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ABSTRACT We present a new approach based on grammatical evolution (GE) aimed at addressing the
analog electronic circuit design problem. In the new approach, called multi-grammatical evolution (MGE),
a chromosome is a variable-length codon string that is divided into as many partitions as subproblems result
from breaking down the original optimization problem: circuit topology and component sizing in our case.
This leads to a modular approach where the solution of each subproblem is encoded and evolved in a partition
of the chromosome. Additionally, each partition is decoded according to a specific grammar and the final
solution to the original problem emerges as an aggregation result associated with the decoding process of the
different partitions. Modularity facilitates the encoding and evolution of the solution in each subproblem. On
the other way, homology helps to reduce the potentially destructive effect associated with standard crossover
operators normally used in GE-based approaches. Seven analog circuit designs are addressed by an MGE-
based method and the obtained results are compared to those obtained by different methods based on GE and
other evolutionary paradigms. A simple parsimony mechanism was also introduced to ensure compliance
with design specifications and reduce the number of components of the circuits obtained. We can conclude
that our method obtains competitive results in the seven circuits analyzed.

INDEX TERMS Genetic programming, grammatical evolution, evolutionary electronics, analog circuit

automatic design.

I. INTRODUCTION

Analog death has been predicted so many times, but the
analog integrated circuit (IC) market growth rate is currently
even greater (6.6%) than the average rate for the whole IC
market (5.1%) [1]. A reason for this could be that the world
is fundamentally analog [2] and so, some functions still have
to remain analog, for example, transducers [2], RF commu-
nications [3], and low power applications [4].

Though there are powerful electronic design automation
(EDA) tools which can almost fully automate the whole digi-
tal design process, this is not the case in analog design, where
there is still no widely accepted tools [5]. Analog design is
considered to be knowledge-intensive [4] and considerably
more complex than digital design, even for small problem
sizes [6]. Analog or mixed-signal designs typically need to
optimize dozens of specifications, some of them conflicting,
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depending on the nonlinear behavior of the components [7].
Thus, a single change could affect the whole design since ana-
log circuits are bidirectional at their boundaries [8]. There-
fore, most of the constraints in today’s analog design are still
specified and considered manually by expert designers [6].
One of the alternatives for automatic design is evolutionary
electronics (EE) [9]. The main goal of EE is to automat-
ically synthesize electronic circuits by using evolutionary
algorithms (EA). The works of Koza er al. (the late 90s),
using genetic programming (GP), are outstanding in EE due
to the broad set of evolved circuits [10]-[13]. Since then,
many more approaches have emerged [9], [14]-[22]. How-
ever, there is some controversy when the reliability of circuits
obtained by EE is considered. Reliability is an important
property in the IC industry, where the worst fear is a respin,
which happens when a fabricated IC does not work, and
going back to the first stages of design is needed. In this
way, a human designer may be somewhat skeptical about the
unconventional designs produced by an EA. Conventional
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design can be constrained by the designer’s own experi-
ence or geometrical preferences, like symmetry, which is not
necessarily taken into account by an EA. The evolutionary
process of an EA is just directed by the optimization of its
fitness function and can find solutions out of human think-
ing limits [23]. No rules, nor expert knowledge are needed,
that is, blocks are invented or reinvented from scratch and
this gives its open-ended nature [24]. It has been said that
the open-ended approach finds non-conventional solutions
and provides both highly compact designs [19] and human-
competitive designs which can be comparable to patented
designs [25]. In another way, most human designers consider
that EA designs can present strange topologies or without
apparent logic [24]. Possibly, this is the most serious prob-
lem in the open-ended approach: getting from experimental
designs to industrial designs [26].

Two are the main contributions of this work. First, we pro-
pose a new EA, called multi-grammatical evolution (MGE),
oriented to solve the analog circuit design problem. Sec-
ond, an MGE-based method is implemented and success-
fully applied to the automatic design of seven benchmark
analog circuits. However, it is also necessary to mention the
limitations of our study: (i) we only manage two levels of
abstraction into the design process (topology and sizing); (ii)
each circuit obtained by the proposed approach is expressed
by its netlist, that is, a list of components that includes the
connection nodes and parameter values of each component.
Here, it should be noted that, from the perspective of indus-
trial circuit design, getting a netlist is just the first step of a
more complex process that implies several stages [27]: netlist,
layout, photo-lithographic masks, wafer (chips), packaging,
testing and debugging; (iii) the degree of compliance of each
circuit with the design specifications is evaluated by simu-
lation using NGSpice [28], an open-source electronic circuit
simulator.

The rest of this manuscript is structured as follows:
Section II shows different works related to our proposal.
Section III describes MGE in detail. Then, Section IV
presents several case studies related to the analog elec-
tronic circuit automatic design problem, which will be
addressed by an MGE-based method. In Section V, the results
obtained with our method are analyzed and compared with
those obtained by a GE-based method and other evolution-
ary paradigms. Finally, the conclusions are presented in
Section VL.

Il. RELATED WORK

GP was introduced by John Koza in 1992 [29] and it has
proved to be a very powerful algorithm in optimization prob-
lems. The Koza et al.’s works on GP covered a broad set of
fields such as symbolic regression, control or circuit design
[13], and since then, GP has achieved outstanding results
in many other fields such as data mining [30], empirical
modeling [31], convolutional neural network design [32],
financial applications [33], and material strength prediction
[34], among others. However, GP needs a special represen-

137276

tation based on parse trees and, therefore, it requires special
variation operators, different from those used to manage chro-
mosomes represented by linear strings. Additionally, the vari-
ation operators in GP must guarantee the closure property,
that is, the results of the variation operators must be valid
chromosomes from a syntactic point of view [29]. In order to
guarantee the closure property, the variation operators have
to be carefully crafted for the specific problem and represen-
tation used.

To overcome the closure problem, several extensions of
GP based on grammars appeared. They are called grammar-
based genetic programming (GBGP) [35] or grammar guided
genetic programming (GGGP) [36]. In particular, grammati-
cal evolution (GE) is a GP variant based on grammar which
was pioneered by Ryan et al. [37] and O’Neill and Ryan
[38]. Unlike GP, GE uses linear strings as chromosomes
and, consequently, can use standard variation operators. The
closure property is also guaranteed by the decoding process
based on a context-free grammar.

In GE, chromosomes are represented by variable-length
binary strings, where the unit of information is called a codon,
normally corresponding to one byte in the chromosome. The
use of variable-length chromosomes is of special interest
since it not only facilitates adjusting the solution to the nec-
essary size but also favors the emergent property of self-
organization, which is a natural step towards richer and more
open-ended evolving system models [39]-[41]. The decoding
of a chromosome consists of reading its codons from left to
right. Each codon is used to choose an appropriate production
rule in order to expand the current non-terminal symbol in the
expression that is being expanded. The choice of the rule is
made according to the following mapping function:

rule = codon_value MOD NR @))]

where MOD is the modulus function, codon_value is the
value of the codon and NR is the number of rules for the
current non-terminal symbol. Additionally, if all the codons
of a chromosome are completely read, but the expression is
not fully expanded, then the reading restarts at the begin-
ning of the chromosome and the decoding process continues.
This mechanism is known as wrapping [38]. The wrapping
parameter defines how many times the chromosome can be
read before giving up. The decoding process just described
is also called depth-first mapping. However, there are other
possibilities of mapping in GE [42], such as breadth-first,
random, or 7 GE [43].

According to arecent survey [44], grammatical-GP (which
includes GE) was the second variant most used by practition-
ers in the field of GP, only preceded by GP-standard. How-
ever, there is some controversy about GE performance com-
pared to other GGGPs [35], [45], [46]. From the beginning,
GE was based on the use of a standard one-point crossover
operator inspired by genetic algorithms (GA) [38]. Although
it is a simple and valid operator, its main disadvantage is
a potentially destructive behavior when it is used in GE.
Alternatively, the idea of homologous crossover can be used,
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which draws inspiration from biology [47], [48]. Homol-
ogy in nature implies that the chromosome fragments to be
exchanged always belong to the same position and are of sim-
ilar size. However, there is evidence that the attempts made
to build homologous operators in GE have not given better
results than those obtained by the one-point operator [49].
Besides, a homologous operator is not easy to implement in
GE because it requires storing the history of production rules
used in the decoding of each chromosome.

Additionally, modularity and its benefits are well known
in computer science [50] or other more specific areas such
as graph theory or network analysis [51]-[53]. Modularity
allows us to address a problem by decomposing it into sub-
problems or modules. In this way, each module can focus
on just one aspect or functionality of the original problem,
encapsulating the initial complexity in each module. Modu-
larity is also a recurrent theme in biology because it facilitates
evolvability by limiting interference between the adaptations
of different functions [54].

MGE, the new approach proposed here, is based on GE,
but includes two important properties: modularity and homol-
ogy. The main idea of MGE is to decompose the original
optimization problem into different subproblems to encode
and evolve the solution to each subproblem in a different
partition of the chromosome. The final phenotype is obtained
by decoding each partition of the chromosome with a specific
grammar. Each grammar allows the decoding process to build
solutions belonging to the search space of each subproblem.
In this context, we believe that the analog circuit design
problem is ideal to test the potential of MGE and, therefore,
to carry out a first analysis of the effects of simultaneously
including the properties of homology and modularity in GE.
In particular, the analog circuit design process can be easily
decomposable into two subproblems: circuit topology selec-
tion and component sizing. Therefore, the idea is to define a
grammar to decode the topology, another grammar to decode
the sizing of the components that result from applying the
first grammar, and finally, use the MGE formalism to coor-
dinate the entire decoding process resulting of using both
grammars.

GP and other of its variants, such as Gene Expressing
Programming [55], also have the possibility of partitioning
the chromosome. In this context, each partition can encode
the potential solution of the different subproblems in which
the main problem can be decomposed and, additionally,
as it is shown in [56], this form of representation can be
used by the variation operators at different levels (partition
level or gene level). However, the representational power of
the formal grammars used by GE is worth exploring further.
As a grammar is used, it is trivial to modify the output solution
structures by editing the grammar. It is also possible to inject
domain knowledge in the grammar definition, allowing us to
reduce the search space of all feasible solutions. Therefore,
MGE is designed to incorporate the homology and modular-
ity properties in GE, while maintaining the advantage of using
the powerful idea of grammar.
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lll. METHOD DESCRIPTION

In this section, MGE is presented. First, the way to encode
the information in the chromosome and the decoding pro-
cess associated with this new approach are described. Sec-
ond, given that the analog circuit design problem is directly
decomposable into two subproblems (circuit topology and
component sizing), and MGE need to define one grammar for
each subproblem, we present a generic grammar for topology
and another for sizing. Then, an MGE decoding example
shows how to obtain the phenotype (circuit) from a codon
string (genotype). Finally, we also detail how to introduce
homology property in MGE and how to define a type of
crossover operator that takes advantage of this property.

A. MULTI-GRAMMATICAL EVOLUTION

A chromosome in MGE is a variable-length codon string that
is divided into as many partitions as subproblems result from
breaking down the original optimization problem. Each parti-
tion is decoded according to a specific grammar and the final
solution to the original problem emerges as an aggregation
result associated with the decoding process of the different
partitions of the chromosome. MGE can be seen as a top-
down approach, where the first grammar decodes high-level
features of abstraction, and the last grammar decodes low-
level features of abstraction. This approach based on modu-
larity is inspired by nature, where different parts of the chro-
mosome regulate different biological functions. In particular,
modularity in MGE allows each partition of the chromosome
to evolve in order to solve each subproblem.

The decoding process of MGE is based on GE, but it is
modified to use several grammars sequentially. The process
begins using the start symbol of the first grammar and works
in the same way as in GE: each codon of the chromosome is
read, and the standard modulus rule described in (1) is applied
to expand the start symbol of the first grammar. The differ-
ence from GE appears when a fully expanded expression is
obtained in the scope of the first grammar, that is, the expres-
sion only depends on the terminal symbols of this grammar.
At this point, the decoding process continues in the following
codon to the last one read, but now the decoding process
makes use of the next grammar. The second grammar is built
to have a special start symbol, called start symbol string,
which is replaced by the fully expanded expression obtained
in the previous step. The result of the second decoding is
a new fully expanded expression that only depends on the
terminal symbols of the second grammar. Then, this process
is repeated until the last grammar is used. The final fully
expanded expression obtained corresponds to the phenotype
associated with the entire chromosome and, therefore, to a
potential solution to the original problem.

MGE determines that a partition point, called P-point, will
be marked in the chromosome at the point where the decoding
process finishes with each grammar. If the decoding process
for the last grammar ends before traversing the entire chro-
mosome, the codons placed to the right of the last P-point are
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simply ignored. The set of P-points divides the chromosome
into different partitions, considering that each of them was
decoded using its respective grammar. Note that partitions
only appear when the decoding process has finished and,
therefore, they are specific of each chromosome. The length
of each partition is not fixed and depends strictly on the
chromosome codon values, the specific grammar being used,
and the fully expanded expression used as a start symbol
string.

A graphic example of the decoding process (using three
grammars) and the resulting chromosome partitions are
shown schematically in Fig. 1. It can be seen how the fully
expanded expression obtained by decoding the i-th partition
of the chromosome is used as a start symbol string by the
(i + 1)-th grammar to decode the (i + 1)-th partition of the
chromosome. In order to present the decoding process more
formally, algorithm 1 describes it in pseudocode. A practi-
cal example of the decoding process will also be shown in
Section III-C.

Algorithm 1 MGE Decoding Process

Inputs: chromosome to decode (chromosome); start symbol
of the first grammar (start_symbol); grammars to be used
(grammarli], withi =1, ..., n)

Output: decoded solution (expression)

list_of _P-points < {@};
reading_pointer < 0,
expression <— start_symbol,
FORi < 1TOn
WHILE there are non-terminal symbols regarding the
grammar(i] in expression DO
non_terminal <~
terminal_symbol(expression, grammarli]);
IF production_rule(non_terminal, grammar[i]) has
several rules THEN
reading_pointer < reading_pointer+1;

next_non-

codon < read_chromosome(reading_pointer,
chromosome);
rule « mod(codon, num-
ber_of choices(non_terminal, grammar(i));
ELSE
rule < 0;
End-IF
expression < expand_production_rule(expression,
rule);
End-WHILE
list_of _P-points < list_of_P-points U reading_pointer,
End-FOR

MGE, as a variant of GE, is also an evolutionary algorithm
that allows us to separate the decoding process from the
search process. Therefore, different search engines can be
used, such as a genetic algorithm [38], differential evolution
[57], or particle swarm optimization [58], [59]. Likewise, as
variation and selection operators, anyone that works with GE
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Fully expanded
expresson 1

Fully expanded
expression 2
Grammar 3 Decoding
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FIGURE 1. Example of the MGE-based decoding process for three
grammars. The chromosome partitions are also shown.

could also be used in MGE. However, as we describe below,
it will be necessary to design a specific crossover operator if
we want to take advantage of the homology property.

In principle, a crossover operator could take advantage
of the chromosome partitions obtained. This operator could
focus on interchanging entire partitions of each parent using
a P-point as a crossover point (XO-point), such as is shown
in Fig. 2. However, those partitions inherited by each child
and originally located in their parents to the right of each
XO-point correspond to estimated partitions, since the actual
partitions only appear after decoding. In other words, this
kind of crossover operator does not guarantee the conserva-
tion of all the parents’ partitions in their children and cannot,
therefore, be considered a homologous operator. Anyhow,
in Section III-D, we will describe a way to introduce the
homology property in MGE.

XO-Point 1
1t partition 2nd partition 3rdpartition  } 4th partition Rest

Parentl |12 3 4 56 718 91011 12 13 14 15 16{17 18 19 20 21i22 23 24 2526 27,28 29 30 31

».. P-Point P-Point P-Point P-Point

1t parttion 2nd partition

Childl | 123456 7!8 910111213 14 15 16 |65 66 67 63 69 70 71 72 73 74 75 76 77 78 79 808182
R A

P-Pdint P-Pint i !
' ' 1
1¢t partition  2nd partition ¢ /

Child2 5152m5455569535596051625364'1715192021221324v25252725293031
T M

- I

14 partition w and partition PO 2 ‘ 3rd partition ‘ ath partition ly' Rest

Parent2 |51 52535’455 56‘}5755 50 60 61 62 63 64165 66 s7sseg§7o7172zs74 7576W€7E79805182‘

P-point P-point P-point P-Point

FIGURE 2. Example of a pseudo-homologous crossover operator in which
the crossover points (XO-Points) must correspond to P-points in both
parents. Note that only the parents’ partitions located to the left of the
XO-Points are preserved in their respective children. The 3rd and 4th
partitions are not shown in the children because they will only appear
after the decoding process.

Though grammars in GE are normally expressed in
Backus-Naur form (BNF) notation, we use an extended BNF
notation, which is an ISO standard [60]. Additionally, we pro-
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pose here the use of grammar-based extensions. In general,
grammar-based extensions are introduced to facilitate the
exchange of knowledge between genotype and phenotype and
to provide advantages in terms of convenience and potential
improvement in performance [61]. Grammar-based exten-
sions are also used to improve the expressiveness of gram-
mars and obtain other functionalities. In this sense, some
grammar-based extensions from [61] and new ones are used
here. However, the grammars used are no longer compatible
with ISO / IEC, nor are they pure BNF grammars.

Each grammar-based extension is enclosed in angle-
brackets and is identified by a keyword. Some arguments
may be needed depending on the type of extension used. The
extensions proposed here are the following:

1) <GEPpointMarker> This extension allows us to set a
P-point mark in the chromosome. The mark is applied
at the codon that is decoded as a P-point by the cur-
rent grammar. This kind of mark is used by crossover
operators.

2) <GECodonValue: start, end> This extension is used
as a convenient shorthand instead of an exhaustive
enumeration of an integer interval. It tells the decoding
process to draw a codon from the chromosome and
expand it in the range of integers delimited by the start
and end values.

3) <GEResult> This extension tells the algorithm to con-
tinue the decoding using the previous fully expanded
expression. It is just a formalism to allow the fully
expanded expression obtained by the (i)-th grammar
to be used as a start symbol string by the (i + 1)-th
grammar.

B. GRAMMARS FOR ANALOG CIRCUIT DESIGN

In this section, the grammars proposed for analog circuit
design are shown. Since there are two well-differentiated
tasks for circuit design: topology selection and component
sizing, each grammar focuses on one of these tasks. Both
grammars, like those presented in [62], are oriented to directly
generate circuit netlists. Grammars are defined with the tuple
< S,T,N,R,E >, where S is the start symbol (topology
grammar) or the start symbol string (sizing grammar), 7' is the
set of terminal symbols, N is the set of non-terminal symbols,
R is the set of production rules, and E is the set of grammar-
based extensions.

1) TOPOLOGY GRAMMAR

The goal of the topology grammar (see table 1) is to deter-
mine the circuit topology as a netlist. The start symbol
of this grammar is the non-terminal symbol LIST, which
is directly expanded as the non-terminal symbol COMPO-
NENTS. At the same time, COMPONENTS can be expanded
as a circuit component, as a new non-terminal symbol COM-
PONENTS (which allows the netlist to be expanded) or as
a non-terminal symbol END (which marks the ending of the
netlist and introduces a P-point marker using the grammar
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extension <GEPpointMarker>). The definition of this gram-
mar is generic, that is, depending on the design requirements
of a particular circuit, some types of components shown in
the grammar can be removed or new ones can be added by
the user. For example, one of the two types of transistors
(BJT or MOSFET) could be removed or a new type of com-
ponent, for example, an INDUCTOR, could be added.

TABLE 1. Grammar for topology selection (see Section 111-B for a detailed
description).

S = LIST

T= { "R", "C", "Q", "M", "nulll", "null2", "0", "1", "2",
R A R AR A AR
"RESISTORVAL", "CAPACITORVAL", "BITTYPE",
"MOSTYPE", "CHANNELWIDTH", "ENDFIRST",
end-of-line character}

N = { LIST, COMPONENTS, RESISTOR, CAPACITOR,
BJT, MOSFET, DUMMY, NODE, END, EOL }

E= { <GEPpointMarker>, <GECodonValue> }

“R” comprises the following rules of production:

LIST = COMPONENTS;

COMPONENTS = RESISTOR, END | RESISTOR, COMPONENTS |

CAPACITOR, END | CAPACITOR, COMPONENTS |
BIJT, END | BIT, COMPONENTS | MOSFET, END |
MOSFET, COMPONENTS;

RESISTOR= "R", NODE, NODE, DUMMY, "RESISTORVAL",
EOL;

CAPACITOR = "C", NODE, NODE, DUMMY, "CAPACITORVAL",
EOL;

BJT = "Q", NODE, NODE, NODE, "BJTTYPE", EOL;

MOSFET = "M", NODE, NODE, NODE, "MOSTYPE",
"CHANELWIDTH", EOL;

NODE = <GECodonValue: 0, MNN + test_fixture_nodes-1 >;

DUMMY = "nulll" | "null2";

END = "* ENDFIRST", EOL, <GEPpointMarker>;

EOL end-of-line character

Note how the grammar extension <GECodonValue> is
used here to define the list of nodes that can be used in the
circuit to evolve (see production rule for the non-terminal
symbol NODE). The minimum number of nodes is given by
the so-called fest fixture, that is, the circuit part that does not
evolve (inputs, outputs, ground, power supply sources, etc.).
The test fixture is defined by the design specifications and
contributes with a fixed number of nodes. The total number of
nodes in the circuit to evolve is given by the sum of nodes used
by the test fixture and the maximum node number (MNN),
which is established by the user.

The topology grammar is defined to always use fixed-
size blocks (4 codons). This type of grammar is known as
block-grammars [62]. To meet that restriction in those types
of components that would need less than four codons to be
decoded, a non-terminal symbol, called DUMMY, is intro-
duced. The idea is to force the decoding process to consume
as many codons as necessary until completing the sequence
of 4 codons. This is implemented in the grammar by making
a production rule for the DUMMY symbol with two options:
“nulll” and “null2”. Note that when a production rule has
only one option associated, no codon is read [38]. Therefore,
the existence of two options for the DUMMY symbol forces
a codon to be read when this non-terminal symbol is being
expanded.
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2) SIZING GRAMMAR

The goal of the sizing grammar (see table 2) is to continue
the decoding process from the partial netlist decoded by
the topology grammar and, therefore, determine the value
of each component. For this, in the expression resulting
from applying the topology grammar, those symbols that are
non-terminal, regarding the sizing grammar, will have to be
expanded. For example, RESISTORVAL or CAPACITOR-
VAL are terminal symbols for the topology grammar, but
they are non-terminal in the sizing grammar. As is shown in
algorithm 1, when there is a change of grammar, the decoded
expression by the i-th grammar is considered the start symbol
of the (i + 1)-th grammar. Therefore, that expression is tra-
versed from left to right and every symbol is checked to see
if it is non-terminal in the new grammar. If so, the symbol is
expanded.

TABLE 2. Grammar for component sizing (see Section 111-B for a detailed
description).

S = LIST

T= { "R", "C", "Q", "M", "QNPN", "QPNP", "NMOS1
L=10u W=", "PMOS1 L=10u W=", "null1", "null2",
"o", MLty M2t "3n, 4n, st e, M7, g, M9, et
"END", end-of-line character}

N= { LIST, BITTYPE, TYPE, MOSTYPE,
MODELNMOS, MODELPMOS, DUMMY, NODE,
RESISTORVAL, CAPACITORVAL,
CHANELWIDTH, DIGIT, NONZERODIGIT,
EXPONENT, ENDFIRST, EOL }

E= { <GEResult>, <GEPpointMarker>, <GECodonValue>
}

“R” comprises the following rules of production:

LIST = <GEResult>;

RESISTORVAL = NONZERODIGIT, ".", DIGIT, "e", DIGIT, DUMMY;

CAPACITORVAL = NONZERODIGIT, ".", DIGIT, "e", EXPONENT,
DUMMY;

BITTYPE = TYPE, DUMMY, DUMMY, DUMMY;

TYPE = "QNPN" | "QPNP";

MOSTYPE = MODELNMOS | MODELPMOS;

MODELNMOS = "0", "NMOS1 L=10u W="

MODELPMOS = "1", "PMOSI1 L=10u W="

CHANELWIDTH = NONZERODIGIT, DIGIT, "u" | "1", DIGIT, DIGIT,
s

DIGIT = <GECodonValue: 0, 9>;

NONZERODIGIT = <GECodonValue: 1, 9>;

EXPONENT = <GECodonValue: -12, -3>;

DUMMY = "nulll" | "null2";

ENDFIRST = "END", <GEPpointMarker>;

EOL end-of-line character

The start symbol of the sizing grammar is the non-terminal
symbol LIST, which is expanded with the grammar extension
<GEResult>. This grammar extension tells the algorithm to
expand LIST using the fully expanded expression obtained
by the topology grammar.

The non-terminal symbol ENDFIRST allows us the intro-
duction of a P-point marker through the use of the gram-
mar extension <GEPpointMarker>. Another grammar exten-
sion used is <GECodonValue> (see the production rule for
the non-terminal symbols DIGIT, NONZERODIGIT, and
EXPONENT).

RESISTORs and CAPACITORs have a value expressed in
scientific notation, m - 10, where 1 < m < 10 and the
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magnitude order range of the exponent, ¢, depends on the type
of component (resistor or capacitor). TRANSISTORs can be
BJT or MOSFET. Two types of BJT and MOSFET tran-
sistors are defined by the non-terminal symbols BITTYPE
and MOSTYPE, respectively. Note that this grammar is also
defined to utilize 4-codon size blocks (block-grammar) by
using the non-terminal symbol DUMMY when necessary.

Finally, it should be noted that some chromosomes can be
inexpressible, that is, chromosomes that cannot be decoded
(the wrapping threshold is exceeded) or can produce circuits
that cannot be simulated (unfeasible circuits). The fitness of
this type of individual is strongly penalized in order to reduce
the probability that they are selected as parents [62].

C. DECODING EXAMPLE
In this section, an example of how to use the topology and
sizing grammars to decode a chromosome is shown. The
example chromosome to be decoded is: (5, 21, 42, 14, 1,
34,10, 7, 2, 94, 23, 8, 0, 12, 38, 15, 0, 20, 53, 78, 0, 100,
83, 111, 76, 29). Note that this chromosome can represent an
individual from the initial population, where the codon values
are randomly obtained, or an individual from the population
in the i-th generation, where the codon values are the result
of the evolutionary process. We assume in this example that
the test fixture comprises four accessible nodes (see Fig. 3)
and the MNN=6, so the production rule for the non-terminal
symbol NODE will have ten options {0,1,..., 9}. A node
is called accessible if it can be used by the evolved circuit.
In other case, it is denominated inaccessible (e.g. the node
linking Rs and Vs in Fig. 3).

The first stage of the decoding process, as indicated in
Section III-A and using the topology grammar (see table 1),
is as follows:

1) The decoding starts with the start symbol S, which is
expanded as the non-terminal symbol LIST. The new
expanded expression is: LIST.

2) Since the production rule for LIST has only one option,
no codon is drawn and the new expanded expression is:
COMPONENTS.

3) A codon value is needed for the expansion of COM-
PONENTS and the value of the first codon is 5,
so SMOD8 = 5 selects rule #5, which produces
the following expanded expression: BJT, COMPO-
NENTS.

4) The production rule for BJT has only one option.
Therefore, it is expanded directly without consum-
ing codons. The new expanded expression is: “Q”,
NODE, NODE, NODE, “BJTTYPE”, EOL, COM-
PONENTS.

5) “Q” is already a terminal symbol.

6) The non-terminal symbol NODE has to be expanded,
so a new codon is read (value 21), and the modulus
operator generates an integer in the range (0, 9) by
using the modulus operator (21 MOD 10 = 1). Then,
the node number 1 is chosen and the new expanded
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expression is: “Q” 1, NODE, NODE, “BJTTYPE”,
EOL, COMPONENTS.

7) The expansion of the other two non-terminal symbols
NODE involves reading the codons 42 and 14. The
modulus operator produces node numbers 2 and 4,
respectively, and the new expanded expression is: “Q”
124, “BJTTYPE”, EOL, COMPONENTS.

8) “BJTTYPE” is a terminal symbol (no expansion is
required) and the production rule for EOL has only
one option, which is expanded as an end-of-line char-
acter. Therefore, from the perspective of our topology
grammar, the first component of the netlist is decoded
completely.

9) The non-terminal symbol COMPONENTS is expanded
with codon value 1, selecting rule #1, which produces
the following expanded expression: [...] RESISTOR,
COMPONENTS. The symbol [...] represents the first
component of the netlist, which is no longer displayed
in the current expanded expression.

10) The production rule for RESISTOR has only one
option and, therefore, it is expanded without consum-
ing codon. The expanded expression is now: [...]
“R”,NODE, NODE, DUMMY, “RESISTORVAL”,
EOL, COMPONENTS.

11) The decoding process would continue in this way until
all the symbols in the current expanded expression
were non-terminals symbols regarding the topology
grammar. In particular, the first twelve codons are used,
a P-point is inserted after the twelfth codon, and the
following fully expanded expression is obtained:

Q124BITTYPE

R 4 0 null2 RESISTORVAL
C 4 3 nulll CAPACITORVAL
* ENDFIRST

Note that only the components and their connection nodes
are specified (topology), but not the values that parameterize
each component (sizing). Fig. 3 shows the circuit associated
with the evolved netlist example and how it is connected to
its test fixture. On the one hand, the test fixture is represented
by the circuit components that do not evolve (the ground
connection, the power supply, the signal source and its serial
resistor, and the load resistor) and their associated nodes (0, 1,
2 and 3, respectively). On the other hand, the evolved circuit
correspond to the evolved netlist: transistor (Q), capacitor
(O), resistor (R), and their connections.

However, the above expression cannot be considered the
final phenotype because there are still non-terminal symbols
regarding the sizing grammar. Therefore, using the partial
netlist obtained as a start symbol string and the sizing gram-
mar as the current grammar, the decoding process continues
as follows:

1) The <GEResult> grammar expansion allows us to
continue the decoding process with the partial netlist
obtained as a start symbol string.

2) The first non-terminal symbol, considering the siz-
ing grammar, is BJTTYPE. The production rule for
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Rload

FIGURE 3. Example of the topology of an evolved circuit (inside the
dashed line box). The test fixture corresponds to the set of components
placed outside the box.

this symbol has only one option. Therefore, the new
expanded expressionis now: Q 124 TYPE, DUMMY,
DUMMY, DUMMY [...]. The symbol [...] refers to
the rest of the netlist obtained by the topology grammar.

3) The production rule for the non-terminal symbol TYPE
has two options. The following codon is read (value 0)
and the modulus operator selects the option QNPN. The
new expanded expressionis: Q 124 QNPN, DUMMY,
DUMMY, DUMMY,[...].

4) The following three non-terminal symbols DUMMY
are expanded with the codon values 12, 38, and 15,
producing nulll, nulll, and null2, respectively. The
new expanded expression is now: Q 1 2 4 QNPN
nulll nulll null2 [...].

5) The next non-terminal symbol appears in the second
line of the topology netlist (R 4 0 null2 RESISTOR-
VAL) and corresponds to RESISTORVAL. The pro-
duction rule of this symbol has only one option, and
therefore, the new expanded expression is: [...] R4 0
null2, NONZERODIGIT, ". ", DIGIT, "e", DIGIT,
DUMMY [...].

6) The non-terminal symbols NONZERODIGIT, DIGIT,
and DIGIT are expanded with the grammar expansion
<GECodonValue>. Their expansion involves the use of
codons 0, 20, and 53, respectively, producing the digits
1, 0 and 3, respectively. The new expanded expression
is: [...] R 4 0 null2 1.0e3, DUMMY [...].

7) The expansion of the non-terminal symbol DUMMY
with the codon 78 produces a nulll, so the new
expanded expression is: [...] R 4 0 null2 1.0e3 nulll
[...].

8) The decoding process would continue in this way until
all the symbols in the current expanded expression were
non-terminals symbols regarding the sizing grammar.
In particular, the fully expanded netlist is as follows:

Q 124 QNPN nulll nulll null2
R 4 0 null2 1.0e3 nulll

C 43 nulll 1.0e — 9 null2

* END

Note that the last codon read was in position 24 (value
1). Therefore, the codons located in positions 25 and 26
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(i.e. values 76 and 29) were ignored in this case. Besides,
the decoding process inserts a P-point at the last codon read.
However, the process does not end here, since the evolved
netlist obtained must be post-processed before being sim-
ulated. This stage includes, among other steps (see [62]),
the incorporation of the test fixture netlist (see Fig. 3). The
final simulatable netlist is the following:

*Test fixture netlist
Vee10de 5

Vs 0500.0 ac 0.001
Rs 502 1k

Rload 30 1k
*Evolved netlist
Q124 QNPN
R40 1k

C431n

* END

D. INTRODUCING HOMOLOGY IN MGE

As seen in Section III-A, the use of partitions apparently
induces an interchromosomal structural homology, but such
homology is only fictitious, given that some of the parents’
partitions inherited by the children are altered in their decod-
ing process. Therefore, a crossover operator based on the sim-
ple exchange of partitions does not guarantee the homology
property. In this section, we present a way to introduce this
property when MGE is applied to hierarchically decompos-
able design problems in general, and the analog electronic
circuit design problem in particular.

The goal of most design problems is to learn a model
that accomplishes a set of specifications and can be charac-
terized by a hierarchy of n abstraction levels. Level 1 con-
tains the decomposition of the original model into different
components; level 2 contains the decomposition into sub-
components of each component belonging to level 1; and so
on, for the different levels of abstraction from 3 to n — 1.
Finally, each component of level n stores the parameter values
that characterize each component belonging to level n — 1.
Figure 4 shows an example where the original problem is
divided into three levels of abstraction. For example, the first
level could represent different stages of an amplifier. Then,
the second level would represent the electronic components
(and their connections) associated with each amplifier stage,
and the third level would represent the value of each elec-
tronic component used in the previous level. However, if we
want to introduce the homology property when MGE is
applied to this kind of problems, it will be necessary to impose
that each grammar only supports recursiveness on the right in
the rule that defines the components to be utilized, that is:

C=0C,Cl...|C, CICH] ... |Cy 2)

where Ci, ..., C, are non-terminal symbols that represent
the different components that can be used in a level of abstrac-
tion. In contrast, the following types of recursion would not
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be supported:
C=0C,Cq|...|C,CylCq]...|Cy 3)
C=0C,C,C|...|C,C,,CICq] ... |Cy )

MODEL

Cz(l) Level 1

(2 @
‘ G ‘ ‘ G

@ @ @
] a2 | L] e

3 3 3 3 3
‘Vl(l)‘ |V1(2)‘ ‘Vz(l)‘ ‘Vz(z)‘ |Vz(3)‘ Level 3

FIGURE 4. Example of a design model described by a hierarchy of three
abstraction levels.

The motivation for the imposed constraint is to use blocks
of consecutive codons in the chromosome when each com-
ponent is decoded by using a grammar (block-grammar).
In this way, each partition is divided into a set of blocks,
with each block representing a component. Besides, a rela-
tionship can be established between each component and its
corresponding decomposition (one or more components) in
the level immediately below, that is, there is a one-to-one
relationship between each block of the i-th partition and a
subset of consecutive blocks of the (i + 1)-th partition (see
Fig. 5). Therefore, two types of homologies emerge: inter-
and intra-chromosomal homology. The former establishes
that the XO-Points must be chosen at the beginning of a block
in the first partition of each parent. The latter determines that
the blocks exchanged in the respective children must take into
account the relationship between the respective blocks (or set
of blocks) of consecutive partitions in each parent.

Level1 1 Level2 1 Level3 | Rest

Y i

(1) 1) ) () (2) (2) (2) (3) (3) @) (3) (3)
‘Cl ‘Cz Ci1 ‘Cz |C21 |Cz ‘53 iy ‘VIZ ‘Vzl |sz |V23 I Not used
X X X I}

]
P-Poin z* f P-Point

P-Point

FIGURE 5. Chromosome that encodes an instance of the design model
presented in Fig. 4. The one-to-one relationship between each
component (block) of the i-th level (partition) and its corresponding
decomposition (subset of consecutive blocks) in the (i + 1)-th level
(partition) allows us to define an intrachromosomal homology.

To illustrate an example of a crossover operator that takes
advantage of the two types of homologies defined above,
we return to the analog electronic circuit design problem.
We must bear in mind that this problem is already a hierarchi-
cally decomposable problem, where two levels of abstraction
are used. Concerning the grammars used (see tables 1 and
2), both of them meet the restriction of being recursive on
the right and, in addition, are block-grammars, generating
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4-codon fixed-size blocks. Thus, after the decoding process
is finished, each electronic component is encoded into two
intra-homologous blocks: one block in the topology partition
and one block in the sizing partition. Therefore, if the topol-
ogy partition encodes a number N of components, then N
blocks will compose this partition and, since each block of
the topology partition has a corresponding block in the sizing
partition, there will also be N blocks in the sizing partition.
Additionally, the related blocks appear in the same order in
both partitions. Fig. 6 shows an example of the chromosome
structure described here. Note that, if the decoding ends
before consuming all codons, there would be a third partition
comprising the ignored codons.

Topology partition i Szing partition i Rest
\ Comp#L. | omp 2 | omp B | mnp#r| Convi&" (bnpﬂ' Not used
—_ 7 7
P-point P-Pairt

FIGURE 6. Example of chromosome partition for the circuit design
problem. A partition for each grammar is used. Different blocks appear in
each partition. Note that each block in the topology partition has its
intra-homologous block in the sizing partition.

In this context, we have defined a new crossover oper-
ator, called block-grammar-based multipart homologous
crossover (BG-MHX), that takes advantage of the informa-
tion associated with the resulting chromosomal structure: (i)
the netlist information is divided into the two chromosomal
partitions; and (ii) each partition is formed by blocks, where
each block in one partition has its intra-homologous block
in the other. The BG-MHX operator acts as follows: First, a
block is randomly selected in the topology partition of each
parent, and the first codon of the selected block is marked
as an XO-point. Then, the intra-homologous block is auto-
matically determined in the sizing partition of each parent.
Therefore, the components chosen to be copied from the first
partition of one parent determine the corresponding blocks
of the second partition be copied too. Thus, the complete
information of each component (component type, connection
nodes, and parameter values) is copied in the respective child.
In this way, we avoid the destructive behavior associated
with a classic crossover operator that could exchange partial
information of two different components. Figure 7 shows an
example of using the BG-MHX operator. Note that, usually,
both parents are of different length, since MGE uses variable-
length chromosomes. The BG-MHX operator definition also
includes a maximum chromosome length constraint for the
children obtained. If this constraint is violated, the child
is clipped to the maximum length allowed. This constraint
helps to mitigate the well-known bloat effect. Additionally, if
wrapping took place when decoding any of the two parents,
the crossover operator just clones both of them.

IV. CASE STUDIES

In this section, the specifications of seven benchmark circuits
are presented. Additionally, the parameter configuration of
the MGE-based implemented method is also detailed.
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FIGURE 7. Example of using the BG- MHX operator for the circuit design
problem. Note how the choice of the XO-Points 1 and 2 determines the
choice of XO-Points 1’ and 2 (intra-homologous blocks), respectively.

Szlng partition

A. PROBLEM SPECIFICATIONS

The goal in the analog circuit design problem is to obtain a
circuit that meets a set of requirements. The circuits tested
here are the same as in [62], where two sets of benchmark
circuits were used. The first set, denoted by non-computing
circuits, comprises a temperature sensor circuit, a voltage
reference circuit, and a Gaussian function generator circuit.
A second set, denoted by computational circuits, comprises
four computing circuits: squaring, square root, cubing, and
cube root computing circuits.

Every circuit is evaluated at a number of fitting points. The
fitness function is defined as the weighted absolute sum of
the differences between the expected output voltage, V;,, and
the measured output voltage, Vo, , at each of the fitting points.
If |V, V(,, | is lower than or equal to a given threshold value
Vi, a hit is scored and, if all hits are scored, the circuit is
considered a success. Equations (5) and (6) show the fitness
function and the weights applied, respectively, in all the
experiments. The circuit specifications are described briefly
below (see [62] for a more detailed description).

fitness = ZWiWo,- — ‘70i| %)
i

(6)

wi = .
10.0 otherwise

{1.0 i [V, — Vsl < Vi
1) TEMPERATURE SENSOR CIRCUIT

This circuit takes its own temperature as input and must
provide an output voltage proportional to the temperature
value. The range of temperature is 0 °C < T <100 °C and
the output voltage should be proportional to the temperature
and normalized in the interval 0 V < V,, < 10 V. Candidate
circuits will be simulated with NGSpice using a voltage DC
sweep analysis in the mentioned interval with a step size of
5 °C, giving a total of 21 fitting points. The threshold used
here to consider a success is Vy;, = 0.1 V.

2) VOLTAGE REFERENCE CIRCUIT
This circuit must provide a fixed output voltage of 2 V. The
input voltage can vary inside the interval 4 V<V;<6 V and
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the temperature can vary in the interval 0 °C < 7 < 100 °C.
Candidate circuits will be simulated with NGSpice using a
voltage DC sweep analysis in the first interval with a step
size of 0.1 V and a temperature sweep analysis in the second
interval with a step size of 25 °C, giving a total of 105 (21 x 5)
fitting points. The threshold used here to consider a success
is Vi = 0.02 V.

3) GAUSSIAN FUNCTION GENERATOR CIRCUIT

This circuit must generate an output current which is a Gaus-
sian function of the input voltage. The fitness function is the
same as that defined by equations (5) and (6), but using /,,,
70[, and Iy, instead of V,,, \N/ol. and Vy,, respectively. The input
voltage can vary in the interval 2 V < V; <3V, and the peak of
the Gaussian occurs at 2.5 V input with a standard deviation
of 0.1 V. The output current peak is 80 nA. Candidate circuits
will be simulated with NGSpice using a voltage DC sweep
analysis in the mentioned interval with a step size of 0.01
V, giving a total of 101 fitting points. The threshold used here
to consider a success is I;; = 5 nA.

4) COMPUTATIONAL CIRCUITS

The set of computational circuits comprise four circuits that
compute a mathematical function of the input voltage value:
square, square root, cubing and cube root. The input voltage
varies in the interval —250 mV to 250 mV, except for the
square root circuit that varies between 0 V and 500 mV.
The output voltage must be consistent with the mathematical
function implemented by each computational circuit.

The value used in [62] for Vy;, was very demanding and
very few computational circuits met this requirement. In order
to increment the number of successful circuits and facili-
tate the statistical comparison between methods, a less strict
threshold was used here: instead of using Vy, = 1% V,,,
we used Vi = 5% max(V,,). Therefore, to do a fair com-
parison between the results obtained by the method presented
here and that used in [62], the new threshold was used with
both methods when the computational circuit design was
addressed. Candidate circuits will be simulated with NGSpice
using a time-domain analysis and a voltage ramp with a rise
time of 0.2 s as the input signal. In this case, we do not select
a DC sweep analysis because we assume that, in this type of
circuit, the input could vary faster than that used for the non-
computational circuits. Additionally, there is evidence in the
literature that the evaluation of the fitness function based on
a DC sweep analysis can lead to less robust circuit designs
[19], [63].

The seven circuits proposed can be considered as challeng-
ing problems that have been tackled by different evolutionary
paradigms in the related literature [13], [17], [62]-[65].

B. CONFIGURATION PARAMETERS

Table 3 shows the parameter configuration used in the
MGE-based implemented method to address the seven ana-
log circuits described in the previous section. Since we are
interested in comparing the results of our method with those
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obtained in [62], where a GE-based method was used, we
imposed the following restrictions to do a fair comparison: the
GA-based search engine uses the same parameter configura-
tion in both cases, except that a one-block crossover operator
is used in [62] and the BG-MHX operator is used in our
approach. Additionally, regarding the parameter that controls
the maximum chromosome length, its value was selected to
store the same maximum number of components (assuming
that wrapping is not used) in both methods. In any case, there
would still be room for improvement if the parameter tuning
of our approach were customized for each analyzed circuit.

The MNN parameter requires special attention since its
value can determine the success or not of a run. On the
one hand, a low value reduces the search space, but it can
prevent obtaining a solution; on the other hand, a high value
can guarantee to obtain a solution, but not the optimal one
(circuit with more nodes and possibly more components than
necessary). For each circuit, we used the same MNN value as
that used in [62] for the sake of a fair comparison. However,
we propose two different strategies to adjust this parameter.
The first one, called direct strategy, starts by selecting a low
value for MNN and carrying out several executions. Then,
if the number of hits reached by the best obtained circuit does
not reach the maximum, the MNN value will be increased
and new executions will be carried out. This cycle will be
repeated until obtaining a circuit that achieves 100% of hits.
The second strategy, called indirect strategy, acts on the fit-
ness function definition, establishing a compromise between
complying with the design specifications and minimizing the
circuit complexity. In this case, the choice of the MNN value
is less critical: the user can choose a large enough value
and the evolutionary algorithm will look for the circuit that
meets the specifications and has the minimum number of
components (and, indirectly, the minimum number of nodes).
We will return to this strategy in Section V-C.

V. RESULTS AND DISCUSSION

In this section, the results of applying our MGE-based method
in each proposed benchmark circuit are shown. These results
are compared with those obtained with a GE-based method.
To simplify the notation, from now on, the implemented
method based on MGE will be denoted by ACID-MGE (ana-
log circuit design based on multi-grammatical evolution), and
the GE-based method will be denoted by ACID-GE (analog
circuit design based on grammatical evolution) [62]. Besides,
we will compare the behavior of ACID-MGE with other
evolutionary algorithms that have also addressed the design
of the circuits proposed here. Finally, we analyze the ACID-
MGE’s behavior when a compromise between complexity
and performance in the evolutionary search for the best solu-
tion circuit is contemplated.

Common performance measures of evolutionary algo-
rithms such as the success rate (SR), mean best fitness (MBF)
and minimum best fitness (minBF) are used. In particu-
lar, given an experiment comprising several runs, the SR
is defined as the ratio of the number of successful runs
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TABLE 3. Parameter configuration of the MGE-based method for the
analog circuit design problem.

Circuit type
Grammars

Search engine

Fitness function
Success criterion
Population size
Representation
Maximum number of
generations (NG pqz)
Initialization
Maximum chromosome
length

Crossover

Crossover probability
Block size (component)
Mutation

Mutation probability
Parent selection
Survival selection
Elitism

Wrapping

Termination condition
Random number
generator

Number of runs per

Temperature sensor, Voltage reference, Gaussian
function or Computing circuits

Set of two grammars shown in tables 1 and 2
adapted to the benchmark circuit

GA with variable length chromosome

Depends on benchmark circuit (see Section IV-A)
When Vi |V,, — Vo, | < Vi, (see Egs. 5 and 6)
1000

Codon strings of variable length

3000

Random codon strings of 150 — 250 length
336 codons (42 components without using
wrapping)

BG-MHX operator (see Section III-D)

0.5

8 codons

Bitwise

0.001

Tournament selection (size=3)
Generational replacement

2

4

Maximum number of generations
Mersenne Twister

50

circuit

concerning the total number of runs, where one success is
obtained when an individual scores all possible hits. The
MBEF is the fitness average of the best individuals, each of
which is obtained at the end of a run, regardless of whether
a success was achieved or not. By last, the minBF is the best
solution obtained in the set of runs associated with an exper-
iment. To assess the statistical significance of the SR values
obtained in each comparison, an one-tailed two-proportions
z-test (with level significance « = 0.05) is done, and the
p-value is calculated. Here, we use the property that the
sampling distribution of a difference between two proportions
corresponds to a normal distribution when n > 30, being n
the size of each sample. The number of components of the
best circuit (NCBC) obtained is also shown to evaluate its
complexity.

A. ACID-MGE VS. ACID-GE

Tables 4 and 5 show ACID-MGE vs. ACID-GE results for
non-computational and computational circuits, respectively.
Note that the values for the MNN parameter were the same
as those used in [62]. In addition to the performance measures
mentioned above, the mean average error (MAE) for the
computational circuits is also shown. In particular, the MAE
is calculated using (7), where O; and O; are the expected
and measured output, respectively, obtained for the i-th fitting
point.

1< ~
MAE = ;Z|0,-—0i| (7

i=1
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Considering the SR, there is a statistically significant
improvement (p-value < 0.05) in 5 out of 7 circuits. Addition-
ally, though in 2 out of 7 circuits the null hypothesis cannot
be rejected, the SR obtained by ACID-MGE was still equal
to or greater than that obtained by ACID-GE. Therefore,
we can say that ACID-MGE outperforms or equals to ACID-
GE when the SR is considered. Regarding the MBF and mean
hits, ACID-MGE outperformed ACID-GE in all the circuits
tested. Considering the minBF (the best circuit obtained),
there was also improvement in 6 out of 7 circuits tested. Both
ACID-GE and ACID-MGE on the Gaussian function gen-
erator circuit obtained the same minBF. Lastly, ACID-MGE
outperformed ACID-GE in all the computational circuits con-
cerning the MAE. However, considering the complexity of
the best circuits, ACID-GE outperforms ACID-MGE, that is,
and more specifically, the NCBC obtained by our method is
larger in 6 out of 7 circuits.

The measured outputs of the best circuits, obtained with the
ACID-MGE algorithm, are compared with the expected ones.
Figures 8a, 8b and 8c show, respectively, the output voltage of
the best temperature sensor circuit, the output voltage of the
best voltage reference circuit, and the output current of the
best Gaussian function generator circuit. Additionally, Figs.
9a, 9b, 9c and 9d show, respectively, the output voltages of
the best squaring, cubing, square root and cube root circuits
obtained. As it can be seen, a good fit is obtained in all cases.

The convergence speed can also be analyzed. In particular,
the mean number of generations needed to obtain a success-
ful solution,Mean(#Gen), is also shown in tables 4 and 5.
The smaller this index is, the faster the algorithm will be
in finding a solution. As can be seen in these tables, MGE
is faster in convergence than GE in all cases. The time for
a run in ACID-MGE depends on the evolved circuit, the
number of generations, and the hardware used. For exam-
ple, for 3000 generations, the average execution time is 60-
70 min, using a computer cluster of eight PCs: two of them
with processor Core 15-7500@3.40 Ghz, two with processor
Core 15-6500@3.2 Ghz and four more with processor Core
2 Quad@2.66 GHz.

B. ACID-MGE VS. OTHER EVOLUTIONARY METHODS

We compare our results with other evolutionary approaches
that have also addressed the design of the proposed bench-
mark circuits. In particular, the three non-computational cir-
cuits were synthesized in previous works using GP [13]
and analog genetic encoding (AGE) [17]. About the four
computational circuits, they were synthesized using GP [13],
[63], [64] and evolution strategies (ES) [19]. The cubing
circuit is also compared with a conventional design [66].
Table 6 shows the results of the comparison for the best non-
computational circuits. The results of the methods with which
we compare are shown as presented in the papers where
they were published and, to make a fair comparison, all the
fitness values shown were computed with the same fitness
function. Table 7 shows the results of the comparison for the
best computational circuits. The results of the methods with
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TABLE 4. ACID-MGE vs. ACID-GE for the non-computational circuits (NGmax = 3000). The standard deviation is denoted by SD. The best result for each
circuit is marked in bold.

Circuit Algorithm MNN SR(%) p-value minBF MBF Mean Mean NCBC
(SR) +SD Hits(%) #Gen
+SD +SD
Temperature ACID-MGE 6 70.0 0.0016 0.033 2.13 97.1 711.2 42
sensor ’ +3.34 +5.3 +726.2
ACID-GE 6 42.0 0.169 5.29 93.0 1,278.9 28
+6.53 +7.9 +884.6
Gaussian ACID-MGE 6 58.0 0.0001 0.028 1.00 94.1 1,023.2 37
function ’ +1.75 +9.8 +719.6
ACID-GE 6 24.0 0.040 6.70 77.3 1,367.4 41
+6.78 +17.6 +688.5
Voltage ACID-MGE 6 8.0 0.5000 0.053 19.35 64.2 1,205.0 42
reference ’ +14.04 +23.3 +863.3
ACID-GE 6 8.0 0.112 26.57 53.8 1,581.0 32
+16.23 +25.0 +917.0

TABLE 5. ACID-MGE vs. ACID-GE for the computational circuits (NGmax = 3000). The standard deviation is denoted by SD. We have marked with bold
letters the best results for each circuit.

Circuit Algorithm MNN  SR(%) ’(’;l;a)l“e MAE minBF  MBF Mean Mean NCBC
+SD +SD Hits(%)  #Gen
+SD +SD
Senarin ACID-MGE 10 84.0 oo 0.53 0.002 0.06 97.7 671.5 £
quaring : +0.24 +0.14 +6.5 +574.9
ACID-GE 10 52.0 0.93 0.009  0.73 81.0 1,176.9 28
+0.41 +1.17 +28.5 +828.3
Sonare oo ACID-MGE 10 66.0 ., 401 0.003 2.71 89.0 1,154.9 44
4 : +2.47 +5.78 +24.2 +655.0
ACID-GE 10 44.0 5.55 0.028  6.25 74.0 1,329.3 35
+4.32 +7.61 +32.3 +797.3
‘ ACID-MGE 20 84.0 0.10 0.001 0.03 95.7 539.8 47
Cubing 0.1574 +0.04 +0.08 +13.7 +361.7
ACID-GE 20 76.0 0.18 0.002  0.05 92.2 1,008.0 40
+0.07 +0.12 +19.3 +703.6
ACID-MGE 30 22.0 7.13 0.036 13.87 70.2 1,561.1 57
Cube root 0.0006 +3.70 +25.02 +29.4 +587.8
ACID-GE 30 2.0 10.81 0.227  76.95 11.5 1,885.0 41
+0.0 +23.74  +20.2 +0.0
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FIGURE 8. Measured output versus expected output for the best non-computational circuits obtained with the ACID-MGE algorithm.
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FIGURE 9. Measured output versus expected output for the best computational circuits

obtained with the ACID-MGE algorithm.

which we compare are shown as presented in [19]. In this
case, the MAE is used, given that we cannot guarantee that the
same fitness function was used in all the cases. As can be seen,
the results obtained with MGE are competitive in the seven
circuits analyzed regarding the fitness or MAE. However,
as it already occurred in the comparison with ACID-GE,
when complexity is considered, ACID-MGE is not the best
compared to the referenced evolutionary methods. The only
exception is the voltage reference circuit, with which our
method achieves the least number of components.

TABLE 6. Comparison with previous methods for the best
non-computational circuits. The best results are marked in bold.

GP [13] AGE [17] ACID-MGE
Temperature sensor
Fitness 26.49 1.13 0.03
NCBC 54 28 42
Voltage reference
Fitness 6.60 2.64 0.05
NCBC 67 70 42
Gaussian function
Fitness 0.09 0.30 0.03
NCBC 14 36 37

C. COMPLEXITY VS. PERFORMANCE IN ACID-MGE
Although the performances obtained by ACID-MGE in the
seven analyzed circuits, regarding the minBF or MAE, sur-

VOLUME 8, 2020

TABLE 7. Comparison with previous methods for the best computational
circuits. The best results are marked in bold.

GP [13] GP [63] GP [64] Manual ES [19] ACID-MGE
design [66]

Square root
MAE (mV) 183.57 20 - - 9.23 0.23
NCBC 64 39 - - 22 44
Squaring
MAE (mV) 27 - - 1.44 0.08
NCBC 39 37 - - 35 42
Cube root
MAE (mV) 80.00 - - - 11.90 2.04
NCBC 50 - - - 39 57
Cubing
MAE (mV) 1.04 - 0.99 7.13 0.29 0.05
NCBC 56 - 47 12 44 47

pass those obtained by ACID-GE and other evolutionary
algorithms, the complexity of the best circuits obtained,
regarding the NCBC, is generally worse (see Tables 6 and 7).
This is an important point to consider because, in electronic
circuit design, the proposed solutions must not only meet the
design specifications but they should also find a compromise
between complexity and performance. Therefore, with this in
mind, we will now focus on analyzing whether ACID-MGE
could obtain circuits that meet the specifications using as few
components as possible.
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When there are two or more objectives to optimize, a multi-
objective approach is needed. In evolutionary computing,
Pareto dominance based algorithms, like NSGA-II [67], are
usually used in these cases. However, we propose here a
simpler approach, called simple parsimony, that transforms
the problem of optimizing two objectives into a new prob-
lem that consists of combining constraint satisfaction and
objective optimization. In particular, the circuit specifications
will be considered as restrictions to satisfy and, the number
of components, as an objective to minimize. Additionally,
we prioritize to meet the circuit specifications before to mini-
mize the number of components, in such a way that the second
objective will only be tackled when the first one is reached.
To do this, we define the following fitness function:

if #hits < MAX
newfitness = h _< ®)
f> otherwise
where fi is given by (5), MAX is a constant that defines the
maximum number of hits that is possible to reach in the circuit
to design, and f> is defined as:

fa=k-NC &)

being k a scale factor, and NC the number of compo-
nents of the evolved circuit. It is important to note that if
#hits = MAX, the values provided by newfitness must
always be lower than those obtained when #hits < MAX.
In this way, the algorithm will always prioritize to meet the
design specification before optimizing the number of compo-
nents. Thus, with this strategy, given two circuits ¢y and ¢,
if newfitness(c1) < newfitness(cz), then we always guarantee
one of the three following results: (i) ¢; and ¢, meet the design
specifications, but ¢; has fewer components than c;; (ii) c|
and ¢ do not meet the design specifications, but c; reaches
more hits than ¢;; (iii) ¢; meets the design specifications,
but c; does not. To implement this strategy, it is necessary
to properly select the value of k. In particular, we consider
the case in which a circuit has the maximum number of
components (maxNC) that can be encoded in a chromosome
(considering the wrapping mechanism). Then, in this case, f>
must provide the value of fi when #hits = MAX — 1 and
all the absolute differences shown in (5) are zero except one
of them, which takes the value Vy, + €, with ¢ — 0. Then,
in this situation, fi takes the value f;* = max(w;) x (Vy, + €)
according to (5) and (6), and k represents the slope of a line
that passes through the origin and the point (maxNC, fi), that
is:
_ T
" maxNC
Tables 8 and 9 show the results obtained by ACID-MGE,
depending on whether parsimony is used or not, for the
computational and non-computational circuits, respectively.
Regarding the NCBC obtained, it can be seen that ACID-
MGE with parsimony can outstandingly reduce the circuit
complexity compared to ACID-MGE without parsimony for
the seven circuits analyzed. In the case of the cube root

(10)
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circuit, more generations were needed (6, 000), and, addi-
tionally, it was needed to set MNN = 15. However, it must
be taken into account that this circuit required the high-
est number of components. Besides, the complexity of the
seven circuits obtained using ACID-MGE with parsimony
is minor in comparison with ACID-GE (see Tables 4 and
5) and other evolutionary approaches (see Tables 6 and 7).
Regarding the SR and considering the p-value, ACID-MGE
with parsimony behaves the same (6/7 cases) as or better (1/7
cases) than ACID-MGE without parsimony. Note that this
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result is somewhat surprising since the task of meeting the
design specifications with the fewest number of components

VOLUME 8, 2020

TABLE 8. Comparison of the SR and the number of components of the
best circuit (NCBC) obtained using ACID-MGE when simple parsimony
(PAR) is used or not for the non-computational circuits.

Circuit PAR MNN  # Gen. SR p-value (SR) NCBC
Temperature ~ Yes 10 3,000  60.0% 0.0062 8
sensor
No 10 3,000 82.0% 50
H 07
Gauss'lan Yes 10 3,000 66.0% 0.3339 9
function
No 10 3,000 70.0% 44
[y
Voltage Yes 10 3,000  20.0% 0.4030 13
reference
No 10 3,000 22.0% 42

TABLE 9. Comparison of the SR and the number of components of the
best circuit (NCBC) obtained using ACID-MGE when simple parsimony
(PAR) is used or not for the computational circuits.

Circuit ~ PAR  MNN  # Gen. SR p-value (SR)  NCBC
Squaring Y 10 3,000 88.0% 0.2810 7
No 10 3,000 84.0% 42

Q 07
Square Yes 10 3,000 76.0% 0.1338 11
root
No 10 3,000 66.0% 44
Cubing Yes 20 3,000 88.0% 0.2810 10
No 20 3,000 84.0% 47
Yes 15 6,000 32.0% . 22
Cuberoot 0 " 50 3,000 18.0% 50
s ’ had 0.3083

No 30 3,000 22.0% 57

TABLE 10. Channel width and MOSFET type for the best Gaussian
function circuit (see schematic in figure 12) obtained by ACID-MGE using
parsimony.

Transistor Type Channel width (pm)

Ml n-channel 121
M2 p-channel 31
M3 n-channel 108
M4 n-channel 56

is harder than the task of enforcing only the design specifica-
tions.

Finally, Figs. 10, 11, and 12 show the schematics obtained
for ACID-MGE with parsimony for the best temperature sen-
sor, voltage reference, and Gaussian function circuits, respec-
tively. Regarding the computational circuits, Figs. 13, 14, 15,
and 16 show the schematics for the best squaring, square root,
cubing, and cube root circuits, respectively. Additionally,
table 10 shows the MOSFET type and the channel width
for the MOSFETs used in the best Gaussian function circuit
shown in Fig. 12.

VI. CONCLUSION

In this paper, we have presented MGE, a new evolution-
ary approach used to address the analog electronic circuit
design problem. MGE is a variant of GE that uses modularity
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FIGURE 16. Best cube root circuit obtained using ACID-MGE with parsimony (VINN = 15 and 6 000 generations).

and homology. Modularity allows us to divide the original
problem into different subproblems in such a way that the
solution to each subproblem is encoded and evolved in dif-
ferent partitions of the chromosome, and each of them is
decoded according to a different grammar. The final solution
associated with each chromosome is obtained as a compo-
sition of the partial solutions of each partition. In another
way, homology helps to build crossover operators that reduce
the potentially destructive effect associated with standard
crossover operators traditionally used in GE.

An MGE-based method was implemented and applied to
the design of seven analog electronic circuits. Each problem
is decomposed into two levels of abstraction (topology and
sizing) and each level is formalized by a specific grammar.
In this context, regarding the SR and minBF, we provide
evidence that the MGE-based method is more effective and
efficient than a GE-based method, that is, the first method
is capable of improving the results obtained by the second
and with a lower number of generations. In order to do a
fair comparison between both approaches, we used, for each
problem, the same configuration of parameters in the GA
used as a search engine. We compare our approach with other
evolutionary approaches (GP, ES, and AGE) and the obtained
results were also competitive in the seven circuits analyzed.
However, the MGE-based method tends to provide circuits
more complex (larger number of components). A simple par-
simony approach was implemented to simultaneously address
the task of meeting the design specifications and minimize the
number of components of the evolved circuit. In this context,
interesting results were obtained: the SR was maintained,
but the number of components were significantly reduced in
the best circuits obtained for the seven proposed benchmark
circuits.

Although MGE has shown promising results in the analog
circuit design problem, more research is needed to assess
its behavior, for example, in more demanding analog circuit
design or in other application domains. In order to preserve
the homology property, MGE is more appropriate for address-
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ing hierarchically decomposable design problems, given that,
in this kind of problem, it is easier to define grammars that
support recursiveness on the right, specially in the rule that
defines the components to be utilized in each level of abstrac-
tion. Future research could also focus on the automatic design
of artificial neural networks, where it is also easy to divide
the original problem into different levels: network topology
(number and types of layers and number and types of neurons
by layer) and connection weights.
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