


 2nd International Congress on 
Maritime Technological Innovations and Research. 

 
Organized by 
 

 
Universidad de Cádiz  
Facultad de Ciencias Náuticas 

 
Under the patronage of 

FOROSUR - Southern Maritime & Industrial Forum (Cádiz) 
 
 

In cooperation with 
 

 

Universitat Politècnica de Catalunya 
Departament de Ciéncia i Enginyería Nàutiques  

 
 
The International Congress on Maritime Technological Innovations and Research was born as 
an initiative from the Department of Nautical Sciences and Engineering of the Universitat 
Politècnica de Catalunya (UPC) to the development of shipping  a challenging action over the 
past few years. Today, this Conference is intended to improve important aspects such as 
maritime training, new technologies and R&D programs, together with management systems, 
among others. The 2nd Congress will serve as a forum for cooperation among the different 
national and international institutions involved in Maritime Education. 
 
 

Proceedings edited by: 
Francisco Piniella 
Ana Bocanegra 
Juan Olivella 
Ricardo Rdguez. -Martos 
 

Servicio de Publicaciones - Universidad de Cádiz 2000 
ISBN 84-7786-669-4 (Paperback) 
ISBN 84-7786-670-8 (CD-Rom) 
  of the edition: the editors 
  of the papers: each author 



INTERVAL MODELLING OF HIGH SPEED CRAFT FOR ROBUST CONTROL 

 

 

J. Aranda*, J. M. De la Cruz**, J. M. Díaz*, P. Ruipérez* 

*Dept. de  Informática y Automática. UNED. Madrid, Spain. **Dept. de Arquitectura de 

Computadores y Automática. U. Complutense. Madrid, 

 

 

Abstract 
The interval transfer functions from wave height to pitch and heave movement described in this job is interpreted as a 
family of transfer functions whose coefficients are bounded by some know intervals and centred at nominal values. 
The nominal model is obtained by a non-linear least square algorithm applied in the frequency domain. Low frequency 
constrained for pitch and heave was considered. Once the nominal model was obtained, then the tightest intervals 
around each coefficient of the nominal transfer functions was created while satisfying the membership and frequency 
response requirements. Different model validation tests was made (magnitude and phase plots, frequency envelope of 
the interval model, simulations). These tests show that the uncertainty model obtained is a valid interval model and it 
can be used for robust control design. 
 
 

Introduction 

The main problem for the development of high speed craft is concerned with the passenger’s 

comfort and the safety of the vehicles. The vertical acceleration associated with roll, pitch and 

heave motion is the cause of motion sickness. The roll control is the most attractive candidate 

for control since increasing roll damping can be obtained more easily. However, shipbuilders 

are also interested in increasing pitch and heave damping. In order to solve the problem 

antipiching devices and pitch control methods must be considered. Previously, models for the 

vertical ship dynamic must be developed for the design, evaluation and verification of the 

results. 

 The number of published investigations about ship modelling is immense. For example, 

a non-lineal model in 6 degrees of freedom is shown in [1], [2] and [3] This model is 

theoretical and it is obtained from the equations of the rigid solid partially immersed in water. 

 Obtaining a very accurate mathematical model of a system is usually impossible and 

very costly. It also often increases the complexity of the control algorithm. A trend in the area 



of system identification is to try to model the system uncertainties to fit the available analysis 

and design tools of robust control [4].  

The interval functions described in this paper [5] are interpreted as a family of transfer 

functions from wave height to pitch and heave movement whose coefficients are bounded by 

some know intervals and centred at nominal values. The nominal model is obtained by a non-

linear least square algorithm applied in the frequency domain. Once the nominal model is 

obtained, then the tightest intervals around each coefficient of the nominal transfer functions are 

created while satisfying the membership and frequency response requirements. 

 

 

Identification methodology 

The method described in this paper follows the steps of classical identification diagram [6], [7] 

and [8]. A model test was carried out in the towing tank of CEHIPAR [9] (Madrid, Spain). 

The model was free to move in heave direction and pitch angle. The wave surface elevation 

was measured at 68.75 m. forward from model bow. Different regular and irregular waves 

and ship speed were tested. A set of simulated data have been generated by the program 

PRECAL [9] (which uses a geometrical model of the ship to predict her dynamic behaviour), 

reproducing the same conditions of the experiments with regular waves. 

Two transfer functions are identified (see Figure 1) : 

 

• GP(s): transfer function from wave height (metres) to pitch movement  

(degrees). 

• GH(s): transfer function from wave height (metres) to heave movement 

(metres). 
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Figure 1: Blocks diagram of the identified system 

 

 The identification is made in the frequency domain and uses the simulated data of 

magnitude and phase obtained by the program PRECAL [9] in the encounter frequency ωei 

(i=1,2,...,25) for the transfer functions GP(jωei) and GH(jωei). 
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In general, the estimated transfer functions )(sGP

)
and )(sGH

)
 can be written in the 

following form: 
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where  m is the number of zeros and n is the total number of poles. The parameter vector is: 
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The estimation of the parameter vector P
v

 is made by a non-linear least squares 

procedure that uses the following cost function [7]: 
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A number of considerations need to be made based in a priori knowledge of the ship 

dynamics. So, there are three constraints in the identification process of the models: 

 

• The models must be stables. 

• The gain of GP(s) must be tend to zero in low encounter frequencies. 

• The gain of GH(s) must be tend to one in low encounter frequencies 



 

The solution to this non-linear least squares problem with constrains is described in [8] 

and it uses tools described in [9]. 

 

 

Interval modelling 

Bhattacharyya [4] describes a method to obtain the family of linear time invariants systems 

)(sG
r

 by letting the transfer function coefficients lie in intervals around those of the nominal 

G(s). This method is adapted to our problem. Let  
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where ωe1,ωe2,...,ωeN are the test encounter frequencies and the complex number u(jωei), y(jωei) 

denote in phasor notation the input-output pair at the frequency ωei generated from an 

identification experiment. Suppose that GI(s) is the transfer function of a linear time-invariant 

system which is such that GI(jωe) is closest to D(jωe) in some norm sense. In general it is not 

possible to find a single rational function GI(s) for which GI(jωei)= D(jωei) and the more realistic 

identification problem is to fact identify an entire family )(sG
r

 of transfer functions which is 

capable of  validating the data in the sense that for each point D(jωei) there exists some transfer 

function Gi ∈ )(sG
r

 with the property that GI(jωei)= D(jωei). 

 Let the nominal transfer function GI(s), which has been identified  by a non-linear least 

squares procedure explained in the previus section, and the transfer function G(s) with the 

form: 
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 The family of linear time-invariant systems )(sG
r

is defined by: 
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where wxi are to be regarded as weigths chosen apriori whereas the ε’s are to be regarded as 

dilation parameters to be determinated by the identification algorithm and the data D(jωei) 

 

 

Weight selection 

Suppose the test data consists of N data points obtained at corresponding frequencies, 
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 the lth model is defined as : 
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The model Gl(jωei) is identical to the nominal identified model GI(jωei) with the lth data 

point replaced by the lth component of the test data D(jω). Now the lth identified model Gl
I(s) 

is constructed, which is identified from the lth data set Gl(jω). Let 
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The models Gl
I(s) must be identified with the same method used to identify the nominal 

model GI(jω). The weight vector w
r

 is: 

 

],......,,,......,[

1
,......,

1

111

1
11

1
11

+++
=








 −−= ∑∑
=

++++
=

mnnn xxxx

N

l

l
mnmn

N

l

l

wwwww

xx
N

xx
N

w

r

r

 (7) 



 

The weight selection is important because inappropriate selection of weights may 

results in an unneccesarily large family. 

 

 

Computation of the intervals of the transfer function coefficients 

Recall the nominal system given in (1) and substitute s=jωei, then we have 
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if G(jωei) is made equal to the data set D(jωe) for a particular encounter frequency ωei, we have 
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Operating, we obtain the next pair of equations: 
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Recall ix
)  for all i is defined by: 
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If we rewrite this in terms of a linear matrix equations, we have 
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l
xε

r
 is the vector of the dilation parameters obtained for the encounter frecuency ωel. 

Here it is assumed without loss of generality that A(ωei,αi,βi) has full rank. Then the minimun 

norm solution l
xε

r
 can be computed as: 
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After finding l
xε

r
 for all l=1,...,N, the dilation parameters of the intervals of the transfer 

function coefficients are determined as follows: 
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Results  

Tables 1 and 2 show, respectively, the model structure order (where m is the number of zeros, 

n is the total number of poles and nps is the number of simple poles) for heave and pitch 

movement. For each ship speed is showed different structures, so, we can compare the cost 

function and mean square error when the model structure is reduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Model structure for heave movement 

Ship 

speed 

(knots) 

Model 

Structure  

 (m,n,nps) 

Value of 

the cost 

function 

Mean square 

error (m2) 

 (4,6,2) 0.0383 0.014333 

20 (3,5,1) 0.0692 0.014062 

 (2,3,1) 0.0696 0.013793 

 (4,6,2) 0.0385 0.011061 

30 (3,5,1) 0.1012 0.011476 

 (2,3,1) 0.2381 0.017047 

 (4,6,2) 0.0471 0.011186 

40 (3,5,1) 0.1045 0.011323 

 (2,3,1) 0.4510 0.01246 

 



 

 

 

 

 

 

 

 

 

 

The model 

interval was obtained for each of model structure show in Table 1 and Table 2. For example, 

the model structure (4,6,2) for heave movement with  a ship speed of 20 knots has the transfer 

function: 
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Table 3 shows the model interval of GH(s). Figure 2 shows the Bode plot of GH(s) and 

data obtained by PRECAL program.  

 

Table 3: Model interval of GH(s) 

Table 2: Model structure for pitch movement 

Ship 

speed 

(knots) 

Model 

Structure  

 (m,n,nps) 

Value of 

the cost 

function 

Mean square 

error ((º) 2) 

20 (4,6,2) 0.1213 0.10562 

 (3,5,1) 0.1228 0.10518 

30 (4,6,2) 0.0938 0.099554 

 (3,5,1) 0.0946 0.099763 

40 (4,6,2) 0.0942 0.12141 

 (3,5,1) 0.0989 0.12256 
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Figure 2 : Bode plot of GH(s) and data of PRECAL program 

 

Figure 3 shows the output of GH(s) and the  measured output in the CEHIPAR when 

the input was irregular waves  at  20 knots and SSN=5.  

 

x Lower  

Interval 

Nominal 

value 

Upper 

Interval 

x1 
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x3 
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x5 
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       1309.3         1325         1388 

         2411         2459         2479 
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Figure 3: Simulation of GH(s) and real data at 20 knots and sea state SSN=5. 

 

The model structure (4,6,2) for pitch movement with  a ship speed of 20 knots has the 

transfer function: 
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Table 4 shows the model interval of GP(s). Figure 4 shows the Bode plot of GP(s) and 

data obtained by PRECAL program.  

 

Table 4: Model interval of GP(s) 

 

 

 

 

 

 

 

 

 

x Lower Interval Nominal value Upper Interval 

x1 

x2 

x3 

x4 

x5 

x6 

x8 

x9 

x10 

x11 

   40.6239      40.9301       42.1549 

   69.8317      71.9466       72.2921 

  111.9658     113.0089      113.4570 

   86.6317      87.0402       88.3162 

   50.1333      50.8560       52.1965 

   17.4087      19.2750       19.6824 

  -51.6473     -50.6223      -50.3770 

   14.4200      14.9826       15.0770 

  -11.6252     -10.8545       -8.9156 

   -1.3675      -1.1900        0.5597 
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Figure 4: Bode plot of GP(s) and data of PRECAL program 

 

Figure 5 shows the output of GP(s) and the  measured output in the CEHIPAR when 

the input was irregular waves  at  20 knots and SSN=5.  
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Figure 5: Simulation of GP(s) and real data at 20 knots and sea state SSN=5 

 

 

Conclusions  

In this paper has been showed the continuos linear models for vertical dynamics of a high 

speed craft identified by a non-lineal least square algorithm applied in the frequency domain 



Once the nominal model was obtained, then the tightest intervals around each coefficient of the 

nominal transfer functions was created while satisfying the membership and frequency 

response requirements. Different model validation tests was made.  
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