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A systematic study of the direct computation of the isothermal compressibility of normal quantum 

fluids is presented by analyzing the solving of the Ornstein-Zernike integral equation (OZ2) for the 

pair correlations between the path-integral necklace centroids. A number of issues related to the 

accuracy that can be achieved via this sort of procedure have been addressed, paying particular 

attention to the finite-N effects and to the definition of significant error bars for the estimates of 

isothermal compressibilities. Extensive path-integral Monte Carlo computations for the quantum 

hard-sphere fluid (QHS) have been performed in the ( , , )N V T  ensemble under temperature and 

density conditions for which dispersion effects dominate the quantum behavior. These 

computations have served to obtain the centroid correlations, which have been processed further 

via the numerical solving of the OZ2 equation. To do so, Baxter-Dixon-Hutchinson’s variational 

procedure complemented with Baumketner-Hiwatari’s grand-canonical corrections have been 

used. The virial equation of state has also been obtained and several comparisons between different 

versions of the QHS equation of state have been made. The results show the reliability of the 

procedure based on isothermal compressibilities discussed herein, which can then be regarded as a 

useful and quick means of obtaining the equation of state for fluids under quantum conditions 

involving strong repulsive interactions. 
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I. INTRODUCTION  

 Feynman’s path integrals (PI)1,2 have become a standard tool in the modern statistical 

mechanics studies of quantum condensed matter. Through the discretization of the PI particle 

closed paths in necklaces composed of beads in imaginary time, / ,Bk Tβ == =  the use of path 

integral Monte Carlo (PIMC) and path integral techniques based on molecular dynamics has led to 

a deep understanding of static and dynamic quantum effects in the fluid and solid phases. 3,21 In all 

of these applications, a very fruitful concept has turned out to be that of the PI necklace centroid, 

i.e. a centre of mass for the PI necklace. This concept has brought about developments in diverse 

directions, for example: a) quantum dynamics;11,16,19 b) quantum effective potentials;22 and c) fluid 

and solid structural features and related questions.23-31 There are some technical subtleties in the 

definition and use of centroids in the study of quantum dynamics,11,16 but these will not be dealt 

with in the present article which will only be concerned with equilibrium.   

 Of particular interest regarding the PI centroid correlations is the key role they play in 

computing, through calculations in Fourier space of the isothermal compressibility [i.e. ( 0)],S k =  

the equation of state of quantum fluids.29 This fact reveals some deep connections between 

classical and quantum statistical mechanics, and allows one to utilize the centroid concept at 

equilibrium in a very pragmatic way: it is a very useful device for counting number fluctuations. 

Prior work by this author over the past years has provided the required Ornstein-Zernike (OZn) 

framework, as well as a number of physically significant two- and three- body applications. The 

results so obtained were based on (N, V, T) simulations and showed excellent agreement with 

experiments and other theoretical approaches.27-29,32-42 Clearly, there are other general methods to 

obtain isothermal compressibilities for quantum fluids, such as the  evaluation of the fluctuations 

in the (µ, V, T)-number of particles43,44 or in the (N, P, T)-volume.43,15(b)-(c),45 To carry out extensive 

grand ensemble simulations appears to be a daunting task in the quantum case. Besides, when 

performing quantum ( , , )N V T  or ( , , )N P T  simulations, there are two well-known finite-size 

effects affecting isothermal compressibilities which have not yet been analyzed in detail. One is 
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the explicit effect that is associated with the fixing of SN N=   particles in the simulation, and the 

other is the implicit effect that is related to the influence of the periodic boundary conditions.44 Far 

from the critical point and for a sufficiently large sample size ,SN  the main influence on the 

simulation results is caused by the explicit effect, which becomes even more determining in the 

case of short-range interactions.  

 Given the equivalence of ensembles (far from the critical point) and the exactness of OZ2 

for the PI centroid pair correlations, the route already employed in preliminary works41,42 by this 

author may be a useful starting point to tackle the foregoing questions. This route is based on the 

OZ2 treatment of (N, V, T) necklace centroid pair structures, which are adequately corrected with 

grand-canonical terms to deal with the finite-N effects. Not only does this route provide very 

accurate fluid equations of state, as shown below, but also it is very fast in computational terms. It 

is then to be regarded as a useful and more efficient alternative to the usual virial pressure p 

equation under extreme conditions (e.g. strong repulsive interactions present). Moreover, the “fine 

tuning” presented in this investigation is a necessary step which will be valuable for a wide range 

of further related purposes. One may mention, for instance, the general topic of the OZn 

equations4,43,46 in which it is contained. This topic deals with quantum and classical static structure 

factors for fluids,27,41,42,46-48 the decay properties of the particle correlations,39 interfacial 

phenomena, etc.46(d) Besides, the study of complex molecular fluids that may be represented by 

spherically symmetric potentials (e.g. fluid hydrogen isotopomers)29,47 can also benefit from this 

fine tuning. 

 The scope of this article will be that of homogeneous and isotropic quantum monatomic 

fluids at equilibrium in which diffraction effects dominate their behavior. Each particle (i) will be 

then represented by a PI elastic necklace composed of P beads with coordinates ,t
ir  1, 2,..., .t P=  

Adjacent beads in a necklace are separated in imaginary time by / Pβ=  and linked by harmonic 

forces with spring constant 2 2/mP β =  (m =  particle mass). Note that the exact quantum limit is 

retrieved for ,P →∞ 49 but at nonzero temperatures statistical convergence is assumed to occur for 
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a finite P. The necklace centroid (CM) position vector of atom i is thus conventionally defined as 

1
, ,t

CM i t i
P−= ∑R r   but note that as stated elsewhere19,29 the CM variables can be defined by the 

action on the actual system of an external field of constant strength. The set of N P×  beads is 

ruled by [ ]exp ,NPWβ−  where NPW  is the “potential” of the sample which takes into account the 

foregoing bead-bead harmonic couplings, the interactions between “equal-time” beads in different 

necklaces, and, in the efficient versions, also corrections that yield faster convergences with the 

use of workable P values (see below).3,10-12,49-53 

 The quantum hard-sphere fluid (QHS) has been selected as a probe to illustrate this study. 

The issues addressed in this work are the following: the influence of a thorough canonical 

structural sampling in real space over long run lengths; the overall assessment of the importance of 

grand-canonical corrections to deal with the finite-N effects; and, also, the fixing of significant 

error bars for the isothermal compressibility results arising from OZ2 applications. The outline of 

this article is as follows. Section II describes the basic theory, with an emphasis on the role played 

by external fields in the partition function of the quantum system. Section III contains the 

computational details and Section IV the results and their discussion. Finally, Section V collates 

the main conclusions of this work. 

 

II. THEORY 

A. Statement of the problem 

 The homogeneous and isotropic quantum fluid at equilibrium will be represented by a 

grand-canonical partition function ( , , ).V TµΞ  When exchange can be neglected Ξ  reads as the 

following weighted summation of canonical partition functions4 

{ }0 0

0 0

exp( )exp( ) exp( ) exp( )
!

N N N
N N

N N

NN Tr H d H
N
βµβµ β β

≥ ≥

Ξ = − = −∑ ∑ ∫ r r r    (1) 

where µ  is the chemical potential, and 1 2...N
Nd d d d=r r r r  and 0

NH T U= +  are the 

multidimensional volume element and the Hamiltonian for N structureless particles, respectively. 
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The average number density will be denoted by / .N N Vρ =  Note that no restriction on the form 

of the interactions contained in the U term has been imposed, and U may take any significant 

many-body expression.  It has to be stressed that the indistinguishability factors !N  come from the 

symmetry properties of the complete canonical partition functions, from which one obtains Eq. (1) 

by retaining only the identity permutations when exchange effects can be neglected.2,4 Boltzmann 

statistics is then utilized to describe the system and to deal with quantum dispersion effects. In the 

study of fluids the !N  factors are crucial in that they guarantee the correct transition quantum → 

classical in statistical mechanics (=  factors also appear in the latter case).2,4,43 In this regard, also 

note that for the equilibrium calculations of non-thermal properties in the canonical or the 

isothermal-isobaric ensembles, the corresponding factor !N  may be omitted, as it cancels out 

when computing averages.  

 By considering the effect of an external field acting as ( ),ii
Ψ = Ψ∑ r  after applying P 

times the product property of the canonical density operator one finds 

( ), , 0 , 1

0 1

exp( ) exp / /
!

P
N t N t N t

N N
N t

N d H P P
N
βµ β β +

≥ =

Ξ = − − Ψ∑ ∏∫
/

r r r     (2) 

where ,1N N≡r r  above, ,
1 2 ... ,N t t t t

Nd d d d=r r r r  and the primed product implies 1 1P + ≡  when this 

occurs in the matrix element. Ψ   must vanish at the boundaries of the system and be compatible 

with the existence of eigenstates. Application of the approximation53(c) 

( )0 0exp / / exp( / 2 )exp( / )exp( / 2 )N N N N NH P P P H P Pβ β β β β− − Ψ ≈ − Ψ − − Ψ    (3) 

which is accurate up to 3( )O P−  yields the discretized PI partition function 

, , 0 , 1

1 10 1

/exp( ) exp( / ) exp ( )
!

P N P
N t N t N t t

P N i
i tN t

N d H P
N P
βµ ββ +

= =≥ =

 
Ξ ≈ Ξ = − × − Ψ 

 
∑∑∑ ∏∫ r r r r      (4) 

By defining the external field as one of constant strength f, . ,F ii
Ψ =∑ f r  Eq. (4) can be rewritten 

for the actual system utilizing the coordinates of the PI centroids in the field factor 
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, , 0 , 1
,

10 1 1

/exp( ) exp( / ) ( ) exp ( )
!

P N N
N t N t N t

P N i i CM i F i
iN t i

N d H P d
N
βµ β δ β+

=≥ = =

 Ξ = − × − × − Ψ 
 

∑∑ ∏ ∏∫ r r r R R R R

             (5) 

The physical significance of the process sketched above is guaranteed by the non-negativeness of 

the density matrix at all temperatures in the coordinate representation and also by Trotter’s 

formula,49 which makes the raw primitive approximation for well-behaved operators6 

( )exp ( ) / exp( / ) exp( / ) exp( / )T U P T P U P Pβ β β β− + +Ψ ≈ − − − Ψ     (6) 

exact in the limit .P →∞  It is worthwhile insisting on the fact that the matrix elements contained 

in Eq. (5) are nonnegative quantities, which will be defined in terms of all the positions ,N tr  by 

applying path-integral techniques. The optimum number P guaranteeing statistical convergence for 

properties is assumed hereafter. 

 Note that the appearance of the centroids 1
,

t
CM i it

P−= ∑R r  in Eq. (5) is only related to the 

consideration of the external field of constant strength in the actual quantum partition function. In 

this connection, the PI centroids are functions of the bead coordinates and, as such, one can 

evaluate averages related to these variables [e.g. the two-body correlation 2
12( )]N CMg Rρ  when 

working with the system at 0.FΨ =  On the other hand, the foregoing development gives a precise 

physical meaning to the PI centroids at equilibrium.29 It is here where the use of the grand 

ensemble becomes decisive. Eq. (5) is a classical-like partition function which, through functional 

differentiation with respect to ( ),FΨ R  yields the whole range of correlation functions between the 

PI centroids of the fluid and their related response functions in Fourier space. The first two 

functional derivatives are 

(1)
, 1

1

ln ( ) ( ; )
( )

P F
B N CM F

F

k T δ ρ
δ
Ξ Ψ

− = Ψ
Ψ

R
R

               (7a) 

(1)
, 1 (2) (1) (1) (1)

, 1 2 , 1 , 2 , 1 1 2
2

( ; )
( , ; ) ( ; ) ( ; ) ( ; ) ( )

( )
N CM F

B N CM F N CM F N CM F N CM F
F

k T
δρ

ρ ρ ρ ρ δ
δ

Ψ
− = Ψ − Ψ Ψ + Ψ −

Ψ
R

R R R R R R R
R

                  (7b) 
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where (1)
,N CMρ  and (2)

,N CMρ  are the one-body and the two-body spatial correlation functions, which in 

a weak field can be approximated by the zero field functions /N N Vρ =  and 2
12( ),N CMg Rρ  

respectively. The linear response in the field FΨ  for the PI centroids is the static structure factor29 

(Appendix I) 

( ) ( )12 12 12( ) 1 ( ) 1 expCM N CMS k d g R iρ= + − − ⋅∫ R k R       (8) 

The latter cannot be measured directly in an experiment because the field couples with actual 

particles. However, CMS  can be connected to measurable properties obtainable with scattering 

techniques.32-34,47  

 The exact 2OZ  equation for PI centroid correlations turns out to be formally the same29 as 

that of a classical fluid which is composed of structureless particles (Appendix I).43,46 In the 

absence of the external field (homogeneity and isotropy are assumed) it reads as 

12 12 3 13 23( ) ( ) ( ) ( )CM CM N CM CMh R c R d h R c Rρ= + ∫ R        (9) 

where 1CM CMh g= −  and CMc  is the direct pair correlation function. Note that the complete set of 

classical-like equations OZn  (n =  2,  3, …) for the PI centroids can also be exactly defined.29,41 

This fact extends the usefulness of these PI variables to deal with correlations between particles 

beyond the pair level, either at zero field or under a constant force field. With the use of Eq. (9) 

one writes in Fourier space29 

( ) 1( ) 1 ( )CM N CMS k c kρ −= −                    (10) 

where ( )CMc k  is the Fourier transform of 12( ).CMc R  Besides, fluctuation theory yields the central 

equation of state29 

22

( 0) N
CM N B T B

T

N N
S k k T k T

N p
ρρ χ

−  ∂
= = = =  ∂ 

               (11) 

where Tχ  is the isothermal compressibility. Given that the linear response radial function between 

pairs of PI centroids (i.e. the pair radial function CMg  at 0)FΨ =  is exactly linked to the 
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isothermal compressibility, that function can be determined by utilizing the propagator in the 

absence of the external field, , 0 , 1exp( / ) .N t N t
NH Pβ +−r r  Therefore, the particular form to be 

used for this propagator is now a matter of convenience (e.g. primitive, pair actions, etc.), as the 

problem has been transferred to the isolated fluid (linear response). In this regard, the rates of P 

convergence and other features11 should be taken into consideration when planning the 

computations to be carried out. Besides, one can always fix the number P of beads which is best 

suited for the purpose of all these calculations, and no inconsistencies between the above centroid 

derivation and the final isolated system calculations arise.  

 It is worth remarking that Eq. (11) shows no explicit dependence on the interactions 

contained in U, and hence it is completely general.56 This fact stems directly from the particle 

number fluctuations and makes Eq. (11) a powerful tool. As a consequence, the final centroid 

scheme, Eqs. (9)-(11), can also be applied with no changes when the Hamiltonian includes 

interactions beyond the atom-atom level. Note that, the action of the field as obtained through Eqs. 

(3)-(5), and also the Ψ-functional manipulations [Eqs. (7) and Appendix I], are clearly independent 

of the interactions between the particles.28,29 These interactions will only affect the isolated system 

0H  calculations. In connection with this, recall that: a) U is diagonal in the coordinate 

representation; and b) if higher-order interactions were taken into account, their effects would 

contribute to shape the CMg  pair radial function which defines unambiguously .Tχ   

 Once the 12( )CMg R  function has been computed, the solving of Eq. (9) can be achieved in a 

very convenient way with Baxter’s partition54 and Dixon-Hutchinson’s variational procedure,55 a 

method that will be termed BDH for brevity. In sharp contrast to other OZ2 methods,43 the 

numerical application of BDH does not depend explicitly on the potential U acting between the 

particles involved, which makes BDH most suitable for dealing with a wide range of situations, in 

particular PI-CM correlations. It will be assumed in what follows that the implicit finite-size 

effects are negligible and that it will suffice to correct 12( )CMg R  for the explicit finite-size effects 

(hereafter finite-N effects). This task can also be accomplished with the use of BDH and although 
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full details of the BDH implementation in the canonical ensemble can be found elsewhere,32,35,36 a 

short account of this method is needed for the current purposes. 

B. BDH method 

 By assuming the existence of a cut-off at a distance R, such that 12( ) 0c R =  for 12 ,R R≥  and 

that 12( )h R  is known for 120 ,R R≤ ≤  Eq. (9) can be transformed into the pair of coupled 

equations54 

( )12 12 12 12 12
0

( ) ( ) 2 ( ) ( );
R

NR h R Q R dr R r h R r Q rπρ′= − + − −∫  12 0R >            (12a)           

12
12 12 12 12 12

12

( ) ( ) 2 ( ) ( ); 0

0;

R

N
R

R c R Q R dr Q r R Q r R R

R R

πρ′ ′= − + − < <

= >

∫             (12b)            

Q is an auxiliary function continuous at 12 ,R R=  and such that 12( ) 0Q R =  for 12 .R R≥  It is related 

to /Q dQ dr′ =  through 

12
12( ) ( )

R

R
Q R Q r dr′= −∫                  (13) 

Eq. (12a) is an integral equation which gives ,Q′  and via Eq. (12b) ,Q  12( )c R  and ( )c k  can be 

obtained, with the proviso that an extrapolation to obtain 12( ) 0c R =  has been carried out [also 

assumed is ( ) 0].c R =  

 The foregoing equations contain the basic results arising from the Wiener-Hopf 

factorization put forward by Baxter for dealing with disordered fluids through Eq. (9). Although, 

for classical hard spheres the above equations yield the Percus-Yevick exact solution, Baxter’s 

insightful development needs some extra conditions and further elaboration to obtain accurate 

results in the general case. 

 In this regard, Baxter already noted that specifically 

{ }0 0
( 0) 1 2 exp( ) ( ) 0

R

N
k

Q k dr ikr Q rπρ
=

= = − >∫               (14a) 

is a necessary condition related to some intricacies of the convergence of integrals in the auxiliary 

complex plane ,k x iy= +  and that can be related  to the isothermal compressibility as 
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{ } { }2

0

1

( 0) ( 0) 1 ( )
R

NS k Q k d c rρ−
−

= = = = − ∫ r                (14b)           

Therefore, Eq. (14a) is a compulsory test for the solutions arising from Eqs. (12). Furthermore, 

Dixon and Hutchinson55 pointed out two additional problems with Eqs. (12): i) that arbitrary R 

values do not necessarily preserve the continuity of 12( )h R  at 12R R=  (continuity of the potential 

is assumed); and ii) that the behavior of Eqs. (12) at small 12R  values may produce highly 

inaccurate results for 12( ).c R  The solutions that the latter authors gave to i) and ii) are summarized 

in what follows: 

a) The condition for the cut-off distance R to preserve the h continuity is 

( ) 0,Q R′ =  or, at worst, [ ]2( ) /Q R R′ =minimum                (15) 

These proper cut-off R values will be denoted by ZR  (zeros) hereafter. In this connection, one 

notes that although the very existence of these zeros has not been proved analytically, previous 

work by the present author indicates that they actually show up in these calculations. There may be 

one or, in general, more than one 32,35,36,ZR  and the solution to this cut-off R problem is not 

expected to be unique. 

b) The procedure giving 12( )Q R′  is based on the least-squares minimization of a non-negative 

merit function F which takes into account the behavior of Eqs. (12) for 0.r ≥  By using a 

discretization of the range 0 r R≤ ≤  to n points { } 1,
,i i n

r
=

 one obtains a linear system in the 

associated unknowns { } 1,i i n
Q

=
′  

1

0; 1,2,3,...,
n

ij j i
i jR

a Q b i n
Q =

 ∂ ′= + = = ′∂ 
∑F                 (16) 

where ija  and ib  depend on the { } 1,i i n
Q

=
 values. The solution of this system may thus be found 

iteratively. Reliable limits for this F minimization, typically 6 45 10 10 ,− −× ≤ ≤F  are known to be 

reached generally in 300  iterations at the most.32-36 From a practical point of view, the 

determination of the ZR  zeros can be accomplished by analyzing a series of trial cut-off distances 
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{ } ,TR  within / 2R Lσ < <  with L being the length of the simulation cubic box. The parameter σ  

is a short-range distance that may be set arbitrarily, although a good choice is a hard-sphere 

diameter for the particles. By using the tabulation { }, ( ; )T TR Q r R′  and applying Eqs. (12)-(14) one 

obtains the set of different possible solutions { }, ( ; ), ( ; ) .Z Z Z Z
R Q r R c r R′  The latter set poses new 

problems, as one is forced to analyze these results further to obtain a well-defined answer to this 

problem.  

C. Further problems 

 If the range of distances, determined in the ( , , )N V T  ensemble, for 12( )h R  is 

120 / 2,R L≤ ≤  one might expect to have a fine description by using the results corresponding to 

the ZR  zero closest to / 2.L  However, although the longer the ZR  the better the results for 12( )c R  

would seem, the rapid decay of the latter function makes other lower ZR  as significant as, or even 

more than, the longest one. Note that PIMC canonical simulations bear the burden of the (1/ )O N  

asymptotic behavior in the pair radial correlation functions,44,56 which will have a non-negligible 

impact connected to the finite-N effects on the results. To avoid the daunting task of carrying out 

extensive grand ensemble simulations, the ( , , )N V T  calculations,57 appropriately treated, can 

provide a broad solution not only to the computation of ,Tχ  but also to the fixing of static 

structure factors ( )S k  out of any direct PI simulation scheme. 

 Working in the canonical ensemble and with a sufficiently long L, the ZR  zeros relatively 

close to / 2L  are likely to be affected by the finite-N effects, which can deteriorate the accurate 

computation of the low-k range of wave vectors, and thus of the Tχ  estimates. Note that this 

situation would be much worse if the direct simulation of ( 0)S k =  was undertaken, owing to the 

drastic limitation imposed by the finite L on small wave vectors.6,43 On the other hand, lower ZR  

zeros contained within a mid-upper range of distances are in general expected to be much less 

sensitive to finite-N effects. In fact, in most of the calculations carried out so far with the BDH 
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method30(a),38,41 it has been observed that the Tχ  computed values are distributed about a mean 

value along a mid-upper range of zeros (K in number). On the other hand, the complementary 

measure of the inclusion of grand-canonical corrections to the canonical pair correlation 

function44,58 improves its long distance behavior, while leaving unaltered the BDH basic 

features.41,42 All of this suggests that, after the application of the combined effect BDH +grand-

canonical corrections to the pair correlation function, one should employ some sort of average over 

an appropriately defined mid-upper subset of the { },Z TR χ  values obtained to produce a final 

estimate of .Tχ  Last but not least, there still remains the difficult issue of fixing reliable error bars 

for the isothermal compressibility computed in this way that involves integral equations.  

 Previous works by this author have dealt to some extent with all the foregoing problems, as 

yet the error bar issue remains unsolved.30(a),38 A proper and consistent treatment of the error bars 

is central to assess the relative numerical accuracy of the current Tχ  route as compared to that of 

the standard ( , , )N V T  virial pressure method. The following are the proposed actions to reach a 

more precise answer to this complex situation at a given state point. 

D. Proposed actions 

a) The first most obvious action is two-fold and is related to the initial PIMC calculations: the use 

of a large sample size SN  (number of actual particles), and the increase of the run length. By so 

doing, one could reduce the finite-N effects rendering them negligible from a practical point of 

view, and also obtain improved results for the fine long distance details which define the low-k 

behavior. 

 b) The second action is intended to alleviate the burden of using a large SN  and consists in 

including grand-canonical corrections to the canonical centroid pair radial correlation function. It 

is expected then that a compromise between the use of a moderately large sample size and the 

“harnessing” of the significant part of the finite-N effects may be reached. A straightforward and 

valuable way to achieve this end is the iterative process put forward by Baumketner and 

Hiwatari,58  which treats the canonical output 12( )CMg R  as 
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( 1)
( )

12 12 max
( 0)( ) ( ) 1 ; 1, 2,3,...,

m
m CM

CM CM
S

S kg R g R m m
N

− =
= + = 

 
            (17a) 

When convergence is reached the process Eq. (17a) yields the approximation to the grand 

canonical function of the corresponding open system 

max( )
12 12( ) ( )mGC

CM CMg R g R≅                             (17b) 

This method (GC) assumes that there is an independent way to obtain ( 0).CMS k =  The zero step is 

given by 12( )CMg R  and its BDH associated value (0) (0);CMS  the first step uses 12( )CMg R  and (0) (0)CMS  

to obtain the corrected function (1)
12( ),CMg R  with which (1) (0)CMS  can be fixed; and so on. For normal 

quantum fluid state points, and with the use of BDH to obtain ( 0),CMS k =  the GC process is 

known to converge for practical purposes in a few iterations ( 5).m ≤  A stable final pair function is 

produced and is taken as the approximation to the grand canonical function 12( ).GC
CMg R  This process 

is also known to yield physically significant results not only for the isothermal compressibility, but 

also for other properties when applied to the appropriate pair function (e.g. instantaneous 

correlations and static structure factor).41,42  

c) The third action is related to the definition of the error bars in Tχ  which arise from the statistical 

uncertainties in the PIMC mean canonical function 12( )CMg R , or in the mean 12( ).CMh R  The latter 

will de denoted by 12( )CMh R  hereafter. Given the data { }, ,Z TR χ  a statistical population of 

significant values for ZR  and another statistical population of Tχ  are assumed to occur. If the total 

run length is split into BM  equal-length simulation blocks, each of which giving the subaverage 

α -block structure , 12( ),CMh Rα  one finds the following structural estimates59 

12 , 12
1

1( ) ( )
BM

CM CM
B

h R h R
M α

α=

= ∑                 (18a) 

( ) { }22
12 , 12 12

1

1( ) ( ) ( )
1

BM

CM CM CM
B

s h R h R h R
M α

α=

= −
− ∑              (18b) 
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The analysis of the propagation of the variances given in Eq. (18b) throughout the complete 

iterative procedure appears to be a formidable task. There are many stages and, what is more, there 

is also the fact that an integral equation relates the unknown solution to its values over the region 

of definition, including the boundary (which is defined by ).ZR  Therefore, the search for a 

straightforward, yet physically significant, alternative to obtain error bars in the final results for 

Tχ  seems worth pursuing.  

 In this connection, a possible alternative consists in performing the following three main 

steps (see Appendix II for the detailed procedure): 

i) Analyze with BDH+GC the mean structure 12( )CMh R  and compute the global estimates 

,
1
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where GCK  stands for the number of significant mid-upper zeros obtained, which define the final 

mid-upper range of zeros 1 , .GCZ Z ZK
R R Rν≤ ≤  The latter is identified by the slight oscillations of 

, .T νχ  At each GC m step use the average over the ( 1)
, (0)m

CMS ν
−  in Eqs. (17). 

ii) Analyze with BDH+GC every block structure , 12( )CMh Rα  and compute the block estimates ,T αχ  

and ( )2
, ( )Ts η αχ  in an analogous fashion to Eqs. (19) and (20). Next, compute the pooled quantities 

that take into account the different numbers ( )GCK α  of zeros per block obtained 
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iii) Compute the final estimates of the error bars for Tχ  as 

( ) ( ) ( )2 2
T T T T Ts sε χ χ χ χ χ= − + +                  (23) 

where independence between the results obtained in i) and in ii) is applied.  

 Eq. (23) is an estimator that tends to the essential dispersion ( )Ts χ  with the gathering of 

more and more statistics, since the other contributions will tend to zero (see Appendix III). The 

rationale behind ( )2
Ts χ  is that it is expected to diminish by enhancing statistics. This behavior 

would result from the better definition of the significant mid-upper range of ,ZR ν  zeros and of their 

associated , .T νχ  When employing sufficiently long runs whether each of the ,T νχ  tends to the 

same common value, i.e. ,Tχ  or it is their average which , ,T Tνχ χ→  is a matter difficult to 

foresee. It might even occur that the whole { },T νχ set showed steady, though very small, 

oscillations about the value ,Tχ  which is the effect to be observed in normal practice. In any 

case, the actual behavior can be extracted from the computations, and ( )Ts χ  and ( )Tε χ  will 

be useful as long as they remain sufficiently small in comparison to Tχ .  An indication of the 

reliability of the whole process can be obtained if the expected relationship 

( )2
Ts χ < 2 ( ) ( )GC

Ts K
α

χ α∑  holds, which would mean that the precision in the fixing of Tχ  

becomes higher by enhancing statistics. A more stringent test is given by the comparisons 

( )2
Ts χ < 2

, ( )( ),Ts η αχ  1, 2,..., .BMα =  In this regard, note that one is only allowed to employ the 

t-Student distribution [step i)] and Fisher F tests [step ii)] if the involved populations { }Tχ  follow 

Gaussian behavior. However, such behavior does not seem to be the general case (see below), and 

one should resort to non-parametric tests (e.g. sign test) to carry out such comparisons.59 
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III. COMPUTATIONAL DETAILS 

 The calculations carried out in this paper have been based on PIMC- ( , , )N V T  simulations, 

for which (P convergence is reached) the canonical partition function is given by 

( ) ( )
3 / 2

10
, ,2

1 1

exp( ) ! exp
2

NP N P
t

N N N P i N P
i t

mPZ Tr H Z N d Wβ β
πβ

−

= =

 
 = − ≈ = −   

 
∏∏∫ r

=
            (24)  

The necklace centroid pair structures CMg  are defined through ( ... = canonical average) 

2
12 , 1 , 2 12 1 2( ) ( ) ( ) ;N CM CM i CM j

i j
g R Rρ δ δ

≠

= − − = −∑ R q R q q q               (25) 

 For completeness, two more significant pair radial correlations have also been computed. 

These are: ( )ETg r  which stands for the instantaneous pair correlation function (ET = “equal 

imaginary time”) 

2
12 1 2 12 1 2

1

1( ) ( ) ( ) ;
P

t t
N ET i j

i j t
g r r

P
ρ δ δ

≠ =

= − − = −∑∑ r q r q q q             (26) 

and the total continuous linear response structure ( )TLRG r  which is the overall bead-bead average 

( ) ( ) ( )2 2
12 12 12( ) ( ) ( )N TLR N SC PLRP G r P s r g rρ ρ= + =  

1 2 1 2
1 ( ) 1 ( ) 1

( ) ( ) ( ) ( ) .
N P P

t t t t
i i i j

i t t i j t i t j
δ δ δ δ′ ′

′ ′= ≠ ≠ = =

− − + − −∑ ∑ ∑ ∑ ∑r q r q r q r q              (27) 

Both types of radial functions can be determined through experiments and shape the actual linear 

response functions of the system to the action of an external field. For ( )ETg r  the field is of a 

localizing type (i.e. defined by a singular δ  potential, as in elastic neutron scattering), whereas for 

( )TLRG r  the field is a continuous function of the position.27-29 The static response functions read as 

( )12 12 12( ) 1 ( ) expET N ETS k d h r i rρ= + − ⋅∫ r k                  (28) 

( ) ( )1
12 12 12 12( ) ( ) ( ) expTLR N SC PLRS k P d s r h r i rρ−= + + − ⋅∫ r k                (29) 

These two functions, together with ( ),CMS k  can be connected via “sum rules” to the dynamic 

structure factor ( ) 47,48,60, .S k ω  
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A. PIMC simulations 

 The QHS system (classical collision parameter )σ  has been studied at 45 state points for 

ranges of fluid density conditions, * 30.1 ,N Nρ ρ σ≤ =  compatible with the selected de Broglie 

wavelengths * 2 1/ 2/(2 ) :B Bh mk Tλ π σ=  * 0.2,Bλ =  0.4,  0.6 , 0.8,  and 2. 61  The increments in density 

have been taken as * 0.1,Nρ∆ =  0.025, and 0.015, depending upon the region considered. Within the 

range * 0.8Bλ ≤  state points inside the metastability regime30(a) have also been analyzed with a two-

fold purpose. First, to investigate the application of BDH+GC under metastable conditions, as 

some numerical problems were observed in previous works. Secondly, to obtain better results for 

the fluid which allow one to study further the fluid-solid phase transitions. The onset of the fluid 

metastablity has been taken as follows: 30(a) for * 0.2,Bλ =  * 0.75;Nρ ≈  for * 0.4,Bλ =  * 0.665;Nρ ≈  for 

* 0.6,Bλ =  * 0.55;Nρ ≈  for * 0.8,Bλ =  * 0.515.Nρ ≈  The computations along * 2Bλ =  at * 0.1,Nρ =  0.2, 

and 0.3 have been carried out for completeness. Although the degeneracy parameter along * 2,Bλ =  

3 ,B Nγ λ ρ=  is close to or greater than unity, this isotherm can be mapped onto fluid helium-4 at 

4 ,T K≈  as discussed by Runge and Chester.30(b) Accordingly, exchange interactions have also 

been neglected, the purpose of these computations being to investigate the application of 

BDH+GC under very strong diffraction effects in the stable fluid phase.  

 For the path-integral N P×  hard-sphere system the pair action put forward by Cao and 

Berne51 has been selected. Apart from the PI centroid correlations the main targets have been the 

instantaneous function ( )ETg r  and the virial p pressure, which is given by 

2 3 2 2

2

( )2
3 3

N ET

r

d g rEp
V m dr σ

ρ πσ

= +

 
= +  

 

=                   (30) 

where E stands for the internal energy and the second term is known as Fierz’s term.62 Grand 

canonical corrections Eqs. (17) to the foregoing calculation are expected to be negligible. This fact 

can be understood by realizing that the energy contribution decays exponentially with the distance, 
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and that Fierz’s term is an effect localized at “classical contact”. The reader is referred to Refs. 35 

and 42 for the rest of the related formulas for this propagator.  

 To compute real system properties connected to correlations when one starts from first 

principles and uses general interaction potential energies U, involving interactions beyond the pair 

level, the over-counting of effects must be avoided. The latter is clearly a task to be accomplished 

with atomic structure calculations, and computations can be performed with path integral 

techniques. Nevertheless, in the case of model systems, such as the composed of quantum hard 

spheres, to the knowledge of this author no special propagators even for triplet “collisions” have 

been obtained. On the other hand, for many purposes this absence may not be crucial, since pure 

triplet effects in this system are expected to play a significant role only at very high densities.6 This 

surmise finds support in the fact that quantum hard spheres repel each other before “classical 

contact” occurs.  

 Cao-Berne propagator is more efficient than the former “image” propagators,3,50 while 

being much easier to implement to carry out extensive computations than the more recent 

propagator proposed by de Prunelé.52 In addition, Cao-Berne propagator is expected to be 

sufficiently accurate for treating the magnitude of most of the quantum effects considered herein, 

as indicated by its extension of the results arising from the image propagators and the well-known 

semiclassical methods.63 Besides, as this article is mainly concerned with the methodological 

aspects of the OZ2 direct calculation of isothermal compressibilities, the selection made can be 

regarded as most significant for these purposes. 

 PIMC simulations for the QHS fluid have employed the sample size SN P× = 500×12, 

except for those at  * 2Bλ =  for which SN P× =432×24. Both P discretizations have been checked 

to give PIMC practical convergence. The particle mass and diameter have been set at the values 

28.0134m =  amu and σ = 3.5 Ǻ. The algorithm employed has been that of the necklace normal 

modes,64  and the same procedure explained elsewhere has been followed.22(c) For the stable fluid 

state points, initial fcc (or bcc for 432)SN =  lattices have been employed to start their simulations. 
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For the metastable fluid state points, their corresponding initial configurations have been set by 

rescaling the coordinates of the particles of a typical equilibrated configuration belonging to the 

state point at the immediately lower density. After equilibration the run lengths have been 800 

kpasses for the state points within 0.2 ≤ * 0.8,Bλ ≤  and 1900 kpasses for the state points at * 2Bλ =  

(1  kpass = 310 SN P×  attempted bead moves). In order to compute the subaverages each run has 

been subdivided in ten equal-lentgh blocks, i.e. 1, 2,..., 10.BMα = =  The number of PIMC 

configurations analyzed for computing structures have been 48 10×  ( 12)P =  and 51.6 10×  

( 24).P =  These configurations have been selected at regular intervals along the run, the bin width 

being set to 0.1r∆ =  Ǻ for the distance range scanned / 2L  (with the exceptions mentioned below 

for ).ETg  

 In evaluating the second derivative at “classical contact” in Eq. (30) there are always some 

elements of uncertainty as the density becomes higher, which are related to the width of the bins 

used to gather statistics near the hard core. In this work " ( )ETg σ +  has been calculated through 

least squares fits by applying the behavior ( )2( )ETg r a r σ= −  in the vicinity of 63(c).r σ= +  The 

bins involved in these calculations of " ( )ETg σ +  have been centered at 3.505, 3.515 and 3.525 Ǻ 

[ ( ) 0].ETg σ ≡  The results obtained for the intervals (3.5 /r≤ Ǻ )3.515≤  and (3.5 /r≤ Ǻ )3.525≤  

have been combined via the weighting of averages,59 which smoothes the results and produces a 

lower variance.  

 Table I gives some salient results for the first peak regions of the ET and CM pair 

functions. The error bars reported are one-standard deviation, which has been obtained from the 

corresponding subaverages. These error bars remain lower than 0.2% (ET) and 0.6% (CM). For 

long distances (≅ 15 Ǻ) the error bars remain lower than 0.4% in all cases. Fierz’s potential 

energy term in Eq. (30) has been obtained with a relative precision that diminishes with decreasing 

densities. For example, at * 2Bλ =  one finds for the Fierz’s contribution to the compressibility 

factor /pV RT  the following results: a) * 0.1,Nρ =  1.036 0.082;±  b)  * 0.2,Nρ =  4.042 0.140;±  
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and c)  * 0.3,Nρ =  10.441 0.270.±  With increasing densities this term becomes more and more 

important when calculating the virial pressure, as one can see by comparing the latter results with 

the following kinetic energy contributions to / :pV RT  a) * 0.1,Nρ =  1.588 0.008;±  b)  * 0.2,Nρ =  

2.967 0.010±  c)  * 0.3,Nρ =  5.525 0.017.±  (The errors quoted are one-standard deviation). 

B. BDH plus GC iterations 

 BDH calculations for the pair necklace centroid correlations have been performed using 

two independent partitions in Eqs. (12), 220,440,n =  at equally spaced points within the selected 

range of distances, /Rσ ≤ Å 15.5.≤  The number of trial distances TR  (equally spaced) has been 

set to 65. In practice, the latter partitions force one to work with kernels sized (220 220)×  and 

(440 440)×  when solving Eq. (12a).32,35,55 The conditions for convergence of the BDH merit 

function have been set to 65 10−≤ ×F  or 300  iterations at the most, whichever occurs first. The 

latter condition guarantees 410−≤F  for most of the cases investigated, which is known to yield 

sufficiently accurate results in Fourier space. More details of these calculations can be found in 

Appendix IV. 

 The mid-upper range of significant distances for the ZR  zeros to appear has been set to 

8.5 /R≤ Å 15.5,≤  which has been found to serve as a common range for all the state points 

investigated. The implicit finite-size effects have been neglected and the GC iterations have been 

carried out up to max 5,m =  which has produced a precision 710−≤  for the individual estimates 

( 0)CMS k =  at each .ZR  To grasp the reliability of these selections Table II contains the results for 

the (0)CMS  values at *( 0.6,Bλ = * 0.5).Nρ =  Typical behaviors at the stable and metastable fluid 

state points can be summarized by saying: i) the GC iterations generally increase the number of 

ZR  zeros, with respect to the initial BDH ( 0)m =  results, an effect more noticeable for lower 

densities; ii) the first GC step produces most of the correction to ( 0);S k =  and iii) there is a close 

clustering of the dimensionless compressibilities about a mean value (0) .CMS   
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 It is worth stressing that a single BDH+GC application is a very fast task in computational 

terms. Roughly speaking, on a modern-day average computer it may take a time in between 

seconds (low- *
Nρ  and low- *

Bλ  state points) and some hours. (For state points deep inside the 

metastablity regime it may take one day). It is then a low-cost operation with a wide range of 

answers and potential applications through the knowledge of 46( ).c r  

 

IV. RESULTS 

A. Isothermal compressibilities 

 The general trends shown by the two n-partitions employed have been found similar. The 

quantitative differences between both numerical conditions are generally small, although they 

become noticeable at the highest densities, where the (440 440)×  results become more accurate. 

Table III contains representative final results obtained for the isothermal compressibility along the 

five isotherms. It is worthwhile to remark that in using BDH( 0)m =  the very existence of ZR  

zeros for the 12( )CMh R  centroid correlations is a numerical fact in all the cases investigated. With 

the exception of state point *( 2,Bλ = * 0.1),Nρ =  for which the condition [ ]2( ) /Z ZQ R R′ =minimum 

has been needed, the number of ZR  zeros arising from the 0m =  calculations have always been 

greater than one. One might expect that a thorough sampling would influence this BDH feature, for 

instance, by reducing the number of zeros. Roughly speaking, such an effect is observed in the 

current calculations when the results arising from “mean” and from “blocks” are considered, but 

not to the extent of making this number close to unity. This is also to be compared with Ref. 36, 

where the sampling was much less demanding ( 125,SN =  3,6,P =  and 54 kpasses) and more than 

one ZR  was obtained for * 0.3.Nρ ≥   

 The GC iterations produce, in most of the state points, more zeros than the only application 

of BDH at step 0.m =  Therefore, one finds zeros within the significant range, 8.5 /R≤ Ǻ 15.5,≤  

which would otherwise be either spoilt or hidden by the finite-N effects. Besides, this behavior 
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lends support to the approach proposed in this article to evaluate errors in the isothermal 

compressibility [Eq. (23)]. It also indicates that, in running grand ensemble simulations, a number 

of zeros significantly greater than unity would be obtained via BDH. Only reference to the zeros 

contained in that mid-upper range of distances, or to the largest one if 8.5ZR <  Ǻ, is made in 

Table III. It is interesting to highlight that ( 0)CMS k =  diminishes as *
Bλ  increases, which agrees 

with the expected theoretical trend ( 0) 0S k = →  as 0.T → 60 

 Putting aside just a few exceptions at low densities and de Broglie wavelengths, GC 

corrections increase the isothermal compressibility obtained at stage BDH( 0)m = , an effect that 

turns out to be more important with the quantum effects. For example, the magnitude of the GC 

corrections is: a) 0.3% at *( 0.2,Bλ =  * 0.1),Nρ =  and 6% at *( 0.2,Bλ =  * 0.805);Nρ =  b) 1% at 

*( 0.8,Bλ =  * 0.1),Nρ =  and 3.5% at  *( 0.8,Bλ =  * 0.545);Nρ =   and c) 1% at *( 2,Bλ =  * 0.1),Nρ =  and 

2.7% at  *( 2,Bλ =  * 0.2).Nρ =  The pattern shown by the results arising from the GC applications to 

the groups of ten block structures , 12( )CMh Rα  is analogous. This cumulative increasing in Tχ  will 

lower the final fluid pressure computed with Eq. (11). 

 On the other hand, there is a close proximity between Tχ  and .Tχ  Also, along the whole 

series of calculations one finds the expected behavior: ( ) ( )2 2 ( ) ( )GC
T Ts s K

α
χ χ α∑ 1.<  For 

example, at * 0.5Nρ =  (440 440)×  that quotient is: a) ≈0.03 at * 0.2;Bλ =    b) ≈0.08 at  * 0.4;Bλ =  c) 

≈0.1 at  * 0.6;Bλ =  d) ≈0.6 at  * 0.8;Bλ =   and e) ≈0.4 at *( 0.2,Nρ =   * 2).Bλ =  It is worth remarking 

that this behavior is systematic, except for state point *( 0.3,Nρ =   * 2)Bλ =  where the quotient is 

1.≈  

 As regards the statistical distribution of the Tχ  values, every entire set { }, ( ) 1, B
T Mη α α

χ
=

 for 

each state point obtained in this work has been analyzed for consistency with the Gaussian and the 

log-normal densities. To this end, use of the Kolmogorov-Smirnov test has been made.65 Although 

the samples are large (in between 65 and 184 elements), the obtained results show rather diverse 
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patterns and do not lead to any general conclusive identification of a normal population. Therefore, 

the complementary comparison at each state point investigated between ( )Ts χ  and each 

individual block dispersion ( ), ( ) ,Ts η αχ  α = 1, 2,…, 10, has been made by using the sign test.  In so 

doing, deviations from the behavior ( )Ts χ < ( ), ( )Ts η αχ  have been sought for.  

 Out of the ten cases per state point one finds along each isotherm the following behaviors. 

Along * 0.2Bλ =  no deviations are detected for most of the state points, and at some of them at high 

densities only one deviation appears. Along * 0.4Bλ =  the same general result is obtained, although 

at some state points at high densities one or two deviations appear. Along * 0.6Bλ =  and * 0.8Bλ =  

the number of deviations is 2,≤   with the exception of *( 0.8,Bλ = * 0.5)Nρ =  where 3 deviations 

appear. Along * 2Bλ =  the number of deviations is 3 at * 0.1Nρ =  and 0.2, and 5 at * 0.3.Nρ =  

Application of the robust sign test indicates that for * 0.8,Bλ ≤  and with probability 95%,≈  one 

cannot reject (may accept) that ( )Ts χ < ( ), ( )Ts η αχ  for the observed behavior, since the 

probability of random appearance of two negative deviations, at the most, is ≈0.055 (i.e. usual 

critical level 0.05).=  At  *( 0.8,Bλ = * 0.5)Nρ =  and at *( 2,Bλ = * 0.1, 0.2)Nρ =  the situation may be 

regarded as reasonably satisfactory, since the probability of not rejecting the proposed behavior 

turns out to be 83%.≈  The extreme case appearing at state point *( 2,Bλ = * 0.3)Nρ =  presents a 

probability of no rejection that dramatically diminishes to ≈38%, which is in accord with the 

abovementioned ratio of variances 1.≈  

 Putting the foregoing results together one concludes that, for the overwhelming majority of 

the present results (44 state points out of 45), the analysis performed gives significant, or at least 

valuable, answers regarding the error bars in the Tχ  computed. The final error bars ( )Tε χ  Eq. 

(23) remain very well controlled (Table III) and their relative importance to the estimates Tχ  can 

be summarized as follows. First, for the stable fluid state points the ( )Tε χ  values stay generally 
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below 1-2%. Second, the ( )Tε χ  values show a rise with the density as the fluid conditions 

approach and enter the metastable regions, but they remain lower than 4.6%, which is the highest 

deviation obtained *( 0.4,Bλ = * 0.695).Nρ =  In this connection, small departures from purely 

monotonic behaviors are also observed as the density increases. Clearly, as the quantum effects 

increase, larger block sizes are needed to improve further the accuracy in this sort of calculations.  

B. Equations of state 

 Table IV contains representative results for different versions of the fluid equation of state 

(see Ref. 61 for full data). These results are to be compared between them and with those reported 

in Refs. 28, 30(a) and 36, where the sample sizes employed were ( 500 12)SN P× = ×  and 

( 125,SN = 3,6),P =  and the gathering of statistics was far from being so complete. Errors (one-

standard deviation) in the energies and virial pressures have been fixed with the corresponding 

sub-averages.  

 For * 0.8Bλ ≤  there is a good agreement for the mean total internal energies computed 

herein and those previously reported, although the present error bars are significantly smaller. Four 

compressibility factors /PV RT  are shown: the one obtained through the virial formula Eq. (30), 

those obtained through BDH+GC ( 5)m =  with the two kernels employed, and that obtained 

through only the initial BDH application [ ( 0)]GC m =  with the largest kernel. These results also 

show an excellent overall agreement between the four / ,PV RT  albeit a number of significant 

details have to be mentioned. Firstly, the GC ( 5)m =  corrections diminish /PV RT  and are more 

important with the density, reaching 4%≈ −  with respect to 0m =  for some metastable fluid state 

points. Secondly, for the stable fluid state points there is little influence of the BDH kernel size on 

the error bars and also on the /PV RT  mean values. In this connection, one observes that if the 

kernel is enlarged, slightly better accuracy is obtained when the metastable regime at the lowest 

temperatures *( 0.8, 2)Bλ =  is approached. Thirdly, by increasing the density along every isotherm 

one observes that the BDH-GC (440×440) calculations begin to yield much smaller error bars than 



 25

those of the virial estimates, but this trend may become less pronounced, or even reversed, at some 

high density metastable fluid state points. 

 The isothermal compressibilities that can be calculated from the /PV RT  virial values 

agree reasonably well with those of BDH+GC( 5),m =  although their error bars turn out to be 

larger. For example, using numerical differentiation (e.g. Stirling’s, Richardson’s extrapolation) 

for the virial data, the values Tχ / 3 110 bar− −  obtained are: a) at * *( 0.8, 0.53)B Nλ ρ= =   virial= 

7.831± 0.989, BDH+GC= 7.452±0.207; b) at * *( 0.8, 0.3)B Nλ ρ= =  virial=67.560± 2.590, 

BDH+GC= 68.388±0.317; and c) at * *( 2, 0.2)B Nλ ρ= =  virial= 343.611± 8.898, BDH+GC= 

354.038±4.977. 

 As regards the comparison of the /PV RT  values based on BDH+GC with those obtained 

in previous CM-BDH ( 0)m =  calculations,28,30(a),36  the current ones appear systematically lower 

because of the higher isothermal compressibilities obtained. In this regard, the discrepancies are 

more important with increasing densities as indicated by the following results:61 a) 8%≈ −  at  

*( 0.2,Bλ =  * 0.775);Nρ =  and b) ≈−2% at *( 0.8,Bλ =  * 0.530).Nρ =  Therefore, some repercussions 

on the fluid-solid equilibria of this system, as reported in Ref. 30(a), may then be expected from 

the current fluid results. 

C. Structural results 

 Finally, and for further reference, Figs. 1 to 3 show some structural features at state point 

*( 2,Bλ =  * 0.2)Nρ =  with the kernel (440 440).×   

 Fig. 1 illustrates the convergence attained in the isothermal compressibility by displaying 

the close proximity between the centroid direct correlation functions obtained. Only the ( )CMc R  at 

10.056ZR = Å and at 14.315ZR =  Å are shown, since the intermediate results evolve in a very 

smooth fashion and the details cannot be seen on the scale of the graph. Fig.2 shows the pair radial 

correlation functions (CM, ET and PLR) and, at this point, it is worthwhile to dwell a little on the 

differences between these three types of radial functions. 
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 Firstly, the CM-ET/PLR comparison reveals a much more structured function for the 

centroids, which can be understood by noting that they “mimic” a fluid at a higher density than the 

actual one, as every centroid is embedded into a “shell” of hard beads. This situation is somewhat 

similar to that occurring in some molecular fluids. For example, in liquid 4CH  the intermolecular 

radial function ( )g C C−  -the “centroid” function- shows higher peaks and larger oscillations than 

( )g H H− -the “PLR” function-.66 In a sense, the CM function is “more” classical than the ET or 

the PLR functions,31,47 which display fully the well-known quantum smearing out of the classical 

features (diminished peaks, raised valleys, and rightward shift). Moreover, note that the CM 

function incorporates quantum effects, which can be checked by comparison with the 

corresponding classical radial function that: a) may show its features shifted inwards with respect 

to CM (e.g. hard-sphere fluid);25 or b) can be even more structured than CM (e.g. liquid para-

hydrogen,47 gaseous helium-3).41 

 Secondly, the ET-PLR comparison shows that ET vanishes at ,r σ= +  as no tunneling is 

possible, whereas PLR appears to be “penetrating” inside the hard core. The latter fact is related to: 

a) the linear response from the fluid to a continuous weak external field;25,28 and b) sum rules 

involving the dynamic structure factor.48,60 Although PLR is more “smeared out” than ET, because 

the former involves more centers for the average, one has to be aware that in the PLR case no 

actual invasion of the hard core takes place. This PLR feature is due to the fact that the system 

correlates with itself at different imaginary time slices, and the reader is referred to Ref. 4 for an 

early and insightful discussion of this issue.  

 Thirdly, given the asymptotic behavior ( ) 1,g r →  the differences CM-ET-PLR will greatly 

diminish for long distances. However, their exact decay properties are expected to be different, as 

suggested by the QHS dominant pole analysis reported in Ref. 39. These three functions should 

show exponentially oscillatory decay, but the period and inverse decay length of the CM 

oscillations should be smaller than those of the ET and the PLR cases. 
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 Fig. 3 shows the associated k-space response functions. It has been assumed that OZ2 is 

also a valid equation for the ET and the PLR correlations. Although on the scale of the graph the 

(ET/PLR) – CM discrepancies between the ( 0)S k =  values are small, they actually amount to 

+35%(ET) and +31%(TLR) taking ( 0) 0.05063CMS k = =  as a reference. The analogous results 

obtained at *( 2,Bλ =  * 0.1)Nρ =  show a dramatically different behavior, since they are quite close to 

each other (discrepancies 3%).< +  Therefore, the foregoing behavior at *( 2,Bλ = * 0.2)Nρ =  

indicates the inadequacy of OZ2 for fixing accurate Tχ  values from the ET or the PLR correlations 

under such strong diffraction conditions. However, past the low-k region the latter estimates of the 

ET and TLR structure factors at * 0.2Nρ =  are still expected to capture most of the salient features 

of these Fourier space functions.27,29,41 Fig.3 also shows the TLR function resulting from 

approximating the self correlations ( )SCs r  with an analytical approach based on the Feynman-

Hibbs picture,32 which gives quite a reasonable result in comparison with PI-P=24. Further 

improvements in accuracy for the ET and TLR structure factors could be achieved by using 

deconvolutions connecting the ET or the PLR correlations to the CM correlations.28,47 Besides, 

efficient descriptions of the self correlations ( )SCs r  are needed,21 because the P convergence 

involved turns out to be rather slow,25,41 and the analytical approach mentioned32 cannot cope with 

increasing quantum dispersion effects. 

 

V. CONCLUSION 

 The fact that the present work is based on fundamental classical methodology is very 

rewarding in that it is in the spirit of the PI classical isomorphism.4 As shown, the PI centroids are 

a most useful device for counting number fluctuations via the OZ2 equation. The BDH+GC 

procedure employed appears as highly satisfactory in that: a) it has a broad scope, since it is 

connected to the wide range of problems associated with the direct correlation functions in the real 

and in the Fourier spaces;46 and b) the Tχ  estimates corrected for finite-N effects can be 
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determined in a very fast computational way. BDH+GC improves greatly the long distance 

behavior of the centroid pair radial correlation functions obtained with canonical PIMC 

simulations. As a result, application of this procedure reveals the significant ZR  zeros that define 

the isothermal compressibility, which otherwise would be either spoilt or hidden by the finite-N 

effects. The fact that these zeros exist when properly dealing with the BDH method may be 

regarded as established numerically, and one can expect the same result from the grand-canonical 

simulation+BDH approach to the problem. All of this lends support to the use of Eq. (23) for 

obtaining the error bars in the mean isothermal compressibility determined via BDH+GC. 

Although Eq. (23) is expected on physical grounds to be a consistent estimator, i.e. one that tends 

to zero by enhancing statistics, this is a question that boils down to the role played by the intrinsic 

dispersion ( )2 .Ts χ  Although this question could only be settled by extensive calculations, the 

current results have proven that all the contributions behave properly. Therefore Eq. (23) can be 

safely regarded as both significant and useful, at least for most practical purposes in quantum and 

classical applications. 

 The GC corrections increase the QHS isothermal compressibilities that would be obtained 

by simply using the BDH method only once. Most of the magnitude of these corrections is 

achieved in the first step of the GC procedure. Accordingly, the QHS compressibility factors 

arising from BDH+GC are lower than those of the BDH method. Also, it is interesting to point out 

that the virial equation of state obtained through Eq. (30) is in good accord with the equation of 

state arising from the integration of Tχ  Eq. (11). This result is reassuring regarding the suitability 

of the method followed to determine the second derivative of the instantaneous function at 

classical contact. One might think of a very detailed simulation scheme for extracting a precise 

measure of the curvature of the ET function at the hard core, but for a given accuracy the Tχ  

centroid route turns out to be much faster in computational terms. In view of the particular 

characteristics of the quantum hard sphere interactions, it is expected that most of the finite-N 

effects in the current canonical calculations ( SN =  500) have been corrected with BDH+GC. 
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Again, this is indicated by the closeness between the virial and the Tχ  equations of state obtained. 

Within the canonical framework, for stable as well as metastable fluid state points, the 

computation of pressures based on Tχ  should be the preferred ones, as they present less elements 

of uncertainty than those linked to the evaluation of the ET second derivative in the virial pressure.  

 The Tχ  route is expected to become valuable when studying fluid-solid coexistence 

properties at large *
Bλ  values via the calculation of fluid Helmholtz free energies.30(a) The current 

results have been obtained through a much improved gathering of statistics and indicate lower 

isothermal compressibilities than those reported in Ref. 30 (a). Therefore, a number of differences 

with respect to Ref. 30(a) are to be expected in the fluid-solid coexistence properties of the 

quantum hard-sphere system. Since in the experimental domain the fluid-solid equilibrium for 

classical hard spheres was stated by Pusey and van Megen to agree with early simulation results,67 

it is hoped that computational results on quantum hard spheres may stimulate experimental 

research on systems composed of colloidal particles at very low temperatures. 
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APPENDIX I  

The centroid density fluctuations in Fourier space, under the particular action of the nonlocalizing 

weak external field of constant strength, are obtained by taking the Fourier transform in Eq. (7b) 

and by using the approximations (2) 2
, ( ) ( )N CM F N CMg Rρ ρΨ ≈  and (1)

, ( ) .N CM F Nρ ρΨ ≈  One finds then 

(1)
, ( , ) ( ) ( )N CM F N CM FSδρ βρ δΨ = − Ψk k k                 (A1. 1) 

where ( )CMS k  is the CM structure factor Eq. (8). The OZ2 equation in the presence of FΨ  arises 

from the usual definition of the direct correlation function46    
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1 2 2
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and the application of the functional identity 

(1)
, 1 3

3 1 2(1)
3 , 2

( ; ) ( ) ( )
( ) ( ; )

N CM F F

F N CM F

d
δρ δ δ

δ δρ
Ψ Ψ

× = −
Ψ Ψ∫

R RR R R
R R

     (A1.3) 

The OZ2 equation for the homogeneous fluid Eq. (9) is obtained by setting 0FΨ =  in the 

expression arising from (A1.3). Note that the functional derivatives involved do have a consistent 

meaning in the grand ensemble, since the density is a fluctuating quantity. 

APPENDIX II 

 Enter 12( )CMh R  into the procedure Eqs. (12) to (17). The set of possible solutions 

{ }, ( ; ), ( ; )Z Z Z BDH
R c r R S k R  arising from BDH ( 0)m =  serves to obtain a first estimate of the 

physically significant (mid-upper) range of distances where the ZR  zeros are to be found. 

Normally, this mid-upper range remains unaltered throughout the GC steps 1,m ≥  and it is easily 

recognizable by the slight fluctuations of Tχ  about a mean value. Once this range and the set of 

solutions have been refined via Eqs. (17), one obtains the final set { }, ( ; ), ( ; )Z Z Z BDH GC
R c r R S k R

+
 

and the final mid-upper range of zeros 1 , .GCZ Z ZK
R R Rν≤ ≤  At a given step m the value ( 1) (0)m

CMS −  is 

determined as the average of the ( 0)CMS k =  values appearing within the ( 1)thm −  mid-upper range 

of distances. After the BDH+GC iterations have been completed, one calculates the mean 

isothermal compressibility of the whole run as the final average Eq. (19), and a measure of its 

precision is Eq. (20). The latter quantity is likely to be higher than the actual error for the mean, 

but in view of the relatively low value of GCK  (<10) it is a safe option. 

 The short and long ranges of ZR  zeros, namely 1Z ZR Rσ < <  and / 2,GC ZZK
R R L< <  are to 

be discarded. The former because they are strongly influenced by the interatomic repulsions, which 

make Tχ  behave far from the stable way mentioned above. The latter because they can be affected 

by the finite-N effects that might still remain uncorrected by GC, a fact that may bring about 
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sudden changes in Tχ  with respect to the stable mean value Tχ  attained. The final basic range  

1 , ( ) GCZ Z v ZK
R R Rα≤ ≤  will serve to set the significant mid-upper range of distances for the zeros, and 

thus to fix their related parameters [i.e. ( 1) (0) ]m
CMS −  for carrying out the complementary error 

analysis of the blocks that follows. 

 For a sufficiently long block length it is expected that the application of the same complete 

procedure to every sub-average PI centroid structure ,CMh α  ( 1, 2,..., )BMα =  gives a good 

approximation ,T αχ  to .Tχ  One computes the average over the , ( )ZR η α  zeros found ( ( )GCK α  in 

number) within the basic range and finds the estimates per block α  

( )

, , ( )
( ) 1

1
( )

GCK

T TGCK

α

α η α
η α

χ χ
α =

= ∑                (A3.1) 

( ) ( )
( )

22
, ( ) , ( ) ,

( ) 1

1
( ) 1

GCK

T T TGCs
K

α

η α η α α
η α

χ χ χ
α =

= −
− ∑            (A3.2) 

By collecting the results obtained in all the blocks one computes the “pooled” quantities59 Eqs. 

(21) and (22). Now, given that the whole amount of zeros is a large number, the use of Eq. (22) 

makes sense. With the above information ( )Tε χ  can be fixed via Eq. (23). 

APPENDIX III 

The main properties of the estimator Eq. (23) may be understood in connection with the basic 

integral equation of the whole process Eq. (12a). The situation can be summarized in the following 

basic integral equations for the necklace centroid correlations 12( 0)R >  

( )12 12 12 12 12
0

( ) ( ) 2 ( ) ( ) ;
R

CM N CMR h R Q R dr R r h R r Q rπρ′= − + − −∫          (A3.1) 

( )12 , 12 12 12 , 12
0

( ) ( ) 2 ( ) ( );
R

CM N CMR h R Q R dr R r h R r Q rα α α απρ′= − + − −∫    1, 2,..., BMα =        (A3.2) 

( )12 , 12 12 12 , 12
0

1 1 1

1 1 1( ) ( ) 2 ( ) ( );
B B BM M M R

CM N CM
B B B

R h R Q R dr R r h R r Q r
M M Mα α α α

α α α

πρ
= = =

′= − + − −∑ ∑ ∑∫  

                  (A3.3) 



 32

where a common upper limit R for the integrations has been taken. Eq. (A3.3) results from the 

summation and division by BN  of the set of equations (A3.2) and it cannot be made formally 

equivalent to Eq. (A3.1). It is clear on physical grounds, however, that as one makes the sub-length 

of the blocks larger, the differences between any of the ,CMh α  and 12( )CMh R  may be made as 

small as desired. Accordingly, one should find that for sufficiently large α -block sizes  

12 12 12
1

1( ) ( ) ( )
BM

B

Q R Q R Q R
Mα α

α=

′ ′ ′≈ ≈ ∑              (A2.4) 

Then, by applying Eq. (14b) one would obtain 

{ } { }
2

22

1

1( 0) ( 0) ( 0) ( 0) ( 0) ( 0)
BM

B

S k Q k S k Q k S k Q k
Mα α α

α

−
−−

=

  = = = ≈ = = = ≈ = = = 
  

∑    (A2.5) 

By enhancing statistics the sets of solutions { }, ( ; )Z Z BDH
R Q r R′  corresponding to these three 

versions of the PI centroid problem would turn out to be almost indistinguishable from each other. 

Therefore ,T Tχ χ−  as defined by Eqs. (19) and (21), may be made as small as desired. A more 

detailed discussion including the role of the different zeros ZR ν  obtained for each of the three 

cases leads to the same general result, since Q  and Q′  can be extended with zeros beyond their 

respective ZR  ranges of definition.54,55 Alternatively, the situation may be more easily visualized 

by considering in Eq. (14b) the role played by the consecutive approaches to the direct correlation 

function. The latter will be very close to one another within the common range of distances, while 

beyond that range the magnitude of their differences will be truly small, in an analogous fashion to 

that shown in Fig. 1. As regards the contribution ( )2 ,Ts χ  it can also be made as small as desired 

by increasing both the block sub-length and the number of blocks. With these operations the 

definition of the significant zeros is expected to be more and more precise, and thereby that of 

.Tχ  All of this, in the limiting case of a very long run, leaves ( )2
Ts χ  as the only source of 

statistical error in .Tχ   
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APPENDIX IV 

 The solving of the linear system Eq. (16) has been carried out by using LU decomposition 

augmented with the iterative improvement of the solution (tolerance 1010 )−  as described in Ref. 

65. To obtain the solution of Eqs. (12) the numerical integrations have been carried out by 

employing a natural cubic spline algorithm (optimal quadrature). The use of the two partitions 

mentioned in the main text allows one to assess the final precision reached in the compressibility 

factor. The numerical integrations to determine Fourier space properties have been carried out 

with Filon quadrature43 by using 2999 equally spaced points, which have also been obtained with 

natural cubic splines [final precision in ( 0)S k = ~ 9 1010 10 ].− −−  

 The F minimizations have converged properly, even when analyzing the metastable fluid 

state points. Application of Eq. (14a) has not been needed to discard ZR  zeros in the “mean” 

calculations, albeit the application of this criterion has been necessary in the analysis of a few 

block structures , 12( ).CMh Rα  Although in most of the calculations 610−F < or 510 ,−  in a few 

metastable cases (at the highest densities for every isotherm) there have appeared ZR  zeros, for 

which 310 ,−∼F  located in the middle region of the mid-upper range of distances. This feature still 

persists when increasing the number of BDH iterations ( 300).>  There are thus some special r-

regions where the F  minimization cannot be forced below 310 .−∼  In spite of this, the isothermal 

compressibilities associated with this sort of zeros agree very well with the trend shown by the 

others. Besides, past these regions the convergences for the rest of the larger zeros fall again within 

the standard F- margins given above. Finally, the integration of the compressibility equation Eq. 

(11) has also been carried out with natural cubic splines 

 

 

 

 

 



 34

References 

1 R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path-Integrals (McGraw-Hill, New 

York, 1965). 

2 R. P. Feynman, Statistical Mechanics (Benjamin, Reading, 1972). 
 
3 J. A. Barker, J. Chem. Phys. 70, 2914 (1979). 
 
4 D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981). 
 
5 B. J. Berne and D. Thirumalai, Annu. Rev. Phys. Chem. 37, 401 (1986). 
 
6 D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995). 
 
7 L. M. Sesé, Mol. Phys. 81, 1297 (1994); 85, 931 (1995). 
 
8 J. Doll, D. L. Freeman and T. L. Beck, Adv. Chem. Phys. 78, 61 (1990). 
 
9 M. Müser and B. J. Berne, Phys. Rev. Lett. 77, 2638 (1996); D. Marx and M. H. Müser, J. Phys. 

Condensed Matter 11, R117 (1999). 

10 M. Suzuki, in Computer Simulation Studies in Condensed Matter Physics VIII, edited by D. P. 

Landau, K. K. Mon and H. B. Schüttler (Springer-Verlag, New York, 1996); S. A. Chin and C. R. 

Chen, J. Chem. Phys. 114, 7338 (2001); R. E. Zillich, J. M. Mayrhofer and S. A. Chin, J. Chem. 

Phys. 132, 044103 (2010). 

11 S. Jang, S. Jang and G. A. Voth, J. Chem. Phys. 115, 7832 (2001) 
 
12 K. Suzuki, M. Tachikawa and M. Shiga, J. Chem. Phys. 132, 144108 (2010) 
 
13 R. A. Kuharski and P. J. Rossky, J. Chem. Phys. 82, 5164 (1985); E. G. Noya, L. M. Sesé, R. 

Ramírez, C. McBride, M. M. Conde and C. Vega, Mol. Phys. 109, 149 (2011). 

14 M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984). 
 
15 (a) M. E. Tuckerman, B. J. Berne, G. J. Martyna and M. L. Klein, J. Chem. Phys.99,2796(1993);  

(b) D. Scharff, G. J. Martyna and M. L. Klein, J. Chem. Phys. 99, 8997 (1993); (c) G. J. Martyna, 

A. Hughes and M. E. Tuckerman, J. Chem. Phys. 110, 3275 (1999); (d) E. Balog, A. L. Hughes 

and G. Martyna, J. Chem. Phys. 112, 870 (2000). 

16 J. Cao and G. A. Voth, J. Chem. Phys. 100, 5093 (1994); 100, 5106 (1994); 104, 273 (1996). 
 
17 M. E. Tuckerman, D. Marx, M. L. Klein and M. Parrinello, J. Chem. Phys. 104, 5579 (1996). 



 35

 
18 M. Benoit, D. Marx and M. Parrinello, Nature (London) 392, 258 (1998).  
 

19 (a) R. Ramírez, T. López-Ciudad and J. C. Noya, Phys. Rev. Lett. 81, 3303 (1998); (b) R. 

Ramírez and T. López-Ciudad, J. Chem. Phys. 111, 3339 (1999). 

20 I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004). 
 
21 L. Lin, J. A. Morrone, R. Car and M. Parrinello, Phys. Rev. Lett. 105, 110602 (2010). 
 
22 (a) R. P. Feynman and H. Kleinert, Phys. Rev. A 34, 5080 (1986); R. Giachetti and V. Tognetti, 

Phys. Rev. Lett. 55, 912 (1985); (b) L. M. Sesé, Mol. Phys., 78, 1167 (1993); (c) L. M. Sesé, Mol. 

Phys. 97, 881 (1999). 

23 J. R. Melrose and K. Singer, Mol. Phys. 66, 1203 (1989). 
 
24 C. Chakravarty, J. Chem. Phys. 116, 8938 (2002); R. Ramírez, C. P. Herrero, A. Antonelli and 

E. R. Hernández, J. Chem. Phys. 129, 064110 (2008). 

25 L. M. Sesé and R. Ledesma, J. Chem. Phys. 102, 3776 (1995). 
 
26 L. M. Sesé, J. Chem. Phys. 114, 1732 (2001). 

27 L. M. Sesé, Mol. Phys. 100, 927 (2002). 
 
28 L. M. Sesé, J. Chem. Phys. 116, 8492 (2002).  
 
29 L. M. Sesé, Mol. Phys. 101, 1455 (2003).  

30(a) L. M. Sesé, J. Chem. Phys. 126, 164508 (2007); (b) K. J. Runge and G. V. Chester, Phys. 

Rev. B 38, 135 (1988). 

31 L. M. Sesé and L. E. Bailey, J. Chem. Phys. 126, 164509 (2007). 
 

32 L. M. Sesé, Mol. Phys. 89, 1783 (1996). 
 
33 L. M. Sesé, Chem. Phys. Lett. 266, 130 (1997). 
 
34 L. M. Sesé, Mol. Phys. 92, 693 (1997). 
 

35 L. M. Sesé and R. Ledesma, J. Chem. Phys. 106, 1134 (1997). 
 

36 L. M. Sesé, J. Chem. Phys. 108, 9086 (1998). 

37 L. M. Sesé and L. E. Bailey, J. Chem. Phys. 119, 10256 (2003). 
 
38 L. M. Sesé, J. Chem. Phys. 121, 3702 (2004). 



 36

39 L. E. Bailey and L. M. Sesé, J. Chem. Phys. 121, 10076 (2004). 
 
40 L. M. Sesé, J. Chem. Phys. 123, 104507 (2005). 
 
41 L. M. Sesé, J. Phys. Chem. B, 112, 10241 (2008). 
 
42 L. M. Sesé, J. Chem. Phys. 130, 074504 (2009). 
 
43 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford, Clarendon, 1989). 

44 J. J. Salacuse, A. R. Denton and P. Egelstaff, Phys. Rev. E 53, 2382 (1996). 
 
45 W. W. Wood, J. Chem. Phys. 48, 415 (1968); 52, 729 (1970). 

46 (a) J. K. Percus, Phys. Rev. Lett. 8, 462 (1962); L. L. Lee, J. Chem. Phys. 60, 1197 (1974); (c) J. 

L. Barrat, J. P. Hansen and G. Pastore, Mol. Phys. 63, 747 (1988); (d) R. Evans, in Fundamental of 

Inhomogeneous Fluids, Chp. 3, Ed. D. Henderson (Marcel Dekker, New York, 1992); (e) A. D. J. 

Haymet, in Fundamentals of Inhomogeneous Fluids, Chp. 9, Ed. D. Henderson (Marcel Dekker, 

New York, 1992). 

47 N. Blinov and P.-N. Roy, J. Chem. Phys. 120, 3759 (2004). 
 
48 K. Shinoda, S. Miura and S. Okazaki, J. Chem. Phys. 114, 7497 (2001). 

49 M. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959). 
 
50 G. Jacucci and E. Omerti, J. Chem. Phys. 79, 3051 (1983). 
 
51 J. Cao and B. J.Berne, J. Chem. Phys. 97, 2382 (1992). 
 

52 E. de Prunelé, J. Phys. A: Math. Theor. 41, 255305 (2008). 
 
53 (a) X-P. Li and J. Q. Broughton, J. Chem. Phys. 86, 5094 (1987); (b) J. E. Cuervo, P-N. Roy and 

M. Boninsegni, J. Chem. Phys. 122, 114504 (2005); (c) H. De Raedt and B. De Raedt, Phys. Rev. 

A 28, 3575 (1983). 

54 R. J. Baxter, Aust. J. Phys. 21, 563 (1968). 
 
55 M. Dixon and P. Hutchinson, Mol. Phys. 33, 1663 (1977). 
 
56 T. L. Hill, Statistical Mechanics (Dover, New York, 1987). 
  
57 Q. Wang, J. K. Johnson and J. Q. Broughton, J. Chem. Phys. 107, 5108 (1997). 
 
58A. Baumketner and Y. Hiwatari, Phys. Rev. E. 63, 061201 (2001). 
 



 37

59 E. L. Crow, F. A. Davis and M. W. Maxfield, Statistics Manual (Dover, New York, 1960); J. 

Mandel, The Statistical Analysis of Experimental Data (Dover, New York, 1984). 

60  S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter (Oxford, Clarendon, 

1987). 

61 See supplementary material at [URL will be inserted by AIP] for the complete numerical results 

of the equations of state. 

62 M. Fierz, Phys. Rev. 106, 412 (1957). 
 
63 (a) P. C. Hemmer, Physics Lett. A 27, 377 (1968); (b) B. Jancovici, Phys. Rev. 184, 119 (1969); 

(c) W. G. Gibson, Mol. Phys. 30, 13 (1975); (d) B. J. Yoon and H. A. Scheraga, J. Chem. Phys. 88, 

3923 (1988). 

64 M. F. Herman, E. J. Bruskin and B. J. Berne, J. Chem. Phys. 76, 5150 (1982). 

65 W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes 

(Cambridge University Press, Cambridge, 1988). 

66 A. Habenschuss, E. Johnson and A. H. Narten, J. Chem. Phys. 74, 5234 (1981) 

67 P. N. Pusey and W. van Megen, Nature (London) 320, 340 (1986); W. G. Hoover and F. H. Ree, 

J. Chem. Phys. 49, 3609 (1968). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 38

 
 
TABLE I. Positions, heights and error bars (one-standard deviation) in the vicinitiy of the first 

peaks ( vfp ) of the instantaneous (ET) and necklace centroid (CM) pair radial correlation functions 

at selected conditions. 

 

        Instantaneous – Eq. (23)           PI centroid – Eq. (20) 
*
Bλ  *

Nρ  /r Ǻ   ( )ETg r vfp−  /R Ǻ ( )CMg R vfp−  

0.2  0.1  4.15  1.134 0.003±  4.15  1.140 0.005±  

 0.805  3.85  3.612 0.008±  3.85  4.422 0.010±  

0.4  0.1  4.65  1.131 0.002±  4.35  1.169 0.005±  

 0.710  4.05  2.961 0.005±  4.05  4.098 0.012±  

0.6 0.1  5.10  1.129 0.001±  4.75  1.187 0.005±  

 0.595  4.35  2.437 0.002±  4.25  3.430 0.008±  

0.8 0.1  5.50  1.129 0.001±  5.15  1.203 0.007±  

 0.545  4.45  2.253 0.002±  4.45  3.349 0.011±  

2 0.1  6.95  1.127 0.001±  6.55  1.329 0.004±  

 0.3  5.35  1.542 0.001±  5.45  2.415 0.006±  
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TABLE II. Some typical results of the BDH+GC procedure for the mean ( )CMh R  CM pair necklace centroid correlations at QHS fluid state 

point ( )* *0.6, 0.5 .B Nλ ρ= =      

                                        BDH kernel (220×220)                                         BDH kernel (440×440) 

            0m =                         ( 1)GC m =                     ( 5)GC m =                    0m =                          ( 1)GC m =                      ( 5)GC m =        

/ZR Ǻ ( 0)CMS k =  /ZR Ǻ ( 0)CMS k =  /ZR Ǻ ( 0)CMS k =  /ZR Ǻ ( 0)CMS k =  /ZR Ǻ ( 0)CMS k =  /ZR Ǻ ( 0)CMS k =  

4.450  0.031884 4.450  0.031887  4.450  0.031888  4.450 0.031885 4.450 0.031887 4.450 0.031888 

4.857  0.032392  4.860  0.032402  4.860  0.032402  4.857 0.032393 4.860 0.032402 4.860 0.032402 

5.704  0.031546  5.695  0.031581  5.695  0.031582  5.707 0.031517 5.697 0.031567 5.697 0.031568 

6.684  0.032532  6.702  0.032655  6.702  0.032658  6.689 0.032572 6.706 0.032712 6.707 0.032716 

7.604  0.031519  7.578  0.031785  7.577  0.031795  7.609 0.031443 7.583 0.031709 7.582 0.031717 

8.517  0.032128  8.573  0.032644  8.574  0.032656  8.527 0.032252 8.582 0.032774 8.584 0.032792 

9.628  0.031806  9.501 0.032431  9.498  0.032446  9.610 0.031946 9.483 0.032579 9.479 0.032600 

10.239  0.031851  10.414  0.032568  10.419 0.032585  10.261 0.032003 10.444 0.032737 10.441 0.032761 

11.762  0.031444  11.613  0.032309  11.610 0.032329  11.779 0.031218 11.787 0.032504 11.589 0.032537 

12.421 0.031518  12.642  0.032492  12.648 0.032518  12.385 0.031275 12.660 0.032724 12.669 0.032762 

  13.086  0.032491  13.079 0.032513    13.054 0.032701 13.045 0.032742 

  13.301 0.032496  13.306 0.032521    13.239 0.032700 13.265 0.032744 

  14.192  0.032392  14.209 0.032427    13.847 0.032659 13.749 0.032741 

  14.611 0.032403  14.426 0.032432    14.423 0.032661 14.419 0.032692 
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TABLE III. Representative results for the isothermal compressibility of the quantum hard-sphere fluid obtained from the pair centroid 

correlations for different conditions. BDH = Baxter-Dixon-Hutchinson method; kernel (440×440). GC = Baumketner- Hiwatari grand canonical 

corrections. K =  number of ZR  zeros within the significant range of distances 8.5 /ZR≤ Ǻ 15.5≤ . In BDH the cases without zeros in that range 

are marked with * and the largest ZR  is used. Underlined densities mark metastable fluid state points. Error bars are one-standard deviation.  

  BDH -GC(m = 0)   (mean)          BDH GC+ (m = 5)     (mean)           BDH GC+ (m = 5)       (10 blocks) 

*
Bλ  *

Nρ    K           3 1/(10 )T barχ − −   GCK        3 1( ) /(10 )T T barχ ε χ − − ±     ( )GCK
α

α∑      [ ] 3 1( ) /(10 )T Ts barχ χ − −±  

0.2  0.1  1* 84.267 11 84.512± 0.202 181 84.566± 0.037 

 0.4  1* 4.817 17 4.747± 0.022 149 4.756± 0.005 

 0.725  8 0.493 4 0.525± 0.010 77 0.532± 0.001 

 0.805 7 0.293 6 0.310± 0.007 72 0.311± 0.001 

0.4  0.1  1* 304.783 17 304.993± 0.389 159 305.168± 0.119 

 0.4  1* 13.063 11 13.159± 0.097 131 13.209± 0.022 

 0.625  5 2.140 5 2.243± 0.019 92 2.244± 0.003 

 0.710 6 1.164 8 1.202± 0.050 70 1.222± 0.006 

0.6  0.1  1* 611.267 11 615.598± 1.275 184 615.435± 0.179 

 0.3  1* 51.536 13 52.139± 0.208 161 52.093± 0.048 
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TABLE III. Continued 

 0.525  4 6.430 9 6.728± 0.067 76 6.695± 0.011 

 0.595 5 3.646 7 3.824± 0.106 75 3.868± 0.010 

0.8  0.1  2 964.819 15 975.490± 3.632 167 975.807± 0.425 

 0.3  3 67.017 9 68.388± 0.317 140 68.348± 0.079 

 0.5  5 9.297 6 9.600± 0.156 94 9.559± 0.014 

 0.545 5 6.349 8 6.574± 0.176 72 6.623± 0.024 

2.0  0.1  1 2575.116 6 2607.714± 12.630 134 2606.590± 1.508 

 0.2  2 344.897 6 354.038± 4.977 105 355.738± 0.496 

 0.3  6 90.757 6 91.949± 1.672 70 91.718± 0.169 
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TABLE IV. Representative results for the QHS fluid equation of state obtained from the PIMC simulations and the centroid pair correlations for 

different conditions. 1 kpass = 310 SN P×  attempted bead moves. * 0.8 :Bλ ≤ SN P× = 500 12× , Kpasses = 800. * 2 :Bλ = SN P× = 432 24× , 

Kpasses = 1900 . Underlined densities mark metastable fluid state points. Error bars are one-standard deviation.  

*
Bλ  *

Nρ     /E RT          /PV RT  
.(30)Eq virial  

             /PV RT  
        .(11) .Eq compress   
BDH (220×220)+GC ( 5)m =   

           /PV RT  
      .(11) .Eq compress   
 BDH(440×440)+GC ( 5)m =  

          /PV RT  
      .(11) .Eq compress   
 BDH(440×440)+GC ( 0)m =    

0.2  0.1  1.526 0.007±  1.303 0.013±  1.308 0.002±  1.308 0.003±  1.311 

 0.4  1.707 0.010±  3.172 0.026±  3.192 0.012±  3.193 0.012±  3.175 

 0.725  2.351 0.009±  10.138 0.064±  9.957 0.134±  9.908 0.110±  10.190 

 0.805 2.698 0.015±  14.072 0.079±  13.540 0.295±  13.412 0.202±  13.674 

0.4  0.1  1.569 0.008±  1.381 0.022±  1.383 0.001±  1.384 0.001±  1.390 

 0.4  2.045 0.008±  4.114 0.053±  4.113 0.013±  4.106 0.018±  4.112 

 0.625  3.134 0.011±  10.679 0.094±  10.600 0.061±  10.543 0.058±  10.913 

 0.710 3.941 0.015±  15.846 0.116±  15.487 0.195±  15.437 0.210±  16.035 

0.6  0.1  1.615 0.007±  1.464 0.021±  1.481 0.003±  1.482 0.002±  1.485 

 0.3  2.093 0.008±  3.452 0.054±  3.416 0.013±  3.418 0.012±  3.450 
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TABLE IV. Continued 

 0.525  3.569 0.008±  9.926 0.083±  9.999 0.077±  9.963 0.072±  10.175 

 0.595 4.473 0.021±  14.251 0.147±  14.152 0.155±  14.057 0.157±  14.502 

0.8  0.1  1.678 0.006±  1.567 0.031±  1.572 0.003±  1.580 0.002±  1.594 

 0.3  2.480 0.009±  4.291 0.080±  4.221 0.026±  4.241 0.011±  4.309 

 0.5  4.707 0.014±  12.661 0.166±  12.469 0.230±  12.589 0.078±  13.005 

 0.545 5.590 0.016±  15.876 0.191±  15.943 0.316±  16.020 0.189±  16.539 

2.0  0.1  2.382 0.012±  2.624 0.090±  2.742 0.023±  2.789 0.005±  2.792 

 0.2  4.450 0.016±  7.009 0.150±  7.068 0.034±  7.009 0.063±  7.156 

 0.3 8.287± 0.025 15.966± 0.287 15.781± 0.310 16.102± 0.235 16.408 
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Figure Captions.  
 
Figure 1. 
 
Necklace centroid direct correlation functions at state point * *( 2, 0.2)B Nλ ρ= =  for the first and 

sixth significant ZR  zeros obtained through (BDH+GC). 

 
Figure 2. 
 
Final results (PIMC+BDH+GC) for the mean pair radial structures at state point 

* *( 2, 0.2).B Nλ ρ= =  ET = instantaneous, PLR = pair continuous linear response, CM = necklace 

centroids. The hard core is located at 3.5σ =  Å. 

 
Figure 3.  
  
Final results (BDH+GC) for the Fourier space response functions (static structure factors) at 

state point * *( 2, 0.2).B Nλ ρ= =  CM = necklace centroids, ET = instantaneous, TLR = total 

continuous linear response (PI = path-integral with P=24; GFH = Gaussian Feynman-Hibbs for 

self correlations). These functions have been smoothed with B-splines. 
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