
AN APPROACH TO VIRTUAL-LAB IMPLEMENTATION USING MODELICA

Carla Martin, Alfonso Urquia and Sebastian Dormido
Dept. Informática y Automática, ETS Ingeniería Informática, UNED

Juan del Rosal 16, 28040 Madrid, Spain
E-mail: {carla, aurquia, sdormido}@dia.uned.es

KEYWORDS
Interactive simulation, object-oriented modeling, hybrid-
models, education.

ABSTRACT

An approach to the implementation of virtual-labs is
discussed in this manuscript. It allows describing the view
(i.e., the user-to-model interface) and the model of the
virtual-lab using Modelica language. To achieve this goal,
the following two tasks have been completed: (1) a
methodology to transform any Modelica model into a
formulation suitable for interactive simulation has been
proposed; and (2) VirtualLabBuilder Modelica library has
been designed and programmed.
VirtualLabBuilder library includes Modelica models
implementing a set of graphic interactive elements, such as
containers, animated geometric shapes (polygon and oval)
and interactive controls (slider and radio-button). These
models allow the user: (1) to define the interactive graphic
elements composing the virtual-lab view; and (2) to link the
model variables with the geometric properties of these
graphic elements.
The structure, capabilities and use of VirtualLabBuilder
library are discussed in this manuscript. The library use is
illustrated by means of a simple example. Finally,
VirtualLabBuilder is used to implement the virtual-lab of the
quadruple-tank process.

INTRODUCTION

A virtual-lab is a distributed environment of simulation and
animation tools, intended to perform the interactive
simulation of a mathematical model. Virtual-labs provide a
flexible and user-friendly method to define the experiments
performed on the model. In particular, interactive virtual-
labs are effective pedagogical resources, well suited for
distance education.

Typically, the virtual-lab definition includes the following
two parts: the model and the view. The view is the user-to-
model interface. It is intended to provide a visual
representation of the model dynamic behavior and to
facilitate the user’s interactive actions on the model.

The graphical properties of the view elements are linked to
the model variables, producing a bi-directional flow of
information between the view and the model. Any change of
a model variable value is automatically displayed by the
view. Reciprocally, any user interaction with the view

automatically modifies the value of the corresponding model
variable.

Modelica (http://www.modelica.org/) is an object-oriented
modeling language that facilitates the physical modeling
paradigm (Ǻström et al. 1998). It supports a declarative
(non-causal) description of the model, which permits better
reuse of the models. As a consequence, the use of Modelica
reduces considerably the modeling effort. However, neither
Modelica language nor Modelica simulation environments
(e.g., Dymola (Dynasim 2006)) support interactive
simulation. As a consequence, extending Modelica
capabilities in order to facilitate interactive simulation is an
open research field.

Previous work on this topic includes (Engelson 2000; Martin
et al. 2004; Martin et al. 2005a; Martin et al. 2005b). In
particular:
• The combined use of Modelica/Dymola, Matlab and

Easy Java Simulations (Esquembre 2004;
http://www.um.es/fem/Ejs) is proposed in (Martin et al.
2004; Martin et al. 2005a; Martin et al. 2005b). This
approach allows the implementation of virtual-labs
with runtime interactivity. The user is allowed to
perform actions on the model during the simulation
run. He can change the value of the model inputs,
parameters and state variables, perceiving instantly
how these changes affect to the model dynamic. An
arbitrary number of actions can be made on the model
during a given simulation run.

• The combined use of Modelica/Dymola and Sysquake
(http://www.calerga.com) is proposed in (Martin et al.
2005a). This approach facilitates the implementation of
virtual-labs with batch interactivity. The user's action
triggers the start of the simulation, which is run to
completion. During the simulation run, the user is not
allowed to interact with the model. Once the simulation
run is finished, the results are displayed and a new
user's action on the model is allowed.

The goal of the work discussed in this manuscript is the
programming of a Modelica library supporting the
implementation of virtual-labs with runtime interactivity.
This novel Modelica library, named VirtualLabBuilder,
allows the user to define the model and the view of the
virtual-lab, and the link between them, using only Modelica.

The architecture and use of VirtualLabBuilder library is
described in the following sections, and VirtualLabBuilder is
used to implement the virtual-lab of the quadruple-tank
process.

DESCRIPTION OF THE PROPOSED APPROACH

The virtual-lab description is composed of the model
description and the view description.

a) The virtual-lab model has to be written in Modelica
language, according to the methodology proposed in
(Martin et al. 2005a). Essentially, this approach
imposes that all the interactive variables have to be
state variables. In particular, in order to allow
interactive changes in the value of model parameters
and input variables, they have to be written as zero-
derivative state variables. This methodology can be
applied to any Modelica model.

b) The Modelica description of the virtual-lab view (i.e.,

the view class) has to be a subclass of the
PartialView Modelica class. PartialView is
included in the VirtualLabBuilder library and it
contains the code required to perform the model-to-
view communication. This code is valid for any model
and view descriptions, and the user only needs to set
the length of the model-to-view communication
interval.
In addition, the user has to include within the view
class: (1) the required instantiations of the graphic
interactive elements composing the virtual-lab view;
and (2) the connection among these elements. The
VirtualLabBuilder library contains a set of ready-to-use
graphic elements. The connection among these
elements determines their layout in the virtual-lab view.
Dymola GUI allows defining in a drag-and-drop way
the instantiation of these elements and connecting them
using the mouse.

c) The Modelica description of the virtual-lab has to be an
instance of VirtualLab class. This Modelica class is
included in VirtualLabBuilder library. The user has to
provide the name of the model class and the view class.
Also, the user has to specify how the geometric
properties of the view elements are linked to the model
variables.

The virtual-lab description, obtained as discussed in c), is
translated using Dymola and run. As a part of the model
initialization (i.e., the calculations performed to find the
initial value of the model variables), the initial sections of
the interactive graphic objects and of the PartialView
class are executed. These initial sections contain calls to
Modelica functions, which encapsulate calls to external C-
functions. These C-functions are Java-code generators.

As a result, during the model initialization, the Java code of
the virtual-lab view is automatically generated, compiled and
bundled into a single jar file. Also, the communication
procedure between the model and the view is set up. This
communication is based on client-server architecture: the C-
program generated by Dymola is the server and the Java
program automatically generated during the model
initialization is the client.

Once the jar file has been created, it has to be executed by
the user. As a result, the initial layout of the virtual-lab view
is displayed and the client-server communication is
established. Then, the model simulation starts.

During the simulation run, there is a bi-directional flow of
information between the model and the view. The
communication is as follows. Every communication interval:
• The model simulation (i.e., the server) sends to the

view (i.e., the client) the data required to refresh the
view.

• The view sends to the model simulation the new value
of the variables modified due to the user’s interactive
action.

VirtualLabBuilder ARCHITECTURE

VirtualLabBuilder library is composed of the following five
packages (see Figure 1a).
• The ViewModel package contains the PartialView

and the VirtualLab classes.
• The ViewElements package contains the graphic

interactive elements that the user can employ to
compose the view. The content of this package is
shown in Figure 1b and it will be described in the next
section.

• The Interfaces package contains the interfaces (i.e.,
connectors) of the graphic interactive elements.

• The Functions package contains the Modelica
functions which encapsulate calls to external C-
functions. As discussed in the previous section, these
C-functions are Java-code generators.

• The TypesDef package contains the definition of
several types of variables. These types are intended to
be used for defining some properties of the graphic
interactive elements (such as color, layout, etc.).

Figure 1: a) Packages of the VirtualLabBuilder Library; and
b) Classes within the ViewElements Package

GRAPHIC ELEMENTS

The ViewElements package contains the graphic elements
that can be used to define the view. These elements (see
Figure 1b) can be classified into the following three
categories.
• Containers (MainFrame, Panel and DrawingPanel

classes). These graphic elements can host other graphic
elements. The properties of these elements are set in the
view definition and they can not be modified during the
simulation run.

a) b)

• Drawables (Polygon and Oval classes). These
elements can be used to build an animated schematic
representation of the system. The variables setting the
geometric properties of these elements (position, size,
etc.) can be linked to model variables.

• Interactive controls (Slider and RadioButton
classes). Model variables can be linked to the variables
defining the states of the interactive control elements.
This allows the user to change the value of these model
variables during the simulation run.

Drawable elements and interactive controls implement the
information flow between the model and the view of the
virtual-lab. The simulated value of the model variables
modifies the properties of the drawable elements (i.e.,
model-to-view information flow). The user’s interactive
action on the interactive controls modifies the value of the
model variables (i.e., view-to-model information flow). The
properties of the graphic elements are discussed next.

Containers

MainFrame class creates a window where containers and
interactive controls can be placed. The view can only
contain one MainFrame object. This class has the following
parameters:

• width and height: width and height of the window in
pixels.

• title: text shown in the top part of the window.
• layoutPolicy: layout policy of the element. It sets where

the elements placed within the window are located.
Possible values are BorderLayout, GridLayout,
HorizontalBox, VerticalBox and FlowLayout.

Panel class creates a panel where containers and interactive
controls can be placed. This component is similar to
MainFrame, however there is a difference: the view can
contain more than one panel.

DrawingPanel class creates a two-dimensional container
that only can contain drawable objects (i.e., Polygon and
Oval objects). It represents a rectangular region of the plane
which is defined by means of two points: (XMin, YMin) and
(Xmax, YMax). The coordinates of these two points (i.e., the
value of XMin, XMax, YMin and YMax) are parameters of
the class whose value can be set by the user.

Drawables

Oval class draws an oval. The center position and the
lengths of the axes can be linked to the model variables. The
class has the following parameters:

• lineColor: color of the line.
• fillColor: color of the filling.
• filled: indicates whether the oval is filled or empty.
• intCenter: indicates whether the oval position changes

during the simulation or remains constant.
• intAxes: indicates whether the oval shape changes

during the simulation or remains constant.

Polygon class draws a polygonal curve specified by the
coordinates of its vertexes points. The class has the
following parameters:
• lineColor: color of the line.
• fillColor: color of the filling.
• filled: indicates whether the oval is filled or empty.
• intVertexesX[:]: array that indicates whether the

horizontal position of each polygon’s point changes
during the simulation or remains constant.

• intVertexesY[:]: array that indicates whether the vertical
position of each polygon’s point changes during the
simulation or remains constant.

Interactive Controls

Slider class creates a slider. This class has the following
parameters:

• position: slider position inside the container object.
• stringFormat: format used to display the value.
• tickNumber: number of ticks.
• tickFormat: tick format.
• enable: allows enabling/disabling the object.
• initialValue: initial value of the slider variable.

RadioButton class creates a radio-button control.

CONNECTING THE GRAPHIC ELEMENTS

The interfaces of the container, the drawable and the
interactive control classes are composed of two connectors:
one filled and one empty (see Figure 1b). The user must
observe the following three rules when connecting the
graphic elements:

1. The connection between two components must be
established by connecting the filled connector of one
component with the empty connector of the other
component.

2. Each filled connector must be connected to one and
only one empty connector.

3. Empty connectors can be left unconnected. If they are
connected, the allowed number of filled connectors
connected to a given empty connector depends on the
type of the graphic elements. This number is shown in
Figure 2.

Figure 2: Allowed Number of Connections
(*): If the layout policy of the element is BorderLayout then ≥1 else 1.

empty
connector

filled connector

MainFrame

DrawingPanel

Panel

Interactive
Controls

Drawable

Main
Fram

e

Draw
ing

Pan
el

Pan
el Int

era
cti

ve

Con
tro

ls

Draw
ab

le

≥1(*) ≥1(*) ≥1(*)

1
≥1(*) ≥1(*) ≥1(*)

1

1

LIBRARY USE

The steps to compose the Modelica description of a virtual-
lab are described below. They are illustrated by means of a
simple example: the implementation of the virtual-lab of the
tank model shown in Figure 3.

Model definition. The voltage applied to the pump (v) is an
input variable. The cross-sections of the tank (A) and the
outlet hole (a), the pump parameter (k) and the gravitational
acceleration (g) are time-independent properties of the
physical system. The physical parameters A and a, and the
input variable v can be modified by the user action during
the interactive simulation. Interactive parameters and input
variables have been declared in the model as Real variables
with zero time-derivative. It is assumed that the Modelica
class of the tank has been programmed and it is called
PhysicalModel.

View definition. Create a new class extending the
PartialView class and call it ViewModel. Set the value of
the model-to-view communication interval, which is a
parameter (called Tcom) of the PartialView class. The
PartialView class contains one graphic element: root.
The object of the MainFrame class must be connected to
this element. Add the MainFrame object and the other
required graphic objects to the ViewModel class. Connect
the graphic objects. The diagram of the obtained class is
shown in Figure 4. Set the value of the graphic object
parameters.

Virtual-lab definition. Create a new object of the
VirtualLab class. This class contains two parameters: the
class of view (ViewI) and the class of the model (ModelI).
Set the values of these parameters to ViewModel and
PhysicalModel respectively. Finally, write the equations
required to link the view variables with the model variables.

Virtual-lab run. Translate (for instance, using Dymola) and
simulate the object created previously. During the
initialization calculations, the jar file is automatically
generated. Execute the jar file. The virtual-lab view is
displayed (see Figure 5a) and the interactive simulation of
the virtual-lab starts. The time evolution of the model
variables can be plot using Dymola. It is shown in Figure 5b
for some selected variables. The discontinuous changes are
due to user’s interactive actions.

CASE STUDY: IMPLEMENTATION OF THE
QUADRUPLE-TANK PROCESS VIRTUAL-LAB

The quadruple-tank process is represented in Figure 6. It can
be used to explain different aspects of the multivariable
control theory (Johansson 2000; Dormido and Esquembre
2003). The goal is to control the level of the two lower tanks
with two pumps. The virtual-lab has been implemented as
described in the previous section. It supports interactive
changes in the liquid levels, the pump input voltages and the
valve settings. The Modelica description of the view is
shown in Figure 7 and the virtual-lab view in Figure 8. The
time evolution of the liquid levels can be plot using Dymola
(see Figure 9).

V: liquid volume
h: liquid level
a: hole cross-section
A: tank cross-section
F, Fin: liquid flow
g: grav. acceleration
v: pump input voltage
k: pump parameter

Figure 3: Model of a Tank System

Figure 4: Diagram of the Modelica Description of the View

Figure 5: a) Virtual-lab View; b) Variable Plots

CONCLUSIONS

A novel approach to the virtual-lab implementation using
Modelica language has been proposed. In order to put it into
practice, two tasks have been completed: (1) the proposal of
a modeling methodology intended to transform any
Modelica model into a description suitable for interactive
simulation; and (2) the design and programming of a
Modelica library supporting the description of the virtual-lab
view and the bi-directional communication between the
model and the view. The purpose, structure and use of this
Modelica library, called VirtualLabBuilder, have been
discussed and its use has been illustrated by means of two
examples.

a)

b)

h

F

v

inF

2

in

in

dV F F
dt

F a gh
V Ah
F kv

= −

=

=
=

Figure 6: The Quadruple-Tank Process

Figure 7: Diagram of the Modelica Description of the View

Figure 8: Virtual-Lab View

Figure 9: Plots of Selected Process Variables

REFERENCES

Ǻström K.; H. Elmqvist and S. E. Mattsson. 1998. “Evolution of
Continuous-Time Modeling and Simulation”. In Proceedings
of the 12th European Simulation Multiconference (Manchester,
UK).

Dormido, S. and F. Esquembre. 2003. "The Quadruple-Tank
Process: An Interactive Tool for Control Education", In
Proceedings of the 2003 European Control Conference,
(Cambridge, UK).

Dynasim. 2006. “Dymola. User’s Manual”. Dynasim AB. Lund,
Sweden.

Engelson V. 2000. “Tools for Design, Interactive Simulation, and
Visualization of Object-Oriented Models in Scientific
Computing”. Ph. D. Thesis, Dept. of Computer and
Information Science, Linköping University, Sweden.
Dissertation No. 627.

Esquembre F. 2004. “Easy Java Simulations: a Software Tool to
Create Scientific Simulations in Java”. In Computer Physics
Communications, Vol. 156, 199-204.

Johansson K.H. 2000. “The Quadruple-Tank Process: A
Multivariable Laboratory Process with an Adjustable Zero”,
IEEE Transactions on Control Systems Technology, Vol. 8, No.
3 (May), 456-465.

Martin C; A. Urquia; J. Sanchez; S. Dormido; F. Esquembre; J.L.
Guzman and M. Berenguel. 2004 “Interactive Simulation of
Object-Oriented Hybrid Models, by Combined use of Ejs,
Matlab/Simulink and Modelica/Dymola”, In Proc. of the 18th
European Simulation Multiconference, 210-215 (Magdeburg,
Germany).

Martin C.; A. Urquia and S. Dormido. 2005a. “Object-oriented
modelling of interactive virtual laboratories with Modelica”.
In Proc. of the 4th Int. Modelica Conference, 159-168
(Hamburg, Germany).

Martin C.; A. Urquia and S. Dormido. 2005b. “Object-oriented
modeling of virtual laboratories for control education”. In
Proc. of the16th IFAC World Congress, paper code Th-A22-
TO/2 (Prague, Czech Republic).

Pump 2
v2

Tank 1 Tank 2

Tank 3 Tank 4

h1 h2
Pump 1

v1

γ1 γ2

h3

h4

Pump 2
v2

Tank 1 Tank 2

Tank 3 Tank 4

h1 h2
Pump 1

v1

γ1 γ2

h3

h4

