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COINTEGRATION BETWEEN HIGH BASE METALS PRICES AND BACKWARDATION: GETTING 
READY FOR THE METALS SUPER-CYCLE 

 

Abstract 

The objective of some agents in commodity markets is to manage future price structures to 
hedge their positions rather than to speculate on prices. In this paper, we demonstrate that 
markets tend to backwardate in rising price scenarios and that this cointegration tends to be 
linked with the most financialized metals: copper and aluminum. In this study, a triple analysis 
was performed: cointegration on the time series, panel data and structural breaks over the full 
time series. The connection between high prices and negative-futures price structure 
(backwardation) in tin, copper, aluminum and zinc is demonstrated for the full series and with 
structural breaks. Using panel data analysis, the base metal full matrix (price and futures price 
structure) is cointegrated. The results of this study are important for commodity traders, brokers 
and others to maximize their profits on their hedging positions. 
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1. Introduction 

Since the beginning of the century, world metal markets have experienced a period of sustained 
strong demand. The first big metal shortage occurred between 2003 and 2008 (Humphreys, 
2010; Ciner et al., 2020), followed by other periods of more balance. Metal markets have now 
become tense, primarily due to the revolution on metal markets between 2016 and 2020 but 
also with the appearance of electrical vehicles and their charging infrastructure as well as 
developing country electrification through minigrids (Boait et al., 2015), public policies (Best, 
2017) and finally with the development of renewable energies (Vikström, 2020). 

However, over this long period of strong demand, there have been two breaks in the growing 
trend of supply shortages: the global financial crisis (2008-2009), studied by Al-Yahyaee et al. 
(2019); and the recent COVID-19 pandemic (Umar et al., 2021; Borgards et al., 2021). The COVID-
19 pandemic started as an epidemic in China, and markets did not react sharply, but once the 
virus had spread to different regions in Europe, and the pandemic was declared by the World 
Health Organization (WHO), lockdowns led the global economy to decline sharply. The effect on 
worldwide production and global trade has been studied in Zeshan (2020) and Guan et al. 
(2020); the difference between soft and hard commodities has also been explored by Sifat et al. 
(2021), and Zhang (2020) described how supply chains have readapted to the lack of products 
in different areas. The specific effect of the COVID-19 crisis on the development of contango in 
some markets has been analyzed by Corbet et al. (2020), focusing on the oil market. The timing 
of the COVID-19 pandemic has been studied in many papers; for example, Allam (2020) has done 
it in intervals of 50 days. One of the only possible temporal solutions to the economic situation 
is government economic stimulus, which has been studied by Narayan et al. (2021), even if the 
way each country reacted through economic stimulus has been different (Perasolo et al., 2020). 
As the worldwide COVID-19 vaccination progressed, the general demand for metals increased 
due to the economic stimulus in every country and the infrastructure improvements to use that 
money, and, conversely, from the breaks in the supply chains coming from trying to recover part 
of the lost production during the lockdown and the pandemic’s worst time periods. The global 
market and the needs of metals by geography have had different rates of use during the 
pandemic, and trading activity has attempted to equate them, a process that has been difficult, 
as the world was working as a sole market for a long time. The threats appearing in the market 
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with the lack of chips and components, primarily in the automotive industry, have markedly 
increased the world’s metal demand, making supply chains struggle up to limits where some of 
the primary corporations, such as Tesla or Volkswagen, have been pushed to invest upstream in 
acquisitions to guarantee raw materials for their core business. These, among other reasons, 
have led to the presence of new agents with an eye on hard commodities markets. 
Commodity market contracts are generally referenced to future points in time. Raw materials 
could be required currently or over a specific period to finance or for storage, which may not be 
affordable for the buyer. Thus, contractually, these steps are performed on futures markets. In 
metal markets, more liquid timing bases exist, meaning that actors in the market tend to buy, 
sell and allocate transactions around those dates. Based on Otto (2011), a 3-month basis is a 
liquid reference, and a 15-month basis is particularly liquid, too, which is why we chose a 3-
month basis for this study. The London Metal Exchange (LME) also states that “the foundation 
of liquidity and price discovery is found in the 3-month rolling prompt date, while most of the 
open interest sits on 3rd Wednesday “monthly” contracts”1. The spot or cash price in addition 
to the 3-month basis are the two references that consolidate metal future price structures. This 
metal structure is thus defined as backwardation when spot prices are higher than 3 months, 
and therefore, the futures price structure is negative. Also, contango refers to the opposite, both 
are described below: 

metal futures price 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = metal 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑠𝑠 −metal 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

metal futures price 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0 →𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

metal futures price 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 < 0 →𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

In commodities markets, a backwardated situation is normally linked with a shortage of offers, 
a high demand, or a combination of both. This situation is called “normal backwardation”, a 
situation in which participants are trading more due to real needs than to either speculation or 
financialization. This theory, introduced by Keynes (1930), has been evolving during recent 
decades, when financialization (Günter and Karner, 2020) and macroeconomic events are 
increasingly taking over. For example, Galán-Gutiérrez and Martín-García (2021) show how 
Brexit, a macroeconomic event, can influence the copper futures price structure. 

In this article, we consider theories that link high prices and backwardation, and identify 
evidence of normal backwardation. Using cointegration methods, we consider the different 
metals priced in the LME, evaluating prices and future price structures. The analysis is based on 
time series cointegration with and without structural breaks and on a data panel structure. This 
high price-backwardation linkage can be a good tool for speculators, miners, funds and market 
players who do not speculate and try to leverage their hedged positions. 

The primary contribution of this research is the finding of co-movements between the future 
price of base metals and spot prices, referenced through their futures price structure. Also, we 
report the usage of cointegration tests through time series and through data intervals, which 
are obtained through structural breaks, as well as strengthen these results via the study of data 
panel cointegration. In addition, we study whether there is a relation between the metal level 
of liquidity or financialization and backwardation. 

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature on 
co-movements and base metal introduction. Data and methodology are reviewed in Section 3. 
A description of the results and an analytical review is presented in Section 4. Finally, conclusions 
and recommendations are discussed in Section 5. 

                                                           
1 https://www.lme.com/Education-and-events/Online-resources/LME-insight/What-are-implied-
markets 
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2. Review of the literature 

2.1. Co-movements in the literature 

There is a wide compendium of papers that relates the prices between the different 
commodities through co-movements, and many report important findings. Ma et al. (2021) 
found that linkages across energy commodities are stronger than those among agricultural or 
metal commodities. Mensi et al. (2020) studied precious metals and primary energy futures 
price returns, and concluded that the global financial crisis followed by the great oil price bust 
in 2014 intensified return co-movements. Cai et al. (2020) studied relationships between crude 
oil, precious metals, and agricultural commodities, and found a strong joint evolution during the 
crisis from 2007 to 2012. In addition, similarity in evolution occurs in the mid-term and the long 
term (Madaleno and Pinho, 2014, for oil markets and, again, Cai et al.,2020). 

Focusing on metals, Al-Yahyaee et al. (2020) use the spillover index to find strong multiscale co-
movements among nonferrous metals. Additionally, aluminum is the highest contributor to 
shocks in other metal markets, while lead and copper contribute the least. In the specific case 
of copper markets, Rutledge et al. (2013) found Granger causality among the world's three major 
metal futures markets: the Shanghai Futures Exchange (SHFE), the London Metal Exchange 
(LME), and the New York Commodity Exchange (COMEX). 

Co-movements between metal prices, which are shocks in prices that occur due to changes in 
other metals, have recently become of interest to researchers, as reported by Ding and Zhang 
(2020), Cai et al. (2019), Adhikari and Putnam (2020) and Yu et al. (2021). The literature refers 
to shocks and co-movements even in food prices, which are focused on certain periods where 
governments fell, and humans suffered (Carter et al. 2011). 

Other co-movements that involve hard commodities have been studied by Alquist et al. (2020), 
who analyzed the dependence structure between commodities and are typically categorized 
into 5 sectors: agriculture, energy, industrial metals, livestock, precious metals. Co-movements 
between metals (e.g., gold, silver, platinum and palladium) and macroeconomics were studied 
by Boako et al. (2020), specifically considering the evolution of African stocks and commodities. 
Golosnoy et al. (2018) identified two common factors that relate to nonferrous and precious 
metals using distinct autoregressive dynamics; these results agreed with those of Cai et al. 
(2019). 

Other economic variables that can influence commodity markets have also been investigated, 
as shown in Table 1. 
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Study Data Method Commodities Other variables Key findings 

Batten et al. 
2010 1986-2006 Conditional standard 

deviations 
Gold, silver, platinum and 
palladium 

Business cycle, monetary 
environment and financial market 
sentiment 

Different responds on Gold volatility, 
Platinum and Palladium, and Silver 

Chen 2010 1900-2007 Cross-sectional 
standard deviations 

Al, Bo, Cr, Co, Cu, Au, steel, 
Fe ore, Pb, Mg, Mn, Mo, Ni, 
Pt, Si, Ag, S, Sn, Tg, Vn, Zn 

Volatility 
Macroeconomic factors dependence 
34%, 66% depending on 
commodities-specific risk 

Ge and Tang 
2020 1993-2016 Panel regression 27 commodity futures 

traded in CRB GDP Prediction of GDP growths on next 
quarters by commodity price 

Creti et al. 2013 2001-2011 DCC GARCH Independent and aggregate 
Commodity price index S&P 500 index Correlations between comm. and 

stock markets are highly volatile 

Guo 2018 1991-2015 DCC GARCH Copper Stock returns Correlation between copper prices 
and China's activity 

Lim et al. 2019 2008-2017 Regression and Unit 
Root tests Freight prices 

CBOE VIX, CSPOT, CSLOPE, CVOL, 
CORDER, CFLEETG, CCONTR, 
OECD, IPPRC, PRCIRON, PRCCOKE 

Correlation between freight markets, 
VIX and other macroeconomic 
variables 

Liu et al. 2020 1975-2015 
FAVG, Predictive 
Regression and 
RWWD 

17 commodities (including 
agricultural and metals) Currencies AUD CAD NZD ZAR 

Significant predictability of currencies 
exchange rate using a factor drawn 
from a 17 commodity prices panel 

Fasanya and 
Awodimila 2020 

1980-2017 (Head. 
Infl.) 2002-2017 (Core 
infl. SouthA.), 1995-
2017 (Core infl 
Nigeria) 

FQGLS estimator 
forecasting model 

Energy and nonenergy 
commodities Headline and Core Inflation 

Commodity prices drive inflation in 
these two countries. Some of them, 
as energy, drives more Nigeria 
inflation than others. 

Mandaci et al. 
2020 1992-2019 

TVP-VAR 
connectedness 
approach 

WTI, NGF, HOF, GLD, SLV, 
PAL, PLT, COP USB, DJD, DJE, DXY Moderate interdependence among 

the volatilities of the assets 

Bouri et al. 2021 2011-2020 
TVP-VAR 
connectedness 
approach 

S&P GSCI gold, crude oil, 
MSCI World 

Effect of COVID-19 outbreak, USD 
index, PIMCO Investment Grade 
Corporate bond index 

Clear evidence for strong spillover 
effects in 
financial markets 

Ji et al. 2018 2011-2016 Granger causality and 
DCC model Oil and gold US and BRICS equities Integration structure among markets 

volatility is limited 
Notes: DCC GARCH: Dynamic conditional correlation GARCH model; FAVG: Factor average; RWWD: Random walk with drift; FQGLS: Feasible Quasi Generalized 
Least Square; TVP-VAR: Time-Varying Parameter Vector Autoregressions 
Table 1. Linkage between microeconomic and macroeconomic variables and trends in commodities literature. 
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2.2. Primary base metals references. 

On the supply-demand spectrum, the influence of economic cycles in metals has been 
investigated by Maranon and Kumral (2020). However, the entire metal environment is facing 
different challenges depending on the metal in the hard commodities (base metals) system 
selected. One of the exercises explored in this study is to check if there is a higher correlation 
between prices and structure of prices in metals that are more financialized than others. This 
exercise explores the data obtained on the LME’s Commitment of Traders Report2, with the 
number of lots traded of each commodity in the same period. There are several ways to study 
metal financialization:  the number of lots traded (e.g., this study), the multiple of price per lot 
traded, or using only those lots that are out from the normal course of physical business. The 
first approach (Fig. 1) shows that aluminum and copper are the most financialized metals, 
followed by zinc and nickel, with tin and lead being the less financialized metals. In Fig. 2, a 
similar approach is used but nickel is the most financialized due to its high price reference. We 
will discuss in the Results and Conclusions sections how related these financialization levels and 
the high price-backwardation pair are. 

 

Fig. 1. Financial institution holdings in LME, lots based, formatted from authors’ data. 

 

Fig. 2. Financial institutions’ holdings in LME, lots per price base. 

                                                           
2 https://www.lme. com/Market-Data/Reports-and-data/Commitments-of-traders#tabIndex=0. 
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Reviewing the specific situation of each base metal studied in this paper: 

Copper: The International Copper Association (ICA)3 continuously providing advice 
about the rising demand for copper, not only in 2019, sharing this view with other international 
associations such as AMM4 (America Metals Market 2019 or Metals Market Magazine 2019). 
They cite the growth of the global middle class and the equivalence between GDP and copper 
consumption. Also, once immersed in the COVID-19 health crisis, they identify copper as one of 
the metals with the greatest potential for intensive consumption due to offsite units for social 
distance practices, thermal heating in buildings to reduce GHG (greenhouse gases) including 
sunlamps, electricity generation, renewable energy bumps, electricity supply networks, urban 
mining for sustainability and economic global stimulus schemes. They also cite an increase in 
copper use in electric vehicles globally (Jones et al., 2020). 

Considering only classical mining and discovered resources, 2400 looks like the year when the 
world will run out of copper (Sverdrup et al., 2014), which is why recycling with the slogan of 
“Urban mining” is playing a key role in the short- and long-term outlooks of copper (Wallsten et 
al., 2013). Looking at these commodity warehouses’ global stocks, we can also envision a tense 
situation that considers availability minus demand based on recently dropping copper prices at 
their highest level ever5. 

Aluminum is the most financialized metal, followed by copper, zinc and nickel. This 
conclusion implies that demand for aluminum is sometimes not linked to a real fundamental 
metal; however, the primary metal institutions also see aluminum as a key metal for future 
applications and its supercycle. 

Li et al. (2021) described the increase in consumption of aluminum in recent years with the 
target to reduce the GHG emissions in certain regions, making this metal one with a higher ratio 
of increase (32 times higher than a decade ago) and in line to continue the same trend for the 
next 10 years. 

The reports of the International Aluminum Association6 state that in Aluminum Sector 
Greenhouse Gas Pathways to 2050, the role of recycling and the reduction of emissions in 
general makes aluminum one of the more interesting metals that is used in most industries, 
including automotive and transport; building and construction; and packaging and consumer 
goods. 

Even if stocks on the LME appear sufficient for sourcing real demand in industry, the role of 
traders in moving the metal price forces a queue to extract these units from the LME’s 
warehouses, a problem that has been described but still threatens every market player, as stated 
by Kim et al. (2021). 

Nickel: Even if nickel consumption has reached 70% for stainless steel and 5% for 
batteries, according to the Nickel Institute7, the recent increase in battery production due to 

                                                           
3 https://copperalliance.org/about-ica/ 
4 https://www.amm.com/ 
5 https://www.mining.com/copper-price-hits-10000-again-as-chinese-investors-unleash-
demand/#:~:text=Copper%20price%20hit%20a%20record, 
high%20reached%20in%20February%202011. 
6 https://www.world-aluminium.org/statistics/primary-aluminium-production/ 
7 https://nickelinstitute.org/about-nickel/#04-first-use-nickel 
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electric vehicles has increased this value (Olafsdottir and Sverdrup, 2021). A difference from 
other commodities is that zinc will likely always fulfil global need for the next century, according 
to the International Nickel Study Group (www.insg.org)8. This fact makes nickel a high price 
metal, primarily due to its costs of extraction, but not a real commodity role player in the 
exchanges. thus, nickel should not be a backwardated metal, but it is used as a case study in this 
paper. 

Lead: Lead is currently one of the more discussed metals due to the recycling of batteries 
coming from electric vehicles (Baars et al., 2021). Lead’s low price, compared with the other LME 
metal prices, also makes it one of the less used metals for speculators and traders to either force 
price changes or be involved in backwardation time frame scenarios. Per Figuerola-Ferretti and 
Gonzalo (2010), lead is one of the least liquid LME contracts, and therefore, an analysis of 
backwardation makes more sense than other LME contracts, such as aluminum, copper, nickel 
and zinc. 

Zinc: In their 2020 annual report, the International Zinc Association9 highlighted the 
growing role of zinc with lightening automotive structures’ galvanized high-strength steel. 
Sverdrup et al. (2019) projected an increase in zinc world consumption up to the year 2100, also 
modeling a soft scarcity in this century for zinc, defining scarcity as “when demand is reduced 
due to a high price”; this information was also presented by Tokimatsu et al. (2017) using a 
mineral balance model. Regarding the future structure of this metal, zinc is facing normal 
backwardation sporadically, with the future price being a predictor of a price increase (Peterson, 
2015), even at a lower significance value than other metals such as aluminum. 

Tin is one of the more backwardated metals compared in total value with the other base 
metals, and its physical premiums and price have been reaching their highest values ever 
currently. When comparing the relative percentages between the futures price structure and 
price of each commodity, tin has more price structure volatility, as shown in Fig. 3. 

 

                                                           
8 https://insg.org/index.php/about-nickel/production-usage/ 
9 http://www.zinc.org 
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Fig. 3. Futures structure in percentage to the price. LME data. 

The primary reason for this structure comes from a lack of availability in the market (e.g., entire 
global stocks in official LME warehouses of no more than 2,000 MTs, covering only 
approximately 0.5% of worldwide consumption, based on up to 400,000 MTs per year; Li et al., 
2021) also also from the disappearing liquid positions in the respective exchanges, which 
primarily occur due to a concentrated production reported in the same study. When tin is not 
considered, we see that even if not achieving the same levels, aluminum is also in percentage 
(i.e., in reference to its value) eventually volatile in terms of its future price structure; this result 
was also previously described in the individualized analysis of metals. 

 

3. Data and Methodology 
3.1. Data 

The data used for this study were LME cash values at the second ring close and the 3-months 
official prices (the most liquid, according to Otto, 2011) between 01/01/2016 and 31/12/2020 
with the base metals in mining and economics, and traded under the non-ferrous indices on the 
London Metal Exchange: aluminum (AA), nickel (NI), lead (PB), tin (SN), zinc (ZI) and copper (CU). 

The total data set contained 1,264 samples per metal, defining a 7,584 references matrix panel 
data, grouping by cash metal prices series (official price at the second ring close) and futures 
metals structure price series (defined as the difference of the 3-months basis price and the 
aforementioned cash priced): 
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Fig. 4. Price data and futures price structure for every metal. LME data and authors’ graphic. 
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3.2. Methodology 

Cointegration and causality can be considered good tools to determine if two data series, such 
as price and the structure of future prices, are linked somehow. Thus, we analyzed the 
constructed data matrix in two ways: 

- Using time data series causality 
o Across the entire data timeframe and metal by metal 
o Using intervals of study coming from structural breaks, metal by metal 

- Using panel data structures causality 

There are many previous studies of time series causality, including Engle and Granger (1987), 
who used the Johansen approximation (Johansen 2008): Eross et al. (2019), who applied the 
methodology to study bitcoins; Qadan (2019) and Rutledge et al. (2013), whose analyses of the 
same market environment explored in this study or other topical studies; and Hossain and Mitra 
(2017), Alam (2017), Hadi et al. (2019), Dong (2017), Chalmers et al. (2019) and Samsi et al. 
(2019) and more recently by Galán-Gutiérrez and Martín-García (2021). Unlike these time series 
approaches, there is also the chance to perform a global study using data panel analyses, 
increasing the number of data points and the interaction between the different time series, as 
in Banerjee and Carrion-i-Silvestre (2015) and Villca et al. (2020) and specifically in the world of 
commodities, Sharma (2020), Agnello et al. (2020) and finally Karabiyik et al. (2021) in the 
relationship between price metals and fundamentals. The usage of panel data series has 
different advantages compared to time series studies, such as those described in Hsiao (2007) 
and its different comments, Arellano (2007), Baltagi (2007), Mairesse (2007), Nerlove (2007), 
Park and Song (2007), Shin (2007), Sickles (2007) and Wansbeek et al. (2007). These advantages 
include more accurate inference of model parameters, greater capacity for constructing more 
realistic behavioral hypotheses, uncovering dynamic relationships, controlling the impact of 
omitted variables, generating more accurate predictions for individual outcomes, providing 
microfoundations for aggregate data analysis, and simplifying computation and statistical 
inference (Hsiao, 2014). 

With time series causality tests, performing the Johansen approximation under Engle and 
Granger, we study the following series: 

- Structure of copper futures prices, (𝑦𝑦𝑡𝑡)𝑡𝑡=1𝑁𝑁 : (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡)𝑡𝑡=01−01−201631−12−2020   (Equation 1a) 

- Price of metals, (𝑧𝑧𝑡𝑡)𝑡𝑡=1𝑁𝑁 : (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡)𝑡𝑡=01−01−201631−12−2020     (Equation 1b) 

Using the different metals (tin, lead, copper, aluminum, nickel and zinc), we have 12 time series, 
6 price series and 6 structure series. This study will be done in 2-by-2 series packs for each metal. 

These causality tests require stationary time series or nonstationary transformed series of the 
same order. Thus, several tests are performed to verify stationarity: 

- Those where the stationarity of the series is the null Hypothesis H0, such as KPSS 
(Kwiatkowski et al., 1992) and as the Leybourne tests and McCabe tests (Leybourne and 
McCabe, 1994). These tests have recently been used by Su et al. (2020) and by Cui et al. 
(2021), linking bitcoin and oil prices. 
 

- Others where the null hypothesis assumes nonstationarity, such as the Dickey-Fuller test 
as well as the augmented Dickey Fuller test. This set of tests was initially introduced by 
Dickey and Fuller (1979) and extensively used over the years but more recently in Syed et 
al. (2021) or Li et al. (2021), the Phillips-Perron test (Phillips and Perron, 1988) and the 
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DF-generalized least squares tests (Elliot et al., 1996). The number of lags complies with 
the Bayesian information criterion (BIC), as suggested by Yao (1988), and the Akaike 
information criterion (AIC), Akaike (1974) and extended in Bai and Perron (2003). This set 
of tests is broadly referenced in real topics as oil and stock markets (Sarwar et al., 2020) 
or cryptocurrencies (Gil-Alana et al., 2020). 

 

Based on Engle and Granger’s causality cointegration, autoregressive vectors (VARs) were 
calculated. Johansen’s approximation is used to look for the cointegration between the two 
series, as in Ivascu et al. (2021) and Mat et al. (2020). This method is valid when the tentative 
cointegrated series have a low stationarity value like I(1), even if it is also a tool with strength 
for other values (Hjalmarsson and Österholm, 2010). The trace test and λmax one are the two 
variables used to execute the Johansen approximation. 

- Engle and Granger’s cointegration tests were used to estimate the two equations shown 
below from the two series of OLS transformed data: 
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−1 + ⋯+ 𝛼𝛼1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−𝑙𝑙 + 𝛽𝛽1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−1 + ⋯+ 𝛽𝛽1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−𝑙𝑙 +  𝜀𝜀𝑡𝑡, (Equation 1c) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 = 𝛼𝛼0 +  𝛼𝛼1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−1 + ⋯+  𝛼𝛼1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−𝑙𝑙 + 𝛽𝛽1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−1 + ⋯+ 𝛽𝛽1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−𝑙𝑙 +  𝑢𝑢𝑡𝑡     (Equation 1d) 

where l is the number of delays used; α and β are the parameters to be studied; and 𝜀𝜀𝑡𝑡 and 𝑢𝑢𝑡𝑡 
are the errors or random disturbances, respectively, which are normally uncorrelated. 

If βl = β1 = 0, there is no inter-series causation, while if βl ≠ β1 ≠ 0, the two are cointegrated, as 
defined by Granger. 

The Johansen approximation yields α and β as the vectors: 

α = |p,r| and β = |m,r| 

where r is the number of cointegrating vectors, and p and m are the series vector components. 

To understand if there are structural breaks and intervals of study to be investigated in detail, 
we use the references used by Gil-Alana (2002), Bai and Perron (2003), Gil-Alana (2008) and 
Caporale et al. (2020). Gil-Alana also used fractional unit root tests, which could be a base for a 
more accurate exercise in this study or in others of the same nature. 

This theory is used when working with fractional integration as a generalization of the ARMA-
ARIMA specifications, these I(d) models could use d integer or fractional values. 

These studies use the test described by Chow (1960) for a classical linear model, and the null 
hypothesis of no structural break is constructed using a Wald statistic, whose properties are 
surveyed in Perron (2006). 

Once a structural break is identified, we use descriptive analysis to find other possible structural 
breaks that will be checked in the way that the coefficients do not vary over the subsamples 
used. Structural breaks allow coefficients to change after a break date. If b is the break-date, the 
model is: 

𝑦𝑦𝑖𝑖𝑖𝑖 = �
𝛽𝛽𝑖𝑖  𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖  𝑧𝑧𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖                            𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑏𝑏
(𝛽𝛽𝑖𝑖 + 𝜕𝜕) 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖                𝑖𝑖𝑖𝑖 𝑡𝑡 > 𝑏𝑏           (Equation 1f) 

The null and alternative hypotheses are H0= 𝜕𝜕 = 0 and H1 = 𝜕𝜕 ≠ 0, respectively. 
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With the panel-data cointegration tests, we analyze cointegration individually inside each time 
series and the common trends of every of each metal together with a larger database (every 
metal instead of one by one), thus obtaining the same cointegration. In short, this test analyses 
the full series set (12 series). 

Kao (1999), Pedroni (2001) and Westerlund and Edgerton (2008) used cointegration tests that 
relied on the common approach with a null hypothesis of no cointegration. Kao and Pedroni’s 
tests demonstrate in their different theories that the studied variables are cointegrated 
throughout the range of data on the panel. Similarly, Westerlund’s tests only show cointegration 
in certain metals. 

These tests are based on the panel-data model for the dependent variable 𝑦𝑦𝑖𝑖𝑖𝑖 : 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖  𝑧𝑧𝑖𝑖𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖  (Equation 1e) 

where i = 1,…,N denotes the individual panel, t = 1,….,Ti denotes time, xit is the independent 
variable, 𝛽𝛽𝑖𝑖is the cointegration vector, and 𝛾𝛾𝑖𝑖 is the vector of coefficients on zit. 

The basis of these three package tests (Kao, Pedroni and Westerlund) is founded in the 
previously referred ADF, PP and KPSS tests using vectors and matrices instead of linear series 
under Equation 1e. 

To summarize the methodology and steps performed in this paper, the primary target of this 
study is to investigate whether there should be some link between an increase in the price of a 
hard commodity (e.g., a base metal) and a negative futures price structure (backwardation). 

We have investigated different metals, some of which are more financialized, and others are 
more dependent on their fundamental drivers. 

In the first stage, we do have two different groups of studies: 

- All of the data 
- Data intervals as defined by structural breaks: 

All data: Augmented Dickey Fuller and Phillips Perron tests have only shown a strong value to 
determine the same order between the price data and the futures price structure for some 
metals, even if other tests such as KPSS have shown the same for a wider range of them. 

Data intervals: First, intervals are obtained via structural breaks with a given accuracy value and 
later through descriptive analysis, thus determining which values are more doable to be used as 
possible breaks and after. We also check if previous breaks can be used to reject the null 
hypothesis of no structural break. 

In the second stage, we run the test throughout the panel data series for the entire data range, 
finding a global cointegration of all metals. 

 

4. Results 
In this section, we document the results of the double analysis described above: a two-in-
two-variable analysis and the matrix defined by the full dataset with panel structure 

4.1. Metal by metal results 

Results show that aluminum, tin, zinc and copper are the only possible stationary series (under 
the KPSS tests, as ADF/PP only describes tin) and the only possible cointegrated metals. Time 
series stationarity tests, metal by metal and using the entire-time range are shown in Table 2: 
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p value  ADF PP KPSS Stat. 
Same 
order 

ADF/PP 

Same 
order 
KPSS 

Average 
price 

Al price < 0,0001*** < 0,0001*** < 0,0001*** Yes/No 
No Yes $ 1.835 

Al-stru. 0,646 0,801 < 0,0001*** No/No 
Ni price 0,042** < 0,0001*** 0,104 Yes/Yes 

No No $12.167 
Ni-stru. 0,316 0,884 < 0,0001*** No/No 
Pb price < 0,0001*** < 0,0001*** 0,082 Yes/Yes 

No No $2.050 
Pb-stru. 0,275 0,662 <0,0001*** No/No 
Sn Pric 0,001*** < 0,0001*** 0*** Yes/No 

Yes Yes $18.793 
Sn-stru. 0,073* 0,833 < 0,0001*** Yes/No 
Zn price 0,097* 0,001*** 0*** Yes/No 

No Yes $2.544 
Zn-stru. 0,341 0,822 < 0,0001*** No/No 
Cu price 0,014** 0*** 0,006 Yes/No 

No Yes $5.944 
Cu-stru. 0,685 0,932 < 0,0001*** No/No 

Notes: *** 1% significance, ** 5% significance, * 10% significance 
Table 2, stationary tests data 
 

The application of the Johansen approximation of Engle and Granger’s theory for metals whose 
series have the same level of stationarity shows that the time series (price and future price 
structure) are cointegrated (Table 3). 

(Signif. value 5%) 
p value 

VAR 
order 

Lambda max 
test Trace test Adjustment 

coefficient alfa 
Adjustment 

coefficient beta 
Al price 

4 At least one Cointegration 
relation 

1,300 0,266 0,000 0,001 
Al-structure -0,706 0,003 0,067 0,000 

Sn price 4 At least one Cointegration 
relation 

-1,305 3,289 0,000 0,000 
Sn-structure 9,166 -0,197 -0,014 0,000 

Zn price 3 At least one Cointegration 
relation 

3,519 0,252 0,000 0,000 
Zn-structure -0,792 0,050 0,029 -0,002 

Cu price 
5 At least one Cointegration 

relation 
3,436 -2,276 0,000 0,000 

Cu-structure -0,711 -0,049 0,057 0,001 
Table 3, cointegration data 

Lambda max and trace tests show that the four pairs of series are cointegrated with different 
VAR orders, with aluminum and tin of the same order (4), zinc with VAR order (3) and copper 
with order (5). 

Finally, the results from the analysis of the entire data series show that on aluminum, tin, zinc 
and copper, the price data series are cointegrated with the futures price structure data series (p 
< 0,05). In connection with the hypothesis that financialization could be a driver for this 
connection of “normal backwardation” with high prices, we can initially say that this hypothesis 
is true with copper and aluminum (the two more financialized metals) but not with nickel. 
Conversely, we find that some less financialized metals, such as tin, exhibit this type of 
cointegration. 

Once we have determined that the entire-time data series are cointegrated for some metals, we 
find structural breaks in the time series and perform stationarity and cointegration tests for the 
intervals obtained. Applying Chow tests for structural breaks in time-series data, we obtained 
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the breaks shown in Table 4 (p < 0.01). To study their stationarity, we used the augmented 
Dickey-Fuller (ADF) test, the Phillips-Perron (PP) test, and finally the Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) test. 

El. Break Intervals per the first 
test ADF PP KPSS Johansen 

Al 19/07/18
*** 

04/01/2016 
19/07/2018 

20/07/2018 
30/12/2020 

1st(0,013/0,001) 
2nd(0,040/0,986) 

1st(<0,0001/0,855) 
2nd(0,006/0,568) 

1st(0,033/<0,0001) 
2nd(0,009/<0,0001) N/A 

Ni 15/07/19
*** 

04/01/2016 
15/07/2019 

16/07/2019 
30/12/2020 

1st(0,001/0,407) 
2nd(0,649/0,937) 

1st(<0,0001/0,837) 
2nd(0/0,810) 

1st(<0,0001/<0,0001) 
2nd(<0,001/<0,0001) 

(1) AIC 5 p 1% 
(2) AIC 5 p >10% 

Pb 12/03/20
*** 

04/01/2016 
12/03/2020 

12/03/2020 
30/12/2020 

1st(0,001/0,586) 
2nd(0,075/0,583) 

1st(<0,0001/0,601) 
2nd(0,247/0,817) 

1st(0,018/<0,0001) 
2nd(0,038/<0,0001) N/A 

Sn 18/06/20
*** 

04/01/2016 
18/06/2020 

19/06/2020 
30/12/2020 

1st(0,002/0,080) 
2nd(0,669/0,598) 

1st(<0,0001/0,820) 
2nd(<0,0001/0,759) 

1st(0,102/<0,0001) 
2nd(0,001/<0,0001) N/A 

Zn 14/09/20
*** 

04/01/2016 
14/09/2020 

15/09/2020 
30/12/2020 

1st(0,003/0,293) 
2nd(0,130/0,904) 

1st(<0,0001/0,983) 
2nd(0,009/0,522) 

1st(0,001/<0,0001) 
2nd(<0,0001/<0,0001) 

(1) AIC 2 p 1% 
(2) AIC 3 p 4% 

Cu 29/09/16
*** 

04/01/2016 
29/09/2016 

30/09/2016 
30/12/2020 

1st(0,296/0,310) 
2nd(0,008/0,614) 

1st(0,013/0,726) 
2nd(0,001/0,932) 

1st(<0,0001/0,017) 
2nd(0/0,002) N/A 

Notes: *** 1% significance, ** 5% significance, * 10% significance. 
Bold on ADF/PP and KPSS indicate the same level of either stationarity/nonstationarity. 
Table 4, Stationarity and cointegration for intervals defined through the structural break 
obtained 
 
There is not the same stationarity I(x) with the ADF and PP tests for the time series of price 
structure and price of the different metals studied, even though the KPSS analysis shows that it 
can be present with nickel and zinc. We have considered that the two time series (price and 
price structure) in every interval have different stationarity levels; therefore, it is nonsensical to 
transform them using the Box–Cox method. 

Using the Johansen approximation with nickel and zinc, we do not find that the two time series 
under the two intervals defined by the structural breaks are cointegrated in the same value. 
Only with zinc do we find a certain level of cointegration between the two time series in the two 
intervals in the first time series defined in the interval (p < 0.01) and in the second (p < 0.04). 
Therefore, in general, the analysis with two breaks does not show cointegration, which is why 
this analysis must be improved looking for more breaks for the full time series. These results 
thus could be considered in comparison to the linkage between financialization and the 
cointegration studied in this paper. 

Searching for additional breaks that can better describe each metal price behavior, we 
performed a descriptive analysis of the time series per metal, finding additional breaks: three 
on aluminum, one in nickel, two in lead, four in tin, four in zinc and four in copper. These 
intervals make up for the shortcomings shown by the initial breaks. Through the Wald and 
likelihood-test ratio, different significance values were obtained (Table 5). The final intervals 
obtained are plotted in Annex I, Figures 5-10. 

Metal Other tentative breaks obtained Descriptive+Wald Initial break obtained 
Aluminum 07/01/18***   22/07/18***   28/11/19 22/07/18*** 

Nickel 10/10/19 16/07/19*** 
Lead 18/08/17 01/02/18** 13/03/20*** 
Tin 03/07/17**  19/11/18***  15/06/20*** 13/10/20*** 20/06/19*** 
Zinc 14/09/18*** 30/11/18***  24/05/19***  06/11/19*** 15/09/17*** 

Copper 03/10/16***  17/05/18**  11/05/20*** 03/10/16*** 
Notes: *** 1% significance, ** 5% significance, * 10% significance. 
Table 5. Structural breaks obtained 
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In the periods obtained through analysis, a stationary test and a cointegration test were 
performed with those series that had the same level of stationarity, except for nickel and lead, 
in which the structural break used previously was sufficient (i.e., no more highly significant 
breaks were found). 

The new intervals obtained are shown in Table 6: 

Metal Intervals 
Al 04/01/2016 

07/01/2018 
08/01/2018 
22/07/2018 

23/07/2018 
27/11/2019 

28/11/2019 
30/12/2020  

Sn 04/01/2016 
19/11/2018 

20/11/2018 
20/06/2019 

21/06/2019 
15/06/2020 

16/06/2020 
13/10/2020 

14/10/2020 
30/12/2020  

Zn 04/01/2016 
15/09/2017 

16/09/2017 
14/09/2018 

15/09/2018 
30/11/2018 

01/12/2019 
24/05/2019 

25/05/2019 
06/11/2019 

07/11/2019 
30/12/2020 

Cu 04/01/2016 
03/10/2016 

04/10/2016 
17/05/2018 

18/05/2018 
11/05/2020 

12/05/2020 
30/12/2020  

Table 6. Intervals per metal (Al, Sn, Zn, Cu) 

Stationarity tests and cointegration tests in those with the same level of 
stationarity/nonstationarity are shown in Table 7. 

 

 Stationarity Causality 
 ADF PP KPSS Johansen 

Al 1st(0,002/0,003) 
2nd(0,698/0,358) 
3rd(0,356/0,142) 
4th(0,006/0,904) 

1st(0,002/0,975) 
2nd(0,031/0,573) 
3rd(0,002/0,210) 
4th(0,264/0,884) 

1st(0/<0,0001) 
2nd(0/0,066) 
3rd(0,049/<0,0001) 
4th(0,003/<0,0001) 

(1) var 5, 1%***                                         
(2) var 1, No cointegrated    
(3) var 1, No cointegrated    
(4) var 1, 10%* 

Sn 1st(0,013/0,115) 
2nd(0,314/0,806) 
3rd(0,671/0,122) 
4th(0,545/0,141) 
5th (0,998/0,599) 

1st(<0,0001/0,856) 
2nd(0,021/0,630) 
3rd(<0,0001/0,393) 
4th(<0,0001/0,853) 
5th (0,987/0,978) 

1st(0,056/<0,0001) 
2nd(<0,0001/0,001) 
3rd(<0,0001/<0,0001) 
4th(<0,0001/<0,0001) 
5th (<0,0001/<0,0001) 

(1) N/A                                
(2)  var 3, 10%*                       
(3) var 5, No cointegrated   
(4) var 4, 10%*                               
(5) var 1, No cointegrated 

Zn 1st(0,027/0,291) 
2nd(0,337/0,753) 
3rd(0,036/0,175) 
4th(0,591/0,799) 
5th (0,834/0,948) 
6th(0,014/0,693) 

1st(0,000/0,987) 
2nd(0,036/0,250) 
3rd(0,935/0,900) 
4th(0,701/0,682) 
5th (0,004/0,394) 
6th(0,003/0,779) 

1st(0,002/<0,0001) 
2nd(0,000/<0,0001) 
3rd(<0,0001/0,028) 
4th(<0,0001/<0,0001) 
5th (<0,0001/<0,0001) 
6th(<0,0001/<0,0001) 

(1) var 3, 1%***                          
(2) var 1, No cointegrated   
(3) var 1, No cointegrated   
(4) var 4, 5%**                           
(5) var 2, No cointegrated   
(6) var 2, 5%** 

Cu 1st(0,290/0,304) 
2nd(0,013/0,238) 
3rd(0,065/0,111) 
4th(0,620/0,646) 

1st(0,020/0,726) 
2nd(0,228/0,938) 
3rd(0,001/0,229) 
4th(0,036/0,999) 

1st(<0,0001/0,015) 
2nd(<0,0001/<0,0001) 
3rd(<0,0001/<0,0001) 
4th(0,002/0,1) 

(1) var 3, No cointegrated 
(2) var 5, 10%*                     
(3) var 3, 10%*                           
(4) var 2, 5%** 

Notes: *** 1% significance, ** 5% significance, * 10% significance. Bold levels on ADF/PP and 
Bold levels on ADF/PP and KPSS indicate the same level of either stationarity/nonstationarity. 
Table 7. Stationarity tests and cointegration per metal and interval 

There are several intervals (Table 7) where cointegration between the metal price and the future 
price structure exists for every metal studied. Copper and aluminum, the two more financialized 
metals, are again shown to confirm part of this theory. 
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Summarizing the first block of the results, we find the following: 

- Across the entire data range, we identified cointegration between the price data series 
and the futures price structure with tin, aluminum, zinc and copper. 

- The intervals obtained through the structural breaks analysis are shown: 
o Only zinc is cointegrated with some significance level for every two intervals 

obtained through the structural break of each data series. 
o Using a descriptive analysis and corroborating the structural breaks, two 

intervals were identified to exhibit cointegration between both series with 
aluminum and tin, and three intervals with zinc and copper. 

 

4.2. Robustness test: Panel data results 

On the second block of the analysis, in order to test the strength of the methodology and the 
cointegration of the data, rather than only to test the time series through the Johansen 
approximation, we have also run a data panel test. Rather than only test the time series using 
the Johansen approximation, we also run a data panel test that considers the matrix of every 
metal and the entire data range, thereby yielding a strongly balanced panel variable. Thus, the 
Kao, Pedroni and Westerlund tests were used for cointegration and yielded the following results. 

Kao test for cointegration 
Ho: No cointegration Ha: All panels are cointegrated 
Number of periods      =   1,262 Number of panels       =      6 
Cointegrating vector: Same 
Panel means:          Included Kernel:           Bartlett 
Time trend:           Not included Lags:             5.17 (Newey-West) 
AR parameter:         Same  Augmented lags:   1 
  Statistic 
 Modified Dickey-Fuller t -1.6e+02*** 
 Dickey-Fuller t -31.4654*** 
 Augmented Dickey-Fuller t -18.0906*** 
 Unadjusted modified Dickey-Fuller t -2.3e+02*** 
 Unadjusted Dickey-Fuller t -32.2141*** 

Notes: *** 1% significance, ** 5% significance, * 10% significance. 
Table 8. Kao test for cointegration on the panel data for the entire database. 

Pedroni test for cointegration 
Ho: No cointegration Ha: All panels are cointegrated 
Number of periods      =   1,263 Number of panels       =      6 
Cointegrating vector: Panel specific 
Panel means:          Included Kernel:           Bartlett 
Time trend:             Included Lags:              7  (Newey-West) 
AR parameter:         Panel specific  Augmented lags:   1 
  Statistic 
Modified Phillips-Perron t -63.8807*** 
Phillips-Perron t -22.9082*** 
Augmented Dickey-Fuller t -25.0929*** 

Notes: *** 1% significance, ** 5% significance, * 10% significance. 



17 
 

Table 9. Pedroni test for cointegration on the panel data for the entire database. 

 

Westerlund test for cointegration 
Ho: No cointegration Ha: Some panels are cointegrated 
Number of periods      =   1,263 Number of panels       =      6 
Cointegrating vector: Panel specific 
Panel means:          Included 
Time trend:             Included 
AR parameter:         Panel specific 
  Statistic 
Variance ratio -2.4165*** 

Notes: *** 1% significance, ** 5% significance, * 10% significance. 
Table 10. Westerlund test for cointegration on the panel data for the entire database. 

Tables 8-10 show that that there is cointegration on the entire panel data (p < 0.01). From the 
Kao analysis, we find that the panel data are cointegrated (p < 0.01) based on the different 
versions of Dickey Fuller theories, the Pedroni tests with Phillips-Perron, Modified Phillips-
Perron and finally with the Augmented Dickey-Fuller tests, thus confirming cointegration in 
every interval. Westerlund tests certify that cointegration exists in at least some intervals, as 
described in the methodology. 

We also obtained the same results as those with the first block of data, finding cointegration for 
the different metals between their prices and their future price structure as a global data matrix. 
These results are also consistent with Yu et al.’s (2021) results for copper in specific time 
intervals. 

Therefore, a relationship between the price and futures price structure of each metal is 
characterized as follows: 

- Cointegration between aluminum, tin, zinc and copper using the full time series. 
- Cointegration only with zinc at a low level using two intervals defined per structural 

breaks. 
- Cointegration in two intervals with aluminum and tin, and in three intervals on copper 

and zinc using intervals defined by several structural breaks 
- Cointegration between every metal series using panel data research. 

 

5. Conclusions and policies 

In this period of strong demand for raw materials that also includes the COVID-19 pandemic, 
and from which the recovery has been strong and consistent, there is a widespread belief in the 
industry that we are entering a new commodity supercycle, which could last for years or even 
decades. There are many factors that point to this conclusion. First, some factors that show 
common patterns between the early 2000s and the 2020s, such as China's economic 
performance and the investment cutback in metal companies during the 2012-2020 period due 
to a fall in prices, will likely lead to lower future supply and high prices. Second, new structural 
factors, such as the energetic transition and the development of electric vehicles, plus the 
electrification of the remaining parts of the world, are likely to lead to this supercycle. Third, 
financial issues currently exist, including commodities being used as haven securities for 
investors. Compared to other alternative assets (such as equities), commodities are cheap and 
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have revaluation potential, particularly those more financialized, which is attractive to investors. 
Public stimulus is also an important factor. The end of the quantitative easing (QE) implemented 
after the 2007 crisis, which had such a negative impact on the price of commodities, and the 
entry of governments worldwide fiscal and monetary stimuli to boost the recovery of economic 
growth are also two factors that will favor these markets in the near future. 

Thus, metals could be in a position to increase in price, thereby being in a position of “normal 
backwardation”. In this context, this study searches for patterns and relationships to understand 
the joint behavior of price structure and level of price (high, low, increasing or decreasing) to 
assess market agents to optimize their positions. Causality tests using Engle and Granger’s 
theory and Johansen´s approximation for the same stationarity series using ADF, PP and KPSS 
methodology were performed with the time series of metal prices. 

Results show a clear linkage between increases in metal price and an increase in the short-term 
price compared with the long-term price (futures price structure). This effect is stronger for tin, 
copper, aluminum and zinc via independent data series analysis and on intervals defined by 
structural breaks. Robustness tests with data panel and a full data matrix confirm these results. 
Additionally, the linkage of financialization and this theory for the two most financialized metals 
(aluminum and copper) is demonstrated. This link has not been found for metals with low 
financialization. 

Considering only the price and not the futures price structure, when the market is high and 
fundamentals propose an even tenser scenario, everyone thinks about buying the commodity 
today to be sold tomorrow. This strategy is commonly used by price speculators and, in general, 
high-risk investors. Instead, when the focus is set on price structure, agents who are in high-
price tensioned markets and already have physically hedged positions could take advantage of 
backwardation, positioning short in the long term to achieve value from the carries (i.e., lending 
instead of borrowing) and staying long in the short term. This strategy would let them not 
speculate on price but on the price difference over time (price structure), which could be more 
stable than intraday or interday price changes. 

This study provides a more reliable and econometric-based pattern to confirm that when prices 
are generally high, markets tend to backwardate (commodity spot prices are higher than future 
prices). The results of this study have important implications for players that hedge their 
exposure, using this theory to position profit taken and stop loss orders as hedging tools in 
scenarios where the metal price is high to ensure good results. For the variety of metals that 
price on the base metal LME structure, aluminum and copper (the most financialized metals) 
behave with the cointegration described in this paper, showing a linkage between 
financialization and normal backwardation in high price scenarios. The refuge of some investors 
on base metals depending on the global market situation is a fact; therefore, another 
justification to consider this theory to be a key factor to move the liquidation of positions 
between different stock values. Policy-makers can thus structure this cointegration as a 
reference to reduce volatility and instability that, in a specific period of time with high prices, 
could occur. Thus, countries’ metal reserves can always be a strong tool to leverage the market. 

Economic crisis and, more generally, unstable situations when markets were disturbed in some 
way should be investigated in future research, including subsamples studied with fractional 
integration trying not to lose any of the soft tentative cointegrations.  
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Annex I: 

 

 

Fig. 5 Aluminum price and futures price structure divided into the intervals obtained. 

 

Fig. 6 Nickel price and futures price structure divided into the intervals obtained. 
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Fig. 7 Lead price and futures price structure divided into the intervals obtained. 

 

Fig. 8 Tin price and futures price structure divided into the intervals obtained. 
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Fig. 9 Zn price and futures price structure divided into the intervals obtained. 

 

Fig. 10 Copper price and futures price structure divided into the intervals obtained. 

 


