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Abstract

Quantum path-integral simulations of the hydrate solid structures have been performed using

the recently proposed TIP4PQ/2005 model. By also performing classical simulations using this

model the impact of the nuclear quantum effects on the hydrates is highlighted; nuclear quantum

effects significantly modify the structure, densities and energies of the hydrates, leading to the

conclusion that nuclear quantum effects are important not only when studying the solid phases of

water but also when studying the hydrates. To analyze the validity of a classical description of

hydrates a comparison of the results of the TIP4P/2005 model (optimized for classical simulations)

with those of TIP4PQ/2005 (optimized for path integral simulations) was undertaken. A classical

description of hydrates is able to correctly predict the densities at temperatures above 150K,

and the relative stabilities between the hydrates and ice Ih. The inclusion of nuclear quantum

effects does not significantly modify the sequence of phases found in the phase diagram of water at

negative pressures, namely Ih→sII→sH. In fact the transition pressures are little affected by the

inclusion of nuclear quantum effects; the phase diagram predictions for hydrates can be performed

with reasonable accuracy using classical simulations. However, for a reliable calculation of the

densities below 150K, the sublimation energies, the constant pressure heat capacity and the radial

distribution functions, the incorporation of nuclear quantum effects is indeed required.
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I. INTRODUCTION

Gas hydrates are ice-like inclusion compounds formed from a matrix of water that encap-

sulates small inert ‘guest’ molecules, for example Ar, Xe, H2, CH4 or CO2. Such structures

are usually only stable under sufficient pressure1,2. Hydrates are classified as sI,3 sII,4 and

sH5. The particular structure adopted depends on the guest molecule6–8. Methane hydrates

are receiving significant attention given that they are a potentially important fuel source9–17.

Experimentally it is not possible to study empty hydrates since they are thermodynamically

unstable; the guest molecules play an important role in stabilising these structures. How-

ever, they can be studied in computer simulations18–23 since they are mechanically stable.

There are several reasons to consider the study of the empty hydrates. The first is that, as

they are less dense than ice Ih, they could be the stable solid phases of water at negative

pressures. In an earlier work18, the authors found that in classical simulations using the

TIP4P/2005 model the solid structures sII and sH become stable in this region of the phase

diagram. Similar conclusions were reached by Molinero and coworkers19 using a different

model of water20. Secondly, the differences in the thermodynamic properties (in particular

the chemical potential) between ice Ih and the empty hydrates play a central role within

the widely used van der Waals-Platteeuw theory24. Obviously these differences can only be

estimated from theoretical calculations or from computer simulations. Finally, it is inter-

esting to point out that the lattice parameters of hydrates are mostly determined from the

host water structure; the influence of the guest molecules on the lattice parameters is small

at moderate pressures6.

Since water is a relatively light molecule (the eigenvalues of the inertia tensor are small)

whilst at the same time having strong intermolecular interactions (hydrogen bonds) one

may expect that nuclear quantum effects are important25–28. This has been shown in a

number of studies for liquid water28–30 and in a few studies for ice Ih
31. Using path-integral

simulations McBride et al.25 have shown that nuclear quantum effects play a significant role

in the densities and energies of many of the ice phases. Vega et al.32 have recently studied

the incorporation of these quantum effects in the calculation of the heat capacity for water

and ice. In view of this, performing simulations of a certain model via both classical and

path integral simulations is interesting, since it illustrates the trends that can be expected to

occur upon isotopic substitution (the behavior of classical water would correspond to that of
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very heavy isotopes)33,34. These studies throw light on just how much the properties of water

are affected by nuclear quantum effects. In this work we shall perform both classical and

path integral simulations of the hydrate structures sI, sII and sH using the same model to

determine the importance of nuclear quantum effects on these solids. In particular we shall

use the TIP4PQ/2005 model25, which was specifically designed to reproduce the properties

of ices within path integral simulations. It will be shown that the model also provides a

good description of the densities of the hydrate solids, and that nuclear quantum effects are

indeed quite important in the hydrate structures.

There exists another route for comparing results from classical simulations with results

from path integral simulations; instead of comparing classical and quantum simulations for

the same model, one could compare classical simulations for a good classical model with

quantum simulations for a good quantum model. A good classical model is one in which

the parameters were fitted to experimental properties within classical simulations, so that,

in some implicit way, quantum contributions form part of the make-up of the model35–38.

In previous work we have shown that the TIP4P/200539 provides a good description of

the solid phases of water, including the hydrates, when used in classical simulations40–48.

Similarly it has been shown that TIP4PQ/2005 is a good water model when using path

integral simulations25,26. For example, both TIP4P/2005 and TIP4PQ/2005 reproduce the

maximum in density of water, an important test for any model of water. The comparison

between the results of TIP4P/2005 with classical simulations and those of TIP4PQ/2005

with path-integral simulations will help to clarify the limits of classical simulations when

describing solid phases of water, here in particular with regards to the hydrate structures.

All said and done, it is important to point out that the two models used in this work are

rigid and non-polarizable. Obviously the inclusion of either polarizability and/or flexibility

could modify somewhat the conclusions of this work. From the point of view of further

improvements it is likely that intramolecular degrees of freedom (i.e., flexibility) should be

included in the model, since these provide a small, but probably significant, contribution

to intermolecular interactions. This is due to the existence of competing quantum effects

(i.e., a lower dipole moment of water in the classical treatment) as discussed recently by

Habershon et al.49, which would most likely narrow the gap between quantum and classical

results.

The main focus here is to investigate the importance of the interplay between the inter-
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molecular forces (hydrogen bonding) and quantum effects related to atomic masses.

II. METHODOLOGY

In this study classical Monte Carlo (MC) simulations were performed for both the

TIP4P/200539 and the TIP4PQ/200525 models, as well as path-integral Monte Carlo

(PIMC) simulations for the TIP4PQ/2005 model. For the PIMC simulations the formalism

of Müser and Berne for rigid bodies50,51 was used. We shall describe briefly this methodology

and refer the reader to the original references for further details25,52–56.

In the path integral formulation, the canonical partition function, QN , of a quantum

system of N molecules (described with P Trotter slices, or ‘beads’) can be approximated

by50,51:

QN(β) ≈
1
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The propagator satisfies the cyclic condition that bead P + 1 corresponds to bead 1. Here

rt
i are the Cartesian coordinates of the center of mass of replica t of molecule i and Ωt

i are

the Euler angles that specify its orientation. Ut is the potential energy of the replica t of

the system. In this work, we use a pairwise potential (uij) such that the potential energy of

the replica t of the system is

U t =
∑

i

∑

j>i

uij(r
t
i, r

t
j,Ω

t
i,Ω

t
j). (2)

As can be seen in Eq.1, each replica t of molecule i interacts with the replicas of the other

molecules that have the same index t via the intermolecular potential uij; with replicas

t − 1 and t + 1 of the same molecule i via a harmonic potential (connecting the center of

mass rt
i of the beads of molecule i ) with a coupling parameter that depends on the mass

of the molecules, M , and on the inverse temperature β; and with replicas t − 1 and t + 1

of the same molecule through the terms ρt−1,t
rot,i and ρt,t+1

rot,i which incorporate the quantum

contribution of the rotation and that depend on the relative orientation of replica t with
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respect to t − 1, and t + 1 with respect to t.

One important variable used in path integral simulations is the number of beads (P )29,31

employed. If P = 1 then the system is classical, whereas if P → ∞ then the full quantum

system is retrieved. The number of beads should be chosen so that54:

P >
~ωmax

kBT
(3)

where ωmax is the ‘fastest’ frequency in the system of study. The number of replicas used

for rigid models is lower than that used for flexible models30,49,57,58 because in path integral

simulations of rigid models31,59,60 the intra-molecular vibrations are neglected. For flexible

models of water at 300K a typical number of slices is about P = 32.61,62 Recently a new

method to reduce the computational cost for flexible systems with polarisable force fields

has been developed.63 We found that for a rigid model a reasonable choice is to assume the

following relation25: PT ≈ 1500K. Thus in this work P ranged from 6 (at 275K) to 20 (at

77K) (see Table I).

The internal energy can be evaluated from

E = −
1

QN

∂QN
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(4)

and substituting the canonical partition function (Eq.1) results in

E = Ktra + Krot + U (5)

where
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here ẼJM
K̃

are the eigenvalues of energy of the water asymmetric top and f i,t,t+1

J,M,K̃
are some

functions that depend on the relative orientation of replicas t and t + 1 of molecule i25.

Finally, the same methodology can be used to evaluate the partition function in the NpT

ensemble

QNpT = A

∫

dV exp(−βpV )QN (7)
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where A is a constant with units of inverse volume so that QNpT becomes dimensionless.

The location of the oxygens in the initial solid configurations for sI, sII and sH were

obtained from crystallographic data64. The simulation box contained 2×2×2 unit cells,

with a total of 368 and 1088 molecules for the cubic structures sI and sII respectively.

For the sH (hexagonal symmetry), we used a 3×2×2 super-cell which contained 408 water

molecules. The number of molecules used for ice Ih was 432. All these structures present

proton disorder65–68. We used the algorithm proposed by Buch et al.69 to generate proton

disordered structures satisfying the Bernal-Fowler rules70 and with zero (or almost zero)

dipole moment.

As mentioned at the beginning of this section, two water models were employed to de-

scribe the interaction between water molecules; TIP4P/200539 and TIP4PQ/200525, the

parameters for both of them are provided in Table II. The models differ only in the value of

the charge (slightly larger in the TIP4PQ/2005). The increase in the charge compensates

(to some extent) for the increase in the energy due to quantum effects. It has been shown in

previous work that PI simulations of TIP4PQ/2005 reproduce the temperature of maximum

density of water26, the density of the solid phases25 and the radial distribution functions of

ice Ih
25 and liquid water26.

Anisotropic NpT simulations71,72 (Parrinello-Rahman-like) were used both for classical

MC and PIMC simulations. In both methods and for both water models, the pair potential

was truncated at 8.5 Å for all phases, and standard long-range corrections to the Lennard-

Jones energy and pressure were added56,73. Ewald sums were employed for the electrostatic

interactions with the real part of the electrostatic contribution truncated at 8.5 Å.

The simulations consisted of a total of 100,000 Monte Carlo cycles (a trial move per particle

plus a trial volume change) of which 30,000 were used for equilibration and the remaining

cycles to evaluate averages.
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III. RESULTS

If the lattice parameters of the unit cell are known from experiment, then the ‘experi-

mental’ density of the empty gas hydrate can be estimated as being:

ρexp =
nH2OM

NAV Vc

(8)

where nH2O is the number of water molecules per unit cell in the hydrate structure (sI, sII or

sH), M is the molecular weight, NAV is the Avogrado’s number and Vc is the volume of the

unit cell. In Table III the experimental lattice parameters74–78 for two different temperatures

are given. The ‘experimental’ densities of the empty gas hydrate as estimated from Eq.(8)

are also presented. Obviously the unit cell parameters depend on temperature74,77 and thus

so does the density. As can be seen the densities of the empty hydrates are lower than that

of ice Ih (which is about79 0.92 g/cm3) and for this reason these phases are ideal candidates

to occupy the phase diagram of water at negative pressures18 (i.e. at constant temperature

any phase transition always decreases the density when decreasing the pressure, as stated

by Bridgmann80).

A. Nuclear quantum effects in the empty gas hydrates

In Table III the densities of the different empty hydrates as obtained from PI simulations

of the TIP4PQ/2005 are presented. One can see that the predicted densities agree quite

well (to within 0.5 per cent) with the experimental values. Thus the TIP4PQ/2005 model

is able to describe not only the densities of the solid phases of water (ices)25 but also those

of the hydrate structures. To analyze the importance of nuclear quantum effects in hydrates

we have also performed classical simulations using the same model. The results of these

classical simulations of the TIP4PQ/2005 model are labeled as TIP4PQ/2005(classical).

The results are presented in Table IV. The densities of the classical simulations are about

≈0.03 g/cm3 higher than their quantum counterparts. The potential energies of the PI

simulations are about ≈1.5 kcal/mol higher than those obtained from classical simulations.

The total kinetic energy is higher in the PI simulations (by about ≈1.3 kcal/mol) than in

the classical simulations. The kinetic energy in the classical simulations is twice (3/2)RT

since both translational and rotational degrees of freedom contribute (3/2)RT . Notice that

the PI translational energies are slightly larger than (3/2)RT , but the PI rotational energies
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are substantially larger than (3/2)RT . This clearly indicates that nuclear quantum effects

in water arise mostly from the hindered rotation of the molecule due to the formation of

hydrogen bonds. The rotational kinetic energy is hardly affected by the temperature, so

it does not contribute much to the heat capacity. The rotational energy obtained for the

hydrate-like structures is similar to that obtained for the ice Ih but it is slightly different

from that found for ices II and V. Rotational quantum effects are slightly larger in the phases

sI, sII, sH and Ih (i.e higher rotational energies compared to the classical value) than in the

ices II and V. This may be due to the different arrangement of molecules within the first

coordination layer which is an almost perfect tetrahedron for the low dense ices (Ih,sI,sII,sH)

and a distorted tetrahedron for the high density ices (II and V). We shall return later to

this point. The total internal energy of the quantum system is about 2.6 kcal/mol higher

than that of the classical system at 125K and about 3.1 kcal/mol higher at 77K (half of the

difference arising from the potential energy and the other half from the kinetic energy). A

rough estimate of the difference at 0K would yield 3.8 kcal/mol, which would correspond

approximately to the zero point energy of the model. For ice Ih, Whalley81 has estimated

the zero point energy to be about 3.94 kcal/mol which is similar to the value reported here.

Thus for the TIP4PQ/2005 the zero point energies of the phases Ih, sI, sII and sH are quite

similar; about 3.8 kcal/mol.

We shall now consider the impact of nuclear quantum effects on the structure. In Fig.

1 the radial distribution functions (O-O, O-H and H-H) of the sI hydrate as obtained from

classical and quantum simulations of the TIP4PQ/2005 model are presented. The peaks of

the classical simulations are shifted to lower distances, reflecting the higher density of the

system. The second difference is the higher values of the peaks (especially the first peak)

in the classical simulations. The differences are higher for the O-H and H-H distribution

functions. Obviously the nuclear quantum effects affect more significantly the correlation

functions in which the hydrogen atom is involved. The results of Fig. 1 illustrate the trend

that may be expected in the structure when replacing the atoms of the water molecule by

heavier isotopes.

Finally we shall consider the relative energies between ices at zero temperature and

pressure. Path integral simulations cannot be performed at very low temperatures (since

one would have to use a prohibitively large number of beads). According to the third law of

thermodynamics82, the heat capacity must approach zero as the temperature is decreased.
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In previous work25 we used a fit of the form H = a0 + a1T
4 which satisfies both the third

law and the Debye law i.e Cp ∝ T 3. However, when analyzing the experimental values

of the heat capacity of ice Ih, we found that the Debye law applies only for temperatures

below 15K. Also the experimental enthalpies up to the melting temperature are described

much better by a cubic polynomial (with no linear term in temperature). In view of this

we shall use H = a0 + a1T
2 + a2T

3. By fitting the enthalpies of the hydrates and of the

ices calculated from PI simulations at 250K, 200K, 150K, 125K, 100K and 77K ( p = 1bar)

the parameters a0, a1, and a2 are obtained. The results of the fit for ice Ih, sI, sII and

sH are presented in the Fig. 2. The parameter a0 represents the enthalpy of the solid

phase at zero temperature and normal pressure. Basically the enthalpy at normal pressure

and zero temperature H(T = 0,p = 1bar) is almost identical to the internal energy at

zero temperature and pressure E(T = 0,p = 0bar) since the contribution of the pV term

is about five orders of magnitude smaller than the internal energy term, and besides, the

internal energy is hardly affected by a change in pressure from 0 bar to 1 bar. The error

introduced by this approximation is smaller than 0.0001kcal/mol. Therefore in this work we

shall use the approximation H(T=0,p=1bar) =E(T = 0,p = 0bar). The energies at 0K and

0 bar obtained from classical simulations were calculated by performing NpT simulations

at several temperatures below 100K and fitting the results for the internal energy to a

straight line. In Table V the energies at 0K and zero pressure obtained from classical and

quantum simulations of the TIP4PQ/2005 model are presented. The classical and quantum

0K energies are quite different, reflecting the fact that the quantum simulations include the

zero point energy which is absent in the classical simulations which, at 0K, provide only the

lattice energy. Also in Table V the relative energies (with respect to ice Ih) for these two

types of simulations are presented.

The relative energies of the hydrates (sI, sII, sH) with respect to ice Ih obtained from

classical and path integral simulations are similar suggesting that for the low dense solid

structures (Ih,sI,sII,sH) nuclear quantum effects affects in a similar manner to these type of

solids. However, the relative energies of ices II, III, V and VI with respect to ice Ih, are

different in classical and path integral simulations, suggesting that nuclear quantum effects

affect in a slightly different manner to the low and to the high density solid phases of water.
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B. Classical and quantum descriptions of empty gas hydrates.

From the results presented thus far, it is clear that nuclear quantum effects are im-

portant when studying empty gas hydrates. This situation could change if one compares

results from a model optimized for classical simulations (TIP4P/2005) with another model

optimized for PI simulations (TIP4PQ/2005). It may be the case that the change in the

potential parameters of the rigid classical non-polarizable model (with respect to the quan-

tum model) incorporates, in a mean field like way, the impact of the nuclear quantum

effects. This might be regarded as a sort of empirical counterpart to the Feynman-Hibbs

analytic approach52,83,84, although in the latter one performs classical-like simulations using

a temperature-dependent effective potential and this temperature dependence on the pair

interaction is lost when using the TIP4P/2005 model. In what follows it should be implicit

that any result for TIP4P/2005 was obtained using classical simulations whereas any result

for TIP4PQ/2005 was obtained from PI simulations.

In Table VI the densities of both models at 200K and 100K are presented and com-

pared to the experimental data. It can be seen that at 200K both models yield quite good

predictions. At 100K both models yield reasonable results although it seems that the den-

sities of TIP4P/2005 are somewhat larger than the experimental values. Not surprisingly,

when the temperature decreases the importance of nuclear quantum effects increases. We

have computed the density from 3K to 275K for TIP4P/2005, and from 77K to 275K for

TIP4PQ/2005. The results for the sI hydrate are presented in Fig. 3. For TIP4P/2005 the

density increases as the temperature decreases all the way down to 0K. For TIP4PQ/2005

the density increases as the temperature decreases but for temperatures below 125K the den-

sity does not change much with temperature. Experimentally one finds that there is very

little variation in the density of ice Ih in the temperature range 0-125K and one may expect

a similar behavior for the hydrates (although in a smaller temperature range9). Classical

simulations are unable to capture this. In summary TIP4P/2005 can satisfactorily describe

the densities of the hydrates at temperatures above 150K but it fails at temperatures below

150K since classical simulations do not capture one of the consequences of the third law of

thermodynamics (i.e. the thermal expansion coefficient, α, should go to zero at zero Kelvin).

In Fig. 4 the radial distribution functions of sI hydrate at 100K and 1 bar as described

by the TIP4PQ/2005 and TIP4P/2005 models are presented. The location of the peaks is
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similar for both models (reflecting that both models predict similar densities). However the

peaks of the TIP4P/2005 are higher than those of TIP4PQ/2005. There are no experimen-

tal results for the radial distribution functions of hydrates to judge which model yields a

better agreement with experiment. However in previous work we found that the structural

predictions for ice Ih and water for TIP4PQ/200525,26 were in better agreement with exper-

iment than those of TIP4P/200539,47. It is reasonable to assume that the same occurs for

the hydrates. For this reason it is clear that a rigid classical non-polarizable model cannot

provide a quantitative description of the structure of the hydrates and/or ices. The same

applies to the fluid phase26. Although the qualitative description of the structure provided

by the rigid classical non-polarizable model is reasonable one has the feeling than a classical

effective model can never reproduce quantitatively the experimental structure of water (as

given by the radial distribution functions), and when it does this is probably due to the fact

that the potential parameters were selected to force such agreement, most likely spoiling the

predictions of the model for a number of other properties. The same behavior was found

for the sII and sH hydrates. Their radial distribution functions are presented in Figs. 5 and

6, respectively. It is not surprising that similar values are found for the g(r) of the sI and

sII structures, since these structures are formed by the same type of cavity (512 and 51262)

although in different proportions. The results of the g(r) for the sH structure are slightly

different because in addition to being formed by the cavity 512 it is also composed of the

cavities 435663 and 51268.

Let us now discuss the properties of the ices at zero temperature and pressure. For

TIP4P/2005 these properties have been reported by Aragones et al.85 for ices and by Conde

et al.18 for hydrates. For TIP4PQ/2005 they were obtained by fitting the enthalpies at

normal pressure obtained from PI simulations at 250K, 200K, 150K, 125K, 100K and 77K

(p = 1bar) to the expression H = a0+a1T
2+a2T

3 and determining the value of the parameter

a0. Values of the enthalpies are given as electronic supplementary information86 (notice that

the energies at 0K and 0 pressure reported here for ices Ih, II, III, V, VI differ by about

0.10 kcal/mol from those reported in our previous work25 due to the different expression

used to fit the enthalpies and to fact that here results for six different temperatures were

used in the fit, whereas only three were used in our previous work). The estimated values of

the energies at 0K are given in Table VII for TIP4P/2005 and TIP4PQ/2005. The energies

of TIP4PQ/2005 are about 2.5 kcal/mol higher than those of TIP4P/2005 (this difference
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arises from the absence of zero point energy in the TIP4P/2005 which amounts to about 3.8

kcal/mol, the difference being partially compensated by the larger value of the charges in

TIP4PQ/2005 with respect to TIP4P/2005). The experimental sublimation enthalpy at 0K

of ice Ih
79,81 is about 11.31 kcal/mol. The TIP4P/2005 model would predict 15.059 kcal/mol.

The sublimation enthalpy of ice Ih for TIP4PQ/2005 is found to be 12.57 kcal/mol, which

is much closer to the experimental result. This improvement is due to the fact that the

TIP4PQ/2005 includes the zero point energy, which becomes an important contribution

at 0K (we estimate that it is about 3.8 kcal/mol for the solid phases considered in this

work). For a non-polarisable model it makes sense to apply a self polarisation correction as

proposed by Berendsen87 to the sublimation enthalpy. For the TIP4PQ/2005 the polarisation

correction would amount to approximately 1.3 kcal/mol. Including the self polarisation term

to the sublimation enthalpy of ice Ih as obtained with the TIP4PQ/2005 model would yield a

value of 11.27 kcal/mol which is in excellent agreement with the experimental value of 11.31

kcal/mol. Thus the TIP4PQ/2005 is able to reproduce the sublimation enthalpy and the

vaporisation enthalpy26 when Berendsen’s correction is applied. Notice that the TIP4P/2005

was also able to reproduce the vaporisation enthalpy of water when using the Berendsen’s

correction39. However TIP4P/2005 fails completely in describing sublimation enthalpies of

ice Ih and hydrates. Quantum effects are too strong and one cannot simply disregard them.

The message is that a classical treatment cannot describe sublimation enthalpies of the solid

phases of water.

In Table VII the relative energies are also presented. As can be seen for the low dense

solids (Ih,sI,sII,sH) the relative energies obtained by TIP4P/2005 and TIP4PQ/2005 are

quite similar. The values reported here are also similar to those reported by Koyama et

al. for the chemical potential difference between Ih-sI and Ih-sII using the TIP4P model88.

However the relative energy of the high dense ices (II, III, V and VI) with respect to ice Ih

obtained with the TIP4P/2005 are somewhat different from those of TIP4PQ/2005. Thus,

nuclear quantum effects affect in a different manner to low and high density ices. Why is the

stability between ice Ih and the hydrates or between the hydrates themselves uninfluenced

by nuclear quantum effects? The reason may be in the geometrical arrangement of the

four water molecules that are forming hydrogen bonds with a central one. In ice Ih these

four molecules essentially form a perfect tetrahedron. In the hydrates the four nearest

neighbors form a slightly distorted tetrahedron1,89–91. Deviations from a perfect tetrahedron
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in hydrates are quite small (±10◦) when compared to the deviations found in other ices

such as ice II, III, V and VI25,92 (±30◦). This should be sufficient to understand why the

relative stability of empty hydrates respect to the ice Ih does not change when quantum

effects are introduced; the change of energy in all these structures (Ih, sI, sII and sH) is

almost the same and therefore the stability is not affected by the quantum contribution. In

the high density ices the molecules that form hydrogen bonds with a central are arranged

in a highly distorted tetrahedron resulting in weaker hydrogen bonds. That explains why

nuclear quantum effects are slightly smaller in ices II, III, V and VI when compared to Ih,

sI, sII and sH, affecting the relative energy of the high density ices with respect to ice Ih.

Once the properties of the solid water phases at zero temperature and pressure are known

one can obtain a good estimate of the phase transitions at 0K. This idea was suggested by

Whalley81 in the 1980’s. The transition pressure between two solid structures at 0K can be

estimated by using the following equation:

peq =
−∆U

∆V

∣

∣

∣

∣

p=0

(9)

This equation was denoted as the zero-order approximation in our previous work85

and provides a quick route to estimate transition pressures between solid phases at 0K.

This equation requires only the knowledge of the densities and energies of the solids

at zero temperature and pressure. We have tested that the transition pressures at 0K

obtained from this simple approach are in excellent agreement with those obtained from

more sophisticated free energy calculations85. In Table VIII the coexistence pressures as

estimated from the zero-order approximation are given. For the TIP4PQ/2005 we shall

assume that the density at 0K is identical to that obtained at 77K (this model does

satisfy the third law of thermodynamics and therefore density changes are quite small

below 100K). For the TIP4P/2005 the properties at 0K and 0 bar have been reported

previously18. As expected the coexistence pressures are similar for both models. For the

TIP4P/2005 the transition from Ih to sII occurs at -3379 bar, followed by the transition

from sII to sH at -7775 bar. The sequence of stability is Ih→sII→sH at negative pressures.

The sI phase is not thermodynamically stable at 0K. For the TIP4PQ/2005 model the

transition from Ih to sII occurs at -3249 bar, followed by the transition from sII to sH

at approximately -7557 bar. The sequence of stability is Ih→sII→sH. As can be seen the
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ordering of phases and the transitions pressures are similar both for TIP4P/2005 and for

TIP4PQ/2005. In summary nuclear quantum effects do not affect much the transition

pressures between the low dense solids. However, the transition pressure between ice Ih and

ice II is affected significantly (and the same is true to a less extent for the Ih-III transition).

The Ih-II and Ih-III transition pressures are lower in TIP4PQ/2005 than in TIP4P/2005,

just reflecting the higher impact of quantum effects on ice Ih when compared to ices II

and III (we already pointed out when discussing the results of Table IV the higher value

of the rotational energy of ice Ih with respect to ice II, indicating higher nuclear quantum

effects for the former). Concerning the other transitions it is seen that nuclear quantum

effects do not modify much the value of the III-V and V-VI transitions. However the II-V

and II-VI transitions are also affected significantly by nuclear quantum effects moving to

higher pressures in the quantum system. This just reflects the higher importance of nuclear

quantum effects for ices V and VI when compared to ice II ( which could be hinted from

the higher rotational energy of ice V when compared to that of ice II as it can be seen in

the results of Table IV). It is worth pointing out that ice II is the only structure considered

in this work where the protons are ordered. The experimental values of the transition

pressures are also shown in the last column of Table VIII. As it can be seen the predictions

of TIP4PQ/2005 are in better agreement with experiment than those of TIP4P/2005. Thus

the inclusion of nuclear quantum effects improves the description of the experimental results.

Finally, once we know the enthalpy of the hydrates and of several ices at different tem-

peratures it is possible estimate the heat capacity via

Cp = (
∂H

∂T
)p (10)

For the path integral simulations we used a fit of the form H = a0 +a1T
2 +a2T

3, whereas for

the classical simulations we fitted the enthalpy to an expression of the form H = a0 +a1T +

a2T
2 (of course the classical expression does not satisfy the third law). The heat capacity as

function of the temperature for the sI hydrate and ice Ih
32 is shown in Fig. 7 (upper panel)

as obtained from classical and path integral simulations. The predictions from both type of

simulations differ notably and the largest deviations are found at the lower temperatures.

For the classical simulations the Cp does not approach zero as the temperature is decreased,

thus violating the third law of thermodynamics. In literature there is no experimental data
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for Cp for empty hydrates since these are not thermodynamically stable. For that reason

we compare our results with the experimental heat capacities for ice Ih reported by Feistel

and Wagner79. The heat capacities of ice Ih and sI obtained from path integral simulations

are quite similar (being the values of ice Ih slightly larger) and are in reasonable agreement

with the experimental values for ice Ih. In Fig. 7 (lower panel), the heat capacities as

function of the temperature for ices II and V are shown. As before the classic treatment of

the heat capacity violates the third law of thermodynamics. In the results obtained from

PI simulations the Cp approaches zero as the temperature is decreased. The heat capacities

of ices II and V are quite similar, and slightly larger than those found in our quantum

simulations of Ih and sI. In summary the values of Cp at normal pressure found for ices Ih,

sI, II and V are quite similar and seems to increase slightly with the density of the solid

structure. Therefore we can conclude that this property is particularly affected by quantum

effects and a classical treatment of this property is incorrect for all temperatures up to the

melting point in agreement with the results obtained recently for water and ice Ih by Vega

et al.32.

IV. CONCLUSIONS

In this work path-integral simulations of the TIP4PQ/2005 model have been performed

for the hydrate structures sI, sII and sH. The main conclusions are as follows :

• The TIP4PQ/2005 model is able to correctly predict the densities of the hydrate solids.

• By performing both classical and path-integral simulations of the TIP4PQ/2005 model

it has been shown that nuclear quantum effects modify the density of the hydrates

by about 0.03 g/cm3, the total energy by about 3 kcal/mol (half of the contribution

due to the potential energy and the other half to the kinetic energy) and significantly

modify the structure of the hydrates. The zero point energy of the TIP4PQ/2005

is estimated to be about 3.8 kcal/mol for ice Ih, sI, sII and sH. Absolute energies

of the solids obtained from the classical and quantum treatment are quite different,

but the relative energies between Ih and the sI, sII, and sH structures are rather

similar. Ice Ih becomes slightly more unstable with respect to sI, sII, and sH when

using a quantum description. Overall, comparing classical and quantum simulations
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of the same model, it is clear that there are substantial differences, indicating the

importance of quantum effects in water. Therefore, nuclear quantum effects should be

taken into account to quantitatively describe hydrates when using the true potential

energy surface obtained from first principle calculations93–95. The only exception is

the relative stability between the low dense solid phases, which is not significantly

affected.

• By comparing the results of classical simulations of the TIP4P/2005 model with path-

integral simulations of the TIP4PQ/2005 model for the hydrate structures it has been

shown that classical simulations are capable of describing correctly the density of the

hydrates for temperatures above 150K. Furthermore, the relative stability between ice

Ih and hydrates is well described by classical simulations. However, classical simula-

tions cannot describe correctly the densities of the hydrates for temperatures below

150K. For the structure the classical simulations provide a qualitatively correct de-

scription, although to estimate accurately the height of the first peaks of the correla-

tion functions the quantum treatment is needed. Neither do the classical simulations

correctly predict the sublimation enthalpy nor the heat capacity.

• The importance of nuclear quantum effects on the solid phases of water can be ratio-

nalized by grouping the ices into three families. The first family is formed by the low

dense solid structures (Ih, sI, sII, sH), the second family by ices III, V and VI and

the last family formed by ice II. Phase transitions between ices of the same family are

not much affected by nuclear quantum effects (i.e the importance of nuclear quantum

effects is similar for the ices of the same family). The importance of nuclear quantum

effects (which increase the energy of a certain solid structure) decreases when moving

from the first family to the last. The consequence is that when including quantum

effects the region covered by ice Ih on the phase diagram (in the p-T plane) decreases

and the territory left is taken by ices II and III (i.e lower pressures for the Ih-II and

Ih-III transitions). Also ice II will increase its presence in the phase diagram ( in

the p-T plane) taking regions previously covered by ices (III, V and VI), and this is

reflected in the higher II-V and II-VI transition pressures in the quantum system.

Returning to the issue of quantum effects on hydrates, it should be mentioned that com-

mon guest molecules such as methane or carbon dioxide essentially have classical behavior
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at the melting temperature of ice, it is expected that any nuclear quantum contributions in

hydrates will arise mostly from water. Since the guest molecules can be described reasonably

well using classical mechanics, one may expect that the magnitude of the nuclear quantum

effects in the gas hydrate to be smaller than in the empty hydrate (not by a large amount,

since hydrates contain approximately one guest molecule for each 6 water molecules) . This

may explain the higher values of the thermal expansivity of the gas hydrate with respect

to both the empty hydrate and ice Ih
9. In that respect the results presented in this work

represent an upper limit for the magnitude of the nuclear quantum effects; the addition of

the guest molecule would make the system somewhat more classical.

The impact of nuclear quantum effects on the fluid-solid equilibria of hydrates has not

been considered in this work, and it would be of interest to study this issue in the future.

Preliminary calculations indicate that the melting point for ice Ih of TIP4PQ/2005 is just 7K

above that of TIP4P/2005. Thus an effective classical potential can reproduce reasonably

well the melting point of a quantum model. This strongly suggests that phase equilibria

calculations of hydrates can be modeled by classical simulations96 provided that an effective

potential (including implicitly quantum effects through the potential parameters) is used.
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TABLE I: Number of beads (P ) or replicas in function of temperature used in the simulations.

The number of P was chosen according of the relation PT ≈ 1500K.

T(K) 275 250 200 150 125 100 77

P 6 6 8 10 12 15 20
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TABLE II: Parameters for both the TIP4PQ/200525 and the TIP4P/200539 models. The distance

between the oxygen and hydrogen sites is dOH. The angle, in degrees, formed by hydrogen, oxygen,

and the other hydrogen atom is denoted by ∠H-O-H. The Lennard-Jones site is located on the

oxygen with parameters σ and ǫ. The charge on the proton is qH. The negative charge is placed

on a point M at a distance dOM from the oxygen along the H-O-H bisector.

Model dOH (Å) ∠H-O-H σ(Å) ǫ/kB(K) qH(e) dOM(Å)

TIP4P/2005 0.9572 104.52 3.1589 93.2 0.5564 0.1546

TIP4PQ/2005 0.9572 104.52 3.1589 93.2 0.5764 0.1546
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TABLE III: Experimental lattice parameters at normal pressure for two different temperatures.

The experimental density is estimated from Eq.(8). Lattice parameters are given in Å. ρ is given

in g·cm−3. The number of molecules in the sI, sII and sH unit cells are 46, 136 and 34 respectively.

Phase Lattice parameters ρexp ρTIP4PQ/2005

T=200K

sI (a=11.91)74–77 0.815 0.815

sII (a=17.17)78 0.804 0.803

sH (a=12.28;c=10.08)74 0.773 0.784

T=100K

sI (a=11.875)77 0.822 0.819

sII (a=17.11)78 0.812 0.807

sH (a=12.20;c=10.01)74 0.788 0.788
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TABLE IV: Results from PI simulations using the TIP4PQ/2005(PI) model for the empty hydrates

(sI, sII and sH) and for a series of solid phases (ice Ih, II and V). The results from classical

simulations for the same model are also included. All energies are in units of kcal/mol and the

densities are in g·cm−3. The classical value of the kinetic translational or rotational energy (3/2)

RT is also provided for comparison. The values for the ices Ih, II and V are taken form the work

of McBride et al.25 except U(classical) and ρ(classical) that have been calculated in this work.

Phase T (K) p (bar) (3/2)RT Ktransl. Krot. Ktotal U E U(classical) ρ(PI) ρ(classical)

sI 125 1 0.38 0.54 1.41 1.95 -13.98 -12.04 -15.42 0.818 0.848

sI 100 1 0.30 0.50 1.41 1.91 -14.04 -12.13 -15.58 0.819 0.851

sI 77 1 0.23 0.46 1.42 1.88 -14.08 -12.20 -15.73 0.819 0.854

sII 125 1 0.38 0.54 1.42 1.96 -14.01 -12.05 -15.44 0.807 0.836

sII 100 1 0.30 0.50 1.42 1.92 -14.07 -12.15 -15.61 0.807 0.839

sII 77 1 0.23 0.46 1.42 1.89 -14.11 -12.22 -15.75 0.807 0.842

sH 125 1 0.38 0.54 1.41 1.95 -13.91 -11.96 -15.33 0.788 0.817

sH 100 1 0.30 0.50 1.40 1.90 -13.97 -12.06 -15.50 0.788 0.820

sH 77 1 0.23 0.47 1.42 1.89 -14.01 -12.13 -15.65 0.788 0.822

Ih 125 1 0.38 0.54 1.41 1.96 -14.25 -12.29 -15.68 0.928 0.960

Ih 100 1 0.30 0.50 1.42 1.92 -14.32 -12.40 -15.85 0.928 0.963

Ih 77 1 0.23 0.46 1.43 1.89 -14.34 -12.45 -15.99 0.927 0.966

II 125 1 0.38 0.53 1.32 1.84 -14.06 -12.21 -15.36 1.185 1.223

II 100 1 0.30 0.48 1.30 1.78 -14.14 -12.35 -15.52 1.188 1.230

II 77 1 0.23 0.44 1.32 1.76 -14.16 -12.40 -15.67 1.190 1.235

V 125 1 0.38 0.53 1.34 1.84 -13.80 -11.93 -15.15 1.248 1.289

V 100 1 0.30 0.49 1.34 1.82 -13.88 -12.06 -15.31 1.251 1.296

V 77 1 0.23 0.44 1.35 1.79 -13.91 -12.12 -15.46 1.253 1.302

26



TABLE V: Comparison of the energies E and densities ρ at 0K and zero pressure for the empty

hydrates and for a series of solid phases for the TIP4PQ/2005 model as obtained from classical

simulations and from path integral simulations. The energies are in units of kcal/mol and the

densities are in units of g·cm−3. The lowest energy (most stable phase) is shown in bold font.

The energies at 0K for TIP4PQ/2005 model from path integral simulations are slightly different

to those from work McBride et al.25 due to the different analytical expression used to fit the

simulation results. The lower section provides the relative energies with respect to ice Ih. The

errors (in kcal/mol) are O(0.02) in E and consequently O(0.04) in the relative energy. The error

for the density is O(0.002) in g·cm−3

Phase TIP4PQ/2005(classical) TIP4PQ/2005(PI)

ρ (0K) E (0K) ρ (0K) E (0K)

Ih 0.974 -16.49 0.927 -12.56

sI 0.863 -16.21 0.819 -12.32

sII 0.851 -16.24 0.807 -12.33

sH 0.831 -16.14 0.788 -12.24

II 1.254 -16.15 1.190 -12.54

III 1.197 -16.08 1.146 -12.32

V 1.321 -15.94 1.253 -12.25

VI 1.412 -15.78 1.336 -12.11

Phase TIP4PQ/2005(classical) TIP4PQ/2005(PI)

∆E (0K) ∆E (0K)

Ih 0 0

sI 0.27 0.24

sII 0.24 0.22

sH 0.35 0.32

II 0.34 0.02

III 0.41 0.24

V 0.55 0.31

VI 0.71 0.45
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TABLE VI: Densities for sI, sII and sH hydrates at normal pressure as obtained from simulation and

compared with the experimental density as obtained by Eq.8 from experimental lattice parameters.

Phase TIP4P/2005 TIP4PQ/2005 ρexp

T=200K

sI 0.819 0.815 0.815

sII 0.807 0.803 0.804

sH 0.788 0.784 0.773

T=100K

sI 0.832 0.819 0.822

sII 0.821 0.807 0.812

sH 0.801 0.788 0.788
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TABLE VII: Comparison of the energies, E, at 0K and zero pressure for the empty hydrates for

both the TIP4P/2005 and the TIP4PQ/2005 models. The energies are in units of kcal/mol. The

lowest energy (most stable phase) is shown in bold font. The lower section provides the relative

energies with respect to ice Ih. The values for the TIP4P/2005 model are taken from the work of

Conde et al.18 and Aragones et al.85. The error (in kcal/mol) is O(0.02) in E and consequently

O(0.04) in the relative energy.

E (0K estimate)

Phase TIP4P/2005 TIP4PQ/2005

Ih -15.06 -12.56

sI -14.82 -12.32

sII -14.84 -12.33

sH -14.74 -12.24

II -14.85 -12.54

III -14.74 -12.32

V -14.64 -12.25

VI -14.51 -12.11

Ih 0 0

sI 0.24 0.24

sII 0.22 0.22

sH 0.32 0.32

II 0.21 0.02

III 0.32 0.24

V 0.42 0.31

VI 0.55 0.45
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TABLE VIII: Coexistence pressures (in bar) for the TIP4PQ/2005 model estimated at 0K by using

Eq.9. The values for the classical TIP4P/2005 model are taken from Ref. 18. The sequence of

stability is Ih→sII→sH at negative pressures and Ih→II→VI at positive pressures for both models.

The values in bold font correspond to the stable transitions. The error in the pressure is given in

parentheses. The data for the coexistence pressures of the ices for the TIP4PQ/2005 are slightly

different to those reported in the work of McBride et al.25 due to the different analytical expression

used to fit the simulation results to obtain the energy at 0K.

Phases TIP4P/2005 TIP4PQ/2005 Exp

Ih-sI -4174 -3948 (700) -

Ih-sII -3379 -3249 (600) -

Ih-sH -4072 -3933 (500) -

sII-sI 2787 2267 (3000) -

sII-sH -7775 -7557 (2000) -

Ih-II 2090 195 (500) 140 (200)

Ih-III 3630 2727 (500) 2400 (100)

II-V 11230 15731 (2000) 18500 (4000)

II-VI 8530 10935 (1000) 10500 (1000)

III-V 3060 1998 (1000) 3000 (100)

V-VI 6210 6848 (1000) 6200 (200)
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CAPTION TO THE FIGURES

FIG. 1: Radial distribution function of sI hydrate described with the TIP4PQ/2005 model as

obtained from PI simulations (solid blue line) and from classical simulations (dashed dotted green

line) at 100K and 1bar.

FIG. 2: Enthalpy of empty hydrates and ice Ih at low temperatures and at p=1bar for the

TIP4PQ/2005 model as obtained from PI simulations. Lines correspond to the fit H = a0 +

a1T
2 + a2T

3. The error in the enthalpy is of the order ±0.04 kcal/mol. The values for ice Ih were

taken from McBride et al.25

FIG. 3: Equation of state for sI at p = 1bar predicted by the classical TIP4P/2005 model (red

dashed line) and the TIP4PQ/2005 model (blue solid line). Experimental values (diamond symbol)

calculated from the experimental lattice parameters taken from Refs. 74–78 are also shown.

FIG. 4: Radial distribution function of sI hydrate as obtained for TIP4PQ/2005 from PI simulations

(solid blue line) and for TIP4P/2005 from classical simulations (dashed dotted red line) at 100K

and 1bar.

FIG. 5: Radial distribution function of sII hydrate as obtained for TIP4PQ/2005 from PI simula-

tions (solid blue line) and for TIP4P/2005 from classical simulations (dashed dotted red line) at

100K and 1bar.
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FIG. 6: Radial distribution function of sH hydrate as obtained for TIP4PQ/2005 from PI simula-

tions (solid blue line) and for TIP4P/2005 from classical simulations (dashed dotted red line) at

100K and 1bar.

FIG. 7: Constant pressure heat capacity Cp at normal pressure as function of the temperature for

classical simulations (TIP4P/2005) and PI simulations (TIP4PQ/2005). Upper graph sI hydrate

and ice Ih. The dashed blue line corresponds to the values for ice Ih and the solid red line to those

for sI hydrate. The values for ice Ih as obtained from computer simulations were taken from Ref.32.

Experimental results (circle symbol) for ice Ih were taken from Ref. 79. Lower graph Results for

ices II (dashed orange line) and V (solid green line).
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