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a b s t r a c t 

Reinforcement learning problems involve learning by doing. Therefore, a reinforcement learning agent 

will have to fail sometimes (while doing) in order to learn. Nevertheless, even with this starting error, 

introduced at least during the non-optimal learning stage, reinforcement learning can be affordable in 

some domains like the control of a wastewater treatment plant. However, in wastewater treatment plants, 

trying to solve the day-to-day problems, plant operators will usually not risk to leave their plant in the 

hands of an inexperienced and untrained reinforcement learning agent. In fact, it is somewhat obvious 

that plant operators will require firstly to check that the agent has been trained and that it works as it 

should at their particular plant. In this paper, we present a solution to this problem by giving a previous 

instruction to the reinforcement learning agent before we let it act on the plant. In fact, this previous 

instruction is the key point of the paper. In addition, this instruction is given effortlessly by the plant 

operator. As we will see, this solution does not just solve the starting up problem of leaving the plant in 

the hands of an untrained agent, but it also improves the future performance of the agent. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Reinforcement learning (RL) is a machine learning paradigm

here the agent learns to do better in its environment by inter-

cting with it [29] . RL has been applied to different domains which

nclude: medical applications such as optimization of anemia treat-

ent [12] , control of blood glucose variability [10] , robotics [27] ,

perations research (e.g. optimization the pricing policy of a cloud

ervice provider [36] or web services [32] ). RL has also been suc-

essfully applied to the intelligent control of processes. In this do-

ain we could distinguish between process stabilization [30,37,38] ,

rocess tracking for fault-tolerant controllers (FTC) [17,33,39] or

rocess optimization [1,13] . The latter is the domain we focus on

or the control of WasteWater Treatment Plants. 

The main function of WWTPs is to provide humans and indus-

ries mechanisms for disposing effluents to protect the natural en-

ironment. Since WWTPs are significant energy consumers, opti-

izating them implies cutting operating costs and effluent fines,

hile rising to the challenges of water quality, sustainable de-

elopment and even stringent regulations. Traditionally, WWTPs

re controlled using standard control techniques [2] , fuzzy control
∗ Corresponding author. 
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3] or even artificial neural networks [15] . RL has also been suc-

essfully used in WWTPs. For example, in [23] a RL approach is

roposed in order to increase methane production during anaero-

ic digestion of wastewater sludge. In [19] , we improve the energy

nd environmental efficiency of a WWTP in N-Ammonia removal

roccess by means of an RL agent. 

Nevertheless, the high volume of data needed when the agent

earns online –when the agent learns at the same time it is inter-

cting with its environment– is currently one of the most impor-

ant limitations for the application of RL [11] . Notice that, different

rom other kind of machine learning paradigms, there is no su-

ervisor to label the data, either for learning or for evaluating the

earning. Instead, only a signal that comes from the environment,

he reinforcement, tells the agent how it is doing its job in the log

un. 

In the case of the control of a WWTP, the reinforcement signal

an be a measure that combines energy and environmental effi-

iency [20–22] . In this case, plant operators are in charge of setting

p this measure and tunning up the control (or RL agent control)

f their WWTP. Nevertheless, as it may seem obvious, operators

equire that the application works from the very beginning. The

roblem we face is summarized as follows: how to get these inter-

ctive data if we cannot let the agent act on the plant first. 

The solution we propose in this paper consists of applying a

rst stage of instruction time : a time in which the agent learns

https://doi.org/10.1016/j.knosys.2017.12.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2017.12.019&domain=pdf
mailto:felixh@dia.uned.es
https://doi.org/10.1016/j.knosys.2017.12.019
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Fig. 1. General schema of a reinforcement learning task. 
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from the actions taken by the plant operator. After this instruction

time, we leave the agent to learn by doing, this is, by interacting

with the plant by means of the knowledge acquired during the first

instruction stage. 

The rest of this paper is organized as follows. Section 2 presents

the required reinforcement learning background to grasp the main

ideas of this paper. Section 3 presents a brief explanation of

our previous work [20] since this paper is a continuation of it.

Section 4 focuses on the solution proposed. Section 5 shows the

results obtained when we apply the solution proposed and com-

pare them with our previous work. Finally, in Section 6 we discuss

these results and some work we have left to do for the near future.

2. Reinforcement learning background 

Reinforcement learning (RL) algorithms are based on agent’s in-

teraction with its environment. The environment is defined as any

external condition that cannot be changed directly by the agent

[29] , but can be changed through its actions. In fact, this interac-

tion is usually represented as in Fig. 1 . 

2.1. Elements of reinforcement learning 

The usual way the environment is modeled in RL is by means

of Markov decision processes (MDP). Here, the MDP environment

is modeled as (i) a space of states S , (ii) a space of actions A ( s )

that can be done over this environment, given that the environ-

ment is in state s , and (iii) a set of transition probabilities from

one state s to another state s ′ once the agent has executed action

a over this environment P ( s ′ | s, a ) besides (iv) the expected reward

to be obtained from this environment E { r | s ′ , a, s } when changing

from state s to state s ′ having executed action a [29] . 

Once the agent has this model of the environment, the opti-

mal policy π ( s, a ) can be solved by several methods, for instance

dynamic programming [4] . However, if the model of the environ-

ment is not provided to the agent, it can still learn this model

by means of the so called model-free RL methods [16] . Thus, with

these model-free RL methods, the agent must interact with its en-

vironment so as to get, step by step, the model of the environment

as well as the optimal policy to act upon it. 

More specifically, the agent interacts with its environment mak-

ing decisions according to its observations, via perception and ac-

tion. At each step t , the agent observes the current state of the

environment s t and chooses an action to execute, a t . This action

causes a transition between states and the environment provides a

new state s t+1 and a reward r t+1 to the agent. The ultimate goal

of the agent is to choose those actions that tend to increase its re-

turn : the long-term sum of the future reward values r t . This return,

in a continuous environment, is usually set as R t = 

∑ ∞ 

t ′ = t γ
(t ′ −t) r t ,

where 0 < γ < 1 stands for a kind of Optimization Horizon (OH, as

we will see later). In other words, the higher the γ (up to 1), the

further the future time considered into the return R t . In addition, if

the application has a large number of states or if it is continuous,

we need to approach the problem by means of function approxi-

mation [7] . 

Finally, in the case of the WWTP domain, a complete MDP

model is not usually available, thus, a model-free RL approach is
equired. That is why an agent has to interact with the environ-

ent to estimate it. Notice, however, that the goal does not consist

f getting the complete estimation of the MDP, but just to calcu-

ate the best policy π . This is, the one that gets a higher return. To

his end, in [20] we took advantage of the widely known method

alled policy iteration [7,29] . 

.2. Reinforcement learning by policy iteration 

The objective of reinforcement learning consists of searching for

he policy that provides the agent with the action that, for a given

tate, will carry the agent to a next state maximizing the next and

he following rewards (the agent’s return). This is called the op-

imal policy π ∗( s ) and this policy is unique [4] . In reinforcement

earning, to find this π ∗( s ), the agent must interact with the envi-

onment by means of some previous non-optimal policies π t ( s ). 

For the sake of accuracy, we will define some new concepts

n the next paragraphs. The return obtained by a policy π inter-

cting in an MDP when the agent starts at state s is defined as

 

π ( s ). When working with a known MDP, this return is usually

alled V 

π ( s ) and it is what we need to solve the problem in a dy-

amic programming problem [4] . However, in reinforcement learn-

ng (where we do not have the complete MDP available), we must

ork with the so called Q values: Q 

π ( s, a ). Each Q 

π ( s, a ) value is

efined as the return obtained when the agent follows the policy

starting at the state s and taking a as the next immediate action.

Policy iteration consists of an iterative process in which the pol-

cy π t followed by the agent at time t is monotonically improved

t each step letting policy evaluation and policy improvement pro-

esses interact [29] . Policy evaluation consists of calculating a new

stimation of Q 

πt (s, a ) after each interaction with the environ-

ent under this policy π t . Policy improvement consists of get-

ing the new policy πt+1 from the last policy evaluation Q 

πt (s, a ) .

lgorithm 1 shows the pseudocode that details this explanation.

lgorithm 1 Reinforcement learning by policy iteration. 

1: function PI ( π0 , s 0 ) 

2: t ← 0 

3: π ← π0 

4: π ′ ← π
5: a ← π(s 0 ) 

6: repeat 

7: s t+1 , r t+1 ← Environment (s t , a ) � Interaction

8: a ′ ← π ′ (s t+1 ) 

9: Q 

π ′ 
t+1 

← UpdateQ (Q 

π
t , s t , a, r t+1 , s t+1 , a 

′ ) � Policy

evaluation 

10: π ← π ′ 
11: for ∀ s do 

12: π ′ (s ) ← arg max a [ Q 

π
t+1 

(s, a )] � Policy improvement

13: t ← t + 1 

14: a ← a ′ 
15: until π ′ = π

return π ∗ = π

ig. 2 depicts the idea behind. 

Finally, notice that in Algorithm 1 the function UpdateQ is still

o be defined. In the next section we will show the two major ways

f updating Q : the so-called on-policy and off-policy control meth-

ds. 

.3. On-policy and off-policy control methods 

In this section we will focus on line 9 of Algorithm 1 : policy

valuation. This point is a very important one, because the way the

gent updates Q can make it converge to Q 

∗ or, instead, make it di-

erge badly. Thus, there are two major approaches: the on-policy
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Fig. 2. Policy iteration: two processes, policy evaluation Q above and policy im- 

provement π below, interact one with each other so as to get closer and closer to 

their optimal values. 
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(iii) a previous action a t : the DO (t) . 
ARSA like algorithms [28] and the off-policy Q-learning like algo-

ithms [34] . 

The on-policy SARSA rule updates Q as in Eq. (1) . The name

ARSA of this updating rule comes from the set of events it

ses: ( s t , a t , r t+1 , s t+1 , a t+1 ). The convergence properties of the

lgorithm 1 (with the SARSA updating rule) depend strongly on

he nature of every π t [29] . In fact, this feature is very useful

hen we want the agent not only to benefit from learning the op-

imal policy π ∗ in the long run, but also to get the best short-term

eturn while following the current policy π t . However, this fact

an also prevent the agent from reaching the optimal policy π ∗

f it sticks for too long to this somewhat better short term policy.

oreover, if the agent does not improve the policy quick enough

ver time, it may never get the optimal π ∗ or it could even diverge

adly [28] . This is where the name on-policy comes: the algorithm

nly takes into account not only the environment where the agent

s interacting with, but also the policy π t where the agent is cur-

ently riding on. 

(s t , a t ) ← Q(s t , a t ) + α[ r t+1 + γ Q(s t+1 , a t+1 ) − Q(s t , a t )] (1)

The off-policy Q-learning rule updates Q as in Eq. (2) . The Q-

earning algorithm was proposed earlier than SARSA, maybe be-

ause it is less difficult to probe its convergence [35] . In fact, in this

ase, Q approximates Q 

∗ directly, regardless of the policy followed.

his dramatically simplifies the analysis of the algorithm and it en-

bled early convergence proofs [29,34,35] . Moreover, this feature

an make the agent improve its behavior faster than SARSA when-

ver we cannot take control of the current agent’s policy π t . In

act, this happens because –with Q-learning– the agent’s learning

oes not rely –as directly as with SARSA– on the current policy π t .

owever, despite it and different from SARSA, this fact can make

he agent behave worse in the short term because it does not take

nto account the on-policy π t that the agent is currently following.

n fact, this is why it is called off-policy : the algorithm just takes

nto account the environment where the agent is interacting with,

ut not the policy π t that the agent is currently following. 

(s t , a t ) ← Q(s t , a t ) + α[ r t+1 + γ max a Q(s t+1 , a ) − Q(s t , a t )] (2)

Despite the advantages of the on-policy SARSA-like algorithms

escribed before, for the purpose of improving our agent’s behav-

or while following the plant operator policy (the actions taken by

he operator), we found off-policy control methods more suitable.

n fact, we want to apply a previous instruction time in order to

each the agent to act better before it can freely operate the WWTP

see Section 1 ). Therefore, in Section 4 , we will introduce this in-

truction time as a light modification of the Algorithm 1 (with an

ff-policy updating rule) trying to change its good nature as little

s possible. 

Nevertheless, let us first explain our application and the prob-

em we must face in a more detailed way. In the next section, we

ill explain how we try to minimize the operation cost of a WWTP

lant by means of a RL agent. To this end, we will detail how we

ry to keep the water quality (effluent from the WWTP) in a legal

ange while trying to save the highest amount of energy. 
. Energy and environmental efficiency in wastewater 

reatment plants by means of reinforcement learning 

Energy and environmental efficiency are critical aspects in

WTPs. From an environmental point of view, energy efficiency is

n important issue as different reports show about best practices

n this subject [6] . In fact, several approaches have been proposed

n order to improve the WWTPs in terms of lowering energy con-

umption [8,9,24] . 

But also, from an economic point of view, efficiency in the en-

rgy use can lower operating costs while keeping, or even rising,

he water quality of the WWTP effluent. In particular, in WWTPs,

 strict regulation has been imposed on the nitrogen levels of the

ffluent. In order to get rid of this nitrogen, active sludge process

ASP) with nitrification / denitrification stages is the most widely-

sed technique [18] . However, WWTPs are significant energy con-

umers in this ASP, especially for the N-ammonia removal. 

In more detail, the common variable to control an ASP is the

issolved oxygen (DO) concentration [14] . DO level in the aerobic

eactors has direct influence on the microorganisms’ activity that

re part of the active sludge. Aeration mechanisms supply oxygen

o the sludge to increase DO so that organic matter is degraded

nd nitrogen concentration is lowered. Thus, the ASP is urged to

eep a proper concentration of DO. Often, in many plants, DO

oncentration is kept high enough to ensure good effluent qual-

ty. However, this approach is expensive and it is therefore desired

o operate the aerobic reactors of the plant at lower DO concen-

ration to reduce energy consumption. Notice that the process for

he N-ammonia removal is the most important energy consumer

n a WWTP, being the responsible of nearly 50% of the energy con-

umption of the plant. 

Therefore, in our WWTP, the objetive is, on the one hand, to

atisfy the effluent requirements defined by local regulations to

eep the total nitrogen under a limit [26,31] and, on the other

and, to keep maintenance and operation expenses as low as pos-

ible. These expenses are due to the disposal of the wasted sludge

25] and mainly due to the energy consumed by blowers (for aera-

ion) and pumps in the WWTP. If we add all these expenses up, we

ill obtain a final and total operation cost OC ( t ) in money units.

n our application these units are in euros . This operation cost is

he one we use in our plant as the reinforcement signal r t for the

gent, and this signal is the one we intend to minimize. To this

nd, we defined our Q ( s, a ) value as a combination of several non-

inear interactions between NH 4 and O 2 in order to grasp much of

ts underlying non-linearity. In more detail [19] : 

(s = { NH 4 , O 2 } , a ) = 

N nh 4 ∑ 

i =0 

N o 2 ∑ 

j=0 

αi j [ a ] ∗ NH 

i 
4 ∗ O 

j 
2 

(3)

N nh 4 
and N o 2 parameters depend on the complexity we want to

dd to the model. In this particular experiment we set N nh 4 
= 2

nd N o 2 = 2 , because there is a trade off between model com-

lexity and hardware resources. Also, parameters αij [ a ] are to be

earned by the agent by means of neuro-dynamic programming

echniques [4,5,7,21] . 

In Fig. 3 we show the control we simulated in our WWTP. Let

s first recall from Algorithm 1 that the time t is sliced. In our

pplication the size of this time slice is 15 min and γ = 0 . 92105 .

ow, if we focus again on Fig. 3 , we can observe the following sig-

als exchanged between the environment and the agent: 

i) the state s t+1 : the oxygen O 2 (t + 1) and the N-ammonia

NH 4 (t + 1) ; 

ii) the reinforcement r t+1 given by the operation cost of the plant

OC(t + 1) after performing 
set−point 
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Fig. 3. Control loop to autonomously set the DO set-point using the RL agent. 

Fig. 4. Instruction time, then policy iteration: during the instruction time, the agent 

follows the operator’s policy. In spite of it, the off-policy evaluation of the policy 

allows a monotone improvement of Q . After the instruction time, the agent follows 

the usual policy iteration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 Instruction time before policy iteration. 

1: function ITPI ( πoperator , s 0 ) 

2: t ← 0 

3: π ← πoperator 

4: π ′ ← π
5: a ← π(s 0 ) 

6: while t ∈ InstructionTime do � Instruction time 

7: s t+1 , r t+1 ← Environment (s t , a ) � Interaction 

8: a ′ ← πoperator (s t+1 ) 

9: Q 

πoperator 

t+1 
← UpdateQ (Q 

πoperator 

t , s t , a, r t+1 , s t+1 ) � off-policy 

update Q 

10: t ← t + 1 

11: a ← a ′ 
12: repeat � Policy Iteration 

13: s t+1 , r t+1 ← Environment (s t , a ) � Interaction 

14: a ′ ← π ′ (s t+1 ) 

15: Q 

π ′ 
t+1 

← UpdateQ (Q 

π
t , s t , a, r t+1 , s t+1 ) � off-policy 

evaluation 

16: π ← π ′ 
17: for ∀ s do 

18: π ′ (s ) ← arg max a [ Q 

π
t+1 

(s, a )] � Policy improvement 

19: t ← t + 1 

20: a ← a ′ 
21: until π ′ = π

return π ∗ = π

Fig. 5. Weather over the first 2 years. Notes: 0, dry weather; 1, rain weather; 2, 

storm weather. 
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In fact, the output of the agent, the action a t , consists of one

out of three values for the DO set-point: 1.20 mg/L, 1.85 mg/L,

and 1.5 mg/l. The final DO value is controlled by a common PID

controller (see PI in Fig. 3 ). Notice that we chose these three val-

ues of DO set-points because they are, respectively, the optimal DO

set-points for each of the three possible weather conditions: dry-

weather, rainy-weather and stormy-weather. 

The results obtained with this RL agent (with these settings)

showed significant improvement in the N-Ammonia removal pro-

cess in a simulated WWTP [19] . However, in this previous work

we only applied policy iteration, Algorithm 1 , without any modi-

fication. Therefore, in this previous work the agent started to act

on the plant from the very beginning. This is, the RL agent started

to operate with zero knowledge about its particular WWTP. The

objective of this paper is to check whether we can improve this

behavior when the RL agent receives a first instruction time with-

out any previous interaction with the plant. To this end, we will

present a modification of Algorithm 1 . We devote the next section

to explain in detail this new algorithm. 

4. Performance and starting-up improvement by means of 

initial instruction 

In the last section we summarized the agent and the environ-

ment we are working on. Now we want to apply a previous in-

struction time in order to teach the agent to act better before it

can freely operate the WWTP. In this section we will detail such

an algorithm. 

Firstly, let us introduce our modification to Algorithm 1 . This

modification introduces an instruction time during which the plant

operator tells the agent what to do effortlessly , while she/he is con-

trolling the plant. This way, during this instruction time the agent

learns in an off-policy way while following the plant operator’s pol-

icy. We will call this Algorithm ITPI , this is: first Intruction Time,

then Policy Iteration . Algorithm 2 shows the pseudocode that de-

tails this proposal. Fig. 4 depicts the idea behind. Notice that in

Algorithm 2 ( ITPI ) the initial policy is provided by the plant opera-

tor π operator . Thus, there is no π0 required. 

Focusing on the ITPI Algorithm 2 we can see that during the in-

struction time, and thanks to the off-policy nature of the Q update,
e take into account only the previous action a t and the previous

tate s t plus the provoked next state s t+1 and new reinforcement

 t+1 . Notice that we do not consider the new action a ′ into the

 t update. This allows the agent to learn the MDP associated to

ts environment even though it is following the operator’s policy

operator . Notice that the convergence of ITPI is warranted by two

acts: (i) the fact that PI converges [7,29] and (ii) the fact that PI

lways comes after the initial instruction IT phase (see Fig. 4 ). 

In the next section we will show the experiments we conducted

ith Algorithm 2 . We will see that this previous instruction learn-

ng time is very useful for the agent. 

. Experiment and results 

The weather in the experiment varies in the following way: it

ains (randomly) 20% of the time and it storms (also randomly)

0% of the time; thus, the weather is dry 70% of the time. In Fig. 5 ,

e show the weather day by day over the first year. 

Now, let us recover from Section 3 that we have three op-

imal DO set-points (for each weather condition): 1.20 mg/l for
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Fig. 6. Yearly averaged operation cost of each of the 7 settings; less than a year of 

simulated time. Notice that the lines for “30 days of instruction” and “90 days of 

instruction” are both so close that they are hardly distinguishable. The same occurs 

with the lines for “270 days of instruction”, “365 days of instruction” and “human”

because they are all the same (notice that day < 270, so they are following π operator ). 
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Fig. 7. Yearly averaged operation cost of each of the 7 settings; around a year of 

simulated time. 

Fig. 8. Yearly averaged operation cost of each of the 7 settings; almost 2 years of 

simulated time. 
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ry-weather, 1.85 mg/l for rain-weather, and 1.5 mg/l for stormy-

eather. With respect to our RL agent (or agent for short), we will

ocus on two main results: (i) learning speed of the agent, (ii) en-

rgy and environmental efficiency ( = operation cost improvement)

btained by means of its behavior. 

We will compare the agent’s behavior with different times of

nstruction against the operator’s behavior as a test base. Thus, we

imulated a plant operator together with the plant by changing

he DO set-point to the optimal position whenever the weather

hanges. Something important to notice is that, different from the

lant operator, the RL agent doesn’t have access to the weather

ondition information, it only accesses the oxygen and the N-

mmonia inputs (see Fig. 3 ). In fact, notice that the operator not

nly has complete access to the real weather conditions of the

lant, he also takes into account this information immediately, and,

lso immediately (of course ideally), the operator takes care of the

xygen set-point of the plant. 

As we said in Section 4 , instruction to the agent is given

hrough the operator’s behavior π operator . Thus, during the instruc-

ion time, the agent’s behavior cannot be distinguished from the

perator’s behavior. We will compare the following settings: (i) no

nstruction at all, (ii) 30 days of instruction, (iii) 90 days of instruc-

ion, (iv) 180 days of instruction, (v) 270 days of instruction, (vi) a

ear of instruction, (vii) operator’s behavior. In order to get rele-

ant results, we run a simulation of the agent in the WWT sim-

lated plant for 2 (simulated) years. Note that the instruction is

iven to the agent during the first days of the first year. 

In order to show the results, we will use 3 kind of graphs.

irstly, a yearly moving average of the operation cost will show

ow the optimization efficiency of each of the 7 agent’s settings

volves with time. Secondly, so that we can dive into the agent’s

ehavior, we will show the agent’s action (by means of its set-

oint) and its environment reaction (by means of the N-ammonia)

n a selected time-frame window. Finally, to sum up, we will show

 comparison of the total saved cost of each agent’s behavior

gainst the operator’s one. 

The yearly moving average operation cost of these 7 settings

s shown in 3 time-frame windows from less than a year time to

lmost 2 years time, see Figs. 6 –8 . Notice that the line width of

ach setting in the graphs is proportional to the days of instruction

he agent received. Thus, “365 days of instruction” is the widest

ine. Each time-frame is chosen to have a change of weather in the

iddle. 
Focusing on Fig. 6 , we can check that, because we are in an

arly time-frame (less than a year), some settings, 270 and 365

ays of instruction, are still bound to the operator’s behavior. Other

etting, 180 days of instruction, did not have time to learn by itself

interacting with the WWT plant) yet. The rest of settings, 90 and

0 days of instruction (they both so close together that they are

ardly distinguishable) have finally been able to overtake the no-

nstruction setting. 

Going forward in (simulated) time, let us locate ourselves after

he first year, see Fig. 7 . At this time we can see that, finally, no

gent’s setting is bound to the operator’s behavior. However, “365

ays of instruction” did not have enough time to learn by itself

interacting with the WWT plant) yet. Notice that if we sort the

peration costs from the worst setting to the best one, we get: op-

rator, no-instruction, 365, 30, 90, 180 and 270. It is true that 90,

80 and 270 are together very close to each other. However, this

ittle difference will be detected in the graph displayed with color.

Almost at the end of the first 2 years, see Fig. 8 , “365 days of in-

truction” is in the group of the best: 180, 270 and 365. This group

s followed by 90 and 30 days of instruction. Finally, no-instruction

nd operator are the ones with the worst operation costs. 

Let us now understand why these differences in operation costs

y diving into the agent’s behavior. Focusing on Fig. 9 , in the graph,

he 180-days-of-instruction agent has had enough time to learn.

lso, the weather changes from stormy to dry on day 406, and

he operator behavior reflects it with its change of set-point from

.85 mg/l to 1.2 mg/l on that day. Notice that the agent only minds

he level of N-ammonia and oxygen (not the weather), so it does
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Fig. 9. Operator’s behavior vs agent’s behavior with and without instruction. 

Fig. 10. Total operation cost saved by each agent’s setting with regard to the oper- 

ator for the first 2 years. 
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not present a substantial change of behavior on day 406. In fact,

notice the more dynamic behavior of the agent against the oper-

ator’s one. However, there are some differences between the 180-

instructed agent and the agent no-instructed at all. For instance,

between 405 and 406 days, there should be plenty of time to be

relaxed because the levels of N-ammonia are low. Between these

days, 180-instructed agent is near 1.2 mg/l, in order to save en-

ergy. It does not happen with the non-instructed agent (nor the

operator, who is even less dynamic). 

Finally, we would like to highlight and compare the total oper-

ation costs of each of the 6 agents’ behavior. In Fig. 10 , we show

the added saved costs against the operator’s operation cost for the

first 2 years day after day. As the reader may see, the tendency is

that the more instructed the agent, the steeper the graph of saved

cost. However, because of being bound to the operators’ behavior,

the more instructed the agent, the later it starts interacting with

the WWT plant and learning by itself. It happens that a more in-

structed agent will eventually catch up with a less instructed one,

but we wonder: is it worth the time spent in instruction? 

The answer looks clear from this experiment: it is. Even as few

as 30 days of instruction are worth it. In fact, as it may be seen in

Fig. 10 , the non-instructed agent even degrades during the second

year and even loses (against the operators’ behavior) some of the

costs saved over the first year. In fact, it looks as if the acquired

knowledge were less solid than the one acquired when the agent

is firstly instructed. 

In the next section, we will highlight some of the main conclu-

sions of these results. 
. Conclusions and future work 

When the goal is to improve the energy and environmental ef-

ciency and optimize the operation cost of an WWTP, it is impor-

ant to do it quickly and autonomously so that the agent can adapt

o changing environmental conditions with a minimal intervention

f the plant operator. 

In previous works, we presented a reinforcement learning ap-

roach to reduce the operation cost in an N-ammonia removal pro-

ess in a WWTP. In this paper, we show that even an initial in-

truction of as few as 30 days improves dramatically the agent’s

earning speed and its final objective: reducing much more the op-

ration cost of the WWT plant (see Fig. 10 ). Even more, we show

hat the longer the instruction time the better the operation cost

see Fig. 8 ). 

However, we wonder if we should instruct the agent the longer

he better. In fact, it looks clear that the more time the operator

pends instructing the agent the less time the agent is learning by

ts own interaction with the WWT plant. Thus, we see this as a

rade off between a firstly fruitful instructed learning stage and a

ore expensive, if non-optimal, but much more productive in the

ong run, interactive learning with the WWT plant. 

In fact, it does not look easy to find the best time to let the

gent fly alone . Perhaps, in this first approach, it seems that more

han 30 days of instruction don’t pay off the lack of time work-

ng and interacting with the WWT plant (see Fig. 10 ). Moreover,

he earlier the agent starts working the earlier the WWT plant can

tart to benefit from it. Even more, as a deep detail, see Fig. 10 just

t the end of each agent’s instruction time. We can see there that

he more instructed the agent, the harder it is for the agent to

tart getting a positive saved cost (starting, in fact, with a negative

aved cost, see first non-instruction days of 90, 180, 270 and 365

gent in Fig. 10 ). In fact, it looks as if the agent felt stranger with

he interaction with the plant as more and more instruction it has

reviously received. Anyway, eventually, the more instructed agent

tarts to learn faster and more effectively than the less instructed

ne after a while. 

Therefore, we are currently working around all these questions.

mong other things, to get faster learning speeds with even less

nstruction time. 
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