywords #papers h-index Top 10 papers

Character Recogni-
tion

Character Recognition, Structural Features, Statistical
Model, MLP, Character Segmentation, Feature Extraction,
NN, Classification, HMM, Word Recognition, Template
Matching, Japanese Text Recognition

162 37 [60]189 [64]176 [65]173
[67]172 [80]133 [83]132
[86]126 [88]124 [89]123
[91]122

Word Spotting Word Spotting, Information Retrieval, Text Recognition 27 14 [49]418 [64]176 [73]154
[164]69 [165]46 [166]43
[167]35 [168]32 [169]31
[170]29

Chinese Character
Recognition

Chinese Character Recognition, Directional Feature, Pre-
processing, Graph

41 15 [63]177 [65]173 [67]172
[83]132 [86]126 [171]77
[172]66 [173]63 [174]49
[175]48

Numeral Recognition Numeral Recognition, Ensemble Classification, Structural
Classification, Segmentation, GA, Clustering, Fuzzy Logic,
KNN, Feature Selection

86 31 [49]418 [60]189 [65]173
[80]133 [83]132 [91]122
[103]108 [127]95 [176]78
[171]77
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especially using language models and dictionaries or lexicons to improve the results. Two relevant papers

in the network correspond to the same authors Marti and Bunke ([51], and [47], respectively). Their first

paper [51] described a solution that combines HMMs with statistical language models. The proposed solution

avoids segmenting a text line into its constituent words and also incorporates linguistic knowledge into the

recognition process. Their second paper [47] introduced the IAM database of English sentences for off-line

handwriting recognition. This database has been (and still it is) a fundamental benchmark for training

and testing many algorithms aiming to recognize handwriting text under multiple variabilities and also for

performing WI. Meanwhile, Character Recognition, which was a motor and traversal TN, shows that HCR

problems were studied using classical and new approaches (as self-organizing maps, SOMs). Methodologies

such as principal component analysis (PCA), active shape models, SVM and GA were related to Chinese

Character Recognition, which is based on a very different script compared to Roman (or Latin) or Arabic

texts. In this TN, the work of C-L. Liu et al. [50] stands out, where state-of-the-art in HNR was benchmarked

with their work, which combines different features as chain code and gradient features, with several classifiers

as KNN, NN, and vector classifiers, among others. Other very studied but isolated topics were WI and SV,

as they appear on the Writer Identification TN. Focusing on their impact through the paper production,

the importance of the TNs Character Recognition and Chinese Character Recognition were increased.

Finally, in this period, the most cited paper was a survey by Plamondon and Srihari [2] about on-line and

off-line handwriting recognition, where the main algorithms that have appeared to date for character and

word recognition stages were summarized, as well as the application fields of this technology (e.g., writer

authentication, WS or SV, among others).

Table 5: TNs’ performance for Period 3: 2000-2004.
TN Network’s keywords #papers h-index Top 10 papers

Character Recogni-
tion

Character Recognition, Graph, SOM, Text Recognition,
Feature Extraction, Segmentation, NN, Numeral Recog-
nition, Classification, Template Matching, Fuzzy Logic,
Structural Features

191 38 [2]1749 [47]588 [50]401
[51]314 [13]291 [55]226
[62]177 [70]165 [79]134
[84]130

HMM HMM, Sentence Recognition, Dictionary, Large Vocabulary,
Feature Selection, Preprocessing, Word Recognition, Ara-
bic Text Recognition, Language Model, Ensemble Classifi-
cation, Synthetic Data, N-grams

93 28 [47]588 [51]314 [13]291
[55]226 [58]201 [74]142
[79]134 [15]119 [16]118
[94]118

Chinese Character
Recognition

Chinese Character Recognition, PCA, Character Segmenta-
tion, Active Shape Model, SVM, GA, Wavelet, Supervised
Learning, Postprocessing, Statistical Model

88 22 [50]401 [70]165 [74]142
[79]134 [99]112 [129]83
[177]85 [178]74 [179]66
[180]59

Writer Identification Writer Identification, Signature Verification, Mathematical
Transform , Texture Features

23 10 [2]1749 [53]246 [74]142
[181]56 [182]45 [183]29
[184]29 [185]16 [186]15
[187]11
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Figure 13: Thematic networks for Period 3: 2000-2004.

4.4.6. Period 4: 2005-2009

The fourth period was characterized by four TNs: Feature Extraction, HMM, Chinese Character Recog-

nition, and Writer Identification. Figure 14 and Table 6 summarize the most relevant research themes from

each of these networks.

Table 6: TNs’ performance for Period 4: 2005-2009.
TN Network’s keywords #papers h-index Top 10 papers

Feature Extraction Feature Extraction, Indian Text Recognition,Mathematical
Transform, PCA, SVM, Character Recognition, NN, Nu-
meral Recognition, Classification, Preprocessing, Arabic
Text Recognition, KNN

297 34 [26]342 [56]210 [59]194
[75]140 [77]138 [78]136
[98]113 [107]105
[115]100 [116]100

Chinese Character
Segmentation

Chinese Character Segmentation, Elastic Mesh, Feature
Reduction, Character Segmentation, GA, Wavelet, Fuzzy
Logic, Structural Features,Post-processing, Bank Check
Recognition

122 19 [59]194 [116]100 [188]79
[189]70 [190]65 [191]61
[192]60 [193]52 [194]47
[195]43

HMM HMM, Sentence Recognition, Moments, Dictionary, Text
Recognition, Chinese Text Recognition, Word Recognition,
RNN, Language Model, Ensemble Classification, Statistical
Model, Graph

198 27 [4]982 [21]141 [78]136
[82]132 [98]113 [106]106
[115]100 [116]100
[117]100 [188]79 [196]62

Writer Identification Writer Identification, Signature Verification, Verification,
Script Identification, Segmentation, Texture Features

86 17 [115]100 [116]100
[197]92 [198]51 [199]43
[200]40 [201]36 [202]34
[203]31 [204]30

As it is shown in the Feature Extraction TN, SVM was one of the most importat methodologies to

solve document analysis problems. In this period, the use of a specific model of SVM, called Least Squares
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Figure 14: Thematic networks for Period 4: 2005-2009.

SVM (LS-SVM), targeted to handwriting recognition problem, was presented by Adankon and Cheriet [75],

who demonstrated that this model improved the generalization performance with respect to other previous

proposals. This network includes Indian text recognition for the first time. The most important article

focusing on this alphabet was due to Bhattacharya and Chaudhuri [56], who proposed the combination

of multiresolution representations and MLPs for the recognition of unconstrained handwritten numerals of

Indian scripts. In their solution, input numerals pass through three MLP classifiers corresponding to three

coarse-to-fine resolution levels in a cascaded composition. These authors also provided a large database

for experimentation. Chinese and Arabic scripts were also very important. One of the most influential

surveys for Arabic script was published by Lorigo et al. [26]. Jointly with SVM, PCA and NN were some of

the most studied methodologies related to those problems. HMM s were again a TN, but their importance

decreased. Other methodologies related to HMMs were statistical models, ensemble classification, models

based on graphs, and recurrent neural networks (RNNs). RNNs often replaced HMMs in word and sentence

recognition. Indeed, the most influential paper in this period (with nearly 1,000 cites) corresponds to the

topic “unconstrained handwriting recognition,” and it was written by Graves et al. [4]. While previous

systems for this task relied on HMMs with their known limitations, [4] proposed a new type of RNNs, that
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include long-range bidirectional dependencies, which were suitable for text sequence labeling in situations

where data were difficult to segment. Both Feature Extraction and HMM were motor TNs (although HMM

was also close to isolated and traversal topics). Chinese Character Recognition appeared as a traversal

TN that included Elastic Mesh, GA, Fuzzy Logic and Wavelet transform as some of the main related

methodologies. Writer Identification was an isolated and very studied TN, which was tightly related to

Script Identification, Signature Verification, and the Segmentation task.

4.4.7. Period 5: 2010-2014

Since 2010, the problems and methodologies studied in document analysis increased considerably as the

number of corresponding TNs. Specifically, there were eight TNs in this period: Character Recognition and

HMM as motor networks, Segmentation and Numeral Recognition as traversal networks, Script Identification

and Chinese Character Recognition as isolated networks, Signature Verification as emerging and traversal

TN, and Historical Documents as an emerging network. Figure 15 and Table 7 summarize the most relevant

research themes in these TNs. Character Recognition network was more related to Arabic and Indian text

recognition and solved with NN, SVM, KNN, and wavelet approaches (among others). Note that the number

of Indian text recognition works grew during this period and, for that, the scope and methodologies of this

research became very important to the community.
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Figure 15: Thematic networks for Period 5: 2010-2014.

Table 7: TNs’ performance for Period 5: 2010-2014.
TN Network’s keywords #papers h-index Top 10 papers

Character Recogni-
tion

Character Recognition, Statistical Model, Mathematical
Transform, Zonning, Feature Extraction, NN, SVM, Pre-
processing, Arabic Text Recognition, KNN, Wavelet, Indian
Text Recognition

632 35 [69]168 [85]126 [97]113
[104]106 [114]100
[205]86 [206]85 [207]84
[208]80 [209]79

HMM HMM, Sentence Recognition, Bayesian Network, Viterbi Al-
gorithm, DBNN, Word Spotting, Word Recognition, RNN,
Clustering, Music Recognition, Roman Script, GMM

219 29 [54]239 [61]186 [69]168
[104]106 [205]86 [206]85
[210]83 [211]82 [212]75
[213]75

Segmentation Segmentation, SOM, Character Segmentation, Text Line
Segmentation, Text Recognition, Chinese Text Recognition,
GA, Math Recognition, Dynamic Programming, Structural
Features, Postprocessing, Projection Features

386 33 [54]239 [61]186 [69]168
[97]113 [104]106
[112]101 [113]100
[114]100 [214]86 [206]85

Numeral Recognition Numeral Recognition, Voting, PCA, DNN, Classification,
Chain Code, Statistical Feature, MLP, Moments, FPGA,
Autoencoder, Affine Transformation

231 21 [69]168 [207]84 [211]82
[208]80 [215]75 [216]54
[217]41 [218]40 [219]38
[220]36

Script Identification Script Identification, Ensemble Classification, Multi-
scripts, Texture Features

51 14 [221]53 [222]30 [223]29
[224]28 [225]23 [226]23
[227]22 [228]22 [229]18
[230]18

Chinese Character
Recognition

Chinese Character Recognition, ICA, CNN 57 14 [68]169 [209]79 [231]46
[218]40 [232]31 [233]25
[234]24 [235]18 [236]18
[237]18

Historical Documents Historical Documents, Language Model, Morphology Oper-
ator

57 12 [112]101 [238]44 [239]39
[240]33 [241]24 [242]22
[243]22 [244]21 [245]19
[246]14

Signature Verifica-
tion

Signature Verification, Writer Identification, Feature Selec-
tion, Graph, Curvelet Transform, Feature Reduction, Veri-
fication

131 18 [214]86 [247]80 [215]75
[248]56 [221]53 [249]49
[250]48 [240]33 [251]24
[252]23
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The Segmentation TN is mainly related to text line segmentation, Chinese text and mathematical formula

recognition. Those problems were often solved with GA, SOM, and dynamic programming. HMMs increased

their impact. In addition to the problems addressed in the previous periods, music recognition, WS and

Roman text recognition appear now related to this TN. These problems were also often addressed with NN

architectures as bayesian networks, RNN and deep belief neural networks (DBNNs), jointly with Gaussian

mixture models (GMMs). The Numeral Recognition TN was composed of traversal methodologies as PCA,

field-programmable gate array (FPGA), and chain codes, and deep learning methodologies as MLP, DNN

and autoencoders. Script Identification shows that this TN was very related with multi-script problems.

Historical Documents was related to language models problems. Finally, some highly studied topics and

methodologies were Chinese character recognition, independent component analysis (ICA) and CNN, as

these keywords appear together in the Chinese Character Recognition TN. As the TNs shows, this period

was characterized by a high increase in applying deep neural architectures to HTR. In this context, the

most cited work was published by Pham et al. [54], who used dropout in recurrent networks (RNNs) with

Long Short-Term Memory (LSTM) cells in unconstrained handwriting recognition. This dropout is carefully

introduced in the network so that the power of RNN in modeling sequences is preserved. Other relevant works

in this period continued using HMMs, as a well-established modeling and recognition paradigm for automatic

off-line handwriting recognition, and the IAM database, as the major benchmark for the experiments. The

work by España-Boquera et al. [69] proposed a hybrid HMM/Artificial Neural Network (ANN) model,

where the structural part of the off-line text image was modeled with an HMM and an MLP-ANN is used

to estimate the emission probabilities. This solution was applied to off-line handwritten text lines from the

IAM database. Fischer et al. [61] developed a WS system (without pre-segmenting text lines into words)

also based on (character) HMM and using the off-line IAM dataset for experiments.

4.4.8. Period 6: 2015-2020

This last period has been characterized by the increasing number of problems and methodologies in the

area. Especially, deep learning approaches were widely applied to most of the problems related to document

analysis. There were seven TNs: DNN, SVM, and Segmentation as motor TN, Ensemble Classification as

traversal one, HMM and Writer Identification as declining TNs, and Attention Mechanism as very studied

one. Figure 16 and Table 8 summarize the main research themes for these networks. DNN was the main

motor TN and was related to text recognition. Specifically, it included deep learning architectures as RNN,

DBNN, and Deep Convolutional Neural Networks (DCNNs). The SVM TN shows that some of the most

used methodologies in SV and Arabic text recognition were SVM PCA, KNN, and HOG.
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Figure 16: Thematic networks for Period 6: 2015-2020.

Table 8: TNs’ performance for Period 6: 2015-2020.
TN Network’s keywords #papers h-index Top 10 papers

DNN DNN, Text Recognition, Character Recognition, CNN, Nu-
meral Recognition, RNN, Transfer Learning, Indian Text
Recognition, Data Augmentation, Dropout, DCNN, DBNN

1,158 30 [71]158 [81]132 [105]106
[120]98 [253]82 [254]70
[255]68 [256]68 [257]66
[258]65

SVM SVM, Texture Features, Decision Tree, PCA, Feature Ex-
traction, NN, Classification, Signature Verification, Arabic
Text Recognition, KNN, HOG, Statistical Model, Texture
Features

906 23 [95]117 [120]98 [253]82
[259]73 [257]66 [260]58
[261]58 [262]54 [263]53
[264]51

Segmentation Segmentation, Histogram, Character Segmentation, Text
Line Segmentation, Word Spotting, Preprocessing, Word
Recognition, Math Recognition, Historical Documents,
Sliding Window, FCNN, Projection Features

455 18 [95]117 [105]106 [265]52
[266]46 [267]45 [268]35
[144]34 [269]27 [270]26
[271]25

Ensemble Classifica-
tion

Ensemble Classification, Moments, ResNet, Chinese Char-
acter Recognition, Chinese Text Recognition, Feature Se-
lection, GA, Script Identification, Fuzzy Logic, Structural
Features, Mathematical Transform, Graph

379 20 [71]158 [81]132 [259]73
[255]68 [257]66 [143]44
[272]42 [273]35 [138]34
[274]33

HMM HMM, Embedding,Tibetan Text Recognition, Language
Model, Music Recognition, Roman Text Recognition,
Multi-Script Recognition, N-Grams, Sentence Recognition,
Bayesian Network

165 14 [257]66 [265]52 [275]52
[267]45 [269]27 [276]25
[277]20 [278]19 [279]18
[280]18

Attention Mechanism Attention Mechanism, End-to-end, Seq2Seq 20 7 [266]46 [146]31 [281]22
[282]14 [283]12 [284]9
[285]7 [286]6 [287]5
[288]3

Writer Identification Writer Identification, Siamese Network, Verification, Tem-
plate Matching, Wavelet, Forensics, SIFT, Autoencoder

155 12 [261]58 [275]52 [289]29
[290]29 [28]23 [281]22
[141]17 [291]16 [292]15
[293]14
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Segmentation was related to most of the problems of the previous periods, but also to the WS problem,

sliding window, and Fully Connected Neural Networks (FCNNs). In this case, sliding windows and FCNNs

were often used in holistic or segmentation-free approaches. The network HMM shows that Tibetan text,

Roman text, multi-script, and music recognition problems, as well as language model, were often solved

with Bayesian networks and n-grams methodologies. The Writer Identification TN shows that WI, forensic

applications, and verification problems, as well as wavelets, template matching, autoencoders, and siamese

NN methodologies were declining topics. Finally, Attention Mechanism has been a highly developed TN,

which relates attention mechanisms, as seq2seq, with end-to-end systems. The vast majority of models

proposed for HTR problems were based on several types of DNNs, especially different types of CNNs.

Zhong et al. [71] successfully applied GoogleNet to the handwritten Chinese character recognition problem.

The work by Hafemann et al. [120] on writer-independent off-line handwritten signature verification (in the

presence of skilled forgeries) uses CNNs to address the difficulty of obtaining good features to distinguish

genuine signatures from forgeries regardless of the writer. Finally, it is worth mentioning the work by Sudholt

and Fink [105] on WS in handwritten documents using a Pyramidal Histogram of Characters (PHOC) CNN-

type architecture. This PHOC representation was able to outperform state-of-the-art results for different

WS datasets.

5. Conclusions and future research

The following points summarize the main conclusions that can be drawn from our analysis:

• For the last thirty years, the literature on off-line handwritten document analysis has grown steadily.

• Japanese, Chinese, Arabic, and Roman scripts were the most studied ones in the first years. Publications

on Indian scripts have grown notably for the last years.

• Character and numeral recognition have been the most studied text recognition problems. Since 1995 and

2000, word and sentence recognition, respectively, have also attracted attention.

• WS, WI, SV, and historical text recognition have been investigated recurrently.

• Other less studied topics related to text recognition are music recognition, mathematical formula recog-

nition, forensic applications, and other verification problems.

• Text segmentation and classification have been crucial to tackle text recognition. In particular, the

combination of several classification models to solve the issues has stood out. Besides, researchers have

dealt with the feature extraction task considerably, as many keywords in the TNs show.

• HMMs, SVMs, and NNs have been motor methodologies over the years. Within the NNs, the DNNs
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and their variants such as RNNs, DCNNs, FCNNs have set the trend in research for the last six years.

Nevertheless, the methodologies used have been many and varied.

Also, as mentioned in Section 3.3.2, looking at the last periods’ motor TNs and the most recent published

works, some short-term future trends can be figured out:

• Text recognition problems seem to lead the document analysis research. Within this field, HCR has been

in a motor TN for last thirty years.

• Since 2000, Segmentation has become increasingly important as an integral step in HTR, and in the

short-term future, it will probably keep being a relevant topic. Moreover, other topics included in this

TN, such as HWR, WS, Historical documents recognition, and techniques as FCNN and sliding window,

will probably be relevant in the next years.

• SVM and its related topics became traversal topics, but in the last fifteen years it has exhibited high

centrality and density, increasing its importance on the research field. Also, its number of papers has

increased.

• DNNs appeared strongly in 2015-2020, showing the highest density, centrality, and number of papers of

all topics. So, it is expected that deep learning keeps being an essential research theme in the short term.

• The importance of a problem or a technique in a specific period depends on the script to be recognized.

For example, HCR has been deeper studied in Chinese, Arabic, or Roman (or Latin) scripts since 1990,

and in the 2000s word recognition problems were more important. However, handwriting recognition for

Indian scripts started later (over 2005), and HCR problems became very important between 2010 and

2014. In the same way, a methodology that was very important in a period and could seem out of use

could be fundamental in future periods as other scripts could use it to solve the problem.

• Many recent articles are focused on an end-to-end approach that includes localization plus transcription.

Other handwriting text recognition models are based on sequence-to-sequence and attention mechanisms,

as it is shown in the Attention Mechanism TN. In this last approach, classical attention mechanisms

are replaced by transformers. Additionally, multi-script systems have become very popular, especially in

Indian text recognition, where many alphabets coexist.
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[246] A. Sánchez, C. A. B. Mello, P. Suárez, A. Lopes, Automatic line and word segmentation applied to densely line-skewed

historical handwritten document images, Integr Comput-Aid E 18 (2) (2011) 125–142.

[247] C. De Stefano, F. Fontanella, C. Marrocco, A. Scotto Di Freca, A GA-based feature selection approach with an application

to handwritten character recognition, Pattern Recogn Lett 35 (1) (2014) 130–141.

[248] K. Neamah, D. Mohamad, T. Saba, A. Rehman, Discriminative features mining for offline handwritten signature verifi-

cation, 3D Res 5 (1) (2014) 1–6.

[249] A. Fornés, A. Dutta, A. Gordo, J. Lladós, CVC-MUSCIMA: A ground truth of handwritten music score images for writer

identification and staff removal, Int J Doc Anal Recog 15 (3) (2012) 243–251.

[250] X.-D. Zhou, D.-H. Wang, F. Tian, C. Liu, M. Nakagawa, Handwritten Chinese/Japanese text recognition using semi-

Markov conditional random fields, IEEE T Pattern Anal 35 (10) (2013) 2413–2426.
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