
Sum-Product Networks: A Survey
Raquel S�anchez-Cauce , Iago Parı́s , and Francisco Javier Dı́ez

Abstract—A sum-product network (SPN) is a probabilistic model, based on a rooted acyclic directed graph, in which terminal nodes

represent probability distributions and non-terminal nodes represent convex sums (weighted averages) and products of probability

distributions. They are closely related to probabilistic graphical models, in particular to Bayesian networks with multiple context-specific

independencies. Their main advantage is the possibility of building tractable models from data, i.e., models that can perform several

inference tasks in time proportional to the number of edges in the graph. They are somewhat similar to neural networks and can

address the same kinds of problems, such as image processing and natural language understanding. This paper offers a survey of

SPNs, including their definition, the main algorithms for inference and learning from data, several applications, a brief review of

software libraries, and a comparison with related models.

Index Terms—Sum-product networks, probabilistic graphical models, Bayesian networks, machine learning, deep neural networks

Ç

1 INTRODUCTION

SUM-PRODUCT networks (SPNs) were proposed by Poon
and Domingos [1] in 2011 as a modification of

Darwiche’s [2], [3] arithmetic circuits. An SPN is a directed
graph that represents a probability distribution resulting
from a hierarchy of distributions combined in the form of
mixtures (sum nodes) and factorizations (product nodes),
as shown in Fig. 1. SPNs, like arithmetic circuits, can be built
by transforming a probabilistic graphical model [4], such as
a Bayesian network or a Markov network, but they can also
be learned from data. The main advantage of SPNs is that
several inference tasks can be performed in time propor-
tional to the number of edges in the graph.

In these ten years there has been great progress: numer-
ous algorithms have been proposed for inference and learn-
ing, and SPNs have been successfully applied in several
areas, including computer vision and natural language
processing, where probabilistic models could not compete
with neural networks. The understanding of SPNs has also
improved and some aspects can now be explained more
clearly than in the original publications. For example, the
first two papers about SPNs [1], [5] presented them as an
efficient representation of network polynomials, while most
of the later references, beginning with [6], define them as
the composition of probability distributions, which is, in
our view, more intuitive and much easier to understand.
Consistency was initially one of the defining properties of
SPNs, which made them more general than arithmetic cir-
cuits, but it later became clear that decomposability, a stron-
ger but much more intuitive property, suffices to build
SPNs for practical applications. In contrast, selectivity

(called determinism in arithmetic circuits), which was not
mentioned in the original paper [1], proved to be relevant
for some inference tasks and for parameter learning [7], [8].
Additionally, some of the algorithms for SPNs are only
sketched in [1], without much detail or formal proofs, and
one of them turned out to be correct only for selective SPNs.
Other basic algorithms are scattered over several papers,
each using a different mathematical notation.

For these reasons we decided to write a survey explain-
ing the main concepts and algorithms for SPNs. We have
intentionally avoided any reference to network polynomials,
which has forced us to develop new proofs for some algo-
rithms and propositions, alternative to those found in other
references, such as [9]. We have also reviewed the literature
on SPNs, with especial emphasis on their applications.

The rest of this paper is structured as follows. The two sub-
sections of this introduction highlight the significance of SPNs
by comparing them with probabilistic graphical models and
neural networks, respectively. After some mathematical pre-
liminaries (Section 2), we introduce the basic definitions of
SPNs (Section 3) and the main algorithms for inference
(Section 4), parameter learning (Section 5), and structural learn-
ing (Section 6). We then review some applications in several
areas (Section 7), a few open-source packages (Section 8), and
some extensions (Section 9). Section 10 contains the conclu-
sions. Appendix A, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2021.3061898, compares SPNs with arithmetic
circuits. Appendix B, available in the online supplemental
material, analyzes the interpretation of sum nodes as weighted
averages of conditional probabilities, and Appendix C, avail-
able in the online supplemental material, contains the proofs of
all the propositions.

1.1 SPNs Versus Probabilistic Graphical
Models (PGMs)

SPNs are similar to PGMs, such as Bayesian networks (BNs)
and Markov networks (also called Markov random fields)
[4], [10], in their ability to compactly represent probability
distributions. The main difference is that in a PGM every

� The authors are with the Department of Artificial Intelligence, Universidad
Nacional de Educaci�on a Distancia (UNED), 28015 Madrid, Spain.
E-mail: {rsanchez, iagoparis, fjdiez}@dia.uned.es.

Manuscript received 23 Mar. 2020; revised 6 Feb. 2021; accepted 16 Feb. 2021.
Date of publication 25 Feb. 2021; date of current version 3 June 2022.
(Corresponding author: Francisco Javier D�ıez.)
Recommended for acceptance by D. Lowd.
Digital Object Identifier no. 10.1109/TPAMI.2021.3061898

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022 3821

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1128-3988
https://orcid.org/0000-0002-1128-3988
https://orcid.org/0000-0002-1128-3988
https://orcid.org/0000-0002-1128-3988
https://orcid.org/0000-0002-1128-3988
https://orcid.org/0000-0002-7829-442X
https://orcid.org/0000-0002-7829-442X
https://orcid.org/0000-0002-7829-442X
https://orcid.org/0000-0002-7829-442X
https://orcid.org/0000-0002-7829-442X
https://orcid.org/0000-0001-9855-9248
https://orcid.org/0000-0001-9855-9248
https://orcid.org/0000-0001-9855-9248
https://orcid.org/0000-0001-9855-9248
https://orcid.org/0000-0001-9855-9248
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3061898
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3061898
mailto:rsanchez@dia.uned.es
mailto:iagoparis@dia.uned.es
mailto:fjdiez@dia.uned.es


node represents a variable and—roughly speaking—edges
represent probabilistic dependencies, sometimes due to
causal influences, while in an SPN every node represents a
probability distribution. PGMs and other factored probabil-
ity distributions can be compiled into arithmetic circuits or
SPNs [11]. In general the graph of a PGM is more compact
than the compiled SPN, as shown in Fig. 1. (For the
“decompilation” of SPNs into BNs, see [12], [13].)

Inference in BNs in NP-hard [14], while SPNs compute
marginal and conditional probabilities in time proportional
to the number of edges in the graph. Therefore it is not sur-
prising that the compilation of BNs sometimes generates
very large graphs. In particular, some quadratic-size BNs
(for example, n� n lattices) generate exponential-size SPNs.
But if a family of BNs can be evaluated in polynomial time
with a general algorithm, such as variable elimination, then
the compilation generates polynomial-size SPNs [11]. Addi-
tionally, context-specific independencies in a BN [15] can
significantly reduce the size of the corresponding SPN, as
shown in Fig. 2.

More importantly, while PGMs learned from data are
usually intractable—except for small problems or for spe-
cific types of models with limited expressiveness, such as
the naı̈ve Bayes—the algorithms presented in Section 6 can
build tractable SPNs that yield excellent approximations
both for generative and discriminative tasks. (An exception
are latent tree models, a new type of PGM that share the
same advantages of SPNs [16].)

In contrast, BNs can be built using causal knowledge eli-
cited from human experts and there is a large body of recent
research on building causal BNs from experimental and/or
observational data, under certain conditions [17]. It is also
possible to combine causal knowledge and data, and even

to build BNs interactively [18]. All these options are cur-
rently impossible with SPNs. Additionally, the independen-
cies in a BN or in a Markov model are easier to read than
those in an SPN. On the other hand, the graph of an SPN
can sometimes be built from human knowledge by repre-
senting part/subpart and class/subclass hierarchies—see
[1, Sec. 5] for an example.

In conclusion, each type of model has advantages and
disadvantages, and the choice for a real-world application
must take into account the size of the problem, the amount
of knowledge and data available, and the explanations
required by the user.

1.2 SPNs Versus Neural Networks

SPNs can be seen as a particular type of feedforward neural
networks because there is a flow of information from the
input nodes (the leaves) to the output node (the root), but in
this paper we reserve the term “neural network” (NN) for
the models structured in layers connected by the standard
operators: sigmoid, ReLU, softmax, etc.

The main difference is that SPNs have a probabilistic
interpretation while standard NNs do not. Inference is also
different: computing a posterior probability requires two
passes, and the most probable explanation (MPE)—in selec-
tive SPNs, defined below—can be found by backtracking
from the root to the leaves, as explained in Section 4. Addi-
tionally, SPNs can do inference with partial information (i.e.,
when the values of some of the variables are unknown),
while in a NN it is necessary to assign a value to each input
node.

From the point of view of parameter learning, NNs are
usually trained with gradient descent or variations thereof,
while SPNs can also be trained with several probabilistic

Fig. 1. A Bayesian network (left) and an equivalent SPN (right). The 6
terminal nodes in the SPN are indicators for the 3 variables in the model,
A, B, and C; they are the input of the SPN for every configuration of
these variables, including partial configurations. The root node, n1, com-
putes the joint and marginal probabilities.

Fig. 2. If P ðc j :a;þbÞ ¼ P ðc j :a;:bÞ for every value of C (context-spe-
cific independence of B and C given :a), then nodes n16 and n17 in
Fig. 1 can be coalesced into node n16 in this figure. The numbers in red
are the values SiðvÞ for v ¼ ðþa;þb;:cÞ.

3822 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022



algorithms, such as EM and Bayesian methods, which are
much more efficient and have lower risk of overfitting (cf.
Section 5).

When building practical applications, the main differ-
ence is the possibility of determining the structure of an
SPN from data, looking for a balance between model
complexity and accuracy. In contrast, NNs are usually
designed by hand and it is necessary to examine differ-
ent architectures of different sizes with different hyper-
parameters, in a trial-and-error approach, until a
satisfactory model is found. For this reason, NNs that
have succeeded in practical applications are usually very
big, and training them requires huge computational
power. There are some proposals to learn the structure
of NNs using evolutionary computation, which yields
more efficient graphs, but this also requires immense
computational power [19], [20].

In spite of these advantages, NNs are clearly superior to
SPNs in many tasks, at least at the moment. For example, in
2012 an SPN by Gens and Domingos [5] achieved a classifi-
cation accuracy of 84 percent for the CIFAR-10 image data-
set, one of the highest scores at the time, but deep NNs have
amply surpassed that result, reaching an impressive 99.7
percent accuracy.1

Nevertheless, in Section 7 we mention several applica-
tions in which SPNs are competitive with NNs and supe-
rior in some aspects. For instance, some SPNs [21], [22]
have recently attained a classification accuracy compara-
ble to deep NNs for MNIST and other image datasets,
with the advantages of being probabilistic generative
models and being much more robust to missing features.
For another example, Stelzner et al. [23] proved that the
attend-infer-repeat (AIR) framework used for object
detection and location is much more efficient when the
variational autoencoders (VAEs) are replaced by SPNs:
they achieved an improvement in speed of an order of
magnitude, with slightly higher accuracy, as well as
robustness against noise. Other examples can be found
in Sections 7 and 9.

For a more detailed comparison of SPNs with NNs,
VAEs, generative adversarial networks (GANs), and other
models, see [21].

2 MATHEMATICAL PRELIMINARIES

2.1 Configurations of Variables

We denote by a capital letter, V , a variable and by the corre-
sponding lowercase letter, v, any value of V . Similarly a
boldface capital letter denotes a set of variables, V ¼
fV1; . . . ; Vng, the corresponding lowercase letter denotes any
of its configurations, v ¼ ðv1; . . . ; vnÞ, and confðVÞ is the set
of all the configurations of V. The empty set has only one
configuration, represented by^.

We denote by conf�ðVÞ the set of all the configurations of
V and its subsets:2

conf�ðVÞ ¼
[

X2PðVÞ
confðXÞ ¼ fx jX � Vg: (1)

We can think of conf�ðVÞ n confðVÞ as the set of partial config-
urations of V, i.e., the configurations in which only some of
the variables in V have an assigned value.

If X � V, the projection (sometimes called restriction) of a
configuration v of V onto X, v#X, is the configuration of X
such that every variable V 2 X takes the same value as in v;
for example, ðþx1;þx2;:x3Þ#fX1;X3g ¼ ðþx1;:x3Þ and
ðþx1;þx2;:x3Þ#? ¼^. In order to simplify the notation,
when X has a single variable, V , we will write v instead of
ðvÞ and v#V instead of v#fV g; for example,
ðþx1;þx2;:x3Þ#X2 ¼ þx2.

Given two configurations, x and y, of two disjoint sets, X
and Y, the composition of them, denoted by xy, is the config-
uration of X [ Y such that ðxyÞ#X ¼ x and ðxyÞ#Y ¼ y. For
example, ðþx1;þx2Þð:x3Þ ¼ ðþx1;þx2;:x3Þ.

When X � V, a configuration x is compatible with
configuration v if x ¼ v#X, i.e., if every variable V 2 X has
the same value in both configurations. All configurations
are compatible with^.

Definition 1: Given a value v of a variable V 2 V, we define the
indicator function, Iv : confðVÞ 7! f0; 1g, as follows:

IvðxÞ ¼ 1 if V =2 X _ v ¼ x#V

0 otherwise :

�
(2)

If all the variables in V are binary, then there are 2n indi-
cator functions.

Example 2: If V ¼ fV0; V1g and the domains of these varia-
bles are fþv0;:v0g and fþv1;:v1g respectively, then
Iþv0ðþv0;þv1Þ ¼ 1, Iþv0ð:v0;þv1Þ ¼ 0, Iþv0ðþv1Þ ¼ Iþv0
ð:v1Þ ¼ Iþv0ð^Þ ¼ 1, etc.

2.2 Probability Distributions

In order to simplify the statement of definitions and propo-
sitions, we assume in this section that all variables have
finite states, but these results can be generalized to variables
defined on R and to more complex types of variables.

Definition 3: A probability distribution defined on V is a
function P : confðVÞ 7! R such that

P ðvÞ � 0; (3)

X
v

P ðvÞ ¼ 1: (4)

Definition 4: An extended probability distribution defined
on V is a function P : conf�ðVÞ 7! R such that the restriction
of P to confðVÞ is a probability distribution and for every
configuration x such that X � V,

P ðxÞ ¼
X

v j v#X¼x
P ðvÞ: (5)

Every probability distribution can be extended by com-
puting its marginal probabilities with Equation (5).

1. See https://paperswithcode.com/sota/image-classification-on-
cifar-10

2. If the domains of the variables in V overlap, each configura-
tion should be tagged with the subset X to distinguish those that
consist of the same values; for example, to distinguish ð0; 0ÞfV1;V2g
from ð0; 0ÞfV1 ;V3g.

S�ANCHEZ-CAUCE ETAL.: SUM-PRODUCT NETWORKS: A SURVEY 3823



Proposition 5: A convex combination (weighted average) of
extended probability distributions defined on the same set of
variables is an extended probability distribution.

Proposition 6: A product of extended probability distributions
defined on disjoint sets of variables is an extended probability
distribution.

2.3 MAP, MPE, and MAX Inference

In some inference tasks e denotes the evidence, i.e., the val-
ues observed for a set of variables E (for example, the symp-
toms and signs of a medical examination or the pixels in an
image), and X the variables of interest (for example, the pos-
sible diagnostics or the objects that may be present in the
image), with X \ E ¼ ? . In this context, P ðx j eÞ is called the
posterior probability.

The maximum a-posteriori (MAP) configuration is

MAPðe;XÞ ¼ argmax
x

P ðx j eÞ: (6)

Therefore, MAP inference divides the variables into three
disjoint sets: observed variables (E), variables of interest (X),
and hidden variables (H ¼ V n ðE [ XÞ).

The most probable explanation is the configuration of X ¼
V n E that maximizes the posterior probability

MPE ðeÞ ¼ argmax
x

P ðx j eÞ: (7)

MPE is a special case of MAP in which H ¼ ? , i.e., every
variable that is not observed is a variable of interest. In gen-
eral, MAP inference is much harder than MPE [24].

Finally, MAX is a special case of MPE in which all the
variables are of interest, i.e., X ¼ V and H ¼ E ¼ ? . The
MAX configuration is the configuration of X that maximizes
the probability

MAX ðxÞ ¼ argmax
x

P ðxÞ: (8)

MPE and MAP are relevant when we wish to know the
most probable configuration of the variables of interest X
(for example, the possible diagnostics), which is different
from finding the most probable value for each variable in X,
as we will see in Example 25. MAP is relevant when some
unobserved variables are not of interest; for example, H
may represent the tests not performed: these variables are
neither observed nor part of the diagnosis. See also [4,
Secs. 2.1.5.2 and 2.1.5.3], where MPE and MAP are called
“MAP” and “marginal MAP” respectively. The definition of
MAX will be useful in Section 4.3.

2.4 Basic Definitions About Graphs

Graphs have many applications in computer science. We
describe here the type of graph used to build SPNs.

A directed graph consists of a set of nodes and a set of
directed edges. When there is an edge ni ! nj we say
that ni is a parent of nj and nj is a child of ni; there cannot be
another edge from ni to nj. Given a node ni, we denote by
paðiÞ the set of indices of its parents and by chðiÞ the set of
indices of its children. For example, in Fig. 1, chð1Þ ¼ f2; 3g:
Node nk is a descendant of ni if it is a child of ni or a child of
a descendant of ni; we also say that ni is an ancestor of nk.

A cycle of length l consists of a set of l nodes and l
edges fn1 ! n2; n2 ! n3; . . . ; nl�1 ! nl; nl ! n1g. A graph
that contains no cycles, i.e., no node is a descendant of
itself, is acyclic. An acyclic directed graph (ADG) is rooted if
there is only one node (the root, denoted by nr) having no
parents. Terminal nodes, also called leaves, are those that do
not have children.

A directed tree is a rooted ADG in which every node has
one parent, except the root. In this paper when we say “a
tree” we mean “a directed tree”.

3 BASIC DEFINITIONS OF SPNS

Given that this is an introductory paper, we will assume
that every leaf node represents a probability distribution for
one finite-state variable. In practice, a leaf in an SPN may
also represent a univariate distribution, for example, Gauss-
ian [6], [25], Poisson [26], piecewise polynomial [27], etc., or
a multivariate probability density, such as a multivariate
Gaussian [28], [29] or a Chow-Liu tree [30]. Some of the
results presented here generalize straightforwardly, but
others require a more sophisticate mathematical treatment.

3.1 Structure of an SPN

An SPN S is a rooted acyclic directed graph such that:

� each leaf node represents a probability distribution
for a finite-states variable, V ,

� all the other nodes are either of type sum or product,
and

� every edge ni ! nj outgoing from a sum node has an
associated weight, wij > 0.3

We will assume, unless otherwise stated, that all SPNs
are normalized, i.e., for every sum node ni,

X
j2chðiÞ

wij ¼ 1: (9)

An SPN can be built bottom-up beginning with sub-SPNs
of one node and joining them with sum and product nodes.
All the definitions of SPNs can be established recursively,
first for one-node SPNs, and then for sum and product
nodes. Similarly, all the properties of SPNs can be proved
by structural induction.

The scope of a node ni is denoted by scðniÞ. For a leaf
node, it is the set of variables on which the probability dis-
tribution is defined. The scope of a non-terminal node ni is
the union of the scopes of its children

scðniÞ ¼
[

j2chðiÞ
scðnjÞ: (10)

The scope of an SPN S, denoted by scðS), is the scope of its
root, scðnrÞ. The variables in the scope of an SPN are some-
times called model variables—in contrast with latent variables,
which we present below. We define conf(S) = conf(scðS))
and conf�ðS) = conf�ðscðS)).

3. SPNs are usually defined with wij � 0, but edges with wij ¼ 0
should be removed to avoid unnecessary terms in Eqs. (12) and (19).

3824 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022



A sum node is complete if all its children have the same
scope. An SPN is complete if all its sum nodes are complete.
(In arithmetic circuits this property is called smoothness.)

A product node is decomposable if its children have pair-
wise disjoint scopes. An SPN is decomposable if all its product
nodes are decomposable.

Proposition 7: A product node ni is decomposable if and only if no
node in the SPN is a descendant of two different children ofni.

In the rest of the paper we assume that all the SPNs are
complete and decomposable.

3.2 Node Values and Probability Distributions

Definition 8 (Value SiðxÞ): Let ni be a node of S and x 2
conf�ðSÞ. If ni is a leaf node with extended probability
distribution P ðvÞ, then

SiðxÞ ¼ P ðx#V Þ; (11)

if it is a sum node,

SiðxÞ ¼
X

j2chðiÞ
wij 	 SjðxÞ; (12)

and if it is a product node,

SiðxÞ ¼
Y

j2chðiÞ
SjðxÞ: (13)

When the probability distribution for a leaf node ni is
degenerate, i.e., there is one value v� of V such that P ðv�Þ ¼
1 and P ðvÞ ¼ 0 otherwise, Equations (2) and (11) lead to
SiðxÞ ¼ Iv� ðxÞ. This is the reason for using indicators as leaf
nodes, as in Figs. 1 and 2. However, SPNs (unlike arithmetic
circuits) accept more general distributions in their leaves.

Definition 9 (Value SðxÞ): The value SðxÞ returned by the
SPN is the value of the root, SrðxÞ.

Theorem 10: For every node ni in an SPN, the function Pi :
conf�ðSÞ 7! R, such that

PiðxÞ ¼ SiðxÞ; (14)

is an extended probability distribution defined on V ¼ scðniÞ.

Please note that Si is defined on the configurations of
the scope of the whole network, conf�ðS), while Pi is
defined on the configurations of the scope of the node,
conf�ðscðniÞÞ � conf�ðSÞ.

This theorem guarantees that P ðxÞ ¼ PrðxÞ is an
extended probability distribution, i.e., that the SPN properly
computes a probability distribution and all its marginals.
The proof of the theorem, in Appendix C, available in the
online supplemental material, relies on the completeness
and decomposability of the SPN, which are closely related
with Propositions 5 and 6, respectively.

3.3 Selective SPNs

We introduce now a particular type of SPNs that have inter-
esting properties for MPE inference and parameter learning
and for the interpretation of sum nodes.

When computing SðxÞ for a given x 2 conf�ðSÞ, probabil-
ity flows from the leaves to the root (cf. Definition 8). Equa-
tion (12) says that all the children of a sum node ni can
contribute to SiðxÞ. However, ni may have the property that
for every configuration v 2 confðSÞ at most one child makes
a positive contribution, i.e., SjðxÞ ¼ 0 for the other children
of ni. We then say that ni is selective [31]. The formal defini-
tion is as follows.

Definition 11: A sum node ni in an SPN is selective if

8v 2 confðSÞ; 9j� 2 chðiÞ j j 2 chðiÞ; j 6¼ j� ) SjðvÞ ¼ 0:

(15)

Please note that this definition says “conf”, not “conf�”.
Therefore even if ni is selective there may be a partial con-
figuration x 2 conf�ðSÞ n confðVÞ such that several children
of ni make positive contributions to SiðxÞ.

Definition 12: An SPN is selective if all its sum nodes are
selective.

Whether a node is selective (or not) does not change if its
weights are replaced with different positive numbers,
which implies that selectivity only depends on the structure
of the SPN, not on its weights.

Example 13: Given the SPN in Fig. 2, we can check that if
v ¼ ðþa;þb;:cÞ then S2ðvÞ ¼ 0:36 and S3ðvÞ ¼ 0. Only
node n2 makes a positive contribution to S1ðvÞ, so Prop-
erty 15 holds for this v with j� ¼ 2. We can make the
same check for each of the 6 sum nodes and each of the 8
configurations of fA;B;Cg in order to conclude that this
SPN is selective.

The main difference between arithmetic circuits and
SPNs is that the former are deterministic (i.e., selective)
while the latter are not necessarily so [32].

3.4 Sum Nodes That Represent Model Variables

Several papers about SPNs say that sum nodes represent
latent random variables. However, in this section we show
that in some cases sum nodes represent model variables.

Definition 14: Let ni be a sum node having m children
and V 2 scðniÞ a variable with m states. Let s be a one-to-one
function s : f1; . . . ;mg 7! chðiÞ. If for every j 2 f1; . . . ;mg
either Ivj is a child of nsðjÞ (and hence a grandchild of ni)
or Ivj ¼ nsðjÞ (i.e., the indicator itself is a child of ni), we then
say that ni represents variable V .

Example 15: Node n14 in Fig. 1 represents variable C, with
sð1Þ ¼ 17 and sð2Þ ¼ 18, because Ic1 ¼ Iþc ¼ n17 ¼ nsð1Þ,
and Ic2 ¼ I:c ¼ n18 ¼ nsð2Þ. Nodes 15, 16, and 17 also
represent C for the same reason.

Node n6 represents variable B, with sð1Þ ¼ 8 and
sð2Þ ¼ 9, because Ib1 ¼ Iþb is a child of nsð1Þ ¼ n8

and Ib2 ¼ I:b is a child of nsð2Þ ¼ n9. For analogous rea-
sons node n7 also represents B and n1 represents A.

In Appendix B, available in the online supplemental
material, we prove that when the root node of an SPN repre-
sents a variable V , this node can be interpreted as the
weighted average of the conditional probabilities given V ,
with wi;sðjÞ ¼ P ðvjÞ. Similarly, if every ancestor of a sum

S�ANCHEZ-CAUCE ETAL.: SUM-PRODUCT NETWORKS: A SURVEY 3825



node ni represents a variable, then ni can be interpreted as
the weighted average of the conditional probabilities given
the scenario (i.e., the configuration of variables) defined by
the path from the root to ni.

Proposition 16: Every sum node that represents a model vari-
able is selective.

This proposition leads to a sufficient condition for an
SPN to be selective. For example, according to Definition 14,
every node in Figs. 1 and 2 represents a variable, which
implies that every node is selective and consequently both
SPNs are selective. In the next section we will use this prop-
erty to transform any non-selective SPN into selective.

3.5 Augmented SPN

The goal of augmenting a non-selective SPN S [7], [9] is to
transform it into a selective SPN S0 that (after marginalizing
out the variables introduced in this process) represents the
same probability distribution. For every non-selective
node ni in S the augmentation consists in adding a new
variable Z, with as many states as children of ni, so that ni

represents Z in S0. The process is as follows. For every
child nj we add a state zðjÞ to Z. If nj is a product node, we
add the indicator IzðjÞ as a child of nj, as shown in Fig. 3;
if nj is a terminal node, we insert a product node, make nj a
child of the new node (instead of being a child of ni) and
add IzðjÞ as the second child of the new node. In the result-
ing SPN, S0, ni represents variable Z (because of Defini-
tion 14) and is therefore selective.

However this transformation of the SPN may cause an
undesirable side effect. Let us assume, as shown in
Fig. 3, that ni has a parent, nk, and nl is a parent of
both nk and nk0 . Even though nl was complete in S, the
addition of Z has made this node incomplete in S0
because Z 2 scðniÞ and Z 2 scðnkÞ but Z =2 scðnk0 Þ. It is
then necessary to make Z 2 scðnk0 Þ in order to restore the
completeness of nl. So we create a new sum node, ni0 ,
and make it a parent of all the indicators of Z,
fIz1 ; . . . ; Izmg (see again Fig. 3); the weights for ni0 can be
chosen arbitrarily provided that they are all positive and
their sum is 1. If nk0 is a product node, then we add ni0

as a child of nk0 . If nk0 is a terminal node, we insert a
product node, making both ni0 and nk0 children of this

new node. If nl has other children, such as nk00 , or ances-
tral sum nodes in S, then we must make each one of
them a parent or a grandparent of n0i, as we did for n0k.

Given that variable Z was not in the scope of the original
SPN, we can say that Z was latent in S and the augmenta-
tion of ni has made it explicit. The SPN S0 obtained by aug-
menting all the non-selective nodes is said to be the
augmentedversion of S. Therefore, scðS0Þ ¼ scðSÞ [ Z,
where Z contains one variable for each sum node that was
not selective in S.4

Proposition 17: If S0 is the augmented version of S, then S0 is
complete, decomposable, and selective, and represents the same
extended probability distribution for scðSÞ, i.e., if x 2
conf�ðSÞ, then P 0ðxÞ ¼ P ðxÞ.

3.6 Induced Trees

The following definition is based on [9], [31].

Definition 18: Let S be an SPN and v 2 confðSÞ such that
SðvÞ 6¼ 0. The sub-SPN induced by v, denoted by Sv, is a
non-normalized SPN obtained by (1) removing every node ni

such that SiðvÞ ¼ 0 and the corresponding edges, (2) removing
every edge ni ! nj such that wij ¼ 0, and (3) removing recur-
sively all the nodes without parents, except the root.

Proposition 19: If we denote by SvðxÞ the value that Sv returns
for x, then SvðvÞ ¼ SðvÞ.

Proposition 20: If S is selective, v 2 confðSÞ, and SðvÞ 6¼ 0,
then Sv is a tree in which every sum node has exactly one child.
(Following the literature, in this case we will write T v instead
of Sv to remark that it is a tree.)

Example 21: Given the SPN in Fig. 2 and v ¼ ðþa;þb;:cÞ,
T v only contains the edges drawn with thick lines in that
figure and the nodes connected by them.

When an SPN is selective, the set of trees obtained for all
the configurations in confðSÞ is similar to the set of trees
obtained by recursively decomposing the SPN, beginning
from the root, as proposed by Zhao et al. [33], which leads
us to the following results.

Proposition 22: If S is selective, v 2 confðSÞ, and SðvÞ 6¼ 0,
then

SðvÞ ¼
Y

ni!nj2Tv
wij

Y
nk is terminal in Tv

SkðvÞ: (16)

Corollary 23: If all the terminal nodes in S are indicators, then

SðvÞ ¼
Y

ni!nj2Tv
wij: (17)

Example 24: For the SPN in Fig. 2, when v ¼ ðþa;þb;:cÞ
we have SðvÞ ¼ w1;2 	 w6;8 	 w14;18 ¼ 0:3 	 0:4 	 0:9 ¼ 0:108.

Fig. 3. Augmentation of an SPN, assuming that ni is not selective in S.
This process adds an indicator IzðjÞ for every child nj of ni. Node ni0 is
added to restore the completeness of nl in S0.

4. The original algorithm, proposed by Peharz [9], augments every
node in S, even those that were already selective. In contrast, our algo-
rithm only processes the nodes that were not selective in S, so that the
augmentation of a selective SPN does not modify it.

3826 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022



4 INFERENCE

4.1 Marginal and Posterior Probabilities

As defined in the previous section, P ðxÞ ¼ SðxÞ ¼ SrðxÞ. The
value SðxÞ can be computed by an upward pass from the
leaves to the root in time proportional to the number of
edges in the SPN. If X and E are two disjoint subsets of V,
then P ðx j eÞ ¼ SðxeÞ=SðeÞ, where xe is the composition of x
and e. Therefore, any joint, marginal, or conditional proba-
bility can be computed with at most two upward passes.
Partial propagation, which only propagates from the nodes
in X [ E, can be significantly faster [34].

4.2 MPE Inference

The MPE configuration for an SPN is (see Section 2.3)

MPE ðeÞ ¼ argmax
x

P ðx j eÞ ¼ argmax
x

P ðxeÞ=P ðeÞ

¼ argmax
x

P ðxeÞ ¼ argmax
x

SðxeÞ:
(18)

Let us assume that S is selective. Then X [ E ¼ scðSÞ
implies that xe 2 confðS) and, because of Proposition 20, the
sub-SPN induced by xe is a tree in which every sum node
has only one child. Therefore, the MPE can be found by
examining all the trees for the configurations xe in which e
is fixed and x varies. It is possible to compare all those trees
at once with a single pass in S, by computing Smax

i ðeÞ for
each node as follows:

� if ni is a sum node, then

Smax
i ðeÞ ¼ max

j2chðiÞ
wij 	 Smax

j ðeÞ; (19)

� otherwise Smax
i ðeÞ ¼ SiðeÞ (cf. Eqs. (11) and (13)).

Then the algorithm backtracks from the root to the
leaves, selecting for each sum node the child that led to
SmaxðeÞ and for each product node all its children. When
arriving at a terminal node with scope Y, the algorithm
selects the mode of P , ŷ ¼ argmaxy0 P ðy0Þ. In particular, if
the terminal node is an indicator Iv, then v̂ ¼
argmaxv0 P ðv0Þ ¼ v. A tie means that there are two or more
configurations having the same probability P ðx; eÞ; these
ties can be broken arbitrarily. The backtracking phase is
equivalent to pruning the SPN in order to obtain a tree in
which every sum node has only one child and there is
exactly one terminal node for each variable; the composition
of the ŷ’s selected at the terminal nodes makes up the con-
figuration x̂ ¼MPE ðeÞ.

Example 25: Fig. 4 shows the MPE inference for the SPN in
Fig. 2 when e ¼ þc. The MPE is obtained by backtracking
from the root to the leaves: x̂ ¼MPE ðeÞ ¼ ðþa;:bÞ. We
can check that Smax

1 ðeÞ ¼ P ðx̂eÞ ¼ P ðþa;:b;þcÞ ¼ 0:144.
For any other configuration x of X ¼ V n E ¼ fA;Bg, we
have SðxeÞ < Sðx̂eÞ, in accordance with Equation (18).
We can also check that the nodes selected by the back-
tracking phase are those of the tree induced by x̂e—see
Definition 18 and Proposition 20.

Note that, as mentioned in Section 2.3, the MPE cannot
be determined by selecting the most probable value for
each variable. In this example P ð:a j eÞ ¼ 0:57 >

P ðþa j eÞ and P ð:b j eÞ ¼ 0:68 > P ðþb j eÞ, so we would
obtain the configuration ð:a;:b), which is not the MPE.

This algorithm was proposed for arithmetic circuits by
Chan and Darwiche [35], adapted to SPNs by Poon and
Domingos [1], and later called Best Tree (BT) in [36]. Peharz
[7, Th. 2] proved that when an SPN is selective, BT com-
putes the true MPE. However, when a network is not selec-
tive, the sub-SPN induced by a configuration xe is not
necessarily a tree, so the value SmaxðeÞ computed by BT—
which only considers the probability that flows along trees
with one child for each sum node—may be different from
maxxSðxeÞ and, consequently, the configuration returned by
BT may be different from the true MPE. Therefore, even
though the MPE can be found in time proportional to the
size of the graph for selective SPNs, MPE is NP-complete
for general SPNs (an incorrect proof was included in
Peharz’s thesis [9, Th. 5.3] and amended in an erratum; the
first correct proof was offered in [37]).5

4.3 MAX and MAP

Exact MAP inference for SPNs is NP-hard because it
includes as a particular case MPE (see Section 2.3), which is
NP-complete. Conaty et al. [37], [38] gave an inapproxima-
tion result for this problem, and showed that an extension

Fig. 4. MPE computation for the SPN in Fig. 2. Sum nodes turn into max
nodes. The numbers in red are the values Smax

i ðeÞ when the evidence is
e ¼ þc. The most probable explanation,MPE ðeÞ ¼ ðþa;:bÞ, is found by
backtracking from the root to the leaves (thick lines).

5. When an SPN S is not selective, it is possible to find an approxi-
mation to the MPE by augmenting it and then finding the MPE for S0
given e. The result is a configuration y of Y ¼ ðV [ ZÞ n E ¼ X [ Z,
which we can then project onto X. However, Park [24] proved that in
general this method does not find good approximations, i.e., the poste-
rior probability of the configuration found by this method may differ
significantly from that of the true MPE.

S�ANCHEZ-CAUCE ETAL.: SUM-PRODUCT NETWORKS: A SURVEY 3827



of BT for MAP can obtain exponentially better solutions at
the expense of quadratic runtime in the size of the network.

Mei et al. [36] proposed several algorithms that are
very efficient in practice. First, they presented an algo-
rithm for the MAX problem in general SPNs. Second,
they proved that every MAP problem for SPNs can be
reduced to a MAX problem for a new SPN built in linear
time. This way they were able to exactly solve MAP
problems for SPNs with up to 1,000 variables and
150,000 edges.

Third, they proposed several approximate MAP solv-
ers that trade accuracy for speed, obtaining excellent
results. In particular, they extended the BT method to
the MAX problem for non-selective SPNs. This extension,
called K-Best Tree (KBT), selects the K trees with the
largest output. Then, the corresponding configurations
are obtained (by backtracking) and evaluated in the
SPN. The one with the largest output is the approximate
solution to the MAX problem. Note that, for K ¼ 1, KBT
reduces to BT.

Most of these algorithms have been developed for the
case of discrete variables and are difficult to adapt to the
continuous case.

5 PARAMETER LEARNING

Parameter learning consists in finding the optimal parame-
ters for an SPN given its graph and a dataset. In generative
learning the most common optimality criterion is to maxi-
mize the likelihood of the parameters of the model given a
dataset, while in discriminative learning the goal is to maxi-
mize the conditional likelihood for each value of a distin-
guished variable C, called the class.

5.1 Maximum Likelihood Estimation (MLE)

Let D ¼ fv1; v2; . . . ; vTg be a dataset of T independent
and identically distributed (i.i.d.) instances. We denote
by W the set of weights of the SPN and by Q the param-
eters of the probability distributions in the terminal
nodes; both of them act as conditioning variables for the
probability of the instances in the dataset, P ðD jw; uuÞ. We
define LDðw; uuÞ as the logarithm of the likelihood

LDðw; uuÞ ¼ logP ðD jw; uuÞ ¼
XT
t¼1

logSðvt jw; uuÞ: (20)

The goal is to find the configuration of W [Q that maxi-
mizes LDðw; uuÞ. Given that there is no restriction linking
the parameters of one node (either sum, product, or ter-
minal) with those of others, the optimization can be
done independently for each node. For terminal nodes,
the estimation of the parameters that maximize the likeli-
hood depends on the type of distribution. In particular,
indicator nodes have no parameters, so no estimation is
necessary. In this section we will focus on the optimiza-
tion of the weights, W, so we omit Q in the equations.
The configuration that maximizes the likelihood is

bw ¼ argmax
w

P ðD jwÞ ¼ argmax
w

LDðwÞ; (21)

subject to wij � 0 and
P

j2chðiÞ wij ¼ 1.

5.1.1 MLE for Selective SPNs

When the SPN is selective and SðvÞ 6¼ 0, then the weights of
the sum nodes can be estimated in closed form by applying
MLE as follows [31].

Proposition 26:When an SPN is selective,

LDðwÞ ¼
X
i

X
j2chðiÞ

nij 	 logwij þ c;
(22)

where nij is the number of instances in the dataset for which
ni ! nj 2 T vt and c is a value that does not depend onw.

The nij’s can be computed by having a counter for
every edge ni ! nj in the SPN. For each instance vt in
the dataset, we compute SðvtÞ and then backtrack from
the root to the leaves: for each product node we select
all its children; for each sum node ni we select the only
child for which SjðvtÞ > 0, and increase by 1 the
counter nij.

It is then necessary to obtain the configuration bw that
maximizes the likelihood—cf. Eq. (21). The only constraint
is
P

j2chðiÞ wij ¼ 1 for every i, which implies that the parame-
ters for one node can be optimized independently of those
for other nodes. The values that maximize the ith term in
Equation (22) are

bwij ¼
nijP

j02chðiÞ nij0
: (23)

Alternatively, it is possible to use a Laplace-like smooth-
ing parameter a, so that

bwij ¼
nij þ aP

j02chðiÞðnij0 þ aÞ ; (24)

with 0 < a 
 1. When SiðvtÞ ¼ 0 for every t, i.e., when none
of the instances in the dataset propagates through the sum
node ni, then nij ¼ 0 for every child nj, and the weights are
set uniformly: bwij ¼ 1=jchðiÞj.

5.1.2 Partial Derivatives of S

In this section we assume that all the parents of a sum node
(if any) are product nodes, and vice versa. If there were an
edge connecting two nodes of the same type, the child could
be absorbed into the parent, without modifying the proper-
ties of the SPN.

For every node ni and every instance vt we define

S@
i ðvtÞ ¼

1

SðvtÞ 	
@S

@Si
ðvtÞ: (25)

For the root node,

S@
rðvtÞ ¼

1

SðvtÞ 	
@S

@Sr
ðvtÞ ¼ 1

SðvtÞ : (26)

3828 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022



For the other nodes,

S@
i ðvtÞ ¼

1

SðvtÞ 	
@S

@Si
ðvtÞ

¼ 1

SðvtÞ 	
X

k2paðiÞ

@S

@Sk
ðvtÞ 	 @Sk

@Si
ðvtÞ

¼
X

k2paðiÞ
S@
kðvtÞ 	

@Sk

@Si
ðvtÞ;

where paðiÞ is the set of indices for the parents of ni. If ni is a
sum node,

S@
i ðvtÞ ¼

X
k2paðiÞ

S@
kðvtÞ 	

Y
i02chðkÞnfig

Si0 ðvtÞ; (27)

if it is a product node,

S@
i ðvtÞ ¼

X
k2paðiÞ

wki 	 S@
kðvtÞ: (28)

These equations mean that, for every node ni, S
@
i ðvtÞ can be

computed once we have the S@
kðvtÞ’s of its parents and the

Si0 ðvtÞ’s of its siblings. Therefore, after computing SiðvtÞ for
every node with an upward pass, S@

i ðvtÞ can be computed
with a downward pass, both in linear time. This algorithm
is similar to backpropagation for neural networks and can
be implemented using software packages that support auto-
matic differentiation.

5.1.3 Gradient Descent (GD)

Standard GD. This well-known optimization method
was proposed for SPNs for both generative and discrimina-
tive models in [1] and [5], respectively.6 The algorithm is ini-
tialized by assigning an arbitrary value to each parameter,
bwð0Þij , and in every iteration, s, this value is updated, in order
to increase the likelihood of the model

bwðsþ1Þij ¼ bwðsÞij þ h
@LDðwÞ
@wij

; (29)

where h > 0 is the learning rate (a hyperparameter). Given
that the parameters computed with this expression are usu-
ally non-normalized and occasionally negative, it is neces-
sary to project them back to the feasible set after each
update, as explained in [33]—see also [9, Sec. 6.2]. This
method is called projected GD [39].

Proposition 27: In an SPN,

@LDðwÞ
@wij

¼
XT
t¼1

S@
i ðvtÞ 	 SjðvtÞ: (30)

As the SiðvtÞ’s and S@
i ðvtÞ’s for the whole network can be

computed in linear time for each instance vt, the time
required for each iteration of GD is proportional to the size
of the SPN and the number of instances in the dataset.

Stochastic GD and mini-batch GD. In the stochastic
version of GD, each iteration s randomly chooses one
instance of the dataset (as if D in Eq. (30) consisted only of
that instance, i.e., T ¼ 1), until the algorithm converges.

Another possibility is to use in each iteration a mini-
batch, i.e., a subset L randomly drawn instances, where L <
T (usually L� T ). This version is the most popular when
applying GD.

Hard GD. The application ofGD todeepnetworks, either
neural networks or SPNs, suffers from the vanishing gra-
dients problem: the deeper the layer, the lower the contribu-
tion of its weights to the model output, so the influence of the
parameters in the deepest layersmay be imperceptible.

As mentioned above, the goal of discriminative learning
is to maximize the conditional likelihood, P ðy j xÞ, where X
are the observed variables (input) and Y is the set of labels
(output). In an SPN, the conditional likelihood of each
instance in the dataset is logP ðy j xÞ ¼ logSðxyÞ � logSðxÞ.
The hard version of GD for learning discriminative SPNs
proposed in [5], instead of maximizing the (overall) condi-
tional likelihood, which is logP ðy j xÞ ¼ logSðxyÞ � logSðxÞ,
aims to maximize (the overall value of) logSmaxðxyÞ �
logSmaxðxÞ. Their algorithm computes Smax as the product
of the weights in the tree obtained by the BT algorithm
when backtracking (see Eq. (17)), and then takes its partial
derivative.

5.1.4 Expectation-Maximization (EM)

Standard EM. We have seen how to learn the parame-
ters of a selective SPN from a complete dataset. However,
many real-world problems have missing values. We denote
by Ht the variables missing (hidden) in the tth instance of
the dataset. Additionally, when learning the parameters
of S0, an augmented SPN, the dataset is always incomplete,
even if it contains all the values for the the model variables
in S, because it does not contain the latent variables Z,
added when augmenting the SPN, so Z � Ht for every t.

In this situation we can apply the expectation-maximiza-
tion (EM) algorithm, designed to estimate the parameters of
probabilistic models from incomplete datasets. The problem
is as follows. If we had a complete dataset, we would be
able to estimate its parameters as explained in the previous
section. Alternatively, if we knew the parameters, we would
be able to generate a complete dataset by sampling from the
probability distribution.

The EM algorithm proceeds by iteratively applying two
steps. The E-step (expectation) computes the probability
P ðht j vtÞ for each configuration of the variables missing
in vt in order to impute the missing values. More precisely,
instead of assigning a single value to each missing cell, we
create a virtual dataset in which all the configurations of Ht

are present, each with probability P ðht j vtÞ. The M-step
(maximization) uses this virtual complete dataset to adjust
the parameters of the model by MLE, as in Section 5.1.1. The
two steps are repeated until the parameters (the weights)
converge.

The problem is that initially we have neither a complete
dataset nor parameters for sampling the values of the miss-
ing variables. The algorithm can be initialized by assigning
arbitrary values to the parameters or by assigning arbitrary

6. The method is commonly called “gradient descent” when its goal
is to minimize a quantity—for example, the classification error in neural
networks. In our case it would be more appropriate to call it “gradient
ascent” because the goal is to maximize the likelihood. However, in this
paper we follow the standard terminology for SPNs.

S�ANCHEZ-CAUCE ETAL.: SUM-PRODUCT NETWORKS: A SURVEY 3829



values to the variables in Z. Unfortunately, like in GD, a bad
choice of the initial values may cause the algorithm to con-
verge to a local maximum of the likelihood, which may be
quite different from the global maximum.

The nij’s required by the M-step are obtained by count-
ing the number of instances in the dataset for which the
edge ði; jÞ belongs to the tree induced by vtht. These are
the nij’s introduced in Equation (22), which in the case of
the virtual dataset are

nij ¼
XT
t¼1

X
ht j ði;jÞ2T 0

vtht

P 0ðht j vtÞ; (31)

and can be efficiently computed by applying the following
result:

Proposition 28: Given a dataset D with T instances and an
SPN, the nij’s in Equation (31) are

nij ¼
XT
t¼1

wij 	 S@
i ðvtÞ 	 SjðvtÞ: (32)

Please note that this proposition is valid even for non-
selective SPNs (see the proof in Appendix C, available in
the online supplemental material). Once we have the nij’s,
the weights can be updated using Equations (23) or (24).
The time required by each iteration of EM is, like in GD,
proportional to the size of the network and the number of
instances in the dataset.

Hard EM. The EM algorithm needs the value of S@
i ,

which is proportional to @S=@wij and may thus be very small
when the edge ðni; njÞ is in a deep position, i.e., far from the
root. Therefore this algorithm may suffer from the vanish-
ing gradients problem in the same way as GD. To avoid it,
Poon and Domingos [1] proposed a hard version of EM for
SPNs that selects for each hidden variable H 2 Ht the most
probable state. Thus, in the E-step of each iteration, every
instance of the dataset contributes to the update of just one
weight per sum node.

Hsu et al. [29] proposed a variant of hard EM for SPNs
with Gaussian leaves. When processing an instance, it first
computes the likelihood of every node and then updates the
counter associated to each node, beginning from the root, so
that for each sum node only the counter of the child with
the highest likelihood is increased. These counters are used
to update the weights, as well as the mean and the covari-
ance of each leaf node.

5.1.5 Comparison of MLE Algorithms

The application of EM to SPNs has been justified with dif-
ferent mathematical arguments. Peharz [7], [9] obtained the
first derivation of the EM for SPNs by exploiting the inter-
pretation of sum nodes in the augmented network as the
sum of conditional probability distributions (cf. Eqs. (38)
and (39) in Appendix B, available in the online supplemen-
tal material). In turn, Zhao et al. [33], using a unified frame-
work based on signomial programming, designed two
algorithms for learning the parameters of SPNs: sequential
monomial approximations (SMA) and the concave-convex

procedure (CCCP). GD is a special case of SMA, while
CCCP coincides with EM in the case of SPNs, despite being
different algorithms in general. Their experiments proved
that EM/CCCP converges much faster than the other algo-
rithms, including GD. In turn, Desana and Schn€orr [28]
derived the EM algorithm for SPNs whose leaf nodes may
represent complex probability distributions.

In discriminative learning, neither EM nor CCCP have a
closed-form expression for updating the weights [5]. Rash-
wan et al. [40] addressed this problem with the extended
Baum-Welch (EBW) algorithm, which updates the parame-
ters of the network using a transformation that increases the
value of the likelihood function monotonically. In the gener-
ative case, this transformation coincides with the update
formula of EM/CCCP (the M-step), while in the discrimina-
tive case it provides a method to maximize the (conditional)
likelihood function with a closed-form formula. They also
adapted this method to SPNs with Gaussian leaves.

Both the algorithm of Desana and Schn€orr and EBW out-
performed GD and EM in a wide variety of datasets.

Finally, Trapp et al. [41] have shown that increasing the
depth of tree-structured SPNs can accelerate GD, since it is
equivalent to applying adaptive and time-varying learning
rates and adding momentum terms, as it was first observed
for deep neural networks [42].

5.2 Semi-Supervised Learning

Trapp et al. [43] introduced a safe semi-supervised learning
algorithm for SPNs. By “safe” they mean that the model
performance can be increased but never degraded by add-
ing unlabeled data. They extended EM to generative semi-
supervised learning and defined a discriminative semi-
supervised learning approach. They also introduced the
maximum contrastive pessimistic algorithm (MCP-SPN),
based on [44], for learning safe semi-supervised SPNs. Their
results were competitive with those of purely supervised
algorithms trained on fully labeled datasets.

5.3 Approximate Bayesian Learning

There are alternative methods for learning the parameters
of an SPN based on approximate Bayesian techniques,
such as Bayesian moment matching [45] and collapsed var-
iational inference [46], which are not as exposed to overfit-
ting as GD or EM. Both Bayesian methods start with a
product of Dirichlet distributions as a prior; the posterior
distribution P ðwij j DÞ is a mixture of products of Dirich-
lets, which is computationally intractable. In both works
the solution applied was to approximate that distribution
with a single product of Dirichlet distributions. Rashwan
et al. [45] applied online Bayesian moment matching
(oBMM), which approximates the posterior distributions of
the weights by computing a subset of their moments and
finding another distribution from a tractable family that
matches those moments. In this case, it sufficed to match
the first and second order moments of the distribution.
The experiments showed that this approach outperforms
SGD and online EM. This method has also been adapted to
SPNs with Gaussian leaves by Jaini et al. [47]. In the same
vein, Zhao and Gordon [48] presented an optimal linear
time algorithm for computing the moments in SPNs with

3830 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022



general acyclic directed graph structures, based on the
mixture-of-trees interpretation of SPNs. This provides an
effective method to apply Bayesian moment matching to a
broad family of SPNs.

As mentioned above, Zhao et al. [46] addressed the prob-
lem by applying collapsed variational Bayesian inference
(CVB-SPN). This approach treats the dataset as partial evi-
dence, whose missing values correspond to the latent varia-
bles of the SPN. They assumed that the missing values of
each instance are not independent of those missing in other
instances, and marginalized these variables out of the joint
posterior distribution (the “collapse” step). Then, they
approximated this distribution with the product of the
Dirichlets that maximizes certain evidence lower bound
(ELBO) of the log-likelihood function of the dataset (the
“variational inference” step). The lower bound obtained
with this method is tighter that the one obtained with stan-
dard variational inference. The experiments showed that
the online version of CVB-SPN—i.e., the version that
receives a stream of data in real time—outperforms oBMM
in many datasets.

5.4 Deep Learning Approach

Peharz et al. [21] considered a special class of SPNs, which
they called random SPNs. Varying a parameter, �, they
could control the trade-off between generative behavior
(measured in log-likelihood) and discriminative behavior
(measured in accuracy or cross-entropy), and trained them
for generative and discriminative problems with automatic
differentiation, stochastic GD, and dropout, using GPU par-
allelization. The resulting model was called RAT-SPN. Its
classification accuracy, measured on several datasets, was
comparable to that of deep neural networks, with the
advantages of a probabilistic generative model, such as
robustness to missing features.

5.5 Sample Complexity of Learning SPNs

Aden-Ali and Ashtiani [49] have recently shown that the
number of samples necessary to learn tree structured SPNs
with discrete or Gaussian leaves grows at most linearly
(up to logarithmic factors) with the number of parameters
of the SPN.

6 STRUCTURAL LEARNING

Structural learning consists in finding the graph of an SPN
that closely fits the available data. Most of the algorithms
for this task require some computation of probabilities dur-
ing the process.

6.1 First Structure Learners

BuildSPN, by Dennis and Ventura [50] was the first algo-
rithm of this kind. It looks for subsets of highly correlated
variables and introduces latent variables to account for
those dependencies. These variables generate sum nodes
and the process is repeated recursively looking for the new
latent variables.

BuildSPN and the hand-coded structure of Poon and
Domingos [1], both designed for image processing,
assumed neighborhood dependence. In order to overcome
that limitation, Peharz et al. [51] proposed an algorithm that

subsequently combines SPNs of few variables into larger
ones applying a statistical dependence test.

BuildSPN was also critiqued by Gens and Domingos [6]
because (1) the clustering process may separate highly depen-
dent variables, (2) the size of the SPN and the time required
can grow exponentially with the number of variables, and (3)
it requires an additional step to learn theweights.

Algorithm 1. LearnSPNðV; T;m;aÞ
Input: V: a set of variables;
T : a data matrix of Tj j instances;
m: minimum number of instances to allow a split
of variables;
a: Laplace smoothing parameter

Output: an SPN S with scðSÞ ¼ V
if jVj ¼ 1 then
S  univariateDistributionðV; T;aÞ

else if Tj j < m then
S  naı̈veFactorizationðV; T;aÞ

else
Vj

� �C

j¼1 splitVariablesðV; T;aÞ
if C > 1 then
S  

QC
j¼1 LearnSPN Vj; T;a;m

� �
else

Tif gRi¼1 clusterInstancesðV; T Þ
S  

PR
i¼1

Tij j
Tj j LearnSPN Ti;V;a;mð Þ

return S

6.2 LearnSPN

It is common in machine learning to see a dataset as a data
matrix whose columns are attributes or variables and whose
rows are observations or instances. The LearnSPN algo-
rithm [6] recursively splits the variables into independent
subsets (thus “chopping” the data matrix, as shown in
Fig. 5) and then clusters the instances (thus “slicing” the
matrix). Every “chopping” creates a product node and
every “slicing” a sum node, as indicated in Algorithm 1.
There are two base cases:

1) When the piece of the data matrix produced by
“chopping” contains a single column (i.e., one

Fig. 5. The LearnSPN algorithm recursively creates a product node
when there are subsets of (approximately) independent variables and a
sum node otherwise, grouping similar instances. (Reproduced from [6]
with the authors’ permission.)

S�ANCHEZ-CAUCE ETAL.: SUM-PRODUCT NETWORKS: A SURVEY 3831



variable), the algorithm creates a terminal node with
a univariate distribution using MLE.

2) When the piece of the data matrix produced by
“slicing” contains several columns with relatively
few rows, the algorithm applies a naı̈ve Bayes factor-
ization over those variables. This is like “chopping”
that piece into individual columns, which will be
processed as in the base case 1.

LearnSPN can be seen as a framework algorithm in the
sense that it does not specify the procedures for splitting
independent subsets of variables (splitVariables in Algo-
rithm 1) and clustering similar instances (clusterInstances in
that algorithm). Originally Gens and Domingos [6] chose
the G-Test for splitting and hard incremental EM for
clustering.

One possibility for splitting the variables (“chopping”) is
to create a graph with an edge between each pair of varia-
bles found to be dependent according to the G-test. Each
connected component determines a subset of variables, Vj.

Clustering similar instances (“slicing”) is achieved by the
hard EM algorithm assuming a naı̈ve Bayes mixture model,
where the variables are independent given the cluster Ci:
P ðvÞ ¼

P
i P cið Þ

Q
j P vj j ci

� �
. This particular model produ-

ces a clustering that can be chopped in the next recursion.
This version of LearnSPN forces a clustering in the first
step, without attempting a split.

6.3 ID-SPN

Rooshenas and Lowd [25] observed that PGM learners usu-
ally analyze direct interactions (dependencies) between var-
iables while previous SPN learners analyze indirect
interactions (dependencies through a latent variable). The
indirect-direct SPN (ID-SPN) structure learner combines
both methods. Their initial idea is that any tractable multi-
variate distribution that can be represented as an arithmetic
circuit or an SPN can be the leaf of an SPN without losing
tractability. With this idea they learned arithmetic circuit
Markov networks (ACMN) [52], which are roughly Markov
networks learned as arithmetic circuits. ID-SPN begins with
a singular ACMN node and tries to replace it with a mixture
(yielding a sum node) or a product (yielding a product
node), similar to the cluster and split operations in
LearnSPN. If a replacement increases the likelihood, it is
saved and the algorithm recurs on the new ACMN leaves,
until the likelihood does not increase. This top-down pro-
cess represents the learning of indirect interactions, while
the creation of ACMN leaves represents the learning of
direct interactions. This algorithm outperformed all previ-
ous algorithms and is currently the state of the art. How-
ever, ID-SPN is slower and more complex than LearnSPN,
and has many more hyperparameters to tune, which
requires a random search in the space of hyperparameters
instead of a grid search.

6.4 Other Algorithms

Peharz et al. [31] proposed a structure learner that searches
within the space of selective SPNs and showed that it is
competitive with LearnSPN.

Adel et al. [53] designed SVD-SPN, an algorithm for
learning both generative and discriminative SPNs. It

operates recursively, like LearnSPN, but instead of search-
ing for independences, it searches for highly correlated vari-
ables. More precisely, it decomposes the data matrix by
extracting approximate rank-1 submatrices, which allows
the algorithm to cluster and split at the same time, as shown
in Fig. 2 in their paper. In their experiments, SVD-SPN
obtained results similar to those of LearnSPN and ID-SPN
for binary datasets, but outperformed them in multiple-cat-
egory datasets, such as Caltech-101 and MNIST, and is 5
times faster.

6.5 Improvements to LearnSPN

Even though LearnSPN is not the best performing algo-
rithm, it is still widely used owing to its simplicity and mod-
ularity [34] and has led to several variants.

6.5.1 Algorithm of Vergari et al. [30]

It consists of three modifications to LearnSPN:
— Binary splits. Every split cuts the data matrix into only

two pieces. This avoids creating too complex structures at
early stages (which often occurs when learning from noisy
data) and favors deep structures over shallow ones. This is
not a limitation in the number of children of product nodes
because consecutive splits can be applied if necessary.

— Chow-Liu trees (CLTs) in the leaves. The naı̈ve Bayes fac-
torization used as the base case of LearnSPN (see Algo-
rithm 1) can be replaced by the creation of Chow-Liu trees
[54], which are equivalent to tree-shaped Bayesian networks
or Markov networks. Every tree is built by linking the varia-
bles with higher mutual information until there is a path
between every pair of variables. CLTs are more expressive
than the naı̈ve Bayes factorization (which is a particular
case of CLT) without increasing the cost of inference.
LearnSPN stops earlier when using CLTs as leaves because
each tree can accommodate more instances, thus yielding
simpler SPN structures (with fewer edges) with lower risk
of overfitting.

— Bagging. This technique, originally used to build ran-
dom forests [55], consists in taking several random subsets
from a dataset, each consisting of several instances, and
building a model for each subset. In SPN learning, it
extracts—with replacement—n subsets and produces n
models, joined by a sum node with uniform weights, as
shown in Fig. 6. Since the network size would grow expo-
nentially if bagging were applied before every clustering, it
is applied only before the first LearnSPN operation—which
is a clustering—in order to achieve the widest effect on the
resulting structure.

The experiments showed that (1) binary splits yield
deeper and simpler SPNs and generally reduce the number

Fig. 6. Learning SPNs with bagging.

3832 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022



of edges and parameters, (2) using Chow-Liu trees attains
the same effect and generally increases the likelihood, and
(3) bagging also increases the likelihood, especially in data-
sets with a low number of instances. With these modifica-
tions, LearnSPN achieved the same performance as ID-SPN.

6.5.2 Beyond Tree SPNs

One of the main disadvantages of both LearnSPN and ID-
SPN is that they always produce trees (except when the
leaves are Markov networks). In order to generate more
compact SPNs, Dennis and Ventura [56] designed
SearchSPN, an algorithm that produces SPNs in which
nodes may have several parents. It selects the product node
that contributes less to the likelihood and greedily searches
for candidate structures using modified versions of the clus-
tering methods of LearnSPN. The resulting likelihood is sig-
nificantly better than that of LearnSPN for the majority of
datasets and comparable with that of ID-SPN, but on aver-
age the execution is 7 times faster and the number of nodes
10 times smaller.

In the same vein, Rahman and Gogate [57] created a post-
processing algorithm that, after applying LearnSPN with
CLTs in the leaves, merges similar sub-SPNs. Similarity is
measured with a Manhattan distance; if two sub-SPNs are
closer than a certain threshold, the pieces of the data matrix
from which they come are combined and the algorithm
chooses the sub-SPN with the higher likelihood for the com-
bined data. This modification of LearnSPN increases the
likelihood and reduces the number of parameters of the
SPN, but it also increases dramatically the learning time for
some datasets. In combination with bagging, it outper-
formed other algorithms—including ID-SPN [25]—for high-
dimensional datasets.

6.5.3 Further Improvements to LearnSPN

As mentioned in Section 5.1.5, Zhao et al. [33] showed that
learning the parameters with the CCCP algorithm improves
the performance of LearnSPN.

Di Mauro et al. [58] proposed approximate splitting
methods to accelerate LearnSPN, thus trading speed for
quality (likelihood).

Butz et al. [34] studied the different combinations of algo-
rithms for LearnSPN. They compared mutual information
and the G-test for splitting, and k-means and Gaussian mix-
ture models for clustering. The best results were obtained
when using the G-test and either k-means or Gaussian mix-
ture models, both for the standard LearnSPN and for the
version that generates CLTs in the leaves.

Liu et al. [59] proposed a clustering method that
decides the number of instance clusters adaptively, i.e.,
depending on each piece of data matrix evaluated. Their
goal was to generate more expressive SPNs, in particular
deeper ones with controlled widths. When compared
previous algorithms (namely, standard LearnSPN [6],
LearnSPN with binary splits [30], and LearnSPN with
approximate splitting [58]), their method achieved higher
likelihood in 20 binary datasets and generated deeper
networks (i.e., more expressive SPNs) while maintaining
a reasonable size.

6.5.4 LearnSPN With Piecewise

Polynomial Distributions

Most learning algorithms assume that each terminal node
represents either a discrete probability distribution or a uni-
variate distribution belonging to a known family (Poisson,
Gaussian, etc.), so that only the parameters need to be opti-
mized. However, there are at least two variants of
LearnSPN that, in addition to having indicators for finite-
state variables, use a piecewise polynomial distribution for
each leaf node representing a numeric variable, instead of
requiring the user to specify a parametric family [27], [60].

In LearnWMISPN [60], which combines LearnSPN with
weighted model integration (WMI), the order of each poly-
nomial is determined using the Bayesian information crite-
rion (BIC) [61]. A preprocessing step transforms finite-state,
categorical, and continuous features into a binary represen-
tation before applying LearnSPN. The corresponding infer-
ence algorithm can answer complex conditional queries
involving both intervals for continuous variables and values
for discrete variables.

In mixed SPN (MSPNs) [27] the operations of decomposi-
tion (splitting) and conditioning (clustering) are based on
the Hirschfeld-Gebelein-R�enyi maximum correlation coeffi-
cient. These models extend SPNs to hybrid domains, and
are competitive with parameterized distributions and
mixed graphical models.

6.6 Online Structural Learning

The algorithms presented so far need the complete dataset
to produce a structure. However, sometimes the dataset is
so big that the computer does not have enough memory to
store it at once. In other situations, e.g., in recommender
systems, the data arrive constantly. In these cases the learn-
ing algorithm must be able to update the structure instead
of learning it from scratch every time new data arrives.

In this context, Lee et al. [62] designed a version of
LearnSPN where clustering (slicing) is replaced by online
clustering, so that new sum children can be added when
new data arrive, while product nodes are unmodified.

Later Dennis and Ventura [63] extended their SearchSPN
algorithm [56] to the online setting. This online version is as
fast as the offline version that works only on the current
batch, and the quality of the resulting SPN is the same.

Hsu et al. [29] created oSLRAU, an online structure
learner for Gaussian leaves (oSLRAU) that begins with a
completely uncorrelated SPN structure and updates it when
the arriving data reveals a new correlation. The update con-
sists in replacing a leaf with a multivariate Gaussian leaf or
a mixture over its scope.

Jaini et al. [64] proposed an algorithm, Prometheus, whose
first concern is to avoid the parameter that decides when two
subsets of variables are independent in order to perform a
LearnSPN split. So instead of creating a product node, it cre-
ates a mixture of them, representing different subset partitions.
The partitions created may share subsets, which overcomes
the restriction to trees. However, the complexity of the algo-
rithm grows with the square of the number of variables. In
order to extend it to high-dimensional datasets, the authors
created a version that samples in each step from the set of vari-
ables instead of using all of them. This algorithm can treat

S�ANCHEZ-CAUCE ETAL.: SUM-PRODUCT NETWORKS: A SURVEY 3833



discrete, continuous, and mixed datasets. Their experiments
showed that this algorithm surpasses both LearnSPN and ID-
SPN in the three types of datasets. It is also robust in low data
regimes, achieving the same performance as oSLRAU with
only 30-40 percent of the data. These authors have recently
proposed a more efficient version of Prometheus, which runs
in sub-quadratic time w.r.t. the number of features [22].

6.7 Learning With Dynamic Data

Data are said to be dynamicwhen all the variables (or at least
some of them) have different values in different time
points—for example, Income-at-year-1, Income-at-year-2, etc.
The set of variables for a specific time point is usually called
a slice. The slice structure, called template, is replicated and
chained to accommodate as many time points as necessary.
The length of the chain is called the horizon.

For this problem Melibari et al. [65] proposed dynamic
SPNs (DSPNs), which extend SPNs in the same way that
dynamic Bayesian networks (DBNs) [66] extend BNs. A
local-search structure learner generates an initial template
SPN and searches for neighboring structures, trying to max-
imize the likelihood. Every neighbor, which stems from
replacing a product node, represents a specific choice of fac-
torization of the variables in its scope. The algorithm
searches over several factorizations and updates the struc-
ture if a better one is found. In their experiments this
method outperformed non-dynamic algorithms, such as
LearnSPN, and other models, such as dynamic Bayesian
networks and recurrent neural networks.

Later, Kalra et al. [67] extended oSLRAU to the dynamic
setting by unrolling the SPN to match the length of the chain
to the horizon, with shared weights and a shared covariance
matrix, to decide when a new correlation requires a change
in the template. This algorithm surpassed DSPNs [65] and
hidden Markov models in 5 sequential datasets, and recur-
rent neural networks in 4 of those datasets.

6.8 Relational Data Learning

Nath and Domingos [68] introduced relational SPNs
(RSPNs), which generalize SPNs by modeling a set of
instances jointly, allowing them to influence each other’s
probability distributions, and modeling probabilities of rela-
tions between objects. Their LearnRSPN algorithm outper-
formed Markov logic networks in both running time and
predictive accuracy when tested on three datasets.

6.9 Bayesian Structure Learning

Lee et al. [69] designed a Bayesian non-parametric extension of
SPNs. Trapp et al. [70] criticized this work for neglecting
induced trees in their posterior construction; they corrected it
by introducing infinite sum-product trees and showed that it
yields higher likelihood than infinite Gaussianmixturemodels.

A common problem of structural learning algorithms is
the lack of a principled criterion for deciding what a “good”
structure is. For this reason, Trapp et al. [71] proposed an
alternative Bayesian approach that decomposes the problem
into two phases: first finding a graph and then learning a
function that assigns a scope to each node. This function and
the parameters of the model are learned jointly using Gibbs
sampling. The Bayesian nature of this approach reduces the

risk of overfitting, avoids the need for a separate validation
set to adjust the hyperparameters of the algorithm, and ena-
bles robust learning of SPN structures under missing data.

7 APPLICATIONS

SPNs have been used for a wide variety of applications,
from toy problems to real-world challenges.

7.1 Image Processing

7.1.1 Image Reconstruction and Classification

Poon and Domingos, in their seminal paper about SPNs [1],
applied them to image reconstruction, using a hand-designed
structure that took into account the local structure of the
image data. They tested their method on the datasets Caltech-
101 andOlivetti. Asmentioned in Section 1.1, Gens andDomi-
ngos [5] used a different hand-built structure for image classi-
fication on the datasets CIFAR-10 and STL-10, obtaining
excellent results for that time. Hartmann [72] and van de
Wolfshaar and Pronobis [73] used convolutional SPNs for
classification, and Butz et al. [74] for image completion. RAT-
SPNs [21] and Prometheus [22] have achieved the highest
accuracy scores so far (98.29 and 98.37 percent respectively)
forMNIST image classificationwith SPNs.

7.1.2 Image Segmentation

Image segmentation consists in labeling every pixel with the
object it belongs to. Yuan et al. [75] developed an algorithm
that scales down every image recursively to different sizes
and generates object tags and unary potentials for every scale.
Then, it builds a multi-stacked SPN where every stack has a
bottom and a top SPN. The bottom SPN works on a pixel and
its vicinity, going from the pixel to bigger patches. Product
nodes model correlations between patches while sum nodes
combine them into a feature of a bigger patch.When the patch
is as big as the pixel in the next scaled image, the results are
introduced in the top SPN alongside the unary potentials and
the tags of that scale. This process is stacked until the “patch”
treated is the whole image. Multi-stacked SPNs have been
especially effective for handling occlusions in scenes.

Rathke et al. [76] applied SPNs to segment OCT scans of
retinal tissue. They first built a segmentation model for the
health model and for every pathology and then added to
those models typical shape variations of the retina tissue for
some pathology-specific regions. The resulting SPN extracts
candidate regions (either healthy or unhealthy) and selects
the combination that maximizes the likelihood. After a
smoothing step, they obtain a complete segmentation of the
retina tissue, as well as the diagnosis and the affected
regions. This method achieved state-of-the-art performance
without needing images labeled by pathologies.

7.1.3 Activity Recognition

Wang and Wang [77] addressed activity recognition on still
images. They used unsupervised learning and a convolutional
neural network to isolate parts of the images, such as a hand
or a glass, and designed a spatial SPN including the spatial
indicator nodes “above”, “below”, “left”, and “right” for the
product nodes to encode spatial relations between pairs of
these parts. They first partitioned the image to consider only

3834 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022



local part configurations. Its SPN structure has two compo-
nents: the top layers represent a partitioning of the image into
sub-images, where product nodes act as partitions and sum
nodes as combinations of partitions, while the bottom layers
represent the parts included in each sub-image and their rela-
tive position using the spatial indicator nodes. This way the
SPN first learns spatial relations of isolated parts in sub-images
and then learns correlations between sub-images. Spatial SPNs
outperformed other activity recognition algorithms and were
able to discover discriminant pairs of parts for each class.

Amer and Todorovic [78] worked on activity localization
and recognition in videos. In their work, a visual word is a
meaningful piece of an image, previously extracted with a neu-
ral network. Visual words lie in a grid with three dimensions:
height, width, and time. Every grid position has a histogram of
associated visual words, called bag of words. To construct an
SPN, each bag of words is treated as a variable with two states:
foreground and background. Product nodes represent a com-
bination of sub-activities into a more complex activity (for
example, “join hands + separate hands = clap”) and sum nodes
represent variations of the same activity. An SPN is trained for
every activity in a supervised context, in which the foreground
and the background values are known, and in a weakly super-
vised context, in which only the activity is known. The struc-
ture is a near-completely connected graph, pruned after
parameter learning, which proceeds iteratively: it learns—with
GD—the weights of the SPN from the parameters of the bag of
words and then learns—with variational methods—the
parameters of the bag of words from the weights of the SPN.
The accuracy of this weakly supervised setting was only 1.6 to
3 percent worse than that of the supervised setting. This
approach in general achieved better performance than state-of-
the-art algorithms on several action-recognition datasets.

7.1.4 Object Detection

Stelzner et al. [23] demonstrated empirically that the attend-
infer-repeat framework used for object detection and location
is much more efficient when the variational autoencoders that
model individual objects are replaced by SPNs: they achieved
an improvement in speed of an order of magnitude, with
slightly higher accuracy, as well as robustness against noise.

7.2 Robotics

Sguerra and Cozman [79] used SPNs for aerial robots naviga-
tion. Micro aerial vehicles need a set of sensors that must
comply with two criteria: light weight and real-time
response. Optical recognition with cameras satisfies the for-
mer while fast inference with SPNs ensures the latter, as
they were able to classify in real time what the camera
sees into pilot commands, such as “turn right”, obtaining
75 percent of accuracy with just 66 images.

Pronobis et al. [80] designed a probabilistic representation of
spatial knowledge called “deep spatial affordance hierarchy”
(DASH), which encodes several levels of abstractions using a
deep model of spatial concepts. It models knowledge gaps and
affordances by a deep generative spatial model (DGSM) which
uses SPNs for inference across different levels of abstractions.
SPNs fit naturally with DGSM because latent variables of the
former are internal descriptors in the latter. The authors tested
it in a robot equipped with a laser-range sensor.

Zheng et al. [81] designed graph-structured SPNs
(GraphSPNs) for structured prediction. Their algorithm
learns template SPNs and makes a mixture over them (a
template distribution), which can be applied to graphs of
varying size re-using the same templates. The authors
applied them to model large-scale global semantic maps of
office environments with a exploring robot, obtaining better
results than with the classical approach based on undirected
graphical models (Markov networks).

These authors later joined both models into an end-to-
end deep model for semantic mapping in large-scale envi-
ronments with multiple levels of abstraction, called Topo-
Nets [82], which can perform real-time inference, with
novelty detection, for unknown spatial information.

7.3 NLP and Sequence Data Analysis

Peharz et al. [83] applied SPNs to modeling speech by retrieving
the lost frequencies of telephone communications (artificial
bandwidth extension). In this problem tractable and real-time
inference is essential. They used a hidden Markov model
(HMM) to represent the temporal evolution of the log-spec-
trum, clustered the data using the Linde–Buzo–Gray algorithm
and trained an SPN for each cluster. The SPNs model each
cluster and can be used to retrieve the lost frequencies by MPE
inference. This model has achieved better results than state-of-
the-art algorithms, both objectively, with a measure of log-
spectral distortion, and subjectively, through listening tests.

In language modeling, Cheng et al. [84] used a discrimi-
native SPN [5] whose leaves represent vectors with informa-
tion about previous words. This SPN was able to compute
the probability of the next word more accurately than classic
methods for language modeling, such as feedforward neu-
ral networks and recurrent neural networks.

Melibari et al. [65] used dynamic SPNs—see Section 6.7—
to analyze different sequence datasets. Unlike dynamic
Bayesian networks, for which inference is generally expo-
nential in the number of variables per time slice, inference
in DSPNs has linear complexity. In a comparative study
with five other methods, including HMMs and neural net-
works with long short-term memory (LSTM), DSPNs were
superior in 4 of the 5 datasets examined.

Ratajczak et al. [85] replaced the local factors of higher-
order linear-chain conditional random fields (HO-LC-CRFs)
and maximum entropy Markov models (MEMMs) with
SPNs. These outperformed other state-of-the-art methods in
optical character recognition and achieved competitive results
in phoneme classification and handwriting recognition.

7.4 Other Applications

Vergari et al. [86] used SPNs as autoencoders (SPAEs) for
feature extraction. They trained the SPNs with LearnSPN
and used the values of the internal nodes or the states of
the latent variables associated to sum nodes as the codi-
fication variables. Although this model was not trained
to reconstruct its inputs, experiments showed that SPAEs
are competitive with state-of-the-art autoencoder archi-
tectures for several multilabel classification problems.

Butz et al. [87] used Bayesian networks to recognize inde-
pendencies in 3,500 datasets of soil bacteria and combined
them into an SPN in order to efficiently compute conditional
probabilities and the MPE.

S�ANCHEZ-CAUCE ETAL.: SUM-PRODUCT NETWORKS: A SURVEY 3835



Nath and Domingos [88] used relational SPNs (cf. Sec-
tion 6.8) for fault localization, i.e., finding the most probable
location of bugs in computer source code. The networks,
trained on a corpus of previously diagnosed buggy pro-
grams, learned to identify recurring patterns of bugs. They
could also receive clues about bug suspicion from other bug
detectors, such as TARANTULA.

Hilprecht et al. [89] proposed learning database manage-
ment systems from data instead of queries, using ensembles
of relational SPNs. This approach provides better accuracy
and better generalization to unseen queries than different
state-of-the-art methods.

Vergari et al. [90] also evaluated SPNs for representation
learning [91]. Their SPNs encode a hierarchy of part-based
representations which can be ordered by scope length.
When compared with other representation learners, such as
VAEs or random Boltzmann machines (RBMs), they pro-
vided competitive results both in supervised and semi-
supervised settings. Moreover, the model trained for
extracting representations can be used as-is for inference.

Vergari et al. [92] designed a tool for automatic explor-
atory data analysis without the need for expert statistical
knowledge. It leverages Gibbs sampling and a modification
of mixed SPNs [27] to model the data, and provides func-
tionalities such as data type recognition, missing values
imputation, anomaly detection, and others.

Roy et al. [93] addressed the explanation of activity recog-
nition and localization in videos. A deep convolutional neu-
ral network is used for localization and its output is
introduced to an SPN. Both models are learned jointly. The
explainability of the system was evaluated by the user’s
subjective trust in the explanations that the SPN provides
about the criteria of the neural net.

8 SOFTWARE FOR SPNS

Every publication about SPNs presents some experiments,
and in many cases the source code is publicly available. The
web page https://github.com/arranger1044/awesome-
spncontains many references about SPNs, classified by year
and by topic; the section “Resources” includes edges to talks
and tutorials, the source code for some of those publica-
tions, and several datasets commonly used for the experi-
ments. Most of the software is written in Python or C++.

In particular, there are two projects that aim to develop
comprehensive, simple, and extensible libraries for SPNs. Both
of them are written in Python and use TensorFlow as a back-
end for speeding up some operations. LibSPN,7 initiated by
Andrzej Pronobis at the University of Washington, Seattle,
WA [94], implements several methods for inference (marginal
and conditional probabilities, and approximateMPE), parame-
ter learning (batch and online, with GD and hard EM), and
visualization of SPNs. It lacks algorithms for structural learn-
ing, but it allows building convolutional SPNs with a layer-ori-
ented interface [73]. The SPNs, stored as Python structures, are
compiled into TensorFlow graphs for parameter learning and
inference; for this purpose LibSPN has implemented in C++
and CUDA some operations that cannot be performed effi-
ciently with native TensorFlow operations. Several tutorials in

Jupyter Notebook are available at its website. It has been used
mainly for computer vision and robotics [73], [80], [81].

The other library, SPFlow,8 is developed by Alejandro
Molina at the University of Darmstadt, Germany, with con-
tributors from several countries [95]. It implements methods
for inference (marginal and conditional probabilities, and
approximate MPE), parameter learning (with GD) and sev-
eral structural learning algorithms, and can be extended
and customized to implement new algorithms. SPNs are
usually compiled into TensorFlow for fast computation, but
they can also be compiled into C, CUDA, or FPGA code.

Additionally, Peharz et al. [96] have implemented SPNs
in Pytorch as a special case of einsum networks,9 obtaining
speedups and memory savings of up to two orders of mag-
nitude. They intend to incorporate and further develop their
code in SPFlow.

There are also some smaller libraries of interest, such as
SumProductNetworks:jl for Julia,10 which implements infer-
ence and parameter learning, and the LibraToolkit [97],11 a
collection of algorithms written in OCaml for learning sev-
eral types of probabilistic models, such as BNs, SPNs, and
others, including the ID-SPN algorithm [25].

9 EXTENSIONS OF SPNS

In recent years there have been several extensions of SPNs
to more general models. In this section we briefly comment
on some of them.

Sum-product-max networks (SPMNs) [98] generalize SPNs
to the class of decision making problems by including two
new types of nodes, max and utility, like in influence dia-
grams. These networks can compute the expected utility and
the optimal policy in time proportional to the number of edges.

Autoencoder SPNs (AESPNs) [99] combine two SPNs
with an autoencoder between them. This model produces
better samples than SPNs by themselves.

Tan and Peharz [100] designed a mixture model of VAE
pieces over local subsets of variables combined via an SPN.
This combination yields better density estimates, smaller
models, and improved data efficiencywith respect to VAEs.

In credal sum-product networks (CSPNs) [101], [102], [103]
the weights of each sum node do not have a fixed value, but
vary inside a set (a product of probability simplexes) in such
a way that each choice of the weights defines an SPN.

Sum-product graphical models (SPGMs) [104] join the
semantics of probabilistic graphical models with the evalua-
tion efficiency and expressiveness of SPNs by allowing the
nodes associated to variables to appear in any part of the
network, not only in the leaf nodes. Their LearnSPGM algo-
rithm outperformed both LearnSPN and ID-SPN on the 20
real-world datasets previously used in [105].

Sum-product-quotient networks (SPQNs) [106] introduce
quotient nodes, which take two inputs and output their
quotient, allowing these models to represent conditional
probabilities explicitly.

Tensor SPNs (tSPNs) [107] are an alternative representa-
tion of SPNs. Their main advantage is an important

7. https://www.libspn.org

8. https://github.com/SPFlow/SPFlow
9. https://github.com/cambridge-mlg/EinsumNetworks
10. https://github.com/trappmartin/SumProductNetworks.jl
11. http://libra.cs.uoregon.edu

3836 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022

https://github.com/arranger1044/awesome-spn
https://github.com/arranger1044/awesome-spn
https://www.libspn.org
http://libra.cs.uoregon.edu


reduction in the number of parameters—between 24 and
569 times in the experiments—with little loss of modeling
accuracy. Additionally, tSPNs allow for faster inference and
a deeper and more narrow neural-network architecture.

Submodular SPNs (SSPNs) [108] are an extension of
SPNs for scene understanding, whose weights can be
defined by submodular energy functions.

Compositional kernel machines (CKMs) [109] are an
instance-based method closely related to SPNs. They have
been successfully applied to image processing tasks, mainly
to object recognition.

Conditional SPNs [110] extend SPNs to conditional proba-
bility distributions. They include a new type of node, called a
gating node, which computes a convex combination of the con-
ditional probability of its childrenwith non-fixedweights.

Deep Structured Mixtures of Gaussian Processes
(DSMGPs) [111], which have Gaussian processes (GPs) as leaf
distributions, capture predictive uncertainties consistently
better than previous expert-basedGPs approximations.

The tutorial by Vergari, Choi, Peharz and Van den
Broeck at AAAI-2020 offers an excellent review of probabilis-
tic circuits, which include arithmetic circuits, SPNs, cutset
networks (CNets), and probabilistic sentential decision dia-
grams (PSDDs), with many references about inference,
learning, applications, hardware implementations, etc.12

10 CONCLUSION

SPNs are closely related to probabilistic graphical models
(PGMs), such as Bayesian networks and Markov networks,
but have the advantage of allowing the construction of trac-
table models from data. SPNs have been applied to the
same tasks as neural networks, mainly computer vision and
natural language processing, which exceeded by far the
capabilities of PGMs. Even though deep neural networks
yield in general better results, SPNs have the possibility of
automatically building the structure from data and learning
the parameters with either gradient descent or some of the
algorithms developed for probabilistic models.

In this paper we have tried to offer a gentle introduction to
SPNs, collecting information that is spread in many publica-
tions and presenting it in a coherent framework, trying to
keep the mathematical complexity to the minimum necessary
for describing with rigor the main properties of SPNs, from
their definition to the algorithms for parameter and structural
learning. We have intentionally avoided presenting SPNs as
representations of network polynomials; readers interested in
them can consult [9] and references therein. We have then
reviewed several applications of SPNs in different domains,
some extensions, and the main software libraries for SPNs.
Given the rapid growth of the literature about SPNs, some
sections of this papermight become obsolete soon, butwe still
hope it will be useful for those researchers who wish to get
acquaintedwith this fascinating topic.

ACKNOWLEDGMENTS

The authors would like to thank Pascal Poupart for convincing
us about the advantages of SPNs, and Concha Bielza, Adnan
Darwiche, Pedro Domingos, Pedro Larra~naga, Alejandro

Molina, Andrzej Pronobis, Martin Trapp, Jos van deWolfshaar,
Antonio Vergari, Kaiyu Zheng, and the anonymous reviewers
for many useful comments. However, all the possible mistakes
and omissions are our sole responsibility. This work was sup-
ported by Grants TIN2016-77206-R and PID2019-110686RB-I00
of the Spanish Government, co-financed by the European
Regional Development Fund. RSC received a postdoctoral
grant and IP a predoctoral grant and from UNED, both co-
financed by the Regional Government of Madrid and the
Youth Employment Initiative (YEI) of the European Union.

REFERENCES

[1] H. Poon and P. Domingos, “Sum-product networks: A new deep
architecture,” in Proc. 12th Conf. Uncertainty Artif. Intell., 2011,
pp. 337–346.

[2] A. Darwiche, “A logical approach to factoring belief networks,”
in Proc. 8th Int. Conf. Princ. Knowl. Representation Reasoning, 2002,
pp. 409–420.

[3] A. Darwiche, “A differential approach to inference in Bayesian
networks,” J. ACM, vol. 50, pp. 280–305, 2003.

[4] D. Koller and N. Friedman, Probabilistic Graphical Models: Princi-
ples and Techniques. Cambridge, MA, USA: The MIT Press, 2009.

[5] R. Gens and P. Domingos, “Discriminative learning of sum-prod-
uct networks,” in Proc. 26th Int. Conf. Neural Inf. Process. Syst.,
2012, pp. 3239–3247.

[6] R. Gens and P. Domingos, “Learning the structure of sum-product
networks,” inProc. 30th Int. Conf.Mach. Learn., 2013, pp. 873–880.

[7] R. Peharz, R. Gens, F. Pernkopf, and P. M. Domingos, “On the latent
variable interpretation in sum-product networks,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 39, no. 10, pp. 2030–2044, Oct. 2017.

[8] R. Peharz, S. Tschiatschek, F. Pernkopf, and P. Domingos, “On
theoretical properties of sum-product networks,” in Proc. 18th
Int. Conf. Artif. Intell. Statist., 2015, pp. 744–752.

[9] R. Peharz, “Foundations of sum-product networks for proba-
bilistic modeling,” PhD thesis, Graz Univ. Technol., Austria,
2015. [Online]. Available: https://www.researchgate.net/
publication/273000973_Foundations_of_Sum-Product_
Networks_for_Probabilistic_Modeling

[10] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. SanMateo, CA,USA:MorganKaufmann, 1988.

[11] M. Chavira and A. Darwiche, “Compiling Bayesian networks
using variable elimination,” in Proc. 20th Int. Joint Conf. Artif.
Intell., 2007, pp. 2443–2449.

[12] H. Zhao, M. Melibari, and P. Poupart, “On the relationship
between sum-product networks and Bayesian networks,” in
Proc. 32nd Int. Conf. Mach. Learn., 2015, pp. 116–124.

[13] C. Butz, J. Oliveira, and R. Peharz, “Sum-product network decom-
pilation,” Proc. Mach. Learn. Res., vol. 138, pp. 53–64, 2020. [Online].
Available: http://proceedings.mlr.press/v138/butz20a.html

[14] G. F. Cooper, “The computational complexity of probabilistic
inference using Bayesian belief networks,” Artif. Intell., vol. 42,
pp. 393–405, 1990.

[15] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller,
“Context-specific independence in Bayesian networks,” in Proc.
12th Conf. Uncertainty Artif. Intell., 1996, pp. 115–123.

[16] R. Mourad et al., “A survey on latent tree models and
applications,” J. Artif. Intell. Res., vol. 47, pp. 157–203, 2013.

[17] J. Pearl, Causality. Models, Reasoning, and Inference. Cambridge,
U.K.: Cambridge Univ. Press, 2000.

[18] I. Bermejo, J. Oliva, F. J. D�ıez, and M. Arias, “Interactive learning
of Bayesian networks with OpenMarkov,” in Proc. 6th Conf. Prob-
abilistic Graphical Models, 2012, pp. 27–34.

[19] K. O. Stanley and R. Miikkulainen, “Evolving neural networks
through augmenting topologies,” Evol. Comput., vol. 10, pp. 99–
127, 2002.

[20] S. Ding et al., “Evolutionary artificial neural networks: A
review,” Artif. Intell. Rev., vol. 39, pp. 251–260, 2013.

[21] R. Peharz et al., “Random sum-product networks: Simple and
effective approach to probabilistic deep learning,” in Proc. 35th
Conf. Uncertainty Artif. Intell., 2020, pp. 334–344.

[22] A. Ghose, P. Jaini, and P. Poupart, “Learning directed acyclic
graph SPNs in sub-quadratic time,” Int. J. Approx. Reasoning,
vol. 120, pp. 48–73, 2020.

12. http://starai.cs.ucla.edu/slides/AAAI20.pdf

S�ANCHEZ-CAUCE ETAL.: SUM-PRODUCT NETWORKS: A SURVEY 3837

https://www.researchgate.net/publication/273000973_Foundations_of_Sum-Product_Networks_for_Probabilistic_Modeling
https://www.researchgate.net/publication/273000973_Foundations_of_Sum-Product_Networks_for_Probabilistic_Modeling
https://www.researchgate.net/publication/273000973_Foundations_of_Sum-Product_Networks_for_Probabilistic_Modeling
http://proceedings.mlr.press/v138/butz20a.html
http://starai.cs.ucla.edu/slides/AAAI20.pdf


[23] K. Stelzner, R. Peharz, and K. Kersting, “Faster attend-infer-
repeat with tractable probabilistic models,” in Proc. 36th Int.
Conf. Mach. Learn., 2019, pp. 5966–5975.

[24] J. D. Park, “MAP complexity results and approximation meth-
ods,” in Proc. 9th Conf. Uncertainty Artif. Intell., 2002, pp. 388–396.

[25] A. Rooshenas and D. Lowd, “Learning sum-product networks
with direct and indirect variable interactions,” in Proc. 31st Int.
Conf. Mach. Learn., 2014, pp. 710–718.

[26] A. Molina, S. Natarajan, and K. Kersting, “Poisson sum-product
networks: A deep architecture for tractable multivariate poisson
distributions,” in Proc. 31st AAAI Conf. Artif. Intell., 2017,
pp. 2357–2363.

[27] A. Molina et al., “Mixed sum-product networks: A deep architecture
for hybrid domains,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 3828–3835.

[28] M.Desana andC. Schn€orr, “Learning arbitrary sum-product network
leaveswithExpectation-Maximization,” 2017, arXiv:1604.07243.

[29] W. Hsu, A. Kalra, and P. Poupart, “Online structure learning for
sum-product networks with Gaussian leaves,” in Proc. 5th Int.
Conf. Learn. Representations, 2017. [Online]. Available: https://
iclr.cc/archive/www/doku.php%3Fid=iclr2017:main.html

[30] A. Vergari, N. Di Mauro, and F. Esposito, “Simplifying, regular-
izing and strengthening sum-product network structure
learning,” in Proc. Eur. Conf. Mach. Learn. Princ. Pract. Knowl. Dis-
cov. Databases, 2015, pp. 343–358.

[31] R. Peharz, R. Gens, and P. Domingos, “Learning selective sum-
product networks,” in Proc. 31st Int. Conf. Mach. Learn. Learn.
Tractable Probabilistic Models Workshop, 2014. [Online]. Available:
https://sites.google.com/site/ltpm2014/accepted-papers

[32] A. Choi and A. Darwiche, “On relaxing determinism in arithmetic
circuits,” inProc. 34th Int. Conf.Mach. Learn., 2017, pp. 825–833.

[33] H. Zhao, P. Poupart, and G. J. Gordon, “A unified approach for
learning the parameters of sum-product networks,” in Proc. 30th
Conf. Neural Inf. Process. Syst., 2016, pp. 433–441.

[34] C. J. Butz et al., “An empirical study of methods for SPN learning
and inference,” in Proc. 9th Int. Conf. Probabilistic Graphical Mod-
els, 2018, pp. 49–60.

[35] H. Chan and A. Darwiche, “On the robustness of most probable
explanations,” in Proc. 22nd Conf. Uncertainty Artif. Intell., 2006,
pp. 63–71.

[36] J. Mei, Y. Jiang, and K. Tu, “Maximum a posteriori inference in sum-
product networks,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 1923–1930.

[37] D. Conaty, D. D. Mau�a, and C. P. de Campos, “Approximation
complexity of maximum a posteriori in sum-product networks,”
2017, arXiv: 1703.06045.

[38] D. Conaty, D. D. Mau�a, and C. P. de Campos, “Approximation
complexity of maximum a posteriori in sum-product networks,”
in Proc. 33rd Conf. Uncertainty Artif. Intell., 2017, pp. 322–331.

[39] J. Duchi, S. Shalev-Shwartz , Y. Singer, and T. Chandra, “Efficient
projections onto the l1-ball for learning in high dimensions,” in
Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 272–279.

[40] A. Rashwan, P. Poupart, and C. Zhitang, “Discriminative training of
sum-product networks by extended Baum-Welch,” in Proc. 9th Int.
Conf. Probabilistic GraphicalModels, 2018, pp. 356–367.

[41] M. Trapp, R. Peharz, and F. Pernkopf, “Optimisation of overpar-
ametrized sum-product networks,” in Proc. Workshop Tractable
Probabilistic Modeling ICML, 2019. [Online]. Available: https://
sites.google.com/view/icmltpm2019/accepted-papers

[42] S. Arora, N. Cohen, and E. Hazan, “On the optimization of deep
networks: Implicit acceleration by overparameterization,” in
Proc. 35th Int. Conf. Mach. Learn., 2018, pp. 244–253.

[43] M. Trapp et al., “Safe semi-supervised learning of sum-product
networks,” in Proc. 33rd Conf. Uncertainty Artif. Intell., 2017.
[Online]. Available: http://auai.org/uai2017/

[44] M. Loog, “Contrastive pessimistic likelihood estimation for semi-
supervised classification,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 3, pp. 462–475, Mar. 2016.

[45] A. Rashwan, H. Zhao, and P. Poupart, “Online and distributed
Bayesian moment matching for parameter learning in sum-prod-
uct networks,” in Proc. 19th Int. Conf. Artif. Intell. Statist., 2016,
pp. 1469–1477.

[46] H. Zhao, T. Adel, G. Gordon, and B. Amos, “Collapsed varia-
tional inference for sum-product networks,” in Proc. 33rd Int.
Conf. Mach. Learn., 2016, pp. 1310–1318.

[47] P. Jaini et al., “Online algorithms for sum-product networks with
continuous variables,” in Proc. 8th Int. Conf. Probabilistic Graphical
Models, 2016, pp. 228–239.

[48] H. Zhao and G. J. Gordon, “Linear time computation of moments
in sum-product networks,” in Proc. 26th Conf. Neural Inf. Process.
Syst., 2017, pp. 6894–6903.

[49] I. Aden-Ali and H. Ashtiani, “On the sample complexity of learn-
ing sum-product networks,” in Proc. 23rd Int. Conf. Artif. Intell.
Statist., 2020, vol. 108, pp. 4508–4518.

[50] A. Dennis and D. Ventura, “Learning the architecture of sum-
product networks using clustering on variables,” in Proc. 26th
Conf. Neural Inf. Process. Syst., 2012, pp. 3239–3247.

[51] R. Peharz, B. C. Geiger, and F. Pernkopf, “Greedy part-wise
learning of sum-product networks,” in Proc. Eur. Conf. Mach.
Learn. Princ. Pract. Knowl. Discov. Databases, 2013, pp. 612–627.

[52] D. Lowd and A. Rooshenas, “Learning Markov networks with
arithmetic circuits,” in Proc. 16th Int. Conf. Artif. Intell. Statist.,
2013, pp. 406–414.

[53] T. Adel, D. Balduzzi, and A. Ghodsi, “Learning the structure of
sum-product networks via an SVD-based algorithm,” in Proc.
31st Conf. Uncertainty Artif. Intell., 2015, pp. 32–41.

[54] C. Chow and C. Liu, “Approximating discrete probability distri-
butions with dependence trees,” IEEE Trans. Inf. Theory, vol. IT-
14, no. 3, pp. 462–467, May 1968.

[55] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32,
2001.

[56] A. Dennis and D. Ventura, “Greedy structure search for sum-
product networks,” in Proc. 24th Int. Joint Conf. Artif. Intell., 2015,
pp. 932–938.

[57] T. Rahman and V. Gogate, “Merging strategies for sum-product
networks: From trees to graphs,” in Proc. 32nd Conf. Uncertainty
Artif. Intell., 2016, pp. 617–626.

[58] N. Di Mauro, F. Esposito, F. Ventola, and A. Vergari,
“Alternative variable splitting methods to learn sum-product
networks,” in Proc. 16th Int. Conf. Italian Assoc. Artif. Intell., 2017,
pp. 334–346.

[59] Y. Liu and T. Luo, “The optimization of sum-product network
structure learning,” J. Vis. Commun. Image Representation, vol. 60,
pp. 391–397, 2019.

[60] A. Bueff, S. Speichert, and V. Belle, “Tractable querying and
learning in hybrid domains via sum-product networks,” 2018,
arXiv: 1807.05464.

[61] G. Schwarz, “Estimating the dimension of a model,” Ann. Statist.,
vol. 17, pp. 461–464, 1978.

[62] S. Lee, M. Heo, and B. Zhang, “Online incremental structure
learning of sum-product networks,” in Proc. 20th Int. Conf. Neural
Inf. Process., 2013, pp. 220–227.

[63] A. Dennis and D. Ventura, “Online structure-search for sum-
product networks,” in Proc. 16th IEEE Int. Conf. Mach. Learn.
Appl., 2017, pp. 155–160.

[64] P. Jaini, A. Ghose, and P. Poupart, “Prometheus: Directly learning
acyclic directed graph structures for sum-product networks,” in
Proc. 9th Int. Conf. Probabilistic Graphical Models, 2018, pp. 181–192.

[65] M. Melibari, P. Poupart, P. Doshi, and G. Trimponias,
“Dynamic sum-product networks for tractable inference on
sequence data,” in Proc. 8th Conf. Probabilistic Graphical Mod-
els, 2016, pp. 345–356.

[66] T. Dean and K. Kanazawa, “A model for reasoning about persis-
tence and causation,” Comput. Intell., vol. 5, pp. 142–150, 1989.

[67] A. Kalra et al., “Online structure learning for feed-forward and
recurrent sum-product networks,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2018, pp. 6944–6954.

[68] A. Nath and P. Domingos, “Learning relational sum-product
networks,” inProc. 29thAAAIConf. Artif. Intell., 2015, pp. 2878–2886.

[69] C. Lee, S. Watkins and B. Zhang, “Non-parametric Bayesian
sum-product networks,” in Proc. Int. Conf. Mach. Learn., 2014.

[70] M. Trapp et al., “Structure inference in sum-product networks
using infinite sum-product trees,” in Proc. 29th Conf. Neural Inf.
Process. Syst., 2016.

[71] M. Trapp et al., “Bayesian learning of sum-product networks,” in
Proc. 33rd Conf. Neural Inf. Process. Syst., 2019, pp. 6344–6355.
[Online]. Available: https://sites.google.com/site/nipsbnp2016/
accepted-papers. There are no page numbers for this workshop

[72] T. Hartmann, “Discriminative convolutional sum-product net-
works on GPU,”M.S. thesis, Dept. Auton. Intell. Syst., Rheinische
Friedrich-Wilhelms-Universit€at Bonn, Germany, 2014.

3838 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022

https://iclr.cc/archive/www/doku.php%3Fid=iclr2017:main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2017:main.html
https://sites.google.com/site/ltpm2014/accepted-papers
https://sites.google.com/view/icmltpm2019/accepted-papers
https://sites.google.com/view/icmltpm2019/accepted-papers
http://auai.org/uai2017/
https://sites.google.com/site/nipsbnp2016/accepted-papers. There are no page numbers for this workshop
https://sites.google.com/site/nipsbnp2016/accepted-papers. There are no page numbers for this workshop


[73] J. van de Wolfshaar and A. Pronobis, “Deep generalized convo-
lutional sum-product networks,” in Proc. 10th Int. Conf. Probabi-
listic Graphical Models, 2020, pp. 533–544.

[74] C. J. Butz, J. S. Oliveira, A. E. dos Santos, and A. L. Teixeira,
“Deep convolutional sum-product networks,” in Proc. 33rd AAAI
Conf. Artif. Intell., 2019, pp. 3248–3255.

[75] Z. Yuan et al., “Modeling spatial layout for scene image under-
standing via a novel multiscale sum-product network,” Expert
Syst. Appl., vol. 63, pp. 231–240, 2016.

[76] F. Rathke, M. Desana, and C. Schn€orr, “Locally adaptive probabi-
listic models for global segmentation of pathological OCT scans,”
in Proc. 20th Int. Conf. Med. Image Comput. Comput. Assisted Inter-
vention, 2017, pp. 177–184.

[77] J. Wang and G. Wang, “Hierarchical spatial sum-product net-
works for action recognition in still images,” IEEE Trans. Circuits
Syst. Video Technol., vol. 28, no. 1, pp. 90–100, Jan. 2018.

[78] M. R. Amer and S. Todorovic, “Sum product networks for activ-
ity recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38,
no. 4, pp. 800–813, Apr. 2016.

[79] B. M. Sguerra and F. G. Cozman, “Image classification using sum-
product networks for autonomous flight of micro aerial vehicles,” in
Proc. 5th Brazilian Conf. Intell. Syst., 2016, pp. 139–144.

[80] A. Pronobis, F. Riccio, and R. P. N. Rao, “Deep spatial affordance
hierarchy: Spatial knowledge representation for planning in
large-scale environments,” in Proc. 27th Int. Conf. Autom. Plan-
ning Scheduling Workshop Planning Robot., 2017, pp. 68–79.

[81] K. Zheng, A. Pronobis, and R. P. N. Rao, “Learning semantic maps
with topological spatial relations using graph-structured sum-prod-
uct networks,” in Proc. AAAI Conf. Artif. Intell., 2018, pp. 4547–4555.

[82] K. Zheng and A. Pronobis, “From pixels to buildings: End-to-end
probabilistic deep networks for large-scale semantic mapping,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019, pp. 3511–3518.

[83] R. Peharz, G. Kapeller, P. Mowlaee, and F. Pernkopf, “Modeling
speech with sum-product networks: Application to bandwidth
extension,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
2014, pp. 3699–3703.

[84] W.-C. Cheng et al., “Language modeling with sum-product
networks,” in Proc. 15th Annu. Conf. Int. Speech Commun. Assoc.,
2014, pp. 2098–2102.

[85] M. Ratajczak, S. Tschiatschek, and F. Pernkopf, “Sum-product
networks for sequence labeling,” 2018, arXiv: 1807.02324.

[86] A. Vergari, R. Peharz, N. Di Mauro , A. Molina, K. Kersting, and
F. Esposito, “Sum-product autoencoding: Encoding and decod-
ing representations using sum-product networks,” in Proc. 32nd
AAAI Conf. Artif. Intell., 2018, pp. 4163–4170.

[87] C. J. Butz, A. E. dos Santos, J. S. Oliveira, and J. Stavrinides,
“Efficient examination of soil bacteria using probabilistic graphi-
cal models,” in Proc. 31st Int. Conf. Ind. Eng. Other Appl. Appl.
Intell. Syst., 2018, pp. 315–326.

[88] A. Nath and P. Domingos, “Learning tractable probabilistic mod-
els for fault localization,” in Proc. 30th AAAI Conf. Artif. Intell.,
2016, pp. 1294–1301.

[89] B. Hilprecht et al., “DeepDB: Learn from data, not from queries!,”
in Proc. VLDB Endowment, vol. 13, pp. 992–1005, 2020.

[90] A. Vergari, N. Di Mauro, and F. Esposito, “Visualizing and
understanding sum-product networks,” Mach. Learn., vol. 108,
pp. 551–573, 2019.

[91] Y. Bengio, A. Courville, and P. Vincent, “Representation learn-
ing: A review and new perspectives,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[92] A. Vergari et al., “Automatic Bayesian density analysis,” in Proc.
33rd AAAI Conf. Artif. Intell., 2019, vol. 33, pp. 5207–5215.

[93] C. Roy et al., “Explainable activity recognition in videos,” in Proc.
24th Int. Conf. Intell. User Interfaces Workshops, 2019. [Online].
Available: http://ceur-ws.org/Vol-2327/

[94] A. Pronobis, A. Ranganath, andR. P.N. Rao, “LibSPN:A library for
learning and inference with sum-product networks and
TensorFlow,” in Proc. 34th Int. Conf. Mach. Learn. Principled
Approaches Deep Learn. Workshop, 2017. [Online]. Available:
https://icml.cc/Conferences/2017/ScheduleMultitrack?event=13

[95] A. Molina et al., “SPFlow: An easy and extensible library for deep
probabilistic learning using sum-product networks,” 2019, arXiv:
1901.03704.

[96] R. Peharz et al., “Einsum networks: Fast and scalable learning of
tractable probabilistic circuits,” in Proc. 29th AAAI Conf. Artif.
Intell., 2015, pp. 2878–2886.

[97] D. Lowd and A. Rooshenas, “The Libra toolkit for probabilistic
models,” J. Mach. Learn. Res., vol. 16, pp. 2459–2463, 2015.

[98] M. Melibari, P. Poupart, and P. Doshi, “Sum-product-max net-
works for tractable decision making,” in Proc. 25th Int. Joint Conf.
Artif. Intell., 2016, pp. 1846–1852.

[99] A. Dennis and D. Ventura, “Autoencoder-enhanced sum-prod-
uct networks,” in Proc. 16th IEEE Int. Conf. Mach. Learn. Appl.,
2017, pp. 1041–1044.

[100] P. L. Tan and R. Peharz, “Hierarchical decompositional mixtures
of variational autoencoders,” in Proc. 36th Int. Conf. Mach. Learn.,
2019, pp. 6115–6124.

[101] D. D. Mau�a, F. G. Cozman, D. Conaty, and C. P. de Campos,
“Credal sum-product networks,” in Proc. 10th Int. Symp. Imprecise
Probability: Theories Appl., 2017, pp. 205–216.

[102] D. D. Mau�a et al., “Robustifying sum-product networks,” Int. J.
Approx. Reasoning, vol. 101, pp. 163–180, 2018.

[103] A. Levray and V. V. Belle, “Learning credal sum-product
networks,” in Proc. Conf. Autom. Knowl. Base Construction, 2020.
[Online]. Available: https://www.akbc.ws/2020/papers/

[104] M. Desana and C. Schn€orr, “Sum-product graphical models,”
Mach. Learn., vol. 109, pp. 135–173, 2020.

[105] D. Lowd and P. Domingos, “Learning arithmetic circuits,” in
Proc. 24th Conf. Uncertainty Artif. Intell., 2008, pp. 383–392.

[106] O. Sharir and A. Shashua, “Sum-product-quotient networks,” in
Proc. 21st Int. Conf. Artif. Intell. Statist., 2018, pp. 529–537.

[107] C. Y. Ko et al., “Deep model compression and inference speedup of
sum–product networks on tensor trains,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 31, no. 7, pp. 2665–2671, Jul. 2020.

[108] A. L. Friesen and P. Domingos, “Unifying sum-product networks
and submodular fields,” in Proc. 34th Int. Conf. Mach. Learn., 2017.
[Online]. Available: https://icml.cc/Conferences/2017/
ScheduleMultitrack?event=13

[109] R. Gens and P. Domingos, “Compositional kernel machines,” in
Proc. 5th Int. Conf. Learn. Representations, 2017.

[110] X. Shao et al., “Conditional sum-product networks: Imposing struc-
ture on deep probabilistic architectures,” in Proc. Work. Notes ICML
2019 Workshop Tractable Probabilistic Models, 2019. [Online]. Available:
https://sites.google.com/view/icmltpm2019/accepted-papers

[111] M. Trapp, R. Peharz, F. Pernkopf, and C. E. Rasmussen, “Deep
structured mixtures of Gaussian processes,” in Proc. 23rd Int.
Conf. Artif. Intell. Statist., 2020, vol. 108, pp. 2251–2261.

Raquel S�anchez Cauce received the graduate
degree in mathematics and the master’s degree
in mathematics and applications from the Autono-
mous University of Madrid (UAM), Spain, and the
PhD degree in mathematics from the Autono-
mous University of Madrid (UAM), Spain, in 2018.
She is a postdoctoral researcher with the Depart-
ment of Artificial Intelligence, Spanish National
University for Distance Education (UNED),
Madrid, Spain. Her research interests include
deep learning, artificial vision, differential Galois

theory, and integrable systems.

Iago Par�ıs received the master’s degree in phys-
ics from the Complutense University of Madrid,
Spain and the master’s degree in artificial intelli-
gence from UNED, Spain, in 2019, where he also
worked at the Department of Artificial Intelli-
gence, researching about deep learning algo-
rithms, especially SPNs.

Francisco Javier D�ıez received the master’s
degree in theoretical physics from the Autono-
mous University of Madrid (UAM), Spain, in 1988
and the PhD degree from UNED, Spain, in 1994.
He is currently a professor at the Department of
Artificial Intelligence, UNED, Spain. His research
interests include probabilistic graphical models
and their application to medicine. He has recently
become interested in deep learning applied to
medical imaging.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

S�ANCHEZ-CAUCE ETAL.: SUM-PRODUCT NETWORKS: A SURVEY 3839

http://ceur-ws.org/Vol-2327/
https://icml.cc/Conferences/2017/ScheduleMultitrack?event=13
https://www.akbc.ws/2020/papers/
https://icml.cc/Conferences/2017/ScheduleMultitrack?event=13
https://icml.cc/Conferences/2017/ScheduleMultitrack?event=13
https://sites.google.com/view/icmltpm2019/accepted-papers


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


