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Abstract Many analyses on configurable software systems are intractable when con-
fronted with colossal and highly-constrained configuration spaces. These analyses
could instead use statistical inference, where a tractable sample accurately predicts
results for the entire space. To do so, the laws of statistical inference requires each
member of the population to be equally likely to be included in the sample, i.e., the
sampling process needs to be “uniform”.

SAT-samplers have been developed to generate uniform random samples at a rea-
sonable computational cost. However, there is a lack of experimental validation over
colossal spaces to show whether the samplers indeed produce uniform samples or not.
This paper (i) proposes a new sampler named BDDSampler, (ii) presents a new statis-
tical test to verify sampler uniformity, and (iii) reports the evaluation of BDDSampler
and five other state-of-the-art samplers: KUS, QuickSampler, Smarch, Spur, and Uni-
gen?2. Our experimental results show only BDDSampler satisfies both scalability and
uniformity.
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1 Introduction

Generating random SAT-solutions is of critical importance in several domains: Soft-
ware Product Lines (SPLs) analysis and configuration [39,48,53], software testing
[12,21,57,58], and integrated circuit simulation and verification [31,51,68].

To get a sense of this problem’s relevancy and complexity, consider an example
taken from the SPL domain. BusyBox! is a software tool that replaces many standard
GNU/Linux utilities with a single small executable, thus providing an environment
customized for a diversity of embedded systems. To achieve size-optimization, Busy-
Box is remarkably modular, supporting the inclusion/exclusion of 613 features at
compile time. These features and their interrelationships are specified with a configu-
ration language named Kconfig?. To guarantee that every valid configuration satisfies
all dependencies, the Kconfig model of BusyBox is translated into a Boolean formula
that is then processed with a logic engine [5,24] (e.g., a SAT solver [8]). A valid con-
figuration corresponds to a satisfiable assignment of the formula, also called, a SAT
solution [57] or a witness [12].

As a consequence of the inter-feature dependencies, the space of valid configu-
rations (7.428 - 10149) is a tiny portion of the whole configuration space (2°!3): only
2.185-1073% of the possible configurations are valid [29]. Nevertheless, the popu-
lation of valid configurations is still colossal. Those SPL analyses that examine every
valid configuration are unscalable.

For instance, Halin et al. [28] adopted an exhaustive strategy to test the JHip-
ster® system, checking all its valid configurations. JHipster is a code generator for
web applications with 45 selectable features that can produce a total of 26,256 valid
configurations. Checking this modest configuration space with the INRIA Grid’5000*
required 4,376 hours of CPU time (~ 182 days), and 5.2 terabytes of disk space.

Others have advocated approaching this and related problems via statistical in-
ference [3,4,27,35,38,49,53,61,66]; that is, working with a tractable sample that
predicts the results for the entire population. An essential requirement is that all sam-
ples be genuinely representative of the population [36]. In other words, each member
of the population must be equally likely to be included in a sample. Authors often use
the term uniform random sampling [53,57,59] for this idea.

A naive approach to get such a sample would (i) generate a random configura-
tion set without considering feature dependencies, and then (ii) check with a logic
engine if each configuration conforms to those dependencies. Unfortunately, and as
mentioned above, feature dependencies shrink the configuration space extraordinar-
ily, and so getting a single valid configuration randomly is extremely unlikely. As a
result, more advanced algorithms generate valid and uniform random samples at a
reasonable computational cost.

Verifying that these algorithms and their tools indeed generate genuine uniform
samples is a challenge by itself, because it requires examining the consistency be-
tween sample statistics and their corresponding population parameters (e.g., how

https://busybox.net/

https://www.kernel.org /doc/Documentation /kbuild /kconfig-language.txt
https://www.jhipster.tech/

https://www.grid5000.fr/

AW N~



Uniform and Scalable Sampling of Highly Configurable Systems 3

frequently a feature appears in a sample compared to its probability of being in-
cluded in every valid configuration [30]). As configuration spaces can be colossal,
current procedures that certify a sampler’s uniformity has the severe shortcoming of
requiring gigantic sample sizes to estimate reliable statistics [21,2, 12]. Consequently,
sampler uniformity has been checked only on miniature models so far, which is not
convincing. Also, most uniformity procedures compute population parameters in a
poorly scalable way (e.g., requiring calling a #SAT solver thousands of times [57]).

This paper extends our paper in SPLC’20 [29], where (i) a statistical test is formu-
lated to reduce the sample size required for assessing a samplers’ uniformity, and (ii)
population parameters are computed with scalable algorithms we proposed in [30].
The additional contributions of this present paper are:

1. A new sampler called BDDSampler, which is built upon a Binary Decision Dia-
gram (BDD) [10] technology (see Section 3).

2. A new statistical test to validate a samplers’ uniformity, reducing the sample size
requirements even more than our previous test (see Section 4).

3. Anexperimental validation with our new test of BDDSampler and other five state-
of-the-art samplers (KUS [59], QuickSampler [21], Spur [2], Smarch [54], and
Unigen2 [13,11]) on configuration models with up to 18,570 variables (see Sec-
tion 5).

4. Experimental results show (i) our new statistical test needs the smallest sample
size of all existing uniformity validation methods, and (ii) BDDSampler is the
only sampler that satisfies both uniformity and scalability. Our software artifacts
(BDDSampler, and the data and code scripts for replicating the experiments) are
freely available at public repositories (see Section 8).

2 Related Work

Before discussing related work, a terminological clarification is needed. In the ma-
chine learning, the term sample usually refers to a single data point [15]. However,
in inferential statistics, a sample is typically a collection of cases, where the number
of cases in the sample is the sample size [14,36]. This paper adopts this latter ter-
minology, and consequently, a sample is a set of configurations (i.e., a collection of
SAT-solutions), whose cardinal is its sample size.

Here is additional standard statistical terminology that we will use in this pa-
per. Inferential statistics aims to generalize the results obtained from a sample to the
entire population. To do so, the most widespread approach, called Null Hypothesis
Significance Test (NHST), quantifies the probability of obtaining the sample results
conditioned on the assumption that a given null hypothesis (Hy) is true (NHST funda-
mentals are explained in Chapter 13 of [36] and Chapter 3 of [65]). If such probability
(named p-value) is less or equal than an established threshold (called the significance
level (o)) then H is rejected, and thus its alternative hypothesis H, accepted. Other-
wise, Hy is kept. As Table 1 shows, two mistakes under this framework can be made
due to unusual random samples: rejecting a true Hy (named Type I error), and failing
to reject a false Hy (called Type 2 error). The expression 1 — 8 is known as the test’s
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power. The experimenter can adjust the Type 1 and 2 error probabilities through the
thresholds o and B (see Chapter 4 of [65]).

Table 1 Type 1 and 2 errors under the NHST framework.

Hj is true in reality (Hy)  Hy is false in reality (—Hp)

The decision inferred Pr(R|Hy) = o Pr(R|—Hp)=1—-
from the sample is Type 1 error Power

“reject Hy” (R)

The decision inferred Pr(—-R|Hy)=1—« Pr(—=R|-Hp) =3
from the sample is Type 2 error

“do not reject Hy” (—R)

2.1 Uniform Random Samplers

The following sections summarize some of the most common strategies to generate
uniform random samples for a model of a configuration space that is encoded as a
Boolean formula ¢.

2.1.1 Atomic Mutations (QuickSampler)

QuickSampler’ [21] uses a heuristic to gain scalability by minimizing the number of
calls to a constraint solver. It generates a random configuration without taking into ac-
count the formula constraints. This configuration often violates constraints and thus
is unsatisfiable. So, QuickSampler calls the Z3 solver [47] to fix the configuration
by finding a MAX-SAT-solution. Then, QuickSampler flips the value of each vari-
able and calls again Z3 to get another valid configuration. The differences between
the variable values of the original and flipped SAT configurations are called afomic
mutations. By combining mutations, QuickSampler quickly generates new configu-
rations without calling the solver as those configurations are usually legal [21].

2.1.2 Hashing-based sampling (Unigen2)

Several techniques divide the space of SAT-solutions into small “cells” of approxi-
mately the same size using r independent hash functions. Accordingly, sampling is
done by choosing a cell at random, and then getting a satisfying assignment for that
cell using a SAT solver. A critical point of these techniques is determining the “right”
r value. For instance, Bellare et al. [6] showed that an r equal to the number of for-
mula variables guarantees uniformity. However, Chakraborty et al. [13] reported that

> https://github.com /Rafael Tupynamba/quicksampler



Uniform and Scalable Sampling of Highly Configurable Systems 5

such r does not scale in practice; in contrast, r = 3 scales better and ensures near-
uniformity. Unigen2® [11] develops these ideas further, giving stronger uniformity
guarantees.

2.1.3 Counting-based sampling (KUS, Smarch, and Spur)

In Section 7.1.4 of [37], Knuth showed how to accomplish uniform random sampling
by subsequently partitioning the SAT-solution space on variable assignments, and
then counting the number of solutions of the resulting parts. Again, ¢ be a Boolean
formula of v variables x1,x2,...,x,; let #SAT (¢) denote the number of solutions to
@; and let r € [0, 1] be a random number in the unit interval. Conceptually, the proce-

dure works as follows: The number of solutions where x; is true is counted, namely

#SAT (¢ A xp). x; follows a Bernoulli distribution with probability p; = %ﬁgl).

x1 1s assigned false if r < py, true otherwise. Suppose x; is assigned false. Then, x»
#SAT(PAX Axp)
#SAT(pAF))
randomly assigned. The procedure advances until the last variable x, is assigned, and

thus the random solution is completed.

The original algorithm by Knuth is specified on BDDs, as the probabilities re-
quired for all the possible SAT-solutions are computed just once with a single BDD
traversal, and then reused every time a random configuration is generated. Oh [53]
reinvented Knuth’s algorithm and was the first to implement and apply it to SPL anal-
yses. Since then, Knuth’s algorithm has been adapted to other knowledge compilation
and Davis-Putnam-Logemann-Loveland (DPLL) [19] approaches. In particular, (i)
the KUS’ sampler [59] substitutes BDDs with deterministic-Decomposable Nega-
tion Normal Forms (d-DNNFs), and (ii) Spur® [2] and Smarch® [54] count SAT
solutions with a #S AT-solver named sharpSAT [62].

follows a Bernoulli distribution with probability p, = , and it would be

2.1.4 New: BDDSampler, a scalable and uniform sampler

Section 3 describes a new sampler called BDDSampler, which is based on Knuth’s
algorithm and implemented on top of the CUDD!? library for BDDs.

According to the experimental results reported in Section 5, the only sampler that
satisfies both scalability and uniformity is BDDSampler. More specifically, evidence
shows that:

— BDDSampler, KUS, QuickSampler, and Spur are considerably faster than Smarch
and Unigen?2.

— In terms of uniformity, there are three types of samplers: (i) those that mostly
fail to produce uniform samples (QuickSampler), (ii) those that usually work but
from time to time generate non-uniform samples (KUS and Spur), and (iii) those
that always produce uniform samples (BDDSampler, Smarch, and Unigen2).

https://bitbucket.org/kuldeepmeel /unigen
https://github.com /meelgroup/KUS
https://github.com /ZaydH /spur
https://github.com /jeho-oh/Kclause_Smarch
https://github.com /vscosta/cudd
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2.2 Prior Work on Testing Sampler Uniformity

The following sections summarize the methods that have been devised to test the
uniformity of a random sampler S.

2.2.1 Method 1: Generate a massive sample with S, and compare it with another
one obtained simulating an ideal uniform sampler

This is the most common technique in the literature [2,11,21,57,59]. First, the total
number n of SAT-solutions is counted for the Boolean formula ¢, typically using a
#S AT-solver. Having n, the generation of a uniform sample with size s is simulated as
follows: imagine that numbers 1,2, ...,n are put into a box; then, s numbers are sam-
pled with replacement from the box, guaranteeing that the probability each number
has to be extracted is %

For example, JHipster encompasses 26,256 valid configurations [28]. Fig. 1 shows
the histogram of a sample ten times greater than the number of configurations (s =
26,256 - 10), which has been obtained sampling with replacement from the set {1,
2, ...,26256}. The x-axis depicts numbers’ occurrences, i.e., there are numbers that
appear 0, 1, ..., 27 times in the sample; the y-axis shows how frequent are those oc-
currences in the sample. As expected, most numbers appear ten times (see the red
vertical line in Fig. 1), however, and due to randomness, some numbers appear more
frequently than others.

Sample size = #SAT-Solutions x 10 = 262,560

i
|
. _ulll
0o 2 4 6

8 10 12 14 16 18 20 22 24 26
Numbers' occurrences in the sample

o N w
o o o
o o o
o o o

Frequency of the
numbers' occurrences

Fig. 1 Simulated uniform random sample of the JHipster configuration model.

Another sample with size s (whose value is quantified shortly), is then gener-
ated with sampler S. For this sample, a counterpart histogram to Fig. 1 is obtained,
representing how often solutions appear in that sample.

Finally, the uniformity of S is verified by measuring the distance between both
histograms, using, for instance, the Kullback-Leibler divergence [2].

Unfortunately, this method has a severe limitation: it does not scale except for
formulas with a small number of SAT-solutions because, to produce reliable results,
s needs to be much larger than n (see [2,21] for an explanation). For example, Dutra
et al. [21] propose s > Sn. As the number of solutions grows exponentially with the
number of variables of ¢, the method only works for the simplest models with just a
few features.



Uniform and Scalable Sampling of Highly Configurable Systems 7

2.2.2 Method 2: Assume the existence of a uniform sampler U, and compare the
samples generated by both S and U

Chakraborty and Meel [12] proposed this method and implementation called bar-
barik''. The method makes a strong assumption: there is a sampler U that is known
to be uniform. Thus, two samples of the same size s are generated with S and U and,
depending on the distance between the samples, 1.e., on how similar they are, barbarik
decides if S is approximately uniform.

The key of the method is how to define “approximately” for reaching a balance
between uniformity and sample size, i.e., for avoiding the large s that Method 1 re-
quires. Two parameters, called tolerance € and intolerance 1), adjust the definition
of “uniformity” to avoid the above problems. A sampler is uniform whenever the
probability p1, pa,..., pn of all n solutions is exactly %

Barbarik relaxes this definition, proposing that a sampler is additive almost-uniform

if p1,p2,....,pn € [ﬁ 1i] Moreover, a sampler is N-far from uniformity if

n '’ n
1 1
ZP:’——‘ >
i=1 n

Chakraborty and Meel claim that s depends on € and 1 exclusively, but not on
n. In particular, they state that a uniformity test with significance level o = 0.1 (i.e.,
0.9 probability of accepting the uniformity of a sampler when it is genuinely uniform)
and Type 2 error B = 0.1 (i.e., 0.9 probability of rejecting the uniformity of a sampler
that is not uniform) is accomplished when € = 0.6 and n = 0.9, requiring a sample
size of 1,729,750. Unfortunately, they do not provide a detailed formal proof for
these settings in [12].

An evident weakness of this method is the necessity of a sampler U with certi-
fied uniformity as a support lever. It is worth noting that, although an algorithm can
be proven to generate uniform samples theoretically, some of its implementations
may have errors. In other words, every sampling program needs to be tested, and
thus Method 2 implicitly assumes the existence of another reliable uniformity testing
method.

2.2.3 Method 3: Compare the theoretical variable probabilities in ¢ with the
empirical variable frequencies in a sample generated with S

Plazar et al.’s method [57] begins computing the theoretical probability each variable
x has to appear in a SAT-solution. To do so, the procedure introduced in Section
2.1.3 is adopted, calling a #SAT solver repeatedly, one time per variable. #SAT(¢)

gives the total number of SAT-solutions, and #SAT (¢ A x) calculates the number of

solutions where x is true. Hence, the probability of x is p = #igg%\;)

if x is true ¢ times in a sample of size s, its empirical frequency is f = g Then,

. Likewise,

the deviation between p and f is d = 100 @. Finally, Plazar et al. propose two
thresholds for d: (i) when d < 10 for all variables, the deviations are very low, and

" https: //github.com /meelgroup/barbarik
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thus sampler uniformity is accepted; (i1) when d > 50 for some variables, they show
very high deviations, and so uniformity is rejected. Regarding the sample size, Plazar
et al. propose always using s ~ 10°, independently of the number of variables of ¢
(no formal justification is given for this specific value in [57]).

Regrettably, this method often throws false negatives for variables with low prob-
abilities. Suppose a variable has p = 0.01. Then, a genuine uniform sampler might
easily generate a sample where f is slightly different just due to randomness, e.g.,

f = 0.015. Therefore, d = 100 - W = 50, and thus the sampler uniformity
would be rejected. The chances that these types of wrong diagnoses happen increases
with the number of low-probability variables, and it is worth noting that real models
with numerous low-probability variables are not “corner cases”; for example, in three
out of the seven configuration models analyzed in [30], more than 46% of their vari-
ables have p < 0.05: the open-source project Fiasco v2014092821, the Dell laptop

configurator, and the Automotive 02 system.

2.2.4 Method 4: a statistical goodness-of-fit test that compares theoretical variable
probabilities in @ with the empirical variable frequencies in a sample generated
with S

In the past [29], we presented a procedure called Feature Probability (FP) test, which
compares the empirical feature frequencies in a sample with the theoretical feature
probabilities in the whole population of SAT-solutions. Instead of using the limited
Method 3 deviation measure, our FP method (1) has a robust mathematical basis, (ii)
estimates the statistical significance of the results (i.e., how generalizable they are),
and (i11) supports adjusting the sample size according to precise statistical criteria
(i.e., Type I and 2 errors, and effect size).

It is worth noting that a major shortcoming of Methods 1, 2, and 3 is the large
sample size they need. For instance, in [2] and [59], Method 1 is applied on a model
called blasted_casell0 with 287 variables, requiring s = 4 - 10° SAT-solutions. In
[12], Method 2 is used on blasted_casel10 as well, needing this time 1,729,750
SAT-solutions to ensure probability errors of Type 1 o« = 0.1 and Type 2 8 = 0.1.
In contrast, our FP test provides stronger test guarantees (o = 0.01 and = 0.01)
for blasted_casell0 with a minimal sample size of 13,027 solutions (i.e., a 99.25%
sample size reduction with respect to Method 2).

2.2.5 New: an improved goodness-of-fit test

Section 4 presents a new procedure that improves Method 4 by, instead of exam-
ining the variable probabilities, analyzing how the number of variables assigned to
true distributes along the SAT-solutions. We show in Section 5 that the new method
requires even smaller samples, thus widening the support for testing samplers’ uni-
formity on larger models. For example, the sample size our new method requires for
blasted_casel10 with o = 0.01 and 8 = 0.01 becomes 6,563 solutions.
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2.2.6 Recap

Excluding the methods presented in this article and in our conference paper, there are
serious practical problems in applying existing ways to test for sampler uniformity.
We provide experimental evidence in Section 5 that our improved goodness-of-fit test
1s superior to prior work as it requires the smallest sample size of all existing tests,
thus enabling the verification of samplers’ uniformity in large models. As we will see,
this highly increases the test sensitivity to detect samplers’ uniformity flaws. More-
over, results show that our test provides (i) valid judgements, which are consistent
with the verdicts given by the alternative methods proposed in the literature, and (ii)
reliable judgements, which remain consistent when the test is applied repeatedly to
the same model and sampler.

3 The BDDSampler Tool

This section describes BDDSampler: a sampler that uses Binary Decision Diagrams
(BDDs). A practical example how configuration models can be translated into Boolean
formulas is presented in Section 3.1. Then, a BDD encoding of a Boolean formula is
covered in Section 3.2. Finally, how BDDSampler works is explained in Section 3.3.

3.1 From Configuration Models to Boolean Formulas

Let us start with an example to help to explain BDDSampler and our samplers’ uni-
formity test. As already mentioned in this paper’s introduction, BusyBox supports the
inclusion/exclusion of a number of features at compile time. These features and their
interrelationships are specified with a configuration language named Kconfig which
is used in many other relevant open-source projects [7], such as the Linux Kernel,
axTLS, EmbToolkit, Freetz, etc.

Fig. 2 shows an excerpt of the Kconfig specification of BusyBox v1.23.2. There
are several configs encoding six features and their interdependencies. All features
(STATIC, PIE, ..., FEATURE_SHARED_BUSYBOX) are Boolean (see the bool key-
word in Lines 2, 4, ..., 15), meaning that they can be either selected or deselected.
Configs trigger a prompt to request the user for their Boolean feature value, e.g.,
Build BusyBox as a static binary (no shared libs) in Line 2. Finally, some depen-
dencies between features are set, e.g., according to the depends sentence in Line 10,
BUILD_LIBBUSYBOX can only be selected if none of the following features are
selected: FEATURE_PREFER_APPLETS, PIE, neither STATIC.

The graph in Fig. 3 depicts the entire BusyBox configuration model, which in-
cludes 613 features and 530 inter-dependencies; nodes represent features, and edges
depict dependencies. The Kconfig excerpt in Fig. 2 is zoomed in Fig. 3.

Given the configuration models’ complexity, they are usually translated into Bool-
ean formulas that are then processed with logic engines. For instance, Equation 1 is
the Boolean encoding of Fig. 2 (a detailed explanation of how to convert Kconfig
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config STATIC
bool " Build BusyBox as a static binary (no shared libs)”
config PIE
bool " Build BusyBox as a position independent executable”
depends on ISTATIC
config FEATURE_PREFER_APPLETS
bool "exec prefers applets”
config BUILD_LIBBUSYBOX
bool " Build shared libbusybox”
depends on !FEATURE_PREFER_APPLETS && !'PIE && !STATIC
config FEATURE._INDIVIDUAL
bool "Produce a binary for each applet, linked against libbusybox
depends on BUILD_LIBBUSYBOX
config FEATURE_SHARED_BUSYBOX
bool "Produce additional busybox binary linked against libbusybox
depends on BUILD_LIBBUSYBOX

Fig. 2 Excerpt of the BusyBox Kconfig specification.
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Fig. 3 Graph-representation of the BusyBox Kconfig specification.

specifications into Boolean formulas is given in [24]). In this section and the follow-
ing one, we explain how to use BDDs for (i) generating random samples from the
formulas, and (i1) testing the uniformity of an input sampler.
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3.2 A Brief Introduction to BDDs

A BDD [10] encodes a Boolean formula as a rooted directed acyclic graph composed
of terminal and non-terminal nodes. Terminal nodes are represented as [0] and [1], and
non-terminal nodes are labeled with the formula variables. Two edges, named low and
high, come out of every non-terminal node. Low is depicted with a dashed line (--+),
and high with a solid line (—). A BDD encodes every possible assignment of the
formula variables as a path that descends from the root to the terminal nodes, going
through solid lines when the corresponding variables are assigned to true and through
dashed lines otherwise. An assignment is satisfiable, i.e., it evaluates the formula to
true, whenever the traversed path ends at[1].

Fig. 4 depicts a BDD that encodes the BusyBox excerpt specified by Equation 1.
A configuration whose only activated features are BUILD_LIBBUSYBOX and FEA-
TURE_SHARED_BUSYBOX conforms with the constraints (i.e., it is valid) and so it
corresponds to the path BUILD_LIBBUSYBOX — FEATURE_INDIVI-DUAL --»
FEATURE_SHARED_BUSYBOX — FEATURE_PREFER_APP-LETS --» STATIC
--» PIE --»[1]. In contrast, as STATIC and PIE are mutually exclusive, no config-
uration includes them simultaneously. Thus, all paths with solid lines coming out of
both STATIC and PIE finish at[0].

BDDs are typically ordered and reduced. A BDD is ordered when its variables are
in the same position, called index, in every path from the root to the terminal nodes.
For example, in Fig. 4, STATIC (whose index is 4) always goes before PIE and after
FEATURE_PREFER_APPLETS (whose indices are 5 and 3, respectively). A BDD is
reduced if it is free of redundant information. For instance, every blue/dark-shaded
node in Fig. 4 is superfluous because both of its edges point to the same node and
thus the formula evaluation is identical whether these variables are assigned to true
or false. Consequently, these unnecessary tests are avoided in the reduced BDD in
Fig. 5 to save computer memory.

It is worth noting that the variable ordering chosen to build the BDD has a tremen-
dous impact on its size. Whereas a BDD can be reduced optimally (the reduction
procedure was presented in the seminal article [10]), obtaining the best variable ar-
rangement that minimizes its size is an NP-problem (Chapters 8 and 9 of [45] provide
a comprehensive discussion on this topic). Several variable ordering heuristics [23,
24,46,50] have been proposed for the specific case of configuration model formulas.
As reported in Section 5, we have been able to synthesize BDDs for large configura-
tion models, with up to 17,000 features, by using these heuristics.
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Fig. 4 Non-reduced BDD encoding of Equation 1.
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Fig. 5 Reduced BDD encoding of Equation 1.

3.3 How BDDSampler Works

BDDSampler takes an ordered and reduced BDD as input and generates random con-
figurations in a two-step process described by Algorithms 1 and 2. Fig. 5 summarizes
Algorithm 1 computations for our running example. The algorithm decorates each
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non-terminal node with its probability of reaching the terminal [1] if the associated
variable is set to true. Algorithm 1 proceeds in a bottom-up fashion, collecting the
number of SAT solutions that can be produced by its low and high children (solLO
and solHI in Lines 8-9), adding them up (sol in Line 10), and then computing the ratio
corresponding to the high child (pr in Line 11). As the BDD is reduced, Algorithm
1 adjusts the solution counts in Lines 8-9 for the removed nodes with the expression
pindex(mom)—index(n)—1 For traversing efficiently the BDD, Algorithm 1 uses Bryant’s
method [10] as follows: the algorithm is called in Line 12 with the BDD root as argu-
ment and with a Boolean mark for every node being either all true or all false; then, it
explores all nodes by recursively visiting the low and high children (Lines 6 and 7).
Whenever a node is visited, its mark value is complemented (Line 2). Comparing the
node with its children’s marks, it is decided if the children have already been visited.
The method ensures that each node is visited exactly once and that, when the traverse
finishes, all node marks have the same value.

Algorithm 1. Get all node probabilities.

1 Function getNodePr (n)

2 mark(n) <~ — mark(n)

3 if n = 0 then sol[n] +- 0 // [0] is reached

4 else if n =1 then sol[n] « 1 // is reached
5 else

// explore low

6 if mark(n) # mark(n.o) then getNodePr (1)
// explore high

7 if mark(n) # mark(ny;) then getNodePr (ny;)
// get node probabilities

8 solLO «— SO|[nLO]_2index(nL0)—index(n)—l

9 solHI «— SO|[I’ZHI]-2index("“‘>7index(")7l

10 sol[n] «+ solLO + solHI

11 prln] « sl

sol[n]

12 getNodePr (ROOT)

Whereas Algorithm 1 is run once as an initialization method, Algorithm 2 needs
to be run as many times as configurations we want to generate. Algorithm 2 performs
a random walk from the root to the terminal [1]. When a non-reduced node is visited,
the path is selected randomly according to its probability (Lines 11-16): if the node
probability is p, then its low and high edges are chosen with probabilities 1 — p and p,
respectively. Regarding the reduced nodes, the generated configuration will be valid
no matter if their variables are set to true or false (that is the reason why these nodes
were removed). Thus their value is chosen randomly with a 1/2 probability by taking
into account that a reduced node index may be less than the BDD root index (Lines
6-7) or greater (Lines 17-18).

Algorithm 2 is remarkably fast since its time complexity is proportional to the
number of indices (i.e., of variables), not the number of nodes in the BDD. Moreover,
multiple instances of Algorithm 2 can be run in parallel over the same BDD, as the
node probabilities are read but not modified.
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Algorithm 2. Generate a random Configuration.

Function random
| return a random number € [0, 1)

N O

w

Function fiftyfifty
| return random () < 0.5

IS

(S

Function generateConfiguration()
// generate random values for variables corresponding to reduced ROOT
predecessor nodes

6 for (i < 0; i < index(ROOT); i++) do
7 | sample[i] « fiftyfifty ()

// generate random values for the remaining variables
8 trav <~ ROOT
9 while trav # 1 do // iterate until reaching the 1-terminal node
10 ind < index(trav)
11 if random () < pr|trav] then
12 trav < travy
13 sample[ind] «+ TRUE
14 else
15 trav < travio
16 L sample[ind] < FALSE

// generate random values for variables of reduced intermediate nodes

17 for (i < index+1; i < index(trav);i++) do
18 | sample[i] « fiftyfifty ()
19 return sample

Finally, BDDSampler is built on top of CUDD 3.0'2 As other modern BDD li-
braries like Sylvan [20], CUDD uses a technique called complement edges [9] to
save nodes. With this technique, edges are enriched with a complement attribute that
removes the need of having two terminal-nodes (basically, when an edge has the com-
plement attribute enabled, the only terminal node is interpreted as its negation). Ac-
cordingly, BDDSampler tweaks Algorithms 1 and 2 to work with complement edges.
We have decided to show the algorithms for regular BDDs without complement arcs
for simplicity.

The BDDs of 218 models, which will be used in Section 5 to perform our exper-

imental evaluation, are available at https://doi.org/10.5281 /zenodo.4514919 in the
DDDMP format that CUDD uses for complement edge BDDs.

4 Assessing the uniformity of SAT solution samplers

Fig. 6 sketches our approach to verify that a sampler generates uniform random sam-
ples of a model that is encoded as a Boolean formula. The method compares empirical
information about a sample with theoretical information about the whole population
of SAT-solutions that the model represents.

12 https://github.com /vscosta/cudd
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Theoretical information

Population Distribution of the
characterization g selected features
per configuration

Model -
Boolean Goodness-of-fit Acce_Et/Reject
encoding test uniformity

l Distribution of the

Sample
WW characterization selected features

per configuration

Empirical information

Fig. 6 Proposed method for verifying if a sampler generates uniform samples for a model.

4.1 The SFpC Goodness-Of-Fit Test

In statistics, the procedures for examining how well a sample agrees with the popula-
tion distribution are known as goodness-of-fit tests [18]. They require characterizing
both the sample and the population in terms of a quantitative measure. In particular,
we propose the distribution of the number of variables assigned to true among all
SAT-solutions, called the Selected Features per Configuration (SFpC) test. For in-
stance, Fig. 7 compares the theoretical distribution of all 7.428 - 10146 SAT-solutions
of the BusyBox model with the distribution of 17,738 configurations generated with
the samplers BDDSampler and QuickSampler, Figures 7a,b respectively. The justifi-
cation for this sample size 17,738 is given in Section 4.2.

The distribution of the whole population of SAT-solutions of a model can be
computed with the Product Distribution (PD)'3 algorithm we proposed in [30]. PD
takes the BDD encoding of a model as input, and as explained in Section 3.D of
[30], its time complexity is O(nv?), where n is the number of BDD nodes and v the
number of model variables. Accordingly, PD scales for large models. For instance, on
an Intel(R) Core(TM) 17-6700HQ, it took 2.74 minutes to compute the distribution
of the Automotive02 model [41], which with 17,365 variables and 321,897 clauses
encompasses 5.26 - 1014 SAT-solutions.

As the theoretical histogram shows in Fig. 7a, the smallest and largest BusyBox
configurations have 6 and 571 features activated, respectively. 95% of the configura-
tions have between 277 and 327 variables assigned to true.

The BDDSampler histogram (Fig. 7a) agrees with the normally distributed pop-
ulation. However, the QuickSampler histogram (Fig. 7b) is bimodal where most con-
figurations have 100 or 200 features approximately, quite different from the theoreti-
cal histogram.

After exploring the sample’s goodness-of-fit graphically, it is desirable to advance
towards a more formal test that provides an accurate numerical quantification. A good
candidate to measure the distance/difference between the sample and population dis-

13" https://github.com /rheradio/VMStatAnal



16 Ruben Heradio et al.

0.03 _.
>0
0.02 4 8
20.01- =
= o
8 0.00
S 0.03- o
Q- 0.02+ 3
0.01+ 8
0.00 L === e i o o e
SYSLSIBLSPOLSISLS L OESHEE
#True variables per SAT—solution
(a) BDDSampler
0.075 3
@
0.050 - o
2 0.0251 :
o J A o
2 0.000
o]
© 0.0754 m
O 0.0501 3
0.025 1 -‘ 8
0.000 =_ ummmses e B o 1 B 1 i e e e 1 e e

QLR LRLM LML LN
VECSPELS IS FEF SV ELS YL

#True variables per SAT—-solution

(b) QuickSampler

Fig. 7 Distribution of all BusyBox SAT-solutions compared with the distribution of 17,738 configurations
generated with BDDSampler and QuickSampler.

tributions is the Kullback—Leibler divergence'* [17]. For discrete probability distri-
butions P and F specified on the same probability space X, the Kullback—Leibler
divergence from F to P is defined as:

De(PIIF) = ¥ P(x)logs (1)) @

xeX (x)

However, the Kullback-Leibler divergence is not symmetric, and thus it cannot rig-
orously be considered a metric [44]. For this reason, we use its symmetrical and nor-
malized version, which is named Jensen-Shannon divergence [17,44] and defined
as:

1 1
ISD(PIIF) = 5D (P|IM) + 5 Dy (< M) ®
where M = 1 (P+F).

In our case, vectors F and P are defined as follows:

14 The Kullback—Leibler divergence and especially one simplified version called cross-entropy are
widely used as loss functions to compare the neural network predicted output with the observations used
to train the network (see Chapter 3 of [25] for a summary of the Kullback—Leibler divergence and cross-
entropy applications to deep learning).
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— F = [fo,f1,.--,fn] stores the SAT-solution frequency distribution (i.e., the red
histograms in Figure 7). That is,

#SAT solutions in the sample with no variables assigned to true
0 pum

sample size

#SAT solutions in the sample with 1 variable assigned to true
1 pr—

sample size

_ #SAT solutions in the sample with all variables assigned to true

Jo =

sample size

— P=1[po,pi,---,Pn] stores the theoretical SAT-solution probability distribution of
Fig. 7. That is,

#SAT solutions in the population with i variables assigned to true
pi=

population size

To avoid worthless comparisons, all i-elements with p; = 0 are removed from
F and P because, as all solutions in the sample are guaranteed to be valid, the corre-
sponding f;’s are necessarily 0 as well. For instance, the BusyBox model has 613 vari-
ables, but all valid configurations have between 6 and 571 variables assigned to true.
Therefore, { fo, f1,-- -, f5, fs72, f573,-- > fe13} and { po, p1, . .., P5, P572, P573; - - -, P613 }
are deleted from F and P, respectively.

The Jensen-Shannon divergence JSD(P||F) measures to what extent the differ-
ence between F and P is greater than expected by chance if F corresponded to a uni-
form random sample. In the extreme cases, JISD(P||F) = 0 when F totally matches
P, and JSD(P||F) = 1 when the F completely disagrees with P.

Nevertheless, JSD 1s a mere distance/difference metric, i.e., we cannot tell if JSD
is significantly greater than expected due to randomness. Therefore, a statistical in-
ference test is needed to quantify how generalizable the obtained distance is, i.e., a
test that estimates the probability of a specific value of JSD(P||F) assuming that the
sampler is genuinely uniform. In the case that the estimated probability is excessively
low (below a significance level ), it is unlikely that the disagreement between F' and
P is due to chance, and so we can conclude that the sampler is not uniform.

Let s be the sample size (whose value we compute in Section 4.2), and m the
number of elements in P after having removed those with p; = 0. According to the
proof given by Grosse et al. in Section 4.C of [26], 2s(In2)JSD(P||F) has a y? distri-
bution with m — 1 degrees of freedom. As a result, a Chi-Squared goodness-of-fit test
built upon the statistic 2s(In2)JSD(P||F) guides us to decide whether the sampler is
uniform. In our BusyBox running example, s = 17,738 and m = 613 — 6 — 42 = 565,
hence if the sampler is uniform then 2 - 17,738(In2)JSD(P||F) should follow a 2.
distribution.

In contrast to typical Null Hypothesis Significance Tests (NHSTs), where the
null hypothesis Hy states the opposite to what the researcher pursues to demonstrate,
goodness-of-fit tests are a special case of NHSTs where Hyj is: “the sample agrees
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with the population” (see Chapter 3 of [18] for a detailed description of Chi-Squared
goodness-of-fit tests). Coming back to our case study, let us set the threshold oc = 0.01
to test the BusyBox samples generated with:

— BDDSampler:

ISD(P||F) = 0.001085388
2-17,738(In2)ISD(P||F) = 26.68979

p — value = Pr (getting a value > 26.68979’H0) ~1>a

= Test result : Do not reject Hy
— QuickSampler:

ISD(P||F) ~ 1
2-17,738(1n2)ISD(P||F) = 12,923.04

p— value = Pr(getting avalue > 12,923.04]110) ~0<a

= Test result : Reject Hy

To sum up, the test corroborates numerically the histogram comparison in Fig. 7:
BDDSampler generated a uniform sample, but QuickSampler did not.

4.2 Sample Size Estimation

The reliability of a Chi-Squared goodness-of-fit test depends on the following param-
eters (see Table 1):

— The significance level a sets the probability of making a Type [ error, i.e., the
probability of rejecting Hy when it is indeed true (false positive). It is worth noting
that o is also the threshold for rejecting Hy (i.e., Hyp is rejected whenever the p-
value < o).

— [ sets the probability of making a Type 2 error, i.c., the probability of accepting a
false Hy (false negative). The expression 1 — 3 is called the test’s power, i.c., the
probability of rejecting a false Hy.

When H is false, it is false to some degree. That degree is measured by another
parameter called the effect size [43]. In particular, Cohen [16] proposes the index w
for measuring the effect size in Chi-Squared tests. As a rule of thumb, w values of
0.1, 0.3, and 0.5 correspond to small, medium, and large effect sizes, respectively.

Interestingly, sample size, effect size, o, and B have an intimate relationship in
NHSTs: given any three of them, the fourth can be determined. In Section 7.3 of [16],
Cohen provides different power tables to estimate the minimum sample size required
to ensure the reliability of a Chi-Squared test given the values of o, 3, w, and x2’s
degrees of freedom. Nowadays, there is available statistical software that provides
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those tables, e.g., the R package pwr!> (see Chapter 10 of [33]) and the G*Power!®
tool [22].

In the previous section, we saw that the goodness-of-fit of any sample from the
BusyBox configuration model can be undertaken with a Chi-Squared test with 565
degrees of freedom. Then, according to Cohen’s power tables, the required sample
size is 17,738 configurations when o = 8 = 0.01, and w = 0.1.

S Empirical Evaluation

This section describes the experimental evaluation of our approach using the Goal/
Question/Metric (GQM) method [60]. As Fig. 5 shows, the evaluation pursues two
goals (G1 and G2), which are refined into five questions (Q1-Q5) that are answered
using different metrics.

G1: Samplers’ evaluation G2: SFpC’s evaluation

L) Purpose: Evaluate p . Evaluat
8 Issue: the scalability and uniformity of I urpo.se. thva ua Ie bilit d lity of
o Object:  state-of-the-art samplers and gzqe' " the ;?:a ‘é tl I %an quality o
—< Ay es\
( Qlc‘:'f'a",;ﬁ:f;s \(qz:samplers \ [ Q3:sFeCs [ aa:sFpcs [ a5 sFpcs )
") Are BDDSampler. KUS uniformity scalability validity reliability
5 . pler, " | |Do BDDSampler, How much time and Are SFpC results | [When SFpC is
i) QuickSampler, Smarch . P
7 Spur, or Uni e,n2 able t’o KUS, QuickSam- | | how many configura- | | consistent with applied repeatedly
g gene’rate sargnples with pler, Smarch, tions does SFpC the results obtai- | Jto the same model
G | 1,000 configurations out Spur, or Unigen2 need to check the ned by other and sampler, are
o% any size models generate uniform uniformity of a sam- uniformity testing | Jthe results consis-
\withirzlone hour? ) \SAT solutions? ] \pler on a model? | \methods? ] \tent? J
- Time to com- - .
Time to gene- -values pute the SAT Pearson’s p of Coheq S K qf
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with 1,000 : : obtained with test verdicts
) i . with SFpC bution of a .
o |configurations SFpC (reject/accept)
= model
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generate ted/rejected and w=0.1

per sampler

Fig. 8 Overview of the performed empirical evaluation with the GQM method.

The following points summarize our evaluation’s goals and questions:

G1: Samplers’ evaluation. The first goal G1 is to evaluate the scalability and uni-
formity of BDDSampler and the following state-of-the-art samplers: KUS!7 [59],

15 https://cran.r-project.org /web /packages /pwr

16 https://www.psychologie.hhu.de/arbeitsgruppen /allgemeine- psychologie-und-arbeitspsychologie/
gpower.html

17 https://github.com /meelgroup/KUS
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QuickSampIer18 [21], Smarch!® [54], Spur20 [2], and Unigen221 [13,11]. G1is

broken down into Questions Q1 and Q2:

Q1: Samplers’ scalability. Are BDDSampler, KUS, QuickSampler, Smarch Spur,
or Unigen2 able to generate samples with 1,000 configurations for models of
all sizes within one hour?

Q2: Samplers’ uniformity. Do BDDSampler, KUS, QuickSampler, Smarch Spur,
or Unigen2 always generate uniform samples?

G2: SFpC'’s evaluation The second goal G2 is to evaluate the scalability and qual-
ity, in terms of validity and reliability, of our SFpC test. G2 is refined into Ques-
tions Q3-Q5:

Q3: SFpC(C’s scalability. How much time and how many configurations does SFpC
need to check the uniformity of a sampler on a model?

Q4: SFpC’s validity. Does SFpC produce results consistent with the results ob-
tained by other uniformity testing methods?

QS: SFpC’s reliability. When SFpC is applied repeatedly to the same model and
sampler, are the results consistent?

Section 5.1 presents the experimental setup. As Fig. 9 shows, three experiments
E1-E3 were performed to solve the questions (e.g., Experiment E2 supported answer-
ing Questions Q2, Q3, and QS5). Sections 5.2-5.6 describe these experiments and the
specific metrics used to answer the questions. The detailed results and all the material
needed to replicate our experiments are available in the public repositories presented
in Section 8.

[72]

S
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Fig. 9 Relationship between questions and experiments.

5.1 Experimental Setup

The samplers were tested against a suite of 218 models encoded as Boolean formulas
in all of the following formats:

18 https://github.com /Rafael Tupynamba/quicksampler
19 https://github.com /jeho-oh/Smarch

20 https://github.com /ZaydH /spur

2l https://bitbucket.org/kuldeepmeel /unigen
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1. DIMACS, which is the format QuickSampler, Smarch, Spur, and Unigen2 use as
input. These samplers rely on SAT technology, and DIMACS is the format for
Conjunctive Normal Form (CNF) formulas that SAT technology uses.

2. DDDMP, which is the format BDDSampler and its underlying library CUDD use
for BDDs.

3. NNF, which is the format KUS uses for d-DNNFs.

In particular,

— The DIMACS files of the industrial SAT formulas and JHipster were retrieved
from [57].

— The DIMACS file of LargeAutomotive was gathered from [41].

— The DIMACS file of DellSPLOT was obtained from [52].

— We generated the DIMACS files of axTLS, Fiasco, uClibc, ToyBox, BusyBox,
and EmbToolkit by processing their Kconfig specifications with our tool Kcon-
fig2Logic?? [24].

— We generated all DDDMP files from their corresponding DIMACS files with our
tool Logic2BDD?? [23].

— We generated all NNF files from their respective DIMACS files with the d-DNNF
compiler d4 [42] that is embedded in KUS.

In total, 209 are industrial SAT formulas (mostly modeling integrated circuits) that
are typically used as a benchmark in the SAT-sampling literature [2,11,57]. The re-
maining nine models represent configurable software systems. Table 2 describes the
nine configuration models (the largest model is also referred as Automotive02 in the
SPL literature [41]).

The histogram in Fig. 10 shows the model size distribution according to their
number of variables. Since there is a wide range from the smallest model in the
benchmark to the largest one (from 14 to 18,570 variables), the scale has been log-
arithmically transformed to shrink the range and thus facilitate the figure interpre-
tation (see Chapter 5 of [67] for an explanation on logarithmic scale transforma-
tions). The scatter plot in Fig. 10 represents the model sizes in terms of their vari-
ables and clauses. The grey regression line shows that Log, (#Clauses) depends on
1.35+41.03 - Log, (#Variables). Points corresponding to configuration models are la-
beled, and models with more and fewer clauses than those predicted by the linear
regression are colored red and blue, respectively. Note that in the interval [9.88,11.2]
of Log, (#Variables) there are only 5 models, and all of them have fewer clauses than
predicted. As these models are simpler in terms of clauses, processing them requires
less time than expected for their variable number, and thus regression curves in Figs.
12, 17, and 16 will show positive convexity in that interval.

The experiments were run on an Intel(R) Core(TM) 17-6700HQ, 2.60GHz, 16GB
RAM, operating Linux Ubuntu 19.10. Samplers were executed on a single thread (i.e.,
with no parallelization), and without considering any Boolean formula preprocessing,
such as Minimal Independent Support (MIS) [32].

22 https://github.com /davidfa71/Extending- Logic/tree/master/code/Kconfig2Logic
23 https://github.com /davidfa71/Extending- Logic/tree/master/code/Logic2BDD
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Table 2 Software configuration models included in the benchmark.

Model #Variables #Clauses #SAT-Solutions
JHipster [28] 45 104 26,256
axTLS 1.5.3 64 96 3.924-10!2
(http://axtls.sourceforge.net/)

Fiasco 2014092821 113 4,717 5.144-10°
(https://os.inf.tu-dresden.de/fiasco/)

DellSPLOT [52] 118 2,181 7.440-10°
uClibc 201 50420 298 903 7.503 - 10°Y
(https://www.uclibc.org/)

ToyBox 0.5.2 544 1,020 1.450-10"7
(http://landley.net/toybox/)

BusyBox 1.23.2 613 530 7.428 - 10146
(https://busybox.net/)

EmbToolkit 1.7.0 2,331 6,437 3.961-1033
(https://www.embtoolkit.org/)

LargeAutomotive [41] 17,365 321,897  5.260- 101441

85% of the models have between 52 and 928
variables (5.70 and 9.86 in logarithmic scale)
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Fig. 10 Size of the benchmark models in terms of the number of variables and clauses.
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5.2 Q1: Scalability of Samplers

The following experiment E1 was undertaken to obtain a sample set S1 for answering
Q1. Each sampler generated a sample with one thousand configurations for every
model in the benchmark. The timeout for each sample generation was set to one
hour. The histogram in Fig. 11 shows the percentage of samples that each sampler
was able to generate. In total, 257.92 hours (10.75 days) of CPU time were needed
for generating the samples (or reaching the timeout).

BDDSampler

5 QuickSampler
o Spur
£ KUS
2 Unigen2
Smarch

%Samples

Fig. 11 Percentage of samples that each sampler was able to generate (sample size = 1,000 configurations;
timeout = 1 hour).

Table 3 Sample generation time in seconds for the configuration models (sample size = 1,000 configura-
tions; timeout = 1 hour).

Model BDD KUS Quick Smarch Spur  Unigen2
Sampler Sampler

JHipster 0.04 0.27 0.07 911.08 0.03 3.59
axTLS 0.04 0.34 0.20 1,993.90 0.03 timeout
Fiasco 0.07 0.45 1.47 timeout 0.06 timeout
DellSPLOT 0.08 0.44 0.44 3,278.09 0.07 187.58
uClibc 0.14 0.99 0.50 timeout 0.23 timeout
ToyBox 0.25 1.25 0.78 timeout 0.09  timeout
BusyBox 0.26 1.87 0.67 timeout 0.17 timeout
EmbToolkit 2.61 timeout 4.62 timeout 9.15 timeout

LargeAutomotive  12.07 119.26  77.06 timeout 24.57  timeout

5.3 Q2: Uniformity of Samplers

The following experiment E2 was carried out to obtain a sample set S2 for answering
Q2, Q3, and Q5. Each sampler was run to generate a sample for every model in
the benchmark. As Section 5.4 will explain in detail, the number of configurations
per sample was estimated for &« = 0.01, 3 = 0.01, and w = 0.1. The timeout for each
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Time for generating samples with 1,000 configurations
(timeout = 1 hour)
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Fig. 12 Time the samplers needed to generate 1,000 configurations for each model in the benchmark.

sample generation was set to one hour. In total, 373.5 hours (15.56 days) of CPU time
were needed for generating the samples (or reaching the timeout). The histogram
in Fig. 13 summarizes the results. Nearly all samples produced by BDDSampler,
Smarch, Spur, and Unigen2 obtained high p-values in the range (0.9, 1]. In contrast,
KUS and QuickSampler generated many samples with p-values in the interval [0,0.1].
Since « is set to 0.01, remember from Section 4.2 that a p-value less or equal to 0.01
means rejecting the uniformity hypothesis. Likewise, a p-value close to 1 reflects
that the sample greatly supports the uniformity hypothesis. Table 4 summarizes the
p-values for the configuration models in detail.

KUS and Spur implement Knuth’s sampling procedure (see Section 2.1.3). Ac-
cordingly, they should be uniform “by design”. Moreover, the KUS and Spur em-
pirical validations in [59] and [2], respectively, did not detect any problem (though
only small models with a few hundred variables were used). However, our inspection
using more varied and larger models revealed the following uniformity flaws:

— As Fig. 13 shows, 16.4% of the KUS samples got a p-value in [0,0.1]. Further-
more, in 15.89% of the cases, the p-values were less than o = 0.01, and thus
rejected the uniformity hypothesis. Fig. 14 shows four examples were KUS uni-
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%Samples

Fig.

BDDSampler KUS QuickSampler

757 0% rejected 15.89% rejected 75.23% rejected

N _im

Smarch Spur

100 - —
7517 0% rejected 0.46% rejected I 0% rejected

Unigen2

13 Goodness-of-fit test results for the whole benchmark (¢ = = 0.01 and w = 0.1).

Table 4 Goodness-of-fit p-values for the configuration models (o« = B = 0.01 and w = 0.1; timeout = 1

hour).
Model BDD KUS Quick Smarch  Spur Unigen2
Sampler Sampler

JHipster ~ 1 0.99 ~0 ~ 1 ~ 1 ~ 1
axTLS ~1 ~1 ~ 0 timeout ~1 timeout
Fiasco ~ 1 ~1 0.30 timeout ~1 timeout
DellSPLOT ~1 0.99 0.85 timeout ~1 0.96
uClibc ~1 ~1 ~1 timeout ~1 timeout
ToyBox ~ 1 ~ 1 ~0 timeout ~ 1 timeout
BusyBox ~ 1 ~ 1 ~0 timeout ~ 1 timeout
EmbToolkit ~1 timeout ~ 1 timeout ~ 0 timeout
LargeAutomotive ~ 1 timeout ~ 0 timeout ~ 1 timeout

formity was rejected. Each subfigure compares, for a particular model, the his-
togram of the SAT-solution distribution of the whole population (in blue) with
the distribution of the generated sample (in red). Unfortunately, the rejected sam-
ples do not show any clear pattern that explains the causes of KUS failures. For in-
stance, KUS exhibits difficulties with small models (blasted_case63) but also with
large ones (blasted_squaring26), with normal distributions (blasted_case63 and
s1238a_7_4) and non-normal distributions (s526_15_7 and blasted_squaring26),
with left-skewed distributions (s1238a_7_4) and right-skewed distributions (blas-
ted_case63), etc.

In our previous evaluation [29], we detected that Spur generated uniform samples
for all models except for EmbToolkit. We thought our test was making a Type 1
error, misjudging the sampler uniformity because an extremely low p-value hap-
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26
pened due to randomness. However, when we checked the samplers’ uniformity
with our new test, we obtained exactly the same results for this particular model,
which raised our suspicions. We repeated the experiment one thousand times and
Spur never generated a uniform sample for EmbToolkit. Fig. 15 shows the results
for two of those experiment repetitions. In this case, Spur’s error always displays
the same pattern: the solutions in the sample have more variables assigned to true
than in the population.
Distribution || Theoretical [] Empirical
blasted_case63 %" s526_15_7
0.100- (96 variables) (453 variables)
0.075- 0.02-
0.050- ]] ! ‘
i 0.01-
0.025-
g 0.000- ————-=_=_ml IJII] i ! _I,l,-,_, _ 0.00 - - ‘...unllllli‘ m".lhlu...
2 40 50 60 200 250
'§ 0.06 s1238a_7 4 blasted_squaring26
o (704 variables) (894 variables)
0.04 -
____________ -
0.02- f |
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Fig. 14 Example of KUS samples rejected with the goodness-of-fit test.
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Fig. 15 Two samples Spur generated for EmbToolkit.
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5.4 Q3: Scalability of the SFpC test

Two factors influence the scalability of a uniformity test when applied to a particular
model and sampler: (i) the number of configurations the test needs to consider, and
(i1) the time the test invests in analyzing those configurations.

Concerning the first factor, and as discussed in Section 2, the methods proposed
in the literature to verify samplers’ uniformity require colossal sample sizes with
millions of configurations. Thus uniformity had been tested on trivial models so far,
with a few hundred variables. To support evaluating uniformity over more complex
models, in [29] we proposed the FP test, which compares the variable frequency
distribution of a sample with the variable probability distribution of the entire pop-
ulation. With this test, we could validate samplers’ uniformity on models with more
than seventeen thousand variables [29]. Fig. 16 compares the sample sizes that the
FP test needs (in red) with the sample sizes our new SFpC test requires (in blue),
showing that the latter needs fewer configurations in most cases.

The SFpC test requires smaller samples than the FP test
(CargeAutomoive) ©

—_
(o))

EmbToolkit

—
w
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% 15

[}

[ 14

£ FP test
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< SFpC test
(@)]

O

—

-
N

'l [:JHipster] (DelisPLOT) Y Fiasco)
4 6 8 10 12 14
Log,(#Variables)

Fig. 16 Comparison of the sample sizes consumed by the FP and SFpC tests (¢ = 8 =0.01 and w =0.1).

In Fig. 16, each model’s sample size was determined with the procedure described
in Section 4.2. In particular, the R package pwr?* [33] was used to perform Cohen’s
power tables calculations. To ensure the highest reliability of the samplers’ uniformity
tests (see Section 5.4), we set a = 0.01,3 = 0.01, and w = 0.1. That is, the xz test
confidence level was fixed to 99%, the power to 99%, and the effect size to small.
Table 5 compares in detail the samples sizes obtained for the configuration models.

24 https://cran.r-project.org /web/packages/pwr
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Table 5 Sample sizes the SFpC and FP tests required for the configuration models (o« = 8 = 0.01 and

w=0.1).

Model Sample size for Sample size for
the SFpC test the FP test

JHipster 4,664 5,994
axTLS 6,314 7,198
Fiasco 5,460 7,646
DellSPLOT 3,889 9,131
uClibc 10,987 13,047
ToyBox 8,517 10,739
BusyBox 17,738 18,041
EmbToolkit 26,482 28,866
LargeAutomotive 37,626 84,522

The sample size depends on the model’s degrees of freedom in both the FP and
the SFpC tests. Nevertheless, each test defines degrees of freedom in a different way.
The degrees of freedom of the FP test dfgp are the number of variables (minus one)
whose probability is neither zero nor one (see Section 3 of [29]). The degrees of
freedom of the SFpC test dfsgpc are the number cases (minus one) for which there
is at least one valid configuration with a particular number of variables assigned to
true (see Section 4.1). As Fig. 16 shows, in practice, dfsgpc < dfgp and therefore the
SFpC test consumes fewer configurations.

Regarding the time SFpC requires to analyze the generated configurations, once
the theoretical distribution of SAT solutions is known, the remaining computations
can be performed extremely fast (see Section 4.1). So, the SFpC’s potential bottleneck
is getting such distribution with the algorithm PD. Fig. 17 shows the time it took to
compute the theoretical distribution for each model in the benchmark, ranging from
0.02 seconds to 14.14 minutes. Table 6 details the times for the configuration models.
It is worth noting that the model which needed the longest time was s1196a_3_2,
which is an industrial SAT formula (thus not included in Table 2). This illustrates
the dependency that BDDs have on variable ordering heuristics. Whereas this model
has a medium-size CNF formula (690 variables and 1,805 clauses), the BDD we
synthesized was huge (2,284,697 nodes). In contrast, for LargeAutomotive (17,365
variables and 321,897) a more reduced BDD was obtained (30,432 nodes), and hence
computing its theoretical SAT-solution distribution just took 2.74 minutes.

5.5 Q4: Validity of SFpC

Two criteria are typically used for assessing measurement quality [63]: validity and
reliability. Since we are interested in the quality of SFpC measurements, validity will
refer to what extent SFpC actually measures uniformity, and reliability will refer to
repeatability, 1.e., to the consistency of the results obtained when SFpC is applied
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Fig. 17 Time it took to compute the distribution of SAT-solutions for all models in the benchmark.

Table 6 Seconds it took to compute the distribution of SAT-solutions for the configuration models.

Model Time
JHipster 0.03
axTLS 0.07
Fiasco 0.03
DellSPLOT 0.10
uClibc 0.38
ToyBox 0.16
BusyBox 0.41
EmbToolkit 567.93

LargeAutomotive  164.35

several times to the same sampler and model. This section examines SFpC’s validity,
and the next section deals with SFpC’s reliability.

To evaluate SFpC’s validity, we followed a convergent strategy [63] by examining
the degree to which SFpC results are similar to those obtained by other uniformity
tests. Table 7 summarizes the uniformity verdicts reported in the literature. There is
a total consensus that Unigen2 is uniform and QuickSampler is not. SFpC results are
consistent with this consensus.

As we mentioned in Section 5.4, before the publication of FP in [30], the liter-
ature relied on limited tests that only could handle the simplest models with a few
hundred variables. As more complex are considered, the chances to detect samplers’
additional flaws increases. In other words, the sensitivity of FP and SFpC is higher
than their predecessors. Accordingly, we performed a new Experiment E3 focused on
checking the convergent validity of FP and SFpC in detail. A new sample set S3 was
procured by asking each sampler to generate a sample for every model in the bench-
mark. Then, the uniformity of the samples was analyzed with both FP and SFpC.
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Since FP generally needs larger samples than SFpC (see Section 5.4), the sample
sizes were set according to FP requirements.

Pearson’s correlation coefficient p of the p-values obtained with FP and SFpC
was p = 0.953, and Cohen’s kappa « of the test verdicts (i.e., rejection/acceptance
of sampler’s uniformity) was Kk = 0.942. As FP and SFpC results were numerically
highly correlated, and their final judgments were remarkably consistent, convergent
validity was successfully confirmed.

Table 7 Samplers’ uniformity judgments reported in the literature. Due to its higher sensitivity compared
to prior tests, SFpC detects that KUS and Spur sometimes behave non-uniformly.

Article Uniform Non-Uniform

Achlioptas et al. [2] Spur and Unigen2 -
Chakraborty et al. [11]  Unigen2 -
Chakraborty et al. [12]  Unigen2 QuickSampler

Oh et al. [54] Smarch and Unigen2 -

Plazar et al. [57] Unigen QuickSampler
Sharma et al. [59] KUS and Spur -

This present paper BDDSampler, Smarch  KUS, QuickSampler
(SFpC) and Unigen2 and Spur

5.6 Q5: Reliability of SFpC

SFpC'’s reliability was evaluated with a test-retest strategy [63] by comparing its re-
sults with the sample sets S2 and S3. Pearson’s correlation coefficient of the p-values
calculated with SFpC in S2 and S3 was p = 0.950, and Cohen’s kappa of the cor-
responding final judgments (i.e., rejection/acceptance of sampler’s uniformity) was
Kk = 0.939. As a result, SFpC’s reliability was positively evaluated.

6 Discussion

The experimental results indicate that SFpC supports testing samplers’ uniformity on
complex models with thousands of variables and constraints, providing valid and re-
liable judgments. The results show that the only sampler that satisfies both scalability
and uniformity is BDDSampler. The following points summarize the key findings
per research question:

Q1: Samplers’ scalability. BDDSampler, KUS, QuickSampler, and Spur are by far
faster than Smarch and Unigen2. This finding agrees with the prior evaluations
reported by Plazar et al. [57] and Heradio et al. [29].

Q2: Samplers’ uniformity. Three categories of samplers can be distinguished: (i)
those that mostly fail to produce uniform samples (QuickSampler), (ii) those
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that usually work but from time to time generate non-uniform samples (KUS
and Spur), and (iii) those that always produce uniform samples (BDDSampler,
Smarch, and Unigen2). QuickSampler’s incapacity to generate uniform samples
was previously reported by Chakraborty et al. [12], Plazar et al. [57], and Heradio
et al. [29]. However, this paper is the first one that detects problems with KUS and
Spur. We think this finding is due to SFpC'’s ability to test samplers’ uniformity
on considerably more complex models than previous tests.

Q3: SFpC’s scalability. SFpC is the most scalable uniformity test to date. It requires
the smallest sample size of all existing tests, enabling the verification of samplers’
uniformity in large models even for the most strict quality settings (o« = 0.01,8 =
0.01, and w = 0.1).

Q4: SFpC’s validity. According to the results, SFpC judgments are consistent with
the verdicts given by the alternative methods proposed in the literature.

QS: SFpC’s reliability. The results show that SFpC judgments are reliable, i.e., when
SFpC is applied repeatedly to the same model and sampler, the reached conclu-
sions are notably consistent.

The implications of our research are twofold:

1. As uniform random sampling is a strong requirement for many relevant analyses
on configurable systems, BDDSampler’s positive impact may be considerable,
e.g., to test SPLs [28,57], to support predicting and optimizing the performance
of configurable systems [53,34], etc. As an illustrative example of the importance
that sampling has to SPL practitioners, in the SPLC 23" edition, there was a
challenge dedicated specifically to this topic and entitled “Product Sampling for
Product Lines: The Scalability Challenge” [56]. Moreover, different papers have
been recently published on uniform random sampling, and other sorts of sampling
such as t-wise, in SPLC [64,54,48] and the International Working Conference on
Variability Modelling of Software-Intensive Systems (VaMoS) [40].
Furthermore, the applicability of BDDSampler goes beyond the SPL domain
since sampling is also needed in artificial intelligence [12,21,58], integrated cir-
cuit simulation and verification [31,51,68], etc.

2. SFpC can be used to debug and thus improve existing samplers (see Figures 14
and 15), or to validate future samplers. The importance of samplers’ validation
is well recognized by the SPL community. Recently, in the SPLC 25" edition,
there was a session dedicated to “Sampling, variability analysis and visualiza-
tion”, where two tools for samplers’ evaluation were presented: BURST [1] and
AutoSMP [55]. Those tools could be enhanced by integrating SFpC; e.g., BURST
relies on Barbarik, which has inferior performance than SFpC (see Section 2.2.2).
Again, the interest in samplers’ validation is not restricted to SPLs. In fact, most
uniformity tests have been proposed by artificial intelligence researchers, mainly
from the SAT community [2,11,21,59,12].

It is worth noting that our work has the following limitation: both BDDSampler
and SFpC rely on BDD technology. Synthesizing the BDD encoding of a variability
model is sometimes unattainable. This is because the variable ordering chosen to
build a BDD dramatically impacts its size, and finding the optimal ordering is an NP-
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problem. So the search is approached heuristically without guarantees. This problem
principally affects BDDSampler, but not much SFpC.

1. BDDSampler receives a model’s BDD encoding as input. If the available heuris-
tics fail to find an adequate variable ordering, BDDSampler becomes useless, and
an alternative technology (e.g., SAT) must be used.

2. SFpC can evaluate any sampler, independently of the technology in which it is
built. Indeed, Section 5 reports the SFpC use for samplers implemented with
BDDs (BDDSampler), #SAT-solvers (QuickSampler, Smarch, Spur, and Uni-
gen2), and d-DNNFs (KUS). The impossibility of creating a BDD for a partic-
ular model only prevents SFpC from using it as part of the benchmark presented
in Section 5.1. Currently, the benchmark includes 218 models with their respec-
tive BDDs. In our opinion, the models’ great variety in terms of size (from 14 to
18,570 variables) and application domain (automotive industry, embedded sys-
tems, a laptop customization system, a web application generator, integrated cir-
cuits, etc.) is adequate to ensure samplers’ verification to a great degree.

Finally, the following threats to our study’s validity should be taken into ac-
count:

1. There is no absolute guarantee that the samplers we have certified as uniform
behave non-uniformly in models not included in the benchmark.

2. Our experimental design discards two potential confounders for evaluating the
scalability of samplers:

— Sampling parallelization. Although any sampler can be run in a multi-core
fashion, thus producing samples concurrently, only Unigen2 and Smarch were
specifically designed for that. The focus of our evaluation is on the sampling
techniques, not on how those techniques can be parallelized efficiently. There-
fore, all samplers were run on a single thread.

— Use of preprocessing techniques. There are some methods to preprocess the
model Boolean formulas for speeding up further computations. For example,
Ivrri et al. [32] claim that sampling with the formulas® MIS produces 2-3 or-
ders of magnitude performance improvement. Nevertheless, Plazar et al. [57]
empirical results contradict that, showing no running time difference between
sampling from the whole formula or the MIS. Anyway, we decided to focus
on the sampling techniques, not on how any additional preprocessing methods
may impact those techniques.

7 Conclusions

The number of SAT solutions that configuration models encompass can be so large
that most analyses cannot be performed neither examining every valid configuration,
nor calling a SAT solver massively. Statistical inference opens an alternative way to
address these problems by working with a tractable sample accurately predicts results
for the entire space. However, the laws of statistical inference impose an indispens-
able requirement that samples must be collected at random, i.e., the configuration
space needs to be covered uniformly.
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Two major research challenges on SAT-solution random sampling have been ad-
dressed in this paper: we (i) developed a new random sampler, called BDDSampler,
and (i1) proposed a goodness-of-fit test to verify samplers’ uniformity. Our new test
requires the least sample size of all existing methods, in the literature, supporting the
samplers’ uniformity assessment even on colossal models and the most strict reliabil-
ity arrangements. Using this test, we have undertaken the empirical evaluation of six
state-of-the-art samplers, revealing that only BDDSampler satisfies both uniformity
and scalability.

It is worth remarking that BDDSampler works with a BDD encoding of a con-
figuration model as input, and synthesizing such BDD is not always feasible as it
depends on finding an adequate variable order heuristically. Our work deals with this
limitation by exposing uniformity bugs on two scalable samplers based on alternative
technologies (KUS on d-DNNFs and Spur on #SAT), thus facilitating their fixing.
Having available all these samplers would support coping with the variated difficul-
ties that the Boolean encoding of configuration models poses (e.g., large intractable
CNFs, enormous BDDs, etc.).

8 Material

Following open science’s good practices, our software artifacts are available publicly.

— BDDSampler is available at https://github.com/davidfa71/BDDSampler

— The code scripts to replicate our experimental validation (i.e., to calculate each
model’s sample size, run the samplers, and test the scalability/uniformity of the
samplers) are available at https://github.com /rheradio/ConfSystSampling

— A detailed report on every research question in Section 5 is available at:
https://rheradio.github.io/ConfSystSampling

— The data of Experiments E1 and E2 (including the benchmark models in DIMAC-
S/DDDMP/NNF formats, the generated samples, the goodness-of-fit test results,
etc.) are available at https://doi.org/10.5281/zenodo.4514919

— The data of Experiment E3 are available at https://doi.org/10.5281/zenodo.
5509947
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