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Abstract: For every Matrix Product State (MPS) one can always construct a
so-called parent Hamiltonian. This is a local, frustration free, Hamiltonian which
has the MPS as ground state and is gapped. Whenever that parent Hamiltonian
has a degenerate ground state space (the so-called non-injective case), we con-
struct another ’uncle’ Hamiltonian which is also local and frustration free, has
the same ground state space, but is gapless, and its spectrum is R+. The con-
struction is obtained by linearly perturbing the matrices building up the state
in a random direction, and then taking the limit where the perturbation goes
to zero. For MPS where the parent Hamiltonian has a unique ground state (the
so-called injective case) we also build such uncle Hamiltonian with the same
properties in the thermodynamic limit.

1. Introduction

One of the aims of condensed matter physics is to understand the low tempera-
ture behavior of locally interacting quantum systems. For that, one has to solve
the Hamiltonian which is postulated to capture the physics of the system un-
der study. This means obtaining a good description of its ground state which,
in turn, allows to make predictions on the observable properties of the system.
However, solving a Hamiltonian is, except for very few models, completely out
of reach analytically and in general also very hard even numerically. This has
motivated a reverse engineering approach, where one designs particular wave-
functions which try to capture some of the physical properties of the system,
such as symmetries or frustration, and tries to find appropriate Hamiltonians
for them for which one can give a rigorous mathematical treatment.



2 C. Fernández-González, N. Schuch, M. M. Wolf, J. I. Cirac, D. Pérez-Garćıa

A first paradigmatic example of this approach is the AKLT state [1], intro-
duced by Affleck, Kennedy, Lieb and Tasaki in 1988 as a way to understand
the one dimensional antiferromagnetic spin-1 Heisenberg model. In this case,
an associated nearest neighbor Hamiltonian was already introduced in [1] and
its spectral gap rigorously proven –as opposed to the gap of the rest of Hal-
dane’s phase where only numerical evicende is known. The AKLT construction
was generalized later in 1992 by Fannes, Nachtergaele and Werner [11]. They
constructed the family of Finitely Correlated States, nowadays known as Ma-
trix Product States (MPS), and found a gapped local Hamiltonian (called the
parent Hamiltonian) for each one of them1. The other paradigmatic example is
the Resonating Valence Bond (RVB) state, postulated in the seminal work of
Anderson [2] in 1987 as a way of explaining high-Tc superconductivity. This, to-
gether with the fact that such state on a geometrically frustrated lattice would
be a topological quantum spin liquid, has attracted the attention of theoretical
and experimental physicists for many years [4]. In this case, only very recently
[30,33], and using the 2D version of the MPS parent Hamiltonian described in
[21,26], an associated local Hamiltonian has been found and the properties of
that Hamiltonian are still under study.

The interest in this reverse engineering approach (obtaining Hamiltonians for
a target quantum state) has boosted in recent years thanks to the role it plays in
quantum information theory and in the problem of classifying quantum phases of
matter. In the first case, one identifies valuable resource states: GHZ states [13],
cluster states [6], topological codes [15], ..., and tries to find ways to engineer
them and stabilize them for long times. In essentially all these cases, the desired
states are MPS or their 2D generalization (PEPS), so the parent Hamiltonian
construction [11] gives us already a solution. In the second, to show that two
quantum states |ψ0〉, |ψ1〉 are in the same phase, one must engineer a smooth
path of gapped Hamiltonians Hλ, λ ∈ [0, 1], so that |ψ0〉 is a ground state of
H0 and |ψ1〉 is a ground state of H1. Here, the parent Hamiltonian construction
was the the way to engineer the paths of Hamiltonians which led to the final
classification of 1D phases presented in [8,16,23,27].

This parent Hamiltonian, despite being so useful as the main general reverse
engineering construction, has a clear weakness, as pointed out by Chen et al in
[7]. It is in general not robust against perturbations in the matrices which define
the MPS. This issue is crucial for the applications described above. In this work,
we analyze this problem and solve it in full detail by (1) identifying the Hamil-
tonian (we call it uncle) which is being perturbed when perturbing the MPS,
(2) analyzing the properties of the uncle Hamiltonian and (3) characterizing for
which perturbations this uncle Hamiltonian coincides with the parent.

In particular, we show that the parent Hamiltonian is robust if and only if the
MPS is injective [20]. When this is not the case, which corresponds to systems
with discrete symmetry breaking [20] (block-injective MPS), the uncle Hamilto-
nian has the following striking properties: (1) It has the same -finite dimensional-

1 The very same year, White introduced the Density Matrix Renormalization Group
(DMRG) algorithm [31], which turned out to be extremely successful as a way to derive ground
states from 1D gapped local Hamiltonians. It was only realized later that DMRG was a way to
find the closest MPS to the target state, indicating that the family of MPS was indeed large
enough to describe the low temperature physics of all gapped 1D systems. This was finally
proven by Hastings in [14] (see also [29]) and later, with exponentially better parameters, by
Arad, Kitaev, Landau and Vazirani in [3].
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ground space as the parent Hamiltonian, (2) it is also frustration free, but (3) it
is gapless and its spectrum equals [0,+∞) in the thermodynamic limit, whereas
parent Hamiltonians always show a spectral gap. These properties hold for any
block-injective MPS, and for generic perturbations. Unlike the parent Hamil-
tonian, the uncle Hamiltonian may change continuously under perturbations of
the MPS even in the presence of a discrete symmetry.

As a by-product we obtain new examples which shed new light on the prop-
erties inherent to critical systems and phase transitions, in the line initiated in
[32]. Notice that all our examples are generic, as gapless as they can be since the
spectrum is the whole positive real line, but they are frustration free and there
is no power-law decay of correlations within the ground space. Indeed, modi-
fying our construction, for any injective MPS (which always has exponentially
decaying correlations), one can obtain simple frustration free models with the
same spectral properties but with the given MPS as unique ground state in the
thermodynamic limit – however, the finite dimensional ground spaces do not
coincide in this injective case. Finally, our analysis could help in the design of
MPS-based algorithms to simulate systems with discrete symmetry breaking in
1D or, more generally, systems with topological order in 2D.

The paper is organized as follows: In Section 2 we start with the basic defini-
tions. Section 3 works out the illustrative example of the GHZ-state which helps
in understanding the main theorems presented in Section 4. Section 5 finally
deals with the case of injective MPS. For the sake of clarity, we have moved
some of the technical proofs to the appendices, where one can also find how to
treat formally the thermodynamic limit using the GNS construction and some
basic facts we need about spectral theory of unbounded operators on a Hilbert
space.

2. Definitions

In this section, we will provide the necessary definitions: We start by intro-
ducing Matrix Product States, their normal form, and the injectivity property.
Next, we show how parent Hamiltonians for MPS are constructed. We find that
parent Hamiltonians change discontinuously under certain perturbations, which
motivates the introduction of uncle Hamiltonians.

2.1. Matrix Product States.

Definition 1 (Matrix Product States). A state |ψ〉 ∈ (Cd)⊗L is called a
Matrix Product State (MPS) if it can be written as

|M(A)〉 =
∑

i1,...,iL

tr[Ai1 · · ·AiL ]|i1, . . . , iL〉, (1)

where the Ai, i = 1, . . . , d, are D×D matrices (D is called the bond dimension).

The matrices {Ai}i can also be thought of as a tensor A with three indices
(Ai)αβ , where the matrix indices α and β are referred to as “virtual indices”,
and the index i as “physical index”. Note that this definition of MPS is restricted
to translationally invariant states with periodic boundary conditions, which we
will be concerned with in this paper.
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Throughout this paper, we will use a graphical notation for tensor contrac-
tions such as in Eq. (1), cf. [26]: A tensor with k indices will be denoted as a
box with k legs; e.g., the tensor (Ai)αβ is denoted as

A ≡ A

with the upper leg by convention denoting the physical index. We will generally
omit the labels. The contraction of two tensors, i.e., summing over a joint index,
is denoted by concatenating the corresponding indices; e.g.,

∑
β(Ai)αβ(Bj)βγ is

written as

A B ≡ A B .

We will also use the more compact notation

A c B

instead. In this graphical language, an MPS, Eq. (1), can be expressed as

A A A .

Given a tensor T ≡ (Ti)αβ , we will denote by 〈α|T |β〉 the vector
∑
i〈α|Ti|β〉|i〉 =

T in the physical space. More generally, matrix operations are generally
meant to act on the virtual degrees of freedom; e.g., C = A ⊕ B denotes the
tensor with components Ci = Ai ⊕Bi.

In order to compute expectation values etc., we need to contract tensor net-
works with their adjoint. Tensors with legs pointing down are always complex
conjugated,2

A ≡ (Āi)αβ ≡ (A∗i )βα .

An object of particular interest is the “transfer operator”

EBA =
B

A
,

which we will occasionally interpret as a map from the right to the left indices,
EBA : X 7→

∑
iAiXB

∗
i .

2 Throughout, ·̄ will denote the complex conjugate and ·∗ the adjoint operator.
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2.2. Normal form. MPS are stable under blocking: If we e.g. block pairs of phys-
ical sites, jk ≡ (i2k−1, i2k), the state can again be expressed as an MPS in the
blocked indices, with tensors Ajk ≡ Ai2k−1

Ai2k . By blocking a finite number of
sites [25] and appropriate gauge transformations, any MPS can be brought into
a standard form [11,20].

Theorem 1 (Standard form for MPS [11,20], injectivity). After blocking,
any MPS can be written in a standard form where the matrices Ai have the
following properties:

1. The Ai are block-diagonal: Ai = ⊕Dj=1A
j
i ⊗ Γj, where Aji ∈Mlj (the space of

lj × lj matrices) and the Γj are positive diagonal matrices.

2. The Ai span the space of block-diagonal matrices: spaniAi =
⊕D

j=1Mlj ⊗Γj.
3. For all j, and for Aj denoting the MPS tensor defined by the submatrices Aji ,

the map Ej := EA
j

Aj has spectral radius one, with 1 as the unique eigenvalue of

modulus 1, and with eigenvectors Ej(I) = I and E∗j (ΛjA) = ΛjA, where ΛjA > 0,

tr(ΛjA) = 1.

Property 2 with every Γj = 1 is called block-injectivity; in particular, if D = 1,
and Γ1 = 1, A is called injective.

For the rest of the paper, we will always consider MPS in this standard form.

Definition 2 (Span of a tensor, Projector corresponding to a tensor).
Given a tensor (Ti)αβ with two virtual indices α, β, and one physical index i
(which can be a blocked index), we define the span of T as

span{T} := span
{∑

i

tr[TiX] |i〉
∣∣X ∈MD

}
.

Also, we define the projector corresponding to T , Π[T ], as the orthogonal pro-
jector onto span{T}⊥.

In particular, T can arise from blocking two or more tensors A from an MPS,
T = A c A · · · . E.g.,

span{A c A} ≡ span
{∑
i,j

tr[AiAjX]|i, j〉
∣∣X ∈MD

}
. (2)

Note that injectivity of a tensor T implies dim(span{T}) = D2.

Lemma 1 (Continuity of projector of a tensor). Let T (ε) be a family of
tensors. If T (0) is injective and T (ε) is continuous around 0, then Π[T (ε)] is
continuous at 0.

More generally, if T (0) is block-injective and T (ε) is continuous and block-
diagonal in the same basis around 0, then Π[T (ε)] is continuous around 0.

Proof. The proof follows directly from the fact that a basis Xk of the space of
(block-)diagonal matrices yields a continuously changing basis of span{T (ε)} by
virtue of Xk 7→

∑
i tr[Ti(ε)Xk]|i〉 = |vk(ε)〉.

From these bases, the Gram-Schmidt orthogonalization process leads also con-
tinuously to orthonormal changing bases of span{T (ε)}, say {|ek(ε)〉}: Beginning
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from |v1(ε)〉 6= 0, its normalization is continuous. Then, orthonormalization of
|v2(ε)〉 with respect to |e1(ε)〉 only involves projecting onto the complement of
span{|e1(ε)〉} and normalization, and both operations are continuous as long as
we keep in every moment away from the null vector (this is where the impor-
tance of injectivity or block-injectivity stems, in the need of the dimension of
span{T (0)} to be kept locally). One can also consider the process as projecting
|v2(ε)〉 onto span{|e1(ε)〉}, and then substracting the result to |v2(ε)〉, which
yields a non-zero vector that must be normalized. With the rest of the vectors
the process is similar with finitely many steps, which makes the orthonormal-
ization process continuous if the injectivity conditions are held and every step
keeps away enough from 0. Note that injectivity of T (0) and continuity of T at
0 is enough to ensure injectivity of T (ε) for small ε.

The final projection Π[T (ε)] is also continuous in ε, since projecting any
vector onto every linear space span{|ek(ε)〉} and substracting the result to the
vector are continuous in ε.

In the case T (0) is block-injective, the fact that T (ε) is also block-diagonal
makes the rank of {|vk(ε)〉}k constant around 0. This allows to guarantee the
same result about continuity. ut

2.3. The parent Hamiltonian. Let us now turn towards Hamiltonians for MPS.
We will restrict to translationally invariant Hamiltonians, and denote the local
terms by lowercase letters, e.g., h. When necessary, subscripts indicate the sites h
acts on, e.g., hi,i+1. We will identify the local operator h and the global operator
h ⊗ I. The total Hamiltonian will be denoted by the corresponding uppercase

letter, e.g., H =
∑
h :=

∑N
i=1 hi,i+1. Generally, indices will wrap around the

ends of the chain (e.g., here N + 1 ≡ 1).
Every MPS |M(A)〉 induces Hamiltonians to which it is an exact ground state:

The reduced state on, say, two adjacent sites, ρ2, is supported on span{A c A},
and thus for h := Π[A c A], h|M(A)〉 = 0. If D2 < d2 – this can be achieved
by blocking, and is the case for the standard form of Theorem 1 – Π[A c A]
is non-trivial, and we obtain a non-trivial Hamiltonian with two-body terms h
which has |M(A)〉 as its ground state.

If we use |M(A)〉 in the standard form of Thm. 1, this Hamiltonian is partic-
ularly well-behaved:

Definition 3 (Parent Hamiltonian). Let |M(A)〉 be a (block-)injective MPS,
i.e., satisfying condition 2 of Theorem 1, and let h = Π[A c A]. Then, the Hamil-
tonian H =

∑
h is called the parent Hamiltonian.

Theorem 2 (Ground state space of parent Hamiltonian [18,20,26]).
The parent Hamiltonian has a D-fold degenerate ground state space spanned by
|M(Aj)〉; in particular, |M(A)〉 is one of its ground states. Also, the parent
Hamiltonian is gapped in the thermodynamic limit.

Remark 1. Note that in order to ensure the correct ground state subspace in The-
orem 2, a weaker condition than the injectivity of each tensor used in Definition 3
is enough: It is sufficient to take projectors onto the orthogonal complement of
the span of k + 1 sites, where k is chosen such that blocking k sites makes the
tensor injective [25].
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2.4. Uncle Hamiltonians. The parent Hamiltonian construction can be inter-
preted as a map from the set of MPS to the set of Hamiltonians, Ĥ : A 7→ Ĥ(A),

which associates to any MPS |M(A)〉 its parent Hamiltonian Ĥ(A). While this

map is well-behaved in terms of the properties of Ĥ(A), we are also interested

in its continuity : If we change A smoothly, A → A + εP , does Ĥ(A) change
smoothly as well? If it were so, this would allow us to study perturbations of
the system by looking at perturbations of the MPS tensor A. For injective MPS
in their standard form, Lemma 1 tells us that this is indeed the case. On the
other hand, if A is block-injective, Lemma 1 requires P to be block-diagonal as
well, and it is indeed easy to see that random perturbations P will lead to a
discontinuous change in Ĥ(A+ εP ), as rank(span{A c A}) is different for ε 6= 0.

This discontinuity motivates the introduction of uncle Hamiltonians, which
are robust under specific perturbations of the MPS tensor.

Definition 4 (Uncle Hamiltonians). Let |M(A)〉 be a MPS in standard form,
and let P ∈MD. Then, the uncle Hamiltonian induced by P is the Hamiltonian

H ′P := lim
ε→0

Ĥ(A+ εP ) , (3)

whenever this limit exists. This is, the uncle Hamiltonian induced by a given
perturbation is the limit of the parent Hamiltonian of the perturbed MPS for the
perturbation going to zero.

For A an injective tensor, the limit exists and is equal to the parent Hamiltonian
for every tensor perturbation, following Lemma 1: Parent and uncle Hamiltonian
coincide for injective MPS. Thus, we focus our attention on the uncle Hamil-
tonians of block-injective MPS; most of this paper is devoted to studying their
properties.

In the following, H =
∑
h will denote the parent Hamiltonian, while H ′P =∑

h′P denotes the uncle Hamiltonian, where we will occasionally omit the sub-
script P . Recall that this limit Hamiltonian depends on the perturbation, there-
fore a uniform limit for every perturbation as usually understood does not exist
in general.

3. Example: The GHZ state, the Ising model, and the XY model

We will start our discussion of the properties of the uncle with the GHZ state,
which has the Ising model as its parent Hamiltonian. The unnormalized GHZ
state can be expressed as an MPS

|GHZ〉 = |00 · · · 0〉+ |11 · · · 1〉,=
∑

i1,...,iL

tr[Ai1 . . . AiL ]|i1, . . . , iL〉

with ij ∈ {0, 1}, where A0 = ( 1 0
0 0 ) and A1 = ( 0 0

0 1 ). Following Definition 3, the
parent Hamiltonian of the Ising model can be constructed from the span of two
sites,

span{A c A} = span{|00〉, |11〉} ,
which is indeed (up to an additive constant) the well-known Ising Hamiltonian
1
2 I−

[
|00〉〈00|+ |11〉〈11|

]
.
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3.1. Uncle Hamiltonian for the GHZ state. Let us now construct the uncle
Hamiltonian for the GHZ state. According to the definition, we first need to
fix a perturbation P of the MPS tensor A,

P0 =

(
a0 b0
c0 d0

)
and P1 =

(
a1 b1
c1 d1

)
. (4)

Next, we need to consider the MPS |M(Cε,P )〉 with Cε,P = A+εP , and construct
its parent Hamiltonian. For a generic P , we need to block two sites to reach
injectivity. Thus, following Remark 1, we need to construct the terms of the
parent Hamiltonian as the projector onto the complement of the span on three
sites,

S3(ε) = span{Cε,P c Cε,P
c Cε,P } .

S3(ε) is spanned by the four vectors vαβ = 〈α|Cε,P c Cε,P
c Cε,P |β〉, which are

straightforwardly found to be

v00 = |000〉+O(ε) ,

v01 = ε
[
b0|000〉+ (b0 + b1)|001〉+ (b0 + b1)|011〉+ b1|111〉

]
+O(ε2) ,

v10 = ε
[
c0|000〉+ (c0 + c1)|100〉+ (c0 + c1)|110〉+ c1|111〉

]
+O(ε2) ;

v11 = |111〉+O(ε) .

If b0 + b1 6= 0 and c0 + c1 6= 0 (which happens almost surely3), this can be
transformed into an alternative set spanning S3(ε),{
|000〉+O(ε), |001〉+ |011〉+O(ε), |100〉+ |110〉+O(ε), |111〉+O(ε)

}
. (5)

The parent Hamiltonian of the perturbed MPS |M(Cε,P )〉 is thus HP,ε =
∑
hP,ε,

with each hP,ε acting locally on three consecutive sites, and projecting onto
S3(ε)⊥.

In order to obtain the uncle Hamiltonian we finally need to take the limit
ε→ 0. Then, the four states in Eq. (5) become orthogonal, and the family hP,ε
converges to the projection onto the orthogonal complement of

span{|000〉, |0+1〉, |1+0〉, |111〉}.

Here, |0+1〉 ≡ |0〉|+〉|1〉, with |+〉 = (|0〉+ |1〉)/
√

2. Thus, the uncle Hamiltonian
has local terms

h′P = I−
[
|000〉〈000|+ |111〉〈111|+ |0+1〉〈0+1|+ |1+0〉〈1+0|

]
(6)

Note that this limit does not depend on the perturbation P (as long as b0+b1 6= 0
and c0 + c1 6= 0), and will be called h′ or h′i−1,i,i+1 in the following. The parent
Hamiltonian W ′ is obtained as the sum H ′ =

∑
h′ ≡

∑
i h
′
i−1,i,i+1.

3 Note that whenever we say something happens almost surely means not only that it
happens with probability 1 but also that the set of perturbations which may not satisfy the
statement form a closed algebraic variety of dimension strictly lower than the set of all possible
perturbations.
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3.2. Ground space of the uncle Hamiltonian. What is the ground space of the
uncle Hamiltonian? Since

ker(h′) = span{|000〉, |111〉, |0 + 1〉, |1 + 0〉} ⊃ span{|000〉, |111〉} = kerh ,

the ground states |0 . . . 0〉 and |1 . . . 1〉 of the GHZ parent Hamiltonian are also
ground states of the uncle; in particular, the uncle is frustration free. However,
h′ allows for additional ground states. Indeed, if we consider the ground state
space of h′ acting on m consecutive sites (with open boundaries), the ground
space is

span
{
|0 . . . 0〉, |1 . . . 1〉,

∑
|0 · · · 01 · · · 1〉,

∑
|1 · · · 10 · · · 0〉

}
⊆ (C2)⊗m, (7)

where the sums run over all positions of the “boundary wall” 01 and 10, respec-
tively. Yet, when closing the boundaries, the additional states

∑
|0 · · · 01 · · · 1〉

and
∑
|1 · · · 10 · · · 0〉 stop being in the intersection of the kernels, and the ground

space of the uncle Hamiltonian coincides with the ground space of the parent
Hamiltonian. Intuitively, with periodic boundary conditions the boundary walls
need to come in pairs, and it is impossible to give both of them momentum zero
as they meet which is not in the ground space of h′.

3.3. Spectrum of the uncle Hamiltonian. Let us now show that the uncle Hamil-
tonian of the GHZ state is gapless. To this end, we consider the unnormalized
states

|φN 〉 =
∑

−N≤i≤−1
1≤j≤N

|φi,j〉 (8)

with
|φi,j〉 = |0−N−10 · · · 0i1 · · · 10j · · · 0N+1〉

on a chain of length 2N + 3, where the superscripts indicate the position of the
corresponding qubit. (This notation will be used throughout this work.) These
states are orthogonal to the ground space, and 〈φN |φN 〉 = N2. Further, |φN 〉 is
almost a zero momentum state of the two boundaries: It is a ground state of all
terms in H ′ except h−1,0,1, hN,N+1,−N−1, and hN+1,−N−1,−N , and by counting
the violating configurations, we find that 〈φN |H ′|φN 〉 = O(N). Hence, for the
energies of these states we have

〈φN |H ′|φN 〉
〈φN |φN 〉

= O(1/N). (9)

This implies that (on a chain of length 2N + 3) H ′ has at least one eigenvalue

λN ≤ 〈ϕN |H
′|ϕN 〉

〈ϕN |ϕN 〉 = O(1/N), i.e., the family of uncle Hamiltonians is gapless.

Does H ′ have a continuous spectrum? One idea to prove so would be to
to construct momentum eigenstates with an energy scaling like Θ(k2/N2) (Θ
denotes the exact scaling rather than an upper bound). To this end, we give the
sum in Eq. (8) a momentum,

|φN,k〉 =
∑

−N<m<−1
1<n<N

e2πimk/N |φm,n〉 . (10)
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It is straightforward to see that in addition to the O(N) contribution from be-
fore, the N−1 terms h−N − 1,−N,−N + 1, . . . , h−2,−1,0 all give a contribution

Θ(k2N), resulting in an energy 〈ϕN |H
′|ϕN 〉

〈ϕN |ϕN 〉 = Θ(k2/N2).

Unfortunately, the existence of states with energy Θ(k2/N2) does not allow
to conclude that the spectrum of H ′ is dense: The existence of a state with
energy E only implies the existence of eigenvalues λ1 ≤ E and λ2 ≥ E, but
tells us nothing about their exact value. (The reason this worked for the gapless
excitations was that H ′ ≥ 0, and that |φN 〉 was orthogonal to the ground space.)
It is, however, indeed possible to show that H ′ has a continuous spectrum. For
the GHZ example, this can be done by mapping it to the XY model as discussed
in Sec. 3.5, and in Sec. 4.4, we give a proof that uncle Hamiltonians of arbitrary
MPS have a continuous spectrum which works directly in the thermodynamic
limit.

3.4. Gapless uncles for unique ground states. Can we obtain uncle Hamiltoni-
ans with similar properties in the case of MPS which are unique ground states?
Lemma 1 tells us that this cannot happen as long as the MPS tensors are injec-
tive, which is always the case as long as such an MPS is in its standard form: In
that case, the uncle Hamiltonian is equal to the parent Hamiltonian. However,
as we will demonstrate in the following, interesting uncle Hamiltonians can be
obtained by choosing a different MPS representation.

Consider a qubit chain (C2)⊗N , and a state |M(A)〉 = |0 . . . 0〉. Clearly, this
is a unique ground state of a gapped local Hamiltonian, with standard MPS
representation A0 = (1), A1 = (0). However, we can write the same state with
bond dimension 2 and

A0 =

(
1 0
0 1

)
and A1 =

(
0 0
0 0

)
We can now perturb A with a perturbation P as in Eq. (4), with ai = di and
bi = ci, i = 0, 1. A calculation similar to the one for the GHZ state shows
that in the limit of a vanishing perturbation, the ground space on three sites
is S3 = span{|000〉, |W 〉}, where |W 〉 = (|001〉 + |010〉 + |001〉)/

√
3 (as long as

b1 6= 0 or c1 6= 0); the uncle Hamiltonian h′ is the projector onto S⊥3 ,

h′ = I−
[
|000〉〈000|+ |W 〉〈W |

]
. (11)

For an open chain of length n, H ′ =
∑
h′ has the two ground states

|0n〉 = |00 · · · 0〉 and

|Wn〉 = |100 · · · 0〉+ |010 · · · 0〉+ . . .+ |000 · · · 01〉 .

Different from the GHZ case, the extra state |WN 〉 does not disappear from
the kernel when closing the boundaries – the uncle Hamiltonian on a chain
with periodic boundaries has a two-dimensional ground space span{|0N 〉, |WN 〉}.
Note, however, that the thermodynamic limit of |0N 〉 and |WN 〉 is the same, and
thus, the ground space collapses to the original one in the thermodynamic limit.

Again, we can construct gapless excitations by considering the states

|φn〉 =
∑
i6=j

|0 · · · 01i00 · · · 01j0 · · · 0〉 . (12)
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As before, they are orthogonal to the ground space, and their energy is O(1/N).
Alternatively, we could have also choosen a W state with momentum,

|ϕN,k〉 =
∑
j

e
2πikj
N |0 · · · 001j00 · · · 0〉, k 6= 0 ,

which are also orthogonal to the ground space, and have energy O(k2/N2).
Again, the spectrum is dense in the thermodynamic limit. This can once more

be verified by a mapping to the XY model or, directly in the thermodynamic
limit, using the methods described in Sec. 4.4.

3.5. Relation to the XY model. Both the uncle Hamiltonian for the GHZ state
and for the |0 . . . 0〉 state are closely related to the XY model (or, equivalently, to
non-interacting fermions), which can be used to immediately infer that they are
gapless models with continuous spectra. Let us first consider the uncle Hamilto-
nian of the GHZ state, Eq. (6): It can be rewritten as

h′ = − 1
4

[
I⊗ Z ⊗ Z + Z ⊗ Z ⊗ I + I⊗X ⊗ I− Z ⊗X ⊗ Z

]
+ 1

2 I⊗ I⊗ I . (13)

This is exactly the Hamiltonian discussed in Eq. (11) from [32] at g = 04. It can
be solved either by transforming it to non-interacting fermions, or by a duality
transformation to the XY model [22] 5. The resulting Hamiltonian is

HXY = − 1
4

∑
i

[
Xi ⊗Xi+1 + Yi ⊗ Yi+1 + 2Zi

]
+ const.

Indeed, this point in the XY model, which can be solved exactly by mapping
it to non-interacting fermions [17], is known to be gapless with a continuous
spectrum.

Let us now turn to the uncle Hamiltonian (11) for the |0 . . . 0〉 state. Let us
first replace the uncle Hamiltonian with a simpler one with the same spectral
properties. Namely, let

h̃′ = I− |00〉〈00| − |Φ+〉〈Φ+| , (14)

with |Φ+〉 = (|01〉+ |10〉)/
√

2. We have that

1
2h
′ ≤ 1

2 (h̃′12 + h̃′23) ≤ h′ ,

which implies that for any finite chain, the ordered eigenvalues λi of H ′ =
∑
h′

and λ̃i of H̃ ′ =
∑
h̃′ are related by

1
2λi ≤ λ̃i ≤ λi .

4 In fact, the construction in Eq. (10) of [32] is, up to a gauge transformation, equivalent to
the uncle construction, with ε =

√
g.

5 The partial isometry T : |i1, . . . , iN 〉 7→ |i1 + i2, . . . , iN + i1〉 from the eigenspace of X⊗N

associated to the value 1 to the even Z parity space induces the duality mapping Xi 7→
T ◦Xi ◦ T−1 = Xi−1 ⊗Xi and Zi ⊗ Zi+1 7→ T ◦ (Zi ⊗ Zi+1) ◦ T−1 = Zi.
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I.e., if we want to determine essential spectral properties of H ′, such as whether
it has a continuous spectrum, we can equally well study H̃ ′. Since h̃′ can be
rewritten as

h̃′ = − 1
4

[
X ⊗X + Y ⊗ Y + Z ⊗ I + I⊗ Z

]
+ 1

2 I⊗ I ,

this yet again gives rise to the same point of the XY model, Eq. (13), proving
that the Hamiltonians Eqs. (11) and (14) have a continuous spectrum.

4. Properties of the uncle Hamiltonian

In this section, we will see that the observations we made for the GHZ uncle
Hamiltonian generalize to uncle Hamiltonians of arbitrary MPS with degenerate
ground states (under some generic conditions): Their ground state space is equal
to the ground state space of the parent Hamiltonian, they are gapless, and they
have a continuous spectrum. This section will also contain the proofs which have
been omitted for the special case of the GHZ state.

For simplicity, we will focus here on the case where the MPS tensor Ci in its
standard form, Theorem 1, has two blocks, Ci = Ai⊕Bi, but the same procedure
can be followed in the general case: The results are completely analogous in case
of multiple different blocks, but there are some differerences if there are blocks
with a multiplicity larger than one. We will comment on this particular case in
Section 5.

Thus, in this section we will be dealing with an MPS |M(C)〉,

C =

(
A 0
0 B

)
,

where both A and B are injective. We will choose A and B in the normal form
of Theorem 1. The parent Hamiltonian of this MPS consists of local projectors
Π[C c C] with kernels

span{C c C} = span{A c A}+ span{B c B} ,

where the two-dimensional ground state space is spanned by |M(A)〉 and |M(B)〉.
We will need two basic lemmas, which we show next.

Lemma 2 (Consequences of injectivity). The following three properties are
equivalent, 1⇔ 2⇔ 3:

1. A is injective.
2. For any X, there exists an |a〉 such that

∑
i

〈a|i〉Ai ≡ A
a

= X ≡ X . (15)

3. There exists a tensor A−1 such that

∑
i

(Ai)αβ((A−1)i)α′β′ ≡
A

A-1

= = δαα′δββ′ (16)

(“left inverse to A”).
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Also, the following three are equivalent, 4⇔ 5⇔ 6:

4. (A R
L B ) is injective

5. For any X of the dimensions of A, there exists an |a〉 such that (15) holds,
and additionally

B
a

≡ R
a

≡ L
a

≡ 0 ,

and the corresponding statement holds for the other three blocks.
6. There exists a tensor A−1 such that (16) holds, and additionally

B

A-1

≡
R

A-1

≡
L

A-1

≡ 0 ,

and the corresponding statement holds for the other three blocks.

Proof. 1 ⇔ 2 since by definition, injectivity means that the Ai span the whole
matrix algebra. 2 ⇒ 3 by defining |aαβ〉 such that in (15), X = |α〉〈β|, and
choosing ((A−1)i)αβ = 〈aαβ |i〉, and 3 ⇒ 2 by setting 〈a|i〉 = tr[(A−1)iX

T ].
4⇒ 5 by considering equivalence between 1 and 2 and the matrix

X̃ =

(
X 0
0 0

)
,

or the corresponding matrices for the other blocks.
5⇒ 4 since any matrix can be block-decomposed as(

X Z
W Y

)
,

and for these blocks there exist vectors |aX〉, |bY 〉, |rZ〉, |lW 〉 that give rise to X,
Y , Z and W when applied to A, B, R and L respectively, and 0 when applied
to the other blocks. Thus we can consider the sum |aX〉+ |bY 〉+ |rZ〉+ |lW 〉 to
satisfy condition 2, and therefore injectivity of tensor in 4.

5 ⇒ 6 by defining |aαβ〉 such that in (15) X = |α〉〈β| if both indices corre-
spond to the A block or 0 otherwise, and choosing ((A−1)i)αβ = 〈aαβ |i〉, and

6⇒ 5 by setting 〈a|i〉 = tr[(A−1)iX̃
T ], with X̃ =

(
X 0
0 0

)
. ut

Lemma 3 (Gauge transformations for span). Let L : MD → MD be an
invertible map on D ×D matrices. Then, span{T} = span{L(T )}, and equally
Π[T ] = Π[L(T )], where the natural action of L on three-index tensors (Ti)αβ is
given by [L(T )]i = L(Ti).

Proof. This follows from tr[L(Ti)X] = tr[Ti(L∗(X∗))∗], for every X ∈MD.
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4.1. Form of the uncle Hamiltonian. We will now determine the general form of
the uncle Hamiltonian (including whether the limit in its definition exists).

Theorem 3. Let |M(C)〉, be an MPS with block-injective C = A⊕B, and let

P =

(
PA R
L PB

)
be an arbitrary tensor, such that the “uncle tensor”

U =

(
A c A A c R+R c B

B c L+ L c A B c B

)
. (17)

is injective. Then, the uncle Hamiltonian induced by P exists and is a sum of
local terms h′P = Π[U ].

Proof. Consider a perturbation Cε = C+ εP of the MPS |M(C)〉. We have that

Cε
c Cε =

(
A c A+O(ε) ε(A c R+R c B) +O(ε2)

ε(B c L+ L c A) +O(ε2) B c B +O(ε)

)
; (18)

clearly, for ε 6= 0 the map Lε which multiplies the off-diagonal blocks by 1/ε is
invertible and thus (following Lemma 3)

Π[Cε
c Cε] = Π[Lε(Cε c Cε)] = Π[U +O(ε)] .

Following Lemma 1, the limit limε→0Π[U+O(ε)] exists whenever U is injective,
and equals Π[U ]. ut

The required injectivity of the tensor in Eq. (17) follows in particular from
the following condition on the perturbation.

Definition 5 (Injective perturbation). A perturbation P of an MPS |M(C)〉
(in the notation of Theorem 2) is called injective if(

A R
L B

)
(19)

is an injective tensor.

Lemma 4. If a perturbation P is injective, then the resulting “uncle tensor” U ,
Eq. (17), is injective.

Proof. Let us consider condition 5 from Lemma 2, and any X of the dimensions
of A c A. Since the perturbation tensor is injective, there exist vectors |a〉 and
|a′〉 such that

A
a

= X ≡ X , B
a

≡ R
a

≡ L
a

≡ 0,

A
a'

= I , and B
a'

≡ R
a'

≡ L
a'

≡ 0 .
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The product |a〉 ⊗ |a′〉 yields then for the uncle tensor

 U
a a'

=

(
X 0
0 0

)
.

A similar reasoning can be followed for the rest of blocks, thus satisfying
condition 5 from Lemma 2. ut

A perturbation P is generically injective if d ≥ D2, and we will assume
injective perturbations in the following. Note that unlike for the |GHZ〉 state,
the uncle Hamiltonian does in general depend on the perturbation (though only
on its off-diagonal blocks R and L).6

4.2. Ground space of the uncle Hamiltonian. In the following, we study the
ground state space of the uncle Hamiltonian. Throughout, we will restrict to
injective perturbations.

Theorem 4. Let P be an injective perturbation of an MPS |M(C)〉, C = A⊕B.
Then, the ground space of the uncle Hamiltonian H ′P is spanned by |M(A)〉 and
|M(B)〉, and thus equal to the ground space of the parent Hamiltonian.

Proof. The parent Hamiltonian is frustration free, i.e., its ground states minimize
the energy of each local term. The ground space is thus

ker(H) =
⋂

ker(h) .

Since ker(h) ⊂ ker(h′P ), it follows that

ker(H ′P ) =
⋂

ker(h′P ) ⊃ ker(H) ,

i.e., the uncle Hamiltonian is frustration free, and any ground state of the parent
is also a ground state of the uncle.

In order to classify all states in ker(H ′P ) =
⋂

ker(h′P ), we will follow the
same steps as for the proof of the ground space structure of the parent Hamilto-
nian [26]: First, we will prove inductively how the ground space on a chain with

open boundaries,
⋂k
i=1 kerh′P,i,i+1, grows – the intersection property. Then, we

will show how the ground space changes when we close the boundaries – the
closure property.

Recall that the base of induction is the projector on two sites which follows
from the uncle tensor in Eq. (17).

6 If D ≤ d < D2 and U [Eq. (17)] is injective one can construct both parent and uncle
Hamiltonians from projectors onto the span of three consecutive sites – this is what we did for
the GHZ example. Then, the uncle Hamiltonian is the projector associated to(

A c A c A A c A c R+A c R c B +R c B c B
B c B c L+B c L c A+ L c A c A B c B c B

)
.

While we will restrict to injective perturbations for clarity, the same steps can be followed
assuming only injectivity of U .
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Lemma 5 (Intersection property). Given a chain of length n, let Sn be the
vector space

Sn = An +Bn +Rn + Ln , where (20)

An =
{ A BA

X
/X ∈Ml

}
,

Bn =
{ B BB

X
/X ∈Mm

}
,

Rn =
{ ∑

posR

A R B BB
X

/X ∈Ml×m

}
,

Ln =
{ ∑

pos L

B L A BA
X

/X ∈Mm×l

}
,

where the sums run over all possible positions of the R or L, padded with A’s
and B’ to the left and right as indicated. Further, let (A R

L B ) be injective. Then,

the intersection property Sn ⊗ Cd ∩ Cd ⊗ Sn = Sn+1 holds.

The proof of the Lemma is given in Appendix A.
Starting from S2 = ker(h′1,2), and using that

k⋂
i=1

ker(h′i,i+1) =

k−1⋂
i=1

ker(h′i,i+1) ∩
k⋂
i=2

ker(h′i,i+1) ,

the lemma allows to inductively prove that the ground space on n consecutive
sites with open boundaries is

⋂n−1
i=1 ker(h′i,i+1) = Sn: It differs from the ground

space of the parent Hamiltonian by the presence of the “zero momentum domain
wall states“ Rn and Ln, analogous to the domain wall states for the GHZ uncle.
It remains to show that these states disappear from the kernel when closing the
boundaries.

Lemma 6 (Closure property). Consider a chain of length N , and let Sleft =
SN defined on sites 1, . . . , N , and Sright = SN defined on sites 2, . . . , N, 1, using
the definitions of the previous lemma. (I.e., for Sright the ordering of sites is
shifted cyclically by one.) Then,

Sleft ∩ Sright = span {|M(A)〉, |M(B)〉} .

The proof is again given in the Appendix A.
The closure property shows that if we close the boundaries on a chain of

length N , we indeed recover the ground space of the parent Hamiltonian, since

N⋂
i=1

ker(h′i,i+1) =

N−1⋂
i=1

ker(h′i,i+1) ∩
N⋂
i=2

ker(h′i,i+1) = Sleft ∩ Sright .

Together, the two lemmas thus prove Theorem 4. ut
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4.3. Gaplessness of the uncle Hamiltonian. One of the key properties of the
parent Hamiltonian is that it exhibits a spectral gap above the ground space
[18]. On the other hand, as we will prove in the following the uncle Hamiltonian
is generically gapless.

Theorem 5. The uncle Hamiltonian H ′P is gapless for almost every P .

In order to prove this result, we need two basic lemmas which follow directly
from the normal form of MPS, and which concern the transfer operators, and
another lemma in which we find some low energy states –not eigenstates– which
let us finally prove the theorem. Let us first show them.

Lemma 7. Let A denote an injective block of an MPS. Then

(EAA)k ≡


A

A
k

= Λ AI +O(e−k) . (21)

Note that O(e−k) denotes a bound up to a constant in the exponent. This
notation will be used throughout this work.

Lemma 8. Under the conditions of Theorem 1, the spectral radius ρ(EA
i

Aj ) < 1
for i 6= j.

Proof. Let us take X such that EA
i

Aj (X) =
∑
k A

j
kX(Aik)∗ = λX. We have then,

by using Cauchy-Schwarz inequality, that

|λ| tr(XΛAiX∗) = |
∑
k

tr(AjkX(Aik)∗ΛAiX
∗)| = |

∑
k

tr(X(Aik)∗
√
ΛAi

√
ΛAiX

∗Ajk)| <

<

(∑
k

tr(X(Aik)∗ΛAiA
i
kX
∗)

)1/2(∑
k

tr((Ajk)∗XΛAiX
∗Ajk)

)1/2

= tr(XΛAiX
∗),

and therefore for any eigenvalue we have |λ| < 1. Note that the inequality is
strict since we have that span{〈k|Ai|l〉} ∩ span{〈m|Aj |n〉} = {0} due to block
injectivity. ut

Lemma 9. For a chain of length 6N + 1, let

|φN 〉 =
∑

−2N≤i≤−N
N≤j≤2N

|ζi,j〉 , (22)

where

|ζi,j〉 = B
 i  j

BA R LA A A
 3N -3N

. (23)

Then, for almost every R and L (and thus almost every P ), the following holds:

1. 〈φN |φN 〉 = Θ(N2).
2. 〈M(A)|φN 〉 = O(e−N ) and 〈M(B)|φN 〉 = O(e−N ).
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3. 〈φN |H ′P |φN 〉 = O(N).

Here, Θ(·) denotes both lower and upper bounds on the scaling.

Note that |φN 〉 generalizes the GHZ “boundary wall” ansatz for low energy
states, Eq. (8). The range for i and j in (22) is chosen such that R and L move
over a region of size N each, leaving two separating regions of length 2N each
which contain only A or B tensors, respectively.

Proof. 1) 〈φN |φN 〉 = Θ(N2): Results from Lemma 7 allow us to approximate

〈ζi,j |ζk,l〉 =

 i  k

A
Λ A I

A A

R

R

B B B A
  j  l

AL A

B
Λ B I

B B L
+O(e−2N ) ,

(24)
for i < k and j < l, and correspondingly for the other cases. [Note that we have
used ρ(EAB) = ρ(EBA ) ≤ 1, Lemma 8, together with Eq. (21) to bound the error
term.] It follows that 〈φN |φN 〉 = ΞRΞL +O(e−2N ), with

ΞR := (N + 1)
R

Λ  A
R

+
R

Λ  A
A

 N∑
n=0

(N − n)
B

A
n

B

R
+

+
R

Λ  A
A

 N∑
n=0

(N − n)
A

B
n B

R
,

and correspondingly for ΞL. Using

N∑
n=0

(N − n)
B

A
n

=
NI− EAB−(E

A
B)N+1

I−EAB
I− EAB

=
NI

I− EAB
+O(1) ,

we find that ΞR = CRN +O(1), with

CR =
R

Λ  A
R

+
R

Λ  A
A

(I− EAB)
−1

B

R
+

R
Λ  A

A
(I− EBA )

−1 B

R
.

CR is a quadratic function in R which does not vanish identically (e.g., there
exists an R for which ΠRΠA = 0 and the first term is non-zero). Thus, the R
for which CR = 0 form an algebraic variety of smaller dimension, and CR 6= 0
for almost all R.7

The same argument can be used to see that ΞL = CLN +O(1) where CL 6= 0
for almost all L, and thus, 〈φN |φN 〉 = Θ(N2) for almost every perturbation as
claimed.

7 If ΠAΠB = 0, i.e., EA
B = 0, such as for the GHZ state, one can prove that CR 6= 0 for any

injective perturbation.
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2) 〈M(A)|φN 〉 = O(e−N ) and 〈M(B)|φN 〉 = O(e−N ): In the scalar product

〈M(A)|φN 〉 =
∑

−2N≤i≤−N
N≤j≤2N   i   i+1   j  j+1

A A AAAA

AA BBR L
, (25)

every summand contains (EAB)2N . Using Lemma 8 and the fact that there are
only O(N2) summands, 〈M(A)|φN 〉 = O(e−N ) follows, and analogously for
〈M(B)|φN 〉.

3) 〈φN |H ′P |φN 〉 = O(N): The only terms in H ′P which give a non-zero energy
are h′−2N−1,−2N , h′−N,−N+1, h′N−1,N , and h′2N,2N+1. For each of them, N + 1

summands in (22) contribute, and thus, 〈φN |H ′P |φN 〉 = O(N). ut

Proof (of Theorem 5). For the normalized states |φ̂N 〉 := |φN 〉/‖|φN 〉‖ on a

chain of length 6N + 1 (with |φN 〉 of Lemma 9), we have that |φ̂N 〉 tends to be

orthogonal to the ground space of H ′P and 〈φ̂N |H ′P |φ̂N 〉 → 0 as N → ∞. To-
gether with simple spectral decomposition arguments, this implies the existence
of a sequence δN → 0 such that H ′P (on 6N + 1 sites) has at least one eigenvalue
in the interval (0, δN ). ut

4.4. The spectrum of the uncle Hamiltonians is R+. In order to study more
properties of the spectra of the uncle Hamiltonians we need to move on to
the thermodynamic limit. A formal description of it via GNS-representations
with respect to ground states can be found in Appendix B. The spectrum in
the thermodynamic limit can be found to be the whole positive real line and
the spectra of the finite sized chains can be proven to tend to be dense in the
positive real line.

Through the GNS-representation the problem is translated into studying the
action of H ′P on the space

S =
⋃
i≤j

Si,j , where Si,j =

{
A A A A

  j+1

X
  i-1

, X

}
,

where X can be any tensor of the corresponding dimensions. The spectrum one
must study is that of its unique self-adjoint extension8 H ′ω : S̄ −→ S̄, with

ω = ωA = A A BA the ground state used for the representation.

There exists a unique self-adjoint extension because S is a dense set of analytic
vectors for H ′P |S , and therefore it is essentially self-adjoint [24].

We must note that the choice of either ωA or ωB is irrelevant, due to the
symmetric role blocks A and B have in the problem.

In first place, we must show that H ′ω is gapless. A family of states related
to those we used previously for finite chains in Lemma 9 and Theorem 5 let us

8 We ommit the subscript P for the thermodynamic limit Hamiltonians.
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show the absence of gap:

|φN 〉 =
∑

−2N≤i≤−N
N≤j≤2N

|ζi,j〉 , (26)

where

|ζi,j〉 = B
 i-1   i    j  j+1

BA R LA A A . (27)

Theorem 6. The uncle Hamiltonian H ′P is gapless in the thermodynamic limit
for almost every P .

Proof. We consider the operator H ′ω, which models the thermodynamic limit of
H ′P with boundary conditions described by the A tensor –i.e., taking ω = ωA.

The bounds from Lemma 9 also apply to the states in (26), and use of the
spectral theorem for unbounded operators (Appendix C) leads to the fact that
H ′ω is gapless. ut

This last result shows the existence of a sequence of elements in σ(H ′ω) tending
to 0 . They will allow us to prove that the spectrum is the entire positive real
line, for which we need first the following result.

Proposition 1. If some values {λ1, . . . , λn} lie in the spectrum of H ′ω then the
sum

∑
i λi also lies in the spectrum of H ′ω.

The proof of this result, which can be also found in Appendix B, stems on
the fact that one can find states in S, and not necessarily in S̄, ‘evidencing’ a
given value is a spectral value. These states can be ‘concatenated’ to prove that
any sum of spectral values known to exist is also a spectral value.

Theorem 7. The spectrum of the uncle Hamiltonian H ′P in the thermodynamic
limit is the whole positive real line for almost every perturbation P .

Proof. The set of finite sums of any sequence of real numbers tending to 0 is
dense in R+. Since there exists a sequence of elements in σ(H ′ω) tending to 0 –as
it can be deduced from Theorem 6– and any finite sum of these elements lies also
in σ(H ′ω), which is closed, this last spectrum must be equal to R+. Therefore
the spectrum of H ′P is the whole positive real line in the thermodynamic limit.

ut

Spectra for finite chains. After this discussion on thermodynamic limit Hamil-
tonians we need to go back to the finite chains, and study how the spectra of
the uncle Hamiltonians constructed on finite spin chains tend to be dense in R+

as the size of the chain grows.
Given i < j, Si,j can be easily mapped to any finite chain of lenght 2N + 1

for N > max{i, j} via

eN : Si,j → H2N+1

A A A A
  j+1

X
  i-1

7→ A A A A
 j+1

X
   i-1-N  N

,

and this family of maps capture important information since they tend to be
isometric embeddings.
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Lemma 10. For fixed i and j, eN is an isometry up to a correction O(e−N ).

Proof. It follows from Lemma 7. ut
Note that in the case of G-isometric MPS [26], these maps are isometries.
Finally, given a spectral value λ in the thermodynamic limit spectrum, and

a vector |ϕ〉 in some Si,j ‘close enough’ to evidence λ is in this spectrum, one
can find that eN (|ϕ〉) is also close to evidence λ is in the spectrum for the finite
chain of length 2N + 1. Clearly we cannot conclude λ is this spectrum, but we
can find some spectral value not far from it.

One can follow the same procedure for several spectral values jλ, j = 1, . . . , n,
and by choosing small values of λ and carefully handling all these ‘closenesses’,
we can find our final result for spectra for finite sized chains, whose proof is
detailed also in Appendix B.

Theorem 8. The spectra of the uncle Hamiltonians for finite size chains tend
to be dense in the positive real line.

5. Uncle Hamiltonians for injective spin chains

In this last section, just for completeness of the picture, we will sketch how one
can also construct examples of gapless Hamiltonians for injective MPS. As we
have seen, in the injective case the parent Hamiltonian construction is robust
against perturbations in the matrices defining the MPS. Therefore, in order to
construct such examples, one needs to leave the canonical MPS representation.
Following the ideas of Sec. 3.4, we will get such examples by considering par-
ticular perturbations of MPS representations with repeated blocks.

To this end, let us start from an MPS |M(A)〉 with injective tensor A, and
let

C =

(
A 0
0 A

)
.

Then, |M(C)〉 = |M(A)〉 denotes another MPS description of the same state. We

can now consider a perturbation C+ε

(
P R
R P

)
and construct the corresponding

uncle Hamiltonian H ′. Note that not any perturbation would lead to the same
type of result. The tensor C has additional symmetries since both diagonal
blocks are the same, and therefore some symmetries are also needed for the
perturbation.

The following is the result for the second type of perturbation.

Theorem 9. Let A be the injective tensor description of a given MPS, and let
us consider this MPS as described by the non-injective tensor(

A 0
0 A

)
.

Given a perturbation tensor C =

(
P R
R P

)
such that (A R ) is injective the ground

space of the uncle Hamiltonian H ′ for finite chains is spanned by

A A A and
∑
posR

A R A BA . (28)
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This uncle Hamiltonian is local, frustration free, and gapless. The spectra of
the finite chains tend to be dense in R+. In the thermodynamic limit the ground
space collapses to a one-dimensional space, which is exactly the ground space
of the thermodynamic limit of the parent Hamiltonian, and the spectrum is the
whole positive real line R+.

One can check this result following essentially the steps from the preceeding
sections. In a chain with length N , one can also consider as low energy states
the states with momentum |ϕk〉 =

∑
j e

2jkπi/N |ζj〉, with

|ζj〉 = A R A BAA
j

. (29)

The calculations related to states with momentum can be reduced consider-
ably, since 〈ϕk|ϕk〉 = N〈ζ1|ϕk〉 and 〈ϕk|H ′|ϕk〉 = N〈ζ1|H ′|ϕk〉.

When N is large enough (and odd), we have the approximation

〈ϕk|ϕk〉 = N〈ϕ1|ϕk〉 ∼

∼ N


R

Λ  A
R

+
R

Λ  A
A

N−1
2∑

n=0

ekn
2πi
N

A

A
n

A

R
+

R
Λ  A

A

N−1
2∑

n=0

ekn
2πi
N

A

A
n A

R

 =

= N


R

Λ  A
R

+
R

Λ  A
A (ek

2πi
N EAA)

N+1
2 − I

ek
2πi
N EAA − I A

R
+

R
Λ  A

A
(ek

2πi
N EAA)

N+1
2 − I

ek
2πi
N EAA − I

A

R



where EAA =
A

A
. The expression multiplying N is either divergent or con-

vergent to a constant different from 0 for almost every R. Therefore, 〈ϕk|ϕk〉 =
Θ(N).

The value of 〈ϕk|H ′|ϕk〉 can also be approximated as

〈ϕk|H ′|ϕk〉 = N〈ζ1|H ′|ϕk〉 ∼

∼ N

 Λ  A h' 

AR

R A
    loc  
 

+ ek
2πi
N Λ  A h' 

RA

R A
    loc  
 

+ e−k
2πi
N Λ  A h' 

AR

A R
    loc  
 

+ Λ  A h' 

RA

A R
    loc  
 

 = O(1/N)

Hence, there can be found low energy states from this family of states. They
are orthogonal to the ground space, and can be used to follow the steps in the
previous sections in order to prove that the uncle Hamiltonian is gapless and
has spectrum R+ for most perturbations also for injective MPSs.

6. Conclusions

In this work we have shown how to construct new Hamiltonians for Matrix
Product States, which we called ’uncle’ Hamiltonians. These uncle Hamiltonians
share some of the properties of the parent Hamiltonian (frustration freeness,
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ground space) but have a completely different spectrum. Instead of having an
energy gap above the zero energy space, they are gapless and their spectrum
is [0,∞). We have shown how these uncle Hamiltonians are obtained by doing
linear perturbations on the matrices defining the MPS, considering the parent
Hamiltonian of the perturbed MPS and then making the perturbation tend
to zero. When the MPS are block-injective, the perturbations leading to an
uncle Hamiltonian are essentially all that do not respect the block structure.
The uncle Hamiltonian construction might have implications in the problem of
classifying quantum phases of matter, due to the role the spectral gap has in this
problem, and can provide new tools in order to get more precise classifications.
The distinction between good directions for the perturbation (those preserving
the block structure for which we recover the original gapped parent Hamiltonian)
and bad directions (those incompatible with the symmetry and then leading to
an uncle) seems to be of upmost importance in the analysis of the robustness of
topological quantum phases in 2D [12,28]. Notice that the topological character
of a PEPS -the 2D generalization of an MPS- is given exactly by the existence
of such a discrete symmetry [26].

Acknowledgements

We specially thank Bruno Nachtergaele for his help. This work has been par-
tially funded by the Spanish grants MTM2011-26912 and QUITEMAD, the Eu-
ropean projects QUEVADIS and CHIST-ERA CQC, the Alexander von Hum-
boldt Foundation, the Gordon and Betty Moore Foundation through Caltech’s
Center for the Physics of Information, the NSF Grant No. PHY-0803371, and the
ARO Grant No. W911NF-09-1-0442. We also acknowledge the hospitality of the
Centro de Ciencias de Benasque Pedro Pascual and of the Perimeter Institute,
where part of this work was carried out.

References

1. A. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Valence bond ground states in isotropic
quantum antiferromagnets, Comm. Math. Phys. 115, 477 (1988).

2. P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity,
Science 235 (4793), 11961198 (1987).

3. I. Arad, A. Kitaev, Z. Landau and U. Vazirani, An area law and sub-exponential algorithm
for 1D systems, arXiv:quant-ph/1301.1162.

4. L. Balents, Spin liquids in frustrated magnets, Nature 464, 199-208 (2010).
5. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics

I and II, Springer Verlag, 1979.
6. H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting parti-

cles, Phys. Rev. Lett. 86, 910 (2001), arXiv:quant-ph/0004051.
7. X. Chen, B. Zeng, Z. C. Gu, I. Chuang, X. G. Wen, Tensor product representation of

topological ordered phase: necessary symmetry conditions Phys. Rev. B 82, 165119 (2010).
8. X. Chen, Z.-C. Gu and X.-G. Wen, Classification of gapped symmetric phases in 1D spin

systems, Phys. Rev. B 83, 035107 (2011), arXiv:cond-mat/1008.3745.
9. J. B. Conway, A course in Functional Analysis, Springer (1990).

10. J. Eisert, M. Cramer, M.B. Plenio, Area laws for the entanglement entropy - a review,
Rev. Mod. Phys. 82, 277 (2010).

11. M. Fannes, B. Nachtergaele and R. F. Werner, Finitely Correlated States on Quantum
Spin Chains, Commun. Math. Phys. 144, 443-490 (1992).
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A. Proof of the intersection and closure properties

Proof (Intersection property, Lemma 5). We start by proving S2⊗Cd∩Cd⊗S2 =
S3. The proof will straightforwardly generalize to Sk ⊗ Cd ∩ Cd ⊗ Sk = Sk+1,
k > 2.

Let us first show that S2 ⊗Cd ∩Cd ⊗ S2 ⊃ S3. To this end, let |ϕ〉 ∈ S3, i.e.,
there exist X, Y , Z, and W such that

|ϕ〉 =
A A A

X
+

B B B

Y
+
∑
posR

A R B

Z
+
∑
pos L

B L A

 W
,

(30)
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where the sums run over the three possible positions of R and L, respectively. If
we now define

A

X
+

R

Z
= X' , (31)

we have that

A A A

X
+

A A R

Z
=

A A
X' ∈ A2 ⊗ Cd ,

and similarly

B B B

Y
+

B B L

W
∈ B2 ⊗ Cd ,

∑
posR6=3

A R B

Z
∈ R2 ⊗ Cd , and

∑
pos L6=3

B L A

 W
∈ L2 ⊗ Cd ,

showing that |ϕ〉 ∈ S2⊗Cd. Similarly, one can show that |ϕ〉 ∈ Cd⊗S2, proving
that S2 ⊗ Cd ∩ Cd ⊗ S2 ⊃ S3.

Let us now show that conversely, S2 ⊗ Cd ∩ Cd ⊗ S2 ⊂ S3. To this end, let
|ϕ〉 ∈ S2 ⊗ Cd ∩ Cd ⊗ S2, i.e., there exist tensors X, Y , etc., such that

|ϕ〉 =
A A

X +
B B

Y +
A R

Z + · · ·

· · ·+
R B

Z +
B L

 W +
L A

 W

= X'
A A

+ Y'
B B

+ Z'
A R

+ · · ·

· · ·+ Z'
R B

+ W'
L A

+ W'
B L

.

(32)

We want to show that |ϕ〉 is of the form (30), i.e., we need to show that X has
a decomposition such as in (31), and so on. To this end, we will make heavy use
of Lemma 2. In particular, injectivity of (A R

L B ) implies the existence of a tensor
R−1 left-inverse to R, which at the same time annihilates any of the other tensors
A, B, and L, as well as the existence of a vector |b〉 satisfying condition 5 in

Lemma 2 for B
b

= Id . We now apply R−1 to the second site in Eq. (32),
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which cancels all terms except one at each side of (32). Additionally, we project
the third site onto |b〉 and obtain

A
Z

b

= B
Z'

b

=
Z'

(33)

By defining Zb =
Z

b

, we therefore obtain that

Z' =
A

Zb

. (34)

Similarly, we can apply A−1 at the second site and a vector |a〉 verifying condition

5 in Lemma 2 such that A
a

= Id at the first site to see that

Z =
B

Z'a
, (35)

where Z ′a is defined correspondingly. Finally, we can project Eq. (35 onto |b〉 to
infer that

Zb = Z'a . (36)

Corresponding expressions for the form of W and W ′ can be derived using L−1.
Now let us return to the identity (32) and apply A−1 to the second site, which

yields

A
X

+ L
 W

= A
X'

+ R
Z'

.

Using the analogue of Eqs. (34–36) for W , this is equivalent to

A
X

+ L A

W'b

= A
X'

+ A R

Zb

.

Now, we apply |a〉 to the first site and obtain

X =
A

X'a
+

R

Z b

, (37)

where we have defined X ′a accordingly.
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Combining Eqs. (35), (36), and (37), we find that

A A
X +

A R
Z +

R B
Z =

=
A A A

X'a
+

A A R

Zb

+
∑

posR6=3

A R B

Zb

,

which shows that the l.h.s., which is half of the terms in Eq. (30), is contained
in A3 +R3. In the same way it can be shown that the sum of other three terms
in Eq. (30) is contained in B3 + L3, which proves that S2 ⊗Cd ∩Cd ⊗ S2 ⊂ S3.

The proof that Sk ⊗ Cd ∩ Cd ⊗ Sk ⊂ Sk+1 can be carried out in the same
fashion, using that the tensors

A A BA , B B B ,∑
posR

A R B BB , and
∑
pos L

B L A BA

have inverses, since injectivity of (A R
L B ) implies injectivity of(

A c A c · · · c A
∑

posRA
c R c B c · · · c B∑

pos LB
c L c A c · · · c A B c B c · · · c B

)
; (38)

this can be proven in analogy to Lemma 4. ut

Proof (Closure property, Lemma 6). It is clear that

Sleft ∩ Sright ⊃ span

{
A A A , B B B

}
.

To show the converse, let |ϕ〉 ∈ Sleft ∩ Sright:

|ϕ〉 = A BA
 X'

+ B BB
 Y'

+

+
∑
posR

A R B BB
Z'

+
∑
posL

B L A BA
W'

= A X A BA + B Y B B +

+
∑
posR

B Z A BR BB +
∑
pos L

A W B BL BA .
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By applying the inverse tensor corresponding to
∑

posR
A R B BB at sites

2, . . . , N , we get

B Z = A
Z'

.

Now let |a〉 be such that A
a

= Id and B
a

= 0 (Lemma 2): Projecting

the first site onto |a〉 yields Z' = 0; with a corresponding |b〉, we find that

Z = 0. In the same way, we can prove that W' = W = 0.

Now, we can apply A−1 to all sites to find that X =  X' = Id , and

B−1 to obtain Y =  Y' = Id (a similar proof can be found in [26]),
showing that Sleft ∩ Sright ⊂ span {|M(A)〉, |M(B)〉}. ut

B. The thermodynamic limit Hamiltonian via the
GNS-representation

The way to study the thermodynamic limit of finitely correlated spin chains is
through the GNS-representation of the algebra of local observables [19,5].

Theorem 10 (Gelfand-Neimark-Segal Representation). [9] Given a C∗-
algebra U with identity and a state ω on it, there exists a essentialy unique,
up to unitary equivalence, cyclic9 representation (Hω, πω, Ωω) such that ω(A) =
〈Ωω|πω(A)Ωω〉 for all A ∈ U . Consequently, ‖Ωω‖2 = ‖ω‖ = 1.

In order to construct it, a Hilbert space structure must be introduced via the
state ω: 〈A|B〉 = ω(A∗B) is the (possibly singular) inner product. The quotient
of A by the subspace of elements such that 〈A|A〉 = 0 is a pre-Hilbert space,
which just needs to be completed to be the Hilbert space Hω needed for the
representation.

The class to which the identity in A belongs can be taken as the distinguised
vector Ωω.

The algebra we are dealing with is the algebra of local observables over an
infinite spin chain:

A =
⋃
i<j

· · · ⊗ I⊗ I⊗Ai ⊗Ai+1 ⊗ · · · ⊗ Aj ⊗ I⊗ · · · , (39)

where each Ak denotes the local algebra of observables at the respective site k.
Since the dimension at each site is always the same in translationally invariant
MPSs, this local algebra is the same for every site.

Let ωA be the state densely defined on local observables O ∈ A as

ωA(O) =

A

O  
Λ IA

A

A A

,

9 A representation (H, π, e) of a C∗-algebra U is called cyclic if π(U)e is dense in H. Such
vector e is also called cyclic.
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and extended continuously to Ā.
This state can be considered as the limit of the unnormalized states |M(A)〉 =

A A A , since for any local observable O we have ωA(O) as the limit

A

O  II I I

A A

A A A

A A A

A A A

A

A

A

A

→

A

O  
Λ IA

A

A A

,

because the many copies of the operator
A

A
tend to I Λ    A , and also

tr(ΛA) = 1 – which means ωA(I) = 1, and therefore ωA is normalized.
Thus, it is natural to describe ωA as

ωA =

A A BA

A A BA

.

Similarly, we can consider the analogue state ωB for the B block.
In order to study the spectral properties of the thermodynamic limit of the

uncle Hamiltonian, we can take ωA as the state to which the representation is
associated. The choice of either ωA or ωB is irrelevant in this case, since they
play a similar role in the MPS. However, for general Hamiltonians, the spectrum
may depend on the ground state taken for the representation.

In the first place we have to construct the quotient of the algebra A of local
observables by the ideal of those observables O such that ωA(O∗O) = 0:

A AA

O O  1  n

O O  n1

  *   *

A

A

A A

AAAAA

= 0.

We can see this as the norm of the ’vector’

A

O 
1 O n

A A A A A
,

and the representatives of the equivalence classes in the quotient will have this
form. Since any operator O can be considered, the Hilbert space Hω of the
representation will be seen as the completion of

S =
⋃
i≤j

Si,j , where Si,j = span

{
XA A A A

  i    j

, X

}
,
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where different tensors X can lead to the same state (tensors X come from the
contraction of O observables with those A tensors in the sites O is acting on),
and they just need to match the needed dimensions.

The local observables will be represented in B(Hω) by themselves tensored
with the identity, acting on S̄ = Hω.

Since, given any element of S, only finitely many local Hamiltonians h′P do not
anihilate on it, the global uncle Hamiltonian is well defined on S, and therefore
densely defined on S̄ = Hω. In the case H ′P |S is essentially self-adjoint and has
a unique self-adjoint extension, there is no other choice for this extension but to
be the thermodynamic limit H ′ω we must study.

For H ′P |S to have a unique self-adjoint extension, it suffices to have a dense
set of analytic elements in its domain [24]. A vector |ϕ〉 is analytic if there exists
some r > 0 such that

∞∑
n=0

rn

n!
‖H ′nP (|ϕ〉)‖ <∞.

If |ϕ〉 belongs to S it must be in some S−M,M . Recall that, for every N , we
have that ‖H ′P |S−N,N ‖ ≤ 2N + 2 and H ′P (S−N,N ) ⊆ S−N−1,N+1, and conse-
quently ‖H ′n(|ϕ〉)‖ ≤ Πn

k=1(2M + 2k)‖|ϕ〉‖. From this we have

rn

n!
‖H ′n(|ϕ〉)‖ ≤ rnΠn

k=1

2M + 2k

k
≤ rnΠn

k=1(2M + 2) = rn(2M + 2)n,

which is summable for r < 1/(2M + 2).
Thus every vector in S is an analytic vector for H ′P |S , which is essentially

self-adjoint, and therefore the thermodynamic limit Hamiltonian H ′ω of the uncle
Hamiltonian is the unique self-adjoint extension of H ′P |S , whose spectrum we
must study.

Proof of Proposition 1. In order to proof Proposition 1, we first need the next
simple fact, which we already commented in the main text.

Proposition 2. A real value λ ∈ spec(H ′ω) iff there exists a sequence of nor-
malized states {|ϕλ,k〉}k ∈ S such that ‖(H ′ω − λI)(|ϕλ,k〉)‖ → 0.

Proof. This follows from the fact that the residual spectrum of H ′ω is empty
–since it is self-adjoint–, the definition of a value lying in the point or continuous
spectrum (Appendix C), and the fact that H ′ω is the closure of H ′P acting on S,

that is, graph(H ′ω) = graph(H ′|S) ⊂ S̄ × S̄. ut

Proof. (Proposition 1)
We will state the proof for two values a = λ1 and b = λ2. The construction

for the sum of more values is completely analogous.
For both a and b we can find some sequences of normal states {|ϕa,k〉}k and

{|ϕb,k〉}k ⊂ S verifying the previous proposition, with ‖H ′ω(|ϕc,k〉) − |ϕc,k〉‖ <
1/k for c = a, b. We can assume, due to translationally invariance of H ′P , that the
first sequence lies in

⋃
i<−k Si,−k, and the second one is contained in

⋃
j>k Sk,j .

These states would then have the form

|ϕa,k〉 = Xa,kA A A A
 -k+1
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|ϕb,k〉 = A A A A
  k-1

Xb,k ,

for some tensors Xa,k, Xb,k. The normalization conditions would be

Xa,k

Xa,k
IΛ A = 1 =

Xb,k

Xb,k
IΛ A .

From these states we can consider the ’concatenated’ states

|Φk〉 = Xa,kA A A A A A A A
  k-1

Xb,k
 -k+1

,

(40)
Note that the separation between the X blocks is increasingly growing.

And due to the structure of H ′ω the image of
⋃
i<−k Si,−k is contained in⋃

i<−k Si,−k+1, and H ′ω(
⋃
j>k Sk,j) ⊆

⋃
j>k Sk−1,j . Moreover, there exist tensors

X ′a,k and X ′b,k such that

H ′ω

(
Xa,kA A A A

 -k+1

)
= X'a,kA A

 -k+2

H ′ω

(
A A A A

  k-1

Xb,k

)
= A A

  k-2

X'b,k .

These new tensors also allow us to describe the image of the concatenations:

H ′ω( Xa,kA A A A A A A A
  k-1

Xb,k
 -k+1

) =

= A A A AA
  k-1

Xb,kX'a,k A
 -k+2

+

= A A A AXa,k A
 -k+1

A
  k-2

X'b,k .

Let us call |Φ′k,a〉 and |Φ′k,b〉 these two summands.

We then have that ‖H ′ω(|Φk〉) − (a + b)|Φk〉‖ ≤ ‖|Φ′k,a〉 − a|Φk〉‖ + ‖|Φ′k,b〉 −
b|Φk〉‖.

We can derive a bound for the first summand:

‖|Φ′k,a〉 − a|Φk〉‖2 = 〈Φ′k,a|Φ′k,a〉+ |a|2〈Φk|Φk〉 − 2 Re(a〈Φ′k,a|Φk〉) =

A A A AA
  k-1

Xb,kX'a,k A
 -k+2

A A A A AA Xb,kX'a,k
+|a|2(1+O(e−k))−
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−2 Re

a A A A AA
  k-1

Xb,kX'a,k A
 -k+2

A A A A A AA Xb,kXa,k A
 =

=
X'a,k

IΛ A
X'a,k

Xb,k

Xb,k
IΛ A + |a|2−

−2 Re

a
X'a,k

A Xa,k A
IΛ A

Xb,k

Xb,k
IΛ A

+O(e−k) =

X'a,k
IΛ A

X'a,k
+|a|2−2 Re

a
X'a,k

A Xa,k A
IΛ A

+O(e−k) =

= ‖H ′ω(|ϕa,k〉)− a|ϕa,k〉‖2 +O(e−k) < 1/k2 +O(e−k),

where Re(·) denotes the real part.
A similar bound can be found for the second summand, and we can derive

the bound
‖H ′ω(|Φk〉)− (a+ b)|Φk〉‖ = O(1/k).

We also have that ‖|Φk〉‖ → 1. Therefore, the sequence |Φk〉/‖|Φk〉‖ satisfy
the conditions in Proposition 2 for a + b = λ1 + λ2, and consequently this sum
lies in the spectrum of H ′ω.

Longer concatenations would prove the result for any finite sum among values
from {λ1, . . . , λn}. Note that the bound we get depends on the number of values
λi we are summing,

‖H ′ω(|Φk〉)− (

n∑
i=1

λi)|Φk〉‖ = O(n/k).

ut

Proof of Theorem 8. Since we will need to keep track of how close some vector
evidencing the existence of elements in the spectrum is from being an eigenvector
we introduce the following definition.

Definition 6. A normalized vector will be called an approximated eigenvector for
an operator A and a given value λ, and for an error ε if ‖(A− λI)|ϕλ,k〉‖ < ε.
In the case of non-normalized vectors they must satisfy

‖(A− λI)(|ϕλ,k〉)‖
‖|ϕλ,k〉‖

< ε

Lemma 11. For any given values λ ∈ R+, n ∈ N and δ > 0, there exists a
value N0 such that we can find approximated eigenvectors for the values jλ,
j = 1, . . . , n, and for an error at most δ for every finite chain with length greater
that 2N0 + 1.
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Proof. Let us take δ′ = δ/4n. For λ and an error δ′, a normalized approximated

eigenvector |ϕλ,δ〉 = A A A A
 M+1

X
  -M-1

can be found in some

S−M,M such that ‖(H ′ω − λI)|ϕλ,δ〉‖ < δ′. We can now find a value r such that
the following vectors are respectively approximated eigenvectors, not necessarily
normalized, for the values jλ, j = 2, . . . , n, and an error at most jδ′ < δ/2:

|ϕ(2)
λ,δ〉 = A AX A AXr ,

|ϕ(3)
λ,δ〉 = A AX A AX r A AX r , ...

|ϕ(N)
λ,δ 〉 = A AX A AX r A AX N-3 ,

where the r denotes how many A tensors are missing in the diagram, and the
N − 3 refers to the number of X blocks, with r A tensors between every two of
them, which are also missing.

A value M ′ can be found such that all these states belong to S−M ′,M ′ . And,
due to Lemma 10, there exists a value N0 such that the maps

eN : S−M ′,M ′ → S2N+1

A A A A
 M'+1

Y
  -M'-1

7→ A A A A
 M'+1

Y
  -M'-1-N  N

make each e(|ϕ(i)
λ,δ〉) an approximated eigenvector for jλ and an error δ, for the

uncle Hamiltonian for the corresponding finite size chain, and for every N ≥ N0.
The corresponding normalized vectors are approximated eigenvectors for the
same values, and therefore satisfy the statement in the lemma. ut

However, these jλ need not be in the spectrum, but indicate the existence of
elements in the spectrum close to them, as it is shown in the following lemma.

Lemma 12. Let A be a self-adjoint operator on a finite dimensional Hilbert
space, and λ a positive real value such that there exists a unitary vector |ϕλ,δ〉
with ‖(A− λI)|ϕλ,δ〉‖ < δ. Then σ(A) ∩ (λ− δ, λ+ δ) 6= ∅.

Proof. Let {λi} be the set of eigenvalues (possibly repeated) of A, and {|φi〉} a
corresponding orthonormal basis of eigenvectors. Then |ϕλ,δ〉 can be written as:

|ϕλ,δ〉 =
∑
i

ai|φi〉, (41)

and A(|ϕλ,δ〉) =
∑
i aiλi|φi〉.

If σ(A) ∩ (λ− δ, λ+ δ) were the empty set, we would have that

‖(A− λI)|ϕλ,δ〉‖ = ‖
∑
i

ai(λi − λ)|φi〉‖ > ‖
∑
i

aiδ|φi〉‖ = δ, (42)

which contradicts the conditions of the lemma. ut
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We are now ready to prove Theorem 8, which we first recall.

Theorem 8 The spectra of the uncle Hamiltonians for finite size chains tend to
be dense in the positive real line.

Proof. For any given values L,m ∈ N, we can set n = Lm, λ = 1/m and
δ = 1/3m. For these values, approximated eigenvectors can be found following
Lemma 11, which indicate, due to Lemma 12, that (jλ − δ, jλ + δ) ∩ σ(H ′) 6=
∅, j = 1, . . . , n, for every long enough chain. Therefore eigenvalues for every
long enough chain can be found distributed in disjoint intervals centered on
the set j/m, j = 1, . . . ,mL as depicted in the following diagram. These sets of
eigenvalues, however possibly different for every chain length, tend to be dense
in R+, as we consider higher values for L and m. ut

0 1 2 3 L

   1/m

Fig. 1. Eigenvalues tending to be dense in R+.

C. SPECTRAL REPRESENTATION THEOREM FOR
UNBOUNDED OPERATORS

The uncle Hamiltonian whose spectrum we want to study is an unbounded self-
adjoint operator. Therefore its residual spectrum is empty, and the whole spec-
trum is real. Moreover, since it is a positive operator the spectrum is contained
in R+.

The elements in the union of both the continuous and the point spectra
of an operator A (called respectively σc(A) and σp(A)), which in this case is
the whole spectrum, can be characterized in this way: λ ∈ σp(A) ∪ σc(A) iff
there exists a sequence of elements with norm one {|ϕλ,k〉}k ∈ A such that
‖(A − λI)|ϕλ,k〉‖ → 0. Such sequences are called Weyl sequences. In the case
that λ ∈ σp(A), a constant sequence exists verifying this condition –always the
eigenvector. In the case λ ∈ σc(A) the elements of the Weyl sequences can be
thought of as ’almost eigenvectors’, or ’approximated eigenvectors’.

Besides the projectors onto the eigenspaces, a spectral measure with some
associated projectors can be defined.

Definition 7. [9] If X is a set, Ω is a σ-algebra of subsets of X, and H is a
Hilbert space, a spectral measure for (X,Ω,H) is a function E : Ω → B(H) such
that:

a) for each ∆ in Ω, E(∆) is a projection;
b) E(∅) = 0 and E(X) = I;
c) E(∆1 ∩∆2) = E(∆1)E(∆2) for ∆1, ∆2 ∈ Ω (and therefore every pair of

such projectors commute, since intersection of sets is commutative);
d) if {∆n}∞n=1 are pairwise disjoint sets from Ω, then E(

⋃∞
n=1∆n) =

∑∞
n=1E(∆n).
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And the spectral representation theorem for unbounded operators states:

Theorem 11. [9] Spectral theorem (for unbounded operators). If N is a normal
operator on H, then there is a unique spectral measure E defined on the Borel
subsets of C such that:

a) N =
∫
zdE(z)

b) E(∆) = 0 if ∆ ∩ σ(N) = ∅
c) if U is an open subset of C and U ∩ σ(N) 6= ∅, then E(U) 6= 0

The spectral representation theorem for bounded operators is completely
analogous. Using the right one we can proof that the uncle Hamiltonians are
gapless in the thermodynamic limit – one can sometimes restrict the uncle Hamil-
tonian to a subspace in which it is bounded.

With these tools we are able to show that the uncle Hamiltonians are generally
gapless in the thermodynamic limit.

Proof. H ′ω is gapless.
The representation of H ′P with respect to a ground state ω, say H ′ω, can be
uniquely extended to a self-adjoint –and therefore normal– unbounded operator
[9], with positive spectrum.

With the spectral theorem above, it can be proven that if we have a unitary
vector |ϕ〉 ∈ S̄ with 〈ϕ|H ′ω|ϕ〉 = a which is orthogonal to the ground space of
H ′ω, then (0, a] ∩ σ(H ′ω) 6= ∅.

Let us suppose that σ(H ′ω) ⊆ {0} ∪ (a,∞). In such a case the norm of |ϕ〉
would be

〈ϕ|ϕ〉 = 〈ϕ|
∫
(a,∞)

dE(z)|ϕ〉 = 1 (43)

because |ϕ〉 is orthogonal to the ground space, and we would have that

a = 〈ϕ|H ′ω|ϕ〉 = 〈ϕ|
∫
R+

zdE(z)|ϕ〉 |ϕ〉∈ker(H
′
ω)
⊥

=

= 〈ϕ|

(∫
(0,a]

zdE(z) +

∫
(a,∞)

zdE(z)

)
|ϕ〉 σ(H

′
ω)∩(0,a]=∅= 〈ϕ|

∫
(a,∞)

zdE(z)|ϕ〉 >

> 〈ϕ|
∫
(a,∞)

adE(z)|ϕ〉 = a〈ϕ|ϕ〉 = a.

Hence if such |ϕ〉 exists there must be some part of the spectrum lying in
(0, a].

This was the case of the low energy states found for the uncle Hamiltonian
for the GHZ state, since they were orthogonal to the ground space. However, for
a general MPS, the low energy states found are not orthogonal to the ground
space. Therefore we cannot state that E({0}) in the spectral measure plays no
role when looking at these states, but we can say that it will be negligible.

Since the family of states |φn〉 tends to be orthogonal to the ground space,
we have that 〈φn|E({0})|φn〉 tends also to 0. We can consider |ψn〉 = |φn〉 −
E({0})|φn〉, with norm tending to 1 and orthogonal to ωA.

The only difference is that from the fact that the energies of these states
are close to a we cannot infer directly that an element from (0, a] lies in the
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spectrum, but we can prove that some element from (0, r] does for every r > a
and, therefore, also an element from (0, a] does. If this were not the case, we
would have that

a ∼ 〈ψn|H ′ω|ψn〉 = 〈ψn|
∫
R+

zdE(z)|ψn〉
|ψn〉∈ker(H′ω)

⊥

=

= 〈ψn|

(∫
(0,r]

zdE(z) +

∫
(r,∞)

zdE(z)

)
|ψn〉

σ(H′ω)∩(0,r]=∅=

= 〈ψn|
∫
(r,∞)

zdE(z)|ψn〉 ≥

≥ 〈ψn|
∫
(r,∞)

rdE(z)|ψn〉 = r〈ψn|ψn〉 → r,

which contradicts the hypothesis r > a.


