
 
 

 
 

Comprehensive Collaborative Web-based Experimentation: 
Integration of Teleoperation and Simulation for Supporting 

Active Learning in Higher Education 

Francisco Esquembre a,∗, Christophe Salzmann b, Denis Gillet b, Yassin Rekik b, 
& Sebastián Dormido c 

a Departamento de Matemáticas, Universidad de Murcia, Spain 
b School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland 

c Dep. Informática y Automática, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain 

 

 

Abstract 

Virtual and real experimentation play an important role in natural sciences and engineering education. While 
many simulation packages and laboratory resources are available online, their effective integration into learning 
environments remains problematic. First, the development of such complex interactive resources is time 
consuming. Second, their reusability is limited by the development overhead necessary to adapt them to 
different educational needs. Finally, interoperability with other resources cannot easily be implemented. This 
paper presents the approach chosen to integrate both simulation and teleoperation Java applets within the 
eMersion environment dedicated to collaborative Web-based experimentation. The simulation applets were 
developed using the Easy Java Simulations authoring tool. The teleoperation applets provided remote 
connection to real laboratory resources. These resources complement each other from a learning point of view. 
The proposed approach can help educators facing the challenge of integrating Web services or components 
provided by various academic institutions into comprehensive learning frameworks. 

Keywords: Authoring, Active Learning, Collaborative Learning, Remote Laboratory, Simulation 

1. Introduction 

1.1. Web-based experimentation 

Experimentation is a core concept in natural sciences and engineering. Experimentation is 
carried out for testing (analysis), modeling, or prototyping (synthesis or design) purposes. 
Modeling relies simultaneously on data collection in laboratory, on parameter estimation and 
on data or model validation by simulation. Testing and prototyping can be carried out either 
in a laboratory or by simulation depending on the objectives and the availability of models. 
The acquisition and the reinforcement of both laboratory and simulation competences is 
                                                 
∗ Corresponding author. Tel. + 34 968 363534; fax: +34 968 364182. 
 E-mail address: fem@um.es 



 
 
 
 
 
 

 2 

hence a key aspect generally enforced in higher education curricula. Thus, to successfully 
enable distance or flexible learning in natural sciences or engineering education, or simply to 
facilitate live demonstration in classrooms, remote access to laboratory and simulation 
resources should be provided in an efficient and integrated way. The educational usage of 
such resources via the Internet is defined as Web-based experimentation. For the sake of 
simplicity, but without any loose of generality, only engineering education is considered in 
the rest of this paper. 
The pioneer environments supporting Web-based experimentation in engineering 

education appeared about 10 years ago [Henry 96]. Over the years, they became more 
functionally comprehensive and educationally effective [Cooper 05]. Today the most 
advanced solutions combine features such as simulation, teleoperation, annotation, 
collaboration and/or tutoring support [Schmid 99, Ko 01, Böhne 04, Fakas 05]. While being 
already quite comprehensive, most of these environments integrate only components 
developed or available within a given institution, as the integration of resources provided by 
third parties is a very demanding task. 

1.2. Difficulties in authoring and deploying Web-based experimentation resources 

Educators are generally reluctant to extensively deploy and propose Web-based 
experimentation resources, as they have still to rely on experts for their development. The 
consequence of this subcontracting is typically a weak control of the functionalities, quite 
often a partial matching with their educational needs, and moreover a non appropriation of 
the resources leading to inadequate support and maintenance. 
To overcome these difficulties, authoring solutions enabling the educators, and even the 

students, to developing Web-based experimentation resources themselves have been 
proposed. They can be classified in two groups. The first group of solutions relies on 
professional packages the educators already use for their professional activities, such as 
Matlab for simulation or LabVIEW for instrumentation. Their Internet functionalities, the 
Matlab Web Server [Valera 05] and the LabVIEW Remote Panels solution [Watson 04] 
respectively, ease in some ways deployment for educational purposes, but lake convenient 
features for a real integration in comprehensive learning environments. In addition, they are 
proprietary and have associated license costs. The second group of solutions relies on 
domain-oriented frameworks build upon standard Web development packages [Rojiani 00, 
Sage 03, Cox 03]. The Easy Java Simulations authoring tool (EJS) detailed in this paper 
belongs to this second group. 
One should also add that typical Web-based experimentation environments differ 

intrinsically from common Learning Management Systems (LMS), as the resources they 
provide are not learning content as such, but either spaces and tools for hands-on knowledge 
discovery, know-how acquisition, and reinforcement. As a consequence, Web-based 



 
 
 
 
 
 

 3 

experimentation environments should be service-oriented and explicitly designed with the 
following features: 
• Simulation and/or teleoperation services, including those required to accessing the 
experimentation resources and to manipulating and operating them. Experimentation 
resources can be real physical devices, virtual devices, and/or simulation tools. 

• Collaboration services, including synchronous solutions such as chat, video-
conferencing and screen sharing, as well as asynchronous solutions such as Wiki, 
shared calendars, common spaces for resources exchange and support for collaborative 
editing. 

• Operational support, such as data and activities planning and logging, as well as 
continuity of interaction and awareness features to enable respectively the retrieval of 
the experimental context between different learning modalities and the evaluation of 
the progress within the learning community. 

For effective Web-based experimentation, these features should not only be available, they 
should be tightly integrated and intuitively usable. 
The eMersion environment detailed in this paper is a Web-based experimentation 

environment providing most of the above features, except the synchronous collaboration ones 
which are envisioned for future versions. 

1.3. Inter-institutional Integration 

Providing a comprehensive Web-based experimentation solution, including authoring and 
deploying simulation and teleoperation resources, cannot be handled easily by a single 
academic institution, as well as by a commercial company [Weblab 06] due to the complexity 
and the variety of the resources to integrate. To provide students with advanced 
experimentation resources despite this fact, the École Polytechnique Fédérale de Lausanne 
(EPFL) and the University of Murcia have combined their effort and adapted their own 
solutions, respectively the eMersion environment and the Easy Java Simulations authoring 
tool, to come up with a common integrated solution. This initiative has been established in 
the framework of the ProLEARN European Network of Excellence (http://www.prolearn-
project.org).  
This paper describes the results of this collaboration as follows. Section 2 presents the 

eMersion environment and its principal services from an authoring point of view, including a 
short summary of the requirements for deploying Web-based experimentation resources, an 
overview of the services provided by eMersion, as well as its core eJournal component. 
Section 3 describes EJS, a general description of its objectives, the authoring procedure to 
create both the model and the view (the graphical interface) of a simulation, and the 
procedure to deploy the simulations built with it. Section 4 describes the integration work 
performed jointly by EPFL and University of Murcia to provide a comprehensive 
environment for Web-based experimentation. The first part of this Section introduces the 



 
 
 
 
 
 

 4 

eJournal API provided to integrate and communicate with new services and tools. The 
second part describes how EJS was adapted to create simulations that are compatible with 
this API. Finally, the third part presents the resulting architecture and Web-based 
experimentation of both a real and a virtual inverted pendulum as a practical example. The 
paper ends with concluding remarks and perspectives. 

2. eMersion Web-based Experimentation Environment 

2.1. Requirements for the deployment of Web-based experimentation solutions 

In addition to the services dedicated to students’ hands-on learning activities listed in 
Section 1.2, additional features dedicated to educators and tutors are necessary to support 
Web-based experimentation, including: 

• Tutoring and supervision services, i.e. all services that help tutors to supervise and 
control the students’ work. This includes, for example, the visualization of students’ 
work progress, the evaluation results or examination support.  

• Authoring and deployment services, i.e. all the services that educators needs to, first, 
define and manage hands-on activity scenarios (authoring), and second, deploy the 
environment for the end users (deployment). Authoring tools allow educators to 
define links to theory and lecture notes, tasks and deliverables, deadlines, and all 
support resources. Deployment tools focus on rendering, configuration, and 
personalization of the resources. These services also support the integration of 
external components through APIs. 

• Management services: this category involves all the classical management services 
such as resources access management, users and groups management or documents 
managements. 

These services are not only important for Web-based experimentation; they are also 
required services for most e-Learning applications. The challenge is, once again, to couple 
them with the simulation and/or teleoperation services. The eMersion environment described 
below is the answer to this challenge developed at the EPFL. 

2.2. The eMersion environment and its services 

The eMersion environment (http://eMersion.epfl.ch) is a learning environment dedicated to 
Web-based experimentation. It is developed and deployed at the EPFL since 2000 to support 
interactive simulation and hands-on laboratory activities in engineering education. The 
current version is also used as a technical framework by partners of the ProLEARN network 
of excellence for integrating online experiments in e-Learning and e-Work contexts. The 
eMersion environment has been developed to answer the major requirements for the 



 
 
 
 
 
 

 5 

deployment of online experiments mentioned in the previous section. The features and the 
usage of eMersion from a student point of view have been described in various papers [Gillet 
et al. 03a, Gillet et al. 05]. After a short summary of these aspects to provide the reader with 
the whole vision, the authoring features of eMersion are described.  
As a Web-based experimentation environment (Fig. 1), eMersion provides the students 

with the necessary components to successfully complete group assignments typically referred 
as hands-on learning modules. The main components of the user interface, called the cockpit, 
are the supervision panel (top part in Fig. 1), the experimentation protocol, the 
experimentation console (left part in Fig. 1), the analysis toolkit and the eJournal (right part 
in Fig. 1). The experimentation protocol describes the successive stages to carry out and the 
deliverables to provide for a given module. The experimentation console enables trial-and-
error interactive learning by remote control of real laboratory resources. The analysis toolkit 
allows the processing of experimental data. Finally, the eJournal serves as an experimental 
data repository and as a share and collaboration space used by the members of a group in 
charge of completing the various tasks associated with a given module. 
It is important to underline that the eMersion environment can be used with a simple Web 

browser either for distance experimentation carried out from home or for local 
experimentation carried out on campus. In the flexible learning context considered at the 
EPFL [Gillet 03b], the students can freely combine distance and local experimentation 
activities to complete an assignment. In this framework, the eJournal functionalities 
happened to be the elements that bring the necessary added value to support the real 
appropriation and effective use of the eMersion environment by the students [Fakas et al. 05]. 
 

 
 



 
 
 
 
 
 

 6 

 

Fig. 1. User interface of the eMersion environment. 

 

2.3. Authoring support provided by eMersion 

In order to support educators in deploying experimentation resources (simulation or 
teleoperation components), the eMersion environment provides them with simple Web-based 
authoring tools (Fig. 2). The authoring process leading to the deployment of a new cockpit 
can be divided into four main steps: defining the protocol, defining the resources that will be 
included in the cockpit, generating the cockpit, and publishing the cockpit to the end users 
(students).  
 
 

 



 
 
 
 
 
 

 7 

 

Fig. 2. Course management tool and the Module authoring tool. 

 
 

2.4. The eJournal and its fragments 

The eJournal has been designed as an extended electronic version of the traditional 
laboratory journal. The eJournal plays an important role at both the social level 
(collaboration among users) and the system one (exchange between components).  
The social level features of the eJournal and their assessments have been presented in 

Nguyen et al. 05; they are just listed here for the sake of clarity. The eJournal is a 
collaboration space with a user interface similar to an email client shared by a group of 
students. The stored ‘messages’, called fragments, can be experimental data, configuration 
parameters, graphs, documents, etc. All fragments are typed and categorized based on their 



 
 
 
 
 
 

 8 

sources, their content, and possibly the associated task from the protocol. The eJournal 
provides various services to manage the fragments. By tracking the fragments creation 
history, progress awareness about the group and the class progresses are also generated in 
real-time and displayed in the cockpit. 
The system level features of the eJournal enable the import and export of fragments 

between different Web components. This pivotal role of the eJournal allows the eMersion 
environment to integrate new services and components without major development and 
adaptation. This concept of exchange between Web components is detailed in section 4. 

 

3. Easy Java Simulations Authoring Tool 

3.1. Graphical authoring tool for Java-based simulation  

The Easy Java Simulations authoring tool (EJS) is a free, open-source solution designed to 
help educators and scientists create discrete computer simulations in Java. A discrete 
computer simulation, or simply a computer simulation, is a program that tries to reproduce a 
natural phenomenon through the visualization of the different states that it can have. Each of 
these states is described by a set of variables that change in time due to the iteration of a 
given algorithm.  
EJS provides specialized interfaces and utilities that allow educators to act as a high-level 

provider of the information required to create the simulation. The educators can concentrate 
on both the scientific part of the simulation (the model) and on its pedagogical one (how to 
visualize phenomena and what interaction capabilities to offer to students). To specify the 
model of the simulation, the educators fill a simple, yet powerful, predefined scheme 
provided by the tool. To design the view for the simulation, they use a set of ready-to-use 
graphical elements suited both for the visualization of scientific data and processes, and for 
the students’ interaction with the model.  
The technical aspects of the authoring process are all handled by the authoring tool, from 

generating the source code to compiling and running the simulation. EJS generates an 
independent, high performance, Internet-aware, final product in the form of a Java 
application or applet, complemented with embedding HTML pages [Esquembre 04]. The 
choice of Java as development language is justified in terms of its wide acceptance by the 
Internet community, and of its availability on most platforms.  

3.2.Creation of models using EJS  

EJS structures the model into four main blocks: the definition of variables, the 
initialization, the evolution, and the definition of constraints. The tool provides a dedicated 
panel for each of these blocks. For variables, it provides a simple table where the user 
specifies names, types, and initial values for all the variables that describe the system under 



 
 
 
 
 
 

 9 

study. If the initialization of the model requires some additional computations based on the 
given values, the tool provides an editor where the author writes the Java code that performs 
these computations. The gain of using EJS is that only the algorithms for the computations 
have to be coded. EJS wraps this code into complete Java methods and takes care of calling 
them at the appropriate stage at run time. This considerably lowers the required technical 
skills needed to create a Java program. 
Similarly, the tool offers dedicated editors for the creation of the evolution, that is, the code 

that updates the value of the variables of the model as time passes. Here, the author is 
provided with two types of editors, one for plain Java code, and a second one specialized in 
systems of ordinary differential equations (Fig. 3). This sophisticated editor helps entering 
the differential equations in a way much similar to how teachers write them in the classroom. 
It then automatically generates the Java code that solves the equations using most popular 
numerical integration algorithms. The editor also supports advanced features such as 
derivatives of vectors and event handling.  

 

 

 

Fig. 3. User interface of  Easy Java Simulations. The editor for differential equations is 
displayed. 



 
 
 
 
 
 

 10 

Finally, a panel to define constraints is included. It allows the user to specify fixed 
relations between variables that always hold. Constraints help the computer to keep the 
correct values of interdependent variables whenever the user interacts with the simulation to 
change any individual variable. 
This set of four panels provides a simple structure that both novices and experts can easily 

use to specify their models. The range of models that can be created with the help of the tools 
provided is very wide. However, for the cases in which more advanced programming is 
required, an extra panel allows the author to create more sophisticated code, including custom 
Java methods and access to user-provided external libraries. Details can be found in the EJS 
user’s manual [Esquembre 05]. 

3.3.Building graphical user interfaces 

Building the graphical interface for the simulation is probably the most computer-specific 
part of creating a simulation. Modern simulations, especially those required for teaching, 
demand advanced graphic visualizations of the underlying scientific processes and a high 
level of interactivity. The teacher is indeed interested in making a good pedagogical design of 
the interface, but not in the low-level knowledge of the standard Java libraries required to 
actually build it. For this reason, EJS offers a set of built-in graphical elements (based on the 
Open Source Physics library [Christian 06]) which are presented in a click-and-use way. 
With a few mouse clicks, the author can easily create a tree-like structure of graphical 
elements that will make the view. Figure 4 shows a typical view. 

  

Fig. 4. Panel of EJS for the creation of the view (left) and a typical 2D animation for the simulation of 
an inverted pendulum. Most elements in the view are interactive. 

All view elements have internal fields called properties that the author can customize to 
make the element look and behave in a particular way. These properties can be given 
constant values (such as a fixed color, or position), but can also be linked to model variables. 
This linking, which is done in a most natural way, is what makes the simulation really 
dynamic and interactive. Any change in the value of a variable of the model is then 



 
 
 
 
 
 

 11 

automatically transmitted to the view, which updates its aspect or behavior accordingly. 
Reciprocally, if the user interacts with the simulation’s view, the change is automatically 
reported to the model, modifying the variables linked to the particular view element affected 
by the interaction. Finally, so-called action properties allow view elements to execute pieces 
of Java code. This increases the interaction capabilities of the simulation by providing a way 
for the student to control it. 

3.4 Deploying the simulation applets 

Once the educator has provided this information, the description of the model and the 
design of the view, EJS takes care of the remaining operations. It generates all the required 
source code, compiles the simulation, compresses it into a JAR file, and runs it. In particular, 
the tool takes care of implementing all sophisticated technicalities (such as multithreading, to 
name one). It also creates a set of HTML pages that can be used to quickly publish the 
simulation on a Web server. If the teacher wants to add more descriptive narrative, EJS 
provides a simple editor that allows adding extra HTML pages. 
The result is a simulation that can be freely distributed, independently of the authoring tool 

used to create it. Educators only need to copy the generated files, together with a library 
directory, to a Web server or CDROM. The whole process is quite effective, both in terms of 
the quality of the resulting simulation and of time and effort required to build it. The author 
can concentrate practically all of her time in scientific and pedagogical issues and not in 
computer specific (less interesting) tasks. 

4. Integration of Easy Java Simulations and the eMersion Environment 

4.1. API for communication with eJournal 

In order to facilitate the integration of external components and services into the eMersion 
environment and as mentioned in Section 2.3, the eJournal has been designed as a pivotal 
component, which can communicate with other components thanks to a data exchange 
mechanism. This mechanism is based on a data homogenization and transformation process. 
The eJournal supplies a set of interfaces to handle the requests generated by the different 

components integrated into the Web-based experimentation environment. Through these 
interfaces (classes), the eJournal is able to directly process java objects.  
The communication channel between the eJournal and a Web component (applet) is 

established either directly or via a helper application to overcome the Java applet security 
limitations. A servlet is continuously listening for eJournal remote access. When receiving a 
request in the form of a java object, the eJournal extracts the type of data received, 
determines how to transform the request data and which target component should be invoked. 
For example, the remote experimentation applet (Fig. 1) generates a fragment containing the 
last 2048 measured points as a binary file. The created fragment will be automatically 



 
 
 
 
 
 

 12 

directed by the eJournal to the analysis tool, namely Sysquake Remote, for display and 
further data processing. Sysquake Remote from Calerga (www.calerga.com) is an Apache 
module that provides access to a powerful mathematical engine via a Web interface. Table 1 
summarizes the fragment types, the associated classes and they respective target components. 
This mechanism facilitates significantly the interaction process. Data are passed smoothly 

and transparently from one component to another. To reduce the amount of transmitted 
information, some fragments are automatically compressed internally. The exchange can be 
endogenous, i.e. initiated by a component; or exogenous, i.e. initiated by a user (typically by 
a single mouse click). The need to use external applications for passing data between 
components is reduced. For example, a student does not need to save measurements data on 
her local hard disk and then sent them by email as an attached file to share them with peers.  
 
 
Fragment type Associated class Target component Comment 
binary class DatasFile .mat -> Sysquake Remote 

others -> file  
also used for external 
fragment 

graphic class GraphicsFile browser or file supported formats are GIF 
and JPEG 

text class TextFile browser or file plain text or XML text 
parameter  
(for applet) 

class ParamsFileXML applet or browser specific to the remote 
experimentation applet. 
Parameters are XML 
encoded 

Sysquake class DatasFile Sysquake Remote specific case of binary 
fragments with a .mat 
extension 

external class DatasFile file files are save in native 
binary format 

request class Request request made by applets supported requests are: 
list, taskNames, fragment, 

parameter set, 

snapshot,binary, text, 

sysquake, external, all 

Table 1. Fragment types, the associated classes and their respective target components  

 
Every request to the eJournal is acknowledged with a reply, or an exception in case of 

error. The reply can be a requested object (fragment/list of fragments) or an informational 
message. 
 



 
 
 
 
 
 

 13 

4.2. Extension of EJS to communicate with the eJournal 

To enable the integration of Easy Java Simulations within the eMersion environment, EJS 
has been endowed with new Java methods to communicate with the eJournal. EJS can also 
now generate a HTML page with the URL of the eMersion server that will serve the 
simulation. The simulation applet generated automatically recognizes at run-time that it is 
being run from an eMersion server and includes the needed communication library to interact 
with the eJournal.  
The new EJS methods include taking a snapshot of any of the simulation windows, saving 

and loading all or part of the simulation variables, and producing text or XML reports. When 
the simulation runs as an application, this input and output routines use the hard disk as 
support media. However, when running as part of an eMersion cockpit, all the input and 
output procedures are automatically redirected to the eJournal.  
Because the educators have designed the simulation themselves or can easily modify it, 

thanks to the open nature of EJS, they can include buttons or other controls in the view that 
will create the eMersion fragments of interest for each particular pedagogical situation. 

4.3. A practical example 

At EPFL, students enrolled in the automatic control course have to take measurements on a 
laboratory-scale inverted pendulum, estimate model parameters using these measurements, 
then design a controller, test it by simulation and finally implement the final solution on the 
real system. Hence, there are successive comings and goings between simulation and 
implementation, or between virtual experimentation and real (remote) experimentation. As a 
consequence, tight integration between the simulation and the implementation tools is 
necessary. Such a methodology is common in control implementation and has been enforced 
in education recently [Dormido 04]. The components proposed to the students to carry out the 
described assignment now integrate an EJS simulation applet and a real teleoperation one. 
The controller parameters have to be shared through the eJournal to facilitate the comparison 
between the simulation and the implementation results. 
The simulation illustrated in Figure 4 works autonomously but can also communicate with 

the eJournal with the help of two buttons. The Export param button save the controller 
parameters to the eJournal by dumping the controller gains to a file that is included as a new 
eJournal fragment.  The button action, triggered by a mouse click, consists of a single line of 
code that calls one of the provided EJS methods. In the same way, Import param button 
imports the parameters from the eJournal. With these buttons the user can test a set of 
parameters in the simulation using the EJS applet, export these parameters to the eJournal, 
and import them within the remote experimentation applet, to test them on the real setup. 
These operations are performed with just a few mouse clicks.  



 
 
 
 
 
 

 14 

To complete the integration, EJS options have to be edited to provide the URL of the 
directory that will contain this HTML file in the eMersion server. Then, EJS can generate the 
additional HTML file required.  
To deploy this simulation through an eMersion cockpit, the author just needs to copy the 

generated files (and the EJS library) to the server, and specify the HTML file created by EJS 
as the URL for the experimentation resource.  

5. Concluding remarks 

Web-based experimentation differs from more traditional e-Learning solutions in the sense 
that it is more service- than content-oriented. What the students do with the resources is more 
important than the resources themselves.  
The key services sustaining Web-based experimentation include remote accesses to real 

laboratory resources, their simulations, analysis tools and share spaces. These services have 
to be fully integrated and be able to exchange data in real-time to effectively support typical 
collaborative hands-on learning activities. 
This paper shows that the share space existing in the eMersion environment, namely the 

eJournal (and its APIs), is the pivotal component for enabling seamless services integration. 
The integration of heterogeneous components has been illustrated with the example of an 

EJS applet enabling the simulation of the real inverted pendulum within eMersion. 
In fact, the eMersion environment and its eJournal can be seen as a container and a 

mechanism for educators to combine and to enable communication between heterogeneous 
and distributed laboratory resources, Web services or Web components. As nowadays a large 
academic community is making real and virtual laboratory resources available online, the 
proposed integration scheme makes easier to share and to reuse solutions developed in 
different institutions, reducing in that way the barrier to broader e-Learning deployment. 
The proposed solution is an attempt towards stateful Web services integration, which can 

be handled by educators without the intervention of IT specialists. Standalone e-Learning 
solutions can easily become reusable components just by adding a proper interface to the 
eJournal that eventually acts simultaneously as an exchange platform between users and 
between components. The easiness of use of EJS facilitates non-programming teachers the 
creation of their own simulations. 
Next generations of Grid middleware should also provide similar features in a near future. 

They should also ease the use of more effective real-time communication protocols, 
orchestration and authentication schemes. Their standardization and deployment 
unfortunately still rely on the intervention of IT specialists [Saliah-Hassane 05]. The 
eMersion environment will be upgraded continuously to integrate and make available to the 
academic community the latest technologies in Web, Grid and mobile services. 



 
 
 
 
 
 

 15 

Acknowledgements 

The elements presented in this paper result from various e-Learning projects and activities 
carried out with the support of the Board of the Swiss Federal Institutes of Technology and of 
the European Union in the fifth and sixth framework programs. The authors thank Anh Vu 
Nguyen Noc who contributes to the design, implementation and validation of the eJournal as 
part of his PhD thesis. 

References 

Böhne, A., Faltin, N., & Wagner, B. (2004). Synchronous Tele-Tutorial Support in a Remote Laboratory for Process 
Control. INNOVATIONS 2004: World Innovations in Engineering Education and Research, edited by Win Aung (et al.), 
pp. 317-329. 

Christian, W. (2006). Open Source Physics: A User’s Guide with Examples. Benjamin Cummings Publisher, ISBN: 0-8053-
7759-X. 

Cooper, M. (2005). Remote laboratories in teaching and learning – issues impinging on widespread adoption in science and 
engineering education. International Journal of Online Engineering (http://www.ijoe.org/ojs/), 1(1), pp. 1-7.  

Cox A. J., Belloni M., Christian W., and Dancy M. H. (2003), Teaching Thermodynamics with Physlets® in Introductory 
Physics, Physics Education 38, 433. 

Dormido, S. (2004). Control Learning: Present and Future. Annual Reviews in Control 28, 115-136. 
Esquembre, F. (2004). Easy Java Simulations: a software tool to create scientific simulations in Java. Comp. Phys. Comm. 
156, 199-204. 

Esquembre, F. (2005). Easy Java Simulation user’s manual. http://fem.um.es/Ejs/. 
Fakas, G. J., Nguyen, A. V., & Gillet, D. (2005). The Electronic Laboratory Journal: A Collaborative and Cooperative 
Learning Environment for Web-Based Experimentation, Computer Supported Cooperative Work, 14, 189-216. 

Gillet, D., Nguyen, A. V., & Rekik, Y. (2005). Collaborative Web-based Experimentation in Flexible Engineering 
Education, IEEE Transactions on Education, Special Issue on Web-based Instruction, Vol. 48, No. 4, pp. 696-704. 

Gillet, D., Geoffroy, F., Zeramdini, K., Nguyen, A. V., Rekik, Y., & Piguet, Y. (2003a). The Cockpit: An Effective 
Metaphor for Web-based Experimentation in Engineering Education, International Journal of Engineering Education, 
“Special Issue on Distance Controlled Laboratories and Learning Systems”, 19(3), 389-397. 

Gillet, D. (2003b), Towards Flexible Learning in Engineering Education, in the book “Innovations - 2003: World 
Innovations in Engineering Education and Research”, pp. 95-102, Published by iNEER in Cooperation with Begell House 
Publishers. 

Henry, J. (1996). Controls Laboratory Teaching via the World Wide Web. Proceedings of the ASEE Annual Conference, 
Washington, USA, 1996. 

Ko, C. C., Chen, B. M., Chen, J., Zhuang, Y., & and Tan, K. C. (2001). Development of a Web-based laboratory for control 
experiments on a coupled tank apparatus, IEEE Transactions on Education, 44(1), pp. 76-86. 

Nguyen A.V., Rekik Y. A., & Gillet D., (2005). A framework for sustaining the continuity of interaction in Web-based 
learning environment for engineering education. In proceedings of the 17th ED-MEDIA conference, 2005, Montreal, 
Canada. 

Rojiani, K. B., Y. Y. Kim, and R. K. Kapania (2000), Web-Based Java Applets for Teaching Engineering Mechanics, 
Proceedings, ASEE 2000 Annual Conf., Session 2620, June 18-21, 2000, St. Louis, Mo, USA. 

Sage, D., Unser, M. (2003). Teaching Image-Processing Programming in Java. IEEE Signal Processing Magazine, 20(6), pp. 
43-52.  

Saliah-Hassane, H., Benslimane, D., De La Teja, I., Fattouh, B., Do, L.K., Paquette, G., Saad, M., Villardier, L., and Yan, Y. 
(2005). A General Framework for Web Services and Grid-Based technologies for Online Laboratories. Proceedings of the 
2nd iNEER Conference for Engineering Education and Research (ICEER), March 1-5, Tainan, Taiwan. 

Schmid, Ch. (1999). A Remote Laboratory Using Virtual reality on the Web, Simulation, Special issue: Web-Based 
Simulation, 73(1), pp. 13-21.  

Valera, A., Diez, J. L., Vallés, M., & Albertos, P. (2005). Virtual and remote control laboratory development. IEEE Control 



 
 
 
 
 
 

 16 

Systems Magazine, February, pp. 35-39. 
Watson, J. L., Bibel, G., Ebeling, K., Erjavec, J., Salehfar, H.,  & Zahui, M. (2004). On-line Laboratories for Undergraduate 
Distance Engineering Students. 34th ASEE/IEEE Frontiers in Education Conference, October 20 - 23, 2004, Savannah, 
GA. 

Weblab (2006). http://www.controlab.com, visited February 2006. 



 
 
 
 
 
 

 17 

Vitae 

 

Francisco Esquembre received the Ph.D. degree in Mathematics in June 1991, from the University of 
Murcia, Spain, where he works since 1986, holding a permanent job as Assistant Professor since 1994. 
His academic expertise includes Differential Equations, Dynamical Systems and Numerical Analysis. 
Francisco is the author of Easy Java Simulations. He teaches currently at the University of Murcia and 
his research includes computer assisted teaching and learning as well as simulation of scientific 
processes for didactical purposes. 
 

Christophe Salzmann is a Senior Research Associate at the École Polytechnique Fédérale de 
Lausanne (EPFL). He received his MS degree in computer Science from the University of Florida in 
1999 and his PhD degree from the EPFL in 2005. His research interests include new Web technologies, 
real-time control, real-time interaction over the Internet with an emphasis on Quality of Service and 
bandwidth adaptation. 
 
Denis Gillet is MER (Associate Professor) at the École Polytechnique Fédérale de Lausanne (EPFL). 
He received the Ph.D. degree in Control Systems in 1995 from EPFL. His research interests include 
optimal and hierarchical control systems, distributed e-learning systems, sustainable interaction 
systems, and real-time Internet services. Dr. Gillet received the 2001 iNEER (International Network for 
Engineering Education and Research) Recognition Award for Innovations and Accomplishments in 
Distance and Flexible Learning Methodologies for Engineering Education.  
 

Yassin Rekik received the Ph.D. degree in computer science from the École Polytechnique Fédérale de 
Lausanne (EPFL), Lausanne, Switzerland, in 2001. He is a Senior Research Associate at EPFL and 
Professor at the University of Applied Sciences, Neuchâtel, Switzerland. His research interests include 
Web-based learning, mobile learning, collaborative and group-oriented learning, and online 
experimentation and laboratory activities. Dr. Rekik is currently involved in several national and 
international initiatives and projects, in particular, the European Network of Excellence ProLEARN. 
 

S. Dormido S. Dormido received his Physics degree from Madrid Complutense University (1968) and 
his Ph.D. from Country Vasc University (1971). In 1981, he was appointed Full Professor of Control 
Engineering at UNED Faculty of Sciences. He has supervised 25 PhD Thesis and co-authored more 
than 200 conference papers and 150 journal papers. Since 2002 is President of the Spanish Association 
of Automatic Control, CEA-IFAC. His scientific activity includes various topics from the control 
engineering field: computer control of industrial processes, model-based predictive control, robust 
control, modeling and simulation of hybrid systems and control education with special emphasis on 
remote and virtual labs. 

 


