IDENTIFICATION FOR ROBUST CONTROL OF A FAST FERRY
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Abstract: The interval transfer functions from wave height to pitch and heave
movement described in this paper are interpreted as a family of transfer functions
whose coefficients are bounded by some know intervals and centred at nominal values.
The nominal model is obtained by a non-linear least square algorithm of identification
applied in the frequency domain. Once the nominal model was obtained, then the
tightest intervals around each coefficient of the nominal transfer functions was created
while satisfying the membership and frequency response requirements. Different model
validation tests was made (Bode plots and simulations). These tests show that the
uncertainty model obtained is a valid interval model and it can be used for robust

control design.
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1. INTRODUCTION

The main problem for the development of high speed
ship is concerned with the passenger’s comfort and
the safety of the vehicles. The vertical acceleration
associated with roll, pitch and heave motion is the
cause of motion sickness. Theroll control isthe most
attractive candidate for control since increasing roll
damping can be obtained more easily. However,
shipbuilders are also interested in increasing pitch
and heave damping. In order to solve the problem
antipiching devices and pitch control methods must
be considered. Previously, models for the vertical
ship dynamic must be developed for the design,
evauation and verification of the results.

The number of published investigations about ship
modelling is inmense. For example, nonlinear
models in 6 degrees of freedom are shown in Fossen
(1994) and Lewis (1989). These models are
theoretical and they are obtained from the equations
of arigid solid partially inmersed in water.

Obtaining a very accurate mathematical
model of a system is usually impossible and very
costly. It also often increases the complexity of the

control algorithm. A trend in the area of system
identification is to try to model the system
uncertainties (Bhattacharyya et a., 1995) to fit the
available analysis and design tools of robust control.

The interval functions described in this paper are
interpreted as a family of transfer functions from
wave height to pitch and heave movement whose
coefficients are bounded by some know intervals and
centred at nomina values. The nomina model
(Aranda et a., 1999b; Aranda et a., 2000) is
obtained by a non-linear least square algorithm
applied in the frecuency domain. Once the nomina
model is obtained, then the tightest intervals around
each coefficient of the nominal transfer functions are
created while satisfying the membership and
frequency response requirements.

2. IDENTIFICATION METHODOLOGY

The method describes in this paper follows the steps
of classical identification diagram (Ljung, 1989;
Schoukens and Pintelon, 1991; Sodertrom and
Stoica, 1989). A model test was carried out in the
towing tank of CEHIPAR (Madrid, Spain). The



model was free to move in heave direction and pitch
angle. The wave surface elevation was measured at
68.75 m. forward from model bow. Different regular
and irregular waves and ship speed were tested. A
set of simulated data (Aranda et al., 1999a) has been
generated by the program PRECAL (which uses a
geometrical model of the ship to predict her dynamic
behaviour), reproducing the same conditions of the
experiments with regular waves.

Two transfer functions are identified (see Figure 1):

Gp(9): transfer function from wave height (m) to
pitch movement (°).

Gu(9): transfer function from wave height (m) to
heave movement (m).
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Fig. 1. Blocks diagram of the identified system

The identification is made in the frecuency domain
and uses the simulated data of magnitude and phase
obtained by the program PRECAL in the encounter
frequency wy (i=1,2,...,25) for the transfer functions
Gp(jWei) and GH(jWei)-

Ge (jwy) = Re(Gy (jwy )+ i IM(Go(jwy))
Gy, (jwys) =Re(Gy, (jwy))+ i Im(G,, (jwy))

In general, the estimated transfer functions
G,(s)andG,(s) can be written in the following

form:
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where m is the number of zeros and n is the total
number of poles. The parameter vector is.

F—) = (Xl’ X2""’Xn’Xn+1""’Xn+m+1) (2)

The estimation of the parameter vector P is made
by a non-linear least squares procedure that uses the
following cost function (Schoukens and Pintelon,
1989):

K(P) :é’N} (Re(G(jwy)) - (ReG(jwWa))+..  (3)

+ (IMG(jwy)) - (IMG(jwy)) P

A number of considerations need to be made based
in apriori knowledge of the ship dynamics. So, there
are three constraints in the identification process of
the models:

- The models must be stables.

- The gain of Gp(s) must tend to zero in low
encounter frequencies.

- The gain of Gyu(s) must tend to one in low
encounter frequencies

The solution to a non-linear least squares problem
with constrains is described for example in
Soderstrom and Stoica (1989), and can be
programed using MATLAB.

3. INTERVAL MODELLING

Bhattacharyya et a. (1995) describes a method to
obtain the family of linear time invariants systems

G(s) by letting the transfer function coefficients lie

in intervals around those of the nominal G(s). This
method is adapted to our problem. Let

y(jw,) =D(jw)u(jwy) i=12..,N (4)

where  Wep,We,...,.Wey are the test encounter
frequencies and the complex number u(jwg) and
Y(jwe) denote in phasor notation the input-output
pair at the frequency wg generated from an
identification experiment. Suppose that G'(s) is the
transfer function of a linear time-invariant system
which is such that G'(jwe) is closest to D(jwe) in
some horm sense. |n genera it is not possible to find
a single rational function G'() for which
G'(jwe)=D(jwe) and the more realistic identification
problem is to fact identify an entire family G(s) of
transfer functions which is capable of validating the
data in the sense that for each point D(jwy) there
exists some transfer function G T G(s) with the

property that G'(jwe)= D(jWe).

Let the nominal transfer function G'(s), which has
been identified by a non-linear least squares
procedure explained in the previus section, and the
transfer function G(s) with the form:
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n+1 (5)
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The family of linear time-invariant systems G(s) is
defined by :

G(s) ={G(9: % T [x - w, e} ,x +w, ;] " i} (6)



where w,; are to be regarded as weigths chosen
apriori whereas the € s are to be regarded as dilation
parameters to be determinated by the identification
algorithm and the data D(jw).

3.1 Weight selection

Suppose the test data consists of N data points
obtained at corresponding frequencies,

D(jw,) ={D(jw,) =a, + jb, ,i =12,..N} (7)
the 1" model is defined as;

6 (jwy =5 ") 17! ®)
W éG'(jwa) =121 -11+1,...,N

The model Gi(jwg) is identica to the nomina
identified model G'(jws) with the I™ data point
replaced by the 1™ component of the test data D(jw).
Now the 1" identified model G/'(s) is constructed,
which isidentified from the I data set G,(jw). Let

G|I ()=

The models G/'(s) must be identified with the same
method used to identify the nominal model G'(jw).
The weigth vector W is:

W= 2 A 1 % s A X - X (10
gﬁ < yreneer ’ N < n+m+l n+m+1H( )
W_[le’ """ ,W)<|1,WX|1+1, """ P Xaem 1]

The weigth selection is an important stage because
an inappropriate selection may results in an
unnecessarily large family.

3.2 Computation of the intervals of the transfer
function coefficients.

Replacing s=jwe in (5):

if G(jw) is made equal to the data set D(jwe) for a
particular encounter frequency wg, then:

D(jwy) =a, + jb, :m (12)
di+ j>d2

Operating, the next pair of equations are obtained:

Fu8,,b;,X ooy X nomea )= (8,d1- b,d2)- n1=0 (13)
F,{@,,0,,X ... X nemsa ) = (b,d1+2,d2) - n2=0

X; for all i is defined by:

ii=1...
X =X +we' (14)
*1l=1....,N
Rewrite (14) in terms of amatrix equations:
S =~ | —
AXX+ AW =-E (15)
AW '=-B- E
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é 'X is the vector of the dilation parameters obtained

for the encounter frecuency wy. Here it is assumed
without loss of generality that A(wg,a;,b;) has full
rank. Then the minimun norm solution €' can be

computed as:
e\ =-wi(aTA'AT(B+E) (1)
After finding é'x for al 1=1,..,N, the dilation

parameters of the intervals of the transfer function
coefficients are determined as follows:

e, :mlin{O,e&'} e :mlax{o,eﬁ'} (18)
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4. RESULTS

In Table 1 and Table 2 different model structures
(where m is the number of zeros, n is the tota
number of poles and nps is the number of simple
poles) are showed for heave and pitch movement, at
several ship speed. The cost function and mean
square error can be compared when the model
structure is reduced.

Table 1: Model structures for heave movement

Ship Model Value of Mean
speed  Structure  thecost square
(knots)  (m,n,nps) function error (m?

20 (4,6,2) 00383  0.0143
20 (35,1) 00692 00141
20 (2,31) 00696  0.0138
30 (4,6,2) 00385 00111
30 (35,1) 01012 00115
30 (2,3.1) 02381 00170
40 (4,6,2) 00471 00112
40 (35,1) 01045 00113
40 (2,3.1) 04510 00125

Table 2: Modd structures for pitch movement

Table 3: Moddl interval of G4(s)

X L ower Nominal Upper
Interval value Interval
X1 79.95 80.35 83.50
Xo 139.79 142.61 143.09
X3 139.63 142.94 144.56
Xa 106.31 106.59 109.02
Xs 35.88 42.62 43.09
Xs 12.98 16.43 16.52
Xg -6.81 -6.78 -6.28
Xo 25.99 26.02 26.35
X10 -5.14 -0.92 -0.81
X11 -0.14 3.21 3.28

Table 4: Modd interval of Gp(s)

Ship M odel Value of Mean
speed  Structure thecost sguareerror

X L ower Nominal Upper
Interval value Interval

X1 49.71 50.08 50.87
Xo 80.70 83.73 84.31
X3 91.03 91.84 92.42
Xa 63.45 63.99 66.07
Xs 28.31 28.73 28.95
Xs 6.19 9.85 9.95
Xg -53.07 -52.57 -52.48
Xo 12,55 13.21 13.47
X10 -6.79 -6.05 -4.59
X11 0.25 0.53 2.74

(knots)  (m,n,nps)  function (99
20 462) 01213 0.1056
20 (351 01228  0.1052
30 (4,6,2) 0.0938 0.0995
30 (351 0.0946 0.0998
40 (4,6,2) 0.0942 0.1214
40 (351) 00989 01226

The modd interval was obtained for each of model
structures show in Table 1 and Table 2. For
example, the transfer functions of model structure
(4,6,2) for heave movement and pitch movement at
40 knots are;

3.219s* - 0.9423° + 26.035* - 6.785+80.35

G,(s) =
+(9) S +16.435° +42.625" +106.65° +142.9s% +142.65+80.35

0.5381s* - 6.051s® +13.21s° - 52.28s
s° +9.855s° +28.74s* +63.99s° +91.84s? + 83,735+ 50.08

Ge(s) =

In Table 3 and Table 4 the model interval of Gy(s)
and Gp(s) are showed.

In Figure 2 Bode plot of Gy(s) and data obtained by

PRECAL are showed.
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Fig. 2. Bode plot of Gy(s) and data of PRECAL

program.



In Figure 3 Bode plot of Gp(s) and data obtained by
PRECAL are showed.
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Fig. 3. Bode plot of Gp(s) and data of PRECAL
program.

Figure 4 shows the output of Gy(s) and the measured

heave in the CEHIPAR when the input was irregular
waves at 40 knots and SSN=5.
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Fig. 4. Simulation of Gy(s) and measured heave at
40 knots and sea state numbre (SSN) equal to
5.

Figure 5 shows the output of Gp(s) and the
measured pitch in the CEHIPAR when the input was
irregular waves at 40 knots and SSN=5.
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Fig. 5. Simulation of Gp(s) and measured pitch at 40
knots and sea state number (SSN) equal to 5.

5. CONCLUSION

In this paper continuous linear models for vertical
dynamics of a high speed ship has been showed.
These models were identified by a non-linear least
square algorithm applied in the frequency domain.
Once the nominal model was obtained, tightest
intervals around each coefficient of nominal transfer
functions was created while satisfying the
membership and frequency response requirements.
Different model validation tests was made.
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