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Abstract: The interval transfer functions from wave height to pitch and heave
movement described in this paper are interpreted as a family of transfer functions
whose coefficients are bounded by some know intervals and centred at nominal values.
The nominal model is obtained by a non-linear least square algorithm of identification
applied in the frequency domain. Once the nominal model was obtained, then the
tightest intervals around each coefficient of the nominal transfer functions was created
while satisfying the membership and frequency response requirements. Different model
validation tests was made (Bode plots and simulations). These tests show that the
uncertainty model obtained is a valid interval model and it can be used for robust
control design.
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1. INTRODUCTION

The main problem for the development of high speed
ship is concerned with the passenger’s comfort and
the safety of the vehicles. The vertical acceleration
associated with roll, pitch and heave motion is the
cause of motion sickness. The roll control is the most
attractive candidate for control since increasing roll
damping can be obtained more easily. However,
shipbuilders are also interested in increasing pitch
and heave damping. In order to solve the problem
antipiching devices and pitch control methods must
be considered. Previously, models for the vertical
ship dynamic must be developed for the design,
evaluation and verification of the results.

The number of published investigations about ship
modelling is inmense. For example, nonlinear
models in 6 degrees of freedom are shown in Fossen
(1994) and Lewis (1989). These models are
theoretical and they are obtained from the equations
of a rigid solid partially inmersed in water.

Obtaining a very accurate mathematical
model of a system is usually impossible and very
costly. It also often increases the complexity of the

control algorithm. A trend in the area of system
identification is to try to model the system
uncertainties (Bhattacharyya et al., 1995) to fit the
available analysis and design tools of robust control.

The interval functions described in this paper are
interpreted as a family of transfer functions from
wave height to pitch and heave movement whose
coefficients are bounded by some know intervals and
centred at nominal values. The nominal model
(Aranda et al., 1999b; Aranda et al., 2000) is
obtained by a non-linear least square algorithm
applied in the frecuency domain. Once the nominal
model is obtained, then the tightest intervals around
each coefficient of the nominal transfer functions are
created while satisfying the membership and
frequency response requirements.

2. IDENTIFICATION METHODOLOGY

The method describes in this paper follows the steps
of classical identification diagram (Ljung, 1989;
Schoukens and Pintelon, 1991; Södertröm and
Stoica, 1989). A model test was carried out in the
towing tank of CEHIPAR (Madrid, Spain). The



model was free to move in heave direction and pitch
angle. The wave surface elevation was measured at
68.75 m. forward from model bow. Different regular
and irregular waves and ship speed were tested. A
set of simulated data (Aranda et al., 1999a) has been
generated by the program PRECAL  (which uses a
geometrical model of the ship to predict her dynamic
behaviour), reproducing the same conditions of the
experiments with regular waves.

Two transfer functions are identified (see Figure 1):

• GP(s): transfer function from wave height (m) to
pitch movement (º).

• GH(s): transfer function from wave height (m) to
heave movement (m).

GP(s)

GH(s)

PITCH (º)

HEAVE (m)

WAVE HEIGHT (m)

Fig. 1. Blocks diagram of the identified system

The identification is made in the frecuency domain
and uses the simulated data of magnitude and phase
obtained by the program PRECAL  in the encounter
frequency ωei (i=1,2,...,25) for the transfer functions
GP(jωei) and GH(jωei).
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In general, the estimated transfer functions
)(sGP
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and )(sGH
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 can be written in the following

form:
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where  m is the number of zeros and n is the total
number of poles. The parameter vector is:
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The estimation of the parameter vector P
v

 is made
by a non-linear least squares procedure that uses the
following cost function (Schoukens and Pintelon,
1989):
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A number of considerations need to be made based
in a priori knowledge of the ship dynamics. So, there
are three constraints in the identification process of
the models:
•   The models must be stables.
•  The gain of GP(s) must tend to zero in low
encounter frequencies.
•  The gain of GH(s) must tend to one in low
encounter frequencies

The solution to a non-linear least squares problem
with constrains is described for example in
Söderström and Stoica (1989), and can be
programed using MATLAB.

3. INTERVAL MODELLING

Bhattacharyya et al. (1995) describes a method to
obtain the family of linear time invariants systems

)(sG
r

 by letting the transfer function coefficients lie

in intervals around those of the nominal G(s). This
method is adapted to our problem. Let
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where ωe1,ωe2,...,ωeN are the test encounter
frequencies and the complex number u(jωei) and
y(jωei) denote in phasor notation the input-output
pair at the frequency ωei generated from an
identification experiment. Suppose that GI(s) is the
transfer function of a linear time-invariant system
which is such that GI(jωe) is closest to D(jωe) in
some norm sense. In general it is not possible to find
a single rational function GI(s) for which
GI(jωei)=D(jωei) and the more realistic identification
problem is to fact identify an entire family )(sG

r
 of

transfer functions which is capable of  validating the
data in the sense that for each point D(jωei) there
exists some transfer function Gi ∈ )(sG

r
 with the

property that GI(jωei)= D(jωei).

Let the nominal transfer function GI(s), which has
been identified  by a non-linear least squares
procedure explained in the previus section, and the
transfer function G(s) with the form:
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The family of linear time-invariant systems )(sG
r

 is

defined by :

{ }iwxwxxsGsG
iiii xxixxii ∀⋅+⋅−∈= +− ],[ˆ:)()( εε

v
 (6)



where wxi are to be regarded as weigths chosen
apriori whereas the ε’s are to be regarded as dilation
parameters to be determinated by the identification
algorithm and the data D(jωei).

3.1 Weight selection

Suppose the test data consists of N data points
obtained at corresponding frequencies,
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 the lth model is defined as:
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The model Gl(jωei) is identical to the nominal
identified model GI(jωei) with the lth data point
replaced by the lth component of the test data D(jω).
Now the lth identified model Gl

I(s) is constructed,
which is identified from the lth data set Gl(jω). Let
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The models Gl
I(s) must be identified with the same

method used to identify the nominal model GI(jω).
The weigth vector w

r
 is :
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The weigth selection is an important stage because
an inappropriate selection may results in an
unnecessarily large family.

3.2 Computation of the intervals of the transfer
function coefficients.

Replacing s=jωei in (5):
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if G(jωei) is made equal to the data set D(jωe) for a
particular encounter frequency ωei, then:
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Operating, the next pair of equations are obtained:
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Rewrite (14) in terms of a matrix equations:
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where:
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l
xε

r
 is the vector of the dilation parameters obtained

for the encounter frecuency ωel. Here it is assumed
without loss of generality that A(ωei,αi,βi) has full
rank. Then the minimun norm solution l

xε
r

 can be

computed as:
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After finding l
xε

r
 for all l=1,...,N, the dilation

parameters of the intervals of the transfer function
coefficients are determined as follows:
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4. RESULTS

In Table 1 and Table 2 different model structures
(where m is the number of zeros, n is the total
number of poles and nps is the number of simple
poles) are showed for heave and pitch movement, at
several ship speed. The cost function and mean
square error can be compared when the model
structure is reduced.

Table 1: Model structures for heave movement

Ship
speed

(knots)

Model
Structure
 (m,n,nps)

Value of
the cost
function

Mean
square

error (m2)
20 (4,6,2) 0.0383 0.0143
20 (3,5,1) 0.0692 0.0141
20 (2,3,1) 0.0696 0.0138
30 (4,6,2) 0.0385 0.0111
30 (3,5,1) 0.1012 0.0115
30 (2,3,1) 0.2381 0.0170
40 (4,6,2) 0.0471 0.0112
40 (3,5,1) 0.1045 0.0113
40 (2,3,1) 0.4510 0.0125

Table 2: Model structures for pitch movement

Ship
speed

(knots)

Model
Structure
 (m,n,nps)

Value of
the cost
function

Mean
square error

((º)2)
20 (4,6,2) 0.1213 0.1056
20 (3,5,1) 0.1228 0.1052
30 (4,6,2) 0.0938 0.0995
30 (3,5,1) 0.0946 0.0998
40 (4,6,2) 0.0942 0.1214
40 (3,5,1) 0.0989 0.1226

The model interval was obtained for each of model
structures show in Table 1 and Table 2. For
example, the transfer functions of model structure
(4,6,2) for heave movement and pitch movement at
40 knots are:

35.806.1429.1426.10662.4243.16
35.8078.603.269423.0219.3
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In Table 3 and Table 4 the model interval of GH(s)
and GP(s) are showed.

Table 3: Model interval of GH(s)

x Lower
Interval

Nominal
value

Upper
Interval

x1 79.95 80.35 83.50
x2 139.79 142.61 143.09
x3 139.63 142.94 144.56
x4 106.31 106.59 109.02
x5 35.88 42.62 43.09
x6 12.98 16.43 16.52
x8 -6.81 -6.78 -6.28
x9 25.99 26.02 26.35
x10 -5.14 -0.92 -0.81
x11 -0.14 3.21 3.28

Table 4: Model interval of GP(s)

x Lower
Interval

Nominal
value

Upper
Interval

x1 49.71 50.08 50.87
x2 80.70 83.73 84.31
x3 91.03 91.84 92.42
x4 63.45 63.99 66.07
x5 28.31 28.73 28.95
x6 6.19 9.85 9.95
x8 -53.07 -52.57 -52.48
x9 12.55 13.21 13.47
x10 -6.79 -6.05 -4.59
x11 0.25 0.53 2.74

In Figure 2 Bode plot of GH(s) and data obtained by
PRECAL are showed.

Fig. 2.  Bode plot of GH(s) and data of PRECAL
program.



In Figure 3 Bode plot of GP(s) and data obtained by
PRECAL are showed.

Fig. 3.  Bode plot of GP(s) and data of PRECAL
program.

Figure 4 shows the output of GH(s) and the measured
heave in the CEHIPAR when the input was irregular
waves  at  40 knots and SSN=5.

Fig. 4.  Simulation of GH(s) and measured heave at
40 knots and sea state numbre (SSN) equal to
5.

Figure 5 shows the output of GP(s) and the
measured pitch in the CEHIPAR when the input was
irregular waves  at  40 knots and SSN=5.

Fig. 5.  Simulation of GP(s) and measured pitch at 40
knots and sea state number (SSN) equal to 5.

5. CONCLUSION

In this paper continuous linear models for vertical
dynamics of a high speed ship has been showed.
These models were identified by a non-linear least
square algorithm applied in the frequency domain.
Once the nominal model was obtained, tightest
intervals around each coefficient of  nominal transfer
functions was created while satisfying the
membership and frequency response requirements.
Different model validation tests was made.
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