

FRACTIONATION OF POLYACRYLAMIDE IN LAMELLAR MESOPHASES

Yahya Agzenai, Isabel E. Pacios, Carmen S. Renamayor

Dept. CC. y TT. Fisicoquímicas, Facultad de Ciencias Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain

csanchez@ccia.uned.es

IMTCE 2014 INTERNATIONAL SYMPOSIUM ON ADVANCED POLYMERIC MATERIALS, KUALA LUMPUR (16-16 MAY, 2014)

MODELICO-CM / PROJECT: P-2009/ESP-1691

1.- The aim of this work

• To confine polyacrylamide (PA) in a lamellar liquid crystal formed by the anionic surfactant Aerosol OT (AOT) and water.

• To analyse how the concentration and the polymer dimensions affect the stability of the mesophase, in order to establish the conditions for polymer confinement.

2.- The surfactant: Sodium bis(2-ethylhexyl)sulfosuccinate

J. Rogers, P.A. Winsor, J. Colloid and Interface Sci., 30, 247 (1969)

3.- Lamellar Mesophase:

$$d = d_{\alpha} + d$$

$$N_{a}^{+} O$$

$$O = C$$

$$CH_{2}^{-}CH_{0}^{+}O$$

$$O = C$$

$$O = C$$

$$O = C$$

$$O$$

$$O$$

$$CH_{2}^{-}CH_{2}$$

$$d = d_S + d_w$$

Dilution Law
$$\frac{1}{d} = \frac{1}{d_S} \phi_S$$

4.- The Polymer

Characterization

- Molecular weight distribution (SEC)
- Intrinsic viscosity
- R_h (Diffusion NMR)

Sample	[η] (dL/g)	M _v	M _w	r	R _h (nm)
PA1	0.039	500	563	3.6	1.3
PA2	0.09	8.7 × 10 ³	4.5 × 10 ³	7	3.1
PA3	6.06	1.7×10^{6}	5.7 × 10 ⁶	1.2	64.8

5.- Sample Preparation and Characterization

PA _S -#	Poly(acrylamide) wt %= 1.25	AOT wt %= 20 - 45
S _{PA} -#	Poly(acrylamide) wt %= 0.5 – 5	AOT wt %= 25
S' _{PA} -#	Poly(acrylamide) wt %= 0.5 – 5	AOT wt %= 30
S" _{PA} -#	Poly(acrylamide) wt %= 0.5 – 5	AOT wt %= 35

• Optical Microscopy

Characterization

²H NMR
SAXS: Synchrotron ESRF

6.- Results

S_{PA3}-# AOT: 25 %; PA3: 0.5 – 5 %

7.- Results

9.- SAXS Results

I.E. Pacios, C.S. Renamayor, A. Horta, B. Lindman, K. Thuresson, Macromolecules (2002) 35, 7553

9.- SAXS Results

I.E. Pacios, C.S. Renamayor, A. Horta, B. Lindman, K. Thuresson, Macromolecules (2002) 35, 7553

$$\frac{1}{d} = \frac{1}{d_{AOT}} \phi_{AOT} \longrightarrow \frac{1}{d} = \frac{1}{d_{AOT}} (\phi_{AOT} + K\phi_{PA})$$
PA1 (•• • •) PA2 (•• • •) PA3 (• •)

0,18

0,18

0,16

0,18

0,16

0,16

S'_{PA}-#

0,12

0,12

0,10

0,01

0,02

0,03

0,04

$$\frac{1}{d} = \frac{\phi_{AOT}}{d_{AOT}} + \frac{K}{d_{AOT}} \phi_{PA}$$

 $\Phi_{_{PA}}$

10.- Fraction of polymer excluded from the lamellae (1)

I.E. Pacios, C.S. Renamayor, A. Horta, K. Thuresson, B. Lindman, Macromolecules (2005) 38,1949-1957

$$K = K_{\infty} f \qquad \longrightarrow \qquad \frac{1}{d} = \frac{1}{d_{AOT}} (\Phi_{AOT} + K_{\infty} f \Phi_{PA})$$

f: fraction of polymer excluded from the lamellae $K\infty$: limiting partition constant for total segregation

Serie	K∞f	f	d _{AOT} (nm)			
S _{PA1} -#	0.10 ± 0.06	0.06 ± 0.04	1.96±0,02			
S' _{PA1} -#	0.13±0.03	0.07 ± 0.02	$1.94 \pm 0,02$			
S" _{PA1} -#	0.20 ± 0.04	0.11±0.03	1.95±0,01			
S _{PA2} -#	0.36±0.04	0.20 ± 0.04	$1.96 \pm 0,01$			
S' _{PA2} -#	0.44 ± 0.06	0.25 ± 0.05	$1.97 \pm 0,02$			
S" _{PA2} -#	0.56±0.05	0.31 ± 0.05	1.96±0,01			
S _{PA3} -#	1.87±0.07	1.1 ± 0.1	1.99±0,03			
S' _{PA3} -#	1.68 ± 0.02	0.95 ± 0.08	1.98±0,01			
$K_{\infty} = 1.78$						

11.- Fraction of polymer excluded from the lamellae (2)

I.E. Pacios, C.S. Renamayor, A. Horta, B. Lindman, K. Thuresson, J. Phys. Chem. B (2005) 109, 23896-23904

12.- Fraction of polymer excluded from the lamellae (2)

PA_s-#: AOT=20-45 wt %; PA= 1.25 wt%

13.- Fraction of polymer excluded from the lamellae (2)

CONCLUSIONS

- The lamellar phase acts as a grating, fractionating the molecular weight distribution.
- Only the fraction of polymer having coil dimensions smaller than the thickness of water layers are dissolved in the mesophase.
- SAXS and SEC results can be combined to determine the fraction of polymer excluded from the lamellae.
- There is a cooperative effect of the polymer in its own exclusion, since the polymer deswells the lamellar structure, and thus contributes to shorten the lamellar distance, which then excludes more polymer.

ACKNOWLEDGEMENTS

This work received financial support from MICINN (Spain), under grant CTQ2010-16414, and from DGUI (Comunidad de Madrid), under R&D Program MODELICO-CM/ S2009ESP-1691. We are also indebted for beam time in the line BM16 (Spanish CRG) of the ESRF (Grenoble).