
Object-oriented modelling of virtual-labs for

education in chemical process control

Carla Martin ∗, Alfonso Urquia, Sebastian Dormido

Dept. Informática y Automática, UNED, Juan del Rosal 16, 28040 Madrid, Spain

Abstract

Easy Java Simulations (Ejs) and Sysquake are two software tools specifically in-

tended for implementation of virtual-labs. They allow easy definition of the virtual-

lab view (i.e., the model-to-user interface). However, the model definition capabilities

and the numerical solvers provided by these tools are not the state-of-the-art.

On the other hand, the use of the object-oriented modelling language Modelica

reduces considerably the modelling effort and permits better reuse of the mod-

els. Modelica is supported by the state-of-the-art simulation environment Dymola.

Nevertheless, Modelica does not provide the interactive capabilities required for

virtual-lab implementation.

The approach proposed in this manuscript is to combine the best features of each

tool. Ejs and Sysquake capability for building interactive user-interfaces composed

of graphical elements, whose properties are linked to the model variables. Modelica

capability for physical modelling and Dymola capability for simulating DAE-hybrid

models. This novel approach has been successfully applied to set up virtual-labs for

control education.

Key words: control education, virtual laboratory, interactive simulation, chemical

Preprint submitted to Elsevier Science 27 January 2006



process control, object-oriented modelling, Modelica

1 Introduction

Virtual-labs are effective educational tools for training of process engineers

and plant operators. They are distributed environments of simulation and

visualization tools, intended to illustrate some relevant properties of a system.

Virtual-labs are composed of: (1) the interactive computer simulation of the

system’s mathematical model; and (2) a narrative that provides information

about the system and the use of the virtual-lab.

Interactive computer simulations provide a flexible and user-friendly method

to define the experiments to be performed on the mathematical model. In-

teractive simulations allow the user to design and perform his own simulation

experiments. As a result, the user becomes an active player in his own learning

process, which motivates him to learn.

Typically, virtual-lab programming includes the definition of the mathematical

model and the virtual-lab view. The virtual-lab view is the user-to-model in-

terface. It is intended to provide a visual representation of the model dynamic

behavior and to facilitate the user’s interactive actions on the model.

The model behavior can be represented in different ways. For instance, plotting

the model variables against each other and by means of animated schematic

diagrams of the system. In addition, linear systems can be described using

∗ Corresponding author. Tel.: +34 913988253.

Email address: carla@dia.uned.es (Carla Martin).

2



pole-zero diagrams and frequency response diagrams (i.e., Bode and Nyquist

diagrams).

User’s actions on the model can be performed by manipulating different ele-

ments of the view, such as buttons, sliders, check-boxes and certain graphic

elements of the model schematic diagram. The graphical properties of the view

elements are linked to the model variables, producing a bidirectional flow of

information between the view and the model. Any change of a model variable

value is automatically displayed by the view. Reciprocally, any user inter-

action with the view automatically modifies the value of the corresponding

model variable.

1.1 Types of interactivity

User’s actions on the model are performed according to certain rules. Two

approaches are discussed next: runtime interactivity and batch interactivity.

Runtime interactivity allows the user to perform actions on the model at any

time during the simulation run. He can change the value of the model inputs,

parameters and state variables, perceiving instantly how these changes affect

to the model dynamic. An arbitrary number of actions can be made on the

model during a given simulation run.

In the case of the batch interactivity, the user’s action triggers the start of the

simulation, which is run to completion. During the simulation run, the user is

not allowed to interact with the model. Once the simulation run is finished,

the results are displayed and a new user’s action on the model is allowed.

3



1.2 Virtual-lab implementation software

Several virtual-lab packages, conceived to illustrate some selected topics in

automatic control, have been implemented. For instance, ICTools and CCS-

DEMO (Johansson et al., 1998; Wittenmark et al., 1998) are two packages

developed at the Dept. of Automatic Control, Lund Institute of Technol-

ogy. In both cases, the virtual-labs are implemented using Matlab/Simulink

(http://www.mathworks.com/), a general-purpose simulation environment sup-

porting the graphical block diagram modelling. As Matlab/Simulink is not spe-

cially suitable for interactive simulation, the development of new modules re-

quires a considerable effort.

In addition, there are software tools specifically intended for implementation

of virtual-labs. These tools: (1) provide their own procedures to define the

narrative, the model and the view of the virtual-lab; (2) guide the virtual-lab

programmer in these tasks; and (3) automatically generate the virtual-lab ex-

ecutable code. Easy Java Simulations (http://fem.um.es/Ejs/) and Sysquake

(http://www.calerga.com/) are two of these tools.

A strong point of these tools is that they allow easy definition of the virtual-lab

view. Easy Java Simulations (hereafter cited as Ejs) provides a complete set

of interactive graphic elements which are ready to be used, in a simple drag-

and-drop way, to compose the view. Sysquake supports built-in functions to

include in the view different types of interactive plots and interactive graphic

elements (i.e., radio-buttons, sliders, dialog boxes, etc.).

However, the model definition capabilities and the numerical solvers provided

by these tools are not the state-of-the-art. They support the block diagram

4



modelling. This modelling paradigm requires of explicit state models (i.e.,

ordinary differential equations) and the computational causality of the model

must be explicitly set (i.e. the blocks have a unidirectional data flow from

inputs to outputs).

These restrictions do not facilitate the model reuse and they strongly condition

the modelling task, which requires a considerable effort. For instance, dummy

dynamics need to be introduced in the model to avoid the establishment of

systems of simultaneous equations. The model programmer has to manipu-

late the model to transform its equations to the form of ordinary differential

equations (ODE).

As a consequence, the modelling and simulation capabilities supported by

these tools are not the best possible ones for describing the large models used

in the physical-chemical field.

1.3 Contributions of this paper

The physical modelling paradigm, supported by the object-oriented modelling

languages, is an attractive alternative to the block diagram modelling (Aström

et al., 1998). Object-oriented modelling languages support a declarative de-

scription of the model, based on equations instead of assignment statements.

The computational causality is not included in the model. Thus, a model can

adapt to more than one data flow context. The modelling knowledge is rep-

resented as differential, algebraic and discrete equations that may change by

being triggered by events (i.e., hybrid-DAE models).

Some examples of object-oriented modelling languages are EcosimPro, gPROMS

5



and Modelica. The Modelica language (http://www.modelica.org/) has been

designed by the developers of the object-oriented modelling languages Allan,

Dymola, NMF, ObjectMath, Omola, SIDOPS+, Smile and a number of mod-

elling practitioners in different fields. It is intended to serve as a standard

format for the external model representation, so that models arising in differ-

ent engineering fields can be exchanged between tools and users. Modelica lan-

guage is supported by the Dymola modelling environment (http://www.dynasim.se/).

The use of the Modelica language reduces considerably the modelling effort

and permits better reuse of the models. However, Modelica does not provide

the interactive capabilities required for virtual-labs implementation.

The approach proposed in this manuscript is to combine the best features of

each tool. Ejs and Sysquake capability for building interactive user-interfaces

composed of graphical elements, whose properties are linked to the model vari-

ables. Matlab/Simulink capability for modelling of automatic control systems

and for model analysis. Modelica capability for physical modelling, and finally

Dymola capability for simulating hybrid-DAE models. This software combi-

nation approach is discussed for implementation of virtual-labs with runtime

interactivity (Section 2) and with batch interactivity (Section 3).

This novel approach has been applied to the implementation of a set of virtual-

labs. Their topic is the open-loop dynamic and the control of three process

units widely used in the chemical industry: a double-pipe heat exchanger (Sec-

tion 4), an industrial boiler (Section 5) and a batch chemical reactor (Section

6).

The objective of these virtual-labs is to help the students to: (1) understand

the behavior of the plant non-linear models; (2) apply some linearization tech-

6



niques; (3) analyze the plant linearized models using zero-pole, Bode and

Nyquist diagrams; and (4) design the PID, lead and lag compensators re-

quired to control the processes.

2 Implementation of virtual-labs with runtime interactivity

Ejs is an open source, Java-based software tool intended to implement virtual-

labs with runtime interactivity (Esquembre, 2004). It can be freely downloaded

from the Ejs’ web-site (http://fem.um.es/Ejs/).

Ejs guides the user in the process of creating the narrative, the model and

the view of the virtual-lab. It generates automatically: (1) the interactive

simulation as a Java application; and (2) HTML pages containing the narrative

and the interactive simulation as an Java applet. Then, the user can run the

virtual-lab and/or publish it on the Internet.

In addition, Ejs provides an interface to Matlab/Simulink. This feature allows

the combined use of both tools for virtual-lab implementation: the description

of the model using Matlab/Simulink and the description of the narrative and

the view using Ejs. The data exchange between the virtual-lab view (composed

using Ejs) and the model (i.e., the Simulink block diagram) is accomplished

through the Matlab workspace. The properties of the Ejs’ view elements are

linked to variables of the Matlab workspace, which can be written and read

from the Simulink block diagram. Further details can be found at the Ejs’ web

site.

On the other hand, a Dymola to Simulink interface can be found in the

Simulink’s library browser: the DymolaBlock block (Dynasim, 2002). A Mod-

7



elica model can be automatically embedded inside the DymolaBlock block,

which can be connected, in the Simulink’s workspace window, to other Simulink

blocks and also to other DymolaBlock blocks. Simulink synchronizes the nu-

merical solution of the complete model, performing the numerical integration

of the DymolaBlock blocks together with the other blocks.

In order to embed a Modelica model inside a DymolaBlock block, the com-

putational causality of the Modelica model interface needs to be explicitly

set (Dynasim, 2002). The input variables are calculated from other Simulink

blocks, while the output variables are calculated from the Modelica model.

In addition, the Modelica model needs to support the discontinuous changes

in the value of its state variables, parameters and input variables, which are

the result of the user’s interaction. In some cases, several choices of the state

variables need to be supported simultaneously in the model, in order to provide

the user with alternative ways of describing the state changes.

A design methodology has been developed in order to implement Modelica

models fulfilling all these requirements. In particular, this methodology pro-

vides a systematic procedure to adapt any existing Modelica library to a for-

mulation suitable for runtime interactive simulation. All the details of this

design methodology can be found in (Martin et al. , 2004b; Martin et al.,

2005b).

3 Implementation of virtual-labs with batch interactivity

Sysquake is a commercial tool intended to develop virtual-labs with batch in-

teractivity (Calerga, 2004). Typically, a Sysquake application contains several

8



interactive graphics, which are displayed simultaneously. These graphics con-

tain elements that can be manipulated using the mouse. While one of these

elements is being manipulated, the other graphics are automatically updated

to reflect this change. The content represented by each graphic, and its depen-

dence with respect to the content of the other graphics, is programmed using

LME (an interpreter for numerical computation which is mostly compatible

with Matlab).

In order to allow the combined use of Sysquake and Modelica/Dymola, a set of

LME functions have been programmed (Martin et al., 2005a). These functions

can be used from any Sysquake application. They facilitate the bi-directional

communication between the Sysquake application and the executable file gen-

erated by Dymola for the Modelica model. Further details can be found in

(Martin et al., 2005a).

4 Case study I: control of a double-pipe heat exchanger

JARA library has been used to compose the interactive model of a double-pipe

heat exchanger. JARA was originally written in Dymola language (Urquia,

2000; Urquia & Dormido, 2003). Later on, it was translated into Modelica

language. The design methodology proposed in (Martin et al. , 2004b; Martin

et al., 2005b) was applied in order to make JARA suitable for batch and

runtime interactive simulation.

JARA contains models of some fundamental physical-chemical principles, in-

cluding: (1) mass, energy and momentum balances applied to ideal mixtures of

semi-perfect gases and homogeneous liquid mixtures; (2) mass transport due

9



to pressure and concentration gradients; (3) heat transport by conduction and

convection; (4) chemical reactions; and (5) liquid-vapor phase change. JARA’s

main application is the modelling of physical-chemical processes in the context

of automatic control. Further information about JARA library can be found

in (Urquia & Dormido, 2003; Martin et al., 2004a).

The JARA model of the heat exchanger is based on the physical model de-

scribed in (Cutlip & Shacham, 1999). A gaseous mixture of carbon dioxide

and sulfur dioxide (in the tube) is cooled by water (in the shell). The JARA

model allows two modes of operation: cocurrent and countercurrent flow. The

temperature dependence with the spatial coordinate has been modeled by di-

viding in control volumes the flow paths of the water and the gas, and the

pipe wall. This approach allows for local variations in physical properties and

heat transfer coefficients. The diagram of the JARA model is shown in Fig.

1a (it has been represented using Dymola).

4.1 Virtual-lab with runtime interactivity

The objective of this virtual-lab is to illustrate the dynamic behavior of the

open-loop plant. It has been implemented by combining the use of Model-

ica/Dymola, Matlab/Simulink and Ejs. The procedure described in Section 2

has been applied.

The Simulink model of the heat exchanger is shown in Fig. 1b. The Modelica

model of the plant (whose diagram is shown in Fig. 1a) has been embedded

within the DymolaBlock block (see Fig. 1b). The blocks connected to the

DymolaBlock inputs (“MATLAB Fcn” blocks) transmit the value of the input

10



variables from the Matlab workspace to the Simulink block-diagram window.

The blocks connected to the DymolaBlock outputs (“To Workspace” blocks)

transmit the value of the output variables from the Simulink block-diagram

window to the Matlab workspace. Ejs reads the value of these output variables

from the Matlab workspace and writes the value of the input variables in the

Matlab workspace. The view of the virtual-lab, programmed using Ejs, is

shown in Fig. 1c.

The main window of the virtual-lab view (on the left side of Fig. 1c) contains:

(1) an animated diagram of the heat exchanger, which displays the tempera-

tures of the gas, the liquid and the wall by means of a color code; (2) buttons

to pause, reset and play the simulation run; (3) sliders to modify the liquid and

the gas flow rates, and their inlet temperatures; (4) a text field to set the molar

fraction of carbon dioxide in the gas mixture; and (5) checkboxes to show and

hide the following three secondary windows: “Geometry Parameters”, “Modify

State” and “Characteristics”.

The “Geometry Parameters” window contains text fields that can be used to

modify the pipe length and diameters. The controls placed in the “Modify

State” window allow changing the temperature of the medium inside each

control volume. Finally, “Characteristics” window displays several plots of

the model variables.

4.2 Virtual-lab with batch interactivity

A second virtual-lab has been developed. Its objective is to illustrate the appli-

cation to the heat exchanger of some linearization and control techniques. In

11



this case, the virtual-lab has been implemented combining the use of Sysquake

and Modelica/Dymola. The approach discussed in Section 3 has been applied.

The heat exchanger model, composed using the JARA library (see Fig. 1a), has

been translated automatically by Dymola into an executable file. In addition,

a Sysquake application has been programmed. It implements the virtual-lab

view and controls the execution of the Dymola executable file. The features

of this Sysquake application, that constitutes virtual-lab core, include: (1) the

application to the heat-exchanger model of several identification techniques;

and (2) the design of control strategies (using the linear models previously

obtained by applying the identification techniques). The challenge is to control

the gas exit temperature by manipulating the water flow.

The virtual-lab supports the automatic calculation of the plant linearized

model. This calculation is performed as follows (see Fig. 2a): (1) the change in

the value of the gas exit temperature, in response to a step in the water flow,

is calculated simulating the heat exchanger model; and (2) a transfer function

(abbreviated: TF) is fitted to this response.

In this identification procedure, the virtual-lab user is allowed to: (1) change

the parameter values and the input variable values of the heat exchanger

model, the simulation communication interval and the total simulated time;

(2) choose among different identification methods, including “first order TF

with delay”, “second order TF with delay” and “non-parametric identifica-

tion”; (3) analyze the obtained TF by means of Bode and zero-pole diagrams,

and robustness margins; (4) start the simulation run; and (5) export the cal-

culated TF to another Sysquake application.

In addition, the virtual-lab automates the controller synthesis and analysis.

12



The virtual-lab supports the following user’s operations (see Fig. 2b): (1) to

import the TF previously identified; (2) to analyze the TF characteristics using

Nyquist, Nichols and Bode diagrams; (3) to choose the controller type (possible

options are: PID, lead and lag compensators); (4) to synthesize the controller

(i.e., to set the value of the PID’s parameters, and to specify the error and

the phase margin of the system controlled by the lead or lag compensators);

(5) to simulate the closed-loop linear and non-linear models.

5 Case study II: control of an industrial boiler

JARA library has been used to compose the interactive model of an indus-

trial boiler. It is based on the mathematical model of the process provided

in (Ramirez, 1989). The model diagram is shown in Fig. 3 (it has been rep-

resented using Dymola). The input of liquid water is located at the boiler

bottom, and the vapor output valve is placed at the boiler top. The water

contained inside the boiler is continually heated.

The model is composed of two control volumes, in which the mass and energy

balances are formulated: (1) a control volume containing the liquid water

stored in the boiler; and (2) a control volume containing the generated vapor.

The model of the boiling process connects both control volumes. The heat

flow from the heater to the water, the pressure at the valve output and the

water pump are modeled using JARA source models.

13



5.1 Virtual-lab with runtime interactivity

A virtual-lab with runtime interactivity has been implemented applying the

methodology discussed in Section 2. The objective of this virtual-lab is to

illustrate the boiler closed-loop dynamic for two different control strategies:

manual control and decentralized PID. The water level inside the boiler and

the output flow of vapor are the controlled variables. The pump throughput

and the heater power are the manipulated variables.

The view of the virtual-lab is shown in Fig. 4. At any time during the simula-

tion run, the virtual-lab supports interactive change of: (1) the control mode

(i.e., manual or PID); (2) the parameters of the PID controllers; (3) the mass

and temperature of the water inside the boiler; (4) the mass and temperature

of the vapor inside the boiler; (5) the total inner volume of the boiler; (6) the

inlet temperature of the water and its input flow rate; and (7) the vapor valve

opening and the pressure downstream.

The virtual-lab view contains an animated diagram of the boiler and plots

of several variables against time, including: (1) the setpoints and the actual

values of the controlled variables; (2) the manipulated variables; (3) the water

and the vapor temperatures, and the boiling temperature corresponding to

the actual vapor pressure; and (4) the vapor pressure inside the boiler and the

valve downstream pressure.

14



5.2 Virtual-lab with batch interactivity

This virtual-lab is intended to illustrate the synthesis of the boiler control sys-

tem. This control system is composed of two decoupled control loops: (1) the

water level inside the boiler is controlled by manipulating the pump through-

put; and (2) the output flow of vapor is controlled by manipulating the heater

power. The synthesis procedure is similar to the one discussed in Section 4.2.

It is briefly described next.

The user is allowed to choose interactively the plant’s operation point. This

is accomplished by setting the value of: (1) the mass and temperature of the

liquid and the vapor inside the boiler; (2) the valve opening and its downstream

pressure; and (3) the flow and inlet temperature of the water.

Once the operation point has been set, the user can launch the calculation

of the two TF: (1) a TF from the “pump throughput” (input) to the “water

level” (output); and (2) a TF from the “heater power” (input) to the “vapor

flow” (output). These TF are automatically fitted to simulated step responses

by the virtual-lab. The user can choose among the following identification

methods (see Fig. 5a): “first order TF with delay”, “second order TF with

delay” and “non-parametric identification”.

The virtual-lab supports a set of graphical methods to analyze the fitted TF,

including Bode and pole-zero diagrams, and it automatically computes the

robustness margin. In addition, the virtual-lab allows to export the TF to any

other Sysquake application.

Finally, the virtual-lab facilitates the design and analysis of the two controllers

15



(see Fig. 5b). The water level inside the boiler is controlled using a PID. The

gas flow can be controlled using a PID, a lead or a lag compensator. The

user can change the controller parameters, and the error and phase-margin

specifications of the compensation networks.

6 Case study III: control of a batch chemical reactor

The model of a batch chemical reactor has been composed using JARA library.

An exothermic reaction A → P is carried out in the liquid phase. The reactor

contains a heat exchanger, which can be operated with steam and with cooling

water.

The reactor’s operation policy is the following (Froment & Bischoff, 1979):

(1) fill up the reactor with the reacting liquid (the inflow is controlled by a

PID); (2) preheat to certain temperature, and let the reaction proceed adia-

batically (the heat exchanger is controlled by another PID); (3) start cooling

when either the maximum allowable reaction temperature occurs or the de-

sired conversion is reached, and cool down to the desired temperature; and (4)

empty the reactor.

6.1 Virtual-lab with runtime interactivity

The methodology discussed in Section 2 has been applied. The reactor and the

controllers have been modelled using Modelica language, and they have been

embedded within Simulinks’ DymolaBlock blocks: SystemBlock and PIDBlock

respectively (see Fig. 6a).

16



The virtual-lab view is shown in Fig. 6b. The main window (on the left side)

contains the schematic diagram of the process (above) and the control buttons

(below). Both of them allow the user to experiment with the model.

The user can interactively choose between manual and automatic control. The

automatic control corresponds with the operation policy previously described.

The value of the PID-controller parameters, the temperatures defining the

operation policy and the desired conversion can be changed interactively in

the virtual-lab’s window shown in Fig. 6c.

At any time during the simulation run, the user is allowed to change inter-

actively the value of: (1) the model state-variables (i.e., the temperature and

total mass of the reaction mixture, and the concentration of A and P ); (2) the

model parameters (i.e., the reactor volume and section, the area of the heat

exchanger, and the physical-chemical data of the steam and cooling water);

and (3) the input variables (i.e., the inlet temperature and concentration).

The secondary windows, located on the right side of the view (see Fig. 6b),

contain plots displaying the time evolution of the relevant process variables.

6.2 Virtual-lab with batch interactivity

The virtual-lab view is shown in Fig. 7. It contains sliders to change the model

parameters, the initial value of the state variables and the input variables. The

“Settings” menu allows the user to (see Fig. 7): (1) change the parameters of

the control policy; (2) set the communication interval and the total simulated

time; and (3) launch a simulation run. The view contains plots displaying

the time evolution of some process variables, including the mass of A, P and

17



water, the mixture temperature and the pump throughput.

7 Conclusions

The feasibility of combining Modelica/Dymola with Ejs and Sysquake, for im-

plementing virtual-labs with runtime and batch interactivity respectively, has

been demonstrated. Ejs and Sysquake are software tools specifically intended

to develop virtual-labs. Their strong point is the programming of the virtual-

lab view. The use of Modelica language reduces considerably the modelling

effort and facilitates the model reuse.

In order to implement this software combination approach: (1) a novel mod-

elling methodology, adequate for interactive simulation of Modelica models,

has been proposed; and (2) a Sysquake-to-Dymosim interface has been pro-

grammed. This approach has been successfully applied to the implementation

of virtual-labs intended for control education.

References

Aström, K.J., Elmqvist, H. & Mattsson, S.E. (1998). Evolution of continuous-

time modelling and simulation. Proceedings of the 12th European Simulation

Multiconference, 9.

Calerga Sarl (2004). Sysquake 3. User’s manual. Calerga Sarl. Lausanne,

Switzerland.

Cutlip, M.B., & Shacham, M. (1999). Problem solving in chemical engineering

with numerical methods. Prentice-Hall.

18



Dynasim AB (2002). Dymola. User’s manual. Version 5.0a. Dynasim AB.

Lund, Sweden.

Esquembre, F. (2004). Easy Java Simulations: a software tool to create scien-

tific simulations in Java. Computer Physics Communications, 156, 199.

Froment, G.F., & Bischoff, K.B. (1979). Chemical reactor analysis and design.

New York: John Wiley & Sons.

Johansson, M., Gäfvert, M., & Aström, K.J. (1998). Interactive tools for ed-

ucation in automatic control. IEEE Control Systems Magazine, 18(3), 33.

Martin, C., Urquia, A., & Dormido, S. (2004a). JARA 2i - A Modelica li-

brary for interactive simulation of physical-chemical processes. Proceedings

of European Simulation and Modelling Conference, 128.

Martin, C., Urquia, A., Sanchez, J., Dormido, S., Esquembre, F., Guzman,

J.L., & Berenguel, M. (2004b). Interactive simulation of object-oriented

hybrid models, by combined use of Ejs, Matlab/Simulink and Model-

ica/Dymola. Proceedings of 18th European Simulation Multiconference, 210.

Martin C, Urquia, A., & Dormido, S. (2005a). Object-oriented modelling of

interactive virtual laboratories with Modelica. Proceedings of 4th Interna-

tional Modelica Conference, 159.

Martin, C., Urquia, A., & Dormido, S. (2005b). Object-oriented modeling of

virtual laboratories for control education. Proceedings of 16th IFAC World

Congress, paper code: Th-A22-TO/2.

Ramirez, W.F. (1989). Computational methods for process simulation. Boston:

Butterworths Publishers.

Urquia, A. (2000). Modelado orientado a objetos y simulación de sistemas

h́ıbridos en el ámbito del control de procesos qúımicos. Ph.D. Thesis, UNED.

Urquia, A., & Dormido, S. (2003). Object-oriented design of reusable model

libraries of hybrid dynamic systems. Mathematical and Computer Modelling

19



of Dynamical Systems, 9(1), 65.

Wittenmark, B., Häglund, H., & Johansson, M. (1998). Dynamic pictures and

interactive learning. IEEE Control Systems Magazine, 18(3), 26.

20



� � � �

� �

Fig. 1. Double-pipe heat exchanger: a) Diagram of the Modelica model composed

using JARA library; b) Diagram of the Simulink model; c) Virtual-lab view.

21



��

��

Fig. 2. Virtual-lab with batch interactivity of the double-pipe heat exchanger: a)

plant linearization; and b) controller synthesis.

22



� � � �� � � � �

� �� 	 	 
 � �
	� 
 � � �

� 
 �� �

� 
 	 � � 
 	
� � � �� � �
� � �
 � �

� � � � � � �
� � � � � 	 	

� � � � �� � � � � 
 � �

� � 
 � � � � � 	� 
 � � �

� �� 
 � �

	 � 
 � � �

� � � �� � � � � � 
 � �

� �� 
 � �

� � � ��� �
� � �
 � �

� � � �� � � � �

� �� 	 	 
 � �
	� 
 � � �

� 
 �� �

� 
 	 � � 
 	
� � � �� � �
� � �
 � �

� � � � � � �
� � � � � 	 	

� � � � �� � � � � 
 � �

� � 
 � � � � � 	� 
 � � �

� �� 
 � �

	 � 
 � � �

� � � �� � � � � � 
 � �

� �� 
 � �

� � � ��� �
� � �
 � �

Fig. 3. Modelica model of an industrial boiler, composed using JARA.

23



Fig. 4. View of the industrial boiler virtual-lab.

24



��

��

Fig. 5. Virtual-lab to illustrate the control of an industrial boiler.

25



� �� �

� �

Fig. 6. Virtual-lab with runtime interactivity of a chemical reactor: a) Simulink

model of the virtual-lab; b) view; c) window menu to determine the policy of oper-

ation.

26



Fig. 7. Virtual-lab with batch interactivity of a chemical reactor.

27


