
A Monte Carlo Tree Search Conceptual Framework for

Feature Model Analyses

Jose-Miguel Horcasa, José A. Galindoa, Ruben Heradiob, David
Fernandez-Amorosb, David Benavidesa

aUniversity of Seville, Seville, Spain
bNational Distance Education University (UNED), Madrid, Spain

Abstract

Challenging domains of the future such as Smart Cities, Cloud Computing,
or Industry 4.0 expose highly variable systems with colossal configuration
spaces. The automated analysis of those systems’ variability has often relied
on SAT solving and constraint programming. However, many of the analyses
have to deal with the uncertainty introduced by the fact that undertaking
an exhaustive exploration of the whole configuration space is usually in-
tractable. In addition, not all analyses need to deal with the configuration
space of the feature models, but with different search spaces where analyses
are performed over the structure of the feature models, the constraints, or
the implementation artifacts, instead of configurations. This paper proposes
a conceptual framework that tackles various of those analyses using Monte
Carlo tree search methods, which have proven to succeed in vast search spaces
(e.g., game theory, scheduling tasks, security, program synthesis, etc.). Our
general framework is formally described, and its flexibility to cope with a
diversity of analysis problems is discussed. We provide a Python implemen-
tation of the framework that shows the feasibility of our proposal, identifying
up to 11 lessons learned, and open challenges about the usage of the Monte
Carlo methods in the software product line context. With this contribution,
we envision that different problems can be addressed using Monte Carlo sim-
ulations and that our framework can be used to advance the state-of-the-art
one step forward.

Keywords: automated analysis, configurable systems, feature models,
Monte Carlo tree search, software product lines, variability

Preprint submitted to Journal of Systems and Software April 30, 2024

1. Introduction

The Automated Analysis of Feature Models (AAFM) [1, 2] is one of
the most active Software Product Line (SPL) research areas in the last
decade [3, 4, 5, 6]. In highly configurable systems, AAFM is a challenging
task because it requires coping with a variety of problems which involve inter-
related features and colossal search spaces. For example, we find multiple
operations, such as counting the number of products [7, 8, 9] and optimizing
configurations [10, 11, 12], which are performed on the entire configuration
space. Other operations are performed on feature models (e.g., evolution [13]
and reverse engineering [14, 15]). Finally, there are other analyses where the
main subjects to reason about are the products (e.g., testing [16, 17]) or the
constraints of the feature models [18].

Many of these analyses have to deal with the uncertainty introduced by
the fact that undertaking an exhaustive exploration of the whole search space
is usually intractable. In some cases, complex computations are required to
take simple actions. For instance, deciding when to include or exclude a fea-
ture in a configuration impacts the convenience and analysis of further selec-
tions [19, 20]. Moreover, those decisions are not commonly intuitive. For in-
stance, when reverse engineering feature models, practitioners have to decide
the structure of the resulting feature model in terms of the parent-child re-
lationships [14, 21]. Other situations require tackling uncertainty because of
the aforementioned combinatorial nature of the search space, which includes
different types of selections such as alternatives (xor), or cardinality-based
selections [22]. For instance, solving analyses of probability in configuration
selections according to performance goals is challenging because the whole
configuration space is unknown for large-scale feature models [23, 24].

AAFM has relied on propositional logic or SAT solving [25, 26, 27], con-
straint programming [1], Binary Decision Diagrams (BDD) [8, 28], statisti-
cal analysis [29], genetic algorithms [14, 30], or metaheuristics [31], among
others [4]. SAT solvers could face scalability problems for large-scale mod-
els [26, 27]. Some statistical analyses require the construction of BDDs (e.g.,
determining the distribution of the number of features among all valid con-
figurations or testing the uniformity of a random sampler on complex models
with thousands of features) [29, 32], which can be intractable [9]. Other ap-
proaches like genetic algorithms [14, 30] and metaheuristics [31] require to
incorporate specific domain knowledge, and analyzing and inferring results
from the final solutions which is not straightforward. In addition, these tech-

2

niques offer little information about the intermediate steps of the analysis
process that allows considering other valuable alternatives before obtaining
the final solution.

In this paper, we present a conceptual framework based on Monte Carlo
methods [33], which use randomness for deterministic problems that can be
represented as sequences of step-wise decisions. Monte Carlo methods can
be used with little or no domain knowledge, and have succeeded on difficult
problems where an exhaustive exploration of the search space cannot be per-
formed. In particular, we adopt the Monte Carlo Tree Search (MCTS) [34, 35]
method. MCTS has been successfully applied to several domains [34], stand-
ing out in game theory [36] where it has been shown to scale to large search
spaces such as those that typically characterize SPLs. Thus, we conjecture
that MCTS may have a great impact in the AAFM. In this paper, we make
the following contributions:
• We formally present our MCTS framework, identify a set of analysis prob-
lems in SPL that can be worthy of examining with the MCTS method,
and map them to the conceptual framework (Section 3).

• We provide a complete implementation of the MCTS framework1, includ-
ing three different Monte Carlo methods (Section 4).

• We formally model and solve different problems concerning configurations
(Section 5) and features models (Section 6) using our framework, and
explain the knowledge we can infer with MCTS.

• We identify up to 11 lessons learned and open challenges of applying
Monte Carlo methods in the context of SPLs (Section 5 and 6).

MCTS has already had a profound impact on artificial intelligence for do-
mains that can be represented as trees of sequential decisions, particularly
games and planning problems (Section 7). In the area of SPLs and AAFM,
MCTS can provide an agent with some decision-making capacity with very
little domain-specific knowledge, and its selective sampling approach may
provide insights into how other analysis techniques, such as search-based
algorithms, could be hybridized and potentially improved [10]. We envi-
sion that different problems can be addressed using Monte Carlo simulations
with this contribution. Accordingly, this new approach can be of considerable
value to advance the state of the art of the AAFM one step forward.

This paper extends the work published as a conference paper in SPLC’21 [37]

1https://github.com/diverso-lab/fm_montecarlo

3

https://github.com/diverso-lab/fm_montecarlo

by adding the following contributions: (1) a set of 11 lessons learned and open
challenges for the application of Monte Carlo methods in the context of SPLs
and AAFM; (2) a complete implementation of the MCTS conceptual frame-
work is provided, in contrast to the prototype presented in the previous work
(Section 4); (3) support for extended (attributed) feature models (Section 2)
and formalization of a new analysis problem for optimizing configurations
(Section 5.4); and (4) all SPL problems previously proposed have been fully
formalized, extending the applicability of two of them with up to 8 feature
models comparing the different Monte Carlo methods (Section 5.2 and 5.3).

2. Background

This section introduces the feature model formalization and the running
example used throughout the paper.

Definition 1 (Feature, Feature model). A feature f is a characteristic
or end-user-visible behavior of a software system [38]. A feature model m is
a set of features F and their relationships. Formally, a feature model m is
defined as a 4-tuple (F, r,R,Π):

• F is a finite set of features.

• r ∈ F is the root feature.

• R ⊆ F × F n ×N2 is the finite set of decompositional relationships be-
tween features. Each relationship is denoted as

(
f, [g1, g2, . . . , gn], ⟨a..b⟩

)
meaning that f is the parent feature of sub-features gi, 1 ≤ i ≤ n, with
a multiplicity ⟨a..b⟩ [22]. Whenever f is included in a configuration, at
least a and at most b of the gi’s must be included as well. We use ⟨0..1⟩
for optional features and ⟨1..1⟩ for mandatory features when n = 1;
and ⟨1..1⟩ for alternative-groups and ⟨1..n⟩ for or-groups when n > 1.
For convenience, we will also use the notation f ≺ g to represent that
the feature f is the parent of a feature g regardless multiplicity; and we
use the notation f ≺≺ g to represent that the feature f is an ancestor
of the feature g. Note that a feature f can appear in more than one
relation r ∈ R as a parent feature.

• Π is a set of cross-tree constraints defined as arbitrary propositional
formulas over the set of features F , i.e., Π ⊆ B(F).

■

4

Legend:

AAFMFramework

Packages Solvers System

pycosatpython-sat

pyGlucose pyPicosat

MiniSAT PicoSAT

Glucose

Linux Win

PicoSAT => pycosat ∨ pyPicosat
Glucose => python-sat ∨ pyglucose

MiniSAT => python-sat
Win => ¬ pyPicosat

PicoSAT => pycosat ∨ pyPicosat
Glucose => python-sat ∨ pyglucose

MiniSAT => python-sat
Win => ¬ pyPicosat

mandatory

optional

or group

alternative group

User rating = 243
Last update = Dec 4, 2021

User rating = 1
Last update = Apr 14, 2019

User rating = 158
Last update = Nov 9, 2017

User rating = 2
Last update = Aug 1, 2017

attributes

Figure 1: Extended feature model of the SPL for an AAFM framework in Python.

Feature models can be extended to incorporate additional information
about the features in terms of attributes.

Definition 2 (Attribute, Extended feature model). An attribute is a
non-functional property associated to a feature (e.g., cost, energy consump-
tion, etc.). Attributes are defined with a type (e.g., numeric) and a domain
(e.g., positive integers), and optionally also with a range. An extended feature
model (also called attributed feature model) is a feature model where addi-
tional information about the features is provided in terms of attributes. ■

Figure 1 shows an extended feature model representing an SPL for a
Python framework to support AAFM [39]. AAFMFramework is the root of the
feature model. The mandatory relation between the root and the System

feature can be described by the relation (AAFMFramework, [System], ⟨1..1⟩),
while the relations between the AAFMFramework feature and its optional chil-
dren are described by the relations (AAFMFramework, [Packages], ⟨0..1⟩) and
(AAFMFramework, [Solvers], ⟨0..1⟩), respectively. To reason about models and
implement analysis operations, the framework can use a selection of Solvers
represented by the or-group relation (Solvers, [MiniSAT, PicoSAT, Glucose],

⟨1..3⟩). Each solver will require one or more Python packages which offer the
implementation for that solver. For instance, the MiniSAT solver is provided
by the python-sat package, while the PicoSAT solver is offered by the pycosat
or by the pyPicosat packages. These kinds of relations are represented as tex-
tual cross-tree constraints, as for example PicoSAT ⇒ pycosat ∨ pyPicosat.
Features representing the Python packages have two attributes associated:
the user rating values and the last release update date, both values have been

5

obtained from the Python Package Index (PyPI) repository.2 Finally, a spe-
cific version of the framework can be deployed in Linux or Windows systems,
choices represented with the alternative-group (System, [Linux, Win], ⟨1..1⟩).
Definition 3 (Configuration, Partial Configuration, Valid Configu-
ration). A configuration c of a feature model m is a subset of its features,
i.e., c ∈ P(F),3 meaning that the features in c are selected to be part of the
configuration, and the remaining features in F are not included in c. A con-
figuration c is partial if there are features in F that need to be still decided
in order to be selected or not selected as part of the configuration c [25]. A
configuration is valid if and only if it fulfills all the feature dependencies of
m. The feature dependencies of m are given by the set of decomposition
relations R (i.e., the tree hierarchy) and the set of cross-tree constraints Π.
A partial configuration is valid if the selected features do not neglect the
dependencies of the feature model m. ■

An example of a valid configuration of the feature model depicted in Fig-
ure 1 is {AAFMFramework, System, Linux, Solvers, MiniSAT, Packages, python-sat}.
An example of a valid partial configuration is {AAFMFramework, System, Solver}.

3. MCTS Conceptual Framework for feature model analyses

In this section, we first present our conceptual framework (Section 3.1)
to model problems that can be solved with Monte Carlo methods, especially
with MCTS, and discuss the type of analyses that can be performed with
MCTS. Then, we define a mapping between problems in SPLs and the con-
cepts of the MCTS framework (Section 3.2).

3.1. Monte Carlo methods and MCTS

MCTS is a method for finding optimal decisions in a given domain by tak-
ing random samples in the search space [35]. MCTS is based on decision and
game theory [40], and on Monte Carlo [33] and bandit-based methods [41],
where sequential decision problems are modeled as a kind of search problems.
Inspired by Markov Decision Processes [40] and following the concepts used
in game theory [40] to formally define a game as a kind of search problem,
we provide the following definition that allows representing SPL problems as
a sequence of decisions to be solved by Monte Carlo methods:

2https://pypi.org/
3P(F) is the powerset of F (i.e., the set of all subsets of F).

6

https://pypi.org/

Definition 4 (Monte Carlo decision process). A Monte Carlo decision
process is a 6-tuple with the following elements (S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ):

• SSS: set of all possible states.

• s0 ∈ Ss0 ∈ Ss0 ∈ S: initial state that specifies how the problem is set up at the
start.

• t : S → Bt : S → Bt : S → B: terminal condition that is true when the problem is over (or
there are no more decisions to be taken) and false otherwise. States
that meet the terminal condition are known as terminal states. The set
of terminal states is called ST ⊆ S.

• AAA: set of valid actions.

• θ : S × A → Sθ : S × A → Sθ : S × A → S: state transition function that defines the result of ap-
plying an action, which leads to a new successor state.

• µ : S → Rµ : S → Rµ : S → R: reward function (also known as utility, objective or payoff
function) that defines the final numeric value for a problem that ends
in a terminal state st ∈ ST .

■

Together, the initial state s0, the set of actions A, and the transition
function θ implicitly define the search space (or state space) of the problem.
Formally, we define the search space as follows:

Definition 5 (Search space). Given a problem p = (S, s0, t, A, θ, µ)p = (S, s0, t, A, θ, µ)p = (S, s0, t, A, θ, µ), the
search space is the set of all nodes reachable from the initial state s0 by
any sequence of actions in A. A node in the search space consists of a pair
(state, list[actions]) ∈ S × A∗. That is, each node represents a state of
the domain together with a list of actions that trace the node back to the
initial node (s0, ϵ), and the links to child nodes represent actions that lead
to successor nodes. ■

Please observe that since θ is a function, and as such, it is deterministic,
the nodes in the search space as defined form a tree rooted in (s0, ϵ) in which
there is a transition function between nodes θ′ : S × A∗ × A → S × A∗ such
that θ′(s, ω, α) = (θ(s), ωα). The concept of search space is illustrated in
Figure 2 (a) where the nodes are depicted as states for clarity of exposition.
Note that there are no replicated nodes, but there may be duplicated states

7

���

������������	���

���

���

���

�������	�

��������������

����	������

�����

�	���������	����

�	�����������	���

���

�

��

��������������

�������

	���

��
��

��

��������������

��

���������	�
���� ���������������
���������

�������

����	�

������������	
�	�����������	�

�������

Figure 2: Search space for a generic problem modeled as a sequence of (state, action)
decisions (a), and the Monte Carlo simulations approach (b).

in different nodes whenever the same state can be attained through differ-
ent action sequences. Thus, overall decisions are modeled as sequences of
(state, action) pairs.

Basic Monte Carlo approach. Monte Carlo methods are used to decide
the optimal decision (i.e., choosing an action) from a given state s by running
simulations. A simulation is a random or statistically biased sequence of
actions applied to the given state until a terminal state st is found. The
terminal state st is then evaluated using the reward function µ obtaining a
reward value zi associated with that simulation, as shown in Figure 2 (b).
Running a number of simulations N from the given state s, Monte Carlo
approximates the expected reward each action can achieve from that state
s, i.e., Q(s, a). The expected reward of an action is called the Q-value (also
called Monte-Carlo value or MC value) [42] of that action, and it is defined
as the mean of all rewards obtained from the simulations performed from
state s choosing action a:

Q(s, a) =
1

N(s, a)

N(s)∑
i=1

Ii(s, a)zi (1)

8

Algorithm 1 Basic Monte Carlo method.

1: function MonteCarlo(s)
2: Q,N ← 0.0, 0 ▷ Initialize dictionaries of (action, float) and (action, int), respectively.
3: while not stopping criteria do
4: a← random.choice(A) ▷ Select a random valid action.
5: z ← SIMULATION(s, a) ▷ Run a simulation.
6: N [s, a]← N [s, a] + 1 ▷ Update visits count.

7: Q[s, a]← Q[s, a] +
z−Q[s,a]
N [s,a]

▷ Update the Q value.

8: end while
▷ Choose the best-performing action according to some criteria (e.g., action with maximum Q).

9: return BEST ACTION(s, Q, N)
10: end function

where N(s, a) is the number of times action a has been selected from state s;
N(s) is the number of times a simulation has been run from state s; zi is the
reward result of the ith simulation; and Ii(s, a) is 1 if action a was selected
from state s on the ith simulation or 0 otherwise. Algorithm 1 summarizes
in pseudocode the basic (also called “flat”) Monte Carlo method.

A great benefit of Monte Carlo methods is that the values of intermediate
states visited during the simulations do not have to be evaluated. Only the
value of the terminal state at the end of each simulation is required.

Monte Carlo Tree Search. The MCTS method [35] extends the Monte
Carlo principle by using the expected reward (Q-values) obtained from simu-
lations to build an incremental and asymmetric tree search which is then used
for subsequent decisions. We use the term tree search for a tree, generated by
MCTS, that is superimposed on the full search space, and examines enough
nodes to allow the MCTS method to determine what decision to make. As
shown in Figure 3, the basic MCTS algorithm (summarized in pseudocode
in Algorithm 2) involves iteratively building and using a tree search until
some predefined stopping criteria (e.g., time, memory, number of iterations)
is reached. Four steps are applied per search iteration [35]:

1. Selection. Starting with the initial state s0, the tree search is traversed
by recursively applying a selection function from the root node until
a frontier node sl is reached in the tree search. A frontier node is
a leaf node in the tree search that will be expanded in the following
step. Several strategies for selecting the nodes in the tree can be found
in [34]. The most popular one is the Upper Confidence bound for Trees
(UCT) [43] that, using the Q-values, attempts to balance exploitation
(i.e., search on areas that appear to be promising) and exploration

9

1. The tree search is
recursively transversed

until a frontier (leaf) node
is reached

2. One or more nodes are
added to the tree search

3. A simulation is
executed taking
random choices

4. The reward result
of the simulation is
backpropagated in

the tree search

BackpropagationSelection Expansion Simulation

Repeated X times

Figure 3: The MCTS approach (adapted from [35]).

(i.e., search on areas that have not been well explored yet).

2. Expansion. From the selected frontier node sl in the tree search, one
or more child nodes are added to expand the tree according to the
actions A. Note that at this point, the frontier node is not a leaf node
anymore in the tree search.

3. Simulation. A simulation is run from the new node(s) by doing ran-
dom actions until a terminal state is reached. The terminal state is
evaluated, producing an outcome z (i.e., the reward value).

4. Backpropagation. The statistics of each node in the tree that was
traversed during the selection step are updated. That is, the visit
counts N(s, a) are increased, and the expected reward Q(s, a) is mod-
ified according to the outcome z from the simulation.

As soon as the search terminates, the best action of the initial state s0
is selected (BEST ACTION(s0)). Several criteria are described in [44], such as
choosing the action with the highest reward. In addition to the best decision,
MCTS also provides useful knowledge in the form of statistics stored in the
tree search that can be used to make analyses, as we will show throughout
the paper.

In SPL, MCTS can be applied to find optimal decisions in problems where
decisions can be difficult to handle and take because of the high number of
potential configurations, products, and variants. Some of the analyses that
can be performed with MCTS include:

10

Algorithm 2 General Monte Carlo Tree Search method.

1: tree← ∅ ▷ Initialize tree search: dictionary of (node, list[node]).
2: Q,N ← 0.0, 0 ▷ Initialize dictionaries of (action, float) and (action, int), respectively.
3: function MCTS(s0)
4: while not stopping criteria do
5: sl ← SELECTION(s0) ▷ Apply the child selection tree policy.
6: EXPANSION(sl) ▷ Add one or more nodes to the tree search.
7: z ← SIMULATION(sl) ▷ Apply the default policy.
8: BACKPROPAGATION(z, sl) ▷ Backup the reward, updating Q and N .
9: end while
10: return BEST ACTION(s0)
11: end function

▷ SELECTION, EXPANSION, SIMULATION, and BACKPROPAGATION are illustrated in
Figure 3. The implementation details are available online.

Analyses of complex systems from simple actions. There are prob-
lems where we can easily measure the complete set of actions within the
system, but we are unsure of the aggregate result. For example, selecting
a feature to be incorporated in a product is a very simple action to model,
but analyzing how that feature selection contributes to the complete prod-
uct is challenging due to the existing relations in the feature model and the
cross-tree constraints [45]. Here, MCTS can examine how each feature selec-
tion contributes to the complete product by modeling the feature selection
optimization problem [10, 31, 46, 47] as a sequence of decision steps. We
illustrate this type of analysis in Section 5.

Analyzing unintuitive results. Some problems admit multiple solutions.
For instance, in feature models’ reverse engineering [14, 15], an input set
of configurations may correspond to many potential output feature models.
Without taking into account domain knowledge, the features appearing in
all products (i.e., the core features [1]) may be considered interchangeable
in the resulting feature model. For that reason, MCTS can help a domain
engineer explore the alternatives to select the best model. We show this type
of analysis in Section 6.

Analyses of uncertainty. Some problems require handling uncertainty
due to the impossibility of dealing with the complete search space. An exam-
ple is the optimization of configurations based on non-functional properties
in large-scale feature models [10, 12]. The best configurations may be spread
across the configuration space, leading to a search-based software engineer-
ing technique to deal with many local optima [30]. In this case, MCTS is
useful to incorporate probability into the analysis. MCTS helps understand

11

the probability distribution of the best configurations and analyze how such
distribution impacts the search-based optimization, so that we could penalize
the uncertainty or incorporate it into the search-based technique.

In addition to those analyses, in general, MCTS may be used for analyses
that have a probabilistic interpretation [29] or where simulation rather than
optimization is the most effective decision support tool [34]. As stated by
Schmid [48], Monte Carlo techniques can be promising for sensitivity analy-
ses, but they require a sound understanding of the uncertainty in the problem
to be analyzed for achieving correct and useful results.

3.2. Mapping SPL problems to the MCTS conceptual framework

To apply MCTS to SPL problems, we need to formulate the problem
as a sequence of (state, action) decisions using the conceptual framework
(S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ) introduced in the previous section.

Figure 4 shows a list of SPL problems that can be described as a se-
quence of decisions and mapped to the MCTS conceptual framework. The
most important definition is the concept of state, and thus, we classify the
problems according to what a state represents. In SPLs, a state may rep-
resent a configuration of a feature model, a partial configuration, a final
product, a feature model, an extended feature model, a configuration sam-
ple, a performance model of a configuration sample, a variation point and the
set of its variants to be decided, etc. The definition of the state will depend
on the problem’s nature. For example, in product configuration problems,
the states will represent configurations (valid or invalid) of a feature model,
partial configurations, or both partial and complete configurations; while in
problems dealing with the evolution of feature models, a state will represent
a feature model itself. Each definition of state will lead to a different set
of actions. States representing configurations will define actions that allow
moving from one configuration to another (e.g., actions for selecting a feature
and adding it to the configuration). States representing feature models will
define actions to modify the feature model (e.g., adding a new mandatory
or optional feature to the model). Different definitions of states and actions
will lead to a different search space.

Some of the definitions in the framework (S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ) can be shared
across several problems, while others will be specific of a particular situation
or problem instance. On the one hand, the set of actions and the transition
function are normally reused across different problems that share the same
definition of state. For example, the actions for selecting a feature in problems

12

Formal concepts to be defined:

A state is a feature model

Applicable problems
• Reverse engineering of feature models
• Evolution of feature models

• ...

A state is a configuration of a feature model

Applicable problems
• Finding minimum valid configurations
• Completion of partial configurations
• Localizing defective configurations
• Optimization of configurations

• ...

Others definitions of state

Examples and applicable problems
• A state is a product of an SPL (e.g., test suite priorization problem)
• A state is a configuration + variation point (e.g., next release problem)
• A state is a (feature, attributes) pair (e.g., QAs generation problem)
• A state is a sample of configuration (e.g., feature interaction coverage)

• ...

States (S): Configurations of a feature model
(e.g., configurations, partial configurations,…)

Actions (A): Selection/Deselection of features
(e.g., select root feature, select mandatory feature,

select optional feature, select alternative feature,…)

s0 t µs0 t µ

s0 t µs0 t µ

s0 t µs0 t µ

s0 t µs0 t µ

States (S): Feature models (e.g., feature models,

cardinalitiy-based, extended feature models,…)

Actions (A): Creation/Modification of features,
relations, and constraints

(e.g., add root feature, add optional feature, add mandatory
feature, add alternative-group relation, add or-group

relation, add feature to alternative-group, add feature to or-

group, add requires constraint, add excludes constraint,…)

s0 t µs0 t µ

s0 t µs0 t µ

θ θ

s0 t µθAS

s0 t µθAS

s0 t µθAS

s0 t µθAS

s0 t µθAS

s0 t µθAS

s0 t µθAS

s0 t µθAS

s0 t µθ AS States
Initial
state

Terminal
state

Actions State transition
function

Reward
function

Figure 4: Mapping of SPL problems to the MCTS framework (S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ).

where a state represents a configuration. On the other hand, the initial state
s0, the terminal condition t, and the reward function µ are problem-specific or
even different for a specific instance of a particular problem. For example, the
initial state is different in each problem instance of the completion of partial
configurations being the initial state a different input partial configuration.
The terminal state can also be instance-specific, such as in the problem of the
feature interaction coverage, where a state represents a set of configurations
and a terminal condition can be a sampling of configurations satisfying the
t-wise coverage for a specific feature [17].

In the following, we detail how to model different types of SPL problems
using the MCTS conceptual framework and analyze them.

4. Implementation of the MCTS framework

To demonstrate the applicability of our proposal, we provide an imple-
mentation of our MCTS conceptual framework, as well as an implementation
of the analysis problems described in the following sections. This section

13

MCTS Conceptual Framework for SPLE

Knowledge Inference

• Best solution
• Step-wise decisions
• Statistics (μ, σ, M)
 - Execution time
 - Memory consumption
• Tree Search
• Heatmaps

• ...

Python framework for Automated Analysis
[Galindo & Benavides, 2019]

Variability Models
• Feature Model
• CNF Model
• BDD Model
• Configuration
• Partial configuration

• ...

Operations
• Valid Configuration
• Valid Partial Configuration
• Core Features
• Dead Features
• Products
• Uniform random sampling

• ...

Transformations

Solvers
(SAT, BDD,…)

Readers/Writers

Algorithms

Stopping Conditions
• Iterations constraint
• Time constraint
• Memory constraint

• ...

Best Action Selection Criteria
• Highest reward
• Most visit state
• Highest visit count and reward
• Maximize lower confidence bound

• ...

Monte Carlo
methods

• Monte Carlo
• flat Monte Carlo
• flat UCB
• Parallel flat MC
• Monte Carlo Tree Search
• UCT Algorithm
• Greedy MCTS
• Heuristic MCTS
• MC-RAVE
• Parallel MCTS

• ...

Search-based Algorithms
• Algorithm • Backtracking search
• Random strategy • Recursive best-first search
• A* search • Genetic algorithms

• Greedy best-first • ...

Search Space

<<interface>>

Action
+ execute(s: State): State
+ is_applicable(s: State): bool

<<interface>>

Action
+ execute(s: State): State
+ is_applicable(s: State): bool

<<interface>>

State
+ find_successors(): list[State]
+ find_random_successor(): State
+ is_terminal(): bool
+ reward(): float
+ hash(): int
+ eq(s: State): bool

<<interface>>

State
+ find_successors(): list[State]
+ find_random_successor(): State
+ is_terminal(): bool
+ reward(): float
+ hash(): int
+ eq(s: State): bool TreeSearch

+ tree(): dict[Node, list[Node]]
+ size(): int
+ path(n: Node): list[Node]

TreeSearch
+ tree(): dict[Node, list[Node]]
+ size(): int
+ path(n: Node): list[Node]

Node
+ state(): State
+ parent(): Node
+ actions(): list[Action]
+ hash(): int
+ eq(n: Node): bool

Node
+ state(): State
+ parent(): Node
+ actions(): list[Action]
+ hash(): int
+ eq(n: Node): bool

<<interface>>

Problem
+ name(): str
+ initial_state(): State
+ solution(terminal: State): Any

<<interface>>

Problem
+ name(): str
+ initial_state(): State
+ solution(terminal: State): Any

Figure 5: MCTS conceptual framework architecture.

presents the architecture of the framework, including the Monte Carlo meth-
ods available.

The framework is available online4, and has been developed on top of the
Python framework for AAFM proposed in [39]. Note that the AAFM tool
has been tested in front of well-known testing techniques for AAFM (e.g.,
metamorphic testing) [49]. Figure 5 overviews the core architecture of our
implementation. It consists of three main modules: (1) the search space, in-
cluding the interfaces to model SPL problems; (2) the search-based algorithm
module, which includes the Monte Carlo methods; and (3) the knowledge in-
formation inference with the output information from the search.

4.1. Search space and interfaces for (S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ) modeling concepts

We provide three main interfaces (State, Action, and Problem) to be
implemented for modeling SPL problems as sequences of (state, actions)
pairs. The State interface specifies the methods necessary to build and
explore the search space, so that from a given initial state s0, we can reach all

4https://github.com/diverso-lab/fm_montecarlo

14

https://github.com/diverso-lab/fm_montecarlo

states in S. The State interface has to be implemented only once defining
the state transition function θ (successors() and random successor()),
the is terminal() condition t, and the reward() function µ. Additional
implementation methods are required to guarantee the correct functioning
of the algorithms: for example, states must be comparable (eq() method)
and hashable (hash() method). The Action interface is defined for each
applicable action. The Problem interface specifies how a problem is set up
at the start by providing an initial state, and how a solution is decoded from
a terminal state to represent the solution in a human-readable form. Finally,
we provide an implementation of TreeSearch that the MCTS method will
use during the search. The tree search is based on Nodes representing the
states and the list of actions that trace the path to the initial state.

4.2. Search-based algorithms and Monte Carlo methods

Although our framework focuses on Monte Carlo methods, it can sup-
port any search-based algorithm that is built using the previous interfaces,
such as a classical A-star search (A*) [40] or genetic algorithms [30]. In the
Algorithms module of Figure 5, the algorithms and methods highlighted in
bold are fully implemented and ready to be used in our framework; the al-
gorithms in italics represent interfaces that can be further specialized; and
other algorithms and methods in regular font are possible extensions worthy
of being incorporated into our framework in the future. The Algorithm,
Monte Carlo and Monte Carlo Tree Search interfaces provide a base ab-
stract implementations of any search-based algorithm, Monte Carlo, and
MCTS method, respectively, which can be specialized with different algo-
rithms and variants of Monte Carlo methods [42]. The following generic
search-based algorithms are currently available:

• Random strategy. It chooses a random action from the current state
without running any simulation. This is not a Monte Carlo method it-
self, but it is often used in game theory to simulate a random player and
it is widely used as a baseline to compare Monte Carlo methods [34].

• A* search. It is an implementation of the most widely known form of
best-first search [40]. It evaluates nodes by combining the cost to reach
the current node and a heuristic of the cost to get from the current
node to a terminal node. This method is available only for testing the
correctness of the implementation of the states and the actions because

15

this method performs an exhaustive search, which makes it infeasible
in practice for medium and large search spaces.

An implementation of several Monte Carlo methods, including MCTS, is
available to solve any problem that implements the aforementioned interfaces
(state, actions, problem). The Monte Carlo and MCTS methods available in
our framework are the following:

• UCT algorithm. An implementation of MCTS (Algorithm 2) that
builds a search tree and uses the UCT selection strategy [43], which
favors actions with a higher Q-value but allows at the same time to
explore those actions that have not yet been sufficiently explored. The
exploration vs. exploitation balance is controlled with an exploration
constant (0 ≤ EC ≤ 1) parameter with a default value of 0.5.

• Greedy MCTS. A best-first strategy that favors exploitation against
exploration. This method is equivalent to the UCT Algorithm with
the exploration constant EC = 0, and always chooses the action with
higher Q-value.

• Flat Monte Carlo. An implementation of the basic Monte Carlo
method (Algorithm 1) with random action selection and no tree growth.
It only considers the simulations from the current state without using
the information from previous simulations.

The framework is open for extension, and thus, further variants of Monte
Carlo and MCTS methods can be added to the framework such as par-
allel versions of both methods [50, 51] to improve the efficiency, Heuristic
MCTS [42], MC-RAVE [42], and further specialization that may include the
use of minimal cut sets [52], rare event simulations [53], or importance split-
ting [54], among others.

Configuration of the algorithms and Monte Carlo methods. Each
search-based algorithm, including the Monte Carlo methods, can be config-
ured with a stopping condition that specifies a computational budget (e.g.,
time, memory, or a number of steps) to find a solution, after which the al-
gorithm will return the solution (if found), as shown in Algorithm 3. If
no stopping condition is provided, the algorithm will run until a solution is
found. In addition, each Monte Carlo method can be configured with a sec-
ond different stopping condition that allows specifying a stopping criterion

16

for making a decision during each algorithm step (e.g., number of simulations
or iterations, time to run a simulation or iteration), so that when the condi-
tion is reached, the Monte Carlo method will return the best decision found
at that particular step, as shown in Algorithms 1 and 2. Currently, two differ-
ent stopping conditions are implemented: (1) an Iterations constraint

which allows specifying a maximum number of steps for the algorithm to
find a solution or a maximum number of simulations or iterations for Monte
Carlo methods to make a decision; and (2) a Time constraint that allows
specifying a maximum execution time in seconds for the whole search or for
making a decision in Monte Carlo methods.

Moreover, each Monte Carlo method can also be configured with a selec-
tion criterion for the best action decision. For example, select the child with
the highest reward, the most visited child, the child with both the highest
visit count and the highest reward, or the child that maximizes a lower con-
fidence bound [44]. Currently, the selection criterium that returns the child
with the highest reward is available.

Finally, additional configuration parameters can be provided to Monte
Carlo methods. Concretely, due to Monte Carlo methods rely on randomness,
we provide a seed parameter to initialize the random generator and enable
experimental reproducibility. Also, a number of runs can be specified (default
is 1) to repeat an experiment several times (e.g., 30) and obtain the median,
means and standard deviation of different statistics, as explained below.

Algorithm 3 Generic algorithm to solve a problem with MCTS.

1: function FindSolution(s0)
2: state← s0
3: while within computational budget and not is terminal(state) do
4: state←MCTS(state) ▷ Run MCTS (Algorithm 2).
5: end while
6: return state
7: end function

4.3. Usage of the Monte Carlo methods and knowledge inference

Two main usages of the Monte Carlo methods are available. First, Monte
Carlo methods can be used as a search-based algorithm so that from a given
initial state, the algorithm will look for the best solution(s) — i.e., termi-
nal state(s). Algorithm 3 illustrates how to use the MCTS method as a
search-based algorithm to find a solution to a generic problem. Given an
initial state (s0), the algorithm will run until some predefined computational

17

budget is reached or until a terminal state is reached (line 3). In each step,
the algorithm calls the MCTS method in charge of choosing the best ac-
tion (line 4). In addition to the best solutions found by the algorithm, the
MCTS framework provides further knowledge information gathered during
the search. The partially optimal decisions made step by step are avail-
able, so that we can observe, for example, which feature has been selected
in each step during the configuration process for configuration-based analy-
ses, or which relation has been added to the feature model in each step for
evolution-based problems or reverse engineering problems.

Second, Monte Carlo methods can also be used to analyze a particular
state and its possible alternatives. Given a state, the method will analyze
the possible alternatives that can be reached from this state and will re-
turn information about the best choices, so that the practitioner can make
better decisions. In this respect, the MCTS framework also reports the in-
formation stored in the tree search about the Q-values and visit accounts of
each (state, action) pair gathered by the MCTS method. To illustrate the
knowledge stored in the tree search, we use a data visualization technique
called heatmap [55, 56, 57], which encodes quantitative values as colors (like
in weather maps), so that it compacts large amounts of information (our
Q-values) to bring out coherent patterns in the data (e.g., optimal feature
selection over the feature model). In the following sections, we use heatmaps
as one of the tools to represent the contribution of each decision to the global
solution achieved by MCTS.

Finally, the MCTS framework also reports statistical information about
the execution time and memory consumption of the algorithms, such as the
median, mean, and standard deviation for both the global solution and each
step-wise decision, that allows a deep study of the different Monte Carlo
methods and analysis problems. The experiments shown in the following
sections were performed on a desktop computer with Intel Core i9-9900K
CPU @ 3.60GHz x 8, 32 GB of memory, Linux Mint 20.1 Cinnamon, and
Python 3.9.1.

5. Configuration based analysis

One of the most important and widely studied types of problems in
AAFM deals with feature model configurations. Examples of these problems
are the optimization of configurations according to non-functional proper-
ties [10, 31, 45], the completion of partial configurations [58], the localization

18

of defective configurations in SPL testing [59, 60, 61, 62], or the diagnosis of
configurations [58, 63], among many other problems. To analyze this kind
of problems with MCTS, we first model the concepts that are shared among
these problems. That is, the definition of the set of states S, the set of actions
A, and the state transition function θ.

The state set S encompasses all possible combinations of features of the
feature model. Depending on the definition of the set of actions A, S may
consider either valid or invalid configurations or both, but also either partial
or complete configurations or both.

The action set A. There are multiple possibilities to define the set
of valid actions that can be performed over a given configuration. For in-
stance, actions for configurations can include (de)selecting a unique feature
or (de)selecting a set of features. In this paper, we opt to follow an incremen-
tal approach in which a configuration is built from scratch (or from a given
partial configuration) by selecting features. Formally, given a state s ∈ S
representing a (partial) configuration c, the application of an action a ∈ A
with argument f ∈ F will lead to a new state s′ ∈ S representing a new
(partial) configuration c′ = {f} ∪ c. An action is valid if it can be applied
to a state under a certain Condition of Applicability (CA). The condition of
applicability is defined for each action and its result depends on the current
state. An action may receive any kind of parameters in order to be executed.
The most basic action is selecting a random feature from F :

a0: SelectRandomFeature. This action adds a random feature f ∈ F to the configu-
ration c.

CA: f is not already part of the configuration c, that is, f /∈ c.

This action is independent of the relations defined in the feature model
(Definition 1), and thus it can be used for any other definition of the feature
model as long as it is based on a set of features. However, this action leads to
an intractable search space with all possible valid and invalid configurations
(i.e., S = P(F)) where most of the states represent invalid configurations.
A more convenient definition for the actions is considering the relations of
the feature model, reducing the resulting search space, but losing the inde-
pendency from the feature model stated before. Following our feature model
Definition 1, we specify the following set of actions A = {a1, a2, a3, a4, a5}:
a1: SelectRootFeature. It adds the root r ∈ F of the feature model m to the configu-

ration c.

CA: The configuration is empty: c = ∅.

19

a2: SelectMandatoryFeature. It adds a mandatory feature f ∈ F to the configuration
c.

CA: There is a mandatory relation between a feature g already present in the con-
figuration c and feature f . Formally, f /∈ c∧∃g ∈ c,∃r ∈ R|r = (g, [f], ⟨1..1⟩).

a3: SelectOptionalFeature. It adds an optional feature f ∈ F to the configuration c.

CA: There is an optional relation between a feature g already present in the con-
figuration c and feature f . That is, f /∈ c ∧ ∃g ∈ c,∃r ∈ R|r = (g, [f], ⟨0..1⟩).

a4: SelectFeatureAlternative. It adds a feature fi ∈ F , which belongs to an alternative-
group, to the configuration c.

CA: There is an alternative relation between a feature g already present in the
configuration c and feature fi, and there is not any other child of g already se-
lected in c. That is, fi /∈ c∧∃g ∈ c, ∃r ∈ R|r = (g, [f1, . . . , fi, . . . , fn], ⟨0..1⟩)∧
fj /∈ c,∀j ̸= i.

a5: SelectFeatureOr. It adds a feature fi ∈ F of an or-group to the configuration c.

CA: There is an or-group relation between a feature g already present in the
configuration c and feature fi. That is, fi /∈ c ∧ ∃g ∈ c,∃r ∈ R|r =
(g, [f1, . . . , fi, . . . , fn], ⟨0..1⟩). This action allows selecting more than one child
in an or-group.

Note that the configuration is always built incrementally step by step.
In each execution of the MCTS method, a unique feature will be selected
following the tree hierarchy structure of the feature model. This way, we do
not need to define actions for deselecting a feature and avoid cycles in the
search space. The successive application of the actions A assures the valid-
ity of the (partial) configurations according to the tree hierarchy structure
of the feature model, but not for cross-tree constraints. We can define a
generic condition of applicability for all actions so that an action can only
be applied if the resulting partial configuration does not violate any relation
nor cross-tree constraints in the feature model (e.g., checking it with a SAT
solver). Note also that we may take into account atomic sets [64]5 of the
feature model to add several features in each step, reducing the search space.
However, this will limit the analysis of the decisions made when features are
added step by step as illustrated in the following analysis problems. It is also
worth mentioning that actions a1, ..., a5 fully characterize feature diagrams

5An atomic set is a group of features that can be treated as a unit when performing
certain analyses, and therefore, those features appear together in configurations.

20

as defined in FODA [65] (i.e., optional and mandatory features, and xor and
or-groups), but not all the possible feature models as they are defined in
Definition 1 because Definition 1 supports more generic feature models that
may include relations supporting mutex groups (i.e., ⟨0..n⟩) or arbitrary car-
dinality groups (i.e., ⟨a..b⟩) [22]. To support these relations, one may define
additional actions to incorporate the required features in the configuration to
satisfy these relations. Moreover, in the literature [22, 66] it has been demon-
strated that these relations can be refactored using the FODA concepts and
arbitrary cross-tree constraints (i.e., the feature model can be transformed
to an equivalent feature model with the same semantics). For simplicity
illustrating the problems in this paper, we assume feature models only con-
tain optional and mandatory features, and xor and or-groups relations in the
feature diagram.

The state transition function θ : S × A → S defines the result of
applying an action a ∈ A to the given configuration c. Starting from the
initial empty configuration c0 and iteratively applying the state transition
function to all possible applicable actions, we could build the whole search
space. However, this is an intractable task, and the Monte Carlo methods,
and in particular MCTS, will explore the search space resulting from applying
the transition function only to the most promising pairs of (state, action).

The initial state, the terminal condition, and the reward function are spe-
cific for each problem. In the following, we show how to model four concrete
problems where a state represents a configuration by providing complete def-
initions of the concepts (S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ).

5.1. Localizing defective configurations

A common problem in software testing and maintenance is identifying the
configurations that lead to a given defect or some other undesired program
behavior [59, 60, 61]. Continuing with our running example, let us suppose
that we want to identify those valid configurations in our feature model (Fig-
ure 1) that present anomalies when they are deployed. Anomalies in the
Python framework for AAFM may happen due to incompatible versions of
packages, deprecated libraries, or some other errors. Despite those defective
configurations can be found with a search-based software engineering tech-
nique [30], localizing the feature that causes the configuration to fail is not
an easy task due to the complex relations between the features, requiring
complex analysis for the complete configuration. Moreover, Python packages
are often updated and may cause breaking changes. Kästner et al. [62] define

21

a breaking change as any change in a package that would cause a fault in a
dependent package if it were to adopt that change blindly. Thus, to provide
a robust AAFM Framework, apart from identifying the defective configu-
rations, we need to identify those features that cause the defects. Using
a step-wise decision approach, we can infer which features are causing the
configuration to fail.

Modeling the problem. We model this problem in the MCTS conceptual
framework (S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ) as follows:

• S:S:S: The set of all possible configurations of the feature model, including
partial and complete configurations, i.e., SSS ⊆ P(F).

• s0:s0:s0: The initial state is the empty configuration where no feature has
been already selected, i.e., s0s0s0 = ∅.

• t:t:t: The terminal condition determines if a configuration is valid and
complete, or no more valid actions can be applied to the configuration:

t(s)t(s)t(s) =

{
True, if is valid(s) ∨ applicable actions(s) = ∅,
False, otherwise

The is valid(s) operation is performed with a SAT solver [1].

• A:A:A: The set of valid actions AAA = {a1, . . . , a5} as previously defined.

• θ:θ:θ: The state transition function is given by the definitions of the actions
and their conditions of applicability: θθθ = S × A → S.

• µ:µ:µ: The reward function for a terminal configuration s:

µ(s)µ(s)µ(s) =

{
errors(s), if is valid(s) ∧ errors(s) > 0

−1, otherwise

where error(s) is a function that counts the number of errors that the
configuration presents when it is deployed. In our running example,
this value corresponds to the number of Python packages selected that
raise errors when installing them. The reward value of partial and
invalid configurations, as well as for those valid configurations that do
not contain errors is -1. Note that the reward function for Monte Carlo
methods is usually defined in game theory with fixed values (e.g., +1:
win, -1: loss, 0: draw) with no intermediate values, and we are defining
here a continuous function based on the number of errors found.

22

Legend:

Step 1

AAFMFramework

Step 3
AAFMFramework

Packages Solvers System

pycosatpython-sat

pyGlucose pyPicosat 1.00

0.00 0.33

0.76

0.00

0.67

Step 4
AAFMFramework

Packages Solvers System

pycosatpython-sat

pyGlucose pyPicosat

1.00 1.00

1.00

1.00

1.00

Step 2 AAFMFramework

Packages Solvers System

0.00 0.281.00
1.00

+- normalized Q-values

[0.00, 0.20) [0.20, 0.40) [0.40, 0.60) [0.60, 0.80) [0.80, 1.00]

MCTS selection in step N
N

1

1

2

1

2

3

3,7

Figure 6: Heatmap representing step-wise decisions for defective configurations.

Solving the problem and analyzing the results. We can solve the prob-
lem of finding defective configurations by consecutively applying MCTS to
the initial empty configuration (Algorithm 4). We modify the stopping condi-
tion of the generic Algorithm 3 so that the search will run until a configuration
with errors is found or no valid action can be applied to the current configu-
ration (line 2 in Algorithm 4). Each execution of the MCTS method (line 3)
will decide and add the most promising feature to the current configuration
following the four steps of the MCTS method presented in Section 3.1. The
most promising feature is the next one in the feature model hierarchical tree
(according to the set of actions A) that moves the configuration closer to a
complete valid configuration with the highest number of errors.

The execution of the algorithm is illustrated step by step in Figure 6. We
use a grey-scale heatmap for each algorithm step to represent each feature’s
contribution. Darker colors mean a higher probability of finding a defective
configuration. if that feature is selected. Given the empty configuration as
the initial state, in the first step, the only action available is to add the root

23

Algorithm 4 Finding defective configurations with MCTS.

1: function FindDefectiveConfiguration(state)
2: while reward(state) ≤ 0 and actions(state) ̸= ∅ do
3: state←MCTS(state) ▷ Run MCTS (Algorithm 2).
4: end while
5: if reward(state) > 0 then ▷ Defective configuration found!
6: return state
7: else
8: return False
9: end if

10: end function

feature AAFMFramework (Step 1 in Figure 6). In Step 2, three possible features
can be added to the configuration according to the action set A. To make a
choice, MCTS performs a number of simulations (e.g., 100) that consist in
completing the configuration with random selections (always following the
action set A), evaluating the number of errors for the complete configura-
tion achieved in each simulation, and gathering the statistical outcomes of
the simulations as explained in Section 3.1 — i.e., the Q-values. Figure 6
shows normalized Q-values in the range [0, 1], being 1 the most promising
feature decision. In Step 3, the pyPicosat package is selected as part of the
configuration, while, in Step 4, any possible decision will lead to defective
configuration (i.e., all candidate features are Q-values 1). This suggests that
the previous choice (pyPicosat) is the feature provoking the failure. The
algorithm will continue completing the configuration with a valid selection of
features (e.g., selecting mandatory features), despite the problematic feature
that has already been discovered. From step 3 where pyPicosat is selected,
the algorithm will find a defective configuration regardless of the selections
of the following steps, because all the complete configurations will contain
the pyPicosat feature. The algorithm finishes when it finds a valid defec-
tive configuration, as, for example, the final state found: {AAFMFramework,
Solvers, System, Linux, Packages, pyPicosat, PicoSAT}. As Figure 7 shows,
when deploying that configuration in Python some errors raise: the package
pyPicosat cannot be correctly installed in Linux. Thanks to the heatmap
shown step by step, we are able to identify that the feature pyPicosat is
one of the problematic features that provokes the configuration to be defec-
tive. Following this procedure, we can find that deploying any configuration
with pyPicosat in the Linux system leads to failures, so we opt to update
the original constraint Win ⇒ ¬ pyPicosat to Win ∨ Linux ⇒ ¬ pyPicosat,
converting pyPicosat into a dead feature [1].

24

Figure 7: Deploying a defective configuration.

Lessons learned and open challenges. Using the knowledge gathered
by MCTS in the tree search, we can infer two interesting results: (1) which
features are more probable to be the cause provoking the defect in the config-
uration; and (2) which features are contributing more to the solution found,
so that we may find additional defective configurations by following the se-
quence of feature selections done by MCTS to find the current configuration.
However, two limitations arose at this point on the applicability of MCTS.
First, the problem of finding defective configurations requires specific domain
knowledge represented by the information about what configurations present
errors when they are deployed. This limits the applicability of this analysis
to those feature models that contain such domain knowledge. Second, MCTS
can function as a search-based algorithm, but it is more appropriate to find
just one solution, not all of them. To find all defective configurations, we
need to track the solutions found and use that information as part of the
reward function so that it penalizes (return -1) those simulations that reach
the defective configurations already found.

To illustrate these concerns and show the applicability of our Monte Carlo
methods, we apply them for finding defective configurations in two real-
world SPLs: the JHipster Web development stack [60], and the complete
version of the Python framework for AAFM [39]. On the one hand, we
choose the JHipster SPL because its configuration space (26,256 configura-
tions) has been fully evaluated in [60] (having 9,376 defective configurations,

25

i.e., 35.70%) and can be used to evaluate the results obtained with Monte
Carlo methods [67]. On the other hand, the complete AAFMFramework prod-
uct line presented in Section 2 has 53 features, 26 relations, and 10 cross-tree
constraints, leading to a total of 3.1264 · 109 configurations. It serves as a
large-scale configuration space where we have already identified the specific
features that cause errors when the configurations are deployed by manually
testing each feature individually. We compare three Monte Carlo methods for
different numbers of simulations w.r.t. uniform random sampling (URS) [32].
URS is the simplest way to solve search-related problems on configurable
systems [24, 68, 69]. URS-based search consists of generating a random sam-
ple of configurations, testing (or benchmarking) them, and selecting the ones
that fail (or the one that achieves the best performance). Accordingly, URS
is the baseline of any more elaborated search algorithms, whose existence
only makes sense if they can beat pure random. In contrast to URS, the
random strategy presented in Section 4.2 is not able to find any defective
configuration in most cases because the random strategy selects the actions
randomly, but the resulting configurations are not uniformly selected from
the full search space as URS does. Thus, in this particular problem, URS
is a more reasonable base line to compare Monte Carlo methods. The re-
sults are summarized in Figures 8, 9, and 10. We present the number of
configurations found with defects (a), the number of configurations (terminal
states) evaluated (b), the efficiency as the percentage of defective configura-
tions found w.r.t. the configurations evaluated (c), and the execution time
(d). We identified the following Lessons Learned (LS) and Open Challenges
(OC).

LS1 MCTS is a selective sampling method which balances exploitation and
exploration, in contrast to uniform random sampling. A first observa-
tion is a higher fluctuation in the MCTS. Especially in the UCT Algo-
rithm where we set the exploration constant to 0.5, leading to a balance
between exploitation and exploration [42, 43]. In JHipster (Figure 8a),
defective configurations are localized in regions, making the MCTS
method focuses on that area until the region is sufficiently explored.
On the contrary, in the AAFM Python framework (Figure 8b), defec-
tive configurations are scattered through the configuration space, and
MCTS will find more defective configurations with the same number of
simulations. The Greedy MCTS method favors exploitation in contrast
to exploration (the exploration constant is set to 0), and therefore the

26

0 1,000 2,000 3,000 4,000 5,000
0

500

1,000

1,500

2,000

Simulations

D
ef
ec
ti
ve

co
n
fi
gu

ra
ti
on

s
UCT Algorithm
Greedy MCTS
flat Monte Carlo

URS [32]

(a) JHipster.

0 1,000 2,000 3,000 4,000 5,000
0

1,000

2,000

3,000

4,000

5,000

Simulations

D
ef
ec
ti
ve

co
n
fi
gu

ra
ti
on

s

UCT Algorithm
Greedy MCTS
flat Monte Carlo

URS [32]

(b) AAFM Framework.

Figure 8: Finding defective configurations.

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

Simulations

%
d
ef
ec
ti
ve

co
n
fi
gu

ra
ti
on

s

UCT Algorithm
Greedy MCTS
flat Monte Carlo

URS [32]

(a) JHipster.

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

Simulations

%
d
ef
ec
ti
ve

co
n
fi
gu

ra
ti
on

s

UCT Algorithm
Greedy MCTS
flat Monte Carlo

URS [32]

(b) AAFM Famework.

Figure 9: Efficiency of the search for defective configurations.

0 1,000 2,000 3,000 4,000 5,000
0

1,000

2,000

3,000

4,000

5,000

Simulations

C
on

fi
gu

ra
ti
on

s
ev
al
u
at
ed

UCT Algorithm
Greedy MCTS
flat Monte Carlo

URS [32]

(a) JHipster.

0 1,000 2,000 3,000 4,000 5,000
0

1,000

2,000

3,000

4,000

5,000

Simulations

C
on

fi
gu

ra
ti
on

s
ev
al
u
at
ed

UCT Algorithm
Greedy MCTS
flat Monte Carlo

URS [32]

(b) AAFM Framework.

Figure 10: Evaluation of terminal states.

27

greedy version of MCTS finds the same defective configurations more
than once during simulations than the other methods. This occurs be-
cause greedy MCTS chooses the action with the highest Q-value and
the subsequent simulations will choose the same action with highest
Q-value. Regarding the flat version of Monte Carlo method, it behaves
more similar to random sampling because it does not use the infor-
mation gathered in previous simulations for the subsequent decisions,
but it still gets benefits from the current simulations run. OC1: The
challenge is identifying the most appropriate Monte Carlo method for
a specific SPL problem. Monte Carlo methods are not a silver bullet
for analyzing SPL problems, but these results show that MCTS can also
be used as a search-based optimization technique in SPL, possibly as a
complement of existing approaches (e.g., genetic algorithms [30]).

LS2 The efficiency of Monte Carlo methods depends on the distribution of
the configuration space and the structure of the feature model. A second
observation is the efficiency of Monte Carlo methods (Figure 9). Monte
Carlo methods are superior on average to URS when comparing the
amount of defective configurations found w.r.t. the configurations eval-
uated. In JHipster, with 5000 simulations, the UCT Algorithm eval-
uates 5000 configurations, of which 36% are defective configurations,
flat Monte Carlo finds 48%, and Greedy MCTS finds 54%, in contrast
to URS, which finds 36% of defective configurations. In the AAFM
Python framework feature model, with 5000 simulations, the UCT Al-
gorithm finds 98% of defective configurations, flat Monte Carlo finds
84%, and Greedy MCTS finds 94%, in contrast to URS that finds 77%
of defective configurations. This result is not surprising since MCTS
is a selective sampling approach. However, the number of solutions
found (Figure 9), as well as the number of solutions evaluated, that is,
the number of terminal states evaluated with the reward function (Fig-
ure 10) by MCTS will depend on the distribution of the configuration
space [29]. This implies that the same configurations may be found
more than once, requiring MCTS more simulations and evaluations to
find distinct defective configurations because several simulations may
lead to the same terminal states. Furthermore, the performance of flat
Monte Carlo is better in one case study (AAFM Framework) and worst
in the other (JHipster) because of the structure of the feature model,
and thus, the structure of the search space. In the JHipster, despite

28

having only 26,256 configurations, the valid configurations are larger in
the number of features requiring more steps (decisions) of flat Monte
Carlo to find a valid configuration. In contrast, in the AAFM Frame-
work, despite having more than 109 configurations, those configurations
are smaller in the number of features, requiring fewer steps (decisions)
from flat Monte Carlo [29]. Remember that the configuration is built
from scratch following the top-down structure of the feature model.
The same reason applies to the performance of Greedy MCTS, but
take into account that when Greedy MCTS finds a “good” solution it
will continue exploring that part of the search space in depth because
its exploration constant is always zero. For instance, in JHipster (Fig-
ures 8a, 9a, and 10a), when Greedy MCTS finds a “good” solution
with a lower number of features, the subsequent valid configurations it
finds are similar or even the same configuration previously found. A
selective sampling algorithm may help to better understand the con-
figuration space of large-scale feature models. OC2: The challenge
here is twofold: (1) to investigate how Monte Carlo methods can be
employed in the understanding of the configuration spaces, since a se-
lective sampling algorithm may help to identify the structure and form
of the configuration space of large-scale feature models; and (2) use
the information about the configuration space to improve the efficiency
of Monte Carlo methods in search-based algorithms (e.g., enhancing
Monte Carlo methods with transpositions and action groups [70]).

In the following section, we show how we can solve another problem where
a state represents a configuration by only modifying the reward function and
reusing the other definitions.

5.2. Finding minimum valid configurations

In our running example, a requirement for the development of the AAFM
framework in Python is to depend on the smallest number of third-party
packages as possible. Thus, another interesting problem is finding a valid
configuration with the minimum number of features [58].

Modeling the problem. We reuse the definitions of states (SSS), initial state
(s0s0s0), terminal condition (ttt), actions (AAA), and state transition function (θθθ) of
the previous problem, while the reward function µµµ changes.

• S:S:S: All possible partial and complete configurations (SSS = P(F)).

29

• s0:s0:s0: The empty configuration with no feature selected (s0s0s0 = ∅).

• t:t:t: A configuration is terminal if it is valid and complete:

t(s)t(s)t(s) =

{
True, if is valid(s) ∨ applicable actions(s) = ∅,
False, otherwise

• A:A:A: The set of valid actions AAA = {a1, . . . , a5}.

• θ:θ:θ: S × A → S.

• µ:µ:µ: The reward function counts the difference between the number of
features in the feature model (|F |) and the number of features in the
configuration represented by the state s:

µ(s)µ(s)µ(s) =

{
|F | − |s|, if is valid(s)

−1, otherwise

Solving the problem and analyzing results. We use generic Algorithm 3
where the terminal condition checks if the current state is a complete valid
configuration. In this problem, the tree search built by MCTS contains
statistical information regarding the decisions to select the minimum set of
features to form a valid configuration. Figure 13 shows the resulting heatmap
with the accumulated Q-values when we use a partial configuration as the
initial state. As we will show in the following section, the problem of finding
minimum valid configurations is similar to the problem of completing partial
configurations, thus the heatmaps show similar information. Q-values cap-
ture the expected reward of a decision if we decide to make such choice. When
using the empty configuration as the initial state, higher Q-values indicate
which feature may be selected to obtain a minimum valid configuration, and
features in darker colors will approximate to the core features. In addition,
the heatmap shows the feature pyPicosat in blank, indicating that it has
never been considered in a decision. Effectively, the constraint we updated
(Win ∨ Linux ⇒ ¬ pyPicosat) prevents that feature from being part of any
configuration, indicating that it is a dead feature.

Lessons learned and open challenges. As discussed in LS2 Monte
Carlo methods can help to explore the configuration space of a feature model,
offering information to make better decisions, in contrast to an exact method

30

0 2 4 6 8 10 12
0

5

10

15

20

25

Features

C
on

fi
gu

ra
ti
on

s

Distribution

UCT MCTS

Greedy MCTS

Flat Monte Carlo

Parallel MC

Random strategy

Figure 11: Minimum valid configurations found by Monte Carlo methods in the AAFM
Framework feature model (excerpt) for 30 runs. Higher marks w.r.t. the y-axis indicate
more distinct configurations found for the same number of features.

20 40 60 80 100
0

10

20

30

40

50

Simulations

F
ea
tu
re
s
(d
ec
is
io
n
s)

Valid configurations
Median

Figure 12: Finding minimum valid configurations in the complete AAFM Framework
feature model with MCTS. We vary the number of simulations of MCTS from 1 to 100
and execute 30 times the search algorithm (Algorithm 3) for each number of simulations
to calculate the median.

31

to find the best solution. To illustrate this, Figure 11 shows the minimum
valid configurations found by the Monte Carlo methods (100 simulations) for
30 runs of each algorithm. Most of the configurations found are concentrated
in the real minimum valid configuration with only 3 features. The MCTS
methods have also found others (non-minimum) valid configurations because
of the balancing behavior discussed in LS1 which is useful in the case that
the minimum valid configuration is not unique. Figure 12 shows the number
of decisions (features) taken by MCTS to find minimum valid configurations
starting from the empty configuration. We run 30 executions for each number
of iterations (simulations). Using the complete version of the AAFM Python
framework, we can observe as the number of decisions decreases as long as
we increase the number of simulations, improving the solutions found. The
following lessons learned and open challenges have been extracted.

LS3 Monte Carlo methods are very sensitive to the various inputs and pa-
rameters. Monte Carlo methods are techniques that rely on random-
ness, and thus, as stated by Lopez-Herrejón [30] these techniques are
very sensitive to various inputs and parameters, meaning that slightly
changing a value (e.g., the number of simulations) can totally change
how you would infer the results. For example, the UCT MCTS and
the Greedy MCTS only differ in the value used as the exploration con-
stant, leading to a totally different result as discussed in LS1 (Figure 8).
OC3: The challenge is to find the most appropriate set of configura-
tion parameters of the Monte Carlo methods for a specific feature model
input.

LS4 Monte Carlo methods are anytime algorithms which accomplish better
results the longer they keep running. As shown in Figure 12, the num-
ber of Monte Carlo simulations affects both the solution quality and the
number of steps (decisions) to obtain the solution. As the number of
simulations increases, the number of decisions decreases because MCTS
can make better decisions, and thus the solutions found are also better.
Establishing the appropriate number of simulations is a complex task,
and it depends on the size of the search space. A large number of sim-
ulations are needed before significant learning could occur in MCTS.
OC4: Despite the implementation of our MCTS framework also offers
a time constraint in seconds as stopping condition for the Monte Carlo
decisions, the open challenge here is determining the appropriate num-

32

ber of simulations or specifying the time needed in advance to guarantee
a certain quality in the solutions.

LS5 There exist important trade-offs between reproducibility of results, ran-
domness, and performance in Monte Carlo methods. The results’ repro-
ducibility is compromised as Monte Carlo methods rely on randomness
to solve problems. Monte Carlo methods make intensive use of random
operations such as “choice”, “shuffle”, or “sample” of actions during
both the selection and the simulation phase. Furthermore, the ran-
dom module is not the only source of randomness, and the results can
still present a small variation when using an initialized random seed in
Monte Carlo methods and especially in MCTS. The implementation of
the MCTS method is usually based on data structures (e.g., the tree
search) that do not maintain the order of the states (e.g., sets, maps,
or dictionaries). For instance, in a configuration of a feature model, the
order of the features is irrelevant. Using those structures does not guar-
antee obtaining identical results when using random operations such as
choosing a random feature in a configuration. Moreover, the states in
our framework can represent features, configurations, or even feature
models like in the reverse engineering problem. Maintaining a total
order for these concepts is not straightforward. For example, defining
that a feature model is smaller than others is not trivial. Providing re-
producibility also impacts and significatively degrades the performance
of the solution because it requires continuously sorting the collections
or using inefficient sorted data structures, which Monte Carlo methods
do not really need. OC5: The challenge is to address the trade-off be-
tween performance and reproducibility due to the randomness nature of
the Monte Carlo methods. To mitigate these issues and provide repro-
ducibility in our MCTS framework, we allow setting a random seed as
an argument to initialize the random module and our implementation
relies on sorted data structures (i.e., lists) in contrast to sets.

The problem of finding minimum valid configurations can be seen as a spe-
cialization of the following problem of completing partial configurations [58].

5.3. Completion of partial configurations

The completion of partial configurations problem consists of finding the
set of non-selected features necessary for getting a complete valid configura-
tion. While in a complete configuration each feature is decided to be either

33

present or absent, in partial configurations, some features are undecided (see
Definition 3). In our running example, let us suppose we have decided to use
the Glucose solver in our AAFM framework. We are interested in finding
the minimum valid complete configuration with such user’s requirement.

Modeling the problem. We modify the initial state s0s0s0, while leaving the
other definitions SSS, ttt, AAA, θθθ, and µµµ as in the previous problem:

• S:S:S: All possible partial and complete configurations (SSS = P(F)).

• s0:s0:s0: A given partial configuration. To guarantee that the initial partial
configuration does not violate the tree hierarchy of the feature model
and allows applying our actions AAA, we preprocess the initial configu-
ration provided by the user by recursively selecting all parents for the
features already selected. If the resulting partial configuration does not
violate the tree hierarchy nor the cross-tree constraints, we can use it
as the initial state s0s0s0 for MCTS. In the other case, the partial selection
made by the user is not valid.

• t:t:t: A configuration is terminal if it is valid and complete:

t(s)t(s)t(s) =

{
True, if is valid(s) ∨ applicable actions(s) = ∅,
False, otherwise

• A:A:A: The set of valid actions AAA = {a1, . . . , a5}.

• θ:θ:θ: S × A → S.

• µ:µ:µ: Difference between the number of features in the feature model (|F |)
and the number of features in the configuration (|s|):

µ(s)µ(s)µ(s) =

{
|F | − |s|, if is valid(s)

−1, otherwise

Solving the problem and analyzing results. To form a valid initial
configuration with the user requirements (i.e., the Glucose feature selected),
we automatically select the parent features of Glucose recursively, obtain-
ing the set of features {AAFMFramework, Solver, Glucose} to be used as the
initial configuration. We execute Algorithm 3, whose terminal condition

34

AAFMFramework

Packages Solvers System

pycosatpython-sat

pyGlucose pyPicosat

0.08 0.020.16

0.14

MiniSAT PicoSAT

Glucose

Linux Win

PicoSAT => pycosat ∨ pyPicosat
Glucose => python-sat ∨ pyglucose

MiniSAT => python-sat
Win ∨ Linux => ¬ pyPicosat

PicoSAT => pycosat ∨ pyPicosat
Glucose => python-sat ∨ pyglucose

MiniSAT => python-sat
Win ∨ Linux => ¬ pyPicosat

0.14 0.16

0.521.00

0.00

0.00

Legend: Dead feature +- normalized Q-values

Initial state (user selection)

Figure 13: Global heatmap for completion of partial configurations. The initial (input)
state is {AAFMFramework, Solver, Glucose}. The heatmap indicates the selections to
be first made to get closer to a complete configuration. Features Packages and System
are the two features added in the first steps.

checks if the current state is a valid complete configuration, as in the pre-
vious problem. Figure 13 shows the resulting heatmap for completing the
partial configuration given as the initial state by the user with the minimum
valid selections. Features in darker colors indicate selections to be first made
to get closer to a complete configuration, as, for example the Packages and
the System features. The Packages features appears with a higher normalized
Q-value, indicating that MCTS has first explored that feature (in contrast
to the mandatory feature System). That is because a complete configuration
needs to include both features, satisfying the cross-tree constraints (i.e., the
Glucose solver is implemented by the python-sat or the pyglucose package),
so that the Packages feature must be selected. To satisfy the constraint,
the python-sat or the pyglucose package must be selected. They appear
with a higher normalized Q-value than the other alternative packages. Note
that how other features like pycosat (0.08) or the solver MiniSAT (0.02) are
not strictly necessary to complete the configuration, but have been marked
as possible candidates. Remember that MCTS is based on simulations and
probabilities and those feature selections have also been explored resulting
in valid configurations.

35

Table 1: Feature models corpus used for evaluation, with number of features (#Features),
optional features (#Opt), mandatory features (#Mnd), or-group features (#Or), alterna-
tive group features (#Xor), the average branching factor (AvgBF), number of cross-tree
constraints (#CTCs), and configurations (#Configs).

Feature model #Features #Opt #Mand #Or #Xor AvgBF #CTCs #Configs

Pizzas [66] 12 8 4 1 2 2.75 1 42
GPL [38] 18 13 5 1 0 3.40 13 436
Wget [71] 17 15 2 0 1 8.00 0 8192
jHipster [60] 45 36 9 0 10 3.38 13 26256
Tank war [71] 37 30 7 2 6 3.27 0 1.74e6
Mobile media [72] 43 30 13 4 3 3.50 3 2.12e6
AAFM Framework [37] 59 52 7 6 1 4.14 14 1.32e11
WeaFQAs [73] 179 138 41 13 23 3.24 7 2.93e24

Lessons learned and open challenges. Completing valid configurations
is an example of an analysis problem which uses the feature model without
additional domain information. Therefore, the analysis can be extended to
any feature model. To show the feasibility of Monte Carlo methods, we use
a set of feature models varying in size and structure (Table 1). Results are
shown in Table 2 for all Monte Carlo methods. We identify the following
lessons learned and open challenges.

LS6 Despite Monte Carlo methods often scale to large search spaces [34],
SPL problems introduce additional complexity that can affect the feasi-
bility of Monte Carlo methods. The feasibility of Monte Carlo methods
relies on the performance of the simulations. To obtain good solutions
with Monte Carlo methods, they need to run a large number of sim-
ulations (e.g., hundreds or thousands). Therefore, a simulation must
be a lightweight operation, in contrast to a computationally expensive
task. In configuration-based analysis, we have identified a bottleneck
during the simulations due to the high number of calls to the SAT
solver employed to check if the selection of a feature leads to a valid
partial configuration. This check needs to be done for each possible fea-
ture that can be added to the configuration when applying the actions
to select the next feature. A simple cross-tree constraint involving a
feature at the top of the feature model can increase considerably the
steps needed to complete a valid configuration. Even with only just one
simulation, the number of calls to the SAT solver can be exponential in
the number of features in the feature model during simulation. OC6:

36

Table 2: Completion of partial configurations. For each feature model (FM), we show
the number of features in the minimum valid configuration (Min. |F |). We performed 30
execution runs, and show the median values for the number of features in the minimum
valid configuration, time (in seconds), and memory (in MB) of each method to complete
the initial empty configuration with the minimum number of features.

Feature model Min Random strategy Flat Monte Carlo UCT MCTS Greedy MCTS
|F | |F | Time Mem. |F | Time Mem. |F | Time Mem. |F | Time Mem.

Pizzas 7 9 4e-4 0.20 7 0.12 0.35 7 0.55 1.14 7 0.52 0.90
GPL 7 16 9e-4 0.36 10 0.46 0.88 12 3.44 7.30 11 3.13 6.94
Wget 2 11.5 8e-4 0.25 2 0.05 0.19 2 0.16 3.11 2 0.16 3.10
jHipster 11 20 1.8e-3 0.61 14 1.38 1.79 13 3.23 9.07 13.5 2.33 5.65
Tank war 12 26 2.6e-3 0.70 14.5 2.42 2.35 12 4.27 25.31 14 5.44 23.38
Mobile media 14 36 4e-3 1.04 20 4.65 3.63 17.5 8.72 42.95 16 8.39 36.83
AAFM Framework 4 52.5 0.01 1.54 4 2.07 0.67 5.5 4.15 15.97 6.5 5.00 15.10
WeaFQAs 3 129 0.10 7.44 3 14.03 0.90 3 23.08 18.51 3 22.44 18.57

Runs: 30. Simulations for Monte Carlo methods: 100. Highlighted the best results

for time and memory for those methods with the minimum number of features in the
configurations found.

The challenge is to define and implement lightweight simulations for
configuration-based analysis. Note that we refer in this challenge to
the simulation process (i.e., the successive random application of the
actions), without considering the execution of the reward function that
we will discuss in LS10.

LS7 Uniform random sampling may improve the performance of Monte Carlo
simulations. A possible solution to address the previous challenge is
to replace the actions (Section 5) for selecting the features individually
with uniform random sampling [32, 69, 24], which returns a sample of
configurations of size equal to the number of simulations needed. We
can substitute the random choices during the simulation step of the
MCTS method by a random sample representing the terminal states
reached by the simulations. Adopting this solution implies three im-
portant changes in our MCTS framework. First, we need to separate
the actions used to generate the possible successors of a given state
from the actions used during simulations, since we still need to know
which are the possible alternatives from a given state to analyze and
choose the most promising one. Second, to implement random sam-
pling and guarantee uniformity, we can use a Binary Decision Diagram
(BDD) solver [32, 8]. Given a partial configuration, the BDD solver
returns a sample of complete configurations that includes the features

37

of the provided partial configuration. However, the BDD solver also
presents scalability issues regarding memory when dealing with large-
scale feature models [9], and therefore, it limits the applicability of our
MCTS framework to those feature models whose associated BDD can
be built. OC7: Providing uniform random sampling for large-scale
feature models is actually one of the open challenges in the SPL com-
munity [17]. Moreover, building a BDD for large-scale feature models is
also a well-known identified challenge [9], and the application of BDDs
to our MCTS framework evidences the need of addressing this chal-
lenge. And third, we need to determine the size of the sampling for
each possible feature alternative available, in contrast to determine only
the global number of simulations to be performed to make a decision.
In [67], the required sample size is calculated based on the product
distribution (i.e., the number of configurations containing a specific
feature) by specifying a shared percentage of configurations to be sam-
pled for all alternatives, so that the same ratio of simulations are done
for each possible alternative. However, this calculation is only valid
for the flat Monte Carlo method, but not for MCTS which balances
exploration and exploitation.

LS8 The independent nature of each simulation in Monte Carlo methods
makes them a good target for parallelization to improve the perfor-
mance, but it requires a deep understanding of Monte Carlo methods,
the parallelization mechanisms, and application context (e.g., SPL in
this paper). Parallelization has the advantage that more simulations
can be performed in a given amount of time. There is a vast literature
about parallelizing Monte Carlo methods [34, 50, 51] which identify
different parts to be parallelized (e.g., the simulation phase, selection
phase, global iterations of MCTS, etc.). Parallelization raises issues
such as the combination of the results (Q-values) from different sim-
ulations, synchronization of threads/processes when simulations differ
in time, or when the simulations depend on the previous ones as in the
MCTS method. OC8: The challenge is to implement parallel versions
of Monte Carlo methods in the context of the SPL problem that guar-
antee the soundness/correctness of the methods and reliability of the
results.

The next problem modifies the reward function while reusing the other
definitions of the MCTS conceptual framework.

38

5.4. Optimization of configurations: optimal feature selection problem

The goal of this problem is to find optimum configurations according to
some criteria, usually non-functional properties. In our running example, let
us suppose that we want to use the most updated and user-rated packages
in Python for our AAFM framework.

Modeling the problem. We use the attributes information about the fea-
tures to define a reward function µµµ that serves as a multi-objective function
to guide the search. Concretely, we use the release update date and the user
rating values publicly available in the Python Package Index (PyPI) reposi-
tory6 to enrich our feature model with those attributes (see Definition 2), so
that now our reward function µµµ can use such information (the other defini-
tions remain the same as in the previous problems):

• S:S:S: All possible partial and complete configurations (SSS = P(F)).

• s0:s0:s0: The empty configuration with no feature selected (s0s0s0 = ∅).

• t:t:t: A configuration is terminal if it is valid and complete:

t(s)t(s)t(s) =

{
True, if is valid(s) ∨ applicable actions(s) = ∅,
False, otherwise

• A:A:A: The set of valid actions AAA = {a1, . . . , a5}.

• θ:θ:θ: S × A → S.

• µ:µ:µ: The reward function for a terminal configuration is an objective
function that evaluates the configuration if it is valid, or returns a
penalization if the configuration is not valid:

µ(s)µ(s)µ(s) =

{
ObjectiveFunction(s), if is valid(s)

Penalization(s), otherwise

For instance, for this problem, we define the ObjectiveFunction(s) as
a multi-objective function considering the release update date and the
user rating of the Python packages in the PyPI repository:

ObjectiveFunction(s) = −w1
LastUpdate(s)

NLU

+ w2
UserRate(s)

NUR

6https://pypi.org/

39

https://pypi.org/

where LastUpdate(s) is the median difference in days of the current
date and the last update date for all Python packages in the configura-
tion s, and UserRate(s) is the median of the user ratings for all pack-
ages in the configuration. w1 and w2 are the weights for each objective
function, and NLU and NUR are normalization constants. By assigning
different weights to each objective, all possible optimum configurations
of the Pareto optimal solutions can be generated. The Penalization(s)
function returns a negative value (e.g., -1000 in this case) if the config-
uration is not valid.

Solving the problem and analyzing the results. As we have only mod-
ified the reward function w.r.t. the problem of finding minimum configura-
tions, this optimization problem can be solved using the same generic Algo-
rithm 3. The only difference is that the new reward function requires domain-
specific knowledge which is provided as attribute information associated with
each feature, so we have provided a guided search for MCTS which leads to
those valid configurations which maximize the objective function. Figure 14
shows the heatmap that corresponds with step 4 of the search algorithm in
which MCTS will select the feature package that get closer to the optimum
valid configuration. The user has provided as input the initial configuration
{AAFMFramework, Solver}, and MCTS has selected the features System, Linux,
and Packages in the first three steps. In the four step, according to the values
of the attributes, the feature python-sat is the most promising, in contrast
to pyGlucose which is a poorly valued package by the users and pycosat

which is a too old package. Feature pyPicosat is not considered because it
is a dead feature. After selecting the package python-sat, MCTS will select
the next feature to complete a valid configuration (i.e., Glucose or MiniSAT),
resulting in an optimum valid configuration: the configuration with features
AAFMFramework, Packages, Solver, System, python-sat, the solver Glucose,
and the Linux system. Note that there are more configurations in the Pareto
optimal solutions since the configuration could be completed with MiniSAT

instead of Glucose, or choosing Win as system instead of Linux in step 2.

Lessons learned and open challenges. While providing domain-specific
knowledge to the reward function can help MCTS with a more direct search,
it can also limit the efficiency of the balanced approach between exploration
and exploitation because MCTS will easily stack on local optima. For in-
stance, multiple configurations with the same updated well-rated packages

40

Legend:

AAFMFramework

Packages Solvers System

pycosatpython-sat

pyGlucose pyPicosat

0.00 0.771.00

0.77

MiniSAT PicoSAT

Glucose

Linux Win

PicoSAT => pycosat ∨ pyPicosat
Glucose => python-sat ∨ pyglucose

MiniSAT => python-sat
Win ∨ Linux => ¬ pyPicosat

PicoSAT => pycosat ∨ pyPicosat
Glucose => python-sat ∨ pyglucose

MiniSAT => python-sat
Win ∨ Linux => ¬ pyPicosat

0.00

Dead feature +- normalized Q-values

0.67

Initial state (user selection) MCTS selection in step N
N

3 1

2

0.00

0.99

User rating = 260
Last update = Feb 22, 2022

User rating = 1
Last update = Apr 14, 2019

User rating = 160
Last update = Nov 9, 2017

User rating = 2
Last update = Aug 1, 2017

Figure 14: Heatmap of the 4th step of MCTS in the optimal feature selection problem
according to the values of the feature attributes.

exist, or configurations where several packages are selected since the feature
model allows selecting more than one package. We may also add little do-
main knowledge to improve the reward function so that, for example, we can
penalize those configurations that contain more than one package for imple-
menting a solver (e.g., assigning a negative value to those configurations).

LS9 Introducing domain-specific knowledge drastically reduces the number
of simulations needed, but may also reduce the variance of simulation
results. Apart from the domain knowledge introduced in the reward
function which primarily guides the search, other parts of Monte Carlo
methods can benefit from feature model knowledge to improve the
search. For instance, in our implementation of the MCTS framework,
we provide an optional parameter as an argument to allow using as
the initial state the partial configuration with the core features7 [1]
selected, instead of using an empty configuration. This reduces the
number of simulations required as well as the steps done by Monte
Carlo methods because there are fewer features to be decided until

7The core features are those features that are selected in all configurations.

41

finding an optimum valid configuration. However, this may also affect
the final output because Monte Carlo methods, and especially MCTS,
are step-wise techniques in which the selection order of the decisions
may affect the subsequent simulations, and MCTS may ignore some
regions of the search space, as discussed in LS1. OC9: The challenge
is to improve the efficiency of Monte Carlo methods by providing as
little domain knowledge as possible while maintaining the feasibility of
the methods.

6. Analysis with Feature Models as States

Analyses with MCTS can also be performed over other concepts beyond
the configuration space of a SPL, such as feature models, extended feature
models, variation points and variants, or products. This section shows how
to model and analyze a problem where the concept of state represents a
feature model. Examples of these problems are the reverse engineering of
feature models [14, 21], the extraction of feature models from propositional
formulas [74], or the evolution of feature models [13].

Here, we illustrate the reverse engineering of feature models problem [14,
21] defined as follows. Given a set of feature combinations present in a SPL
(i.e., a set of configurations), the goal is to extract a feature model that
represents all the configurations. Formally, let be Ci the set of configurations
given as input. Fi is the set of features present in Ci. The problem is to
build a feature model m with features in Fi so that Ci ⊆ Cm where Cm is
the set of valid configurations of the feature model m.

Modeling the problem. We formulate the problem with the following def-
initions of (S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ)(S, s0, t, A, θ, µ):

The set of states S encompasses all feature models that can be built
with any combination of the input features Fi following the Definition 1 of
feature model. Thus, S = {m|m = (F, r,R,Π)} where F ∈ P(Fi) and
Π ⊂ {f ⇒ g, f ⇒ ¬g|f, g ∈ Fi}8, r is the root of the feature model, and the
set of relations R is the same as in Definition 1 (i.e., optional, mandatory,
alternative, and or).

The initial state s0 is the empty feature model, with no features.

8To simplify the problem we consider here only “requires” and “excludes” constraints.

42

The terminal condition t determines that a feature model is terminal
if it contains all features given as input (i.e., F = Fi).

The set of actions A includes 9 actions (A = {b1, . . . , b9}) to be per-
formed over a feature model. Each action is also applicable under a certain
condition of applicability (CA). An invariant condition of applicability that
holds for all actions is that the features to be added are not already in the
feature model (i.e., ∃f ∈ Fi, f /∈ F). The set of actions is:
b1: AddRootFeature. This action adds a feature f ∈ Fi as the root r of the feature

model m.

CA: The feature model m is empty: F = ∅.
b2: AddOptionalFeature. This action adds a new feature f ∈ Fi to the feature model

m with the optional relation (g, [f], ⟨0..1⟩) where g ∈ F is a feature already present in
m.

CA: The feature model m contains at least one feature: F ̸= ∅.
b3: AddMandatoryFeature. This action adds a new feature f ∈ Fi to the feature

model m with the mandatory relation (g, [f], ⟨1..1⟩) where g ∈ F is a feature already
present in m.

CA: The feature model m contains at least one feature: F ̸= ∅.
b4: AddOrGroupRelation. This action adds a new or-group relation (g, [f1, f2], ⟨1..2⟩)

with two features f1, f2 ∈ Fi as children of an existing non-group feature g ∈ F in the
model m.

CA: There is a feature g in m that is not the parent of an alternative-group nor or-
group relation already created inm. That is, ∃g ∈ F,∄r ∈ R|r = (g, [g1, . . . , gn], ⟨1..1⟩)∨
r = (g, [g1, . . . , gn], ⟨1..n⟩) where n ≥ 2 and gi are the children of g.

b5: AddAlternativeGroupRelation. It adds a new alternative-group relation (g, [f1, f2], ⟨1..1⟩)
with two features f1, f2 ∈ Fi as children of an existing non-group feature g ∈ F in m.

CA: Same condition as for action b4.

b6: AddFeatureToOrGroup. This action adds a new feature f ∈ Fi to an existing
or-group relation r in the feature model m and updates the upper cardinality of r
increased by 1.

CA: There is an or-group relation in the model m: ∃r ∈ R|r = (g, [g1, . . . , gn], ⟨1..n⟩),
n ≥ 2 and gi are the children of g.

b7: AddFeatureToAlternativeGroup. It adds a feature f ∈ Fi to an existing alternative-
group relation r in the feature model m.

CA: There is an alternative-group relation in m: ∃r ∈ R|r = (g, [g1, . . . , gn], ⟨1..1⟩),
n ≥ 2 and gi are the children of g.

b8: AddRequiresConstraint. It adds a new “requires” constraint (f ⇒ g) involving
two existing features f, g ∈ F in the model m.

43

CA: Three conditions apply: (1) there are at least two features inm without consider-
ing the root feature r — i.e., |F | ≥ 3; (2) both features f, g ∈ F cannot be related
between them with a parent-child relation — i.e., ∃f, g ∈ F |¬(f ≺ g ∨ g ≺ f);
and (3) there is not an “excludes” constraint between both features (i.e., f ⇒ ¬g
or g ⇒ ¬f), nor a “requires” constraint such that f ⇒ g already created in m.

b9: AddExcludesConstraint. It adds a new “excludes” constraint (f ⇒ ¬g) involving
two existing features f, g ∈ F in m.

CA: Three conditions apply: (1) there are at least two features inm without consider-
ing the root feature r — i.e., |F | ≥ 3; (2) both features f, g ∈ F cannot be related
between them with a parent-child relation — i.e., ∃f, g ∈ F |¬(f ≺ g ∨ g ≺ f);
and (3) there is not an “excludes” constraint between both features (i.e., f ⇒ ¬g
or g ⇒ ¬f), nor a “requires” constraints such that f ⇒ g or g ⇒ f already cre-
ated in m.

The state transition function θ defines the result of applying an action
a ∈ A to the given feature model m.

The reward function µ : for a terminal feature model is a combination
of two objective functions extracted from [14]:

µ(s) = Relaxed(s)−MinDiff(s)

where Relaxed(s) expresses the concern of capturing primarily the config-
urations provided as input. Its value is the number of configurations in Ci

that are valid according to the feature model m represented by this state.
We want to maximize the Relaxed(s) value. MinDiff(s) is a minimal
difference function expressing the concern of obtaining a closer fit to the
configurations provided Ci while other configurations are not relevant. Its
value is the sum of the number of configurations in Ci that are not con-
tained in the configurations Cm of the feature model (also called the deficit
value), and the number of configurations in Cm that are not contained in
the required input configurations Ci (also called the surplus value). So
MinDiff(s) = deficit(s) + surplus(s), value to be minimized.

Solving the problem and analyzing the results. We use as input the
set of 110 configurations of our running example (an excerpt is shown in
Figure 1). We can use the same generic Algorithm 3 to solve this problem.
Starting from the empty (void) feature model (i.e., initial state), MCTS will
incorporate in each decision step a feature or a cross-tree constraint to the fea-
ture model until all features contained in the given configurations are present
in the feature model. Figure 15 shows the first four decision steps made by
MCTS and the final extracted feature model. The resulting feature model

44

Extracted feature model

•Total steps: 8
•Configurations: 191
•Input configurations: 110
•Captured configurations (Relaxed value): 60
•Deficit of configurations (deficit value): 50
•Irrelevant configurations (surplus value): 131
•Total time: 228.31 s

Step 4: 231 decisions
1. (System, [Win,Linux], <1..2>) 1.00
2. (Packages, [Solvers,pyglucose], <1..2>) 0.56
3. (Packages, [pycosat,Solvers], <1..2>) 0.55
…

pyPicosat

Win Linuxpycosat pyglucose

Glucose

PicoSAT MiniSAT

AAFMFrameworkAAFMFramework

SystemSystemPackagesPackages

SolversSolvers

pythonsatpythonsat

pyPicosat

Win Linuxpycosat pyglucose

Glucose

PicoSAT MiniSAT

AAFMFramework

SystemPackages

Solvers

pythonsat

Step 1: 13 decisions
1. root AAFMFramework 1.00
2. root Packages 0.61
3. root System 0.35
…

AAFMFrameworkAAFMFramework

Step 1: 13 decisions
1. root AAFMFramework 1.00
2. root Packages 0.61
3. root System 0.35
…

AAFMFramework

Step 2: 156 decisions
1. (AAFMFramework, [Packages,System], <1..2>) 1.00
2. (AAFMFramework, [Packages,pycosat], <1..2>) 0.65
3. (AAFMFramework, [System,Win], <1..2>) 0.63
…

AAFMFrameworkAAFMFramework

SystemSystemPackagesPackages

AAFMFramework

SystemPackages

Step 2: 156 decisions
1. (AAFMFramework, [Packages,System], <1..2>) 1.00
2. (AAFMFramework, [Packages,pycosat], <1..2>) 0.65
3. (AAFMFramework, [System,Win], <1..2>) 0.63
…

AAFMFramework

SystemPackages

Win Linuxpyglucose

AAFMFrameworkAAFMFramework

SystemSystemPackagesPackages

SolversSolvers Win Linuxpyglucose

AAFMFramework

SystemPackages

Solvers

Step 3: 225 decisions
1. (Packages, [Solvers,pyglucose], <1..2>) 1.00
2. (System, [Win,Linux], <1..2>) 0.76
3. (Packages, [pyglucose,pycosat], <1..2>) 0.72
… pyglucose

AAFMFrameworkAAFMFramework

SystemSystemPackagesPackages

SolversSolvers pyglucose

AAFMFramework

SystemPackages

Solvers

Figure 15: Step-wise decisions for reverse engineering of feature models.

looks similar to the expected one (Figure 1) with some significant differences.
It leads to a total of 191 configurations, 60 of which correspond to the 110
configurations provided as input, presenting a deficit of 50 configurations (al-
most half of the configurations). Such deficit may be corrected with a couple
of manual changes over the resulting feature model. In each step, MCTS
has run 1000 simulations, meaning that to make a decision, it has completed
up to 1000 random feature models, enumerating their configurations with a
SAT solver, and calculating the reward value for each model.

An interesting result obtained from MCTS is the information gathered
in its tree search over the process. In this case, the tree search contains
statistical information about how promising it is to add a specific feature,
relation, or constraint. As illustrated in Figure 15, for each step, we show
the best three possible decisions (with normalized Q-values), highlighting
the choice selected. For example, step 1 adds the root feature, where the
three most promising options (from 13 candidates) are to use AAFMFramework,
Packages, or System as root. In the following step, or-group relations are
added with features Packages and System as children, but the tree search
offers information about how promising other alternatives are out of a total
of 156 possibilities.

Lessons learned and open challenges. MCTS can be employed as a
user assistant to make better decisions, providing alternatives so that she
does not have to blindly rely on the result of a black-box tool, as occurs in

45

genetic algorithms or neural networks [10, 31, 45]. Therefore, MCTS can be
integrated as part of a recommender system [75, 76, 77] to assist the user.
However, some considerations should be taken into account when engineering
a SPL solution based on Monte Carlo methods, as exposed in the following
lessons learned and open challenges.

LS10 The reward function must be a lightweight function. As observed in
Figure 15, the total time MCTS consumes is considerably high for a
small feature model with only 13 features [14]. This is because the
reward function in the reverse engineering problem requires generating
all configurations of a feature model every time a simulation reaches a
final state (a new feature model). Generating all valid configurations
from a feature model is one of the most expensive computational tasks
in SPLs. OC10: Since the efficiency of the Monte Carlo methods is
based on performing as many simulations as possible, a challenge to
enable the applicability of Monte Carlo methods is to define lightweight
reward functions in the context of the SPL that can evaluate a terminal
state as faster as possible, ideally in constant time.

LS11 Monte Carlo methods are appropriate for problems that do not re-
quire achieving immediate results but taking optimum decisions in the
medium and long term. Providing a high-performance Monte Carlo
method is a complex task [34] due to the restrictive requirements of
the simulations and reward function regarding performance. There are
other techniques such as genetic algorithms and meta-heuristics [10,
31, 45] that have achieved great success in the AAFM area for several
problems where both configurations and feature models are the main
concepts, such as the feature selection optimization problem [10, 31, 46],
or the reverse engineering of feature models problem [14, 21, 78, 79, 80].
While genetic algorithms and meta-heuristics provide better results for
search-based optimization problems, Monte Carlo methods are more
appropriate for analyzing step-wise decisions and provide knowledge
about the possible alternatives as shown through this paper. Despite
MCTS and genetic algorithms share some similarities when applied for
search-based optimization, they have important differences as Table 3
details. OC11: The challenge is twofold: (1) to find additional SPL
problems to those presented in this paper where the application of the
Monte Carlo methods makes sense; and (2) to quantitatively compare

46

Table 3: Comparison of the MCTS conceptual framework and Genetic Algorithms as
search-based techniques for SPL.

Monte Carlo Tree Search Genetic Algorithms
States. They represent the possible status of the
problem (e.g., valid/invalid and partial/complete
configurations, or feature models). They do not re-
quire a special encoding.

Population (chromosomes). Set of candidate so-
lutions. They represent complete configurations or
feature models which need to be encoded (e.g., as bi-
nary strings) and decoded to be evaluated.

Initial state. It is a unique well defined state (e.g.,
empty or partial configuration, void feature model)
that will transition to a terminal one.

Initial population. It is randomly initialized with a
number of (normally valid) completed configurations
(or feature models).

Terminal condition. It is determined by the status
of the current configuration or feature model (e.g., a
complete configuration or feature model).

Stopping condition. It is always a predefined com-
putational budget (e.g., number of generations, time)
or a specific fitness value achieved.

Actions. They define the set of successors for a
given state (e.g., a configuration with more features
selected, or a feature model with an additional cross-
tree constraint).

Mutation and crossover operators. They define
modifications or combinations, to the candidate so-
lutions (e.g., selecting/deselecting a feature, making
mandatory an optional feature).

State transition function. It applies the possible
valid actions to the current state. Actions can be
exhaustive applied (during expansion), or randomly
(e.g., during simulation). Only the current state is
considered at a given time.

Evolution of the population. It requires to eval-
uate (using the fitness function) each individual so-
lution in the population. Mutation and crossover op-
erators are then applied with a given probability to
the selected candidate solutions.

Reward function. It is only applied to final so-
lutions, while intermediate states do not need to be
evaluated. The utility values may be arbitrary (e.g.,
positive values for accumulated reward, negative val-
ues for cost incurred).

Fitness function. It is evaluated for each candi-
date solution of the whole population. Its values are
defined in order to be maximized or minimized. Ad-
ditional constraints of the problem are encoded in the
fitness function by penalizing solutions.

Results. A unique optimal solution and statistics
about each decision step (i.e., the tree search).

Results. A set of optimal solutions (e.g., a Pareto
front in case of multi-objective optimization).

Monte Carlo methods with other techniques such as genetic algorithms
that can handle the same problems.

7. Related Work

This section presents related work about the applications of Monte Carlo
methods, especially the MCTS method, and concretely in the context of
SPL and AAFM. We also compare MCTS with other techniques such as
sampling techniques, genetic algorithms, and traditional approaches (SAT
solvers, BDD, constraints programming,. . .) that have been used in the
context of the AAFM.

Applications of MCTS. Over the last decade, MCTS has been adopted
as part of the solution to many problems in a variety of domains beyond
AI games [36], where it has achieved transcendental results (i.e., playing Go
and Chess) [36]. For instance, MCTS has achieved great success on complex
real-world problems, such as combinatorial optimization to evaluate system

47

vulnerabilities [81], constraint satisfaction problems (CSP) [82], boolean sat-
isfiability [83], model checking [84], scheduling problems [85], and feature
selection problems in the field of machine learning [86], among others. In
particular, MCTS has shown great promise in applications where simulation
rather than optimization is the most effective decision support tool [34].

Monte Carlo methods in Software Product Lines. To the best of
our knowledge, Monte Carlo methods have been mainly applied in SPL from
an economic point of view [87, 88, 89]. For example, analyze the return on
investment expectations of an SPL [89] and to understand the effort required
for building reusable assets [87], to compare the costs and benefits of different
test strategies [88], or to estimate the payoff of an SPL [90]. Monte Carlo
simulations have also been used for validation when there is a lack of available
data [48], as for example, to check the stability of solutions in SPL optimiza-
tion [12, 91]. Marseguerra et al. [91] combine Genetic Algorithms and Monte
Carlo simulation, introducing the concept of Gradual Monte Carlo optimiza-
tion, to evaluate the stability of the solutions in the context of system design
(e.g., choice of redundancy configuration and component types). Regarding
MCTS, our work is the first study that proposes its application to SPLs.

Randomness in the AAFM. Despite MCTS has not been already applied
in the context of AAFM [4]. Several works have incorporated randomness
into AAFM. Czarnecki et al. [15] introduced the concept of probabilistic fea-
ture models (PFM) to automate the choice propagation of features according
to the constraints and apply an entropy measure to guide the configura-
tion process. Martinez et al. [92] also estimate the feature probabilities to
provide feedback to the user. Both works [15, 92] rely on historical data
to extract probabilities. Heradio et al. [29] propose statistical analysis to
reason on variability models. They extract probability distributions from
the whole configuration space to make different analyses, including a uni-
form random sampling technique [32, 93], but their analyses require building
a BDD of the feature model, and this task is intractable for very large-
scale models like the Linux kernel [94], existing even a specific challenge for
this purpose [9]. MCTS can work directly with the feature model or some
other knowledge compilation technique [9] (e.g., BDD) as long as it can be
modeled using the concepts (S, s0, t, A, θ, µ). One of the most widespread
applications of incorporating probability into AAFM has been to assist the
user by means of recommendation systems and interactive configuration pro-
cesses [20, 75, 76, 77, 92]. For instance, Pereira et al. [20, 77] propose different

48

algorithms [77] for recommender systems in SPL configuration, as well as vi-
sualization mechanisms [20] to aid the user. Nöhrer et al. [76] investigate
the ordering of the decisions in the decision-making process. Rodas-Silva et
al. [75] propose a recommender system to select the implementation com-
ponents of an SPL based on users’ rating of such components. However,
those works are based on historical data from previous users’ configurations.
While MCTS does not require domain knowledge, it can use it to improve,
for example, the reward function. Moreover, they mainly focus on the con-
figuration space, while MCTS can also be applied to other analyses, such as
in the reverse engineering of feature models problem.

Sampling techniques for AAFM. Configuration sampling [17] is a tech-
nique used to avoid exhaustive analysis, providing a subset of all valid con-
figurations. Several sampling strategies have been proposed in the SPL lit-
erature [95]: uniform random sampling [23, 24, 32] to select configurations
uniformly, coverage-based sampling [15, 96, 97, 98] to select configurations
that cover all combinations of t selected features (e.g., pair-wise sampling
for t = 2), or distance-based sampling [99] to select configurations accord-
ing to a given probability distribution and a distance metric, among other
techniques reviewed in [95]. These techniques have shown great results in
SPL testing [16] and learning configuration spaces [100], and despite recent
studies [101, 102] have been able to face the scalability challenge [17], they
present some limitations when compared with Monte Carlo techniques for
the AAFM. Sampling techniques produce samples which are too large to be
analyzed [17]. In addition, analyzing and making decisions from a sample
of configurations that considers the whole configuration space can be diffi-
cult for the user that configures a product. Finally, from the analysis of a
particular complete configuration, it is challenging to comprehend a priori
the influence of each feature variant in such configuration and in the rest of
configurations of the SPL [97]. MCTS can be seen as a selective sampling
that combines randomness and evaluation (the reward function) to obtain
samples built from step-wise decisions.

Search-based techniques for AAFM. Although sampling techniques,
especially uniform random sampling, can be used as a simple way to solve
search-related problems on highly-configurable systems [24, 68, 69], there
exist other search-based software engineering techniques [30] that have been
applied in AAFM. For instance, genetic algorithms and meta-heuristics [31,

49

10, 45] have achieved great success in the AAFMs area for several problems
where both configurations and feature models are the main concepts, such as
the feature selection optimization [31, 10, 46], or the reverse engineering of
feature models [21, 14, 78, 79, 80]. A quantitative comparison of MCTS and
genetic algorithms is out of the scope of this paper and has been identified
as an open challenge in Section 6. To help address this challenge, Table 3
maps the concepts of our MCTS framework to the concepts used in genetic
algorithms for search-based problems and exposes the differences between
both techniques.

Traditional approaches for AAFM. AAFMs have been traditionally
addressed using SAT solving [25, 27, 26], constraint programming [103], de-
scription logic [104, 105], BDD solvers [8, 28], or ad-hoc algorithms [106,
107, 108]. An extensive review of about 30 analysis operations that can be
performed with these techniques was reported in [1]; and Mendonca et al [27]
and Liang et al. [26] report that analyzing feature models with SAT is typ-
ically easy. These analysis operations are at a different level of abstraction
that the analysis problems presented in this paper. In fact, MCTS often
relies on SAT solvers to perform some operations such as checking whether a
partial configuration is valid. While there are different approaches to address
those analysis problems such as FastDiag [58] for completing partial configu-
rations, or genetic algorithms for configuration optimization [109, 10] and re-
verse engineering of feature models [14], they report the final result (e.g., the
complete valid configuration, the optimum configuration, the feature models
generated) but no information about the process regarding the decisions that
were considered or made, as our MCTS framework offers. Such additional
knowledge inferenced during the analysis of the problem allows users to be
aware of which decisions were made in each step and to consider alternative
decisions that can lead to different desired solutions.

8. Conclusions and Future Work

We have presented a conceptual framework that enables the use of Monte
Carlo methods on AAFM, and we have mapped different problems that can
be analyzed with the MCTS method. Monte Carlo methods incorporate
probability into analysis to solve problems that are difficult to handle us-
ing deterministic approaches [33] due to the large search space. Especially,
MCTS can provide existing analyses with some decision-making capacity,

50

working directly with the feature models, and modeling the problem as a
sequence of decision steps with very little domain-specific knowledge. The
selective sampling approach of MCTS may provide insights into how other
analysis methods could be hybridized and potentially improved [10]. With
this contribution, we envision that different problems and analyses can be
addressed using Monte Carlo methods, becoming part of the SPL engineer’s
toolkit when analyzing feature models and their configurations. This new
approach can be of big value to advance the AAFM state-of- the-art.

As part of our ongoing work, we plan to model other problems subject
to be analyzed with Monte Carlo methods. Moreover, a quantitative com-
parison with existing search-based optimization techniques [30] (e.g., genetic
algorithms) is also on our agenda. Finally, we plan to extend our MCTS
conceptual framework with other variants of the MCTS method [34]. For in-
stance, the independent nature of each simulation in MCTS means that the
algorithm is a good target for parallelization [50, 51], so that we can improve
its performance. Also, other techniques and extensions of Monte Carlo meth-
ods, such as the use of minimal cut sets [52], rare event simulations [53], or
importance splitting [54] can be applied to specific problems (e.g., the finding
defective configuration problem) to guide the search to effectively handle rare
properties and improve the results.

Material

Following open science’s good practices, our software artifacts are avail-
able publicly.

• MCTS Conceptual Framework: https://github.com/diverso-lab/

fm_montecarlo

Acknowledgements

This work has been partially funded by the EU FEDER program, the
MINECO project OPHELIA (RTI2018-101204-B-C22), the Junta de An-
dalucia COPERNICA (P20 01224) and METAMORFOSIS (FEDER US-
1381375) projects, the Universidad Nacional de Educacion a Distancia un-
der grant 096-034091 2021V/PUNED/008 (OPTIVAC), the Community of
Madrid, under the research network CAMROBOCITY2030-DIH-CM S2018/NMT-
4331, and the Spanish Government under Juan de la Cierva—Formación 2019

51

https://github.com/diverso-lab/fm_montecarlo
https://github.com/diverso-lab/fm_montecarlo

grant. We would like to thank José A. Troyano for having inspired us in the
usage of Monte Carlo methods in software product line analyses, and to A.
Germán Márquez, David Romero, and Pablo Pazo for technical support.

References

[1] D. Benavides, S. Segura, A. R. Cortés, Automated analysis of feature
models 20 years later: A literature review, Inf. Syst. 35 (6) (2010) 615–
636. doi:10.1016/j.is.2010.01.001.
URL https://doi.org/10.1016/j.is.2010.01.001

[2] M. Pol’la, A. Buccella, A. Cechich, Analysis of variability models: a
systematic literature review, Software and Systems Modeling 20 (4)
(2020) 1–35.

[3] D. Benavides, Variability modelling and analysis during 30 years, in:
From Software Engineering to Formal Methods and Tools, and Back,
Vol. 11865 of LNCS, Springer, 2019, pp. 365–373. doi:10.1007/

978-3-030-30985-5_21.
URL https://doi.org/10.1007/978-3-030-30985-5_21

[4] J. A. Galindo, D. Benavides, P. Trinidad, A. M. Gutiérrez-
Fernández, A. Ruiz-Cortés, Automated analysis of feature models:
Quo vadis?, Computing 101 (5) (2019) 387–433. doi:10.1007/

s00607-018-0646-1.
URL https://doi.org/10.1007/s00607-018-0646-1

[5] M. Raatikainen, J. Tiihonen, T. Männistö, Software product lines and
variability modeling: A tertiary study, J. Syst. Softw. 149 (2019) 485–
510. doi:10.1016/j.jss.2018.12.027.
URL https://doi.org/10.1016/j.jss.2018.12.027

[6] J. M. Horcas, M. Pinto, L. Fuentes, Empirical analysis of the tool
support for software product lines, Software and Systems Modeling
(2022). doi:10.1007/s10270-022-01011-2.
URL https://doi.org/10.1007/s10270-022-01011-2

[7] D. Fernández-Amorós, R. Heradio, J. A. Cerrada, C. Cerrada, A scal-
able approach to exact model and commonality counting for extended
feature models, IEEE Trans. Software Eng. 40 (9) (2014) 895–910.

52

https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1007/978-3-030-30985-5_21
https://doi.org/10.1007/978-3-030-30985-5_21
https://doi.org/10.1007/978-3-030-30985-5_21
https://doi.org/10.1007/978-3-030-30985-5_21
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1016/j.jss.2018.12.027
https://doi.org/10.1016/j.jss.2018.12.027
https://doi.org/10.1016/j.jss.2018.12.027
https://doi.org/10.1016/j.jss.2018.12.027
https://doi.org/10.1007/s10270-022-01011-2
https://doi.org/10.1007/s10270-022-01011-2
https://doi.org/10.1007/s10270-022-01011-2
https://doi.org/10.1007/s10270-022-01011-2
https://doi.org/10.1109/TSE.2014.2331073
https://doi.org/10.1109/TSE.2014.2331073
https://doi.org/10.1109/TSE.2014.2331073

doi:10.1109/TSE.2014.2331073.
URL https://doi.org/10.1109/TSE.2014.2331073

[8] R. Heradio, H. Perez-Morago, D. Fernández-Amorós, R. Bean, F. J.
Cabrerizo, C. Cerrada, E. Herrera-Viedma, Binary decision diagram
algorithms to perform hard analysis operations on variability mod-
els, in: 15th International Conference on New Trends in Software
Methodologies, Tools and Techniques (SoMeT), Vol. 286 of Fron-
tiers in Artificial Intelligence and Applications, 2016, pp. 139–154.
doi:10.3233/978-1-61499-674-3-139.
URL https://doi.org/10.3233/978-1-61499-674-3-139

[9] T. Thüm, A BDD for linux?: the knowledge compilation challenge for
variability, in: 24th ACM International Systems and Software Product
Line Conference (SPLC), Vol. A, 2020, pp. 16:1–16:6. doi:10.1145/

3382025.3414943.
URL https://doi.org/10.1145/3382025.3414943

[10] J. Guo, J. H. Liang, K. Shi, D. Yang, J. Zhang, K. Czarnecki,
V. Ganesh, H. Yu, SMTIBEA: a hybrid multi-objective optimiza-
tion algorithm for configuring large constrained software product
lines, Softw. Syst. Model. 18 (2) (2019) 1447–1466. doi:10.1007/

s10270-017-0610-0.
URL https://doi.org/10.1007/s10270-017-0610-0

[11] V. Nair, T. Menzies, N. Siegmund, S. Apel, Using bad learners to find
good configurations, in: 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), ACM, Paderborn, Germany, 2017, pp. 257–
267. doi:10.1145/3106237.3106238.
URL https://doi.org/10.1145/3106237.3106238

[12] R. Karimpour, G. Ruhe, Evolutionary robust optimization for soft-
ware product line scoping: An explorative study, Comput. Lang. Syst.
Struct. 47 (2017) 189–210. doi:10.1016/j.cl.2016.07.007.
URL https://doi.org/10.1016/j.cl.2016.07.007

[13] M. Marques, J. Simmonds, P. O. Rossel, M. C. Bastarrica, Software
product line evolution: A systematic literature review, Inf. Softw. Tech-
nol. 105 (2019) 190–208. doi:10.1016/j.infsof.2018.08.014.
URL https://doi.org/10.1016/j.infsof.2018.08.014

53

https://doi.org/10.1109/TSE.2014.2331073
https://doi.org/10.1109/TSE.2014.2331073
https://doi.org/10.3233/978-1-61499-674-3-139
https://doi.org/10.3233/978-1-61499-674-3-139
https://doi.org/10.3233/978-1-61499-674-3-139
https://doi.org/10.3233/978-1-61499-674-3-139
https://doi.org/10.3233/978-1-61499-674-3-139
https://doi.org/10.1145/3382025.3414943
https://doi.org/10.1145/3382025.3414943
https://doi.org/10.1145/3382025.3414943
https://doi.org/10.1145/3382025.3414943
https://doi.org/10.1145/3382025.3414943
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1016/j.cl.2016.07.007
https://doi.org/10.1016/j.cl.2016.07.007
https://doi.org/10.1016/j.cl.2016.07.007
https://doi.org/10.1016/j.cl.2016.07.007
https://doi.org/10.1016/j.infsof.2018.08.014
https://doi.org/10.1016/j.infsof.2018.08.014
https://doi.org/10.1016/j.infsof.2018.08.014
https://doi.org/10.1016/j.infsof.2018.08.014

[14] R. E. Lopez-Herrejon, L. Linsbauer, J. A. Galindo, J. A. Parejo, D. Be-
navides, S. Segura, A. Egyed, An assessment of search-based techniques
for reverse engineering feature models, J. Syst. Softw. 103 (2015) 353–
369. doi:10.1016/j.jss.2014.10.037.
URL https://doi.org/10.1016/j.jss.2014.10.037

[15] K. Czarnecki, S. She, A. Wasowski, Sample spaces and feature models:
There and back again, in: 12th International Conference on Software
Product Lines (SPLC), IEEE Computer Society, 2008, pp. 22–31. doi:
10.1109/SPLC.2008.49.
URL https://doi.org/10.1109/SPLC.2008.49

[16] J. A. Galindo, H. A. Turner, D. Benavides, J. White, Testing
variability-intensive systems using automated analysis: an application
to android, Softw. Qual. J. 24 (2) (2016) 365–405. doi:10.1007/

s11219-014-9258-y.
URL https://doi.org/10.1007/s11219-014-9258-y

[17] T. Pett, T. Thüm, T. Runge, S. Krieter, M. Lochau, I. Schaefer, Prod-
uct sampling for product lines: the scalability challenge, in: 23rd In-
ternational Systems and Software Product Line Conference (SPLC),
ACM, Paris, France, 2019, pp. 14:1–14:6. doi:10.1145/3336294.

3336322.
URL https://doi.org/10.1145/3336294.3336322

[18] P. Temple, J. A. Galindo, M. Acher, J. Jézéquel, Using machine learn-
ing to infer constraints for product lines, in: 20th International Systems
and Software Product Line Conference (SPLC), ACM, Beijing, China,
2016, pp. 209–218. doi:10.1145/2934466.2934472.
URL https://doi.org/10.1145/2934466.2934472

[19] J. A. Pereira, L. Maciel, T. F. Noronha, E. Figueiredo, Heuristic and
exact algorithms for product configuration in software product lines,
in: 22nd International Systems and Software Product Line Conference
(SPLC), Vol. 1, Gothenburg, Sweden, 2018, p. 247. doi:10.1145/

3233027.3236395.
URL https://doi.org/10.1145/3233027.3236395

[20] J. A. Pereira, J. Martinez, H. K. Gurudu, S. Krieter, G. Saake, Visual
guidance for product line configuration using recommendations and

54

https://doi.org/10.1016/j.jss.2014.10.037
https://doi.org/10.1016/j.jss.2014.10.037
https://doi.org/10.1016/j.jss.2014.10.037
https://doi.org/10.1016/j.jss.2014.10.037
https://doi.org/10.1109/SPLC.2008.49
https://doi.org/10.1109/SPLC.2008.49
https://doi.org/10.1109/SPLC.2008.49
https://doi.org/10.1109/SPLC.2008.49
https://doi.org/10.1109/SPLC.2008.49
https://doi.org/10.1007/s11219-014-9258-y
https://doi.org/10.1007/s11219-014-9258-y
https://doi.org/10.1007/s11219-014-9258-y
https://doi.org/10.1007/s11219-014-9258-y
https://doi.org/10.1007/s11219-014-9258-y
https://doi.org/10.1007/s11219-014-9258-y
https://doi.org/10.1145/3336294.3336322
https://doi.org/10.1145/3336294.3336322
https://doi.org/10.1145/3336294.3336322
https://doi.org/10.1145/3336294.3336322
https://doi.org/10.1145/3336294.3336322
https://doi.org/10.1145/2934466.2934472
https://doi.org/10.1145/2934466.2934472
https://doi.org/10.1145/2934466.2934472
https://doi.org/10.1145/2934466.2934472
https://doi.org/10.1145/3233027.3236395
https://doi.org/10.1145/3233027.3236395
https://doi.org/10.1145/3233027.3236395
https://doi.org/10.1145/3233027.3236395
https://doi.org/10.1145/3233027.3236395
https://doi.org/10.1145/3167132.3167353
https://doi.org/10.1145/3167132.3167353
https://doi.org/10.1145/3167132.3167353

non-functional properties, in: 33rd Annual ACM Symposium on Ap-
plied Computing (SAC), 2018, pp. 2058–2065. doi:10.1145/3167132.
3167353.
URL https://doi.org/10.1145/3167132.3167353

[21] W. K. G. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio,
A. Egyed, Reengineering legacy applications into software product
lines: a systematic mapping, Empir. Softw. Eng. 22 (6) (2017) 2972–
3016. doi:10.1007/s10664-017-9499-z.
URL https://doi.org/10.1007/s10664-017-9499-z

[22] K. Czarnecki, S. Helsen, U. W. Eisenecker, Formalizing cardinality-
based feature models and their specialization, Softw. Process. Improv.
Pract. 10 (1) (2005) 7–29. doi:10.1002/spip.213.
URL https://doi.org/10.1002/spip.213

[23] D.-J. Munoz, J. Oh, M. Pinto, L. Fuentes, D. Batory, Uniform random
sampling product configurations of feature models that have numerical
features, in: 23rd International Systems and Software Product Line
Conference (SPLC), Vol. A, 2019, pp. 289–301.

[24] J. Oh, D. S. Batory, M. Myers, N. Siegmund, Finding near-optimal
configurations in product lines by random sampling, in: 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE), Pader-
born, Germany, 2017, pp. 61–71. doi:10.1145/3106237.3106273.
URL https://doi.org/10.1145/3106237.3106273

[25] D. S. Batory, Feature models, grammars, and propositional formulas,
in: 9th International Conference on Software Product Lines (SPLC),
2005, pp. 7–20. doi:10.1007/11554844_3.
URL https://doi.org/10.1007/11554844_3

[26] J. H. Liang, V. Ganesh, K. Czarnecki, V. Raman, Sat-based analysis
of large real-world feature models is easy, in: Proceedings of the 19th
International Conference on Software Product Line, SPLC ’15, Associ-
ation for Computing Machinery, New York, NY, USA, 2015, p. 91–100.
doi:10.1145/2791060.2791070.
URL https://doi.org/10.1145/2791060.2791070

55

https://doi.org/10.1145/3167132.3167353
https://doi.org/10.1145/3167132.3167353
https://doi.org/10.1145/3167132.3167353
https://doi.org/10.1145/3167132.3167353
https://doi.org/10.1145/3167132.3167353
https://doi.org/10.1145/3167132.3167353
https://doi.org/10.1007/s10664-017-9499-z
https://doi.org/10.1007/s10664-017-9499-z
https://doi.org/10.1007/s10664-017-9499-z
https://doi.org/10.1007/s10664-017-9499-z
https://doi.org/10.1002/spip.213
https://doi.org/10.1002/spip.213
https://doi.org/10.1002/spip.213
https://doi.org/10.1002/spip.213
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1007/11554844_3
https://doi.org/10.1007/11554844_3
https://doi.org/10.1007/11554844_3
https://doi.org/10.1145/2791060.2791070
https://doi.org/10.1145/2791060.2791070
https://doi.org/10.1145/2791060.2791070
https://doi.org/10.1145/2791060.2791070

[27] M. Mendonca, A. Wasowski, K. Czarnecki, Sat-based analysis of fea-
ture models is easy, in: Proceedings of the 13th International Software
Product Line Conference, SPLC ’09, Carnegie Mellon University, USA,
2009, p. 231–240.

[28] D. Fernández-Amorós, R. Heradio, C. Cerrada, E. Herrera-Viedma,
M. J. Cobo, Towards taming variability models in the wild, in:
16th International Conference on New Trends in Intelligent Software
Methodologies, Tools and Techniques (SoMeT), Vol. 297 of Fron-
tiers in Artificial Intelligence and Applications, 2017, pp. 454–465.
doi:10.3233/978-1-61499-800-6-454.
URL https://doi.org/10.3233/978-1-61499-800-6-454

[29] R. Heradio, D. Fernández-Amorós, C. Mayr-Dorn, A. Egyed, Support-
ing the statistical analysis of variability models, in: 41st International
Conference on Software Engineering (ICSE), IEEE / ACM, 2019, pp.
843–853. doi:10.1109/ICSE.2019.00091.
URL https://doi.org/10.1109/ICSE.2019.00091

[30] R. E. Lopez-Herrejon, L. Linsbauer, A. Egyed, A systematic mapping
study of search-based software engineering for software product lines,
Inf. Softw. Technol. 61 (2015) 33–51. doi:10.1016/j.infsof.2015.

01.008.
URL https://doi.org/10.1016/j.infsof.2015.01.008

[31] H. Yadav, A. C. Kumari, R. Chhikara, Feature selection opti-
misation of software product line using metaheuristic techniques,
International Journal of Embedded Systems 13 (1) (2020) 50–64.
doi:10.1504/IJES.2020.108284.
URL https://www.inderscienceonline.com/doi/abs/10.1504/

IJES.2020.108284

[32] R. Heradio, D. Fernández-Amorós, J. A. Galindo, D. Benavides,
D. Batory, Uniform and scalable sampling of highly configurable
systems, Empir. Softw. Eng. 27 (44) (2022). doi:10.1007/

s10664-021-10102-5.
URL https://doi.org/10.1007/s10664-021-10102-5

[33] D. P. Kroese, T. Brereton, T. Taimre, Z. I. Botev, Why the monte
carlo method is so important today, WIREs Computational Statistics

56

https://doi.org/10.3233/978-1-61499-800-6-454
https://doi.org/10.3233/978-1-61499-800-6-454
https://doi.org/10.3233/978-1-61499-800-6-454
https://doi.org/10.1109/ICSE.2019.00091
https://doi.org/10.1109/ICSE.2019.00091
https://doi.org/10.1109/ICSE.2019.00091
https://doi.org/10.1109/ICSE.2019.00091
https://doi.org/10.1016/j.infsof.2015.01.008
https://doi.org/10.1016/j.infsof.2015.01.008
https://doi.org/10.1016/j.infsof.2015.01.008
https://doi.org/10.1016/j.infsof.2015.01.008
https://doi.org/10.1016/j.infsof.2015.01.008
https://www.inderscienceonline.com/doi/abs/10.1504/IJES.2020.108284
https://www.inderscienceonline.com/doi/abs/10.1504/IJES.2020.108284
https://doi.org/10.1504/IJES.2020.108284
https://www.inderscienceonline.com/doi/abs/10.1504/IJES.2020.108284
https://www.inderscienceonline.com/doi/abs/10.1504/IJES.2020.108284
https://doi.org/10.1007/s10664-021-10102-5
https://doi.org/10.1007/s10664-021-10102-5
https://doi.org/10.1007/s10664-021-10102-5
https://doi.org/10.1007/s10664-021-10102-5
https://doi.org/10.1007/s10664-021-10102-5
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1314
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1314

6 (6) (2014) 386–392. doi:https://doi.org/10.1002/wics.1314.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.

1314

[34] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowl-
ing, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, S. Colton,
A survey of monte carlo tree search methods, IEEE Transactions
on Computational Intelligence and AI in Games 4 (1) (2012) 1–43.
doi:10.1109/TCIAIG.2012.2186810.

[35] G. Chaslot, S. Bakkes, I. Szita, P. Spronck, Monte-carlo tree search: A
new framework for game ai, in: 4th Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE), AAAI Press, 2008, p.
216–217.

[36] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lilli-
crap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, D. Hassabis,
Mastering the game of go without human knowledge, Nature 550 (7676)
(2017) 354–359. doi:10.1038/nature24270.
URL https://doi.org/10.1038/nature24270

[37] J. M. Horcas, J. A. Galindo, R. Heradio, D. Fernández-Amorós, D. Be-
navides, Monte carlo tree search for feature model analyses: a general
framework for decision-making, in: M. Mousavi, P. Schobbens (Eds.),
SPLC ’21: 25th ACM International Systems and Software Product
Line Conference, Leicester, United Kingdom, September 6-11, 2021,
Volume A, ACM, 2021, pp. 190–201. doi:10.1145/3461001.3471146.
URL https://doi.org/10.1145/3461001.3471146

[38] S. Apel, D. S. Batory, C. Kästner, G. Saake, Feature-Oriented Software
Product Lines - Concepts and Implementation, Springer, 2013. doi:

10.1007/978-3-642-37521-7.
URL https://doi.org/10.1007/978-3-642-37521-7

[39] J. A. Galindo, D. Benavides, A python framework for the automated
analysis of feature models: A first step to integrate community efforts,
in: 24th ACM International Systems and Software Product Line Con-
ference (SPLC), Vol. B, ACM, Montreal, Canada, 2020, pp. 52–55.

57

https://doi.org/https://doi.org/10.1002/wics.1314
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1314
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1314
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1145/3461001.3471146
https://doi.org/10.1145/3461001.3471146
https://doi.org/10.1145/3461001.3471146
https://doi.org/10.1145/3461001.3471146
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1145/3382026.3425773
https://doi.org/10.1145/3382026.3425773

doi:10.1145/3382026.3425773.
URL https://doi.org/10.1145/3382026.3425773

[40] S. J. Russell, P. Norvig, Artificial Intelligence - A Modern Approach,
Fourth edition, Pearson Education, 2020.
URL http://vig.pearsoned.com/store/product/1,1207,

store-12521_isbn-0136042597,00.html

[41] R. Munos, From Bandits to Monte-Carlo Tree Search: The Optimistic
Principle Applied to Optimization and Planning, 2014. doi:10.1561/
2200000038.

[42] S. Gelly, D. Silver, Monte-carlo tree search and rapid action value
estimation in computer go, Artificial Intelligence 175 (11) (2011)
1856–1875. doi:https://doi.org/10.1016/j.artint.2011.03.007.
URL https://www.sciencedirect.com/science/article/pii/

S000437021100052X

[43] L. Kocsis, C. Szepesvári, Bandit based monte-carlo planning, in: Ma-
chine Learning: ECML 2006, Berlin, Heidelberg, 2006, pp. 282–293.

[44] G. Chaslot, M. Winands, H. Herik, J. Uiterwijk, B. Bouzy, Progressive
strategies for monte-carlo tree search, New Mathematics and Natural
Computation 04 (2008) 343–357. doi:10.1142/S1793005708001094.

[45] A. S. Sayyad, J. Ingram, T. Menzies, H. H. Ammar, Optimum fea-
ture selection in software product lines: Let your model and values
guide your search, in: 1st International Workshop on Combining Mod-
elling and Search-Based Software Engineering (CMSBSE@ICSE), San
Francisco, CA, USA, 2013, pp. 22–27. doi:10.1109/CMSBSE.2013.

6604432.
URL https://doi.org/10.1109/CMSBSE.2013.6604432

[46] T. do Nascimento Ferreira, J. A. P. Lima, A. Strickler, J. N. Kuk,
S. R. Vergilio, A. T. R. Pozo, Hyper-heuristic based product selection
for software product line testing, IEEE Comput. Intell. Mag. 12 (2)
(2017) 34–45. doi:10.1109/MCI.2017.2670461.
URL https://doi.org/10.1109/MCI.2017.2670461

58

https://doi.org/10.1145/3382026.3425773
https://doi.org/10.1145/3382026.3425773
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
https://doi.org/10.1561/2200000038
https://doi.org/10.1561/2200000038
https://www.sciencedirect.com/science/article/pii/S000437021100052X
https://www.sciencedirect.com/science/article/pii/S000437021100052X
https://doi.org/https://doi.org/10.1016/j.artint.2011.03.007
https://www.sciencedirect.com/science/article/pii/S000437021100052X
https://www.sciencedirect.com/science/article/pii/S000437021100052X
https://doi.org/10.1142/S1793005708001094
https://doi.org/10.1109/CMSBSE.2013.6604432
https://doi.org/10.1109/CMSBSE.2013.6604432
https://doi.org/10.1109/CMSBSE.2013.6604432
https://doi.org/10.1109/CMSBSE.2013.6604432
https://doi.org/10.1109/CMSBSE.2013.6604432
https://doi.org/10.1109/CMSBSE.2013.6604432
https://doi.org/10.1109/MCI.2017.2670461
https://doi.org/10.1109/MCI.2017.2670461
https://doi.org/10.1109/MCI.2017.2670461
https://doi.org/10.1109/MCI.2017.2670461

[47] Y. Xue, J. Zhong, T. H. Tan, Y. Liu, W. Cai, M. Chen, J. Sun,
IBED: combining IBEA and DE for optimal feature selection in soft-
ware product line engineering, Appl. Soft Comput. 49 (2016) 1215–
1231. doi:10.1016/j.asoc.2016.07.040.
URL https://doi.org/10.1016/j.asoc.2016.07.040

[48] M. S. Ali, M. A. Babar, K. Schmid, A comparative survey of economic
models for software product lines, in: 35th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), IEEE Com-
puter Society, 2009, pp. 275–278. doi:10.1109/SEAA.2009.89.
URL https://doi.org/10.1109/SEAA.2009.89

[49] S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, A. R. Cortés,
Betty: benchmarking and testing on the automated analysis of fea-
ture models, in: U. W. Eisenecker, S. Apel, S. Gnesi (Eds.), Sixth
International Workshop on Variability Modelling of Software-Intensive
Systems, Leipzig, Germany, January 25-27, 2012. Proceedings, ACM,
2012, pp. 63–71. doi:10.1145/2110147.2110155.
URL https://doi.org/10.1145/2110147.2110155

[50] E. S. Steinmetz, M. Gini, More trees or larger trees: Parallelizing monte
carlo tree search, IEEE Transactions on Games (2020) 1–1doi:10.
1109/TG.2020.3048331.

[51] G. Chaslot, M. H. M. Winands, H. J. van den Herik, Parallel monte-
carlo tree search, in: 6th International Conference on Computers and
Games (CG), Vol. 5131 of LNCS, Springer, 2008, pp. 60–71. doi:

10.1007/978-3-540-87608-3_6.
URL https://doi.org/10.1007/978-3-540-87608-3_6

[52] C. E. Budde, M. Stoelinga, Automated rare event simulation for fault
tree analysis via minimal cut sets, in: International Conference on Mea-
surement, Modelling and Evaluation of Computing Systems, Springer,
2020, pp. 259–277.

[53] G. Rubino, B. Tuffin, Rare event simulation using Monte Carlo meth-
ods, John Wiley & Sons, 2009.

[54] C. Jégourel, A. Legay, S. Sedwards, Importance splitting for statisti-
cal model checking rare properties, in: 25th International Conference

59

https://doi.org/10.1016/j.asoc.2016.07.040
https://doi.org/10.1016/j.asoc.2016.07.040
https://doi.org/10.1016/j.asoc.2016.07.040
https://doi.org/10.1016/j.asoc.2016.07.040
https://doi.org/10.1109/SEAA.2009.89
https://doi.org/10.1109/SEAA.2009.89
https://doi.org/10.1109/SEAA.2009.89
https://doi.org/10.1109/SEAA.2009.89
https://doi.org/10.1145/2110147.2110155
https://doi.org/10.1145/2110147.2110155
https://doi.org/10.1145/2110147.2110155
https://doi.org/10.1145/2110147.2110155
https://doi.org/10.1109/TG.2020.3048331
https://doi.org/10.1109/TG.2020.3048331
https://doi.org/10.1007/978-3-540-87608-3_6
https://doi.org/10.1007/978-3-540-87608-3_6
https://doi.org/10.1007/978-3-540-87608-3_6
https://doi.org/10.1007/978-3-540-87608-3_6
https://doi.org/10.1007/978-3-540-87608-3_6
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8_38

on Computer Aided Verification (CAV), Vol. 8044 of LNCS, Springer,
2013, pp. 576–591. doi:10.1007/978-3-642-39799-8_38.
URL https://doi.org/10.1007/978-3-642-39799-8_38

[55] R. E. Lopez-Herrejon, S. Illescas, A. Egyed, A systematic mapping
study of information visualization for software product line engineering,
J. Softw. Evol. Process. 30 (2) (2018). doi:10.1002/smr.1912.
URL https://doi.org/10.1002/smr.1912

[56] L. Wilkinson, M. Friendly, The history of the cluster heat map, The
American Statistician 63 (2) (2009) 179–184. doi:10.1198/tas.2009.
0033.
URL https://doi.org/10.1198/tas.2009.0033

[57] B. Wong, Color coding, Nature Methods 7 (8) (2010) 573–573. doi:

https://doi.org/10.1038/nmeth0810-573.
URL https://doi.org/10.1038/nmeth0810-573

[58] C. Vidal-Silva, J. A. Galindo, J. Giráldez-Cru, D. Benavides, Auto-
mated completion of partial configurations as a diagnosis task using
fastdiag to improve performance, in: Intelligent Systems in Industrial
Applications, Springer International Publishing, Cham, 2021, pp. 107–
117.

[59] P. Gazzillo, U. Koc, T. Nguyen, S. Wei, Localizing configurations in
highly-configurable systems, in: 22nd International Systems and Soft-
ware Product Line Conference (SPLC), Vol. 1, ACM, Gothenburg, Swe-
den, 2018, pp. 269–273. doi:10.1145/3233027.3236404.
URL https://doi.org/10.1145/3233027.3236404

[60] A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin, B. Baudry,
Test them all, is it worth it? assessing configuration sampling on the
jhipster web development stack, Empir. Softw. Eng. 24 (2) (2019) 674–
717. doi:10.1007/s10664-018-9635-4.
URL https://doi.org/10.1007/s10664-018-9635-4

[61] M. Bhushan, J. Ángel Galindo Duarte, P. Samant, A. Ku-
mar, A. Negi, Classifying and resolving software product line
redundancies using an ontological first-order logic rule based
method, Expert Systems with Applications 168 (2021) 114167.

60

https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1002/smr.1912
https://doi.org/10.1002/smr.1912
https://doi.org/10.1002/smr.1912
https://doi.org/10.1002/smr.1912
https://doi.org/10.1198/tas.2009.0033
https://doi.org/10.1198/tas.2009.0033
https://doi.org/10.1198/tas.2009.0033
https://doi.org/10.1198/tas.2009.0033
https://doi.org/10.1038/nmeth0810-573
https://doi.org/https://doi.org/10.1038/nmeth0810-573
https://doi.org/https://doi.org/10.1038/nmeth0810-573
https://doi.org/10.1038/nmeth0810-573
https://doi.org/10.1145/3233027.3236404
https://doi.org/10.1145/3233027.3236404
https://doi.org/10.1145/3233027.3236404
https://doi.org/10.1145/3233027.3236404
https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1007/s10664-018-9635-4
https://www.sciencedirect.com/science/article/pii/S0957417420309052
https://www.sciencedirect.com/science/article/pii/S0957417420309052
https://www.sciencedirect.com/science/article/pii/S0957417420309052

doi:https://doi.org/10.1016/j.eswa.2020.114167.
URL https://www.sciencedirect.com/science/article/pii/

S0957417420309052

[62] C. Bogart, C. Kästner, J. Herbsleb, F. Thung, When and how to make
breaking changes, ACM Trans. Softw. Eng. Methodol 1 (1) (2021).

[63] A. Felfernig, R. Walter, J. A. Galindo, D. Benavides, S. P. Erdeniz,
M. Atas, S. Reiterer, Anytime diagnosis for reconfiguration, J. Intell.
Inf. Syst. 51 (1) (2018) 161–182. doi:10.1007/s10844-017-0492-1.
URL https://doi.org/10.1007/s10844-017-0492-1

[64] S. Segura, Automated analysis of feature models using atomic sets, in:
Software Product Lines, 12th International Conference, SPLC 2008,
Limerick, Ireland, September 8-12, 2008, Proceedings. Second Volume
(Workshops), 2008, pp. 201–207.

[65] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson,
Feature-oriented domain analysis (foda) feasibility study, Tech. rep.,
Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, tech-
nical Report CMU/SEI-90-TR-21 (1990).

[66] A. Knüppel, T. Thüm, S. Mennicke, J. Meinicke, I. Schaefer, Is there
a mismatch between real-world feature models and product-line re-
search?, in: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, 2017, pp. 291–302.

[67] J. M. H. Aguilera, A. G. Márquez, J. A. Galindo, D. Benavides,
Monte carlo simulations for variability analyses in highly configurable
systems, in: M. Aldanondo, A. A. Falkner, A. Felfernig, M. Stettinger
(Eds.), Proceedings of the 23rd International Configuration Workshop
(CWS/ConfWS 2021), Vienna, Austria, 16-17 September, 2021, Vol.
2945 of CEUR Workshop Proceedings, CEUR-WS.org, 2021, pp.
37–44.
URL http://ceur-ws.org/Vol-2945/32-JMHA-ConfWS21_paper_

19.pdf

[68] R. Heradio, D. Fernández-Amorós, V. Ruiz, M. J. Cobo, A rule-learning
approach for detecting faults in highly configurable software systems

61

https://doi.org/https://doi.org/10.1016/j.eswa.2020.114167
https://www.sciencedirect.com/science/article/pii/S0957417420309052
https://www.sciencedirect.com/science/article/pii/S0957417420309052
https://doi.org/10.1007/s10844-017-0492-1
https://doi.org/10.1007/s10844-017-0492-1
https://doi.org/10.1007/s10844-017-0492-1
http://ceur-ws.org/Vol-2945/32-JMHA-ConfWS21_paper_19.pdf
http://ceur-ws.org/Vol-2945/32-JMHA-ConfWS21_paper_19.pdf
http://ceur-ws.org/Vol-2945/32-JMHA-ConfWS21_paper_19.pdf
http://ceur-ws.org/Vol-2945/32-JMHA-ConfWS21_paper_19.pdf
http://hdl.handle.net/10125/79595
http://hdl.handle.net/10125/79595
http://hdl.handle.net/10125/79595

from uniform random samples, in: 55th Hawaii International Confer-
ence on System Sciences, HICSS, ScholarSpace, Maui, Hawaii, USA,
2022, pp. 1–10.
URL http://hdl.handle.net/10125/79595

[69] D. S. Batory, J. Oh, R. Heradio, D. Benavides, Logic, Computation and
Rigorous Methods - Essays Dedicated to Egon Börger on the Occasion
of His 75th Birthday, Springer, 2021, Ch. Product Optimization in
Stepwise Design, pp. 63–81. doi:10.1007/978-3-030-76020-5_4.

[70] B. E. Childs, J. H. Brodeur, L. Kocsis, Transpositions and move
groups in monte carlo tree search, in: 2008 IEEE Symposium On
Computational Intelligence and Games, 2008, pp. 389–395. doi:

10.1109/CIG.2008.5035667.

[71] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel,
S. S. Kolesnikov, Scalable prediction of non-functional properties in
software product lines: Footprint and memory consumption, Informa-
tion and Software Technology 55 (3) (2013) 491–507.

[72] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza,
A. Garcia, S. Soares, F. Ferrari, S. Khan, F. Castor Filho, et al.,
Evolving software product lines with aspects, in: ACM/IEEE 30th
International Conference on Software Engineering, 2008, pp. 261–270.

[73] J. Horcas, M. Pinto, L. Fuentes, Software product line engineering:
a practical experience, in: 23rd International Systems and Software
Product Line Conference, SPLC 2019, ACM, 2019, pp. 25:1–25:13.

[74] K. Czarnecki, A. Wasowski, Feature diagrams and logics: There and
back again, in: 11th International Conference on Software Product
Lines (SPLC), IEEE Computer Society, 2007, pp. 23–34. doi:10.

1109/SPLINE.2007.24.
URL https://doi.org/10.1109/SPLINE.2007.24

[75] J. Rodas-Silva, J. A. Galindo, J. Garćıa-Gutiérrez, D. Benavides, Selec-
tion of software product line implementation components using recom-
mender systems: An application to wordpress, IEEE Access 7 (2019)
69226–69245. doi:10.1109/ACCESS.2019.2918469.
URL https://doi.org/10.1109/ACCESS.2019.2918469

62

http://hdl.handle.net/10125/79595
http://hdl.handle.net/10125/79595
http://hdl.handle.net/10125/79595
http://hdl.handle.net/10125/79595
https://doi.org/10.1007/978-3-030-76020-5_4
https://doi.org/10.1109/CIG.2008.5035667
https://doi.org/10.1109/CIG.2008.5035667
https://doi.org/10.1109/SPLINE.2007.24
https://doi.org/10.1109/SPLINE.2007.24
https://doi.org/10.1109/SPLINE.2007.24
https://doi.org/10.1109/SPLINE.2007.24
https://doi.org/10.1109/SPLINE.2007.24
https://doi.org/10.1109/ACCESS.2019.2918469
https://doi.org/10.1109/ACCESS.2019.2918469
https://doi.org/10.1109/ACCESS.2019.2918469
https://doi.org/10.1109/ACCESS.2019.2918469
https://doi.org/10.1109/ACCESS.2019.2918469

[76] A. Nöhrer, A. Egyed, Optimizing user guidance during decision-
making, in: 15th International Conference on Software Product Lines
(SPLC), IEEE Computer Society, 2011, pp. 25–34. doi:10.1109/

SPLC.2011.45.
URL https://doi.org/10.1109/SPLC.2011.45

[77] J. A. Pereira, P. Matuszyk, S. Krieter, M. Spiliopoulou, G. Saake, A
feature-based personalized recommender system for product-line con-
figuration, in: ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (GPCE), ACM, Pau, France,
2016, pp. 120–131. doi:10.1145/2993236.2993249.
URL https://doi.org/10.1145/2993236.2993249

[78] W. K. G. Assunção, S. R. Vergilio, R. E. Lopez-Herrejon, Automatic
extraction of product line architecture and feature models from UML
class diagram variants, Inf. Softw. Technol. 117 (2020). doi:10.1016/
j.infsof.2019.106198.
URL https://doi.org/10.1016/j.infsof.2019.106198

[79] W. K. G. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio,
A. Egyed, Multi-objective reverse engineering of variability-safe feature
models based on code dependencies of system variants, Empir. Softw.
Eng. 22 (4) (2017) 1763–1794. doi:10.1007/s10664-016-9462-4.
URL https://doi.org/10.1007/s10664-016-9462-4

[80] L. Linsbauer, R. E. Lopez-Herrejon, A. Egyed, Variability extraction
and modeling for product variants, Softw. Syst. Model. 16 (4) (2017)
1179–1199. doi:10.1007/s10270-015-0512-y.
URL https://doi.org/10.1007/s10270-015-0512-y

[81] Y. Tanabe, K. Yoshizoe, H. Imai, A study on security evaluation
methodology for image-based biometrics authentication systems, in:
3rd IEEE International Conference on Biometrics: Theory, Applica-
tions, and Systems, 2009, pp. 1–6. doi:10.1109/BTAS.2009.5339016.

[82] S. Baba, Y. Joe, A. Iwasaki, M. Yokoo, Real-time solving of quantified
csps based on monte-carlo game tree search, in: 22nd International
Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain,
2011, pp. 655–661. doi:10.5591/978-1-57735-516-8/IJCAI11-116.
URL https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-116

63

https://doi.org/10.1109/SPLC.2011.45
https://doi.org/10.1109/SPLC.2011.45
https://doi.org/10.1109/SPLC.2011.45
https://doi.org/10.1109/SPLC.2011.45
https://doi.org/10.1109/SPLC.2011.45
https://doi.org/10.1145/2993236.2993249
https://doi.org/10.1145/2993236.2993249
https://doi.org/10.1145/2993236.2993249
https://doi.org/10.1145/2993236.2993249
https://doi.org/10.1145/2993236.2993249
https://doi.org/10.1016/j.infsof.2019.106198
https://doi.org/10.1016/j.infsof.2019.106198
https://doi.org/10.1016/j.infsof.2019.106198
https://doi.org/10.1016/j.infsof.2019.106198
https://doi.org/10.1016/j.infsof.2019.106198
https://doi.org/10.1016/j.infsof.2019.106198
https://doi.org/10.1007/s10664-016-9462-4
https://doi.org/10.1007/s10664-016-9462-4
https://doi.org/10.1007/s10664-016-9462-4
https://doi.org/10.1007/s10664-016-9462-4
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1109/BTAS.2009.5339016
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-116
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-116
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-116
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-116

[83] A. Previti, R. Ramanujan, M. Schaerf, B. Selman, Monte-carlo style
UCT search for boolean satisfiability, in: Artificial Intelligence Around
Man and Beyond (AI*IA), Berlin, Heidelberg, 2011, pp. 177–188.

[84] S. Poulding, R. Feldt, Heuristic model checking using a monte-carlo tree
search algorithm, in: Annual Conference on Genetic and Evolutionary
Computation (GECCO), Association for Computing Machinery, 2015,
p. 1359–1366. doi:10.1145/2739480.2754767.
URL https://doi.org/10.1145/2739480.2754767

[85] H. Nakhost, M. Müller, Monte-carlo exploration for deterministic plan-
ning, in: 21st International Jont Conference on Artifical Intelligence
(IJCAI), Morgan Kaufmann Publishers Inc., San Francisco, USA, 2009,
p. 1766–1771.

[86] M. U. Chaudhry, J.-H. Lee, MOTiFS: Monte carlo tree search based
feature selection, Entropy 20 (5) (2018). doi:10.3390/e20050385.
URL https://www.mdpi.com/1099-4300/20/5/385

[87] M. Cantor, Calculating and improving ROI in software and system pro-
grams, Commun. ACM 54 (9) (2011) 121–130. doi:10.1145/1995376.
1995404.
URL https://doi.org/10.1145/1995376.1995404

[88] D. Ganesan, J. Knodel, R. Kolb, U. Haury, G. Meier, Comparing costs
and benefits of different test strategies for a software product line: A
study from testo AG, in: 11th International Conference on Software
Product Lines (SPLC), 2007, pp. 74–83. doi:10.1109/SPLINE.2007.
21.
URL https://doi.org/10.1109/SPLINE.2007.21

[89] M. Nonaka, L. Zhu, Impact of architecture and quality investment in
software product line development, in: 11th International Conference
on Software Product Lines (SPLC), IEEE Computer Society, Kyoto,
Japan, 2007, pp. 63–73. doi:10.1109/SPLINE.2007.35.
URL https://doi.org/10.1109/SPLINE.2007.35

[90] R. Heradio, D. Fernández-Amorós, L. Torre-Cubillo, A. P. Garćıa-
Plaza, Improving the accuracy of COPLIMO to estimate the payoff
of a software product line, Expert Syst. Appl. 39 (9) (2012) 7919–7928.

64

https://doi.org/10.1145/2739480.2754767
https://doi.org/10.1145/2739480.2754767
https://doi.org/10.1145/2739480.2754767
https://doi.org/10.1145/2739480.2754767
https://www.mdpi.com/1099-4300/20/5/385
https://www.mdpi.com/1099-4300/20/5/385
https://doi.org/10.3390/e20050385
https://www.mdpi.com/1099-4300/20/5/385
https://doi.org/10.1145/1995376.1995404
https://doi.org/10.1145/1995376.1995404
https://doi.org/10.1145/1995376.1995404
https://doi.org/10.1145/1995376.1995404
https://doi.org/10.1145/1995376.1995404
https://doi.org/10.1109/SPLINE.2007.21
https://doi.org/10.1109/SPLINE.2007.21
https://doi.org/10.1109/SPLINE.2007.21
https://doi.org/10.1109/SPLINE.2007.21
https://doi.org/10.1109/SPLINE.2007.21
https://doi.org/10.1109/SPLINE.2007.21
https://doi.org/10.1109/SPLINE.2007.35
https://doi.org/10.1109/SPLINE.2007.35
https://doi.org/10.1109/SPLINE.2007.35
https://doi.org/10.1109/SPLINE.2007.35
https://doi.org/10.1016/j.eswa.2012.01.109
https://doi.org/10.1016/j.eswa.2012.01.109

doi:10.1016/j.eswa.2012.01.109.
URL https://doi.org/10.1016/j.eswa.2012.01.109

[91] M. Marseguerra, E. Zio, L. Podofillini, Genetic algorithms and monte
carlo simulation for the optimization of system design and operation, in:
Computational Intelligence in Reliability Engineering: Evolutionary
Techniques in Reliability Analysis and Optimization, Vol. 39 of Studies
in Computational Intelligence, Springer, 2007, pp. 101–150. doi:10.

1007/978-3-540-37368-1_4.
URL https://doi.org/10.1007/978-3-540-37368-1_4

[92] J. Martinez, T. Ziadi, R. Mazo, T. F. Bissyandé, J. Klein, Y. L. Traon,
Feature relations graphs: A visualisation paradigm for feature con-
straints in software product lines, in: 2nd IEEE Working Conference
on Software Visualization (VISSOFT), IEEE Computer Society, Vic-
toria, BC, Canada, 2014, pp. 50–59. doi:10.1109/VISSOFT.2014.18.
URL https://doi.org/10.1109/VISSOFT.2014.18

[93] R. Heradio, D. Fernández-Amorós, J. A. Galindo, D. Benavides, Uni-
form and scalable sat-sampling for configurable systems, in: 24th
ACM International Systems and Software Product Line Conference
(SPLC), Vol. A, ACM, Montreal, Canada, 2020, pp. 17:1–17:11. doi:
10.1145/3382025.3414951.
URL https://doi.org/10.1145/3382025.3414951

[94] S. She, R. Lotufo, T. Berger, A. Wasowski, K. Czarnecki, The vari-
ability model of the linux kernel, in: 4th International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS), Vol. 37
of ICB-Research Report, Universität Duisburg-Essen, Linz, Austria,
2010, pp. 45–51.
URL http://www.vamos-workshop.net/proceedings/VaMoS_2010_

Proceedings.pdf

[95] M. Varshosaz, M. Al-Hajjaji, T. Thüm, T. Runge, M. R. Mousavi,
I. Schaefer, A classification of product sampling for software product
lines, in: 22nd International Systems and Software Product Line Con-
ference (SPLC), 2018, pp. 1–13. doi:10.1145/3233027.3233035.
URL https://doi.org/10.1145/3233027.3233035

65

https://doi.org/10.1016/j.eswa.2012.01.109
https://doi.org/10.1016/j.eswa.2012.01.109
https://doi.org/10.1007/978-3-540-37368-1_4
https://doi.org/10.1007/978-3-540-37368-1_4
https://doi.org/10.1007/978-3-540-37368-1_4
https://doi.org/10.1007/978-3-540-37368-1_4
https://doi.org/10.1007/978-3-540-37368-1_4
https://doi.org/10.1109/VISSOFT.2014.18
https://doi.org/10.1109/VISSOFT.2014.18
https://doi.org/10.1109/VISSOFT.2014.18
https://doi.org/10.1109/VISSOFT.2014.18
https://doi.org/10.1145/3382025.3414951
https://doi.org/10.1145/3382025.3414951
https://doi.org/10.1145/3382025.3414951
https://doi.org/10.1145/3382025.3414951
https://doi.org/10.1145/3382025.3414951
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1145/3233027.3233035

[96] S. Fischer, R. E. Lopez-Herrejon, R. Ramler, A. Egyed, A preliminary
empirical assessment of similarity for combinatorial interaction testing
of software product lines, in: 9th Workshop on Search-Based Soft-
ware Testing (SBST@ICSE), 2016, pp. 15–18. doi:10.1145/2897010.
2897011.
URL https://doi.org/10.1145/2897010.2897011

[97] J. A. Pereira, M. Acher, H. Martin, J. Jézéquel, Sampling effect
on performance prediction of configurable systems: A case study,
in: ACM/SPEC International Conference on Performance Engineer-
ing (ICPE), Amsterdam, The Netherlands, 2020, pp. 277–288. doi:

10.1145/3358960.3379137.
URL https://doi.org/10.1145/3358960.3379137

[98] M. F. Johansen, O. Haugen, F. Fleurey, An algorithm for generating
t-wise covering arrays from large feature models, in: Proceedings of
the 16th International Software Product Line Conference - Volume 1,
SPLC ’12, Association for Computing Machinery, New York, NY, USA,
2012, p. 46–55. doi:10.1145/2362536.2362547.
URL https://doi.org/10.1145/2362536.2362547

[99] C. Kaltenecker, A. Grebhahn, N. Siegmund, J. Guo, S. Apel, Distance-
based sampling of software configuration spaces, in: 41st International
Conference on Software Engineering (ICSE), IEEE/ACM, 2019, pp.
1084–1094. doi:10.1109/ICSE.2019.00112.
URL https://doi.org/10.1109/ICSE.2019.00112

[100] J. A. Pereira, H. Martin, M. Acher, J. Jézéquel, G. Botterweck, A. Ven-
tresque, Learning software configuration spaces: A systematic litera-
ture review, CoRR abs/1906.03018 (2019). arXiv:1906.03018.
URL http://arxiv.org/abs/1906.03018

[101] M. Acher, G. Perrouin, M. Cordy, BURST: A Benchmarking Platform
for Uniform Random Sampling Techniques, Association for Computing
Machinery, New York, NY, USA, 2021, p. 36–40.
URL https://doi.org/10.1145/3461002.3473070

[102] J. Oh, P. Gazzillo, D. Batory, M. Heule, M. Myers, Scalable uniform
sampling for real-world software product lines, Tech. rep., Technical

66

https://doi.org/10.1145/2897010.2897011
https://doi.org/10.1145/2897010.2897011
https://doi.org/10.1145/2897010.2897011
https://doi.org/10.1145/2897010.2897011
https://doi.org/10.1145/2897010.2897011
https://doi.org/10.1145/2897010.2897011
https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1145/2362536.2362547
https://doi.org/10.1145/2362536.2362547
https://doi.org/10.1145/2362536.2362547
https://doi.org/10.1145/2362536.2362547
https://doi.org/10.1109/ICSE.2019.00112
https://doi.org/10.1109/ICSE.2019.00112
https://doi.org/10.1109/ICSE.2019.00112
https://doi.org/10.1109/ICSE.2019.00112
http://arxiv.org/abs/1906.03018
http://arxiv.org/abs/1906.03018
http://arxiv.org/abs/1906.03018
http://arxiv.org/abs/1906.03018
https://doi.org/10.1145/3461002.3473070
https://doi.org/10.1145/3461002.3473070
https://doi.org/10.1145/3461002.3473070

Report TR-20-01, Dept. of Computer Science, University of Texas at . . .
(2020).

[103] D. Benavides, P. T. Mart́ın-Arroyo, A. R. Cortés, Automated rea-
soning on feature models, in: O. Pastor, J. F. e Cunha (Eds.), Ad-
vanced Information Systems Engineering, 17th International Confer-
ence, CAiSE 2005, Porto, Portugal, June 13-17, 2005, Proceedings,
Vol. 3520 of Lecture Notes in Computer Science, Springer, 2005, pp.
491–503. doi:10.1007/11431855_34.
URL https://doi.org/10.1007/11431855_34

[104] H. H. Wang, Y. F. Li, J. Sun, H. Zhang, J. Pan, Verifying
feature models using owl, Journal of Web Semantics 5 (2)
(2007) 117–129, software Engineering and the Semantic Web.
doi:https://doi.org/10.1016/j.websem.2006.11.006.
URL https://www.sciencedirect.com/science/article/pii/

S1570826807000042

[105] S. Fan, N. Zhang, Feature model based on description logics, in:
B. Gabrys, R. J. Howlett, L. C. Jain (Eds.), Knowledge-Based Intelli-
gent Information and Engineering Systems, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006, pp. 1144–1151.

[106] R. C. Bachmeyer, H. S. Delugach, A conceptual graph approach to
feature modeling, in: U. Priss, S. Polovina, R. Hill (Eds.), Conceptual
Structures: Knowledge Architectures for Smart Applications, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 179–191.

[107] J. White, B. Dougherty, D. C. Schmidt, Selecting highly optimal archi-
tectural feature sets with filtered cartesian flattening, Journal of Sys-
tems and Software 82 (8) (2009) 1268–1284, sI: Architectural Decisions
and Rationale. doi:https://doi.org/10.1016/j.jss.2009.02.011.
URL https://www.sciencedirect.com/science/article/pii/

S0164121209000284

[108] R. Gheyi, T. Massoni, P. Borba, Algebraic laws for feature models,
J. Univers. Comput. Sci. 14 (21) (2008) 3573–3591. doi:10.3217/

jucs-014-21-3573.
URL https://doi.org/10.3217/jucs-014-21-3573

67

https://doi.org/10.1007/11431855_34
https://doi.org/10.1007/11431855_34
https://doi.org/10.1007/11431855_34
https://doi.org/10.1007/11431855_34
https://www.sciencedirect.com/science/article/pii/S1570826807000042
https://www.sciencedirect.com/science/article/pii/S1570826807000042
https://doi.org/https://doi.org/10.1016/j.websem.2006.11.006
https://www.sciencedirect.com/science/article/pii/S1570826807000042
https://www.sciencedirect.com/science/article/pii/S1570826807000042
https://www.sciencedirect.com/science/article/pii/S0164121209000284
https://www.sciencedirect.com/science/article/pii/S0164121209000284
https://doi.org/https://doi.org/10.1016/j.jss.2009.02.011
https://www.sciencedirect.com/science/article/pii/S0164121209000284
https://www.sciencedirect.com/science/article/pii/S0164121209000284
https://doi.org/10.3217/jucs-014-21-3573
https://doi.org/10.3217/jucs-014-21-3573
https://doi.org/10.3217/jucs-014-21-3573
https://doi.org/10.3217/jucs-014-21-3573

[109] J. M. Horcas, D. Struber, A. Burdusel, J. Martinez, S. Zschaler, We’re
not gonna break it! consistency-preserving operators for efficient prod-
uct line configuration, IEEE Transactions on Software Engineering
(2022) 1–1doi:10.1109/TSE.2022.3171404.

68

https://doi.org/10.1109/TSE.2022.3171404

	Introduction
	Background
	MCTS Conceptual Framework for feature model analyses
	Monte Carlo methods and MCTS
	Mapping SPL problems to the MCTS conceptual framework

	Implementation of the MCTS framework
	Search space and interfaces for (S, s0, t, A, ,)-.4 modeling concepts
	Search-based algorithms and Monte Carlo methods
	Usage of the Monte Carlo methods and knowledge inference

	Configuration based analysis
	Localizing defective configurations
	Finding minimum valid configurations
	Completion of partial configurations
	Optimization of configurations: optimal feature selection problem

	Analysis with Feature Models as States
	Related Work
	Conclusions and Future Work

